
CA-IDMS®
Features Summary

Release 12.0

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is
for the end user's informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

THIS DOCUMENTATION MAY NOT BE COPIED, TRANSFERRED, REPRODUCED, DISCLOSED, OR
DUPLICATED, IN WHOLE OR IN PART, WITHOUT THE PRIOR WRITTEN CONSENT OF CA. THIS
DOCUMENTATION IS PROPRIETARY INFORMATION OF CA AND PROTECTED BY THE COPYRIGHT
LAWS OF THE UNITED STATES AND INTERNATIONAL TREATIES.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS
IS” WITHOUT WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGE-
MENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER OR ANY THIRD PARTY FOR ANY
LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION,
INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR
LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

THE USE OF ANY PRODUCT REFERENCED IN THIS DOCUMENTATION AND THIS DOCUMENTA-
TION IS GOVERNED BY THE END USER'S APPLICABLE LICENSE AGREEMENT.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1)
and (2) or DFARS Section 252.227.7013(c)(1)(ii) or applicable successor provisions.

First Edition, July 1992

One Computer Associates Plaza, Islandia, NY 11749
All rights reserved.

All trademarks, trade names, service marks, or logos referenced herein belong to their respective companies.

 Contents

How to Use This Document . ix

Chapter 1. Database . 1-1
1.1 About this chapter . 1-3
1.2 Database definition . 1-4

1.2.1 Separating logical and physical database definitions 1-4
1.2.2 Support for symbolic parameters . 1-8
1.2.3 Indexing options . 1-10
1.2.4 Collating options . 1-11
1.2.5 Schema and subschema compiler enhancements 1-13

1.3 Data dictionary enhancements . 1-15
1.3.1 New dictionary structure . 1-15
1.3.2 Dictionary statement enhancements and options 1-16
1.3.3 Dictionary compiler options . 1-18

1.4 Exploitation of ESA dataspaces . 1-20
1.5 24-hour processing . 1-21

1.5.1 Dynamic database file management 1-21
1.5.2 Dynamic DMCL . 1-23
1.5.3 Dynamic area extension . 1-24
1.5.4 Dynamic database name tables . 1-25
1.5.5 Dynamic buffer acquisition . 1-25
1.5.6 Dynamic buffer pool configuration 1-25

1.6 Batch processing . 1-27
1.6.1 SYSIDMS parameter file . 1-27
1.6.2 Local mode security . 1-33
1.6.3 Loading from a load area in local mode 1-33

1.7 Lock management . 1-34
1.8 Deadlock management . 1-36
1.9 Utilities . 1-37

1.9.1 New interface . 1-37
1.9.2 Utility statements . 1-37
1.9.3 Utility programs . 1-39
1.9.4 Security for utilities . 1-40
1.9.5 For further information . 1-40

1.10 Command facility . 1-41

Chapter 2. Data Communications . 2-1
2.1 About this chapter . 2-3
2.2 CA-IDMS database communications architecture 2-4

2.2.1 New design . 2-4
2.2.2 Components of the architecture . 2-5
2.2.3 Setting up your environment . 2-6
2.2.4 Multiple DC/UCF region communications 2-7
2.2.5 Enhanced CICS interface . 2-9
2.2.6 For further information . 2-9

2.3 Operating system features . 2-10
2.4 Profile support . 2-12

Contents iii

2.4.1 Defining profiles . 2-13
2.4.2 Associating profiles with users . 2-15
2.4.3 Displaying and accessing attributes 2-15
2.4.4 Using profiles with nonterminal tasks 2-16
2.4.5 For further information . 2-16

2.5 New numbered user exits . 2-17
2.6 Query device support . 2-18
2.7 DCMT and DCUF commands . 2-19

2.7.1 Invoking DCMT and DCUF commands from programs 2-19
2.7.2 New and modified DCMT and DCUF commands 2-19

2.8 System generation . 2-22
2.8.1 Changes to statements and parameters 2-22
2.8.2 System generation compiler enhancements 2-27

2.9 Enhanced language support . 2-29
2.9.1 Runtime support . 2-29
2.9.2 General precompiler changes . 2-29
2.9.3 Parameters supporting VS COBOL II 2-30
2.9.4 Parameters supporting COBOL 85 (Fujitsu and Hitachi) 2-31

Chapter 3. Security . 3-1
3.1 About this chapter . 3-3
3.2 Security facility features . 3-4
3.3 Administering security . 3-6

3.3.1 Privileges . 3-6
3.3.2 Resources . 3-7
3.3.3 Authorization identifiers . 3-8

3.4 Granting and revoking privileges . 3-9
3.4.1 Granting privileges . 3-9
3.4.2 Revoking privileges . 3-10

3.5 Security display facility . 3-11
3.6 For further information . 3-15

Chapter 4. CA-IDMS Performance Monitor 4-1
4.1 About this chapter . 4-3
4.2 General enhancements . 4-4
4.3 Real-Time monitor . 4-5

4.3.1 New screens . 4-5
4.3.2 New fields . 4-6

4.4 Application monitor . 4-7
4.4.1 New screen . 4-7

4.5 Interval monitor . 4-8
4.5.1 New screens . 4-8
4.5.2 New fields . 4-9

Chapter 5. CA-ADS and Mapping Facility 5-1
5.1 About this chapter . 5-3
5.2 Integration with centralized security . 5-4
5.3 CUA-style user interface . 5-5
5.4 Enhanced compiler support . 5-7
5.5 Mapping enhancements . 5-9
5.6 Support for century date variables and built-in functions 5-15

iv CA-IDMS Release 12.0 Features Summary

5.7 Numeric test . 5-16
5.8 Trailing sign BIF support . 5-17
5.9 READY NOREADY . 5-18

Chapter 6. CA-Culprit, CA-OLQ, and CA-ICMS 6-1
6.1 About this chapter . 6-3
6.2 Overview . 6-4
6.3 CA-Culprit . 6-5

6.3.1 Double word binary support . 6-5
6.4 For further information . 6-6
6.5 CA-OLQ . 6-7

6.5.1 Extended selection criteria . 6-7
6.6 For further information . 6-9
6.7 CA-ICMS . 6-10

Chapter 7. CA-IDMS/DDS . 7-1
7.1 About this chapter . 7-3
7.2 CA-IDMS/DDS enhancements . 7-4
7.3 For further information . 7-6

Chapter 8. Introduction to SQL-Defined Databases 8-1
8.1 What is an SQL-defined database? . 8-3
8.2 ANSI and FIPS support . 8-4
8.3 Benefits and features . 8-5
8.4 Components . 8-7
8.5 SQL as a language . 8-8
8.6 Tables, rows, columns . 8-9
8.7 Schemas and views . 8-10
8.8 Table operations . 8-12
8.9 Integrity and constraints . 8-13
8.10 Storing SQL definitions . 8-15
8.11 For further information . 8-16

Chapter 9. Defining a Database Using SQL 9-1
9.1 SQL data definition language . 9-3
9.2 The definition process . 9-4
9.3 For further information . 9-7

Chapter 10. Accessing a Database Using SQL 10-1
10.1 Data manipulation with SQL . 10-3
10.2 Interactive and embedded SQL . 10-4

10.2.1 Interactive SQL . 10-4
10.2.2 Embedded SQL . 10-4
10.2.3 Dynamic SQL . 10-6

10.3 CA-IDMS tools support for SQL . 10-7
10.3.1 CA-ADS support . 10-7
10.3.2 CA-OLQ support . 10-7
10.3.3 CA-ICMS support . 10-8
10.3.4 CA-Culprit support . 10-8

10.4 SQL access to a non-SQL defined database 10-9

Contents v

10.4.1 How to do it . 10-9
10.4.2 Database requirements . 10-10

10.5 For further information . 10-11

Chapter 11. SQL Extended Features . 11-1
11.1 What are SQL extended features? . 11-3
11.2 Database definition extensions . 11-4

11.2.1 Data types . 11-4
11.2.2 32-character column names . 11-4
11.2.3 Database tuning extensions . 11-4

11.3 Data access and manipulation extensions 11-5
11.3.1 Bulk access to tables . 11-5
11.3.2 Scalar functions . 11-5
11.3.3 Special registers . 11-7
11.3.4 Date/time arithmetic . 11-7
11.3.5 Temporary tables . 11-8
11.3.6 Modular programming . 11-8
11.3.7 Dynamic SQL . 11-8
11.3.8 Access to non-SQL defined databases 11-8

11.4 Precompiler directive extensions . 11-9
11.5 Session management extensions . 11-10

11.5.1 Specifying a dictionary . 11-10
11.5.2 Pseudoconversational support . 11-10
11.5.3 Establishing session characteristics 11-11

11.6 Transaction management extensions . 11-12
11.6.1 CONTINUE/RELEASE parameters on the COMMIT WORK

statement . 11-12
11.6.2 Dynamic selection of access module 11-12
11.6.3 Overriding access module defaults 11-13

Chapter 12. CA-IDMS Access Module Creation 12-1
12.1 What is the optimizer? . 12-3
12.2 Compilation strategy . 12-4
12.3 How does optimization work? . 12-5

12.3.1 Automatic reoptimization . 12-6
12.3.2 Describing the access strategy . 12-6

12.4 For more information . 12-7

Chapter 13. Administration of an SQL-Defined Database 13-1
13.1 Tuning the database . 13-3

13.1.1 Indexes . 13-3
13.1.2 CALC keys . 13-3
13.1.3 Referential constraints . 13-3
13.1.4 Clustering . 13-4

13.2 Utilities in the SQL environment . 13-5
13.3 Locking . 13-6

13.3.1 Types of locks . 13-6
13.4 Security for SQL-defined databases . 13-8

13.4.1 Privileges . 13-8
13.4.2 Granting privileges . 13-9
13.4.3 Ownership . 13-9

vi CA-IDMS Release 12.0 Features Summary

13.4.4 Security checking . 13-9
13.5 For further information . 13-11

Index . X-1

Contents vii

viii CA-IDMS Release 12.0 Features Summary

How to Use This Document

How to Use This Document ix

What this document is about

CA-IDMS refers to the complete line of systems software products in the IDMS
product family. This document covers Release 12.0 features for these CA-IDMS
products:

 ■ CA-IDMS/DB

 ■ CA-IDMS/DC

 ■ CA-IDMS/UCF

■ CA-IDMS Performance Monitor

■ CA-ADS and the Mapping Facility

 ■ CA-Culprit

 ■ CA-OLQ

 ■ CA-ICMS

 ■ CA-IDMS/DDS

 ■ CA-IDMS/SQL Option

The purpose of this document is to summarize new features so that you can identify
areas of change and new features to use. The document is not intended to provide
detailed information about how to use features. Detailed information is provided in
the CA-IDMS Release 12.0 documentation set for each product. References to these
documents are provided with the description of each feature.

x CA-IDMS Release 12.0 Features Summary

Who should use this document

Users of CA-IDMS products. In particular:

 ■ Database administrators

■ Data communications administrators

 ■ Programmers

■ Data dictionary administrators

■ And others who are interested in the features of Release 12.0

How to Use This Document xi

How information is presented

This document describes the following:

■ First Half: Describes CA-IDMS Release 12.0 Enhancements to existing
CA-IDMS products

■ Second Half: Describes the CA-IDMS/SQL Option (SQL processing product for
Release 12.0)

First Half: The first half of this document introduces features as they relate to
existing CA-IDMS products. The first three chapters are separated by function (data-
base, data communications, security). Chapters on CA-IDMS Performance Monitor,
CA-ADS, CA-Culprit, CA-OLQ, CA-ICMS, and CA-IDMS/DDS follow.

Discussion of each feature includes:

■ A description of the feature

■ Uses and benefits of a feature

■ An example, if appropriate

■ References to related CA-IDMS documents that provide detailed information on
how to use the feature

Second Half: The second half of this document introduces the CA-IDMS/SQL
Option, a new product that provides for SQL definition of a database and SQL access
to both SQL and non-SQL defined databases.

Topic areas for the second half include:

■ An introduction to SQL-defined databases

■ Defining a database using SQL

■ Accessing a database using SQL

■ Discussion of SQL extended features (extensions of the ANSI standard)

■ Discussion of the CA-IDMS access module compiler and optimization

■ Administering an SQL-defined database

xii CA-IDMS Release 12.0 Features Summary

 Related documentation

Use this document in conjunction with these CA-IDMS Release 12.0 documents:

Note: This is not a complete list of CA-IDMS Release 12.0 documentation. For a
complete list, see "Computer Associates Documentation Pricing Guide."

 ■ For CA-IDMS/DB

– CA-IDMS Database Administration (Volumes I and II)

 – CA-IDMS Utilities

– CA-IDMS Security Administration

– IDD DDDL Reference

– CA-IDMS Navigational DML Programming

– CA-IDMS Command Facility

– CA-IDMS Release 12.0 Conversion Notebook

– CA-IDMS installation manual for your operating system

– CA-IDMS SQL Reference

– CA-IDMS SQL Programming

■ For CA-IDMS/DC and CA-IDMS/UCF

– CA-IDMS System Generation

– CA-IDMS System Operations

– CA-IDMS System Tasks and Operator Commands

 ■ For CA-ADS

 – CA-ADS Reference

– CA-ADS User Guide

– CA-IDMS Mapping Facility

 ■ For CA-Culprit

 – CA-CULPRIT Reference

 ■ For CA-OLQ

 – CA-OLQ Reference

 ■ For CA-ICMS

– CA-ICMS System Administration

 ■ For CA-IDMS/DDS

– CA-IDMS/DDS Design and Operations

How to Use This Document xiii

Related manuals are listed with the discussion of each feature. Where documentation
is not necessary, as in the case of a feature which requires no user action, none is
specified.

xiv CA-IDMS Release 12.0 Features Summary

Understanding syntax diagrams

Look at the list of notation conventions below to see how syntax is presented in this
manual. The example following the list shows how the conventions are used.

UPPERCASE

OR

SPECIAL CHARACTERS

Represents a required keyword, partial keyword,
character, or symbol that must be entered com-
pletely as shown.

lowercase Represents an optional keyword or partial keyword
that, if used, must be entered completely as
shown.

underlined lowercase Represents a value that you supply.

← Points to the default in a list of choices.

lowercase bold

Represents a portion of the syntax shown in
greater detail at the end of the syntax or elsewhere
in the document.

��────────────────────── Shows the beginning of a complete piece of
syntax.

──────────────────────�� Shows the end of a complete piece of syntax.

──────────────────────� Shows that the syntax continues on the next line.

�────────────────────── Shows that the syntax continues on this line.

──────────────────────�─ Shows that the parameter continues on the next
line.

─�────────────────────── Shows that a parameter continues on this line.

�── parameter ─────────� Shows a required parameter.

 �─┬─ parameter ─┬─────�

└─ parameter ─┘
Shows a choice of required parameters. You must
select one.

 �─┬─────────────┬─────�

└─ parameter ─┘
Shows an optional parameter.

 �─┬─────────────┬─────�

├─ parameter ─┤

└─ parameter ─┘

Shows a choice of optional parameters. Select
one or none.

 ┌─────────────┐

 �─↓─ parameter ─┴─────�
Shows that you can repeat the parameter or
specify more than one parameter.

┌───── , ─────┐

 �─↓─ parameter ─┴─────�
Shows that you must enter a comma between
repetitions of the parameter.

How to Use This Document xv

Sample syntax diagram

xvi CA-IDMS Release 12.0 Features Summary

 Chapter 1. Database

1.1 About this chapter . 1-3
1.2 Database definition . 1-4

1.2.1 Separating logical and physical database definitions 1-4
1.2.2 Support for symbolic parameters . 1-8
1.2.3 Indexing options . 1-10
1.2.4 Collating options . 1-11
1.2.5 Schema and subschema compiler enhancements 1-13

1.3 Data dictionary enhancements . 1-15
1.3.1 New dictionary structure . 1-15
1.3.2 Dictionary statement enhancements and options 1-16
1.3.3 Dictionary compiler options . 1-18

1.4 Exploitation of ESA dataspaces . 1-20
1.5 24-hour processing . 1-21

1.5.1 Dynamic database file management 1-21
1.5.2 Dynamic DMCL . 1-23
1.5.3 Dynamic area extension . 1-24
1.5.4 Dynamic database name tables . 1-25
1.5.5 Dynamic buffer acquisition . 1-25
1.5.6 Dynamic buffer pool configuration 1-25

1.6 Batch processing . 1-27
1.6.1 SYSIDMS parameter file . 1-27
1.6.2 Local mode security . 1-33
1.6.3 Loading from a load area in local mode 1-33

1.7 Lock management . 1-34
1.8 Deadlock management . 1-36
1.9 Utilities . 1-37

1.9.1 New interface . 1-37
1.9.2 Utility statements . 1-37
1.9.3 Utility programs . 1-39
1.9.4 Security for utilities . 1-40
1.9.5 For further information . 1-40

1.10 Command facility . 1-41

Chapter 1. Database 1-1

1-2 CA-IDMS Release 12.0 Features Summary

1.1 About this chapter

1.1 About this chapter

This chapter describes enhancements to database-related processing. While most of
the features apply to just CA-IDMS/DB, some apply across the CA-IDMS product
line. The features provide:

 ■ Ease-of-use

 ■ Processing flexibility

 ■ Processing efficiency

■ 24-hour processing support

■ Exploitation of new technology

Chapter 1. Database 1-3

1.2 Database definition

 1.2 Database definition

Database definition topics covered in this section are:

■ Separation of logical and physical database definition

■ Support for symbolic parameters

■ Indexing and collating options

■ Schema and subschema compiler options

1.2.1 Separating logical and physical database definitions

Separation of logical and physical: Under CA-IDMS/DB, logical and physical
database definitions are now separate.

What is a logical definition?: A logical database definition is made up of:

■ Schema — The definition of the logical components of a database.

■ Subschema — A subset of the schema (an application view).

What is a physical definition?: A physical database definition is made up of:

■ Segment(s) — A collection of areas and files.

■ Database name table — A table in which you assign logical database names to
segments. You use logical names to access physical segments at runtime. You
can also include subschema mapping rules.

■ DMCL — A collection of physical database, journal, and buffer definitions
representing a CA-IDMS/DB runtime environment. Each runtime environment is
defined by a single DMCL.

Benefits of separating logical and physical definition: Separation of logical
and physical database definition provides the following benefits:

■ Fewer schemas and subschemas need to be defined and maintained. A single
subschema can be used to access different databases by altering the database name
on a BIND RUN-UNIT statement.

■ Fewer subschemas need to be loaded into the program pool at runtime.

■ Only one set of IDMSNWKx subschemas are needed to access all dictionaries in
your environment.

Steps for defining the logical database: This table shows the basic definition
process; some of the items in the 'What is included' column are optional.

1-4 CA-IDMS Release 12.0 Features Summary

1.2 Database definition

Steps for defining the physical database This table shows the basic definition
process; some of the items in the 'What is included' column are optional.:

Steps for definition What is included

1. Define a schema. Create a schema:

■ Add areas (areas no longer contain page
ranges)

 ■ Add records

 ■ Add sets

2. Define a subschema. Create a subschema:

 ■ Add areas

 ■ Add records

 ■ Add sets

■ Add logical records (and path-groups)

Steps for definition What is included

1. Define segments. Create segments:

■ Specify a page group

■ Specify maximum records per page

■ Add files, and specify:

– External file name

– Data set name

– File access method

■ Add areas, and specify:

 – Page range

– Page size and page reserve

– Symbolic parameter values

 – File mapping

Chapter 1. Database 1-5

1.2 Database definition

Note: All physical data definition language statements are submitted to the CA-IDMS
Command Facility. For more information on the CA-IDMS Command
Facility, see "Command facility" later in this chapter.

Definitions stored in the data dictionary: Logical and physical definitions are
stored in the data dictionary.

�� For information about new areas in the dictionary, see "Data dictionary enhance-
ments" later in this chapter. For detailed information about dictionaries, see CA-IDMS
Database Administration.

Examples: The following example shows the definition of a segment.

Steps for definition What is included

2. Define a database name
table (DBTABLE)

Create a database name table:

■ Specify subschema rules

Create DBNAME entries in the table:

 ■ Identify segment(s)

■ Specify subschema mapping rules

Note — Subschema mapping rules are primarily
used for upward compatibility with previous
releases.

3. Define the DMCL. Create a DMCL:

 ■ Define buffers

 ■ Define journals

■ Assign a default buffer for the DMCL

■ Identify a database name table for the DMCL

■ Include segments, and specify:

– Default buffer for the segment

 – Startup status

 – Warmstart status

■ Add file overrides

■ Add area overrides

1-6 CA-IDMS Release 12.0 Features Summary

1.2 Database definition

create segment empseg;

create file emp1 assign to emp1;

create file ins1 assign to ins1;

create file org1 assign to org1;

create area emp-region

primary space 111 pages

from page 812111

page size 4276 characters

within file emp1;

create area ins-region

primary space 51 pages

from page 812211

page size 4276 characters

 subarea calc-range

from page 812212 thru 812251

within file ins1;

The following example shows the creation of the database name table ALLDBS and
the definition of the DBNAME entries in the table.

create dbtable alldbs;

create dbname alldbs.system

include segment system

include segment catsys

include segment sysmsg;

create dbname alldbs.empdb

include segment empseg

include segment projseg;

create dbname alldbs.testdb

include segment tempseg

include segment projseg;

generate dbtable alldbs;

punch dbtable load module alldbs;

The following example shows the modification of the DMCL IDMSDMCL to include
segments and a database name table. The GENERATE and PUNCH statements store
the new DMCL load module in a load area, then punch it to a system punch file for
linking to a load library.

alter dmcl idmsdmcl

default buffer def-buff

 dbtable alldbs

include segment empseg

default buffer emp-buff

 file empseg.indx-file

 buffer indx-buff

include segment projseg

include segment tempseg;

generate dmcl idmsdmcl;

punch dmcl load module idmsdmcl;

Linking logical and physical definitions at runtime: The connection between
the logical definitions in the subschema and the physical definitions in the DMCL is
made at runtime using information in the database name table. DBNAME entries in
the table identify the segments CA-IDMS/DB is to access. Users can specify either a
segment name or a database name (DBNAME) to identify the database to access at
runtime.

Chapter 1. Database 1-7

1.2 Database definition

Examples: In the following example, the BIND statement includes a database name.
This automatically includes all segments defined in that DBNAME entry in the data-
base name table.

bind run-unit for empss11

 dbname empdb

In the following example, the BIND statement specifies a segment name rather than
the DBNAME the segment is associated with.

bind run-unit for empss11

 dbname tempseg

The following example shows a physical representation of how you can use different
database names to access different physical databases.

The area emp-region has been defined to both segments. In segment EMPSEG, area
emp-region occupies a page range of 802001 - 802100 while in segment TEMPSEG
area emp-region occupies a page range of 802501 - 802600. By binding to a different
database name (that includes the segment), a program can access a different physical
location.

For further information:

■ On the separation of logical and physical database definition, see "Defining
Physical Databases" in Volume I, Part Two of CA-IDMS Database Administration

■ On physical database definition, see Volume I, Part Two, "Physical Database
Definition", of CA-IDMS Database Administration

■ On logical database definition, see Volume I, Part Four, "Non-SQL Database
Definition", of CA-IDMS Database Administration

1.2.2 Support for symbolic parameters

Support for symbolic parameters: Symbolic parameters allow you to specify
hard values in the physical database definition, and point to the values from the more
generic logical definition. Advantages of symbolic parameters:

■ The values can differ between physical databases (segments), even though a single
schema definition is used.

1-8 CA-IDMS Release 12.0 Features Summary

1.2 Database definition

■ The values can be changed without regenerating the subschema.

Symbolic parameters are supported and defined under the logical schema definition of
records and sets. The parameters are resolved at runtime using values defined as part
of the segment definition.

These symbolic parameters are discussed in this section:

 ■ Subareas

 ■ Symbolic displacement

■ Symbolic index sizing specification

Symbolic names for subareas: A subarea represents a subset of an area's page
range; the subarea holds record occurrences or index structures.

Example: This example shows the use of a symbolic name for the subarea specifica-
tion in the logical definition, and then the resolution of the subarea symbol in the
physical definition.

Logical

modify record employee

within area emp-demo-region subarea empl-range.

Physical

alter area empseg.emp-demo-region

 subarea empl-range

offset 1 page for 111 percent;

Symbolic displacement for VIA sets: VIA set displacement represents how far
member records of a VIA set are stored from the owner record of the set.

Example: This example shows the specification for symbolic displacement in the
logical definition, and then the resolution of the symbol in the physical definition.

Logical

modify record coverage

location mode is via emp-coverage set

displacement using coverage-disp.

Physical

alter area empseg.emp-demo-region

symbolic displacement coverage-disp 5 pages;

Symbolic index specification: You can use a multi-valued symbolic parameter to
represent:

■ The size of an internal index record (SR8)

■ The displacement of bottom-level index records from the rest of the index

Chapter 1. Database 1-9

1.2 Database definition

You can specify SR8 size and displacement values or you can provide syntax that
directs CA-IDMS/DB to calculate the values based on the length of the key, the esti-
mated number of index entries, and physical information (like the size of the page).

Example: This example shows the index symbol specification in the logical defi-
nition. The example then shows two different ways of resolving the symbol values in
the physical definition. In Physical #1, values are supplied by the user. In Physical
#2, the BASED ON clause directs CA-IDMS/DB to calculate the values.

Logical

modify set emp-coverage

mode is index using emp-coverage.

Physical #1

alter area empseg.emp-demo-region

symbolic index emp-coverage

block contains 31 keys

displacement 11 pages;

Physical #2

alter area empseg.emp-demo-region

symbolic index emp-coverage

based on sorted key length 11 for 111 records;

For further information:

■ On including symbolic parameters in RECORD and SET statements, see
"Schema Statements" in Volume I,
 Part Four, of CA-IDMS Database Administration

■ On including symbolic parameters in the corresponding physical AREA state-
ments, see "Physical Database DDL Statements" in Volume I, Part Two of
CA-IDMS Database Administration

 1.2.3 Indexing options

Unlinked indexes: An unlinked index is a system-owned index in which there are
no index pointers in the member records.

Advantages of unlinked indexes:

■ You can load and rebuild unlinked indexes faster.

■ You can add or remove an unlinked index without restructuring the database, pro-
vided the control length of a compressed or variable length member record is not
changed.

■ Orphan management, which eliminates a source of gradual performance degrada-
tion in extremely active indexes, is no longer necessary.

You use the OMITTED parameter of the INDEX DBKEY POSITION clause to
specify an unlinked index. You must also specify an unlinked index as MANDA-
TORY AUTOMATIC.

1-10 CA-IDMS Release 12.0 Features Summary

1.2 Database definition

Example This is an example of an index defined as unlinked.:

add set name is empl-ix

mode is index

owner is system

member is employee

index dbkey position is omitted

 mandatory automatic.

For further information:

■ On the INDEX DBKEY POSITION clause of the SET statement, see "Schema
Statements" in Volume I, Part Four, of CA-IDMS Database Administration

Duplicates stored in db-key sequence: You can order index entries with dupli-
cate index key values in member db-key sequence. This option speeds retrieval by
reducing I/O.

Example: This example shows the DUPLICATES BY DBKEY clause used to
specify ordering by db-key.

 .

 .

 .

add set name is office-employee

order is sorted

mode is index

block contains 31 keys

 .

 .

 .

member is employee

key is emp-last-name

duplicates by dbkey.

For further information:

■ On the DUPLICATES clause of the SET statement, see "Schema Statements"
in Volume I, Part Four, of CA-IDMS Database Administration

 1.2.4 Collating options

Mixed sort sequence: You can specify both ascending and descending sort
sequences for an index or sorted set with multiple sort fields.

This feature provides ordering flexibility. Where previously only one choice per
sorted set existed, you can now choose ascending or descending for each sort field.

Example: This example shows the KEY IS clause used to order the SKILL-ID field
in an ascending manner, and the EVALUATION-DATE field in a descending manner.

Chapter 1. Database 1-11

1.2 Database definition

add set name is emp-expertise

order is sorted

mode is chain linked to prior

owner is employee

next dbkey position is 11

prior dbkey position is 11

member is expertise

next dbkey position is auto

key is (skill-id ascending evaluation-date

 descending)

 mandatory automatic;

For further information:

■ On the ASCENDING and DESCENDING sort options of the KEY IS clause
in the SET statement, see "Schema Statements" in Volume I, Part Four, of
CA-IDMS Database Administration

Natural sort sequence: This option for sorted sets and indexes allows you to
specify that key values are to be ordered such that negative numeric values collate
lower than positive numeric values.

If natural collating sequence is inappropriate based on the data type of group and sub-
ordinate elements, then standard collating sequence prevails, and a warning message is
generated.

Example: Assuming that the values below are packed or zoned decimal numbers,
they are ordered first using the natural collating sequence and then according to
EBCDIC collating sequence.

In the following example, the NATURAL SEQUENCE clause will cause
ACCOUNT-BALANCE values to be ordered with credit amounts in an account (nega-
tive values) preceding the debit amounts (positive values).

Natural EBCDIC

 -4268.50

 -351.78

 -258.00

 15.26

 144.83

 2594.38

 15.26

 144.83

 -258.00

 -351.78

 2594.38

 -4268.50

1-12 CA-IDMS Release 12.0 Features Summary

1.2 Database definition

add set name is cust-account

order is sorted

mode is chain linked to prior

owner is customer

next dbkey position is auto

prior dbkey position is auto

member is accoumt

next dbkey position is auto

prior dbkey position is auto

key is (account-balance ascending)

 natural sequence

 mandatory automatic.

For further information:

■ On the NATURAL SEQUENCE parameter of the SET statement, see
"Schema Statements" in Volume I, Part Four, of CA-IDMS Database
Administration

1.2.5 Schema and subschema compiler enhancements

Availability of user exits: Support for user exits is now available for the schema
and subschema compilers. This support is the same as the support previously imple-
mented for the IDD compiler.

The following table shows exits and what you can do in the exits.

Non-quoted letters converted to upper case: All syntax components submitted
to the schema and subschema compilers that are not in quotes are converted to upper
case. Users can submit statement components in lower case and non-quoted letters are
automatically converted to upper case.

Program an exit to occur here To do this

After SIGNON/SIGNOFF/COMMIT Perform security checking.

After these commands—

 ADD
 MODIFY
 DELETE
 DISPLAY/PUNCH
 INCLUDE/EXCLUDE

Verify naming conventions and
perform security checking.

After the processing of an input statement Pass input statements to the
user-exit control block to build
an audit trail of updates to the
schema.

At end of converse, signaled by:

■ Pressing [Enter] (online)

■ SIGNOFF or the detection of an end-
of-file condition (batch)

Perform termination activities,
such as a write to the log.

Chapter 1. Database 1-13

1.2 Database definition

User-defined comments: User-defined comments can be used with schema and
subschemas. You define the comment using the DDDL compiler MODIFY ENTITY
statement and then associate the comment with a schema or subschema on the
COMMENT subclause of the ADD/MODIFY SCHEMA or SUBSCHEMA statement.

 Example

modify subschema empss11

'subschema purpose' 'this subschema is used to process

'quarterly benefit statements.'.

Output formatting: You can specify the number of lines per page (ranging from 10
to 60) as a SET OPTIONS for SESSION option.

 Example

set options for session

lines per page 61.

Simplified commenting: You can use *+ or anywhere on an input line to indi-
cate that the remainder of the line is a user comment. If the *+ or is coded in
positions 1 and 2, the line is not echoed.

Additionally, you can use '* ' in positions 1 and 2 to indicate that the remainder of the
line is a user comment. Lines containing '* ' in positions 1 and 2 are echoed.

Semicolon as end-of-statement character: If you use the SEMICOLON ON
clause of the SET OPTIONS statement, semicolons are recognized (in addition to the
period) as an alternate end-of-statement character.

VALIDATE bypassed when there is no error: A subschema VALIDATE is
bypassed during a GENERATE (or REGENERATE) request if the subschema is not
flagged 'in error.' This reduces processing overhead.

1-14 CA-IDMS Release 12.0 Features Summary

1.3 Data dictionary enhancements

1.3 Data dictionary enhancements

Data dictionary enhancements covered in this section are:

■ New dictionary structure

■ Statement enhancements and options

 ■ Compiler options

1.3.1 New dictionary structure

Overview of the new dictionary structure: The components of the data dic-
tionary have changed in the following ways:

■ There is now a distinction between the dictionary that contains system definition
information (called the system dictionary) and dictionaries that contain application
information (called application dictionaries).

■ There are new dictionary areas.

■ User information (e.g., profiles, passwords, group information) for centralized
security checking and system signon is now stored in a user catalog.

Where is everything stored now?: The table below shows what is stored in the
system dictionary, what can be stored in an application dictionary, and what is now
stored in a user catalog (separate from the dictionaries).

New dictionary areas: These dictionary areas are new:

■ DDLCAT — This area contains physical database entities, such as segments,
database name tables, and DMCLs.

■ DDLCATX — This area contains indexes associated with DDLCAT entities.

■ DDLCATLOD — This area contains load modules for DMCLs and database
name tables.

System dictionary Application dictionary User catalog

System definitions

 ■ Terminals

 ■ Tasks

 ■ Programs

Physical database defi-
nitions

 ■ Segments

 ■ DMCL

■ Database name table

Schema definitions

Subschema definitions

Application definitions,
such as:

 ■ Records

 ■ Maps

 ■ Dialogs

 ■ Programs

User information

User information

Passwords

Group definitions

Chapter 1. Database 1-15

1.3 Data dictionary enhancements

Benefits of the new dictionary structure: The redesign of the data dictionary
has made it possible to separate the physical database definitions from the logical data-
base definitions.

The redesign also provides for a separate repository (the user catalog) for system-wide
security definitions.

Note: Separate user definitions are still retained in the application dictionary.

For further information:

■ On the areas in the system and application dictionaries, their assignment to
segments, and their relationship to the runtime environment, see CA-IDMS
Database Administration

■ On the user catalog and security, see CA-IDMS Security Administration

1.3.2 Dictionary statement enhancements and options

Enhanced processing of COBOL PICTURE: Differences in the entry formats of
COBOL record element statements are resolved. CA-IDMS/DB now analyzes a
COBOL PICTURE clause and determines if any element with an equivalent definition
is already present. If such an element exists, its definition is used rather than creating
a new element.

This feature reduces the number of generated duplicate element definitions in the data
dictionary.

Example: CA-IDMS/DB recognizes these PICTURE clauses as equivalent.

emp-state pic x(2).

emp-state pic xx.

Option to limit DISPLAY ALL: You can set a maximum number of records to be
read by a DISPLAY ALL statement. When the maximum (INTERRUPT COUNT) is
reached, no more records are retrieved, regardless of whether or not the records meet
the search criteria.

To set a maximum number of records, you must specify two clauses in the SET
OPTIONS statement for the dictionary or session:

■ DISPLAY ALL LIMIT IS ON

■ INTERRUPT COUNT IS maximum-record-count

You can use this option to restrict access to the DISPLAY ALL command. If you
specify maximum-record-count as 0, no records can be read.

Example: This is an example of a SET OPTIONS statement used to set display
limits to 25 records.

1-16 CA-IDMS Release 12.0 Features Summary

1.3 Data dictionary enhancements

set options for dictionary

display all limit is on

interrupt count is 25;

DISPLAY ALL support for DAY/MONTH/YEAR: You can specify day, month,
and year as separate fields in the DISPLAY ALL WHERE subclause of:

 ■ DATE CREATED

■ DATE LAST UPDATED

 ■ DATE COMPILED

This feature provides more flexibility in defining a search condition for an entity.

Example: This example shows a DISPLAY ALL statement in which the search con-
dition is based on month and year.

display all records where prepared by eq 'jkd' and

month created eq '16' and

year created eq '91';

MODULE-to-MAP cross-referencing: You can cross-reference edit and code
tables, maps, and IDD modules that have a language of HELP. In Release 12.0, cross-
referencing is automatically built by the mapping facility; you can add cross-
referencing to maps created in previous releases.

Cross-referencing protects modules that are actively being used by maps. If it exists,
modules can be modified, but not deleted. All cross-referencing must be removed
before you can delete the module.

Examples: The following example shows inclusion of MAPs as part of the
MODULE and TABLE syntax.

modify module help11 language is help

include map map11 version 1

text 'help text for map11'.

modify table edit11

include map map11 version 1

text 'edit table for map11'.

The following example shows inclusion of MODULEs and TABLEs as part of the
MAP syntax.

modify map map11 version 2

include module help11 language is help

text is 'help text for map11'

include table edit11

text 'edit table for map11'.

Enhanced DISPLAY MODULE/QFILE statement: The MODULE SOURCE
ONLY option is a new parameter on the DISPLAY MODULE/QFILE statement. If
the MODULE SOURCE ONLY option is specified, only the text of the module or
qfile is displayed without any syntax.

Chapter 1. Database 1-17

1.3 Data dictionary enhancements

This allows module or qfile source modules stored in the dictionary to be displayed
and subsequently executed by just deleting the DISPLAY MODULE statement.

Example: Here is a sample module defined to set options for a dictionary session:

add module setopt

module source follows

set options for session

input 1 72

 output 81

semicolon alternate end of sentence is on.

 msend.

To display the setopt module with module source only, simply submit a DISPLAY
MODULE statement with the MODULE SOURCE ONLY option. The setopt module
is displayed as module source. Here is an example:

DIS MODULE SETOPT WITH MODULE SOURCE ONLY AS SYNTAX.

SET OPTIONS FOR SESSION

 INPUT 1 72

 OUTPUT 81

SEMICOLON ALTERNATE END OF SENTENCE IS ON.

To execute this module, simply delete the DIS MODULE statement and submit the
remaining source to the DDDL compiler.

DC OPTION IS MENU: A MENU option has been added to the DC OPTION
parameter of the IDD PROGRAM statement. As in the corresponding system gener-
ation statement, this option allows you to specify whether a mainline dialog is dis-
played on the CA-ADS menu screen.

For further information:

■ On statement enhancements and options: see, IDD DDDL Reference

1.3.3 Dictionary compiler options

User signon override: A USER SIGNON OVERRIDE ALLOWED/NOT
ALLOWED clause has been added to the SET OPTIONS statement to eliminate the
need to replicate passwords in dictionaries.

USER SIGNON OVERRIDE NOT ALLOWED: If you specify that signon override
is NOT ALLOWED, it results in the following:

■ Users who are already identified to the environment in which a CA-IDMS com-
piler is executing (either through signon processing or batch job submission facili-
ties) cannot sign on as a different user within a compiler

■ The PREPARED BY/REVISED BY clauses are ignored

1-18 CA-IDMS Release 12.0 Features Summary

1.3 Data dictionary enhancements

USER SIGNON OVERRIDE ALLOWED: If you specify USER SIGNON OVER-
RIDE IS ALLOWED, you can use a different user ID when signing on to the dic-
tionary compiler and information specified in the PREPARED BY/REVISED BY
clauses is processed as in prior releases.

Signon processing: CA-IDMS compilers will perform password verification only
if the user ID specified on a SIGNON statement is different from the one known to the
environment in which the compiler is executing.

If the user is unknown to the environment, the compilers will forward the signon
request to the CA-IDMS security facility for processing. If successful, the user will
then be known to the execution environment as if the user had invoked DC/UCF
SIGNON. If the signon is unsuccessful, compiler processing will be disallowed.

Non-quoted letters converted to upper case: All syntax components submitted
to the DDDL compiler that are not in quotes are converted to upper case. Users can
submit statement components in lower case and non-quoted letters are automatically
converted to upper case.

Output formatting: You can specify the number of lines per page (ranging from 10
to 60) as a SET OPTIONS for SESSION option. For example:

set options for session

lines per page 61.

Simplified commenting: You can use *+ or anywhere on an input line to indi-
cate that the remainder of the line is a user comment. If the *+ or is coded in
positions 1 and 2, the line is not echoed.

Additionally, you can use '* ' in positions 1 and 2 to indicate that the remainder of the
line is a user comment. Lines containing '* ' in positions 1 and 2 are echoed.

Semicolon as end-of-statement character: If you use the SEMICOLON ON
clause of the SET OPTIONS statement, semicolons are recognized (in addition to the
period) as an alternate end-of-statement character.

Chapter 1. Database 1-19

1.4 Exploitation of ESA dataspaces

1.4 Exploitation of ESA dataspaces

Exploitation of ESA dataspaces: A dataspace is a linear address space that is
used for storage and retrieval of data. In ESA systems, you can assign a BDAM file
to a dataspace as a file override specification in the DMCL.

CA-IDMS/DB automatically manages these two dataspace modes when you assign a
file to a dataspace:

■ Virtual for scratch

CA-IDMS/DB uses virtual mode for scratch storage, since recovery is not neces-
sary. No physical file access is necessary, therefore no I/O is required.

■ Covered for database files

CA-IDMS/DB uses covered mode for database files, since recovery is necessary.
In this mode, an update of the dataspace forces a corresponding write to disk.

Potentially, multiple database files can reside in a single dataspace. Each dataspace
provides up to 2G of addressable virtual storage.

The page frames for a dataspace are contained in high speed main memory, so they
provide the fastest access to large quantities of data outside your own address space.
Using the dataspace alternative, you reduce the I/O necessary to access the data.

Candidates for dataspace assignment: Good choices for assignment to
dataspaces are files that contain frequently accessed data, such as index structures.

Example: This example shows assignment of the file EMPSEG.EMPFILE to a
dataspace. Assignment is through a file override specification in the DMCL.

alter dmcl cvdmcl

 file empseg.empfile

 dataspace yes;

For further information:

■ On assigning files to dataspaces, see "Physical Database DDL Statements" in
Volume I, Part Two of CA-IDMS Database Administration

1-20 CA-IDMS Release 12.0 Features Summary

1.5 24-hour processing

 1.5 24-hour processing

You can now accomplish the following tasks without recycling the DC/UCF system:

■ Allocate and deallocate database files

■ Change the DMCL

 ■ Extend areas

■ Change database name tables

 ■ Acquire buffers

■ Reconfigure buffer pools

Descriptions of each of these dynamic features follows.

�� For detailed information on the new DCMT VARY commands you can use to
implement dynamic functions, see CA-IDMS System Tasks and Operator Commands.

1.5.1 Dynamic database file management

Dynamic file management: CA-IDMS/DB uses dynamic database file allocation
to:

■ Deallocate and reallocate files in an active runtime environment

■ Access files without identifying them in JCL

■ Access new files without recycling the DC/UCF system

Allocating a database file dynamically: To allocate a database file dynamically
(without JCL statements), you specify the dataset name (dsname) of the file in the file
definition. You may optionally specify an external name (ddname) for the file:

■ If an external name is specified, CA-IDMS/DB uses the external name as a key to
look for a JCL specification.

– If a JCL specification is found, it is used.

– If no JCL specification is found, CA-IDMS/DB allocates the file dynamically
using information in the file definition.

■ If an external name is not specified, CA-IDMS/DB allocates the file dynamically
using information in the file definition.

Special considerations for VSE: Here are some considerations for VSE sites
using dynamic file allocation:

■ A DDNAME must be defined in the DMCL for every database file.

■ Corresponding DLBL and EXTENT information must be available for all database
files.

Chapter 1. Database 1-21

1.5 24-hour processing

■ To bring new files online or change the location of existing files without recycling
the system, you must use standard labels to specify DLBL and EXTENT informa-
tion.

■ The DSNAME is optional. However, if there is at least one file defined in the
DMCL with a DSNAME, the real DSNAMES will be extracted for display pur-
poses.

Special considerations for CMS: At sites using CMS, you must specify the fol-
lowing for OS-format files:

■ DSNAME — Data set name

■ VIRTUAL ADDRESS — The virtual address of the minidisk to be used for a
dynamically allocated file

■ USERID — The owner of the minidisk to be used for a dynamically allocated file

For CMS-format files, you must specify a VIRTUAL ADDRESS.

Benefits of dynamic file management: The benefits of dynamic database file
management:

■ You can take files offline for repair, then put them back online without recycling
the DC/UCF system.

■ If you include dynamic allocation information in the file definition you do not
need to include file statements in JCL. This allows the dataset name or other
identifier information to be changed without having an impact on the execution
JCL.

■ If you do not specify an external name as part of a file definition, the dataset
name of the file cannot be overridden through JCL. This ensures access to the
correct file at runtime.

■ You can bring new files online without recycling the DC/UCF system.

Examples: This is an example of a CREATE FILE statement (part of the segment
definition) that facilitates dynamic allocation of the file EMPFILE at CA-IDMS/DB
startup. EMPDD is the external file name, and PROD.EMPDB is the data set name.

alter segment empseg;

create file empseg.empfile

assign to empdd

 dsname "prod.empdb";

In this example, a DCMT command allocates the file EMPFILE.

dcmt vary file empseg.empfile allocate

For further information:

■ On the coding considerations for dynamically allocating database files, see
"Allocating and Formatting Files" in Volume I, Part Two of CA-IDMS Database
Administration

1-22 CA-IDMS Release 12.0 Features Summary

1.5 24-hour processing

■ On DCMT VARY FILE, see CA-IDMS System Tasks and Operator Commands

 1.5.2 Dynamic DMCL

Dynamic DMCL: You can use a DCMT command to load a new copy of the
DMCL load module without recycling the DC/UCF system.

You can dynamically:

■ Add or remove a segment, area, or file

■ Add or remove a buffer pool

■ Expand an area by:

– Increasing the page range

– Increasing the page size

– Adding new files

To safeguard the dynamic process, CA-IDMS/DB quiesces affected areas, as appro-
priate, and updates the journal header with the timestamp of the new DMCL.

By using the dynamic DMCL feature, you make a new or changed DMCL available
under central version without having to bring down and restart the DC/UCF system.

Example: In this example, a DCMT command instructs CA-IDMS/DB to reload the
DMCL IDMSDMCL after the DMCL has been altered to add a new file, regenerated,
punched, and linked to a load library.

alter dmcl idmsdmcl

create file custseg.cust_data

 buffer customer_buffer;

generate dmcl idmsdmcl;

punch dmcl load module idmsdmcl;

Note: After punching the new DMCL load module, you must link edit it.

The DCMT VARY DMCL VALIDATE NEW COPY command will provide a
summary of all differences between the current and new DMCL. This allows you to
assess the impact of varying the DMCL on current work load.

dcmt vary dmcl validate;

The DCMT VARY DMCL NEW COPY command also provides a summary of
changes and displays a prompt asking the user whether to continue processing or not.
If the user requests processing to continue, the new DMCL will become the new
runtime DMCL.

Chapter 1. Database 1-23

1.5 24-hour processing

dcmt vary dmcl new copy;

For further information:

■ On managing DMCLs dynamically, see CA-IDMS Database Administration

■ On using DCMT VARY DMCL, see CA-IDMS System Tasks and Operator
Commands

1.5.3 Dynamic area extension

Dynamic area extension: You can increase the page range of an existing area
without unloading and reloading data.

You specify this extension in the EXTEND SPACE clause of the ALTER AREA state-
ment, after new files have been defined in the DMCL. To use EXTEND SPACE, you
must have previously reserved the space by specifying MAXIMUM SPACE in the
initial page range specification of CREATE/ALTER AREA with a sufficient number
of pages to accommodate the extension.

Note: If there are CALC records in the area, the records will continue to target to the
original page range and use normal overflow processing, if necessary.

Example: Assume you initially allocated 200 pages for CUST_AREA, then deter-
mined later that you needed more space. The following example shows how you
would extend the area by increasing the number of pages and mapping them to the file
EXPAND_FILE.

create file custseg.expand_file

assign to xpndfile;

alter area custseg.cust_area

extend space 111

within file xpndfile;

After extending the area you must regenerate the DMCL, punch it to a load library,
link edit it, and initialize the new file.

For further information:

■ On using the EXTEND SPACE clause, see "Physical Database DDL Statements"
in Volume I, Part Two of CA-IDMS Database Administration

■ On procedures for expanding an area's page range, see "Modifying Physical
Database Definitions" in Volume II, Part Eight of CA-IDMS Database
Administration

1-24 CA-IDMS Release 12.0 Features Summary

1.5 24-hour processing

1.5.4 Dynamic database name tables

Dynamic database name tables: You can use a DCMT command to add,
change, or remove entities in a database name table, then load the new table, without
recycling the DC/UCF system.

Example: In this example, CA-IDMS/DB reloads the ALLDBS database name table.
After you update the table, regenerate it.

alter dbtable alldbs;

create dbname alldbs.benefits

include segment empseg

include segment benseg;

generate dbtable alldbs;

punch dbtable load module alldbs;

Note: After you punch the database name table, you must link edit it.

dcmt vary dbtable new copy;

For further information:

■ On using DCMT VARY DBTABLE, see CA-IDMS System Tasks and Operator
Commands

■ On modifying a database name table, see "Modifying Database Name Tables" in
Volume II, Part Eight of CA-IDMS Database Administration

1.5.5 Dynamic buffer acquisition

Dynamic buffer acquisition (CV and local mode): CA-IDMS/DB acquires
buffers as it opens files, in both central version and local mode. Storage is reduced to
the minimum required to meet current processing needs.

This feature has an especially significant impact on local mode processing, as previ-
ously, all buffers defined in the DMCL were acquired at the start of a session.

1.5.6 Dynamic buffer pool configuration

Dynamic buffer pool configuration: You can use a DCMT command to tempo-
rarily alter characteristics of database buffers. This function is not restricted by the
DMCL and the settings you specify at system generation.

You can change the following buffer characteristics dynamically:

■ The number of buffer pages currently in use

■ The maximum number of pages

■ Type of storage (from the IDMS storage pool or from the operating system)

Chapter 1. Database 1-25

1.5 24-hour processing

Note: If the operating system supports extended addressing, CA-IDMS/DB will
acquire storage above the 16Mb line.

■ The amount of storage to acquire with each storage request (ADDITIONAL
PAGE parameter)

Changes last for the session: Dynamic changes to buffers last for the remainder
of the CA-IDMS/DB session.

Benefits of dynamic configuration: Benefits of dynamic configuration:

■ You can tailor buffer pools to suit the current processing load.

■ You can evaluate the impact of temporary changes before you make them perma-
nent.

Example: This example shows a DCMT command used to view the characteristics of
the buffer EMP_BUFF:

dcmt display buffer emp_buff

And a DCMT used to increase the maximum number of pages in the buffer (the
change is not effective until the buffer is closed and reopened):

dcmt vary buffer emp_buff maximum pages 1111

And a DCMT used to release storage for the buffer:

dcmt vary buffer emp_buff close

And a DCMT used to reallocate storage for the buffer and make it available to
CA-IDMS/DB:

dcmt vary buffer emp_buff open

For further information:

■ On managing buffers dynamically, see "Buffer Management" in Volume II, Part
Six of CA-IDMS Database Administration

■ On using DCMT VARY BUFFER, see CA-IDMS System Tasks and Operator
Commands

1-26 CA-IDMS Release 12.0 Features Summary

1.6 Batch processing

 1.6 Batch processing

1.6.1 SYSIDMS parameter file

SYSIDMS parameter file: A SYSIDMS file is a parameter file added to the JCL
stream of batch jobs running in local mode or under the central version. You can use
SYSIDMS parameters to specify:

■ Physical requirements of the environment, such as the DMCL and database to use
at runtime

■ Runtime directives that assist in application execution

■ Operating system-dependent file information

Physical environment parameters:

Parameter Description

CVMACH=cms-machine-name Specifies the VM virtual machine in which
the DC/UCF system is executing.

CVNUM=nnn Specifies the number of the central version
that is accessible by CMS and is used to
route database requests through the
IDMSVMCF facility. Nnn must be an
integer in the range from 0 through 255.

DBNAME=database-name For non-SQL applications, specifies the
name of the database to access at runtime.

Database-name is either a segment name or
a DBNAME defined in a database name
table.

For SQL applications, it has no impact.

DICTNAME=dictionary-name Specifies the dictionary to use when loading
a subschema from a load area.

For dictionary-related tools like CA-IDMS
compilers and precompilers, IDMSBCF, etc.,
specifies the dictionary to access at runtime.

For SQL applications, specifies the name of
the dictionary to connect to at runtime.

Chapter 1. Database 1-27

1.6 Batch processing

Note: Some of the parameters in the table above were specified in previous releases
as parameters in a batch job stream.

Runtime directive parameters:

Parameter Description

DICTNODE=dictionary-node-name For SQL applications and dictionary-related
tools running under the central version,
specifies the name of the DC/UCF system
that controls the dictionary to access at
runtime.

For applications running in local mode, this
parameter is not applicable.

DMCL=dmcl-name Specifies the name of the DMCL load
module to use in local mode.

IDMSDMCL is the default.

LOCAL=ON/OFF Specifies whether a batch job is to execute
in local mode. If ON is specified, all
requests are processed locally even if an
IDMSOPTI module is link-edited with the
program.

OFF is the default.

NODENAME=node-name For non-SQL applications running under the
central version, identifies the DC/UCF
system to bind to at runtime.

Parameter Description

CVRETRY=ON/OFF (MVS only) ON indicates that this message is displayed
on the operator console when the CA-IDMS
central version is not active:
CV nnn NOT ACTIVE. REPLY RETRY OR

CANCEL

ON is the default.

DMLTRACE=ON/OFF ON activates a trace facility that traces all
navigational DML requests made by an
application. OFF is the default.

ECHO=ON/OFF Indicates whether all SYSIDMS parameters
are displayed on the JES log. OFF is the
default.

1-28 CA-IDMS Release 12.0 Features Summary

1.6 Batch processing

Parameter Description

IDMSPROG=module-name Specifies the name of the module that will
be linked to by the IDMSSMCV facility.

Note — BS2000 users must use this param-
eter when executing programs in local
mode. MVS and VSE users can use either
the IDMSPROG parameter or the JCL
PARM statement.

LENGTH_PAGE=nnn Specifies the maximum number of lines to
be printed on a page. Nnn must be in the
range from 10 through 32,767. The default
is 60.

LOADAREA=ON/OFF Specifies whether the dictionary load
(DDLDCLOD) area is to be accessed when
loading a module.

If OFF is specified, the dictionary load area
will not be accessed. You should specify
OFF only when all load modules are linked
into the OPSYS load library.

ON is the default.

MSGDICT=ON/OFF Specifies whether the dictionary message
(SYSMSG) area is to be accessed.

If OFF is specified, the dictionary message
area is not accessed. You should only
specify OFF when running installation steps
that use a DMCL not containing the
SYSMSG segment.

ON is the default.

USERCAT=ON/OFF Specifies whether the user catalog is to be
accessed.

You must specify OFF when formatting the
user catalog.

ON is the default.

SQLTRACE=ON/OFF ON activates a trace facility that traces all
SQL database requests made by an applica-
tion. OFF is the default.

IDMSQSAM=ON/OFF ON activates the IDMSQSAM facility
(sequential access for look-ahead database
reads). OFF is the default.

Chapter 1. Database 1-29

1.6 Batch processing

Parameter Description

QSAMAREA=qsam-area-name Specifies the physical area in the DMCL for
which the IDMSQSAM facility will do
look-ahead reads. If this parameter is
omitted, and the IDMSQSAM=ON param-
eter is specified, the look-ahead reads will
be performed on the first area that is
accessed by the run-unit.

QSAMTRACE=ON/OFF ON activates a trace of all the IDMSQSAM
look-ahead I/O reads. The trace shows the
name of the file(s) being accessed by
IDMSQSAM, each RBN that was read using
QSAM OR BDAM (DAM/EXCP), and a
summary of the number of RBNs read using
QSAM and BDAM. It also shows the area
being accessed and the number of OPSYS
QSAM buffers being used as determined by
the JCL. OFF is the default.

JOURNAL=ON/OFF Specifies whether journaling will be per-
formed in local mode. OFF specifies that
local mode journaling will not be performed,
even if the there are tape journals defined in
the DMCL. ON is the default.

XA_SCRATCH=ON/OFF Specifies whether scratch space will be allo-
cated in XA storage or not. OFF, the
default, indicates that a scratch file will be
used.

WIDTH_PAGE=nnn Specifies a maximum number of characters
to be printed on a line. Nnn must be an
integer in the range from 71 to 132. The
default is 132.

UPPER=INPUT/OUTPUT/BOTH/OFF Specifies whether input and/or output files
will be converted to uppercase:

■ INPUT — Converts SYSIPT input files
to uppercase

■ OUTPUT — Converts SYSLST output
files to uppercase

■ BOTH — Converts both SYSIPT input
files and SYSLST output files to upper-
case

■ OFF (the default) — Does not convert
SYSIPT input files or SYSLST output
files to uppercase

1-30 CA-IDMS Release 12.0 Features Summary

1.6 Batch processing

VSE file information parameters:

Parameter Description

DLBLMOD=ON/OFF (VSE only) ON specifies that the DLBL type in the disk
label will be changed from 'DA' to 'SD'
when sequential processing (IDMSQSAM)
is activated. After the disk labels are proc-
essed as 'SD' during the QSAM file OPEN,
the DLBLs are changed back to 'DA' to
allow random BDAM processing. OFF is
the default.

MULTIDSN=ON/OFF (VSE only) ON specifies that tape files may span mul-
tiple volumes. At the end of a tape reel,
EOF (end of file) or EOV (end of volume)
prompts the user to specify an END OF
JOB or an END OF VOLUME condition.

The default, OFF, specifies that END OF
JOB is automatically the condition at the
end of a tape reel.

PARM='parameter-string' Allows you to specify parameters typically
specified in a JCL EXEC PARM statement.
The format is the same as the IBM PARM
parameter on the EXEC JCL statement.

Parameter-string can contain any 1 through
256 character parameter and it can be speci-
fied on multiple lines.

Parameter Description

FILENAME=file-name Specifies a file name before assigning spe-
cific overriding file attributes (file type,
block size, blocking factor, device address,
file label).

BLKSIZE=block-size Specifies the block size for a file.

BLKSIZE and BLOCKS are mutually exclu-
sive parameters.

BLOCKS=block-count Specifies a blocking factor for a file.

BLKSIZE and BLOCKS are mutually exclu-
sive parameters.

DEVADDR=SYSxxx Specifies a device address for a tape file
(SYSIPT, SYSLST, SYSRDR, SYSPCH, or
SYSlogical-unit-number).

Chapter 1. Database 1-31

1.6 Batch processing

BS2000 file information parameters: These SYSIDMS parameters are for the
BS2000 operating environment only.

Examples: In the following example, the SYSIDMS parameters included in the MVS
job stream, instruct CA-IDMS/DB to use the DMCL LOCLDMCL to execute a job.
DBNAME identifies EMPDB as the database to access at runtime, and the QSAM
parameters instruct CA-IDMS/DB to use the IDMSQSAM "look-ahead read" facility
when accessing EMPSEG.EMPAREA.

//SYSIDMS DD Q

DMCL=LOCLDMCL DBNAME=EMPDB

IDMSQSAM=ON QSAMAREA=EMPSEG.EMPAREA

In the following example, the SYSIDMS parameters used are typical for a batch job
running under the central version in an MVS environment.

//SYSIDMS DD Q

DBNAME=EMPDB NODENAME=SYSTEM91

For further information:

■ On including SYSIDMS parameters in a job stream, see "Dictionaries and
Runtime Environments" in Volume II, Part Seven of CA-IDMS Database
Administration

Parameter Description

FILABL=NO Specifies a no-label option for a tape file.
FILABL=STD is the default.

FILETYPE=file-type Specifies a file type of tape, disk, or file
independent.

REWIND=YES/NO/UNLOAD Specifies the position of a tape file when it
is opened or closed. REWIND=UNLOAD
is the default.

Parameter Description

QSAM#BUF=nnn Specifies the number of buffers to use for
IDMSQSAM simulation.

OVERPRINT=YES/NO Specifies whether the overprint facility is
used when writing to SYSLST. The default
is YES.

LIST=SYSLST/SYSOUT/BOTH Specifies whether output is written to
SYSLST, SYSOUT, or both. The default is
SYSLST.

1-32 CA-IDMS Release 12.0 Features Summary

1.6 Batch processing

1.6.2 Local mode security

Security enforced in local mode: Security is now enforced in local mode. All
security measures you implement will apply to local mode as well as to operation
under the central version.

Utility functions will also be subject to security checking.

For further information:

■ On security, see CA-IDMS Security Administration

1.6.3 Loading from a load area in local mode

Loading from a load area: CA-IDMS/DB can now load modules directly from a
load area in local mode, rather than requiring that you load only from load libraries.

The process is similar to the process you use when you load in DC/UCF. A load list
dictates the order in which dictionaries will be searched. You can use the SYSIDMS
parameter DICTNAME (described in this section under SYSIDMS parameter file) to
specify the name of the first dictionary to be searched.

Chapter 1. Database 1-33

1.7 Lock management

 1.7 Lock management

New lock management software reduces CPU overhead: The architecture of
the lock management software has been completely redesigned to reduce CPU over-
head. This redesign is transparent to user applications.

Storage for locks: If your database supports extended addressing all lock storage
will be acquired above the 16Mb line.

DCMT for notify lock management: A new DCMT command (DCMT DISPLAY
LOCK) is available to display locks on areas or longterm and notify locks held by a
logical terminal. This information is useful in determining which terminal sessions
hold locks on areas.

Preservation of external area status: CA-IDMS/DB automatically preserves the
status of an area when the DC/UCF system abnormally terminates. For instance, if
you vary an area offline, and the DC/UCF system goes down, the area status will
remain offline when the system is restarted.

You can override the default warmstart status using the DMCL ADD/INCLUDE
SEGMENT statement ON WARMSTART status clause.

Example: This example shows the segment clause specification in the DMCL that
you use to override the warmstart status of an area.

alter dmcl idmsdmcl

 area empseg.emparea

on startup set status to update

on warmstart maintain current status;

Transient retrieval for areas: A DCMT command or an area override specifica-
tion in the DMCL allows you to set the status of an area to transient retrieval. Trans-
actions accessing an area whose status is transient retrieval can do so only with a
retrieval ready mode.

Record locks are not maintained for areas whose status is transient retrieval. This
allows a database transaction access to a non-updateable area without locking over-
head.

Before an area whose status is transient retrieval can be varied to update, it must first
be varied offline.

Examples: The following is an example of a DCMT VARY command that instructs
CA-IDMS/DB to alter an area for transient retrieval.

dcmt vary area empseg.emparea transient retrieval

The following is an example of an area override specification in the DMCL that
assigns a transient retrieval status to the area EMPAREA.

1-34 CA-IDMS Release 12.0 Features Summary

1.7 Lock management

alter dmcl idmsdmcl

 area empseg.emparea

on startup set status to transient retrieval;

For further information:

■ On specifying transient retrieval as a startup status for an area, see "Physical
Database DDL Statements" in Volume I, Part Two of CA-IDMS Database
Administration

Chapter 1. Database 1-35

1.8 Deadlock management

 1.8 Deadlock management

Deadlock detection control: CA-IDMS/DB now checks for deadlocks at user-
specified intervals, rather than every time a task enters a wait state. Performance is
improved because:

■ The overhead associated with deadlock detection is incurred less often.

■ You can tune the deadlock detection interval to suit your processing needs.

You specify detection interval values in the DEADLOCK DETECTION INTERVAL
clause of the SYSTEM statement during system definition and generation. The
interval you choose is a trade-off between the overhead associated with detecting dead-
locks and the amount of time tasks will wait before a deadlock is detected and
resolved.

Example: This example shows a MODIFY SYSTEM statement that sets a deadlock
detection interval. Intervals use whole second values.

modify system system74

deadlock detection interval is 11

DCMT for deadlock management: A new DCMT command is available for dis-
playing or dynamically changing the deadlock detection interval.

�� For a list of new DCMT commands, see DCMT and DCUF Commands in
Chapter 2, “Data Communications” on page 2-1. For more detailed information on
DCMT commands, see CA-IDMS System Tasks and Operator Commands.

Deadlock resolution control: In the event of a deadlock, CA-IDMS/DB automat-
ically terminates the most recent transaction with the lowest dispatching priority.

Should you want more control, a new user exit (user exit 30) allows you to implement
your own algorithm to determine which transaction to terminate.

�� For a brief description of user exit 30, see New User Exits in Chapter 2, “Data
Communications” on page 2-1.

For further information:

■ On DEADLOCK DETECTION INTERVAL, see CA-IDMS System Generation

■ On deadlock resolution, see CA-IDMS System Generation

■ On user exits, see CA-IDMS System Operations

1-36 CA-IDMS Release 12.0 Features Summary

1.9 Utilities

 1.9 Utilities

Information about utilities is categorized as follows:

■ The new utility interface

■ Utility statements that replace utility programs

 ■ New statements

■ Examples of statements

■ Status of existing programs

■ Enhancements to existing programs

■ Removal of IDMSRNWK

■ Security for utilities

 1.9.1 New interface

New utility interface: There is now a new user interface for utilities. Many of the
utilities are now invoked using command statements with a consistent syntax format.
You enter these command statements in a job stream using the new CA-IDMS
Command Facility.

�� For information about the new command facility, see CA-IDMS Command Facility.

Replacing programs with command statements allows you to execute several utility
functions in the same job step.

The consistent syntax of command statements makes the utilities easier to use, and the
more descriptive names of the statements provide more information about what the
utilities do.

 1.9.2 Utility statements

Utility statements that replace programs: The following table shows the new
utility statements that replace existing utility programs.

Program New utility statement

IDMSAJNL ARCHIVE JOURNAL

IDMSDBLU FASTLOAD

RELOAD

IDMSDUMP BACKUP

PRINT SPACE

Chapter 1. Database 1-37

1.9 Utilities

PUNCH statement: In addition to the other statements that replace programs, there
is a new utility statement called PUNCH. PUNCH:

1. Retrieves DMCL load modules or database name table load modules from the
catalog load area of the data dictionary

2. Writes the load modules in object form to the SYSPCH file

Examples of statements: The following is an example of the utility statement
UNLOAD. This syntax could be used to change the page ranges in an existing area
defined in a DMCL that contains both the OLDSEG and NEWSEG segments.

unload segment oldseg using subschema empss11

reload into newseg;

The following is an example of the statement FORMAT.

format file dbseg.file1;

Program New utility statement

IDMSINIT FORMAT

IDMSJFIX PRINT JOURNAL

FIX ARCHIVE

IDMSLDEL CLEANUP

IDMSPCON RESTRUCTURE CONNECT

IDMSPFIX FIX PAGE

PRINT PAGE

UNLOCK

IDMSPTRE PRINT INDEX

IDMSRBCK ROLLBACK

IDMSRFWD ROLLFORWARD

IDMSRSTR RESTORE

IDMSRSTU RESTRUCTURE SEGMENT

IDMSTBLU MAINTAIN INDEX

MAINTAIN ASF TABLE

IDMSUNLD UNLOAD

IDMSXPAG EXPAND PAGE

RHDCPRLG ARCHIVE LOG

PRINT LOG

1-38 CA-IDMS Release 12.0 Features Summary

1.9 Utilities

The following is an example of the statement ROLLFORWARD. The rollforward
goes to the end of a job or to the abort checkpoint that has a date/time stamp of
October 30, 1991 at 23:20:00.

rollforward area empseg.emparea all

stop at '1991-11-31-23.21.11';

The following is an example of the statement RELOAD. The reload process starts at
step IDMSDBL2 and continues through to the end of the reload process.

reload from idmsdbl2;

 1.9.3 Utility programs

Status of other existing utility programs: These utilities exist in their previous
format:

 IDMSCALC
IDMSDBAN (with enhancements)
IDMSDIRL (with enhancements)
IDMSLOOK (with enhancements)

 IDMSRADM
IDMSRPTS (with enhancements)

 IDMSRSTC

Changes in existing programs: The following table describes enhancements to
utilities that continue to exist in their previous format.

Utility Enhancements

IDMSDBAN New syntax

Support for SQL-defined databases

Audits indexes more efficiently

IDMSDIRL Loads IDMSNTWK schema and two associated subschemas
(IDMSNWKA and IDMSNWKG)

Loads schemas IDMSSECS and IDMSSECU and subschemas
IDMSSECS and IDMSSECU used for security processing

Added option (SCHEMA-DELETE) to remove all CA-defined
schema definitions (those listed above) from a dictionary without
loading new definitions

Chapter 1. Database 1-39

1.9 Utilities

Removal of IDMSRNWK: IDMSRNWK no longer exists. Because of the sepa-
ration of logical and physical definitions, there is no longer a need for dictionary
subschema reformatting.

Utility Enhancements

IDMSLOOK Revised parameters provide this output:

■ Set information (SUBSCHEMA)

■ Buffer information (DMCL)

■ Information reflecting the separation of logical and physical
definitions (DBTABLE)

■ Information on segments (DBTABLE)

■ Data set name of the library that the load module was
loaded from (DATES and PROGRAM)

New parameters provide:

■ Information about IDMSLOOK parameters (HELP)

■ Information about subschema load modules bound to a data-
base (BIND SUBSCHEMA)

■ Value of a date/time stamp (DATETIME STAMP)

■ Additional parameters for SQL-related objects

IDMSRPTS ■ Removal of physical information from schema and
subschema reports

■ Enhancements to schema and subschema reports —
Reporting on new compiler functions

■ New reports for physical database definitions

1.9.4 Security for utilities

The execution of utility statements is subject to security checking. The specific
authority necessary to execute a utility statement depends on the function of the utility.

1.9.5 For further information

■ On utilities in Release 12.0, and the authority required to use them, see
CA-IDMS Utilities

■ On using the batch command facility to enter utility statements in a job
stream, see CA-IDMS Command Facility

1-40 CA-IDMS Release 12.0 Features Summary

1.10 Command facility

 1.10 Command facility

Command facility: The CA-IDMS Command Facility is a new tool you use to:

■ Enter and display physical DDL statements used to define a database

■ Enter utility statements used to maintain a database

■ Enter DDDL statements

■ Enter interactive SQL statements (SQL option only)

The command facility is available for online (OCF) and batch (IDMSBCF) processing.

OCF uses the same text editor that is used with the dictionary-related compilers.

The command facility offers format control for output. For example:

set option headings off;

The command facility also provides optional session control options. For example, the
session control option below instructs CA-IDMS/DB to rollback all database changes
in the event of an error.

set option on error rollback;

Benefit: The benefit of the command facility is that it offers a consistent format for
statement input, both in batch and online processing.

For further information:

■ On the command facility, see CA-IDMS Command Facility

Chapter 1. Database 1-41

1-42 CA-IDMS Release 12.0 Features Summary

 Chapter 2. Data Communications

2.1 About this chapter . 2-3
2.2 CA-IDMS database communications architecture 2-4

2.2.1 New design . 2-4
2.2.2 Components of the architecture . 2-5
2.2.3 Setting up your environment . 2-6
2.2.4 Multiple DC/UCF region communications 2-7
2.2.5 Enhanced CICS interface . 2-9
2.2.6 For further information . 2-9

2.3 Operating system features . 2-10
2.4 Profile support . 2-12

2.4.1 Defining profiles . 2-13
2.4.2 Associating profiles with users . 2-15
2.4.3 Displaying and accessing attributes 2-15
2.4.4 Using profiles with nonterminal tasks 2-16
2.4.5 For further information . 2-16

2.5 New numbered user exits . 2-17
2.6 Query device support . 2-18
2.7 DCMT and DCUF commands . 2-19

2.7.1 Invoking DCMT and DCUF commands from programs 2-19
2.7.2 New and modified DCMT and DCUF commands 2-19

2.8 System generation . 2-22
2.8.1 Changes to statements and parameters 2-22
2.8.2 System generation compiler enhancements 2-27

2.9 Enhanced language support . 2-29
2.9.1 Runtime support . 2-29
2.9.2 General precompiler changes . 2-29
2.9.3 Parameters supporting VS COBOL II 2-30
2.9.4 Parameters supporting COBOL 85 (Fujitsu and Hitachi) 2-31

Chapter 2. Data Communications 2-1

2-2 CA-IDMS Release 12.0 Features Summary

2.1 About this chapter

2.1 About this chapter

This chapter describes enhancements to data communications functions. While most
of the features apply to CA-IDMS/DC and CA-IDMS/UCF, some features have cross-
product significance. The enhancements provide:

 ■ Increased ease-of-use

■ Increased processing flexibility

■ Increased processing efficiency

■ Support for new technology

A highlight of this release is a completely new, network-independent, database com-
munications architecture that is integrated with the CA-IDMS environment and
CAICCI, the common communications component of the CA90s Distributed Proc-
essing Services layer.

Chapter 2. Data Communications 2-3

2.2 CA-IDMS database communications architecture

2.2 CA-IDMS database communications architecture

This section covers these topics:

■ Redesign of the architecture

 ■ Components

■ Setting up your environment

■ Cross DC/UCF region communications

 2.2.1 New design

Provides increased functionality and efficiency: The CA-IDMS database
communications architecture has been redesigned to provide additional functionality
and services for both CA-IDMS/DB and DC/UCF processing. The new architecture
uses common processing routines to satisfy all database requests regardless of where
the request originates (navigational DML program, SQL application, CICS transaction).

Uses a client/server model The architecture was built using a client/server com-
munications model that:

■ Separates client processing from server processing

■ Separates functional layers

■ Isolates operating-system dependent code

■ Provides a common environment within which to execute

Benefits: This new architecture offers these benefits:

■ Allows for easy expansion of architecture to include support for future technology.

■ Enhanced CA-IDMS/DB batch environment.

■ Release 10.2 (or later) applications are upwardly compatible.

■ Forwards user identification information to the server environment and ensures
user validation is performed if necessary.

■ Provides the framework for creating network-independent applications that can be
distributed across different hardware and operating system environments.

■ Is integrated with the Distributed Processing Services layer of CA90s and uses
CAICCI, the common communications component of CA90s. CAICCI surrounds
communications and network software so that applications are insulated from the
specifics of the environment and still communicate the required information about
the data request to the targeted platform.

■ Provides for both local and remote data access without requiring additional code
in programs or programmers knowing where and how to access the data in the
communications network.

2-4 CA-IDMS Release 12.0 Features Summary

2.2 CA-IDMS database communications architecture

Cross DC/UCF region communications: A DC/UCF front-end system (or
systems) can now access a DC/UCF back-end system (or systems) if both (or all)
systems reside on the same mainframe. In the previous release, this type of communi-
cation required CA-IDMS/DDS. CA-IDMS/DDS is no longer required for this type of
configuration. For more information, see 2.2.4, “Multiple DC/UCF region
communications” on page 2-7, later in this section.

Note: Data access between CPUs requires CA-IDMS/DDS.

��For more information on CA-IDMS/DDS see, Chapter 7, “CA-IDMS/DDS” on
page 7-1.

2.2.2 Components of the architecture

The CA-IDMS database communications architecture is a layered design that includes
various software modules. Information about the data request, the location of data,
and the type of communication to be used are obtained from these different modules.

The layers, or components, are as follows:

■ Application program — Issues a request for data without regard to its location and
the communications protocol required to access the data.

■ Data services interface (DSI) — Accepts the request for data from the application
and creates a data transfer service block (DTSB) that is sent to the data transfer
services (DTS) layer. The data transfer service block contains information about
the data, its format, and target resource.

■ Data transfer services (DTS) — Accepts the DTS request and on a connect calls
the name server table to determine the location of the target resource and which
communications protocol will be used. The DTS layer passes the information
from the name server to the DNS layer.

■ Name server — Provides the means of determining the location of resources
within the network. The name server accepts the name of the target resource from
the DTS layer and looks for this name in a resource table. Each resource has an
associated node. The name server looks for this node in a node table to determine
which communications protocol will be used to access the data. The name server
returns this information to the DTS layer.

■ Distributed node services (DNS) — Manages communications for remote data
access. The DNS layer establishes the communications session on the remote
node using network drivers.

■ Communications line drivers and access methods — Provide an application pro-
gramming interface (API) based on IBM's APPC that manages the communi-
cations between environments. The drivers provide network independence by
converting data formats and by mapping APPC verbs into the appropriate network
protocol.

Database communications architecture

Chapter 2. Data Communications 2-5

2.2 CA-IDMS database communications architecture

Strengths of the components: The data services interface (DSI) provides data-
base independence while data transfer services (DTS) and distributed node services
(DNS) guarantee that messages are routed in a manner transparent to the underlying
network protocols. Name servers ensure that messages are delivered to the correct
resource even if the resource has been moved to another platform.

Because of the flexibility of this architecture, you can implement applications that will
survive changes in hardware and software environments.

2.2.3 Setting up your environment

To set up your DC/UCF environment (for local and remote data access on a single
mainframe), you define:

■ A resource table

■ One or more nodes

You define a resource table and one or more nodes as part of system generation using
two system generation statements. They are the RESOURCE TABLE and NODE
statements.

NODE statement: In the NODE statement, each node on your CA-IDMS communi-
cations network is defined. In addition, the type of communication method used to
reach the named node is specified.

RESOURCE TABLE statement: Using the RESOURCE TABLE statement, you
identify databases available in your CA-IDMS communications network, and you asso-
ciate them with the node on which they can be found. The RESOURCE TABLE

2-6 CA-IDMS Release 12.0 Features Summary

2.2 CA-IDMS database communications architecture

statement builds the resource table that is accessed by the Data Transfer Services
(DTS) layer of the CA-IDMS communications architecture described earlier in this
chapter.

Example: In this example, a resource table and two different nodes are defined to
support application and database processing. Application processing will take place in
one address space and the database processing for these applications will take place in
another. Each node will be accessed using two different CA-IDMS central versions.

add node mistest

cvnumber is 21 svc is 214;

add node misprod

cvnumber is 31 svc is 215;

add resource table

dbname is emptest via mistest

dbname is empprod via misprod;

Displaying the resource table: You can display and vary the resource table using
the DCMT DISPLAY/VARY RESOURCE TABLE DCMT command. For example:

dcmt display resource table

Displaying nodes: You can display the nodes defined to your system using this
DCMT command:

dcmt display node

2.2.4 Multiple DC/UCF region communications

Using the CA-IDMS communications architecture, DC/UCF systems in the same
mainframe can communicate with each other without CA-IDMS/DDS.

Note: CA-IDMS/DDS is still needed for communications across CPUs.

Setting up cross-system communications: You define multiple DC/UCF
systems as part of system generation. You identify the resources and nodes involved
in cross-system communications using the RESOURCE TABLE and NODE state-
ments.

There are many ways to distribute database and application processing across DC/UCF
systems. For example:

■ You can define one DC/UCF system to manage the front-end processing (terminal
management, etc.) of applications and another DC/UCF system to manage the
CA-IDMS/DB database processing.

or

Chapter 2. Data Communications 2-7

2.2 CA-IDMS database communications architecture

■ You can distribute the front-end processing of applications across multiple
DC/UCF systems and define other DC/UCF systems to manage the CA-IDMS/DB
database processing for those applications. You might distribute applications
based on geographic location, type of application, or size of application.

You decide the best way to set up multiple DC/UCF systems to meet the goals of your
organization and maximize the use of your computing resources.

 DC/UCF communications:

Advantages of using multiple regions: By distributing application and database
processing across multiple DC/UCF systems, you minimize the constraints on system
resources such as CPU and virtual storage.

Other benefits include:

■ Applications access data without regard to its location or how it is accessed. No
special application logic is required.

■ Applications can be segregated based on geographic location.

■ Database processing can be insulated from application processing.

■ Applications can be insulated from each other.

■ Operating system dispatching priorities can be optimized based on the types of
applications being run.

■ Exploitation of multi-CPU machines.

2-8 CA-IDMS Release 12.0 Features Summary

2.2 CA-IDMS database communications architecture

2.2.5 Enhanced CICS interface

The CA-IDMS CICS interface has been enhanced to provide the following:

■ Integrated with new CA-IDMS database communications architecture (DTS/DNS)

■ Command-level CICS components

■ Use of standard CICS exits for tracking and recovery

■ IDMSDBUG trace facility

■ Support for CICS versions 1.7 and above

■ Support for SQL calls from CICS/CA-IDMS user applications

■ Upward compatibility for previous releases of CA-IDMS

2.2.6 For further information

■ On defining DC/UCF systems, see CA-IDMS System Generation

■ On managing DC/UCF systems, see CA-IDMS System Operations

■ On CA-IDMS CICS processing, see CA-IDMS installation manual for your oper-
ating system and CA-IDMS System Operations

■ On CA-IDMS/DDS, see CA-IDMS/DDS Design and Operations

Chapter 2. Data Communications 2-9

2.3 Operating system features

2.3 Operating system features

Extended addressing support (MVS, CMS, BS2000): Specific extended
addressing options are now available to sites using MVS, CMS, and BS2000 operating
systems that support extended addressing.

Eligible CA-IDMS/DB and CA-IDMS/DC control blocks (VIBs, dynamic LTEs and
PDEs, etc.) and DC/UCF system nucleus modules now automatically reside above the
16Mb line.

Also, you can allocate storage above the 16Mb line for the following if your operating
system supports extended addressing:

 ■ Scratch storage

Specify SCRATCH IN XA STORAGE IS YES in the SYSTEM statement in
system generation.

 ■ Database buffers

■ COBOL application storage

Note: You must use the most recent version of VS COBOL II to take advantage of
extended addressing.

Advantages of extended addressing: When you use extended addressing, you
can allocate very large buffer pools, thereby decreasing I/O.

When buffers, control blocks, or other programs reside above the 16Mb line, the result
is more storage space available for use below the 16Mb line.

Examples: This example shows the system generation SYSTEM statement that
instructs CA-IDMS/DB to allocate scratch storage above the 16 Mb line.

modify system system91

scratch in xa storage is yes.

This example shows how to create an above-the-line storage pool reserved for
database-related objects (excluding buffers).

 add xa storage pool 254

contains type (database).

This example shows the DMCL and system definitions required for database buffers to
be acquired from IDMS storage.

 create buffer default_buff

 ...

cv mode buffer idms storage;

 add xa storage pool 254

contains type (system).

This example shows the definition required to acquire operating system storage for
database buffers.

2-10 CA-IDMS Release 12.0 Features Summary

2.3 Operating system features

 create buffer default_buff

 ...

cv mode buffer opsys storage;

For further information:

■ On defining the necessary system generation parameters in order to use
extended addressing options, see CA-IDMS System Generation

ESA dataspaces: ESA operating environments provide dataspace support and buf-
fering in the dataspaces. For more information about ESA dataspaces, see 'Exploita-
tion of ESA dataspaces', in Chapter 1, “Database” on page 1-1.

Chapter 2. Data Communications 2-11

2.4 Profile support

 2.4 Profile support

What is a profile?: A profile is a set of attributes and options associated with users
in a CA-IDMS environment. Profiles, intended for constructing the user's environ-
ment, are processed at signon time.

There are two levels of profiles:

■ User profiles include attributes that apply to a user across all DC/UCF systems.

For example, you might define a user profile to include information that is system-
independent and less likely to change, like an employee number, a group code, or
a department code.

■ System profiles include attributes that apply to users of a specific DC/UCF
system.

For example, you might use a system profile to identify information that is spe-
cific to a DC/UCF system like the name of a dictionary and database a user can
access or a command list to be executed.

You can use profiles to control a user's access to resources within and across DC/UCF
systems. Profiles have been made available to replace the environment control func-
tions of signon command lists in prior releases.

What are attributes?: Attributes are keywords and their associated values.

You can define any number and type of attributes. Additionally, CA-IDMS provides
predefined attributes.

System-defined keywords: The following table lists the keywords provided by
CA-IDMS.

Keyword Definition

BREAK Determines whether immediate-write messages will be
received by a user while the user is signed on to a
DC/UCF system

CASE Specifies whether lower case letters are preserved on
input:

■ UPPER— On input, all alphabetic characters are
translated to uppercase

■ UPLOW— On input, no translation is performed

CLIST Identifies a CLIST to be invoked when a user signs on
to a DC/UCF system

DBNAME Identifies the name of a database for a user's session

2-12 CA-IDMS Release 12.0 Features Summary

2.4 Profile support

User-defined attributes: You can define any number of attributes. For example,
you might include the following attributes and keywords within a user profile:

 ■ DEPT='MIS'

 ■ TITLE='PROGRAMMER'

 ■ LOCATION='HOUSTON'

 ■ SHIFT='DAY'

Keyword Definition

DBNODE Identifies the DC/UCF system that controls the database
for a user's session

DICTNAME Identifies the name of a dictionary for a user's session

DICTNODE Identifies the DC/UCF system that controls the dic-
tionary for a user's session

INSTCODE Specifies an installation code for a user

LOADLIST Identifies a load list for a user's session

MAPTYPE Identifies the map type for a user's session

PRIORITY Specifies the dispatching priority for a user

PRTDEST Identifies the printer destination for a user's session

PRTCLASS Identifies the print class for a user's session

SCHEMA Identifies the name of an SQL schema for a user's
session

TEST Identifies the test version number for a user's session

 2.4.1 Defining profiles

You define and maintain profiles with the CA-IDMS Command Facility using the
CREATE PROFILE statement:

create system/user profile profile-name

attribute attribute-keyword=attribute value

 override=yes/no

The OVERRIDE parameter specifies whether or not attributes can be changed.
OVERRIDE=YES, the default, specifies that keywords and values can be changed by
the user.

The special keyword INCLUDE can be used to chain profiles together.

Examples This example shows the definition of a user profile called JPDPROF.:

Chapter 2. Data Communications 2-13

2.4 Profile support

create user profile jpdprof

attributes groupcode='c1611'

 empid='1236'

 title='analyst' override=no

 location='boston';

CA-IDMS stores user profiles in the user catalog.

This example shows the definition of a system profile for an MIS production system.

create system profile misprod

attributes dictname='misdict'

 dbname='benefits'

 prtclass='47'

 prtdest='westwood';

CA-IDMS stores system profiles in the system dictionary.

This example shows how you can include one profile within another profile of the
same type. The user profile HRGROUP is included in user profile HEAD_OFFICE.

create user profile head_office

 attributes office='11'

 phone='617-329-7711';

create user profile hrgroup

 attributes dept='5411' override=no

 jobcode='1211' override=no

 include 'head_office';

Substitution parameters: Three substitution parameters are available to facilitate
the definition of generic profiles that can be shared by multiple users. The following
substitution parameters are replaced with the values for the user and environment:

■ &USER — replaced with the current user ID.

■ &SYSTEM — replaced with the DC/UCF system name or 'BATCH' if running in
local mode.

■ &GROUP — replaced with the default group of the current user ID.

Example: This example shows the use of substitution parameters within a system
profile:

■ &USER will be substituted for the current user ID making this profile usable by
all users in the HR group of MIS.

■ The INCLUDE attribute will cause a profile specific to each user to be included.

■ If the user-specific profile exists, it can change attribute values (if the attribute can
be overridden) or add attributes to those specified in MIS-HR.

■ If the user-specific profile doesn't exist, the INCLUDE is ignored.

2-14 CA-IDMS Release 12.0 Features Summary

2.4 Profile support

create system profile mis_hr

attributes

 dictname='misdict'

 dbname='testhr'

 prtclass='16'

 test='16'

 schema=&user

 include=&user_prof;

create system profile jpd_prof

attributes

 schema='jpd1'

 case='upper';

2.4.2 Associating profiles with users

User profile: You use the CREATE/ALTER USER statement to associate a user
profile with a specific user:

alter user jpd

 profile is jpdprof;

User profiles are available in local mode.

System profiles: You use the GRANT SIGNON statement to associate a system
profile with a user:

grant signon

 on system system74

 to jpd

 profile is mis_hr;

System profiles are used with DC/UCF systems and are not available in local mode.
If neither a user nor a system profile is associated with a user, CA-IDMS will auto-
matically look for a system profile named DEFAULT.

What happens when a user signs on: When a user signs on to a DC/UCF
system or is implicitly signed on in local mode, any user profile that exists for the user
is retrieved from the user catalog. If signing on to a DC/UCF system and a system
profile exists, it is retrieved from the system dictionary and merged with the user
profile.

2.4.3 Displaying and accessing attributes

Interactively: The current profile for a user signed on to a DC/UCF system is dis-
played using the DCUF SHOW PROFILE command:

dcuf show profile

An individual attribute can be displayed using the same type of DCUF command in
the form DCUF SHOW keyword:

dcuf show dictname

Chapter 2. Data Communications 2-15

2.4 Profile support

Attributes of the current session profile can be modified using the DCUF SET
command:

dcuf set dictname mistest

You can change multiple attributes and add new attributes by invoking a system
profile using the following DCUF command:

dcuf set profile mis_hr

Programmatically: You can access a profile programmatically by:

■ Linking to the DCUF SHOW PROFILE command

■ Calling the module IDMSIN01 and using function 2

You can add or change attributes programmatically by:

■ Linking to the DCUF SET PROFILE command

■ Calling the module IDMSIN01 and using function 3

2.4.4 Using profiles with nonterminal tasks

CA-IDMS/DC and CA-IDMS/UCF use profiles in the processing of nonterminal tasks.
For example, if a user executes an application from a DC/UCF system that invokes a
nonterminal task, the attributes assigned to that user are propagated to the nonterminal
task.

2.4.5 For further information

■ On defining and accessing user profiles and securing both user and system
profiles, see CA-IDMS Security Administration

■ On defining and accessing system profiles, see CA-IDMS System Tasks and
Operator Commands

■ On invoking and using the IDMSIN01 module, see CA-IDMS Navigational
DML Programming

2-16 CA-IDMS Release 12.0 Features Summary

2.5 New numbered user exits

2.5 New numbered user exits

Exit 28 — Security preprocessing: This user exit allows you to examine secu-
rity requests before they are processed.

You can use the exit to screen requests before implementing site-specific security
requirements. You cannot use the exit to force the security system to accept a request.

Exit 29 — Security postprocessing: This user exit allows you to examine secu-
rity requests after they are processed.

You can use the exit to check for security violations or to enforce security based on
site-specific standards. You cannot override a security violation, however.

Exit 30 — Deadlock victim selection: This user exit allows you to implement an
algorithm that determines which DC/UCF task involved in a deadlock will be termi-
nated. The user exit is called after the deadlock detector scans all waiting tasks in the
DC/UCF system and determines which of the tasks are truly deadlocked.

Note: The default algorithm CA-IDMS/DB uses terminates the most recently started
transaction with the lowest dispatching priority.

Exit 31 — Transaction statistics: This user exit allows you to examine collected
transaction statistics.

The exit is called by the transaction manager whenever statistics are written from the
transaction block. The exit takes place after statistics are written but before the block
is released.

For further information:

■ On user exits, see CA-IDMS System Operations

Chapter 2. Data Communications 2-17

2.6 Query device support

2.6 Query device support

Query device support: Terminals that support extended attributes, such as high-
lighting and color, are now queried to determine which attributes the terminal supports.
These terminals may now be defined to a DC/UCF system as 3279 devices.

At logon, the VTAM query reply structured field determines the actual extended attri-
butes the terminal supports.

VTAM definitions may need to be changed to define terminals that support extended
attributes. CAUTION:
Do not change any real 3278 device types to 3279 device types.

Applications using the CA-IDMS/DC and CA-IDMS/UCF online mapping facility can
take advantage of extended terminal attributes when executing from a terminal that
supports them.

2-18 CA-IDMS Release 12.0 Features Summary

2.7 DCMT and DCUF commands

2.7 DCMT and DCUF commands

2.7.1 Invoking DCMT and DCUF commands from programs

Invoke all DCMT and DCUF commands from programs: All DCMT and
DCUF commands can now be invoked from application programs.

The same general programming requirements apply as in invoking certain DCMT
VARY commands in prior releases.

User programs will continue to link to the program RHDCMT00 for DCMT com-
mands and program RHDCUF00 for DCUF commands. Data is returned in the form
of records to the scratch area. Programs can then read the display data from the
scratch area.

There are minor changes to input parameters and a return code has been added.

For further information:

■ On programming requirements, see CA-IDMS System Tasks and Operator
Commands

2.7.2 New and modified DCMT and DCUF commands

There are new and modified DCMT and DCUF commands and DC/UCF tasks that
support new CA-IDMS features.

New commands: The table below lists new DCMT and DCUF commands.

Command Function

DCMT DISPLAY/VARY DEAD-
LOCK

DCMT DISPLAY DEADLOCK displays the
deadlock detection interval assigned at
system generation on the SYSTEM state-
ment.

DCMT VARY DEADLOCK allows you to
change the deadlock detection interval
assigned to deadlocked tasks.

DCMT DISPLAY LOCK
AREA/LTERM

Displays longterm and notify locks held by
a logical terminal or displays locks held on
an area by all logical terminals.

DCMT DISPLAY NODE Displays the nodes defined to a DC/UCF
system.

Chapter 2. Data Communications 2-19

2.7 DCMT and DCUF commands

Modified commands: The table below lists modified DCMT and DCUF com-
mands and DC/UCF tasks.

Command Function

DCMT DISPLAY/VARY
RESOURCE TABLE

DCMT DISPLAY RESOURCE TABLE dis-
plays the resource name table created from
the system generation RESOURCE TABLE
statement.

DCMT VARY RESOURCE TABLE
instructs CA-IDMS to load a new copy of
the altered resource name table.

DCMT DISPLAY/VARY SEGMENT DCMT DISPLAY SEGMENT displays
information about areas in segments.

DCMT VARY SEGMENT allows you to
vary an area status and to take areas offline.

DCMT DISPLAY TRANSACTION DCMT DISPLAY TRANSACTION displays
information about database transactions.

DCMT VARY DBNAME TABLE
NEW COPY

Instructs CA-IDMS/DB to load a new copy
of the database name table.

DCMT VARY DMCL NEW COPY Instructs CA-IDMS/DB to load a new copy
of the DMCL.

DCMT WRITE STATISTICS Writes current system and line statistics and
histograms to the DC/UCF log file.

DCUF SET PROFILE Allows you to alter your session profile.

DCUF SHOW PROFILE Allows you to display all attributes of your
session profile.

Command Change

DCMT DISPLAY ACTIVE PRO-
GRAMS

Was previously a part of the DCMT
DISPLAY PROGRAM command and is
now a separate command.

DCMT DISPLAY JOURNAL Has a new JOURNAL parameter.

DCMT DISPLAY RUN UNIT Displays only system run units and has new
parameters:

 ■ SYSTEM

 ■ SECURITY

 ■ SQL LOADER

 ■ SQL SECURITY

2-20 CA-IDMS Release 12.0 Features Summary

2.7 DCMT and DCUF commands

For further information:

■ On DCMT and DCUF commands, and DC/UCF tasks, see CA-IDMS System
Tasks and Operator Commands

Command Change

DCMT VARY PROGRAM Will now prompt you to select a specific
program if more than one is found with the
same name.

DCMT DISPLAY/VARY ACTIVE
TASKS

Was previously a part of the DCMT
DISPLAY TASKS command and is now a
separate command.

DCMT DISPLAY/VARY CENTRAL
VERSION

Deleted. Functionality provided through
DISPLAY TRANSACTION and VARY
UCF.

DCMT DISPLAY/VARY DATA-
BASE

PROGRAMS parameter is deleted.

DCMT VARY AREA Has new TRANSIENT RETRIEVAL param-
eter.

DCMT VARY BUFFER Has new parameters:

 ■ OPEN/CLOSE

 ■ OPSYS/DC STORAGE

 ■ INITIAL/ADDITIONAL/MAXIMUM
PAGES

DCMT VARY FILE Has new ALLOCATE, DEALLOCATE
(FORCE), DSNAME and dataspace parame-
ters.

DCMT VARY JOURNAL DRIVER parameter is deleted. RUN UNIT
is now TRANSACTION.

DCMT VARY RUN UNIT Now has all the parameters of DISPLAY
RUN UNIT.

DCPASS Task Deleted. You can now change passwords as
part of the SIGNON task.

Chapter 2. Data Communications 2-21

2.8 System generation

 2.8 System generation

There are both new system generation statements and parameters and new system gen-
eration compiler options. These are discussed below.

2.8.1 Changes to statements and parameters

New and modified statements and parameters: There are new system gener-
ation statement parameters that support Release 12.0 features. Additionally, some
existing statements and parameters are now specified through other tools and have
been deleted from system generation.

Statement Parameter Status/information

SYSTEM SYSTEM ID is New parameter that
allows you to specify a
nodename for each
DC/UCF system you
generate.

AREA ACQUISITION
THRESHOLD

New parameter that
replaces the PRE-
EMPTION
THRESHOLD param-
eter.

Allows you to specify
whether CA-IDMS/DB
will accumulate area
locks when attempting
to ready multiple areas
for a single database
transaction.

DEADLOCK DETECTION
INTERVAL

New parameter that
allows you to specify
the frequency with
which the system will
check for deadlocks.

JOURNAL FRAGMENT
INTERVAL

New parameter that
allows you to specify
the number of journal
blocks to be written to
the journal file before
CA-IDMS/DB writes a
dummy segment record
to the journal file.

2-22 CA-IDMS Release 12.0 Features Summary

2.8 System generation

Statement Parameter Status/information

JOURNAL TRANSACTION
INTERVAL

New parameter that
allows you to direct
CA-IDMS/DB to defer
journal I/O based on
the number of active
transactions running in
your DC/UCF system.

LOOKAROUND TIME Deleted. No longer
required.

MULTIPLE SIGNONS is Allows one user to
signon to the DC/UCF
system from multiple
interactive or UCF ter-
minals concurrently.

PREEMPTION THRESHOLD Deleted and replaced
by AREA ACQUISI-
TION THRESHOLD.

REGISTRATION/NOREGISTRATIONDeleted and replaced
by run unit security of
the new security
facility.

RULOCKS Deleted. Not required.

RUNUNITS FOR Added new options that
allow you to specify
two new types of run
units that can be prede-
fined to be initiated at
startup.

SCRATCH in XA STORAGE New parameter that
allows you to specify
that the scratch area
will use a 31-bit
storage pool in an
MVS/XA environment.

STACKSIZE Changed the default to
1200.

SYSCTL is Added SYSCTL as the
default value for
DDNAME,
FILENAME, or
LINKNAME.

Chapter 2. Data Communications 2-23

2.8 System generation

Statement Parameter Status/information

WARMSTRT/NOWARMSTRT Deleted. No longer
needed.

UNDEFINED PROGRAM
COUNT is

Allows you to specify
one additional type of
entry for which null
PDEs should be allo-
cated at system startup.

XA STORAGE POOL is Specifies the size of the
31-bit storage pool
(storage pool 255) used
for database processing.

ADSO OPTIONAL/MANDATORY
subclause to COBOL MOVE is

Allows you to specify
whether application
developers can override
the default of NO on
the COBOL MOVE IS
clause during dialog
generation.

DBNAME All Deleted and replaced
by CREATE
DBTABLE and
CREATE DBNAME
statements of the phys-
ical database definition
process.

DDS All Deleted and replaced
by the SYSTEM ID
clause of the SYSTEM
statement.

IDMS AREA All Deleted and informa-
tion is now specified in
the DMCL definition.

IDMS BUFFER All Deleted and informa-
tion is now specified in
the DMCL definition.

IDMS PROGRAM All Information is now
specified using the
system generation
TASK statement and
run unit security of the
new security facility.

2-24 CA-IDMS Release 12.0 Features Summary

2.8 System generation

Statement Parameter Status/information

LOADLIST LOADLIB is You now specify the
ddname or linkname of
a test load library in
the form Vnnnn.
Vnnnn replaces the
CDMSLnnn variable.

OLM HELP PFKEY is New clause that speci-
fies the default program
function key to be
associated with the help
function during run-
time mapping sessions.

OLQ SQL ACCESS is A new optional clause
that allows you to
specify the type of
SQL OLQ will use to
access CA-IDMS/DB
databases.

PROGRAM Added new type of program New program type
added that is used with
the SQL option of
CA-IDMS/DB.

MENU/NOMENU subclause of
MAINLINE clause

Specifies whether a
mainline dialog is dis-
played on the ADS
menu screen.

SECURITY CLASS Security information is
now specified using
security classifications
of the new security
facility.

NODE All New statement that
allows you to define
nodes for other
DC/UCF systems.

RESOURCE TABLE All New statement that
allows you to define
remote resources (data-
bases) that will be
accessed by systems.

Chapter 2. Data Communications 2-25

2.8 System generation

Statement Parameter Status/information

RUNUNITS SQL LOADER

SQL SECURITY

Allows you to specify
predefined run units for
the SQL option and the
new security facility.

DICTNAME IS Deleted SYSTEM
DEFAULT as the
default. The default
dictionary for loader
run units is now speci-
fied in the RUNUNITS
FOR clause of the
SYSTEM statement.

TASK AREA ACQUISITION Specifies whether
CA-IDMS/DB will
accumulate area locks
when attempting to
ready multiple areas for
a database transaction
and not all areas are
accessible.

SECURITY CLASS Security information is
now defined using the
new security facility.

USER All Deleted and users are
now defined using the
new security facility.

XA STORAGE POOL DATABASE Allows you to specify
DATABASE as a type
of storage that an XA
storage pool can
accommodate.

LTERM INTERACTIVE
BREAK/NOBREAK

Deleted. Information is
now specified in a user
or system profile.

UPPER/UPLOW Deleted. Information is
now specified in a user
or system profile.

2-26 CA-IDMS Release 12.0 Features Summary

2.8 System generation

Statement Parameter Status/information

DDS LINE All Deleted. Information is
now specified using the
teleprocessing network
CCI LINE statement
and the system gener-
ation NODE statement.

CCI LINE All New statement to
define CAICCI CA90s
component that
CA-IDMS/DDS will
use for cross CPU
communications.

UCFLINE LINE
PTERM

TYPE IS BULK Added as a PTERM in
addition to UCFTERM.
Specifies a batch
external request unit.
You must define a
BULK PTERM for
each batch external
request unit you will
allow in your UCF
system simultaneously
within the same
mainframe.

2.8.2 System generation compiler enhancements

Simplified commenting: You can use *+ or anywhere on an input line to indi-
cate that the remainder of the line is a user comment. If the *+ or is coded in
positions 1 and 2, the line is not echoed.

Additionally, you can use an '* ' in positions 1 and 2 of an input line to indicate that
the remainder of the line is a user comment. Lines containing '* ' in positions 1 and 2
are echoed.

Non-quoted letters converted to upper case: All syntax components submitted
to the system generation compiler that are not in quotes are converted to upper case.
Users can submit statement components in lower case and non-quoted letters are auto-
matically converted to upper case.

Availability of user exits: Support for user exits is now available for the system
generation compiler. This support is the same as the support previously implemented
for the IDD compiler.

Chapter 2. Data Communications 2-27

2.8 System generation

For a list of the exits, see "Schema and subschema compiler enhancements" in
Chapter 1, “Database” on page 1-1.

For further information:

■ On system generation parameters, see CA-IDMS System Generation

2-28 CA-IDMS Release 12.0 Features Summary

2.9 Enhanced language support

2.9 Enhanced language support

 2.9.1 Runtime support

The following new runtime support is available in Release 12.0:

■ PL/I versions 2.1 and 2.2

■ VS COBOL II (CMS and VSE in addition to the existing MVS support)

■ COBOL 85 support (Fujitsu)

■ COBOL 85 support (Hitachi)

2.9.2 General precompiler changes

New precompiler-directive statement: COPY IDMS
SUBSCHEMA-RECORD-BINDS allows you to copy a standard BIND RECORD for
each CA-IDMS record in the subschema. The difference between this statement and
the existing COPY IDMS SUBSCHEMA-BINDS is that the new statement does not
initialize PROGRAM-NAME and issue a BIND RUN-UNIT.

New parameters: New sublanguage parameters are described in the table below.

Statement Parameters Comments

Task level:

COMMIT

FINISH

ROLLBACK

All Now available to COBOL, PL/I,
and Assembler batch and CICS
applications.

GET STORAGE LOCATION IS
ANY/BELOW

BELOW specifies that storage
will be allocated below the 16Mb
line. ANY specifies that storage
is eligible for allocation above
the 16Mb line. Supported by
COBOL and PL/I precompilers
only.

DC RETURN IMMEDIATE IMMEDIATE returns control to
the DC/UCF system by
bypassing intervening link levels.
Supported by COBOL and PL/I
precompilers only.

Chapter 2. Data Communications 2-29

2.9 Enhanced language support

Examples: In the following VS COBOL II example, LOCATION IS BELOW forces
CA-IDMS to acquire storage for WORK-RECORD below the 16Mb line.
LOCATION IS ANY, the default, would make the storage eligible for acquisition
above the 16Mb line.

GET STORAGE FOR WORK-RECORD

LOCATION IS BELOW.

In the following VS COBOL II example, IMMEDIATE returns control to the DC/UCF
system, bypassing intervening link levels.

DC RETURN NEXT TASK CODE IS 'EMP2'

 IMMEDIATE.

In the following VS COBOL II example, the DICTNAME parameter specifies that
CA-IDMS/DB is to load the table ZIPCODE from the dictionary PRODDICT.

LOAD TABLE 'ZIPCODE' INTO ZIPCODE-AREA

 DICTNAME 'PRODDICT'.

In this example, the customized message prefix of 'EM' would result in the writing of
the message EM999001, rather than the default DC999001.

WRITE LOG MESSAGE ID 999111

MESSAGE PREFIX IS 'EM'.

Statement Parameters Comments

LOAD TABLE
and DELETE
TABLE

DICTNODE/DICTNAME/LOADLIBThese parameters allow you to
specify which table is to be
loaded or deleted. Supported by
COBOL and PL/I precompilers
only.

WRITE LOG MESSAGE PREFIX IS
'message-prefix'

This parameter allows you to
specify your own message prefix,
so you can separate your mes-
sages from DC/UCF system mes-
sages. Supported by COBOL
and PL/I precompilers only.

2.9.3 Parameters supporting VS COBOL II

Optional parameter: In Release 12.0, the TO parameter of the GET STORAGE
statement is optional.

DC RETURN issues a GOBACK: When the default precompiler option of
'COBOL=2' is set, a DC RETURN parameter with no operands will issue a GOBACK
statement. This results in more efficient management of resources by CA-IDMS/DC.

2-30 CA-IDMS Release 12.0 Features Summary

2.9 Enhanced language support

2.9.4 Parameters supporting COBOL 85 (Fujitsu and Hitachi)

New parameters: The following table shows new COBOL 85 parameters for
Fujitsu and Hitachi.

The POINTER variables address acquired storage and loaded programs. POINTER
and LENGTH parameters are recognized when COBOL 85 is specified as a precom-
piler option (JCL parameter 'COBOL=85').

Examples This is an example of a COBOL 85 (Fujitsu) program containing the
LENGTH and POINTER parameters of the GET STORAGE and LOAD TABLE state-
ments.:

IDENTIFICATION DIVISION.

PROGRAM-ID. PTRPRG.

ENVIRONMENT DIVISION.

DATA DIVISION.

BASED-STORAGE SECTION.

11 A BASED ON A-PTR.

12 A1 PIC X(21).

12 A2 PIC X(111).

WORKING-STORAGE SECTION.

11 A-PTR USAGE IS POINTER.

11 A-LENGTH PIC S9(8) COMP.

PROCEDURE DIVISION.

MOVE FUNCTION LENG(A) TO A-LENGTH.

GET STORAGE FOR A LENGTH A-LENGTH POINTER A-PTR.

LOAD TABLE 'T' INTO A POINTER A-PTR.

This is an example of a COBOL 85 (Hitachi) program containing the LENGTH and
POINTER parameters of the GET STORAGE and LOAD TABLE statements.

IDENTIFICATION DIVISION.

PROGRAM-ID. PTRPRG.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

11 P-PTR USAGE IS ADDRESS.

11 A-LENGTH PIC S9(8) COMP.

11 A ADDRESSED BY S-PTR.

12 A1 PIC X(21).

12 A2 PIC X(111).

PROCEDURE DIVISION.

MOVE 121 TO A-LENGTH.

GET STORAGE FOR A LENGTH A-LENGTH POINTER P-PTR.

COMPUTE S-PTR = P-PTR.

LOAD TABLE 'T' INTO A POINTER P-PTR.

Statement New parameter(s)

GET STORAGE LENGTH storage-data-length

POINTER storage-data-location-pointer

LOAD TABLE POINTER program-location-pointer

Chapter 2. Data Communications 2-31

2-32 CA-IDMS Release 12.0 Features Summary

 Chapter 3. Security

3.1 About this chapter . 3-3
3.2 Security facility features . 3-4
3.3 Administering security . 3-6

3.3.1 Privileges . 3-6
3.3.2 Resources . 3-7
3.3.3 Authorization identifiers . 3-8

3.4 Granting and revoking privileges . 3-9
3.4.1 Granting privileges . 3-9
3.4.2 Revoking privileges . 3-10

3.5 Security display facility . 3-11
3.6 For further information . 3-15

Chapter 3. Security 3-1

3-2 CA-IDMS Release 12.0 Features Summary

3.1 About this chapter

3.1 About this chapter

This chapter describes the new security facility. Highlights of the security facility are:

■ Centralization of security (both online and batch in local and central version)

■ A new security interface

■ An integrated interface to external security packages

Chapter 3. Security 3-3

3.2 Security facility features

3.2 Security facility features

What is the new security facility?: CA-IDMS now provides a new, centralized
facility to control access to the resources in your CA-IDMS environment.

You can use the new facility to secure all CA-IDMS runtime components, when
running under central version or when running in local mode. Definition-time pro-
tection is provided for system generation, physical database and SQL-defined entities.

You will continue to use the data dictionary to implement security for schemas,
subschemas, and other dictionary entities.

Features of the security facility: The new security facility supports:

■ Central storage of user definitions — You define all users (online and batch) in a
single user catalog. The user catalog contains user IDs, passwords, group struc-
tures, and profiles. The user catalog includes the information previously stored in
the USER-047 record and some of the information stored in the ACCESS-045
record in prior releases of the data dictionary.

■ User groups — You can assign users to groups. You can establish security at the
group level and it applies to all users in the group.

■ Profiles — Profiles can be secured with the new security facility.

■ Security classification and access lists — CA-IDMS provides two mechanisms for
protecting resources:

– Security classifications — are numbers associated with a group of resources
that you want to secure. Security classifications are efficient for resources
that require a single mode of access and are used to protect most DC/UCF
system resources.

– Access lists — are lists of operations that can be performed and are typically
used for definition-time checking.

■ Generic resource names (wildcards) — You can use wildcards to specify similar
entities. For example, PROGRAM MRP * can be used to refer to all programs
that begin with MRP.

■ Central security administration — You administer security using a single tool. In
addition, you use the consistent and simple SQL Data Control Language com-
mands to secure resources.

■ Security standards — CA-IDMS internal security follows the ANSI SQL database
security standards and the Department of Defense (DOD) security model.

Security architecture: In addition to the above features, the security facility archi-
tecture provides:

■ A standard security interface — All security requests are funneled through a
central security interface. This permits uniform validation of security requests.

3-4 CA-IDMS Release 12.0 Features Summary

3.2 Security facility features

■ An external security interface — CA-IDMS security enforcement can be replaced
with external security packages such as CA-ACF2, CA-TOP SECRET, and
RACF.

When using an external security package to control access to an SQL-defined
database, the DOD security model is used to enforce security.

External security interface features: Some features of the external security
interface are:

■ The external security interface uses CAISSF, the standard security facility of the
CA90s Integration Services layer. Because CAISSF is a common component of
the CA90s architecture it is integrated with all CA solutions.

■ The CA-IDMS security facility is designed to support the existing rule base of
external security packages so that you can continue using your existing rule base.
The rules have been extended to cover new CA-IDMS resources.

■ Any centrally secured CA-IDMS resource can alternatively be secured using an
external security package.

Chapter 3. Security 3-5

3.3 Administering security

 3.3 Administering security

You control access to database and system resources by granting and revoking privi-
leges to and from users. You grant users privileges that allow them to perform certain
operations on resources. Conversely, you can revoke these privileges at any time.

You can use the CA-IDMS Command Facility to submit two types of statements to
grant and revoke privileges:

■ GRANT — You use the GRANT statement to grant a resource privilege to a
particular user or group. Here is the syntax for the GRANT statement:

grant privilege

on resource

 to authorization-identifier;

■ REVOKE — You use the REVOKE statement to revoke a resource privilege that
was previously granted to a particular user or group. Here is the syntax for the
REVOKE statement:

revoke privilege

on resource

 from authorization-identifier;

Privileges, resources, and authorization-identifiers are explained in the following
sections.

Note: For examples of GRANT and REVOKE, see "Granting and revoking privi-
leges", later in this chapter.

 3.3.1 Privileges

What are privileges?:

A privilege is an explicitly-granted right to access a particular resource and perform a
particular operation on that resource. You can grant three types of privileges to users:

 ■ Definition privileges

 ■ Access privileges

 ■ Administration privileges

Definition privileges: Definition privileges can be granted for these operations:

■ CREATE allows a user to add resource entity definitions.

■ ALTER allows a user to modify or replace resource entity definitions.

■ DROP allows a user to delete resource entity definitions.

■ DISPLAY allows a user to display or punch resource entity definitions.

■ USE allows a user to use the entity definition.

Note: Definition privileges apply only to entities on which you can perform one of
the above operations.

3-6 CA-IDMS Release 12.0 Features Summary

3.3 Administering security

Access privileges: There are three categories of access:

■ Execute access allows a user to run an application, load module, or activity.

■ Table access allows users to perform data manipulation operations on data tables
(SQL option only).

■ Special access allows users to perform specific operations within a database area
or DC/UCF system:

– DBAREAD allows a user to run read-only utilities against an area.

– DBAWRITE allows a user to run update utilities against an area.

– SIGNON allows a user to sign on to a specific DC/UCF system.

Administration privileges: There are three types of administrative privileges:

■ SYSADMIN allows users to administer security on all resources within the secu-
rity domain.

■ DBADMIN allows users to administer security on database resources.

■ DCADMIN allows users to administer security on DC/UCF system resources.

 3.3.2 Resources

What are resources?: CA-IDMS/DB and CA-IDMS/DC resources are the entities
in your environment to which you control access.

You must explicitly define some resources, like users and groups, using the CREATE
resource statement. Other resources are implicitly defined simply by granting privi-
leges.

Resources and entities: The table below lists resources and some of their associ-
ated entities that can be secured centrally.

Categories of resources Types of resources

Global
Users

Groups

User profiles

Database
Areas

Databases

DBtables

DMCLs

Run units

Schemas

Tables

System
Activities (application functions)

Applications

DC/UCF systems

Load modules

Programs

System profiles

Tasks

Queues

Chapter 3. Security 3-7

3.3 Administering security

 3.3.3 Authorization identifiers

What is an authorization identifier?: An authorization identifier
(authorization-id) represents the user or a group you grant privileges to. An authori-
zation identifier can be:

■ User identification codes (user IDs) represent users of CA-IDMS/DB and
CA-IDMS/DC resources. You define and maintain users and user IDs with the
CREATE/ALTER/DROP USER statements.

■ Groups represent a collection of users. You define and maintain a group with the
CREATE/ALTER/DROP GROUP statements. Rules for groups are:

– Users can belong to one or more groups.

– Groups cannot belong to other groups.

– Security granted to a group applies to all users in that group.

– Every user belongs to the group PUBLIC.

Examples: This is an example of USER creation.

create user sas

name 'samuel a simpson'

 status active;

This is an example of GROUP creation.

create group misgroup

description 'contains the MIS application

 developers'

add user jpd, sas, jks;

3-8 CA-IDMS Release 12.0 Features Summary

3.4 Granting and revoking privileges

3.4 Granting and revoking privileges

 3.4.1 Granting privileges

GRANT statement: You grant privileges using the GRANT statement.

Example: In this example, a system signon privilege is granted to user MDK.

grant signon on system74 to mdk;

WITH GRANT OPTION: You can optionally include the WITH GRANT OPTION
on a GRANT statement. This allows the named user to grant the specified privilege
(without the WITH GRANT OPTION) to other users or groups.

Example: In this example, user SAS is granted definition privileges on the resource
TESTDMCL. User SAS is authorized to grant definition privileges on TESTDMCL to
other users and groups.

grant define

 on testdmcl

 to sas

with grant option;

Group privileges: You can grant privileges to groups as well as individual users.

Users you add to a group indirectly hold privileges granted to the group; users
removed from the group lose all privileges held indirectly through the group.

Example: In this example, the group MISGROUP is granted DEFINE privileges on
the resource TESTDMCL.

grant define on testdmcl to misgroup;

Using wildcards: In most cases, you can use wildcards (*) when granting and
revoking privileges.

If your site uses naming standards, the use of wildcards allows you to secure groups of
resources at a time. Fewer security definitions also take less storage space.

Example: In this example, EXECUTE privileges are granted to user SAS on all
resources where the resource name is qualified by QA.

grant execute on qa.Q to sas;

Chapter 3. Security 3-9

3.4 Granting and revoking privileges

 3.4.2 Revoking privileges

REVOKE statement: You revoke privileges by using the REVOKE statement. For
each type of GRANT statement, there is a corresponding REVOKE statement.

Example: In this example, ALTER privileges on the resource QA.BENEFITS are
revoked from user SAS.

revoke alter on qa.benefits from sas;

3-10 CA-IDMS Release 12.0 Features Summary

3.5 Security display facility

3.5 Security display facility

Use DISPLAY statements: You submit DISPLAY statements to the CA-IDMS
Command Facility to report on security information.

There are several forms of the DISPLAY statement that allow you to report on various
aspects of your security environment. In almost all cases, there is a corresponding
DISPLAY statement for each CREATE statement in the security facility.

Format of the DISPLAY statement: Security display statements take this form:

DISPLAY resource-type resource-name

WITH display-options

Display options: Here are some of the display options:

 ■ All

 ■ DETAILS

 ■ GROUPS

 ■ HISTORY

 ■ PRIVILEGES

 ■ USERS

 ■ VERBS

Examples: You might issue the following DISPLAY statements to report on secu-
rity information in your environment:

 DISPLAY USER

Chapter 3. Security 3-11

3.5 Security display facility

 DIS USER RAA WITH ALL AS SYNTAX;

CREATE USER RAA

 Q+ USER IS ACTIVE

DESCRIPTION 'CHIEF ANALYST'

NAME 'RICHARD A. ANALYST'

 Q+ PASSWORD ASSIGNED

 PROFILE PAYROLL

 Q+ CREATED 1991-17-18-12.51.17.187373 BY KKS

 Q+ LAST UPDATED 1991-17-18-12.51.23.111517 BY KKS

 Q+ WITHIN GROUP DEVTEAM

 Q+ HOLDS DEFINE PRIVILEGES ON USER TAM

 Q+ HOLDS DEFINE PRIVILEGES ON SYSTEM SYSTEM71

 Q+ HOLDS SIGNON PRIVILEGES ON SYSTEM SYSTEM71

 Q+ HOLDS DBADMIN PRIVILEGES ON DB DBA

 Q+ HOLDS DBAWRITE PRIVILEGES ON AREA THESEGMENT.CORPTSP

 Q+ HOLDS USE PRIVILEGES ON DMCL THEDMCL

 Q+ HOLDS USE PRIVILEGES ON DBTABLE THEDBTABLE

 Q+ HOLDS USE PRIVILEGES ON DB THEDB

 Q+ HOLDS EXECUTE PRIVILEGES ON CATEGORY CATE3

 Q+ HOLDS EXECUTE PRIVILEGES ON ACTIVITY DCMT.N112

 Q+ HOLDS REFERENCES PRIVILEGES ON ACCESS MODULE THESCHEMA.THEAM

 Q+ HOLDS EXECUTE PRIVILEGES ON ACCESS MODULE THESCHEMA.THEAM

 Q+ HOLDS ALL PRIVILEGES ON TABLE THESCHEMA.THEQ

 Q+ HOLDS DISPLAY PRIVILEGES ON ACCESS MODULE THESCHEMA.Q

 Q+ HOLDS DISPLAY PRIVILEGES ON ACCESS MODULE THESCHEMA.DBAQ

 Q+ HOLDS REFERENCES PRIVILEGES ON TABLE THESCHEMA.THETABLE

 Q+ HOLDS SELECT, INSERT, UPDATE PRIVILEGES ON TABLE THESCHEMA.THETABLE

 Q+ HOLDS DISPLAY PRIVILEGES ON TABLE THESCHEMA.Q

 ;

 DISPLAY GROUP

 DIS GROUP DEVTEAM WITH ALL AS SYNTAX;

CREATE GROUP DEVTEAM

 Q+ GROUP IS ACTIVE

DESCRIPTION 'DEVELOPMENT TEAM'

 Q+ CREATED 1991-17-18-12.51.23.762415 BY KKS

 Q+ LAST UPDATED 1991-17-18-12.51.25.246924 BY KKS

ADD USER RAA

ADD USER HAR

 ;

DISPLAY RESOURCE DMCL

 DISPLAY RESOURCE DMCL THEDMCL WITH ALL AS SYNTAX;

 Q+ RESOURCE DMCL THEDMCL

 Q+ CREATED 1991-17-18-12.52.22.592819 BY KKS

 Q+ LAST UPDATED 1991-17-18-12.52.22.592819 BY KKS

DISPLAY PRIVILEGES ON RESOURCE DMCL

3-12 CA-IDMS Release 12.0 Features Summary

3.5 Security display facility

 DISPLAY PRIVILEGES ON RESOURCE DMCL THEDMCL WITH ALL AS SYNTAX;

GRANT USE ON DMCL THEDMCL

 Q+ CREATED 1991-17-18-12.52.23.661155 BY KKS

 Q+ LAST UPDATED 1991-17-18-12.52.23.661155 BY KKS

 TO RAA

 ;

GRANT CREATE, ALTER, DROP, DISPLAY ON DMCL THEDMCL

 Q+ CREATED 1991-17-18-12.52.23.234993 BY KKS

 Q+ LAST UPDATED 1991-17-18-12.52.23.234993 BY KKS

 TO HAR

 ;

GRANT DEFINE ON DMCL THEDMCL

 Q+ CREATED 1991-17-18-12.52.24.511862 BY KKS

 Q+ LAST UPDATED 1991-17-18-12.52.24.511862 BY KKS

 TO JPD

WITH GRANT OPTION

 ;

GRANT DEFINE ON DMCL THEDMCL

 Q+ CREATED 1991-17-18-12.52.22.592819 BY KKS

 Q+ LAST UPDATED 1991-17-18-12.52.22.592819 BY KKS

 TO TAM

 ;

DISPLAY RESOURCE SYSTEM

 DISPLAY RESOURCE SYSTEM SYSTEM71 WITH ALL AS SYNTAX;

CREATE RESOURCE SYSTEM SYSTEM71

 Q+ CREATED 1991-17-18-12.51.31.173777 BY KKS

 Q+ LAST UPDATED 1991-17-18-12.51.31.173777 BY KKS

 ;

DISPLAY PRIVILEGES ON RESOURCE SYSTEM

Chapter 3. Security 3-13

3.5 Security display facility

 DISPLAY PRIVILEGES ON RESOURCE SYSTEM SYSTEM71 WITH ALL AS SYNTAX;

GRANT DEFINE ON SYSTEM SYSTEM71

 Q+ CREATED 1991-17-18-12.52.18.554659 BY KKS

 Q+ LAST UPDATED 1991-17-18-12.52.11.229425 BY KKS

 TO RAA

 ;

GRANT SIGNON ON SYSTEM SYSTEM71

 Q+ CREATED 1991-17-18-12.52.18.554659 BY KKS

 Q+ LAST UPDATED 1991-17-18-12.52.11.229425 BY KKS

 TO RAA

 ;

GRANT DEFINE ON SYSTEM SYSTEM71

 Q+ CREATED 1991-17-18-12.51.31.173777 BY KKS

 Q+ LAST UPDATED 1991-17-18-12.52.18.554659 BY KKS

 TO HAR

 ;

GRANT SIGNON ON SYSTEM SYSTEM71

 Q+ CREATED 1991-17-18-12.51.31.173777 BY KKS

 Q+ LAST UPDATED 1991-17-18-12.52.18.554659 BY KKS

 TO HAR

 ;

GRANT DEFINE ON SYSTEM SYSTEM71

 Q+ CREATED 1991-17-18-12.51.33.233218 BY KKS

 Q+ LAST UPDATED 1991-17-18-12.52.11.691789 BY KKS

 TO JPD

WITH GRANT OPTION

 ;

GRANT SIGNON ON SYSTEM SYSTEM71

 Q+ CREATED 1991-17-18-12.52.18.554659 BY KKS

 Q+ LAST UPDATED 1991-17-18-12.52.18.554659 BY KKS

 TO TAM

 ;

3-14 CA-IDMS Release 12.0 Features Summary

3.6 For further information

3.6 For further information

On defining and administering security and on using the security display facility,
see CA-IDMS Security Administration.

Chapter 3. Security 3-15

3-16 CA-IDMS Release 12.0 Features Summary

Chapter 4. CA-IDMS Performance Monitor

4.1 About this chapter . 4-3
4.2 General enhancements . 4-4
4.3 Real-Time monitor . 4-5

4.3.1 New screens . 4-5
4.3.2 New fields . 4-6

4.4 Application monitor . 4-7
4.4.1 New screen . 4-7

4.5 Interval monitor . 4-8
4.5.1 New screens . 4-8
4.5.2 New fields . 4-9

Chapter 4. CA-IDMS Performance Monitor 4-1

4-2 CA-IDMS Release 12.0 Features Summary

4.1 About this chapter

4.1 About this chapter

This chapter describes enhancements to the CA-IDMS Performance Monitor. The
enhancements provide:

■ New installation options

■ New data fields

 ■ New screens

Chapter 4. CA-IDMS Performance Monitor 4-3

4.2 General enhancements

 4.2 General enhancements

Dynamically turn logging on and off: With DC/UCF logging turned on (i.e., the
#PMOPT macro AMDCLOG and/or IMDCLOG options specified as YES), you can
dynamically turn on and off the writing of CA-IDMS Performance Monitor records to
the DC log using fields on the Application and Interval Monitors.

Use the PMIM Status/Options screen in the Interval Monitor and the PMAM
Status/Options screen in the Application Monitor to specify YES or NO on the Write
to DClog field to turn logging on or off.

SMF type 30 (MVS only): You can specify SMF record type 30 as a parameter in
#PMOPT, the macro that specifies run-time options.

SMFTY30=YES/NO specifies whether Type 30 SMF records (subtype 3 — step termi-
nation records) are created and written to the SMF file.

SMF type 30 is a field in the Application monitor and Interval monitor Status/Options
screens.

Run unit becomes transaction: A database run unit is now called a transaction
in all applicable fields. A transaction is a recoverable unit of work.

In fields that hold non-SQL database statistics, a database transaction is the equivalent
of one run unit.

In fields that hold SQL database statistics, a database transaction can be equivalent to
a run unit, but it may involve multiple run units managed as a single recovery unit.

4-4 CA-IDMS Release 12.0 Features Summary

4.3 Real-Time monitor

 4.3 Real-Time monitor

 4.3.1 New screens

SQL Overview screen: This screen provides summary SQL information for the
entire system since startup.

 PM-R12.1 SYSTEM72 Computer Associates Intl. V72 91.198 13:15:57.14

 CMD-─� Window :12

 Refresh:11

12 SQL Overview

_ Row Level Activity

Fetch Insert Update Delete

 12 15 6 3

 Sort Activity

 Total # Hi-Row Low-Row # Rows

511 165 11 824

 Access Module Number of SQL

 Recompiles Statements

 11 65

 Rows Current Pages Requested

 31 5

SQL Detail screen: This screen provides one line of information about each active
SQL transaction.

 PM-R12.1 SYSTEM72 Computer Associates Intl. V72 91.198 13:15:57.14

 CMD-─� Window :12

 Refresh:11

12 SQL Detail < >

Trans Rows Rows Number Hi-Row Lo-Row Rows Pages Pages Pages

 Number Updated Deleted Sorts Sorts Sorts Sorted Written Read Requested

25 8 5 48 25 15 377 5 8 11

32 15 8 3 71 25 115 11 16 22

Note: More fields are available by paging the screen to the right.

Chapter 4. CA-IDMS Performance Monitor 4-5

4.3 Real-Time monitor

 4.3.2 New fields

Screen New field Description

Transaction Detail Last Verb Shows the number (in hexadecimal rep-
resentation) of the last verb issued for a
transaction

Buffer I/O Page Size Shows the page sizes of allocated
buffers

4-6 CA-IDMS Release 12.0 Features Summary

4.4 Application monitor

 4.4 Application monitor

 4.4.1 New screen

SQL Statistics screen: This screen displays detailed SQL statistics for a specified
task.

 PM-R12.1 SYSTEM72 Computer Associates Intl. V72 91.198 13:15:57.14

 CMD- ─� Window : 14

14 SQL Statistics PMAM 137 11:35:25.5211

 Q I/O Information Q Q DB Navigation Q

 Pages Written Rows Requested 31

 Pages Read 2 Rows Current

Pages Requested Q Locking Information Q

 Q Row Level Information Q Select Locks 5

 Fetched 5 Update Locks

Inserted Q Sort Information Q

Updated # of Sorts 1

 Deleted High Row 3

 Q Access Module Information Q Low Row 3

Recompiles # of Rows Sorted 3

 Q SQL Statement Information Q

 # Processed 21

Chapter 4. CA-IDMS Performance Monitor 4-7

4.5 Interval monitor

 4.5 Interval monitor

 4.5.1 New screens

PMIM Status/Options screen: This screen displays Interval monitor options speci-
fied by the system administrator.

 PM-R12.1 SYSTEM72 Computer Associates Intl. V72 91.198 13:15:57.14

 CMD-─� Window :12

12 15:35 OPT Interval Monitor Options in Effect

#PMOPT Assembly Date/Time 911917 19:13

Q Online Options Q Q Statistics Destinations Q

 PMIM Active YES Write DC Stats YES

 Online Active YES Write to DClog YES

 Max # Intervals 111 Write to SMF NO

 Size of Interval 5 SMF Buffer Size 8181

 # of CDMSLIB Recs 11 SMF Record ID 231

 # of DBkey Recs 5

 Site Save Allowed YES

 User Save Allowed YES

SQL Information screen: This screen displays an overview of SQL activity by
interval.

 PM-R12.1 SYSTEM72 Computer Associates Intl. V72 91.198 13:15:57.14

 CMD-─� Window :12

12 15:35 SQL SQL Information

 i>

Start Rows Rows Rows Rows Total Hi-Row Lo-Row Rows

Time Fetched Inserted Updated Deleted Sorts Sorts Sorts Sorted

_ 15:35 251 151 211 75 811 211 11 953

_ 15:41 293 161 212 89 821 224 22 961

_ 15:45 288 175 231 111 835 241 36 978

_ 15:51 267 151 211 95 811 242 15 953

_ 15:55 247 168 228 113 827 222 37 968

_ 16:11 323 179 239 123 841 236 49 981

_ 16:15 264 152 226 119 827 231 33 961

_ 16:11 273 164 241 111 831 241 31 953

Note: More fields are available by paging the screen to the right. More intervals are
available by paging the screen down.

4-8 CA-IDMS Release 12.0 Features Summary

4.5 Interval monitor

Specific SQL Information screen: This screen displays SQL statistics for a spe-
cific interval.

 PM-R12.1 SYSTEM72 Computer Associates Intl. V72 91.198 13:15:57.145

 CMD-─� Window :12

12 13:55 SSQ Specific SQL Information

Row Level Information Statistic Information

 Fetched 175 Select Locks 18

 Inserted 231 Update Locks 31

 Updated 111 Pages Read 42

 Deleted 76 Pages Written 39

 Pages Requested 43

Sort Information CALC With Overflow 22

of Sorts 835 CALC No Overflow 231

High Rows 241 VIA With Overflow 31

Low Rows 36 VIA No Overflow 176

Rows Sorted 977 Rows Requested 225

Rows Current of Trans 42

Access Module Information Total # of DBMS Calls 911

Recompiles 8 # of Fragments Stored 53

SQL Statement Information

 # Processed 598

 4.5.2 New fields

Screen New field Description

Interval Information

Specific Interval
Information

Runaway Shows the number of times the system
encountered a task that exceeded the
system limits between I/O activities

Interval Information

Specific Interval
Information

Times SOS Shows the number of times the system
has run short on storage

Chapter 4. CA-IDMS Performance Monitor 4-9

4-10 CA-IDMS Release 12.0 Features Summary

Chapter 5. CA-ADS and Mapping Facility

5.1 About this chapter . 5-3
5.2 Integration with centralized security . 5-4
5.3 CUA-style user interface . 5-5
5.4 Enhanced compiler support . 5-7
5.5 Mapping enhancements . 5-9
5.6 Support for century date variables and built-in functions 5-15
5.7 Numeric test . 5-16
5.8 Trailing sign BIF support . 5-17
5.9 READY NOREADY . 5-18

Chapter 5. CA-ADS and Mapping Facility 5-1

5-2 CA-IDMS Release 12.0 Features Summary

5.1 About this chapter

5.1 About this chapter

These new CA-ADS and mapping facility features are discussed in this chapter:

■ Integration with centralized security

■ New CUA-style user interface

■ Enhanced compiler support

 ■ Mapping enhancements

■ Support for century date variables and built-in functions

 ■ Numeric test

■ Trailing sign support

■ NOREADY option for subschema areas

Chapter 5. CA-ADS and Mapping Facility 5-3

5.2 Integration with centralized security

5.2 Integration with centralized security

Access to the CA-ADS runtime system is controlled through the centralized security
facility. Entity definitions, such as dialog and record, continue to be under dictionary
control.

�� See Chapter 3, “Security” on page 3-1 for further information on the security
facility.

For further information

■ On the security facility, see CA-IDMS Security Administration

5-4 CA-IDMS Release 12.0 Features Summary

5.3 CUA-style user interface

5.3 CUA-style user interface

All CA-ADS compilers use a CUA-style (Common User Access) user interface which
features:

 ■ Pull-down menus

■ An action bar along the top of the screen

■ Consistent function key assignments, which are listed at the bottom of each screen

The benefits of this interface are consistency and clarity of screens.

All screens associated with CA-ADS and online mapping compilers use standard ter-
minology, screen layout, and standard key assignment.

The user needs to learn layout and key assignments once to use all compilers.

CUA-style Main Menu:

 Add Modify Delete Compile Display Switch

 ──

CA-ADS Online Dialog Compiler

Computer Associates International, Inc.

 Type and select. Then Enter or select an action.

Dialog name ________

Dialog version ____

Dictionary name ________

Dictionary node ________

Screen 1 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

Copyright (C) 1991 Computer Associates International, Inc.

 Command ===>

Enter F1=Help F3=Exit F11=Action

Online help: You now have context-sensitive online help available when working
with the compilers.

Example

The following is an example of obtaining help for a field:

1. The first screen is an ADSC Options and Directives screen. Assume that you
want to see the help for the Mainline dialog field. You would place the cursor in
that field and press F1.

Chapter 5. CA-ADS and Mapping Facility 5-5

5.3 CUA-style user interface

2. The second screen shows the half-screen help text overlaying the screen from
which you requested the help. The page, scroll, and return options are listed
below the help text.

Note: Help can be either half-screen or full-screen.

Placing the cursor in a field:

Options and Directives

 ──

 Type and select each option and directive. Then Enter.

Dialog : ADDEMPL

Version : 1

Message prefix DC

Autostatus record ADSO-STAT-DEF-REC

Version 1

Options and directives _ Mainline dialog
_ Symbol table is enabled

/ Diagnostic table is enabled

/ Entry point is premap

_ COBOL moves are enabled

/ Activity logging

/ Retrieval locks are kept

/ Autostatus is enabled

 ──

Enter F1=Help F3=Exit F4=PrevStep F5=NextStep

Viewing help in a half-screen format:

 | |

 | Specify MAINLINE if the dialog will be invoked from the |

 | CA-IDMS/DC prompt or by an APPC (send-receive option) request. |

 | |

 | Mainline dialogs are potentially eligible to appear on the ADS |

 | MENU screen. |

 | |

 | |

 | |

 | |

 _______ Return F3 _______________ Page F7/F8 _________ Scroll: 111 _____

Options and directives _ Mainline dialog

_ Symbol table is enabled

/ Diagnostic table is enabled

/ Entry point is premap

_ COBOL moves are enabled

/ Activity logging

/ Retrieval locks are kept

/ Autostatus is enabled

 ──

Enter F1=Help F3=Exit F4=PrevStep F5=NextStep

5-6 CA-IDMS Release 12.0 Features Summary

5.4 Enhanced compiler support

5.4 Enhanced compiler support

Copy function: A copy function, similar to that currently available for maps, is
provided for dialogs and applications. You can now create a new dialog or application
based on a previously-created dialog or application by using the copy option and
naming existing and new dialogs or applications.

This option is available on the dialog compiler and application compiler Main Menu
screens.

Copy function of the Add pull-down menu:

 Add Modify Delete Compile Display Switch

 ───

 | copy from |

 | | CA-ADS Online Dialog Compiler

 | Name ________ |

 | Version 1 | puter Associates International, Inc.

 |--------------------|

 | F3=Exit | nter or select an action.

 |____________________|

Dialog name ADDEMPL

Dialog version 1

Dictionary name ________

Dictionary node ________

Screen 1 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

 Command ===>

Enter F1=Help F3=Exit F11=Action

Browse capability: You can now browse maps, similar to current dialog and appli-
cation browsing capability. You can specify Browse from the MAPC (map compiler)
Main Menu screen.

Browse function of the Display pull-down menu:

Chapter 5. CA-ADS and Mapping Facility 5-7

5.4 Enhanced compiler support

 Add Compile Delete Display Switch

 ──

| 1 1. Browse |
| 2. Summary |

| 3. Image | p Compiler

 |----------------|

Comp | F3=Exit | rnational, Inc.

 |________________|

Map Name: ADDEMPLM Version 1 Dictionary Name TSTDICT Node ______

Screen _ 1. General Options

2. Map-Level Help Text Definition

3. Associated Records

 4. Layout

5. Field Definition

 Command ===> __

Enter F1=Help F3=Exit F11=Action

Improved compiler error management: The application programmer can exit to
edit text using full-screen presentation with search capabilities.

5-8 CA-IDMS Release 12.0 Features Summary

5.5 Mapping enhancements

 5.5 Mapping enhancements

Automatic screen painter: A screen painter is available to automatically create
screens. This means that you can create a standard screen quickly and easily.

To automatically create screens:

1. On the Main Menu screen, specify a name for the map you are creating.

2. On the Associated Records screen, specify the records to use in creating the map.

3. On the Automatic Screen Painter screen, select fields you want to appear on the
map.

4. Press PF5 to create and display the screen.

Specifying records used to create the screen:

 Associated Records Page 1 of 1

 Map name: ADDEMPLM

 Record name Ver Role name Drop

 (/)

 1 EMPLOYEE 1 _

 2 _

 3 _

 4 _

 5 _

 6 _

 7 _

 DC351211 Map options processed successfully.

F1=Help F3=Exit F4=PrevStep F5=NextStep F6=Preview F7=PrevPage

 F8=NextPage F9=Autopaint

Selecting fields to appear on the screen:

Chapter 5. CA-ADS and Mapping Facility 5-9

5.5 Mapping enhancements

Automatic Screen Painter Page 1 of 2

 Map name: ADDEMPLM

Select (/) Element Level and Name Occurs

 11 EMPLOYEE VERSION 1111

 / 12 EMP-ID

 _ 12 EMP-NAME

 / 13 EMP-FIRST-NAME

 / 13 EMP-LAST-NAME

 _ 12 EMP-ADDRESS

 / 13 EMP-STREET

 / 13 EMP-CITY

 / 13 EMP-STATE

 _ 13 EMP-ZIP

 / 14 EMP-ZIP-FIRST-FIVE

 _ 14 EMP-ZIP-LAST-FOUR

 / 12 EMP-PHONE

 / 12 STATUS

 / 12 SS-NUMBER

 DC351911 Select the fields which are to appear on the screen.

F1=Help F3=Exit F4=PrevStep F5=NextStep F7=PrevPage F8=NextPage

Displaying the new screen:

 ;EMP-ID ;____Q

 ;EMP-FIRST-NAME ;__________Q

 ;EMP-LAST-NAME ;_______________Q

 ;EMP-STREET ;____________________Q

 ;EMP-CITY ;_______________Q

 ;EMP-STATE ;__Q

 ;EMP-ZIP-FIRST-FIVE ;_____Q

 ;EMP-PHONE ;__________Q

 ;STATUS ;__Q

 ;SS-NUMBER ;_________Q

 ...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+

Enter F1=Help F2=Select F3=Exit F4=PrevStep F5=NextStep F6=Preview

F8=Bottom F9=SetCursor F11=Deselect F11=AltKeys

Function keys for editing text: You can use function keys to move, copy, or
delete fields, lines or blocks of text on the Format screen of the mapping compiler.
This makes it easier to format the map.

Sample Layout screen with alternate set of PF keys displayed:

5-10 CA-IDMS Release 12.0 Features Summary

5.5 Mapping enhancements

 ;DEPT-ID-1411 ;____Q

 ;DEPT-NAME-1411 ;___Q

 ;DEPT-HEAD-ID-1411 ;____Q

 %FUNCTION ;________Q

 ...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

F1=Help F2=Mark F3=Copy F4=Move F5=Delete F6=Preview F8=Bottom

F9=SetCursor F11=ClrMark F11=MainKeys

Help facility: A help facility is built into mapping and transparent to the user
program. The user specifies text in a data dictionary module and associates the
module with either the map or a map field. At runtime, the end user requests help by
pressing a PF key. If the cursor is currently on a field for which help has been
defined, field help will be presented. If the cursor is not on a field, or if there is no
field help defined, map help will be presented.

Note: The default PF help key for the mapping facility is PF1. If you use PF1 for
another function in any of your applications, change the default PF help key
for the mapping facility on the system generation OLM statement.

When the user exits from help, the map is restored to its previous state; all attribute
bytes are set to what they were before the user went to the help screen; all data
entered remains on the screen.

Example: This is an example of the creation and use of help:

1. First screen — You add field-level help text (in the form of a help module called
EMP-ID-HELP) to the dictionary using the IDD editor.

2. Second screen — You associate the help module EMP-ID-HELP with the map
ADDEMPLM.

3. Third screen — The field-level help as it would appear when accessed by the user.

Creating the help text:

Chapter 5. CA-ADS and Mapping Facility 5-11

5.5 Mapping enhancements

IDD 12.1 ONLINE NO ERRORS DICT=TSTDICT 1/6

ADD MOD EMP-ID-HELP LANGUAGE IS HELP MODULE SOURCE FOLLOWS

Enter the 4 character numeric employee identifier.

To browse employees by name, press F4.

MSEND.

Associating the help module with a map:

Map-Level Help Text Definition Page 1 of 1

 Map name: ADDEMPLM Version: 1

 Help name: Help key: PF11 Drop Help (/) _

 Element name EMP-ID Subscript

 In record EMPLOYEE Version

Window format 1 1. Half 2. Full

Origin of help text . . 1 1. No text

 2. Module EMP-ID-HELP____________
 Version ____

 DC366316 Select help text options

Enter F1=Help F3=Exit F4=Prev F5=Next F6=Preview

Accessing the new help text:

 EMP-ID

 EMP-FIRST-NAME

 EMP-LAST-NAME

 EMP-STREET

 EMP-CITY

 EMP-STATE

 | |

 | Enter the 4 character numeric employee identifier. |

 | |

 | To browse employees by name, press F4. |

 | |

 | |

 | |

 | |

 | |

 | |

 _______ Return F3 _______________ Page F7/F8 ________Scroll: 111 _______

5-12 CA-IDMS Release 12.0 Features Summary

5.5 Mapping enhancements

Underscore blank fields: You can specify that blank fields on a map be under-
scored using a field edit option. Note that this is a software option. On mapin,
trailing underscores are removed.

Example

The following example shows how you would select a field underscore as a read/write
option in the Field Edit screen.

Selecting the underscore option for a field:

Map Read/Write Options Page 2 of 6

 Map name: ADDEMPLM

 Element name EMP-ID Subscript

 In record EMPLOYEE Version 1

 Map Read Transmit data entry (/) /

 options Zero when null (/). /

Translate to upper case (/) _

Justify data. 1 1. Left 2. Right

Pad character format . Display _

Hexidecimal . . __

 Map Write Blank when zero (/) _

 options Underscore blank fields (/) /
Display without trailing blanks _

Set modified data tag (/) _

Transmit. . . 1 1. Data and attribute byte 3. Erase field

2. Attribute byte only 4. Nothing

 DC353411 Select input/output edit options.

F1=Help F3=Exit F4=PrevStep F5=NextStep F6=Preview F7=PrevPage

 F8=NextPage

Uppercase translation by field: You can request, on a field by field basis, that
the field be translated into uppercase.

Example: You may have a key field, such as EMPLOYEE-ID, and a non-key field,
such as EMPLOYEE-LNAME, on the same screen. Upon mapin, you want the
EMPLOYEE-ID field to be translated to uppercase (since it is a CALC key), but you
want the EMPLOYEE-LNAME field to remain mixed case.

Selecting uppercase for a field:

Chapter 5. CA-ADS and Mapping Facility 5-13

5.5 Mapping enhancements

Map Read/Write Options Page 2 of 6

 Map name: ADDEMPLM

 Element name EMP-ID Subscript

 In record EMPLOYEE Version 1

 Map Read Transmit data entry (/) /

 options Zero when null (/). /

Translate to upper case (/) /
Justify data. 1 1. Left 2. Right

Pad character format . Display _

Hexidecimal . . __

 Map Write Blank when zero (/) _

 options Underscore blank fields (/) /

Display without trailing blanks _

Set modified data tag (/) _

Transmit. . . 1 1. Data and attribute byte 3. Erase field

2. Attribute byte only 4. Nothing

 DC353411 Select input/output edit options.

F1=Help F3=Exit F4=PrevStep F5=NextStep F6=Preview F7=PrevPage

 F8=NextPage

5-14 CA-IDMS Release 12.0 Features Summary

5.6 Support for century date variables and built-in functions

5.6 Support for century date variables and built-in functions

The current DATE and JULIAN field names return the current date (in Gregorian and
Julian) without the century portion of the year. New system-supplied variables will
return the current date with the century included:

■ DATEX variable — returns an 8-byte displayable Gregorian date of the form
yyyymmdd

■ JULIANX variable — returns a 4-byte packed number/date of the form
yyyyddd+

Corresponding built-in functions allow you to replace the six-byte no-century dates
with eight-byte dates including century. In the BIF, the value 8 replaces the value 6
(where appropriate), and an X (for extended) is added to the keyword. For example:

TODAY(ft) becomes TODAYX(ft)

CGDATE(cdate-6) becomes CGDATEX(cdate-8)

WEEKDAY(date-6,ft) becomes WEEKDAYX(date-8,ft)

DATECHG(date-6,ft,ft) becomes DATECHGX(date-8,ft,ft)

Chapter 5. CA-ADS and Mapping Facility 5-15

5.7 Numeric test

 5.7 Numeric test

You can test to see if a field contains numeric data prior to moving the contents of
that field. This protects automatic data conversion.

Example

The example below shows the numeric test of an alphanumeric field prior to moving
the contents of that field to a numeric variable.

if numeric (emp-id)

move emp-id to (emp-numeric-id).

else

display msg text is 'emp-id is not numeric'.

5-16 CA-IDMS Release 12.0 Features Summary

5.8 Trailing sign BIF support

5.8 Trailing sign BIF support

Through three new built-in functions, ADS now supports trailing sign characters for
display format fields. Specifically, the BIFs allow you to:

■ Validate the format of COBOL-created fields before conversion

■ Convert fields from the COBOL format to the ADS format

■ Convert fields from the ADS format to the COBOL format

Validating COBOL fields and converting to ADS: The name you use to invoke
validation is GOODTRAILING. The name you use to invoke conversion from
COBOL to ADS is TRAILING-TO-ZONED.

 Example:

if (goodtrailing(xyz)) then

 trailing-to-zoned(xyz).

else

 call flderror.

Chapter 5. CA-ADS and Mapping Facility 5-17

5.9 READY NOREADY

 5.9 READY NOREADY

You can specify that an area of the subschema named in the dialog not be readied. As
a result, the area is flagged NOREADY in the ready area table (RAT). Previously, if
you did not explicitly ready an area of the subschema, the area would automatically be
readied in the default usage mode for the subschema.

READY NOREADY eliminates unnecessary READY AREA overhead. It allows ADS
programmers to avoid readying an area that will not be accessed by the ADS dialog.

Example: In the following example, area EMP-DEMO-REGION is readied with a
SHARED UPDATE status. Area INS-DEMO-REGION is not readied, as specified by
NOREADY.

ready emp-demo-region usage-mode update.

ready ins-demo-region usage-mode noready.

5-18 CA-IDMS Release 12.0 Features Summary

Chapter 6. CA-Culprit, CA-OLQ, and CA-ICMS

6.1 About this chapter . 6-3
6.2 Overview . 6-4
6.3 CA-Culprit . 6-5

6.3.1 Double word binary support . 6-5
6.4 For further information . 6-6
6.5 CA-OLQ . 6-7

6.5.1 Extended selection criteria . 6-7
6.6 For further information . 6-9
6.7 CA-ICMS . 6-10

Chapter 6. CA-Culprit, CA-OLQ, and CA-ICMS 6-1

6-2 CA-IDMS Release 12.0 Features Summary

6.1 About this chapter

6.1 About this chapter

This chapter describes enhancements to:

 ■ CA-Culprit

 ■ CA-OLQ

 ■ CA-ICMS

Discussion of enhancements includes new features and upward compatibility. Support
for the CA-IDMS/SQL Option is discussed in the second half of the document, which
starts at Chapter 8.

Chapter 6. CA-Culprit, CA-OLQ, and CA-ICMS 6-3

6.2 Overview

 6.2 Overview

CA-Culprit, CA-OLQ, and CA-ICMS are upward compatible with the CA-IDMS
Release 12.0 product line.

Also, these products support the CA-IDMS/SQL Option. The SQL option provides
statements to define relational databases and access both SQL-defined and non
SQL-defined databases.

The SQL option meets ANSI standards and provides full SQL functionality. The SQL
option also offers SQL extended features that provide additional options for data defi-
nition, data manipulation, and data control.

�� For more information about the CA-IDMS/SQL Option, see the second half of the
document, which starts at Chapter 8.

6-4 CA-IDMS Release 12.0 Features Summary

6.3 CA-Culprit

 6.3 CA-Culprit

6.3.1 Double word binary support

The maximum length for a binary field is now 8 bytes to support long integers or
double word binary integers.

You use the REC card to define the field length.

Example: The example below defines the DATE field as 8 characters long with a
data type of 1 which indicates a binary field. The 20 indicates the start position.

REC date 21 8 1

Chapter 6. CA-Culprit, CA-OLQ, and CA-ICMS 6-5

6.4 For further information

6.4 For further information

■ On defining double word binary fields, see CA-CULPRIT User Guide

6-6 CA-IDMS Release 12.0 Features Summary

6.5 CA-OLQ

 6.5 CA-OLQ

6.5.1 Extended selection criteria

You can define additional selection criteria for a column using a new screen: the
Selection Criteria screen.

The Selection Criteria screen works like the Selection criteria field of the Column
Select screen, enabling you to enter simple and compound expressions. In addition to
specifying simple and compound expressions on the Selection Criteria screen, you can
also define:

■ Logical record keywords

■ Criteria expressions for subscripted fields

Column select screen: The Column select screen below begins to define selection
criteria to list department heads located in certain states earning within a specified
salary range and who have a start date of 1988. Because the selection criteria is
lengthy, it does not completely fit on the Column Select screen. The Selection Criteria
screen is selected to continue specifying the criteria.

CA-OLQ Release 12.1 QQQ Column Select QQQ

 ─� Page 1 of 1

124111 Select columns, specify selection criteria and press the ENTER key

Columns currently selected: 1 Selection criteria

_ DEPARTMENT

_ 12 DEPT-ID Q

_ 12 DEPT-NAME

_ 12 DEPT-HEAD-ID

_ EMPLOYEE

_ 12 EMP-ID Q

_ 12 EMP-NAME

_ 13 EMP-FIRST-NAME Q

_ 13 EMP-LAST-NAME Q

_ 12 EMP-ADDRESS

_ 13 EMP-STREET

_ 13 EMP-CITY

_ 13 EMP-STATE Q

_ 13 EMP-ZIP

_ 12 SALARY-AMOUNT Q

Additional Selection Criteria: dept-head-id eq emp-id

and (emp-last-name matches 's' or emp-last-name matches 'c')

and (emp-state eq 'ny' or emp-state eq 'nj') and (salary-amount

Proceed to Selection Criteria Screen? Y Y/N

1=HELP 3=QUIT 4=MESSAGE 6=MENU PA2=REFRESH

Continuation of selection criteria: On the Selection Criteria screen, continue
specifying selection criteria.

Chapter 6. CA-Culprit, CA-OLQ, and CA-ICMS 6-7

6.5 CA-OLQ

CA-OLQ Release 12.1 QQQSelection CriteriaQQQ

 ─� Line 1 Of 1

146111 Type in selection criteria, and press the ENTER key.

Please Enter Additional Selection Criteria:

DEPT-HEAD-ID EQ EMP-ID AND (EMP-LAST-NAME MATCHES 'S'

OR EMP-LAST-NAME MATCHES 'C')

AND (EMP-STATE EQ 'NY' OR EMP-STATE EQ 'NJ') AND (SALARY-AMOUNT

gt 41111 and salary-amount lt 111111) and (start-year gt 88)

1=HELP 3=QUIT 4=MESSAGE 6=MENU PA2=REFRESH

6-8 CA-IDMS Release 12.0 Features Summary

6.6 For further information

6.6 For further information

■ On using the Selection Criteria screen, see CA-OLQ Reference

Chapter 6. CA-Culprit, CA-OLQ, and CA-ICMS 6-9

6.7 CA-ICMS

 6.7 CA-ICMS

In addition to providing support for the CA-IDMS/SQL Option, CA-ICMS is upwardly
compatible with Release 12.0.

��For more information on CA-ICMS and the CA-IDMS/SQL Option, see the second
half of the document, which starts at chapter 8.

6-10 CA-IDMS Release 12.0 Features Summary

 Chapter 7. CA-IDMS/DDS

7.1 About this chapter . 7-3
7.2 CA-IDMS/DDS enhancements . 7-4
7.3 For further information . 7-6

Chapter 7. CA-IDMS/DDS 7-1

7-2 CA-IDMS Release 12.0 Features Summary

7.1 About this chapter

7.1 About this chapter

This chapter summarizes the enhancements to the CA-IDMS/DDS environment for
Release 12.0 as follows:

 ■ CA-IDMS/DDS enhancements

 ■ Defining CA-IDMS/DDS

■ Accessing data using CA-IDMS/DDS

 ■ Maintaining CA-IDMS/DDS

Chapter 7. CA-IDMS/DDS 7-3

7.2 CA-IDMS/DDS enhancements

 7.2 CA-IDMS/DDS enhancements

General enhancements: With cross DC/UCF region communications an integral
part of the CA-IDMS database communications architecture, CA-IDMS/DDS is needed
primarily to allow DC/UCF systems that are located on different CPUs to communi-
cate with each other. In addition to being part of the new CA-IDMS database commu-
nications architecture, CA-IDMS/DDS has been enhanced to provide the following:

■ Integration with the CA90s Common Communications Interface (CAICCI)

■ More efficient communications

■ Establish the foundation for cross-platform communication

Integrated with CAICCI

Defining CA-IDMS/DDS: Once CA-IDMS/DDS is installed, to define remote
DC/UCF systems, (that will be accessed by a specific DC/UCF system) take these
steps:

1. Define the remote resources to be accessed using the system generation
RESOURCE TABLE and NODE statements

2. Define a CCI line using the system generation CCI LINE statement

7-4 CA-IDMS Release 12.0 Features Summary

7.2 CA-IDMS/DDS enhancements

Accessing data using CA-IDMS/DDS: A CA-IDMS program requiring access to
a database located on another CPU needs no additional or special programming logic
to access the database. The programmer does not need to know where the database is
located or how it will be accessed.

Depending upon how you configure your CA-IDMS/DDS environment, the program
need only identify the name of the database it will access. A node name, while still
supported, is not required.

The CA-IDMS communications architecture determines where and how to access the
target system.

Maintaining CA-IDMS/DDS: To modify the location of a database accessed by
CA-IDMS/DDS, modify the system generation RESOURCE TABLE statement and
regenerate the system definition. Then, use the DCMT VARY RESOURCE TABLE
statement to access the modified resource table.

Chapter 7. CA-IDMS/DDS 7-5

7.3 For further information

7.3 For further information

■ On defining and maintaining CA-IDMS/DDS, see CA-IDMS/DDS Design and
Operations

7-6 CA-IDMS Release 12.0 Features Summary

Chapter 8. Introduction to SQL-Defined Databases

8.1 What is an SQL-defined database? . 8-3
8.2 ANSI and FIPS support . 8-4
8.3 Benefits and features . 8-5
8.4 Components . 8-7
8.5 SQL as a language . 8-8
8.6 Tables, rows, columns . 8-9
8.7 Schemas and views . 8-10
8.8 Table operations . 8-12
8.9 Integrity and constraints . 8-13
8.10 Storing SQL definitions . 8-15
8.11 For further information . 8-16

Chapter 8. Introduction to SQL-Defined Databases 8-1

8-2 CA-IDMS Release 12.0 Features Summary

8.1 What is an SQL-defined database?

8.1 What is an SQL-defined database?

A CA-IDMS/DB SQL-defined database is a relational database that supports Structured
Query Language (SQL) for database definition and data manipulation.

The database is made up of tables containing rows and columns. Tables are combined
into schemas. Values in a table can be limited through constraints. A portion of a
table (or multiple tables) can be defined as a view.

An SQL-defined database is defined using logical SQL data definition language state-
ments to create tables, indexes, calc keys, schemas, referential constraints, and views.

The physical database for an SQL-defined database is defined using the same physical
database statements as a non-SQL defined database.

Chapter 8. Introduction to SQL-Defined Databases 8-3

8.2 ANSI and FIPS support

8.2 ANSI and FIPS support

CA-IDMS/DB supports both ANSI (as defined in ANSI X3.135-1989 (Rev) and
X3.168-1989) and FIPS SQL implementation. It also provides a number of extensions
to basic SQL for added functionality.

�� For more information about extensions, see Chapter 11, “SQL Extended Features”
on page 11-1.

8-4 CA-IDMS Release 12.0 Features Summary

8.3 Benefits and features

8.3 Benefits and features

An SQL-defined database gives you many advantages.

Tabular representation: Data in tabular form is easily understood and can be
accessed quickly and easily through SQL syntax.

Structural flexibility: The SQL data manipulation language isolates the user from
knowledge of the underlying database structure. Existing database structure is easy to
change through SQL statements without affecting existing application programs.

Program insulation: When applications are designed, programmers do not have to
be aware of the details underlying the physical database structure. Program coding
and database design and implementation can therefore proceed simultaneously.

Because of the inherent physical database independence of SQL, any query can be
coded through the SQL DML language with no knowledge of the physical database
storage method.

Because programs do not contain explicit data access logic, they are insulated from
database changes.

Access to SQL-defined and non-SQL defined databases: Programs can use
SQL data manipulation statements to access either an SQL-defined or an existing
non-SQL database. In addition, a single SQL data manipulation statement can access
data from both an SQL defined database and a non-SQL defined database.

In this way, investments in existing applications can be preserved while taking advan-
tage of SQL technology.

Data integrity and security: Both data integrity and security are enforced at the
DBMS level. This ensures that such rules cannot be inadvertently or deliberately vio-
lated by the application program or an interactive user. This also means that applica-
tion code does not have to be written to ensure the integrity of data values.

High performance: CA-IDMS/SQL Option uses the high-performance
CA-IDMS/DB database engine. This engine, with its physical tuning options, has
proved itself effective in supporting high-volume production applications.

Recovery: Automatic recovery capabilities are available should a program or system
terminate abnormally.

Fault tolerance: Fault-tolerance is built into the product to help insulate the system
from hardware and software errors

Dynamic database maintenance: You can modify databases while they are
online. For example, you can add columns to a table and create or drop indexes on a
table.

Chapter 8. Introduction to SQL-Defined Databases 8-5

8.3 Benefits and features

Utilities: All utilities necessary for a production-power DBMS are provided.

SQL extensions for performance: A number of CA-IDMS/DB SQL extensions
are provided:

■ Bulk data access

■ Physical tuning options

 – Hashing

 – Clustering

 – Indexes

 ■ Pseudoconversational programming

Active dictionary: The components of the dictionary are active participants in the
run-time environment.

Performance monitor: Performance can be monitored using the CA-IDMS Per-
formance Monitor.

8-6 CA-IDMS Release 12.0 Features Summary

8.4 Components

 8.4 Components

The main components of the CA-IDMS/DB SQL environment are:

■ The precompiler — Prepares application programs for execution in the
CA-IDMS/DB environment

■ The Command Facility — Supports interactive or batch submission of SQL and
utility statements to define, access, secure, and maintain the database

■ The parser — Checks for syntax errors and converts SQL statements into the
format used by the optimizer

■ The optimizer — Determines and generates the optimal access strategy for SQL
DML statements

■ The logical database engine — Coordinates the processing of SQL statements, per-
forming some of the execution itself, and passing other elements of the statement
execution to componenents such as the physical database engine, centralized secu-
rity, and the optimizer

■ The physical database engine — Performs physical data access and integrity man-
agement

■ Data dictionary manager — Retrieves and maintains table and schema definitions
in the dictionary

Chapter 8. Introduction to SQL-Defined Databases 8-7

8.5 SQL as a language

8.5 SQL as a language

SQL serves as as standard relational processing language that:

■ Can be used either for ad hoc queries and updates or in application programs

■ Eliminates the need for the user to know how the database is structured

Using SQL, you can:

■ Define a database

■ Manipulate data in the database

Data description: You use SQL data description language (DDL) statements to
create the logical definition of a database.

There are three basic SQL DDL statements:

■ CREATE — Adds a new entity to the database definition

■ ALTER — Changes an existing database entity

■ DROP — Deletes an existing database entity

Data manipulation: You use SQL data manipulation (DML) statements to manipu-
late the data in tables.

There are four basic SQL DML statements:

■ SELECT — Retrieves row(s) of data from the database into a result table

■ INSERT — Adds new rows of data to the database

■ UPDATE — Changes data in the database table

■ DELETE — Deletes a row or rows of data from the database

Data control: You use SQL-like statements to control access to data. There are two
basic statements for this purpose:

■ GRANT — Allows another user to access data

■ REVOKE — Removes access from a user

�� For information on the GRANT and REVOKE statements, see Chapter 3,
“Security” on page 3-1.

8-8 CA-IDMS Release 12.0 Features Summary

8.6 Tables, rows, columns

8.6 Tables, rows, columns

Tables: SQL-defined databases present information as a collection of tables. Each
table is defined to contain related data.

A table is made up of columns and rows.

 Columns

 ┌────────────┬────────────┐

↓ ↓ ↓

 ┌─────────────────────────────────┐

 │ EMP_ID FIRST_NAME LAST_NAME │

 │ │

 ┌� │ 1121 Jean Lane │

 │ │ │

 Rows├� │ 3594 Mary Smith │

 │ │ │

 └� │ 4492 John Marcotte │

 └─────────────────────────────────┘

Columns: A table has one or more columns. Each column:

■ Has entries containing a single type of data

■ Is displayed vertically

■ Is identified by a name

Rows: A table has zero or more rows. Each row:

■ Contains one value in each column

■ Is displayed horizontally

■ Is not named

Chapter 8. Introduction to SQL-Defined Databases 8-9

8.7 Schemas and views

8.7 Schemas and views

Schemas: A schema is a named collection of tables or views.

You create a schema to:

■ Logically group tables (often tables used for an application or a group of applica-
tions)

■ Add security to a group of tables using GRANT

Tables are associated with schemas through a qualification of the table name:

empprod.department
 ú

schema name

A default schema can be established for an SQL session to qualify table names not
explicitly qualified by a schema. You can create a schema that is a logical reference
to a non-SQL defined schema. In this situation, every record in the non-SQL defined
schema can be referenced in SQL as a table.

�� For more information on referencing non-SQL defined records as tables, see
Chapter 10, “Accessing a Database Using SQL” on page 10-1.

Views: A view is an alternate way of accessing data in a table or tables through a
different description of that table. A view can be a subset of columns and rows in one
or more tables.

Example: In this example, the view POSITION_INFO is a subset of columns from
the EMPLOYEE table.

 Employee

 ┌──────────────────────────────────┐

 │ EMP_ID JOB_ID SALARY_AMOUNT │

 │ │

 │ 1121 4666 42641 │

 │ │

 │ 3594 4561 21944 │

 │ │

 │ 4492 2153 13521 │

 └─┬──────────────────────────────┬─┘

 │ │

 │ │

 │ │

 │ Position_info │

 └───�┌────────────────────┐�--─┘

 │ EMP_ID JOB_ID │

 │ │

 │ 1121 4666 │

 │ │

 │ 3594 4561 │

 │ │

 │ 4492 2153 │

 └────────────────────┘

8-10 CA-IDMS Release 12.0 Features Summary

8.7 Schemas and views

A view is represented internally by a stored statement, not stored data.

You use a view to:

■ Limit the data that can be seen or updated when accessing a table using the view

■ Predefine a complex select statement

■ Assign alternate names for base tables

Chapter 8. Introduction to SQL-Defined Databases 8-11

8.8 Table operations

 8.8 Table operations

The three types of operations used most often in SQL involve accessing specified
rows, particular columns, and more than one table.

SELECT: You can use the WHERE clause of the SELECT statement to limit access
to specified rows of a table or tables. This is called a select operation.

 Example

select Q

from prod.employee

where emp_id = 4437;

PROJECT: You can identify a subset of columns to be retrieved.

This type of operation is called a project operation.

 Example

select emp_id, emp_lname

from prod.employee;

JOIN: You can retrieve data from more than one table at the same time, typically by
specifying criteria (in the WHERE clause) for matching rows from the different tables.

This type of operation is called a join operation.

 Example

select emp_lname, emp_fname, department.dept_id, dept_name

from employee, department

where department.dept_id = employee.dept_id;

In addition to these basic operations, you may also append one table to another (the
union operation).

You use one or more of these basic operations to retrieve data from the database.

8-12 CA-IDMS Release 12.0 Features Summary

8.9 Integrity and constraints

8.9 Integrity and constraints

Data integrity is enforced at the database level rather than programmatically.

Uniqueness: Uniqueness is enforced through the use of CALC keys and/or indexes
defined with the unique option. Duplicate rows cannot be entered if either of these
has been defined on a column or group of columns within a table.

Domain constraints: The data value of a column can be limited through the use
of:

■ Null option — You can specify that nulls are allowed or not allowed for a
column.

■ Data type — You must specify a data type for each column. All data entered
into that column must conform to that data type.

■ Check constraint — In a check constraint, you can further limit the actual values
for a column by specifying boolean expressions which must be satisfied by a row
before an update or insert operation can occur.

Primary keys: To ensure that duplicate rows of data are not stored, a column or
combination of columns is identified as the primary key of the table when the table is
defined. Consequently, each entry in the primary key column or columns must be
unique; there can be no duplicates. As a result, the primary key uniquely identifies
each row in the table.

Example: In this example, the primary key is EMP_ID.

 Primary key

 │

 ↓

 ┌─────────────────────────────────┐

 │ EMP_ID FIRST_NAME LAST_NAME │

 │ │

 │ 1121 Jean Lane │

 │ │

 │ 3594 Mary Smith │

 │ │

 │ 4492 John Marcotte │

 └─────────────────────────────────┘

When you request data from a table and specify a value for the primary key, you see
only one row returned.

Referential integrity: Referential integrity is enforced through referential con-
straints. A referential constraint limits the data in a column of a table (the referencing
table) to that data found in a similar column in another table (the referenced table).

A referential constraint restricts the data in the referenced table, so that the data in the
referenced table cannot be erased as long as there remains matching data in the refer-
encing table. Also, the referenced column values of a row in the referenced table
cannot be changed when rows exist that match rows in the referencing table.

Chapter 8. Introduction to SQL-Defined Databases 8-13

8.9 Integrity and constraints

Referencing columns are called foreign keys.

Example: In this example, values inserted into the DEPT_ID column in the
EMPLOYEE table must match existing values in the DEPT_ID column in the
DEPARTMENT table. Rows in the DEPARTMENT table cannot be deleted from the
database so long as there is a matching value in the EMPLOYEE table. Thus, a
department cannot be deleted so long as there remains an employee belonging to that
department. Also, the DEPT_ID column of the DEPARTMENT row cannot be
changed as long as there is an employee belonging to that department.

 Department

 ┌─────────────────────┐

│ DEPT_ID DEPT_NAME │

 │ │

 │ 5211 Marketing │

 │ │

 ┌──────→ 4611 Maintenance│

 │ │ │

│ ┌────→ 5111 Billing │

 │ │ └─────────────────────┘

 Employee │ │

┌──┐ │ │

│ EMP_ID LAST_NAME FIRST_NAME DEPT_ID │ │ │

│ │ │ │

│ 1121 Lane Jean 4611 ├┐ │ │

│ │├─┘ │

│ 3594 Smith Mary 4611 ├┘ │

│ │ │

│ 4492 Marcotte John 5111 ├────┘

└──┘

8-14 CA-IDMS Release 12.0 Features Summary

8.10 Storing SQL definitions

8.10 Storing SQL definitions

SQL definitions are stored in new dictionary areas as shown below:

Name of area This area holds

DDLCAT SQL entities including:

 ■ Schemas

 ■ Tables

 ■ Views

DDLCATX Indexes associated with DDLCAT items

DDLCATLOD Access modules for SQL applications

Chapter 8. Introduction to SQL-Defined Databases 8-15

8.11 For further information

8.11 For further information

■ On SQL as a language, see CA-IDMS SQL Reference and CA-IDMS SQL
Programming

■ On database definition, see CA-IDMS Database Administration

8-16 CA-IDMS Release 12.0 Features Summary

Chapter 9. Defining a Database Using SQL

9.1 SQL data definition language . 9-3
9.2 The definition process . 9-4
9.3 For further information . 9-7

Chapter 9. Defining a Database Using SQL 9-1

9-2 CA-IDMS Release 12.0 Features Summary

9.1 SQL data definition language

9.1 SQL data definition language

To define a database with SQL, you use the following basic operations:

 ■ CREATE

 ■ ALTER

 ■ DROP

You use CREATE, ALTER, and DROP to define or modify:

 ■ Schemas

 ■ Tables

 ■ CALC keys

 ■ Indexes

 ■ Referential constraints

 ■ Views

�� The process of creating the physical database definition is similar to the process
used when creating a non-SQL defined database. For more information, see
Chapter 1, “Database” on page 1-1.

Chapter 9. Defining a Database Using SQL 9-3

9.2 The definition process

9.2 The definition process

To create an SQL-defined database once the database design is complete, follow these
steps:

1. Create a schema — A schema contains tables that are related to one another
through common application usage.

2. Create tables — Create the tables that are a part of the database. For each table,
define the columns in that table and include:

 ■ Data type

■ Null attribute, if any

■ Check constraint, if any

3. Define indexes and CALC keys — You create indexes and CALC keys based on
the database design. Some indexes and CALC keys are required for implementa-
tion of referential constraints while others are necessary for efficient database
access.

4. Define referential constraints — You create referential constraints based on the
database design. A referential constraint can be linked or unlinked. Referential
constraints reflect the logical relationships that exist between database tables.

�� For more information on linked and unlinked referential constraints, see
Chapter 13, “Administration of an SQL-Defined Database” on page 13-1.

5. Define views — You create views based on the application's needs.

Creating a schema: When you create a schema:

■ You assign a name to the schema.

■ The schema is added to the dictionary.

Example: This is an example of a schema definition.

create schema prod;

Creating a table: When you create a table:

■ You assign a name to the table.

■ You assign names to the columns in the table.

■ You specify the kind of data each column can contain.

Categories of valid data types are:

– Approximate and exact numeric

 – Binary

 – Character string

9-4 CA-IDMS Release 12.0 Features Summary

9.2 The definition process

 – Datetime

– Graphics character string

■ You specify whether a value is required in each column (null attribute).

■ You optionally specify a list or range of acceptable values for a column (check
constraint).

■ You specify whether a default value should be used for a column.

■ You options specify CA-IDMS Presspack compression for the table.

■ You assign a location for the table rows (area name).

The table and column definitions are stored in the dictionary.

Example: This example shows the definition of a table. There are five columns and
a check constraint that restricts the values in the CODE and AUTHOR_ID columns.

create table prod.document

 (title char(51) not null,

 author_id integer(6) not null,

 publisher char(41) not null,

 code numeric(5) not null,

 description varchar(51) ,

check (code > 11111 and code < 55555) and

(author_id <= 999999))

in area prodseg.docarea;

Creating a CALC key: When you create a CALC key, you:

■ Specify the table on which the CALC key is defined

■ Specify the column or columns which make up the CALC key

■ Indicate if the key value must be unique for all rows in the table

Example: This is an example of creating a unique CALC key for the DOCUMENT
table. The CALC key is the CODE column.

create unique calc key on prod.document (code);

Creating an index: When you create an index, you:

■ Assign a name to the index

■ Specify the table on which the index is defined

■ Specify the columns which make up the index key

■ Specify if the index value must be unique for all rows in the table

■ Specify if the table rows are to be physically stored in index sequence

■ Specify physical tuning options such as key compression, location (area name of
the index structure), etc.

Example: This is an example of creating an index on the PUBLISHER column in the
DOCUMENT table.

Chapter 9. Defining a Database Using SQL 9-5

9.2 The definition process

create index doc_pub on prod.document (publisher);

Creating a referential constraint: When you create a referential constraint, you:

■ Assign a name to the constraint

■ Specify the referenced and referencing tables

■ Specify the columns within each table which must be verified for data integrity

■ Specify physical tuning options such as clustered, indexed, linked, etc.

Example: This is an example of a referential constraint definition. When a new
document is inserted into the DOCUMENT table, the author's ID that was entered will
be checked to see that it is a valid ID in the AUTHOR table.

create constraint author_doc

 prod.document (author_id)

references prod.author (author_id);

Creating a view: When you create a view, you:

■ Assign a name to the view

■ Optionally assign names to columns in the view

■ Identify the column(s) and table(s) to be accessed using a SELECT statement

Example: This is an example of creating a view. The view is made up of two
columns from the DOCUMENT table.

create view prod.doc_view (title, doc_description)

as select title, description

 from prod.document;

9-6 CA-IDMS Release 12.0 Features Summary

9.3 For further information

9.3 For further information

■ On database definition, see CA-IDMS Database Administration

■ On SQL syntax and data types, see CA-IDMS SQL Reference

Chapter 9. Defining a Database Using SQL 9-7

9-8 CA-IDMS Release 12.0 Features Summary

Chapter 10. Accessing a Database Using SQL

10.1 Data manipulation with SQL . 10-3
10.2 Interactive and embedded SQL . 10-4

10.2.1 Interactive SQL . 10-4
10.2.2 Embedded SQL . 10-4
10.2.3 Dynamic SQL . 10-6

10.3 CA-IDMS tools support for SQL . 10-7
10.3.1 CA-ADS support . 10-7
10.3.2 CA-OLQ support . 10-7
10.3.3 CA-ICMS support . 10-8
10.3.4 CA-Culprit support . 10-8

10.4 SQL access to a non-SQL defined database 10-9
10.4.1 How to do it . 10-9
10.4.2 Database requirements . 10-10

10.5 For further information . 10-11

Chapter 10. Accessing a Database Using SQL 10-1

10-2 CA-IDMS Release 12.0 Features Summary

10.1 Data manipulation with SQL

10.1 Data manipulation with SQL

Structured Query Language (SQL) is a standardized non-procedural language used to
retrieve and update information in a database.

CA-IDMS/DB processes interactive SQL statements submitted through the Command
Facility and embedded SQL in a host language program that has been precompiled and
optimized.

Chapter 10. Accessing a Database Using SQL 10-3

10.2 Interactive and embedded SQL

10.2 Interactive and embedded SQL

You can issue SQL statements either interactively or from within an application
program. Data accessed through SQL statements is returned in the form of a result
table. A result table is a subset of the rows and columns in one or more tables or
views.

 10.2.1 Interactive SQL

When you use interactive SQL to enter a request, you get immediate results. This is
the typical way of entering ad hoc statements.

Interactive SQL can be executed either online or in batch, using the Command Facility
or CA-OLQ.

Example: In this example, the SQL statement returns the last name and first name of
all employees residing in Boise.

select emp_lname, emp_fname

 from prod.employee

where city = 'Boise';

 10.2.2 Embedded SQL

You can embed SQL statements in host application programs. With embedded SQL,
the program receives the result of the request and typically displays or prints it.

Any SQL statement can be embedded in a program.

Embedding SQL in the program does not affect any rules that apply to using the host
language.

Within the program, you can embed SQL statements to:

■ Access the database

■ Access the dictionary

■ Define the structures needed to transfer data between the program and the DBMS

■ Manage SQL sessions and transactions

Example: In this example, the embedded SQL statement returns to the program the
last name and first name of an employee requested by the program.

EXEC SQL

SELECT EMP_LNAME, EMP_FNAME

INTO :EMP-LNAME, :EMP-FNAME

 FROM DEMOEMPL.EMPLOYEE

WHERE EMP_ID = :EMP-ID

END-EXEC.

10-4 CA-IDMS Release 12.0 Features Summary

10.2 Interactive and embedded SQL

The DML to be executed is the same across languages; the begin and end indicators
(EXEC SQL and END-EXEC) may vary by language.

Cursors: Usually, application programs need to access multiple rows from one or
more tables. To do this, the program must use a construct called a cursor. The
cursor defines the result table and the program retrieves the rows of the result table
one at a time with a FETCH statement.

If the cursor definition meets certain requirements, the program can update or delete
the current row of data.

As shown below, the cursor is first declared. Then it is opened and positioned.
Repeated fetches return data to the program. When the program no longer needs the
cursor, it is closed.

 ┌──────────────┐

 │ Declare │

 │ cursor │

 └──────┬───────┘

 │

 │

 ┌──────↓───────┐

 │ Open │

 │ cursor │

 └──────┬───────┘

 ←---------─┐

 │ │

 ┌──────↓───────┐ │

 │ Fetch ├──┘

 │ cursor │

 └──────┬───────┘

 │

 │

 ┌──────↓───────┐

 │ Close │

 │ cursor │

 └──────────────┘

Creating executable modules: Since the host language program contains an
embedded sublanguage, you precompile the program to separate the SQL from host
language source. You then create an access module that contains an optimized data
access strategy for the precompiled SQL statements.

As shown below, the precompiler replaces embedded SQL statements with an internal
form and stores them in a module called an RCM. It replaces embedded SQL in the
source module with host language calls to the DBMS. These calls, unlike the SQL
statements they replace, are intelligible to the host language compiler.

After the program precompiles successfully, you compile and link the modified source
program to create an executable program load module.

The access module is used at runtime to direct the processing of an SQL request. You
create the access module from one or more RCMs.

Chapter 10. Accessing a Database Using SQL 10-5

10.2 Interactive and embedded SQL

┌───────────┐ ┌────────────┐ ┌──────────┐ ┌───────────────┐

│Application├──→ Precompiler├────→ Parser ├─────→ ┌─────────────┴──┐

│program │ └─────┬──────┘ └──────────┘ │ │ RCMs │

└───────────┘ │ └─┤ │

 │ └──────┬─────────┘

 │ │

 │ ┌────────────────────────┼───┐

 │ │ Optimizer │ │

 │ └────────────────────────┼───┘

 │ │

 ┌──────────↓──────────┐ ┌────────↓────────┐

│Program source module│ │ Access module │

 └─────────────────────┘ └─────────────────┘

You can change the schema name qualifiers of tables when you create an access
module. For example, if a program contains references to tables in schema HR, all
references to HR can be replaced by HRTEST in one access module and HRPROD in
another access module. This capability allows you to use the same program source
and corresponding RCM to access different sets of tables.

 10.2.3 Dynamic SQL

Dynamic SQL refers to an SQL statement that is not known to the program at precom-
pile time and therefore is compiled dynamically when the program executes.

CA-IDMS/DB provides dynamic SQL to allow the program to formulate, compile, and
execute an SQL statement at runtime.

10-6 CA-IDMS Release 12.0 Features Summary

10.3 CA-IDMS tools support for SQL

10.3 CA-IDMS tools support for SQL

Under Release 12.0, these CA-IDMS tools allow you to access your data with SQL:

 ■ CA-ADS

 ■ CA-OLQ

 ■ CA-ICMS

 ■ CA-Culprit

 10.3.1 CA-ADS support

What you can do: Under release 12.0, you can embed SQL statements in CA-ADS
dialogs. All CA-IDMS/DB SQL statements are valid in premap and response process
modules except INCLUDE TABLE. You implicitly include a table by specifying the
table on the Work Record screen.

Declaration module: A declaration is a new type of CA-ADS module that can
issue DECLARE CURSOR statements and WHENEVER directives whose scope is the
entire dialog. A declaration module is not an executable module.

Example: The following is an example of an SQL DML request embedded in a
CA-ADS dialog.

EXEC SQL

SELECT EMP_ID, EMP_LNAME, EMP_FNAME

INTO :EMPID, :LNAME, :FNAME

 FROM DEMOEMPL.EMPLOYEE

WHERE EMP_ID = :EMP-ID;

END-EXEC.

 10.3.2 CA-OLQ support

What you can do: Under Release 12.0, CA-OLQ provides Command Mode and
Menu Mode support for CA-IDMS/DB SQL. To use SQL access, you simply flip the
access switch from OLQ to IDMS. In Menu Mode, a new Selection Criteria screen,
accessible from the Column Select screen, provides additional space to view, add, or
modify selection criteria.

Converting ASF tables: You can use CA-OLQ to convert existing ASF tables to
SQL-defined tables. The steps are:

1. Set the access switch to OLQ

2. Create and save a report containing the ASF-table data

3. Set the access switch to IDMS

4. Specify the dictionary connection and the schema

5. Issue a SEND TABLE CREATE command

Chapter 10. Accessing a Database Using SQL 10-7

10.3 CA-IDMS tools support for SQL

 10.3.3 CA-ICMS support

What you can do: Under Release 12.0, you can access CA-IDMS/DB with SQL
from CA-INFOGATE and CA-GOLDENGATE. A new CORP-owned folder named
_SQL contains lower level folders representing schemas in the current CA-IDMS/DB
database. Tables in each schema are recognized as DATA-TABLE objects.

How it works: Commands to access tables are automatically translated for
CA-IDMS/DB processing. Some SQL data types are translated in the
upload/download process. Null value is displayed as blank or zero, depending on the
data type.

 10.3.4 CA-Culprit support

What you can do: Under Release 12.0, you can use SQL in Culprit processing to
access CA-IDMS/DB data. New subparameters provide the means to do this:

 ■ IN card

– DB(Q) SQL = SQL compliance specification

– DICTIONARY = Dictionary containing table definitions

 ■ OUT card

– SCHEMA = Schema-name qualifier of the table

– DICTIONARY = Dictionary containing table definitions

– TYPE = Type of update (CREATE/ADD/REPLACE/DELETE)

– SQLTABLE = Target table for update

Features: Features of CA-Culprit SQL support include:

■ Automatic REC card generation

■ Null indicator support

■ Details-only or Totals-only specification

10-8 CA-IDMS Release 12.0 Features Summary

10.4 SQL access to a non-SQL defined database

10.4 SQL access to a non-SQL defined database

You can use SQL to access a non-SQL defined database. This means that you do not
have to redefine your existing databases in order to access them using SQL.

10.4.1 How to do it

To access an existing database using SQL statements, you create an SQL-defined
schema referencing the non-SQL defined schema.

You do not have to create tables, indexes, referential constraints, or any other SQL
component. The DBMS uses the name of the SQL-defined schema as a window to the
non-SQL defined schema definitions.

Example: In this example, the SQL-defined schema being created references the
non-SQL defined schema EMPSCHM.

create schema emp

for nonsql schema empschm;

Joining records: In a non-SQL defined database, records typically participate in a
set relationship, eliminating the need for embedded foreign keys. When issuing a
joing of such records in an SQL statement, you specify set name.

 Example

select emp_id, dept_id

from employee, department

 where "DEPT-EMPLOYEE";

Primary and foreign keys: Schema set syntax has been expanded to support the
definition of primary and foreign key sets. A PRIMARY KEY option has been added
to the OWNER clause and a FOREIGN KEY option has been added to the MEMBER
clause of the SET statement.

Both SQL and DML: A single application program or CA-ADS dialog can use both
embedded SQL and navigational DML. Such concurrent access is coordinated by
using task level COMMIT, FINISH, and ROLLBACK statements.

Joining records and tables: You can join data in your existing non-SQL defined
databases with data in SQL-defined databases.

Example: In this example, sales represents a non-SQL schema and hr is the schema-
name qualifier of an SQL-defined table:

Chapter 10. Accessing a Database Using SQL 10-9

10.4 SQL access to a non-SQL defined database

select

emp_id_1415 as "Employee ID",

emp_last_name_1415 as "Last Name",

office_code_1451 as "Office",

vac_accrued-vac_taken as "Hours Remaining"

 from sales.office,sales.employee,hr.benefits

 where "OFFICE-EMPLOYEE"

 and emp_id_1415=emp_id

order by 3, 2;

 10.4.2 Database requirements

Restrictions: Using SQL against a non-SQL schema record requires that the rules
of SQL be satisfied. Because of these rules, there are some restrictions in the fol-
lowing areas:

■ Data structures used within the record

 ■ Data types

 ■ Element/column names

Data structures: The non-SQL defined database must meet the following SQL
requirements:

■ You can access only the lowest level element of a group structure.

■ You can access only the primary definition of an element, not a redefinition.

■ You cannot access variably-occurring data; elements having a fixed number of
occurrences are suffixed with the occurrence count.

Data types: The data types supported for SQL access are:

■ Signed and unsigned zoned decimal

■ Signed and unsigned packed decimal

■ Fullword, halfword, and double-word binary

 ■ Character

■ Long and short floating point

 ■ Graphics

Other data formats, such as bit and external floating point, may be accessed through
SQL. The format will be translated into an SQL-compatible format.

Names: Element names are translated automatically to valid SQL synonyms for use
in an SQL statement. For example, hyphens are converted to underscores. Alterna-
tively, you can explicitly define SQL synonyms for these elements in the dictionary.

Dictionary support for SQL synonyms: You can create an SQL record synonym
for access to non-SQL defined databases. This synonym is created by associating a
LANGUAGE IS SQL with the target record synonym. A given record can have only
one record synonym with a language of SQL.

10-10 CA-IDMS Release 12.0 Features Summary

10.5 For further information

10.5 For further information

■ On basic SQL, see SQL Self-Training Guide

■ On SQL syntax, see CA-IDMS SQL Reference

■ On embedding SQL in CA-ADS, COBOL, and PL/I programs, see CA-IDMS SQL
Programming

Chapter 10. Accessing a Database Using SQL 10-11

10-12 CA-IDMS Release 12.0 Features Summary

Chapter 11. SQL Extended Features

11.1 What are SQL extended features? . 11-3
11.2 Database definition extensions . 11-4

11.2.1 Data types . 11-4
11.2.2 32-character column names . 11-4
11.2.3 Database tuning extensions . 11-4

11.3 Data access and manipulation extensions 11-5
11.3.1 Bulk access to tables . 11-5
11.3.2 Scalar functions . 11-5
11.3.3 Special registers . 11-7
11.3.4 Date/time arithmetic . 11-7
11.3.5 Temporary tables . 11-8
11.3.6 Modular programming . 11-8
11.3.7 Dynamic SQL . 11-8
11.3.8 Access to non-SQL defined databases 11-8

11.4 Precompiler directive extensions . 11-9
11.5 Session management extensions . 11-10

11.5.1 Specifying a dictionary . 11-10
11.5.2 Pseudoconversational support . 11-10
11.5.3 Establishing session characteristics 11-11

11.6 Transaction management extensions . 11-12
11.6.1 CONTINUE/RELEASE parameters on the COMMIT WORK

statement . 11-12
11.6.2 Dynamic selection of access module 11-12
11.6.3 Overriding access module defaults 11-13

Chapter 11. SQL Extended Features 11-1

11-2 CA-IDMS Release 12.0 Features Summary

11.1 What are SQL extended features?

11.1 What are SQL extended features?

SQL extended features provide enhanced functionality to ANSI-standard SQL.
CA-IDMS/DB provides these features to support production-oriented, high-
performance environments.

The discussion in this chapter covers the major extensions provided by CA-IDMS.

Chapter 11. SQL Extended Features 11-3

11.2 Database definition extensions

11.2 Database definition extensions

CA-IDMS/DB supports these database definition extensions:

■ Additional data types

■ 32-character column names

■ Database tuning options

 11.2.1 Data types

CA-IDMS/DB supports the data types shown in the following table. An asterisk indi-
cates a data type that is a CA-IDMS extension.

Category Data types

Approximate numeric
DOUBLE PRECISION

FLOAT

REAL

Binary BINARY (*)

Character string
CHARACTER

VARCHAR (Q)

Datetime
DATE (Q)

TIME (Q)

TIMESTAMP (Q)

Exact numeric
DECIMAL

UNSIGNED DECIMAL (Q)

INTEGER

LONGINT (Q)

NUMERIC

UNSIGNED NUMERIC (Q)

SMALLINT

Graphics character string
GRAPHIC (Q)

VARGRAPHIC (Q)

11.2.2 32-character column names

Column names can be up to 32 characters long.

11.2.3 Database tuning extensions

CA-IDMS/DB provides a number of database tuning options as an extension to SQL:

 ■ CALC keys

 ■ Indexes

■ Data clustering around a referenced occurrence

 ■ Linked constraints

■ Table occurrences stored in index key sequence

■ Updating statistics using the UPDATE STATISTICS statement

�� SQL tuning options are discussed in Chapter 13, “Administration of an
SQL-Defined Database” on page 13-1

11-4 CA-IDMS Release 12.0 Features Summary

11.3 Data access and manipulation extensions

11.3 Data access and manipulation extensions

CA-IDMS/DB supports these extensions for data access and manipulation:

 ■ Bulk processing

 ■ Scalar functions

 ■ Special registers

 ■ Date/time arithmetic

 ■ Temporary tables

 ■ Global cursors

 ■ Dynamic SQL

■ Using SQL to access a non-SQL defined database

11.3.1 Bulk access to tables

You can access tables in bulk from within an application program.

You can identify a host variable defined as an array (table). CA-IDMS/DB will then
assign the values in the result table to this array.

This extension allows your program to process many rows with a single FETCH,
SELECT, or INSERT statement.

Example: The following SELECT statement returns information on the cost of insur-
ance plans in Iowa into an array identified by the host variable
:STATE-INFO-ARRAY:

EXEC SQL

SELECT STATE_CODE, NAME, CAPITOL_CITY

 BULK :STATE-INFO-ARRAY

 FROM CORP.STATE

END-EXEC.

 11.3.2 Scalar functions

A scalar function is a function whose argument includes at least one value expression
on which the function operates. The result of a scalar function is a single value. This
value is derived from the expression or expressions named in the argument.

The following scalar functions are supported by CA-IDMS/DB:

Name Function

CAST Forces conversion of a value to a specified data
type

Chapter 11. SQL Extended Features 11-5

11.3 Data access and manipulation extensions

Example: The following example uses the SUBSTR scalar function to extract the
first five characters of the zip code for a listing of zip codes in the EMPLOYEE table:

select distinct substr(zip_code,1,5) as Zips

from employee;

Name Function

CHAR Returns a character string representation of a
date/time value

DATE Returns the date from a value

DAY Returns the day part of a date

DAYS Returns an integer representation of a date

DECIMAL Returns a decimal representation of a value

DIGITS Returns a character string representation of a
value

FLOAT Returns a floating-point representation of a value

HEX Returns a hexadecimal representation of a value

HOUR Returns the hour part of a time

INTEGER Returns an integer representation of a value

LENGTH Returns the length of a value

MICROSECOND Returns the microsecond part of a time

MINUTE Returns the minute part of a time

MONTH Returns the month part of a date

PROFILE Returns the value of a specified attribute of the
user session

SECOND Returns the second part of a time

SUBSTR Returns a substring of a value

TIME Returns the time from a value

TIMESTAMP Returns a timestamp from a value or pair of
values

YEAR Return the year part of a date

11-6 CA-IDMS Release 12.0 Features Summary

11.3 Data access and manipulation extensions

 11.3.3 Special registers

Special registers are system-supplied values that can be referenced with keywords.
The value associated with a special register is determined at runtime.

These special registers are supported by CA-IDMS/DB SQL:

Example: In this example, an ad hoc query lists scheduled projects expected to begin
sometime after the query is issued.

select

 proj_id,

 est_start_date,

 proj_desc

 from demoproj.project

where est_start_date > current date

order by 2;

Keyword Value at runtime

USER Identifier of user executing the SQL session

GROUP Default group associated with the executing user

CURRENT DATE Current date when the SQL statement is executed

CURRENT TIME Current time when the SQL statement is executed

CURRENT TIMESTAMP Current date and time when the SQL statement is exe-
cuted

CURRENT TIMEZONE Difference between current time and GMT

CURRENT DATABASE Dictionary to which the SQL session is connected

CURRENT SCHEMA and
CURRENT SQLID

Schema qualifier for the current SQL session

 11.3.4 Date/time arithmetic

You can perform date and time arithmetic.

Example: The example below calculates the age at which an employee was hired.

select emp_id, emp_lname, start_date - birth_date as "Age When Hired"

 from demoempl.employee

where dept_id = 2111;

Chapter 11. SQL Extended Features 11-7

11.3 Data access and manipulation extensions

 11.3.5 Temporary tables

You can create a temporary table for use within a transaction. The data in a tempo-
rary table can be accessed and manipulated in the same way as with a permanent table.

Example: The example below creates a temporary table, TEMP_EMP, to hold part of
the EMPLOYEE table for the life of the transaction.

create temporary table temp_emp

 (empid unsigned numeric(4,1) not null,

 empfname char(21) not null,

 emplname char(21) not null,

 street char(41) ,

 city char(21) not null,

 state char(12) not null,

 zipcode char(19) not null,

 phone char(11));

 11.3.6 Modular programming

External and global cursors: Under CA-IDMS/DB, a program can use a cursor
defined in another program. CA-IDMS/DB supports DECLARE EXTERNAL
CURSOR which identifies an externally defined global cursor to be used by the appli-
cation program.

Example: The following statement identifies ALL_EMP_CURSOR as a cursor
declared in another application program module, but which can be accessed from this
program.

EXEC SQL

DECLARE ALL_EMP_CURSOR EXTERNAL CURSOR

END-EXEC.

 11.3.7 Dynamic SQL

Dynamic SQL refers to an SQL statement that is not known to the program at precom-
pile time and therefore is compiled dynamically when the program executes.

CA-IDMS/DB provides dynamic SQL to allow the program to formulate, compile, and
execute an SQL statement at runtime.

11.3.8 Access to non-SQL defined databases

Using CA-IDMS/DB, you can access a non-SQL defined database using SQL state-
ments.

�� See Chapter 9, “Defining a Database Using SQL” on page 9-1 and Chapter 10,
“Accessing a Database Using SQL” on page 10-1 for further information on accessing
a non-SQL database.

11-8 CA-IDMS Release 12.0 Features Summary

11.4 Precompiler directive extensions

11.4 Precompiler directive extensions

INCLUDE: CA-IDMS/DB supports the use of INCLUDE as a precompiler directive.
INCLUDE directs the precompiler to create host variable definitions for a specified
table in the application program.

Example: The statement below directs the precompiler to define host variables corre-
sponding to the named columns in the INSURANCE_PLAN table. The host variables
will be defined as a 10-row array named INS-COST-BUFFER. The name of each
element in the array will begin with INS-. Each element will have a level number of
02.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

EXEC SQL

INCLUDE TABLE INSURANCE_PLAN

 AS INS-COST-BUFFER

(PLAN_CODE, COMP_NAME, MAX_LIFE_COST, FAMILY_COST, DEP_COST)

AS (PLANCODE, COMPNAME, MAXLIFE, FAMCOST, DEPCOST)

NUMBER OF ROWS 11

 PREFIX 'INS-'

 LEVEL 12

END-EXEC.

EXEC SQL END DECLARE SECTION END-EXEC.

Chapter 11. SQL Extended Features 11-9

11.5 Session management extensions

11.5 Session management extensions

All session management statements are extensions to the ANSI standard. These
include:

■ CONNECT — Establishes a connection to a specified dictionary

■ RELEASE — Releases a connection and ends the SQL session

■ SUSPEND SESSION — Suspends an SQL session and any transaction currently
active within the session

■ RESUME SESSION — Resumes a suspended SQL session

■ SET SESSION — Establishes SQL session characteristics

11.5.1 Specifying a dictionary

You can explicitly specify the dictionary that contains the definitions of the data the
program accesses, thus overriding the default value associated with your user session.
You use the CONNECT statement to establish this connection.

Example: The following statement establishes a connection to the database name
contained in the host variable :DB-NAME.

EXEC SQL

CONNECT TO :DICT-NAME

END-EXEC

 11.5.2 Pseudoconversational support

Pseudoconversational programming is an online programming technique that frees
resources while the system waits for a response from the online user.

To facilitate pseudoconversational programming in an SQL application, CA-IDMS/DB
supports:

■ SUSPEND SESSION — Directs the DBMS to release all resources associated
with the SQL session except those needed to resume the current session and trans-
action (such as cursor position)

■ RESUME SESSION — Reestablishes the active SQL session and database trans-
action. All characteristics and cursor positions of the session and transaction are
restored to what they were when the program issued the SUSPEND SESSION
statement.

11-10 CA-IDMS Release 12.0 Features Summary

11.5 Session management extensions

11.5.3 Establishing session characteristics

You can establish the following session characteristics using a SET SESSION
statement:

■ Default schema — the schema to be used for unqualified table names

■ Standards enforcement — the SQL syntax standard to which your SQL statements
must conform

These session characteristics apply only to SQL submitted either interactively through
the Command Facility or for dynamic compilation during the execution of an applica-
tion program. The SET SESSION statement does not cause impact precompiled SQL
statements; however, similar options exist as precompiler directives.

Example: The following statement directs CA-IDMS/DB to use the SALES schema
as the default schema for the remainder of the SQL session.

set session current schema sales;

Chapter 11. SQL Extended Features 11-11

11.6 Transaction management extensions

11.6 Transaction management extensions

Transaction management statements are extensions to the ANSI standard. They
include:

■ COMMIT CONTINUE — Specifies that the SQL transaction continues upon
committing the data

■ COMMIT RELEASE — Specifies that the SQL transaction ends upon commit-
ting the data, and the SQL session is terminated

■ SET ACCESS MODULE — Overrides the access module specification made at
precompile time

■ SET TRANSACTION — Overrides the access module default for isolation level
or transaction state

11.6.1 CONTINUE/RELEASE parameters on the COMMIT WORK
statement

CONTINUE directs CA-IDMS/DB not to end the current transaction after committing
the changes to the database. CA-IDMS/DB keeps all share locks and cursors open,
retains all temporary tables, and downgrades or releases all update locks. It also
commits to the database all changes made either since the last COMMIT CONTINUE
statement or since the beginning of the transaction.

When you specify the RELEASE parameter of the COMMIT statement, CA-IDMS/DB
commits the current transaction and terminates the SQL session.

Example: The following statement commits to the database changes made during the
current transaction but does not end the transaction.

EXEC SQL

 COMMIT CONTINUE

END-EXEC.

11.6.2 Dynamic selection of access module

CA-IDMS/DB provides support for dynamic selection of an access module through the
SET ACCESS MODULE statement. You use this statement to identify the access
module to be used by a transaction at runtime, overriding the specification made at
precompile time.

Example: The following statement specifies that the current transaction is to use the
access module identified by the host variable TRANS-ACC-MOD.

EXEC SQL

SET ACCESS MODULE :TRANS-ACC-MOD

END-EXEC.

11-12 CA-IDMS Release 12.0 Features Summary

11.6 Transaction management extensions

11.6.3 Overriding access module defaults

CA-IDMS/DB provides support for SET TRANSACTION to override access module
defaults for transaction characteristics such as isolation levels.

Example: The following example specifies that the transaction has an isolation level
of transient read.

EXEC SQL

SET TRANSACTION TRANSIENT READ

END-EXEC.

Chapter 11. SQL Extended Features 11-13

11-14 CA-IDMS Release 12.0 Features Summary

Chapter 12. CA-IDMS Access Module Creation

12.1 What is the optimizer? . 12-3
12.2 Compilation strategy . 12-4
12.3 How does optimization work? . 12-5

12.3.1 Automatic reoptimization . 12-6
12.3.2 Describing the access strategy . 12-6

12.4 For more information . 12-7

Chapter 12. CA-IDMS Access Module Creation 12-1

12-2 CA-IDMS Release 12.0 Features Summary

12.1 What is the optimizer?

12.1 What is the optimizer?

Access module compiler: The CA-IDMS/DB optimizer is responsible for com-
piling all SQL data manipulation statements into the form required for execution by
the runtime system.

For embedded SQL, the optimizer creates the most efficient access strategy for pre-
compiled SQL statements in one or more host language programs and compiles the
access module. The access module is stored for later execution.

The optimizer also optimizes and compiles individual dynamic SQL statements for
immediate execution.

Why optimize?: The objective of optimization is to provide access to data with
minimum use of system resources, primarily I/O. Optimization provides the most effi-
cient access to data and is a key factor in the ability of SQL database systems to
remove data access navigation responsibility from the application programmer.

Chapter 12. CA-IDMS Access Module Creation 12-3

12.2 Compilation strategy

 12.2 Compilation strategy

When you compile an access module, the following functions are performed on each
SQL data manipulation statement:

■ Validation of table and column references in the statement against the dictionary

■ Selection of the most efficient database access strategy for the statement

■ Generation of the code used by the runtime software to execute the SQL request

12-4 CA-IDMS Release 12.0 Features Summary

12.3 How does optimization work?

12.3 How does optimization work?

To develop an optimized access strategy for an SQL statement, the optimizer
considers:

■ The type of statement (SELECT, INSERT, UPDATE, DELETE)

■ The WHERE clause criteria

■ The physical structure of the database as defined in the dictionary, including any
calc keys, indexes, linked constraints, and other tuning options

■ Statistics stored in the dictionary as a result of UPDATE STATISTICS statements,
or as extrapolated from the ESTIMATED ROWS clause of the CREATE or
ALTER TABLE statements

Statistics considered: These statistics include:

■ Number of rows in the area

■ Number of occupied pages

■ Storage density of the area

■ Number of rows in a table

■ Referential constraint statistics such as:

– Number of referenced rows

– Average number of referencing rows per referenced row

– Average number of physical pages spanned by a referenced row and its
related referencing rows

■ CALC and index key statistics such as:

– Number of distinct key values

– Low and high values

– Number of intermediate index levels

– Average number of physical pages per distinct key value

Determining the access strategy: The optimized access strategy is determined
by a combination of physical tuning options chosen by the database designer and the
statistics which describe the current state of the database.

The database design gives the optimizer the raw physical structures which it uses to
select efficient access strategies. The optimizer takes advantage of all indexes, clus-
tered and linked constraints, and CALC keys.

Database statistics are important in choosing an optimal strategy when there are equiv-
alent physical database structures.

Chapter 12. CA-IDMS Access Module Creation 12-5

12.3 How does optimization work?

 12.3.1 Automatic reoptimization

Adaptive query management: The access module is automatically recompiled if
changes are made to the underlying physical database structure, thereby providing for
the best access for each SQL execution and protection for the application program and
the integrity of the database

12.3.2 Describing the access strategy

The EXPLAIN statement: The EXPLAIN statement is a CA-IDMS/DB extension
that allows you to describe, or explain, the access strategy determined by the optimizer
for a specified SQL statement or for all SQL statements in an access module.

Description in table form: The output of the EXPLAIN statement is one or more
rows per SQL statement in a table. Information in the result table includes the type of
access and the number, type, and sequence of processing steps required to satisfy the
request.

12-6 CA-IDMS Release 12.0 Features Summary

12.4 For more information

12.4 For more information

■ On creating an access module, see CA-IDMS SQL Reference

■ On updating statistics, see CA-IDMS Database Administration

■ On database tuning options, see CA-IDMS Database Administration

■ On explaining the access strategy, see CA-IDMS SQL Reference

Chapter 12. CA-IDMS Access Module Creation 12-7

12-8 CA-IDMS Release 12.0 Features Summary

Chapter 13. Administration of an SQL-Defined
Database

13.1 Tuning the database . 13-3
13.1.1 Indexes . 13-3
13.1.2 CALC keys . 13-3
13.1.3 Referential constraints . 13-3
13.1.4 Clustering . 13-4

13.2 Utilities in the SQL environment . 13-5
13.3 Locking . 13-6

13.3.1 Types of locks . 13-6
13.4 Security for SQL-defined databases . 13-8

13.4.1 Privileges . 13-8
13.4.2 Granting privileges . 13-9
13.4.3 Ownership . 13-9
13.4.4 Security checking . 13-9

13.5 For further information . 13-11

Chapter 13. Administration of an SQL-Defined Database 13-1

13-2 CA-IDMS Release 12.0 Features Summary

13.1 Tuning the database

13.1 Tuning the database

With CA-IDMS/DB Release 12.0, you can tune the database using:

 ■ Indexes

 ■ CALC keys

■ Referential constraint options

 ■ Clustering

These tuning options allow you to create a database that can be efficiently accessed.

 13.1.1 Indexes

An index provides an alternate method of table access and a logical ordering of data
stored in the database. An index can also implement entity integrity by requiring that
index keys be unique.

 13.1.2 CALC keys

A CALC key provides direct access to a row of a table without the overhead of main-
taining and searching an index. The location of the row is calculated from the value
of the columns forming the CALC key. A CALC key can implement entity integrity
by requiring that CALC keys be unique.

 13.1.3 Referential constraints

There are several database tuning options available for referential constraints.

Referential constraints can be linked or unlinked.

Unlinked: Unlinked referential constraints (the default) are enforced without a phys-
ical link between referencing and referenced tables. Instead, index and calc keys are
used internally to enforce the integrity rules.

Unlinked constraints must have at least one index or a CALC key defined on the refer-
enced and referencing keys of each table. Rows from both tables are retrieved directly
through these keys.

Linked: A linked constraint establishes a physical structure between two tables. It is
implemented using either a chained or index set. Linked referential constraints can
make data retrieval between tables more efficient by reducing the number of I/Os
required to retrieve referencing rows.

Linked...order by: You can use ORDER BY on a linked referential constraint to
specify that the referencing rows are to be maintained in sequence based on values for
the named columns (either ascending or descending order).

Chapter 13. Administration of an SQL-Defined Database 13-3

13.1 Tuning the database

Using ORDER BY can eliminate the need for an internal sort when rows are retrieved
in a specified order.

 13.1.4 Clustering

You can cluster rows of data in a table around a row of data from another table or
around an index. Clustering enables you to group rows that are likely to be accessed
together.

If a referencing table is stored clustered around a referential constraint, CA-IDMS/DB
stores each row as close as possible to the corresponding row in the referenced table
(the row to which it is logically related). CA-IDMS/DB can then access all refer-
encing rows with a minimum of I/Os.

Rows in a table can be physically stored in a specific sequence. If they are sequenced
on an index column, sorted retrieval through the index will be more efficient.

13-4 CA-IDMS Release 12.0 Features Summary

13.2 Utilities in the SQL environment

13.2 Utilities in the SQL environment

Most utilities described in Chapter 1, “Database” on page 1-1 can be used with any
CA-IDMS/DB database. In addition, these utilities are specific to SQL-defined
databases:

Invoking the utilities: Utilities are invoked through the Command Facility.

�� For information on the Command Facility, see Chapter 1, “Database” on page 1-1.

Utility How it's used

BUILD Builds indexes and referential constraints

EXPLAIN statement Describes the access strategy for a statement or
access module

INSTALL STAMPS Stores synchronization stamps in a newly-
formatted area

LOAD TABLE Loads data into tables

UPDATE STATISTICS Updates statistics used by CA-IDMS/DB to opti-
mize access to the database

VALIDATE Checks referential constraints

Chapter 13. Administration of an SQL-Defined Database 13-5

13.3 Locking

 13.3 Locking

SQL-defined database locking operations are basically the same as locking operations
for a non-SQL defined database.

�� For additional information on lock management, see Chapter 1, “Database” on
page 1-1.

Concurrency control: CA-IDMS/DB manages concurrent access to the same set of
data with a system of locks. The degree of concurrent access allowed by a database
transaction is determined by the isolation level of the transaction and the ready mode
of the areas it accesses.

13.3.1 Types of locks

Locks: CA-IDMS/DB provides two types of lock:

■ A retrieval lock prevents updates but allows retrieval of data by another database
transaction

■ An update lock prevents updates and retrieval of data by another database trans-
action

CA-IDMS/DB places locks at the row or area level.

CA-IDMS/DB always places an update lock on a row which is updated by a trans-
action, unless an update lock is already held at the area level.

CA-IDMS/DB usually places retrieval locks on rows as they are being processed.
Retrieval row locks are not maintained if a retrieval lock is held on the area or if a
transaction option indicates no locking is desired.

Locking at the row level: To cause locks to be set at the row level, you specify
an isolation level of cursor stability.

Under cursor stability, the DBMS places a retrieval lock on the row on on which an
updatable cursor is positioned until the cursor position changes. It places a retrieval
lock on all other rows accessed by the transaction, but releases the lock as soon as it
finishes processing the row.

Cursor stability provides the greatest possible concurrency while guaranteeing the
integrity of data read by the transaction. Under cursor stability:

■ The current row of an updatable cursor cannot be updated by another database
transaction while it remains current.

■ A single row retrieved by a SELECT statement cannot be updated by another
database transaction until the original transaction accesses another row of the
table.

13-6 CA-IDMS Release 12.0 Features Summary

13.3 Locking

Cursor stability is the CA-IDMS/DB default.

No locking: To cause no locks to be set, you specify an isolation level of transient
read.

Under transient read, the DBMS places no locks on rows accessed by the database
transaction, and the transaction cannot update data in the database.

Transient read provides no protection from the effects of concurrent database trans-
actions. It allows a database transaction to read data that has not been committed and
allows concurrent database transactions to update the data. It is appropriate when the
transaction is retrieval only and does not require the data to be consistent and entirely
accurate.

Changing the default isolation level: You can change the default isolation level
of cursor stability by using appropriate parameters of the CREATE ACCESS
MODULE statement.

For a given SQL transaction, the program can override the default isolation level for
the access module by issuing a SET TRANSACTION statement.

Locking at the area level: You can control concurrent access at the area level
using the READY parameter of the CREATE ACCESS MODULE statement. You
can specify what type of retrieval or update lock the DBMS sets on an area that the
program accesses. You can also specify whether the lock is to be set when the first
SQL statement accesses the database or when the first SQL statement accesses the
area.

Setting appropriate locks at the area level (such as protected retrieval or protected
update) will prevent concurrent update access to the specified area for the duration of
an SQL transaction. This obviates the need to set locks at the row level and lessens
the likelihood of deadlock. However, it also reduces the degree of concurrency sup-
ported by the database.

Chapter 13. Administration of an SQL-Defined Database 13-7

13.4 Security for SQL-defined databases

13.4 Security for SQL-defined databases

CA-IDMS SQL processing uses the centralized security facility of Release 12.0. The
basic set of security administration statements is compliant with the ANSI SQL
standard.

At runtime security is checked through calls to the central security manager issued by
CA-IDMS software at strategic points in processing. Enforcement is performed by
CA-IDMS internal security, an external security package, or not at all, depending on
the type of resource involved and the means of enforcement you specify for that
resource type.

Security features: The security features discussed in Chapter 3, “Security” on
page 3-1 can be used to secure access to an SQL-defined database. These include:

■ Support of users and groups defined in the user catalog

■ Use of wildcards to specify similar entities when defining secured resources

■ Interface to an external security package to check authorization for access to any
or all types of resources associated with SQL processing

 13.4.1 Privileges

Definition privilege: The definition privilege is the authority to define a particular
resource entity.

The definition privilege for tables is unique to the CA-IDMS/DB SQL environment.
This privilege allows a user to perform one or more of these operations on a table:

■ CREATE — controls a user's ability to define a new table, index, access module,
etc.

■ ALTER — controls a user's ability to change an existing definition

■ DROP — controls a user's ability to delete an existing definition

■ REFERENCE — controls a user's ability to reference a table in a referential con-
straint definition

Access privilege: Access privilege is the authority to access a table using these
statements:

■ SELECT — controls a user's ability to access data

■ INSERT — controls a user's ability to insert new data

■ UPDATE — controls a user's ability to change existing data

■ DELETE — controls a user's ability to delete existing data

Table access privileges are unique to the SQL option.

13-8 CA-IDMS Release 12.0 Features Summary

13.4 Security for SQL-defined databases

Access module execution privilege: The EXECUTE privilege is the authority to
execute an access module. The user needs this privilege to run a compiled program.

 13.4.2 Granting privileges

A user with the required administration privilege can grant or revoke definition, access,
and execution privileges on resources related to SQL processing, using these state-
ments:

■ GRANT gives a privilege to a user or group

■ REVOKE removes a privilege from a user or group

The owner of a schema can use the TRANSFER statement to transfer ownership of
the schema to another user or group. The applicable privileges on resources in the
schema are also transferred.

 13.4.3 Ownership

The concept of ownership is also unique to the CA-IDMS/DB SQL environment.

Ownership at the schema level: Ownership is assigned only at the schema level.
The initial owner of a schema is the user who created the schema. The owner has all
applicable privileges on entities in the schema, as well as the privilege of granting
those privileges to other users or groups.

The owner can be a user or a group. Users who are members of a group implicitly
hold ownership authority over group-owned resources.

Transferring ownership: Ownership can be transferred to another authorization ID
(either group or individual user) without changing the name of an object by using the
TRANSFER OWNERSHIP statement. If you transfer ownership of a schema to
another user or group, you no longer have any privileges on the entities in the schema.

Example: This example shows the transfer of ownership of the schema MYSCHM to
the user GEORGE.

transfer ownership of myschm to george;

 13.4.4 Security checking

Interactive or dynamic SQL statements: To use interactive or dynamic SQL
against a database, a user must have the appropriate access privilege for the database.

A security check is issued as each statement is issued. The results of each security
check are kept until the transaction ends so that the same check does not have to be
repeated for access to the same table or view later in the transaction. This occurs
whether you are using an external security package or CA-IDMS internal security.

Chapter 13. Administration of an SQL-Defined Database 13-9

13.4 Security for SQL-defined databases

Precompiled SQL statements: SQL statements embedded in an application
program are precompiled and included in an access module prior to runtime.

If you are using an external security package, each SQL statement, precompiled or
dynamic, is checked as it is executed and the results kept for the length of the trans-
action.

If you are using CA-IDMS internal security, the owner of the access module must hold
all privileges necessary to execute every SQL statement in the module. If this condi-
tion is met, the owner of the access module can execute it and can give execution
privileges on the access module to other users (if the owner holds the necessary
grantable privileges), regardless of whether they explicitly possess the underlying table
access privileges. The security check occurs each time the access module is physically
loaded by the runtime system.

13-10 CA-IDMS Release 12.0 Features Summary

13.5 For further information

13.5 For further information

■ On using tuning options, see CA-IDMS Database Administration

■ On how locking works, see CA-IDMS Database Administration

■ On using utilities, see CA-IDMS Database Administration

■ On utility syntax, see CA-IDMS Utilities

■ On using the Command Facility, see CA-IDMS Command Facility

■ On security syntax and how security works, see CA-IDMS Security Administration

Chapter 13. Administration of an SQL-Defined Database 13-11

13.5 For further information

13-12 CA-IDMS Release 12.0 Features Summary

 Index

Numerics
24-hour processing

dynamic area extension 1-24
dynamic buffer acquisition 1-25
dynamic buffer pool configuration 1-25
dynamic database file management 1-21
dynamic database name tables 1-25
dynamic DMCL 1-23

A
access modules 10-5
authorization-identifiers

groups 3-8
user identification codes 3-8

C
CA-ADS

built-in functions 5-14, 5-16—5-17
century date variables 5-14
CUA-style interface 5-4
CUA-style main menu 5-5
integration with security facility 5-3
online help 5-5
READY/NOREADY 5-18
support for SQL 10-7

CA-Culprit
double word binary support 6-4
support for SQL 6-3, 10-8
upward compatibility 6-3

CA-ICMS
support for SQL 6-3, 10-8
upward compatibility 6-3

CA-IDMS Command Facility
See Command Facility

CA-IDMS Performance Monitor
See Performance Monitor

CA-IDMS/DDS
data access 7-4
definition 7-4
general enhancements 7-3
maintenance 7-5

CA-OLQ
extended selection criteria 6-6
support for SQL 6-3, 10-7
upward compatibility 6-3

CALC keys (SQL) 13-3
creation of 9-5

CICS interface 2-8
COBOL 85

See COBOL precompiler
COBOL precompiler

COBOL 85 (Fujitsu) parameters 2-31
VS COBOL II parameter 2-30

collating options
mixed sort sequence 1-11
natural sort sequence 1-12

Command Facility
batch (IDMSBCF) 1-41
online (OCF) 1-41

commenting
data dictionary 1-19
schema and subschema compilers 1-14
system generation compiler 2-27

compiler, access module 12-3
cursors (embedded SQL) 10-5

D
data dictionary 1-15—1-19

changes in components 1-15
compiler options 1-18—1-19
DAY/MONTH/YEAR in DISPLAY ALL 1-17
DC OPTION IS MENU 1-18
DISPLAY ALL limits 1-16
enhanced DISPLAY MODULE/QFILE

statement 1-17
module-map cross referencing 1-17
new areas 1-15
resolution of record elements 1-16
storage locations 1-15

database communications
architecture 2-5
benefits 2-4
cross region communications 2-4
enhanced CICS interface 2-8
new design 2-3
NODE statement 2-6
RESOURCE TABLE statement 2-6

database definition
See logical database definition
See physical database definition

database name table
defining 1-5

Index X-1

database name table (continued)
example of definition 1-7

dataspaces
assignment to 1-20

DCMT and DCUF commands
invoking from programs 2-19
modified commands 2-20
new commands 2-19

deadlock management
deadlock detection 1-36
deadlock resolution default 1-36
specifying a detection interval 1-36
user exit 30 1-36

definitions, linking logical and physical 1-7
domain constraints (SQL) 8-13
dynamic area extension 1-24
dynamic buffer acquisition 1-25
dynamic buffer pool configuration 1-25
dynamic database file management 1-21
dynamic database name tables 1-25
dynamic DMCL 1-23
dynamic processing features

See 24-hour processing
dynamic SQL 10-6

E
embedded SQL 10-4

cursors 10-5
ESA dataspaces

exploitation of 1-20
scratch and covered modes 1-20

EXPLAIN statement 12-6

G
GRANT and REVOKE statements

authorization-identifiers 3-8
privileges 3-6
resources and associated entities 3-7

GRANT syntax 3-6
REVOKE syntax 3-6

I
indexes (SQL) 13-3

creation of 9-5
indexing options

duplicates in db-key sequence 1-11
unlinked indexes 1-10

integrity and constraints 8-13
interactive SQL 10-4

L
local mode processing

loading from a load area 1-33
security 1-33
SYSIDMS parameter file 1-27

lock management
above the line storage 1-34
preserving the external area status 1-34
transient retrieval for areas 1-34

locking
considerations for SQL-defined databases 13-6

logical database definition
link to physical 1-7
schema 1-4
steps for defining 1-4
storage of definitions 1-6
subschema 1-4

M
Mapping facility

automatic screen painter 5-8
browse capability 5-7
compiler error management 5-8
copy function 5-6
editing function keys 5-10
general enhancements 5-3
help facility 5-11
uppercase translation by field 5-13

multiple DC/UCF regions
advantages 2-8
definition 2-7
set up 2-7

N
NODE statement

definition 2-6
displaying 2-7
example

O
operating system features

ESA dataspaces 2-11
extended addressing 2-9

optimizer
description 12-3

X-2 CA-IDMS Release 12.0 Features Summary

optimizer (continued)
explaining the access strategy 12-6
how it works 12-5

output formatting
data dictionary 1-19

ownership (SQL)
schema ownership 13-9
transferring ownership 13-9

P
Performance Monitor

Application monitor changes 4-6—4-7
general changes 4-4
Interval monitor changes 4-7—4-9
Real-Time monitor changes 4-4—4-6
SMF type 30 4-4

physical database definition
database name table 1-4
DMCL 1-4
link to logical 1-7
segments 1-4
steps for defining 1-5
storage of definitions 1-6

PL/I
See runtime support
IDMSDMLC

See COBOL precompiler
precompilers

general parameter changes 2-29
primary keys (SQL) 8-13
privileges

for access 3-7
for administration 3-7
for definition 3-6
granting 3-9
granting with GRANT OPTION 3-9
group privileges 3-9
revoking 3-10
using wildcards 3-9

profiles
associating profiles with users 2-15
attributes 2-12
defining 2-13
definition 2-12
displaying and accessing 2-15
substitution parameters 2-14
system-defined keywords 2-12
use with nonterminal tasks 2-16
user-defined attributes 2-13

pseudoconversational support (SQL) 11-10

Q
query device support 2-17

R
RCMs 10-5
referential constraints (SQL) 13-3

creation of 9-6
linked 13-3
unlinked 13-3

referential integrity (SQL) 8-13
RESOURCE TABLE statement

definition 2-6
displaying 2-7
example

resources
associated entities 3-7
where definitions are stored 3-7

runtime support 2-29

S
schema and subschema compiler

enhancements 1-13—1-14
compiler options 1-14
non-quoted letters 1-13
output formatting 1-14
simplified commenting 1-14
user exits 1-13
user-defined comments 1-13

schemas (SQL) 8-10
security

considerations for SQL-defined databases 13-8
security facility

architecture 3-4
description and features 3-4
DISPLAY facility 3-10—3-14
GRANT and REVOKE statements 3-6

segments 1-4
associating them with the DMCL 1-7
defining 1-5
sample definition 1-6

separating logical and physical database definitions 1-4
SQL

access module 12-3
access to a non-SQL defined database 10-9—10-10,

11-10
ANSI and FIPS support 8-4
CA-ADS support 10-7

Index X-3

SQL (continued)
CA-Culprit support 10-8
CA-ICMS support 10-8
CA-OLQ support 10-7
creating executable modules 10-5
data control (security) statements 8-8
data definition statements 8-8
data manipulation 10-3
data manipulation statements 8-8
definitions, storing 8-15
dynamic statements 10-6
embedded in host programs 10-4
interactive 10-4
pseudoconversational programming 11-10
synonyms 10-10

SQL data definition
description of the language 9-3

SQL-defined databases
benefits and features 8-5—8-6
CALC keys 9-5
components of the environment 8-7
definition 8-3
definition process 9-4
index creation 9-5
referential constraints 9-6
schema creation 9-4
table creation 9-4
view creation 9-6

SQL, extended features 11-3—11-13
access to non-SQL defined databases 11-8
bulk processing 11-5
data types 11-4
date/time arithmetic 11-7
dynamic access module selection 11-12
dynamic SQL 11-8
global cursor 11-8
modular programming 11-8
pseudoconversational programming 11-10
scalar functions 11-5
session management 11-10
special registers 11-7
temporary tables 11-8
transaction management 11-12

symbolic parameters 1-8
displacement for VIA sets 1-9
index specification 1-9
names for subareas 1-9

SYSIDMS parameters
for physical requirements 1-27
local mode security 1-33

system generation
compiler options 2-27—2-28
new and modified statements 2-22—2-27

T
table operations

on columns (PROJECT) 8-12
on multiple tables (JOIN) 8-12
on rows (SELECT) 8-12

tables (SQL) 8-9
creation of 9-4
operations on 8-12
referencing and referenced tables 8-13
rows (SQL) 8-9

tuning SQL-defined databases
CALC keys 13-3
clustering 13-4
indexes 13-3
referential constraints 13-3

U
unique values (SQL) 8-13
user exits

availability with schema/subschema compilers 1-13
availability with system generation compiler 2-27
deadlock victim selection 2-17
exit 28 2-17
exit 29 2-17
exit 30 1-36, 2-17
security postprocessing 2-17
security preprocessing 2-17

utilities
existing programs 1-39
new interface 1-37
new statements 1-37
security 1-40
SQL utilities 13-5

V
VALIDATE, bypassing 1-14
views (SQL) 8-10

creation of 9-6
example 8-10
uses 8-10

VS COBOL II
See COBOL precompiler

X-4 CA-IDMS Release 12.0 Features Summary

	CA-IDMS 12.0 Features Summary
	Contents
	How to Use This Document
	What this document is about
	Who should use this document
	How information is presented
	Related documentation
	Understanding syntax diagrams
	Sample syntax diagram

	Chapter 1. Database
	1.1 About this chapter
	1.2 Database definition
	1.2.1 Separating logical and physical database definitions
	1.2.2 Support for symbolic parameters
	1.2.3 Indexing options
	1.2.4 Collating options
	1.2.5 Schema and subschema compiler enhancements

	1.3 Data dictionary enhancements
	1.3.1 New dictionary structure
	1.3.2 Dictionary statement enhancements and options
	1.3.3 Dictionary compiler options

	1.4 Exploitation of ESA dataspaces
	1.5 24- hour processing
	1.5.1 Dynamic database file management
	1.5.2 Dynamic DMCL
	1.5.3 Dynamic area extension
	1.5.4 Dynamic database name tables
	1.5.5 Dynamic buffer acquisition
	1.5.6 Dynamic buffer pool configuration

	1.6 Batch processing
	1.6.1 SYSIDMS parameter file
	1.6.2 Local mode security
	1.6.3 Loading from a load area in local mode

	1.7 Lock management
	1.8 Deadlock management
	1.9 Utilities
	1.9.1 New interface
	1.9.2 Utility statements
	1.9.3 Utility programs
	1.9.4 Security for utilities
	1.9.5 For further information

	1.10 Command facility

	Chapter 2. Data Communications
	2.1 About this chapter
	2.2 CA- IDMS database communications architecture
	2.2.1 New design
	2.2.2 Components of the architecture
	2.2.3 Setting up your environment
	2.2.4 Multiple DC/ UCF region communications
	2.2.5 Enhanced CICS interface
	2.2.6 For further information

	2.3 Operating system features
	2.4 Profile support
	2.4.1 Defining profiles
	2.4.2 Associating profiles with users
	2.4.3 Displaying and accessing attributes
	2.4.4 Using profiles with nonterminal tasks
	2.4.5 For further information

	2.5 New numbered user exits
	2.6 Query device support
	2.7 DCMT and DCUF commands
	2.7.1 Invoking DCMT and DCUF commands from programs
	2.7.2 New and modified DCMT and DCUF commands

	2.8 System generation
	2.8.1 Changes to statements and parameters
	2.8.2 System generation compiler enhancements

	2.9 Enhanced language support
	2.9.1 Runtime support
	2.9.2 General precompiler changes
	2.9.3 Parameters supporting VS COBOL II
	2.9.4 Parameters supporting COBOL 85 (Fujitsu and Hitachi)

	Chapter 3. Security
	3.1 About this chapter
	3.2 Security facility features
	3.3 Administering security
	3.3.1 Privileges
	3.3.2 Resources
	3.3.3 Authorization identifiers

	3.4 Granting and revoking privileges
	3.4.1 Granting privileges
	3.4.2 Revoking privileges

	3.5 Security display facility
	3.6 For further information

	Chapter 4. CA- IDMS Performance Monitor
	4.1 About this chapter
	4.2 General enhancements
	4.3 Real- Time monitor
	4.3.1 New screens
	4.3.2 New fields

	4.4 Application monitor
	4.4.1 New screen

	4.5 Interval monitor
	4.5.1 New screens
	4.5.2 New fields

	Chapter 5. CA- ADS and Mapping Facility
	5.1 About this chapter
	5.2 Integration with centralized security
	5.3 CUA- style user interface
	5.4 Enhanced compiler support
	5.5 Mapping enhancements
	5.6 Support for century date variables and built- in functions
	5.7 Numeric test
	5.8 Trailing sign BIF support
	5.9 READY NOREADY

	Chapter 6. CA- Culprit, CA- OLQ, and CA- ICMS
	6.1 About this chapter
	6.2 Overview
	6.3 CA- Culprit
	6.3.1 Double word binary support

	6.4 For further information
	6.5 CA- OLQ
	6.5.1 Extended selection criteria

	6.6 For further information
	6.7 CA- ICMS

	Chapter 7. CA- IDMS/ DDS
	7.1 About this chapter
	7.2 CA- IDMS/ DDS enhancements
	7.3 For further information

	Chapter 8. Introduction to SQL- Defined Databases
	8.1 What is an SQL- defined database?
	8.2 ANSI and FIPS support
	8.3 Benefits and features
	8.4 Components
	8.5 SQL as a language
	8.6 Tables, rows, columns
	8.7 Schemas and views
	8.8 Table operations
	8.9 Integrity and constraints
	8.10 Storing SQL definitions
	8.11 For further information

	Chapter 9. Defining a Database Using SQL
	9.1 SQL data definition language
	9.2 The definition process
	9.3 For further information

	Chapter 10. Accessing a Database Using SQL
	10.1 Data manipulation with SQL
	10.2 Interactive and embedded SQL
	10.2.1 Interactive SQL
	10.2.2 Embedded SQL
	10.2.3 Dynamic SQL

	10.3 CA- IDMS tools support for SQL
	10.3.1 CA- ADS support
	10.3.2 CA- OLQ support
	10.3.3 CA- ICMS support
	10.3.4 CA- Culprit support

	10.4 SQL access to a non- SQL defined database
	10.4.1 How to do it
	10.4.2 Database requirements

	10.5 For further information

	Chapter 11. SQL Extended Features
	11.1 What are SQL extended features?
	11.2 Database definition extensions
	11.2.1 Data types
	11.2.2 32- character column names
	11.2.3 Database tuning extensions

	11.3 Data access and manipulation extensions
	11.3.1 Bulk access to tables
	11.3.2 Scalar functions
	11.3.3 Special registers
	11.3.4 Date/ time arithmetic
	11.3.5 Temporary tables
	11.3.6 Modular programming
	11.3.7 Dynamic SQL
	11.3.8 Access to non- SQL defined databases

	11.4 Precompiler directive extensions
	11.5 Session management extensions
	11.5.1 Specifying a dictionary
	11.5.2 Pseudoconversational support
	11.5.3 Establishing session characteristics

	11.6 Transaction management extensions
	11.6.1 CONTINUE/ RELEASE parameters on the COMMIT WORK statement
	11.6.2 Dynamic selection of access module
	11.6.3 Overriding access module defaults

	Chapter 12. CA- IDMS Access Module Creation
	12.1 What is the optimizer?
	12.2 Compilation strategy
	12.3 How does optimization work?
	12.3.1 Automatic reoptimization
	12.3.2 Describing the access strategy

	12.4 For more information

	Chapter 13. Administration of an SQL- Defined Database
	13.1 Tuning the database
	13.1.1 Indexes
	13.1.2 CALC keys
	13.1.3 Referential constraints
	13.1.4 Clustering

	13.2 Utilities in the SQL environment
	13.3 Locking
	13.3.1 Types of locks

	13.4 Security for SQL- defined databases
	13.4.1 Privileges
	13.4.2 Granting privileges
	13.4.3 Ownership
	13.4.4 Security checking

	13.5 For further information

	Index
	Numerics
	A
	C
	D
	E
	G
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

