CA-IDMS®

Mapping Facility
15.0

a)

Computer Associates™

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is
for the end user's informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of CA. This documentation is proprietary information of CA and protected by
the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of
the license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force
and effect. Should the license terminate for any reason, it shall be the user's responsibility to return to CA the
reproduced copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is’ without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct
or indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user's
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights’ as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1)
and (2) or DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

Second Edition, October 2001

© 2001 Computer Associates International, Inc.
All rights reserved.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Contents

How to Use ThisManual XVii
Chapter 1. Introduction to the Mapping Facility 1-1
L1 Overview 1-3
1.1.1 What isthe Mapping Facility? 1-3
1.1.2 Online and Batch Capabilities 1-3
1.1.3 Input/output Operations 1-4
1.1.4 What'sinthisChapter? 1-4
1.2 TheOnline Compiler 1-5
121 Howdoesit Work? 1-5
122 What Functions can it Perfform? 1-5
123 ASampleSession 1-5
For the Sample Session 1-6
Specifying Basic Informationo 1-6
WhatisEntered? 1-7
Specifying General Options 1-7

What isEntered? 1-7

General Options Screen-Page2 1-8
Defining Map-level Help 1-8

What isEntered? 1-8
Specifying the Associated Records 1-9

What isEntered? 1-9
Creating a Map Automaticaly 1-9

What isEntered? 1-10
PreviewingtheMap 1-10

What isEntered? 1-10
Modifyingthe Map 1-11
CompilingtheMap 1-11

What isEntered? 1-11

1.3 The Batch Compiler and Utility 1-12
Batch Compiler Functions 1-12

Batch Utility Functions 1-12
Performing Online Compiler Operations 1-12
Performing Non-online Compiler Operations 1-12

1.4 Automatic Editing and Error Handling 1-14
Purpose 1-14
Example 1-14

15 Alternative Maps 1-16
Purpose 1-16
Generating Alternative Maps L. 1-16
Possible Applications 1-16

1.6 Terminals Supported by the Mapping Facility 1-18
Chapter 2. Map Design Considerations 2-1
21 OVEIVIEW o 2-3
2.2 Preiminary Information Gathering 2-4
2.2.1 Application-specific Information L. 2-4

Contents iii

222 Site-specific Information 2-4

Exigting Site Information 2-4
Existing Conventions and Standards 2-5
Different Types of Terminals 2-5

Online Compiler Options 2-5

23 Designing Maps 2-6
Successful Layouts 2-6

What's Included in this Section 2-6

23.1 General Considerations 2-6
232 Control Key Standards 2-7
Identify Control Keys 2-7

Use Control Keys Consistently 2-7

Sample PF Key Standards 2-7

2.3.3 Naming Conventions 2-7
Why use Conventions? 2-7

Sample Naming Conventions 2-7

Sample Names 2-8

234 Layout and Display Standards 2-9
Associate Areas with Particular Uses 2-9

Display like Fields in the Same Location 2-9

Limit the Number of FieldsonaScreen 2-9

Handle Operations and Prompts Consistently 2-9

Handle Default Values Consistently 2-9
Standardize Map Templates L 2-9

2.35 Pageable Map Considerations 2-10
Sample PageableMap 2-10
Components of PageableMaps 2-10
Considerations 2-10

24 DesigningMap Fields 2-12
What isaMap Field? 2-12

241 Typesof Felds 2-12
Required Fields 2-12

24.2 Attributesfor Fields 2-13
What is an Attribute? 2-13

When are Attributes Specified? L 2-13

When do Attributes take Effect? 2-13
Attributeson 3270sand 3279s 2-13
Attributeson a3279 ONLY 2-14

Default Values for Attributes L 2-15
Chapter 3. Automatic Editing and Error Handling 31
3.1 Automatic Editing 33
What is Automatic Editing? 33

Editing Input 33

Editing Output 33

When should Automatic Editing be Enabled? 33

3.2 Error Handling 35
What is Error-handling? 35

Error Handling Functions 35

Before You use Editing and Error-handling 35

3.3 Enabling Automatic Editing and Error Handling 3-6

iv CA-IDMS Mapping Facility

331 OVErVIeW . . . 3-6

332 Default Values 3-6
333 Map-level Editing 3-6
3.34 Fied-level Editing 3-6
3.4 Automatic Editing Criteria 3-8
341 OVEIVIEW 3-8
Typesof Editing 3-8
Automatic Editing Operations 3-8

3.4.2 Display Characteristics 39
3.4.3 DataConversion 39
34.4 Input Verification 3-10
345 Internal Pictures 3-10
Definition 3-10
Specifying Internal Pictures L 3-10

How the Input isConverted 3-10
Maximum Length 3-10

How are the Elements Stored at Runtime? 311

34.6 External Pictures 312
Mapout 312
Mapin 312
3.4.6.1 Implicit External Pictures 313
What is an Implicit External Picture? 313

If Automatic Editingisnot Enabled 313

If Automatic EditingisEnabled 313
Internal to Externa Trandation 3-14
3.4.6.2 Explicit Externa Pictures 3-15
When to Specify an Externa Picture 3-15
During Map Definitiono 315
Using IDD 3-15

How External Pictures are Constructed 3-15
Specia Considerations 3-18
Allowing Insertion Characters 3-18
Considerations 3-18
Truncation 3-19
Sample Truncations 3-19

347 EditandCode Tables 3-20
3471 Overview 3-20
3.4.7.2 Vduesin Editand Code Tables 321
3473 Edit TableVaues 321
3474 CodeTableValues 321
DDDL Compiler Options 3-22
Special Values 3-23
348 Enablingtables 3-24
Built-in Editor Code Tables 3-24
Suppressing Built-in Tables 3-24
Specifying a Stand-dlone Table 325
Suppressing a Stand-alone Table 325
Specifying a Stand-alone Table using the Batch Compiler 3-25
Alternate Names 3-25
Linked VS. Unlinked 3-26

Contents v

3.5 Error-Handling Criteria 3-27

What is Error-handling? 3-27

What Error-handling Criteria can be Defined? 3-27

3.5.1 Attributes for Correct and/or Incorrect Input 3-28

Definition 3-28

How to Define Attributes 3-28

352 Error Messages 3-28

Default Error Message 3-28

How to Override the Default Message 3-28

Defining aMessage FildforaMap 3-29

How are Messages Displayed? 331

35.3 Alarm Statuson Input Erroro 331

3.6 Automatic Editing at Runtime L 3-32

3.6.1 Mapin Operations 3-32
3.6.1.1 Automatic Editing on Mapin for Non-pageable Maps, Headers, and

Footers 3-33

3.6.1.2 Automatic Editing on Mapin for Pageable Maps 3-34

How the Online Compiler Respondsto Errors 3-34

Considerations 3-34

Determining if aFieldisChanged or Erased 3-35

3.6.2 Mapout Operations 3-35

3.7 Error Handling at Runtime 3-36

WhenisaFiedinError? 3-36

Defining Attributes for Redisplay 3-36

Dialogs, Programs, and Input Errors L. 3-37

Steps Performed by Runtime Mapping 3-37

Error Handling a Runtime 3-39

Chapter 4. PageableMaps 4-1

41 OVEIVIEW . . . o 4-3

What isaPageable Map? 4-3

Example of aPageableMap 4-3

What'sin this Section? 4-3

4.2 Areasof PageableMaps 4-4

Three Areas of aPageableMap 4-4

Examplesof each Area 4-4

WhatisaMap Page? 4-5

4.3 Map-paging SessioNS 4-6

What isa Map-paging Session? 4-6

Definition Time 4-6

Runtime 4-7

4.3.1 Sequence of Eventsin a Map-paging Session 4-7

4.4 Diaog and Program Operations 4-10

44.1 Map-Paging Session Options 4-10

44.1.1 Putting Optionsinto Effect 4-10

CA-ADS . . . 4-10

Application Programso 4-11

4.4.1.2 Specifying Paging and Update Requests 4-12

Paging-type Specification 4-12

Three Typesof Paging 4-12

How to Specify the Paging-type 4-13

vi CA-IDMS Mapping Facility

4.4.1.3 Backpaging Capability 4-14

Definition 4-14

How to Enable Backpaging 4-14

4414 PagingMode 4-15
Definition 4-15

How to Specify the Paging Mode 4-15

4.4.2 Building and Displaying Fields 4-16
4421 Building Fields 4-16
How it Works 4-16

4422 Displaying Fields 4-17
Requesting Display of Detail Occurrences 4-17

How Statementsareused 4-17

4423 Summary of Commands 4-18
4.4.3 Retrieving Modified Data L. 4-18
What is Retrieved? 4-18

45 Runtime Considerations 4-20
Size Congtraintson Maps, 4-20
Constraints on System-supplied Fields 4-20

46 Cregting PageableMaps 4-21
4.6.1 Overview 4-21
4.6.2 Using the Online Compiler 4-21
4.6.3 Using the Batch Compiler 4-21
Considerations 4-22
Chapter 5. TheHelp Facility 51
51 OVEIVIEW 5-3
52 Terminology 5-4
53 Creating Map-level Help 5-5
Summary of Steps 55

5.3.1 Creating the Text of the HelpMessage 55
SEPS . 5-5
SampleScreen 5-5

5.3.2 Associating the Help Text withaMap 55
Naming Conventions, 55

SEPS . 5-6

533 Testingthe Results 5-7
StEPS .. 57

54 Creating Field-level Help 5-10
Summary of Steps 5-10

54.1 Credting the Text of theHelpMessage 5-10
StEPS .. 5-10

Sample Screen L 5-10

5.4.2 Associgting the Help Text withaField 5-11
SEPS . L 511

54.3 TestingtheResults 5-13
55 UsingtheHelp System 5-15
551 Overview 5-15
Foreign Language Support 5-15
Chapter 6. Runtime Considerations 6-1

Contents vii

6.1 OVErVIeW 6-3

6.2 Mapout and Mapin Operations 6-4
Overview of Activitieso 6-4

6.21 CA-ADSDiaogs 6-4
6.2.2 Other Languages 6-5
COBOL and PL/l 6-5
Assembler . .. 6-5

6.3 Map Inquiry and Modification L. 6-6
6.3.1 Statements 6-6
Inquiry Statements 6-6
Modification Statements 6-6
Summary of Statements 6-6

6.3.2 Temporary VS Permanent Modifications 6-6
6.3.3 Write Control Characters (WCC) 6-7
6.4 Message Field Considerations L 6-8
Displaying Error Messages 6-8
Messages in the Detail Area L. 6-8
Message SOUrCeS 6-8

Default Error Message 6-8

If aMessage Field isnot Defined 6-8

6.5 Attributes 6-9
Conflicts 6-9

How Attributes are Determined 6-9
Chapter 7. Online Compiler Overview 7-1
71 OVEIVIEW . . . o 7-3
What's in this Chapter? 7-3

7.2 Accessing the Online Compiler 7-4
From CA-IDMS 7-4

Directly from Another Task 7-4

From the SWITCH Pull Down Menu 7-4

7.3 Using the Online Compiler 7-5
731 OVerview 7-5
732 What ScreensareUsed? 7-5
7.3.3 Using the Main Menu Screen L 7-6
How arethe AreasUsed? 7-6

734 Usingtheactionbar 7-7
What'sin this Section? 7-7

Using the Defaults 7-7

ADD . e 7-7

How to usethe Window 7-7
MODIFY . . 7-8

How to use the Window 7-8
COMPILE 7-9

How to usethe Window 7-9
DELETE 7-9

How to use the Window 7-10
DISPLAY . . 7-10

How tousethe Window 7-10
SWITCH . .. 7-11

How to use the Window 7-11

viii CA-IDMS Mapping Facility

7.35 Overview of asession 7-11

Hints 7-12

7.3.6 Using the functionkeys 7-13
USe . e 7-13
Mainkeys 7-13
Alternate Keys 7-13

7.3.6.1 How to Move, Copy, and Delete Text 7-14
MoveKey (F4) 7-14

Copy Key (F3) 7-14
DeleteKey (F5) 7-15
Chapter 8. Online Mapping Compiler Reference 81
81 Overview 8-3
82 TheMain Menu Screen 8-4
Description 8-4
SampleScreen 8-4

Field Descriptions 8-4

For More Information 85

8.3 General Options— Pagel 8-6
Description 8-6

Sample Screen 8-6

Field Definitions 8-6

84 General Options— Page2 89
Description 89

Sample Screen 89

Field Definitions 89

85 Map-level Help Text Definition 811
Description 811

Sample Screen L, 8-11

Field Definitions 8-11

86 Associated Records 8-12
Description 8-12
Accessing the Autopaint Feature 8-12

Sample Screen L 8-12

Field Definitions 8-13

8.7 Layout 8-15
Description 8-15

Effects of Screen SizeonMap Design 8-15

How to ChangetheMap 8-15
SampleScreen 8-16

To Delete All Selected Fields 8-16

To Propagatea Field 8-17

8.8 Fidd Definition Screens L 8-18
8.8.1 Field Definition 8-18
Description 8-18

Sample Screen L 8-18

Field Definitions 8-18

8.8.2 Map Read/write Options 8-21
Description 8-21

Sample Screen L 8-22

Contents ix

Field Definitions 8-22

8.8.3 Additional Edit Criteria 8-25
Description 8-25

Sample Screen 8-25

Field Definitions 8-26

8.8.4 Field-level Help Text Definition 8-27
Description 8-27

Sample Screen 8-28

Field Definitions 8-28

8.85 Device-dependent Options 8-28
Description 8-28

Sample Screen 8-29

Field Definitions 8-29

8.8.6 User-defined Edit Modules 8-31
Description 8-31
SampleScreen 8-31

Field Definitions 8-31

8.8.7 PageableOptions 8-32
Description 8-32

Sample Screen 8-32

Field Definitions 8-33
Chapter 9. Batch Compiler and Batch Utility Overview 9-1
9.1 OVEIVIEW 9-3
9.2 Compiler and Utility Functions 9-4
Batch Compiler and Utility Functions 9-4

921 Panelsand Maps 9-5
WhatisaMap? 9-5

What Does the Batch Compiler Do? 9-5
Mapping Language Statements 9-7

Panels, Maps, and Record Elements 9-7
Chapter 10. Batch Compiler Coding Considerations 10-1
101 OVEIVIEW . . o o 10-3
10.2 Compiler Security 10-4
10.2.1 Security at the Compiler Level L. 10-4
10.2.2 Security attheMapLevelo 10-4
10.3 Compiler Signon 10-6
Syntax ... 10-6

10.4 Compiler Directives 10-7
Considerations 10-7

10.5 Compiler Statement Coding Requirements 10-8
10.6 Compiler Statement Sequencing 10-9
10.6.1 MAP AUTOPANEL and MFLD Statement Sequencing 10-9
Sample Statement 10-9

10.6.2 PANEL, PFLD, MAP, and MFLD Statement Sequencing 10-10
Sample Statements L 10-10

10.7 Compiler Action Verbs 10-11
Wherecan VerbsbeUsed? 10-11

What dothe Verbs Do? 10-11
Defaults 10-11

x CA-IDMS Mapping Facility

Modifying a DEVICE Specification 10-12

10.7.1 The MODIFY Verb 10-12
Statements for Automatic Panel Definition 10-12
Statements for Manual Panel Definition 10-12
10.7.2 The DELETEVerb 10-13
Statements for Automatic Panel Definition 10-13
Statements for Manual Panel Definition 10-14
Chapter 11. Batch Compiler Statements 11-1
111 Overview 11-3

What'sin this Section? 11-4
11.2 Afttributes List 11-5

11.2.1 How to use the Attributes List 11-5
Syntax ... 11-5
Parameters 11-6

11.3 Statements for Automatic Panel Definition 11-9

11.3.1 Overview 11-9
Statements You can use 11-9

11.3.2 MAP AUTOPANEL Statement Syntax 11-9
Syntax ..o 11-9
Parameters 11-11

11.33 Examples 11-17
Examplel 11-17
Example2 11-17
Example3 11-18
Exampled 11-18

11.3.4 MFLD Statement Syntax 11-18
Functions Performed 11-18
Syntax ... 11-19
Expansion of dfld-specifications 11-20
Parameters 11-22

1135 Examples 11-34
Examplel 11-34
Example2 11-34

11.4 Statements for Manual Panel Definition 11-35
Statements Youcanuse 11-35
Conditions 11-35

11.4.1 PANEL Statement Syntax 11-35
Syntax ... 11-35
Parameters 11-36
Using a Field on a Subset of Devices 11-36
Effect of the MODIFY Verb 11-36

1142 Examples 11-37
Examplel 11-37
Example2 11-37
Example3 11-37

1143 PFLD Statement Syntax 11-37
Functions Performed 11-37
Syntax ... 11-38
Parameters 11-38

Contents xi

1144 BExamples 11-42

Examplel 11-42
Example2 11-43

1145 MAP Statement Syntax 11-43
Functions Performed 11-43

Syntax ... 11-43
Parameters 11-45
Chapter 12. Batch Compiler Executionand JCL 12-1
121 Overview . . . o 12-3
12.2 Special Coding Features of the Batch Compiler 12-4
12.2.1 Defining Versions of Maps for Different Devices 12-4
Supported Screen Sizes 12-4
Defining Device-independent Maps 12-4
Defining Device Groupingso 12-4
Reconciling Conflicting Specifications 12-6

Effects of Device Groupings 12-8

12.2.2 Positioning Maps on Different Devices 12-8
Map Positioning for Different-size Devices 12-8

12.3 Batch Compiler JCL 12-10
1231 OS/390JCL 12-10
Local Mode 12-11

1232 VSEIESA JCL e 12-12
Local Mode 12-13

1233 VM/ESA JCL 12-14
Local Mode 12-14

1234 BS2000/0SD JCL 12-16
Local Mode 12-16

Sample Job Stream 12-17

12.4 Compiler Reportsand Messages 12-18
1241 Diagnostic Messageso 12-18
1242 Error MESSagES 12-18
SampleReport 12-19
Chapter 13. Batch Utility Reference 13-1
131 Overview 13-3
13.2 Batch Utility Statements 13-4
1321 PROCESS Statement 13-4
Syntax ... 13-4
Parameters 13-4
SampleReportand Code 13-5

1322 PANEL Statement 13-9
Syntax ... 139
Parameters 13-9

1323 MAPStaement 13-10
Syntax ... 13-10
Parameters 13-10
Considerations 13-11

13.3 Batch Utility JCL 13-12
1331 OS/390JCL 13-12
Local Mode 13-13

xii CA-IDMS Mapping Facility

1332 VSE/IESAJCL 13-14

1333 VM/ESA JCL 13-15
Loca Mode 13-15

13.3.4 BS2000/0SD JCL 13-17
Loca Mode 13-17

13.35 SampleJCL 13-18
Error Messages 13-18
Appendix A. Integrated Data Dictionary Mapping Entities A-1
Al Overview A-3
A.2 Data Dictionary Entities used by the Mapping Compilers A-4
When is the Data Dictionary Used? A-4
Entitiesused by Compilers A-4

A.21 Builder Codes A-4
What isaBuilder Code? A-4
Copying a CA-IDD-built Occurrence A-5

A.22 Element OCCUITENCES ot A-5
What isan Element? A-5
Establishing Element Occurrences A-6

How the InformationisUsed A-6
Considerations A-7

A.2.3 Record OCCUITENCES i it A-7
What is a Record Occurrence? A-7
Establishing a Record Occurrence A-7
Considerations A-7

A.24 Pandl OCCUTENCES o o i it A-8
Considerations A-9
Changing a DEVICE Specification A-9

A25 Map OCCUenNCeS o oo A-9
Establishing Map Occurrences A-10
Considerations A-10

A.2.6 Message OCCUITENCES v it i A-10
A.27 TableOccurrences A-11
Typesof Tables A-11
Considerations A-11

A.2.8 Map and Table Load Module Occurrences A-12
Establishing Load Modules A-12
Considerations A-12

A.3 Data Dictionary Entities Updated by Mapping Compilers A-13
A.3.1.1 Map Compiler Statements A-13
A.3.1.2 Online Mapping Compiler Screens A-14

A.4 Critical Changes A-15
What is a Critical Change? A-15

What to Recompile A-15

A.5 Coordinated Use of the Online and Batch Compilers A-17
Appendix B. Using GlassTTY Terminals B-1
B.1 Overview B-3
Typesof Tables B-3

Steps .. B-3

Contents xiii

B.2 TTY Environment B-4

Cursor Position B-4
Attribute Byte B-4
Protected Fields B-4

Keys . B-4

Typical Cursor Movement Keys B-4

B.3 Restrictions B-6
B.4 Preparing Device Independence Statements B-7
Absolute Cursor Positions L B-12

B.5 RHDCTTBL JCL and Execution B-14
B51 OS/390JCL B-14
B52 VSE/ESA JCL B-15
B.53 VM/ESA JCL B-16
B.54 BS2000/0SD JCL B-17
Appendix C. User-Written Edit Modules C-1
Cl Overview C-3
Definition C-3

StepPs .. C-3
Specifying an Existing Moduleo C-3

C.2 Coding considerations C-4
C.2.1 Registers Immediately Prior to User Edit Module C-4
Registers 2-12 C-4
Registers1and 13-15 C-5

C.22 System Macros C-5
C.221 #START Macro C-5
Syntax ... C-5

Sample Instruction C-5

C222 #RTN Macro C-6
Syntax ... C-6

C.23 System DSECTS o C-6
C.3 Input Modules for Mapin Operations C-8
C31 Formatof Data C-8
Input Data C-8

Output Data C-8

C.3.2 Parameters Passed to Input Modules C-8
C.3.3 Macrosfor Input Modules C-9
C.34 Samplelnput Module C-10
What the Sample Input Moduledoes C-10

If the DateisinError C-10

C.4 Output Modules for Mapout Operations C-14
C41 Formatof Data C-14
Input Data. C-14

Output Data C-14

C.4.2 Parameters Passed to Output Modules C-15
C.4.3 Macros for Output Modules C-15
C.4.4 Sample Qutput Module C-15
Appendix D. Generating Edit and Code Tables D-1
D.1 HowtoDefineTables D-3
D.2 Stand-aloneTables D-4

xiv. CA-IDMS Mapping Facility

D.2.1 OVENVIEW D-4

Search Technique D-4
Arrangement of Valuesinthe Table D-5

Type of VauesintheTable D-6

Where are Load Modules Stored? L D-6

Linked vsUnlinked D-6
Compiling, Generating, Loading of maps D-6

Linked Stand-alone Tables D-6
Unlinked Stand-alone Tables D-7

D.22 Examples D-8
Examplel D-8
Example2 D-9
Example3 D-9

D.2.3 Use of the NOT FOUND Condition D-9
Exampleda D-9
Exampledb D-10
Exampledc D-10

D.3 Built-intables D-12
D.3.1 Overview D-12
Rules for Built-in Tables D-12
Compiling, Generating, and Loading D-12
Built-inTables D-12

D.3.2 Examples D-13
Examplel D-13
Example2 D-14
Appendix E. Estimating Pageable Map Storage E-1
E.1 Definition E-3
E.2 CdculationsUsed E-4
E.3 Estimating the Amount of Storage per MapPage E-5
Overview of Calculations E-5

E.3.1 Amount of Storage per Detail Occurrence E-5
Example E-5

E.3.2 Number of Detail Occurrences per Detaill Area E-6
Determining the Number of Lines Available at Runtime E-6
Example E-6

How Many Detail Occurrencesin a Detail Area? E-6

E.4 Determining the Number of Pages per PageableMap E-8
Appendix F. Alternative Maps F-1
F1 Overview F-3
F.2 Generating Alternative Maps oL F-4
SEPS . F-4

F.3 Generating and Assigning Alternate Map Tables F-5
F.3.1 GeneratingMap Tables F-5
Sample Alternative Map Table F-5
Theuseof Wildcards F-5

F.3.2 Assigning Map TablestoUsers F-6
Appendix G. PL/I| DML Statements for Pageable Maps G-1

Contents xv

G.1 OVEIVIEW . . . G-3

PL/I DML Statements G-3

G.2 DECLARE MAP . . . G4
Syntax .. G4

G.3 MAPIN . G5
Syntax ... G-5

G4 MAPOUT . . . G-8
Syntax .. G-8

G.4.1 STARTPAGE G-10
Syntax ... G-10

G.4.2 ENDPAGE G-11
Syntax .. G-11

Index X-1

xvi CA-IDMS Mapping Facility

How to Use This Manual

How to Use This Manual xvii

Who Should use this Manual?

This manual describes the capabilities of the CA-IDMS mapping facility and serves as
a reference tool for the CA-IDMS applications developer in designing maps.

xviii CA-IDMS Mapping Facility

What does it Describe?

It describes the online and batch methods of map-definition and provides an overview
of the interactions between the mapping facility, the Integrated Data Dictionary (IDD),
user-written programs, and Application Development System/OnLine (CA-ADS)
dialogs.

How to Use This Manual xix

What's Included

in Each Section?

There are thirteen sections and seven appendices:

Introduction (Chapter 1)
Overview of the CA-IDMS mapping facility and its features
Map Design Considerations (Chapter 2)

Discussion of the resources a map developer should consult while preparing maps,
including a discussion of design guidelines and standards

Automatic Editing and Error Handling (Chapter 3)

Discussion of the data-editing and error-handling features available for use with
CA-IDMS maps

Pageable M aps (Chapter 4)

Discussion of the creation and use of pageable maps

The Help Facility (Chapter 5)

Discussion of the creation and implementation of field- and map-level help
runtime Consider ations (Chapter 6)

Use and modification of maps by programs and ADS/OnLine dialogs
Online Mapping Compiler Overview (Chapter 7)

Discussion of initiating, sequencing through, suspending, and terminating online
mapping sessions

Online Compiler Reference (Chapter 8)

Discussion of online mapping screens and the options that the screens provide to
the map developer

Batch Compiler and Batch Utility Overview (Chapter 9)

Overview of batch compiler and utility functions and a discussion of map-related
entity occurrences (such as PANEL and MAP occurrences) from a batch compiler
perspective

Batch Compiler Coding Considerations (Chapter 10)

Discussion of batch compiler directives, coding and sequencing requirements, and
compiler verbs

Batch Compiler Statements (Chapter 11)

Discussion of all statements provided by the batch compiler for the definition of
map-related entity occurrences; includes statements for automatic panel definition
and for manual panel definition

Batch Compiler Execution and JCL (Chapter 12)

Discussion of batch compiler execution, JCL, and compiler reports and messages;
examples of batch source statements

Batch Utility Reference (Chapter 13)

xx CA-IDMS Mapping Facility

Discussion of statements provided by the map utility for use in generating and
deleting load modules, decompiling map-related entity occurrences, and generating
screen facsimiles; map utility JCL is also presented

Integrated Data Dictionary Mapping Entities (Appendix A)

Discussion of relationships between and creation and modification of panel
occurrences, map occurrences, load modules, schema and work records, elements,
and tables

Using Glass TTY Terminals (Appendix B)

Instructions for using video-display teletypewriter terminals with the mapping
facility

User-Written Edit Modules (Appendix C)

Discussion of calling conventions and usage rules for user-written edit modules,
and sample user-written edit modules for mapin and mapout operations

Generating Edit and Code Tables (Appendix D)

Discussion of the definition and use of edit and code tables for use by automatic
editing and error-handling; discussion of the differences between stand-alone and
built-in tables

Calculating Pageable Map Storage (Appendix E)

A method for calculating the amount of storage to specify at system generation for
pageable maps

Alternative Maps (Appendix F)

Discussion of the steps that are necessary to use the aternative map support
feature

PL1/DML Statements for Pageable Maps (Appendix G)
Discussion of the PL/I| DML statements used with pageable maps

How to Use This Manual xxi

For More Information

For more detailed information about the topics covered in this manual, refer to the
following manuals:

. CA-ADS Reference Guide

8 CA-ADSUser Guide

. CA-ADS Application Design Guide

» CA-IDMS Messages and Codes

» CA-IDMS DML Reference - Assembler
= CA-IDMSDML Reference - COBOL

» CA-IDMS DML Reference - PL/I

. CA-IDMS Transfer Control Facility

= CA-IDMSIDD DDDL Reference Guide

xxii CA-IDMS Mapping Facility

Understanding Syntax Diagrams

Look at the list of notation conventions below to see how syntax is presented in this
manual. The example following the list shows how the conventions are used.

UPPERCASE
OR
SPECIAL CHARACTERS

Represents a required keyword, partial keyword,
character, or symbol that must be entered
completely as shown.

lowercase

Represents an optional keyword or partial keyword
that, if used, must be entered completely as
shown.

underlined lowercase

Represents a value that you supply.

<«

Points to the default in a list of choices.

Towercase bold

Represents a portion of the syntax shown in
greater detail at the end of the syntax or elsewhere
in the document.

\ 4
v

Shows the beginning of a complete piece of
syntax.

\4
A

Shows the end of a complete piece of syntax.

v

Shows that the syntax continues on the next line.

\ 4

Shows that the syntax continues on this line.

\ 4

Shows that the parameter continues on the next
line.

»
>

Shows that a parameter continues on this line.

»— parameter —»

Shows a required parameter.

>—T: parameter :]—————>
parameter

Shows a choice of required parameters. You must
select one.

v

|— parameter J

Shows an optiona parameter.

»

i: parameter :‘
parameter

v

Shows a choice of optional parameters. Select
one or none.

»—v— parameter

Shows that you can repeat the parameter or
specify more than one parameter.

reter L&
»—vY— parameter

Shows that you must enter a comma between
repetitions of the parameter.

How to Use This Manual xxiii

Sample Syntax Diagram

Required portion of parameter
Optional portion of parameter
User-supplied value

Beginning of Required
the syntax parameter

Syntax continues
on another line

&

variable

Syntax continues on this line Comma reqgulred between repstition

Required parameter Repetition alfowed

Select one

v KEYWORD variable. |

variable
kivariableij
variable

Optional keyword

Select one or nane Portion of syntax

Defauit expanded elsewhere

»

v

End of the syntax

e
— KEYWORD

o
g

xxiv CA-IDMS Mapping Facility

Chapter 1.

Introduction to the Mapping Facility

11 Overview 1-3
111 What isthe Mapping Facility? 1-3
1.1.2 Online and Batch Capabilities 1-3
1.1.3 Input/output Operations 1-4
114 What'sinthisChapter? 1-4

12 TheOnline Compiler 1-5
121 How doesit Work? 1-5
1.2.2 What Functions can it Perfform? o L. 1-5
123 A SampleSession 1-5

1.3 The Batch Compiler and Utility 1-12

1.4 Automatic Editing and Error Handling 1-14

15 Alternative Maps 1-16

1.6 Terminals Supported by the Mapping Facility 1-18

Chapter 1. Introduction to the Mapping Facility 1-1

1-2 CA-IDMS Mapping Facility

1.1 Overview

1.1 Overview

1.1.1 What is the Mapping Facility?

A map is a formatted terminal screen used to communicate between an application and
atermina operator. The CA-IDMS mapping facility is used to define the layout of
maps. The mapping facility ssimplifies the development, storage, and use of
input/output (1/0) displays and fields.

. Development -- The mapping facility enables the map developer to:
— Use commands or screen prompts to simplify the definition of maps
— Take advantage of consistent procedures to establish fields on a map

— Predefine the characteristics of the data transmitted between the 1/O device
and program variable storage

— Use the mapping facility to specify links between a map and records
— Generate an automatic screen layout from a record definition

m Storage -- The mapping facility handles the storage and retrieval of map-related
entity occurrences and map load modules

m Use -- The mapping facility creates maps that can be integrated easily with dialogs
and programs

— Diaogs generated by the application development system, CA-ADS, use
CA-IDMS maps exclusively for screen 1/0 operations.

— Programs written in COBOL, PL/I, and Assembler can use maps for 1/0
transactions when appropriate Data Manipulation Language (DML) statements
are included in the code.

Note: References in this manual to user-written programs apply equally to CA-ADS
dialogs and host language programs unless otherwise noted.

1.1.2 Online and Batch Capabilities

The map developer can use the mapping facility to create and maintain maps in either
an online or batch environment as described below:

® The online mapping compiler is a convenient online tool for generating and
maintaining map-related entity occurrences and map load modules. A map
developer using the online compiler does not need to write code or execute JCL
routines. The mapping facility is integrated with other CA online systems.

® The batch compiler and utility are the batch equivalent to the online compiler.
The developer generates and maintains map-related entity occurrences by
submitting statements to the batch compiler. Map load modules are generated and
maintained by statements that are submitted to the batch utility.

Chapter 1. Introduction to the Mapping Facility 1-3

1.1 Overview

The online compiler can be used to modify most map-related entity occurrences and
load modules created by using the batch compiler and utility. The batch compiler and
utility can be used to modify any map entity occurrence or load module generated by
the online compiler.

1.1.3 Input/output Operations

At runtime, stored records that are associated with the map are bound to areas of
program variable storage that are defined by the CA-ADS dialog or application
program that uses the map. Values are transmitted on output and input operations:

= On output (mapout) operations, values in record elements used by the map can
be transmitted to the map along with any fixed character strings (that is, literal
fields) that are defined for the map. The amount of data that is transmitted is
determined by the runtime application and by specifications made for the map
during map-definition time.

= On input (mapin) operations, values that a user supplies and that the map is
prepared to receive are transmitted to program variable storage.

» For information about CA-IDMS 1/O modes and for programming considerations
that affect modes of /O, consult the CA-IDMS DML Reference - COBOL, CA-IDMS
DML Reference - Assembler, or the CA-IDMS DML Reference - PL/I.

1.1.4 What's in this Chapter?
This introductory section briefly discusses the components used to create and maintain
maps:
® The online compiler
» The batch compiler and utility
Additionally, the following runtime features that augment the use of maps at runtime
are discussed:
» Automatic editing and error-handling
» Alternative maps

Finally, a discussion of terminals supported by the mapping facility completes this
section.

1-4 CA-IDMS Mapping Facility

1.2 The Online Compiler

1.2 The Online Compiler

1.2.1 How does it Work?

The online mapping compiler facilitates map creation by supplying a set of screens
that prompt a map developer for map and map field specifications. The developer can
paint the screen automatically using the Autopaint feature or position the fields
manually. All the work is done using a terminal. The developer can modify and
redraw the map in one or more sessions until satisfied with the map.

The online compiler uses specifications made during a session to populate the data
dictionary with all relevant definitions and information. Many record-keeping
functions are performed internally by the online compiler for the map developer.

1.2.2 What Functions can it Perform?

The online compiler can be used to:
» Create map-related entity occurrences in the data dictionary

. Modify or delete map-related entity occurrences that were created either by online
or batch mapping

. Copy a map load module
® Generate map load modules
» Delete map load modules and dictionary entity occurrences

® Associate help text with the map

1.2.3 A Sample Session

The following figures illustrate an abbreviated online mapping compiler session. The
primary screens used during an online session are shown in this sample session. The
names and major functions of each screen are listed below:

®m The Main Menu, which is used to specify basic information about the map, is the
first screen in a session. The developer supplies the name and version number of
the map and the name and node of the dictionary to be used.

From this screen, the developer can:

— Either move to other screens to define more specific information about the
map such as general options, help text, the layout of the map, field
descriptions, or associated records

— Or, select an action to perform on the specified map from the action bar at
the top of the screen

For the purposes of this sample session, we will move through the screens to
create and define a map.

Chapter 1. Introduction to the Mapping Facility 1-5

1.2 The Online Compiler

For

The General Options screens are used to define general characteristics of the
map such as its title, the screen size, display and print options, attributes for
redisplayed fields, as well as to indicate whether automatic editing takes place.

The Map-Level Help Text Definition screen is used to associate help text with a
map. The help text itself resides in an IDD module.

The Associated Records screen is used to specify the records that contain the
elements that will populate the map.

At this point, the developer can choose to create the map automatically using the
Autopaint option or go to the Layout screen.

The Layout screen is used to layout the map. If the Autopaint option was
chosen, the screen initialy displays the layout created by the automatic map
painter. Otherwise, the developer can begin to layout the map as desired.

The Field Definition screens are used to define the specific information about the
field.

The seven screens used to expand on the field definition are:
— Field Definition
— Map Read/Write Options
— Additional Edit Criteria
— Field-Level Help Text definition
— Device-Dependent Options
— User-Defined Edit Modules
— Pageable Options

the Sample Session

Default values for specifications are used in the sample session unless otherwise
indicated. For detailed information on the screens, see Chapter 8, “Online
Mapping Compiler Reference” on page 8-1.

To move from option to option, <F5> is pushed; to move from screen to screen
within a given option, <F8> is pushed.

Specifying Basic Information

1-6 CA-IDMS Mapping Facility

1.2 The Online Compiler

Add Modify Compile Delete Display Switch

Dictionary name
Dictionary node

Command ===>

Map name
Map version . .

Screen

Copyright (C) 1972,1999 Computer Associates International, Inc.

Enter Fl=Help F3=Exit F10=Action

CA-IDMS Online Map Compiler

Computer Associates International, Inc.

e EYHTST9
e 1
DOCANWK

General options

Map-Level help text definition
Associated records

Layout

Field definition

Ol wWN =

What is Entered?:

The developer enters the name and version number of the map

as well as the dictionary name and node. The developer also enters a 1 to indicate
that options are specified.

Specifying General Options

Map name: EYHTST9

Description. . .

Screen sizes (/)

Message prefix .
Display options
Alarm options

Print options
(3280-type)

Automatic editing (/)/
Decimal point is comma (/) . .

....... DC
Unlock keyboard (/). /
Turn off MDT (/) /

Fl=Help F3=Exit F4=Prev F5=Next F6=Preview F8=Fwd

General Options Page 1 of 2
Version: 1

1 1. Standard 2. Pageable 3. Videotex

/ 24 by 80 /32 by 8 /43 by 80 / 27 by 132

Sound alarm on mapout.
Sound alarm on edit error (/) . . .
Print screen when displayed (/). . . . _
Line control 1 1. No formatting 3. 64 chars per Tine
2. 40 chars per Tine 4. 80 chars per Tine

What is Entered?:

The general options associated with the map are entered using

the General Options screen. The General Options screen has two pages.

Chapter 1. Introduction to the Mapping Facility 1-7

1.2 The Online Compiler

The first page is shown above and the second page is shown below. To move
between the two, use <F7> and <F8>.

General Options Screen - Page 2

General Options Page 2 of 2
Map name: EYHTST9 Version: 1

Attributes for redisplayed fields In error Not in error

Display intensity 1. Normal 2. Bright 3. Hidden 2 _

Highlighting 1. Blink 3. Underline _ _
2. Reverse video

Color 1. White 4. Blue 7. Turquoise . . 2 _
2. Red 5. Yellow 8. Default
3. Green 6. Pink

Entry options 1. Protect 2. Unprotect _ _
1. Numeric 2. Alphanumeric

1. Set MDT 2. Reset MDT

Detect with light pen (/) /

Tab key selection (/)
DC366804 Select map options

Fl=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd

Defining Map-level Help

Map-Level Help Text Definition Page 1 of 1
Map name: EYHTST9 Version: 1
Help name: Help key: PFO1 Drop Help (/) _
Window format 1 1. Half 2. Full
Origin of help text . . 1 1. No text
2. Module
Version 1

DC366306 Select help text options

Enter Fl=Help F3=Exit F4=Prev F5=Next F6=Preview

What is Entered?: To associate help with a map, the developer specifies:

® The name of the load module that contains the help information in the Help name
field

1-8 CA-IDMS Mapping Facility

1.2 The Online Compiler

m The function key that invokes map-level help in the Help key field

. Whether the help is displayed in a half or full window in the window format field

= The name of the IDD module that contains the help text for this map in the Origin
of help text field

Specifying the Associated Records

Associated Records Page 1 of 1
Map name: EYHTST9 Version: 1

Record name Version Role name Drop
1 EMPLOYEE 100 (i)
2 DEPARTMENT 100 _
3 —
4 —
5 —
6

7

DC366601 Map options processed successfully

Fl=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd F8=Fwd F9=Autopaint

What is Entered?: The developer enters the names and version numbers of the
records associated with the map.

Creating a Map Automatically

Chapter 1. Introduction to the Mapping Facility 1-9

1.2 The Online Compiler

Automatic Screen Painter Page 1 of 3
Map name: EYHTST9 Version: 1
Select (/) Element Level and Name Occurs

01 EMPLOYEE VERSION 0100
02 EMP-ID-0415
02 EMP-NAME-0415
03 EMP-FIRST-NAME-0415
03 EMP-LAST-NAME-0415
02 EMP-ADDRESS-0415
03 EMP-STREET-0415
03 EMP-CITY-0415
03 EMP-STATE-0415
03 EMP-ZIP-0415
04 EMP-ZIP-FIRST-FIVE-0415
04 EMP-ZIP-LAST-FOUR-0415
02 EMP-PHONE-0415
02 STATUS-0415
/ 02 SS-NUMBER-0415

~~ ~

NSNS

DC365503 Select the fields that are to appear on the screen

Fl=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

What is Entered?: The developer selects the fields (/) that will be displayed on the
map. Often, the list of elements is displayed on more than one screen as illustrated
here.

Previewing the Map

EMP-1D-0415

EMP-FIRST-NAME-0415

EMP-LAST-NAME-0415

EMP-STREET-0415

EMP-CITY-0415

EMP-STATE-0415

EMP-ZIP-0415
SS-NUMBER-0415

DEPT-ID-0410

Enter Fl=Help F2=Select F3=Exit F4=Prev F5=Next F6=Preview F8=Bottom
F9=SetCursor F10=Deselect F11=AltKeys

What is Entered?: The online compiler uses the fields the developer selected to
create a map which can be previewed.

1-10 CA-IDMS Mapping Facility

1.2 The Online Compiler

Modifying the Map: The developer can then add, modify, or delete the fields as

appropriate.

Compiling the Map

Add Modify Compile Delete Display Switch

Dictionary name
Dictionary node

General options

Layout
Field definition

s wWwN =

Command ===>
Enter Fl=Help F3=Exit F10=Action

1 1. Compile
2. View Messages |1ine Map Compiler
F3=Exit es International, Inc.
Map name EYHTST9
Map version 1

Map-Level help text definition
Associated records

What is Entered?: To compile the map, the developer returns to the main menu

and selects the Compile option from the action bar.

Chapter 1. Introduction to the Mapping Facility 1-11

1.3 The Batch Compiler and Utility

1.3 The Batch Compiler and Utility

The batch compiler and utility can be used to perform al of the operations that are
available through the online compiler:

Batch Compiler Functions

Creates, modifies, or deletes entity occurrences for panelsin the data
dictionary; panel occurrences predefine screen layouts for maps

Creates, modifies, or deletes entity occurrences for maps in the data dictionary
based on existing panel occurrences and on specifications made by using the
CA-IDMS mapping language

Batch Utility Functions

Generates or deletes map load modules in the load area of the data dictionary

Produces map and panel reports for any map generated either by the mapping
facility

Produces a facsimile of a map or panel format on hard copy from the map or
panel definition

Decompiles maps generated by either the batch or online compiler

Performing Online Compiler Operations: A map developer can use the batch
compiler and utility to perform all of the operations available through the online
compiler. Map developers often prefer to use the batch compiler and utility to perform
the following operations:

Modify or copy maps -- Developers who are more familiar with or prefer syntax
can quickly decompile a map into source, alter that source, and then submit the
altered source for compilation.

Create several similar maps in one session -- The developer can copy the source
for one map several times, alter the various copies of that source, and then submit
all of the altered map-definitions for compilation in one JCL operation.

Performing Non-online Compiler Operations: Additionaly, the batch compiler
and utility can be used to perform the following operations that the online compiler
does not provide:

Migrate a map from one dictionary to another -- The developer uses the batch
utility to decompile a map and then uses the batch compiler to recompile the
syntax to another dictionary.

Decompile entity occurrences that store the current map-definition -- The
developer uses the batch utility to produce the source definition for a map from
the related entity occurrences for the map.

Produce reports -- The developer receives reports on batch compiler and utility
operations.

1-12 CA-IDMS Mapping Facility

1.3 The Batch Compiler and Utility

m Create maps with specific support for multiple devices -- The developer uses
the FOR device-code-a option of the MAP1 MFLD and PFLD clauses to create

the maps.
® Create maps for devices larger than the one on which a developer is working

Chapter 1. Introduction to the Mapping Facility 1-13

1.4 Automatic Editing and Error Handling

1.4 Automatic Editing and Error Handling

Purpose: The CA-IDMS mapping facility provides automatic editing and
error-handling capabilities for use by CA-IDMS maps. Automatic editing and
error-handling simplify data validation, 1/0O data conversions, and redisplay of input
errors when a map is displayed by a dialog or program.

Automatic editing and error-handling for maps and fields can be enabled using either
the batch or online compiler as described below:

» Automatic editing simplifies data validation and 1/O data conversions:

— Data validation is performed on input. For example, automatic editing
could be used to validate that a terminal operator has supplied a valid state
name (such as Alabama) in the STATE field on a map that displays employee
address data.

— Data conversions are performed on input and output. For example,
automatic editing could be used to display the value Alabama when 01 is
stored for the STATE field.

» Error handling simplifies the redisplay of input errors. Error handling, when
enabled for a map, prepares a map to be redisplayed when an input error is
detected. Input errors can be highlighted for the operator's attention, and error
messages can be displayed.

Example: The following figure illustrates operations performed by automatic editing
and error-handling at map runtime. The following occurs when the operator keys data
in fields on the sample HILT TECHNOLOGIES, INC. screen and presses a control
key:

1. Automatic editing evaluates the data supplied by the operator, using automatic
editing criteria specified for each field.

The STATE-E edit table that is defined for the sample STATE field in the
following figure lists valid two-character state abbreviations for the STATE field.
The values in the STATE-E table are used to determine that WU is not a valid
value for the STATE field.

2. The CA-ADS dialog or application program redisplays the map using
error-handling attributes. Error handling redisplays the sample map with the
following changes:

® The incorrect data in the STATE data field is highlighted in BRIGHT.
» The error message NOT A VALID STATE CODE is displayed in the
message field for the map.

»> For more information on automatic editing and error-handling, see Chapter 3,
“Automatic Editing and Error Handling” on page 3-1.

1-14 CA-IDMS Mapping Facility

1.4 Automatic Editing and Error Handling

HILT TECHNOLOGIES,INC
EMPLOYEE PERSONAL DATA

LAST NAME: williams
FIRST NAME: katie

SCREEN

STREET ADDRESS: 245 maple
CITY: milwaukee
STATE: wu ZIP: 54512

DEPARTMENT: finance
DATE QF HIRE: 10/11/80

PRESS PF2 TO VIEW DEPT INFORMATIO

Y

STATE-E EDIT TABLE

AL
AK

MAPIN/ MAPQUT / Sty

AUTOMATIC
EDITING AND
ERROR HANDLING

1

HILT TECHNOLOGIES,INC
EMPLOYEE PERSONAL DATA
LAST NAME: williams

FIRST NAME: katie

SCREEN

STREET ADDRESS: 245 maple
CITY: milwaukee
STATE: wi ZIP: 54512

DEPARTMENT: finance
DATE OF HIRE: 10/11/80

* NOT A VALID STATE CODE
PRESS PF2 TO VIEW DEPT INFORMATION

wy

Incorrect field
redisplayed with
incorrect-field
attributes

Error Message

Chapter 1. Introduction to the Mapping Facility 1-15

1.5 Alternative Maps

1.5 Alternative Maps

Purpose: The mapping facility allows the use of aternative maps. This feature is
useful in any application in which a dialog or program should show different copies of
the same map to different users. When the alternative map feature is used, each user
sees the appropriate copy of a given map.

Generating Alternative Maps: The developer can use the online mapping facility
to generate an aternative copy of a map.

»> For more information on defining and using alternative maps, see Appendix F,
“Alternative Maps’ on page F-1.

Possible Applications

® Users who speak different languages can be shown versions of maps in their own
languages.

For example, The following figure shows an English-language map and its
Spanish-language alternative. The name of the English-language map,
ENGMAPO1, is changed to SPNMAPOL; the title of the map is changed from
EMPLOY EE INFORMATION SCREEN to INFORMACION SOBRE
EMPLEADOS.

» Users with different levels of expertise or authority can be shown versions of
maps that display only the information those users are qualified to view.

For example, users who are not authorized to see salary information would not be
shown the SALARY field on a map; a version that shows the SALARY field
would be displayed to authorized users only.

1-16 CA-IDMS Mapping Facility

1.5 Alternative Maps

DATA
DICTIONARY

O execute
dialog
CEXDA200
A ———

EMPLOYEE INFORMATIO!
SCREEN

DDLDCLOD AREA

NAME......
ADDRESS ___
TELEPHONE:

()

.
mapout ENGMAPO1 DIALOG CEXDA200

MAP: ENGMAPQ1

Qriginal Spanish
ENGMAFO1 SPNMAPO1 MAP
ENGMAPO2 SPNMAPO2 ENGMAFPO1
ENGMAPG3 SPNMAPO3
O execule
dialog
INFORMACION SOBRE
CEXDAZ200 EMPLEADOS
—— e ": MAP
NOMEBRE..____ mapout SPNMAPO1
DIRECCION....
TELEFONO: SPNMAPO1

()

Chapter 1. Introduction to the Mapping Facility 1-17

1.6 Terminals Supported by the Mapping Facility

1.6 Terminals Supported by the Mapping Facility

The following terminals are supported by the CA-IDMS mapping facility:

Terminal Mapping Considerations

3270-type Runtime mapping uses attribute bytes to establish individual
fields on the screen. Fields are displayed on the screen with
the attributes available on the terminal. Attributes such as
color and underscoring are not available on a 3270-type
terminal.

3279-type Runtime mapping uses attribute bytes to establish fields on the
screen. Fields are displayed on the screen with the attributes
available on the terminal. Display attributes such as color and
underscoring are available on 3279-type terminals.

Glass TTY -type The screen is processed as a single wraparound data line;
however, runtime mapping displays data so that it appears to
the operator that fields are posted to the map as on 3270-type
terminals. Fields are displayed according to the screen's
default display options, most 3270- and 3279-type display
attributes are unavailable.

» For more information about attributes and attribute bytes, see 2.4.2, “Attributes for
Fields” on page 2-13.

1-18 CA-IDMS Mapping Facility

Chapter 2. Map Design Considerations

21 OVEIVIBW 2-3
2.2 Preiminary Information Gathering 2-4
2.2.1 Application-specific Information L. 2-4
2.2.2 Site-specific Information 2-4
23 Designing Maps 2-6
2.3.1 General Considerations 2-6
232 Control Key Standards 2-7
2.3.3 Naming Conventions 2-7
234 Layout and Display Standards L. 2-9
2.35 Pageable Map Considerations 2-10
24 Designing Map Fields 2-12
241 Typesof Fieds 2-12
24.2 Attributesfor Fields 2-13

Chapter 2. Map Design Considerations 2-1

2-2 CA-IDMS Mapping Facility

2.1 Overview

2.1 Overview

Most applications use more than one map to supply information to and request
information from the user. A well-planned application uses maps that make sense to
terminal operators and that take advantage of features provided by the mapping
facility.

Map developers should consider the following topics, which are described below, when
creating maps:

® Preliminary information gathering

= Designing maps

» Designing map fields

Chapter 2. Map Design Considerations 2-3

2.2 Preliminary Information Gathering

2.2 Preliminary Information Gathering

Before beginning work on maps, the map developer should be familiar with the
application for which maps are needed and with the site at which the maps are used.
Examples of application- and site-specific information are presented below.

2.2.1 Application-specific Information
To generate efficient maps, the developer should be aware of the following
information about the application:

= The amount and type of information the entire application will request through
mapped displays. Applications generally require more than one map to request
and/or present information efficiently.

m The records needed by each map and any attendant information:;

— The name of each record element within the record that the map displays or
updates as data fields.

— The external picture (if any) defined for each record element. The length of
a data field is determined by the external picture of the associated element.

— The name of the edit table (if any) stored in the data dictionary for each
record element and the values/ranges that the table defines as either valid or
invalid.

— The name of the code table (if any) stored in the data dictionary for each
record element and the conversions that the table performs.

»»> External pictures, edit tables, and code tables are discussed in Chapter 3,
“Automatic Editing and Error Handling” on page 3-1.

The developer can determine how many maps need to be designed and can begin to
place fields on each map based on the information summarized above.

2.2.2 Site-specific Information

The map developer should aso be familiar with the resources that are available at the
Site.
Existing Site Information

» Names and version numbers of any existing maps that could be adapted easily
for the application being developed

® Name of the dictionary used for map storage

= Name of the dictionary node

2-4 CA-IDMS Mapping Facility

2.2 Preliminary Information Gathering

Existing Conventions and Standards: Many sites define standards that establish
guidelines for map developers. These standards can address the following topics:

= Naming conventions for map-related entities, as presented in 2.3.3, “Naming
Conventions’ on page 2-7, later in this section

» Map layout standards, as discussed in 2.4, “Designing Map Fields’ on
page 2-12 later in this section

Different Types of Terminals: For sites at which operators use more than one
type of terminal, the developer should be familiar with the types of terminals that are
used when the maps are displayed to operators. The map developer should take into
account the following considerations:

m Termina display size differs from termina to terminal; a map designed for display
on more than one type of termina should be no wider than the width of the
narrowest terminal.

m Certain attributes available on 3279-type terminals, such as colors and
underscoring, are not available on 3270-type or glass TTY terminals. Certain
3270-type attributes, such as the ability to display in bright mode or to suppress
numeric input, are not available on glass TTY terminals.

® Names of control keys (for example, PA1 or PF1) can differ from terminal to
terminal. Screens that name control keys should use names that the operator will
encounter on all terminals that can display the map.

Online Compiler Options: Finally, a map developer planning to use the online
mapping compiler to generate maps should contact the DBA for the online mapping
compiler sysgen options in effect at the site.

» See CA-IDMS System Generation for more information on available options.

Chapter 2. Map Design Considerations 2-5

2.3 Designing Maps

2.3 Designing Maps

Successful Layouts: The layout of a map should make the map easy to use. A
successful map layout exhibits the following characteristics:

» Consistency — Entities such as fields, headings, |abels, responses, messages, and
control keys should have the same meaning or effect throughout the application.
The meaning or effect need not be identical for every map but should be
consistent within the broader confines of the system.

Message and response fields should appear in the same location on each map in
an application. These fields should remain standard for all applications at a site.

® Supportiveness — The reactions of the system should make it easy for the
operator to handle normal situations. For example, displayed informational and/or
error messages should be meaningful.

What's Included in this Section: These standards, which are discussed separately
below, can be adapted as necessary to conform to the needs of a particular site or
application:

® Genera considerations

» Control key standards

= Naming conventions

» Layout and display standards
» Pageable map considerations

2.3.1 General Considerations

The general considerations discussed below promote the design of efficient maps.
m Consistency — Spelling and abbreviation of terms should be consistent.
n Clarity — Messages and prompts should be clear and understandable to users.

. Control keys— Termina operators should be able to initiate processing by
providing the requested data and then pressing a control key.

® Program logic — Operators should not be required to make decisions that could
be incorporated into program logic.

» Automatic editing — Features provided through automatic editing and
error-handling should be used whenever possible. Correct and incorrect fields
should be redisplayed consistently. For example, a particular color or display
intensity can be used systematically to draw the operator's attention to fields that
contain input errors.

» Standards for pageable maps — At sites that use pageable maps, map layout
standards should be developed that apply equally well to pageable and
non-pageable maps.

2-6 CA-IDMS Mapping Facility

2.3 Designing Maps

» For more information on pageable maps, see 2.3.5, “Pageable Map
Considerations’” on page 2-10, later in this section.

2.3.2 Control Key Standards

Identify Control Keys: The CA-ADS dialog or application program that uses a
map defines control keys for use with the map. If possible, the control keys available
to a map operator should be documented by literal fields on a map. The operations
performed by the control keys should also be documented for the operator.

When different terminals are available to termina operators and control key names
differ from keyboard to keyboard, each control key name should be documented so
that operators do not have to memorize lists of key equivaencies.

Use Control Keys Consistently: Control keys should also be used consistently.
For example, the same key should be used to take the operator to the next map in each
application. A sample standard for control key usage is presented in the table below.

Sample PF Key Standards

PF Key Function

PF1 Help

PF3 Exit

PF7 Display previous page
PF8 Display next page
PF12 Print

2.3.3 Naming Conventions

Why use Conventions?: It is advisable for a site to develop naming conventions
for map-related entity occurrences. While mnemonic names work well at sites that
have a few basic applications, mnemonic names become difficult to use as the number
and complexity of applications increase.

Adhering to naming conventions makes it easier to construct names, easier to
reconstruct names if one is forgotten, and easier for different users to determine the
purpose of a map or map component. Naming conventions facilitate the construction
of aternative map tables when alternative maps are required.

Sample Naming Conventions: The naming conventions presented below illustrate
a sample system for giving names to map-related entities. PANEL and TABLE
occurrence names can be from 1 through 32 characters in length. Names of MAP
occurrences can be from 1 through 8 characters in length. The sample naming
convention specifies 8-character names since it is intended for MAP occurrences as
well as for PANEL and TABLE occurrences.

Chapter 2. Map Design Considerations 2-7

2.3 Designing Maps

»> For more information on PANEL occurrences, see 9.2.1, “Panels and Maps’ on
page 9-5.

»> For more information on TABLE occurrences, see Appendix D, “Generating Edit
and Code Tables” on page D-1.

Position Meaning Value Description
1 Source of C Computer Associates entity
entity
2-3 Application EX Example application
FS Financial system application
SY System application
4 Type of entity L Panel occurrence
M Map occurrence
C Table occurrence (code table)
E Table occurrence (edit table)
5 Specid E English-language application
information F French-language application
G German-language application
S Spanish-language application
6-8 Identification XXX
of entity

Sample Names: The following sample nhames demonstrate the naming conventions
described in the table above:

. CEXME104 names a CA map that is used in a sample application. Literals are in
English. The number 104 identifies this map.

. CEXM G104 names a copy of map CEXMEL04 that contains German literals.
Map CEXMG104 is an alternative for map CEXME104 and is used instead of
CEXME104 when alternative maps are supported at the site and an operator with
the GERMAN user type uses the map.

» CEXLEZ221 names a Computer Associates panel that is used in a sample
application. Literals are in English. The number 221 identifies the panel.

. CEXCFWRB names a Computer Associates code table that is used in a sample
application. The decoded values in the code table are in French. The letters
WRB identify the code table.

It is often useful to integrate map-naming conventions for map-related entities with
conventions used for dialogs and programs.

2-8 CA-IDMS Mapping Facility

2.3 Designing Maps

2.3.4 Layout and Display Standards

Layout and display standards promote the creation of consistent maps. The following
considerations should be kept in mind when designing map layout and design
standards.

Associate Areas with Particular Uses: Each specific area of a map should be
devoted to a particular use. For example, the top five lines of the screen could be
reserved for product and title information and the bottom five for map and control key
information.

Display like Fields in the Same Location: Similar fields should be displayed
in the same location and with consistent display attributes on all maps. A given
site usually uses the same or similar fields on several maps. For example, message
fields and titles are included on most maps, and should be presented consistently.

Limit the Number of Fields on a Screen: The amount of data transmitted down
aline is effected by the number of fields on a map. This can effect line contention
and should be considered when designing a map. Do not do borders or one-byte
literal fields.

Handle Operations and Prompts Consistently: Frequently used operations
or prompts should be handled consistently. For example, yes and no responses
should be requested in the same way on every map.

Handle Default Values Consistently: Consistent methods should be developed
for indicating default values. For example, an asterisk (*) or a special display color
might be used to identify the default value for a list of options. A default entry for a
data field might be specified by a literal field adjacent to the data field.

Standardize Map Templates: A standard map template should be used for
each type of map. For example, many applications prompt the operator to select an
item from amenu. A template for this type of screen is different than a template for a
screen that requests words and numbers from a user. The following considerations
apply to the design of atemplate:

» A map becomes cluttered when it contains too many map fields
® Felds are easier to read when double spaced

» Data fields are more visible when all data fields for the map begin in the same
column

m Use of bright or attention-drawing fields increases the map's effectiveness

® The cursor should be in the position most likely to be used for data entry when
the map is first displayed at a terminal

= When using the TAB key to move to the next field, the sequence of fields should
match the most common or logical pattern used for data entry

Chapter 2. Map Design Considerations 2-9

2.3 Designing Maps

2.3.5 Pageable Map Considerations
The CA-IDMS mapping facility provides a format for pageable maps, as shown below.
The format for pageable maps should be consistent with the formats of other maps
designed at a site, making pageable maps easier for operators to use.

Sample Pageable Map

EMPLOYEE PERSONAL DATA

EMPLOYEE NAME: JANE FERNDALE

EMPLOYEE NUMBER: 0032 SOCIAL SECURITY NUMBER: 034-56-7890
EMPLOYEE NAME: TOM FITZHUGH

EMPLOYEE NUMBER: 0081 SOCIAL SECURITY NUMBER: 112-34-5678
EMPLOYEE NAME: GEORGE FONRAD

EMPLOYEE NUMBER: 0045 SOCIAL SECURITY NUMBER: 092-34-7890
EMPLOYEE NAME: ROBIN GARDNER

EMPLOYEE NUMBER: 0053 SOCIAL SECURITY NUMBER: 022-34-4444
EMPLOYEE NAME: JENNIFER GARFIELD

EMPLOYEE NUMBER: 0003 SOCIAL SECURITY NUMBER: 021-99-4516
PAGE: 0004

Components of Pageable Maps
® The header area (optional) is located across the top of the screen.
m The footer area (optional) is located across the bottom of the screen.
» The detail area (required) is located across the middle of the screen. The fields
that are defined in the detail area make up the detail occurrence for the map.

The header and footer areas provide a frame for the detail area.

»»> For more information on the areas and detail occurrences for pageable maps, see
Chapter 4, “Pageable Maps’ on page 4-1.

Considerations
® The size of header and footer areas for pageable maps should be specified.

® The header area for a pageable map should contain the same type of information
as header areas for other pageable maps. For example, fields that identify the
purpose of a map (such as the title) are typically placed in the header area of a
pageable map.

» The footer area for a pageable map should be consistent with footer areas for
other pageable maps. For example, fields that document control keys are often
placed in the footer area.

2-10 CA-IDMS Mapping Facility

2.3 Designing Maps

Note: At runtime, the footer area floats up to just below the detail area.
Therefore, it may not appear in the exact location where it was defined originally.

® The layout of fields in each area of a pageable map is affected by the following
considerations:

— A message field should be located as follows:

— In the header or footer area, if the most important messages for the
map are generated by the ADS DISPLAY MESSAGE command and/or
by automatic editing in an error cycle

— In the detail area, if messages are not generated by the ADS DISPLAY
MESSAGE command or by automatic editing in an error cycle

At runtime, the single message field that is defined as part of the detail
occurrence is mapped out once in each occurrence in the detail area.

— A page field can be included in either the header or footer area for a pageable
map.

— Fields in the detail area (that is, the detail occurrence) repeat at runtime as
many times as is necessary to display the data retrieved by the map. A detail

area that takes up five lines cannot be displayed as many times on the screen
as a detail area that takes up two lines.

Additionally, the amount of storage specified for runtime pageable map
sessions is influenced by the number of lines specified for the detail
occurrence of a pageable map.

» For information on pageable map storage, see Appendix E, “Estimating
Pageable Map Storage” on page E-1.

Chapter 2. Map Design Considerations 2-11

2.4 Designing Map Fields

2.4 Designing Map Fields

What is a Map Field?: A map field is an area on a map that is used to
communicate with the terminal operator. For example, a field might be used to collect
information from an operator or to provide instructions about the map.

Most maps contain several map fields. When designing map fields, the following
topics, which are discussed below, should be considered:

. Types of fields

m Attributes for fields

2.4.1 Types of Fields

Each map field must be designated as either a literal, data, message, page, or response
field. The field designation determines the functions that a field can perform:

Type of field Function

Literal Displays a predefined literal string that provides a title,
prompt, or other information to the terminal operator

Data field Displays the value (if any) of the record element associated
with the field and optionally allows the operator to input data.

Message field Displays messages generated by an application program or by
the automatic error-handling facility. Error messages and
automatic error-handling are discussed in Chapter 3,
“Automatic Editing and Error Handling” on page 3-1. A map
message field is associated with the system $SMESSAGE field.

Page field Pageable maps only - displays the current page number and
permits the operator to request the next page to be displayed.
A page field on a pageable map is associated with the system
$PAGE fidld.

Response field CA-ADS only - alows the operator to select an ADS/OnLine
response process. A map response field is associated with the
system $RESPONSE field.

Required Fields: When defining a data field, the developer specifies whether the
field isarequired field. Operators must supply input in data fields designated as
required. Failing to enter data in a required field constitutes an input error.

2-12 CA-IDMS Mapping Facility

2.4 Designing Map Fields

2.4.2 Attributes for Fields

What is an Attribute?: An attribute is a characteristic of a map field provided by
the terminal. Different characteristics can be assigned to fields on a map. For
example, the BRIGHT attribute is assigned to fields that should be displayed at an
intensity that is brighter than normal. The BLINK attribute is assigned to fields that
should blink at runtime.

When are Attributes Specified?: The Genera Options screen (page 2) is used to
assign attributes to map fields that are applied during error cycles in the runtime
system.

All other attributes are assigned to the fields using the field definition screens. If the
developer does not specify attributes for a field, default attributes are used for the
field.

The field attributes defined using the online compilers can be overridden by the
program and dialog processes that use the map.

»> For a description of commands that modify map attributes, refer to the CA-ADS
Reference Guide or appropriate CA-IDMS DML Reference.

When do Attributes take Effect?: The attributes for a field take effect when the
field is mapped out to a screen at runtime. An attribute byte is a single-character,
nondisplayable byte positioned at runtime at the coordinate immediately preceding a
map field. Runtime mapping uses information contained within the attribute byte to
determine the appearance and characteristics of the field.

Attributes on 3270s and 3279s: Attributes provided by 3270- and 3279-type
terminals are listed in the table below:

Attribute Description
ALPHANUMERIC/ ® An ALPHANUMERIC field can contain any
NUMERIC characters.

A NUMERIC field can contain periods and minus
signs, as well as numbers in the range 0-9.

PROTECTED/ » A PROTECTED field does not accept data from a
UNPROTECTED terminal operator.
® An UNPROTECTED field accepts data from the
operator.
SKIP/NOSKIP m SKIP specifies that the operator cannot tab to the
given field.

B NOSKIP specifies that the operator can tab to the
start of the field; the field must be
UNPROTECTED.

Chapter 2. Map Design Considerations 2-13

2.4 Designing Map Fields

Attribute Description
DETECTABLE/ » DETECTABLE specifies that the field is
NONDETECTABLE selector-pen (light-pen) detectable.

» NONDETECTABLE specifies that the field is not
detectable with a selector-pen.

DISPLAY/BRIGHT/ m DISPLAY specifies that the contents of a field
DARK appear on the screen at normal intensity.

®» BRIGHT specifies that the contents of a field
appear at high intensity.

» DARK specifies that the contents of a field are not
visible on the screen at runtime.

MDT/NOMDT n MDT specifies that a field is marked as modified
(the modified data tag is set on), whether or not a
terminal operator enters data in it.

® NOMDT specifies that a field is marked as
modified only if an operator enters data in it.

On a mapin operation, only those fields with MDT set
on are automatically moved into program variable
storage.

DELIMIT/ NODELIMIT . DELIMIT inhibits entry of data that contains more
characters than specified by the external picture for
the field.

» NODELIMIT does not inhibit entry of excess
characters. The operator can enter characters in a
field up to the space before the next map field.

SKIP DELIMIT At runtime, when the operator enters data in the last
character position of the field assigned the SKIP
DELIMIT attribute, SKIP DELIMIT causes the cursor to
tab automatically to the next UNPROTECTED field.

Attributes on a 3279 ONLY: The following map field attributes are available on
3279-type terminals only.

Note: Three of these attributes, BLINK, REVERSE VIDEO, and UNDERSCORE,
are mutually exclusive. For example, neither REVERSE VIDEO nor UNDERSCORE
can be assigned to a field for which the BLINK attribute is defined.

Attribute Description
BLINK/NOBLINK m BLINK specifies that the field blinks.
® NOBLINK specifies that the field does not blink.

2-14 CA-IDMS Mapping Facility

2.4 Designing Map Fields

Attribute

Description

NORMAL VIDEO/
REVERSE VIDEO

= NORMAL VIDEO specifies that the color of the
field and of the background are not reversed.

® REVERSE VIDEO specifies that the colors are

reversed.
UNDERSCORE/ » UNDERSCORE specifies that the field is
NOUNDERSCORE underscored.
= NOUNDERSCORE specifies that the field is not
underscored.
BLUE/RED/PINK/ Any one of these color attributes can be assigned to a

GREEN/TURQUOISE/

YELLOW/WHITE/
NOCOLOR

field.

NOCOLOR specifies that the default display color for
the termina is used.

Default Values for Attributes

Literal Fields Variable Fields
NUMERIC ALPHANUMERIC
PROTECTED UNPROTECTED
SKIP NOSKIP
NONDETECTABLE NONDETECTABLE
DISPLAY DISPLAY
NOMDT NOMDT
NOBLINK NOBLINK
NORMAL VIDEO NORMAL VIDEO
NOUNDERSCORE NOUNDERSCORE
NOCOLOR NOCOLOR

Chapter 2. Map Design Considerations 2-15

2-16 CA-IDMS Mapping Facility

Chapter 3. Automatic Editing and Error Handling

3.1 Automatic Editing 33
32 Error Handling 35
3.3 Enabling Automatic Editing and Error Handling 3-6
331 Overview 3-6
332 Default Values 3-6
333 Map-level Editing 3-6
3.34 Fied-level Editing 3-6
3.4 Automatic Editing Criteria 3-8
341 Overview 3-8
3.4.2 Display Characteristics 39
343 Data Conversion 39
34.4 Input Verification 3-10
345 Interna Pictures 3-10
34.6 Externa Pictures 312
34.6.1 Implicit External Pictures L. 313
3.4.6.2 Explicit Externa Pictures 315
347 Editand Code Tables 3-20
3471 Overview 3-20
3472 VauesinEditand Code Tables 321
3473 Edit TableVaues 321
3474 Code TableVaues 3-21
348 Enablingtables 324
3.5 Error-Handling Criteria 3-27
3.5.1 Attributes for Correct and/or Incorrect Input 3-28
352 Error Messages 3-28
353 Alarm Statuson Input Error L 331
3.6 Automatic Editing a Runtime L 3-32
3.6.1 Mapin Operations 3-32
3.6.1.1 Automatic Editing on Mapin for Non-pageable Maps, Headers, and
Footers 3-33
3.6.1.2 Automatic Editing on Mapin for Pageable Maps 3-34
3.6.2 Mapout Operations 335
3.7 Error Handling & Runtime, 3-36

Chapter 3. Automatic Editing and Error Handling 3-1

3-2 CA-IDMS Mapping Facility

3.1 Automatic Editing

3.1 Automatic Editing

What is Automatic Editing?: The automatic editing capability of the CA-IDMS
mapping facility is used to edit and validate data entered in map data fields. With
automatic editing, a map can tolerate greater variation in operator input, making it
easier for the terminal operator to use.

For example, if month values are stored as 2-digit numbers (01 through 12) but the
terminal operator prefers to see the month values spelled out in words (for example,
January, February), automatic editing is used to translate spelled-out months into their
numeric equivalents. The map developer can thus create a map that requests
spelled-out months but stores their equivalent numeric values.

Editing Input: Automatic editing can perform any of the following operations on
input:

» Verify that the terminal operator has entered data in al fields for which input
is required

» Validate terminal operator input based on an external picture and a verification
(edit) table

. Convert input to storage format based on a code table associated with a field
m Convert input to internal format using both the internal and external picture
» Validate that an input buffer contains data (content required)
Editing Output: Automatic editing can perform the following optional operations
on output:
» Decode data based on a code table associated with a field

» Convert data to external format for display based on both the external picture
and internal pictures

®» Validate that a buffer contains valid data and aborts if not
When should Automatic Editing be Enabled?: Automatic editing should be

enabled for afield (and the map that contains it) when the related record element has a
usage other than DISPLAY :

®» When zeros are to be displayed when an operator nulls the value in a field by
pressing the ERASE EOF key, as specified by either of the following options:

— The Zero when null option on the Map Read/Write Options screen
— The ZEROED WHEN NULL option of the batch compiler MFLD statement

® When blanks are to be displayed in the field when the value for a field is zero,
as specified by either of the following options:

— The Blank when zero option on the Map Read/Write Options screen
— The Blank when zero option of the batch compiler MFLD statement

Chapter 3. Automatic Editing and Error Handling 3-3

3.1 Automatic Editing

= When underscores are to be displayed as specified by either of the following
options:

— The Underscore blank fields option on the Map Read/Write Options screen
— The UNDERSCORE IF BLANK option
= When uppercase trandation by field is selected

3-4 CA-IDMS Mapping Facility

3.2 Error Handling

3.2 Error Handling

What is Error-handling?: The error-handling capability can be used to define
display characteristics in the event that a map is redisplayed due to input error.
Redisplay of a map on input error is controlled by the CA-ADS dialog or application
program that uses the map at runtime.

Error Handling Functions: Error handling can perform one or more of the
following operations when the map is redisplayed:

» Redisplay incorrect input with predefined attributes that attract the operator's
attention

» Redisplay correct input with predefined attributes
® Provide messages to the operator
= Sound an alarm
Before You use Editing and Error-handling: The following steps, which are

described below, must be performed before automatic editing and error-handling can
be used:

1. Enable automatic editing and error-handling for the map and for each field to be
edited

2. Optionaly define error-handling criteria for the map
3. Define editing criteria for each field

Chapter 3. Automatic Editing and Error Handling 3-5

3.3 Enabling Automatic Editing and Error Handling

3.3 Enabling Automatic Editing and Error Handling

3.3.1 Overview

Enabling automatic editing for a map also enables error-handling for that map.
Automatic editing can be enabled for an entire map and also for individual fields.

3.3.2 Default Values

The mapping facility supplies the following default settings for automatic editing:
® Entire map -- Enabled
» Each field -- Disabled, unless any of the editing criteria below is specified
CAUTION:
Autopainted fields default to enabled if editing is appropriate.

A map that uses only these default values is not edited at runtime. The map developer
must use the online or batch compiler to enable automatic editing for map fields. If
automatic editing is disabled at the map level, automatic editing is disabled for all of
that map's fields.

3.3.3 Map-level Editing

Automatic editing is enabled/disabled for an entire map when:

. The Automatic editing prompt on the first General Options screen is used to
either enable (/) or disable automatic editing.

» The EDIT/NOEDIT option of the batch compiler MAP statement is used to
enable (EDIT) or disable (NOEDIT) automatic editing.

3.3.4 Field-level Editing

» Specifying any of the following on the Field Definition screen enables automatic
editing for afield:

/ for the Automatically edited prompt (Online compiler only)

An external picture

An edit table

A code table

» Naming a user-written edit module enables or disables automatic editing:

— Editing is enabled if the edit module is to be performed either before or after
automatic editing.

— Editing is disabled if the edit module is to be performed instead of automatic
editing.

3-6 CA-IDMS Mapping Facility

3.3 Enabling Automatic Editing and Error Handling

Automatic editing is enabled or disabled according to the most recent automatic editing
or user-written error module specification. The General Options, Additional Edit
Criteria, and Map Read/Write Options screens in the online compiler and the MFLD

statement of the batch compiler are used to make these specifications and to enable
automatic editing for a field.

Chapter 3. Automatic Editing and Error Handling 3-7

3.4 Automatic Editing Criteria

3.4 Automatic Editing Criteria

3.4.1 Overview

= Aninternal picture describes the format in which data for a field is stored in the
user buffer.

® An external picture describes the format in which data for a field is displayed on
the operator's screen.

® An edit table optionally defines a set of valid or invalid values or ranges of
values for a field.

= A code table optionally defines values for encoding and decoding data.
External pictures can be defined by using the online or batch compiler as well as IDD;

internal pictures, edit tables, and code tables are defined externally to the mapping
facility.

Types of Editing: The three automatic editing operations depicted in the following
illustration and discussed on the following pages, can be performed:

® Display characteristics

» Data conversion

® Input verification

Automatic Editing Operations: The following diagram illustrates how automatic
editing works.

3-8 CA-IDMS Mapping Facility

3.4 Automatic Editing Criteria

DISPLAYED ON

TERMINAL SCREENS |DMS-DCIUCF STORED IN DICTIONARY
DISPLAY CHARACTERISTICS
External Pic: 99/99/99 Internal Pic: 9(6)
Date: 10/12/82)=~ |
101282
v
DATA CONVERSION CODE TABLE
External Pic: X(20) 01— ALABAMA Internal Pic: 99
- il
_v/
STATE: ALABAMA
N
50 =WYOMING
___J_/
INPUT VERIFICATION
EDIT TABLE
DEPT: SALES
MARKETING
SHIPPING
DEPT: SALES EDUCATION
Please Correct ACCOUNTING

3.4.2 Display Characteristics

Display characteristics are determined by the external picture.

For example, a date field can have an interna picture of 9(6) and an externa picture
of 99/99/99. If the internal picture for a DATE data field is 9(6) as many as six
numeric digits can be stored for the field. The external picture of 99/99/99 specifies
how a stored value is displayed on the terminal screen. Using this example, a date
stored internally 101297 displays externally as 10/12/97.

3.4.3 Data Conversion

Data that is entered on a map is converted and validated against a code table. For
example, each value for the STATE data field is stored as a 2-digit value, as specified
by its internal picture 99. A code table then translates each 2-digit value to a complete

state name and vice versa.

For example, the operator views ALABAMA when the stored value is 01. The value
50 is stored in program variable storage when the operator enters the word
WY OMING.

Chapter 3. Automatic Editing and Error Handling 3-9

3.4 Automatic Editing Criteria

3.4.4 Input Verification

Data entered on a map is compared to values in an edit table. Correct values for the
sample DEPT data field are listed in an edit table. Operator input is validated against
values in the edit table. (An edit table can contain either correct or incorrect values
for afield.) For example, the term SALES is determined to be incorrect based on the
edit table for the field; the dialog or program redisplays the error and asks the operator
to correct the value.

3.4.5 Internal Pictures

Definition: Interna pictures define the data storage format for elements and the map
fields associated with the elements. Internal pictures cannot be created or altered by
the mapping facility.

Specifying Internal Pictures: An internal picture can be specified for a record
element when the record element is defined by using either the IDD Data Dictionary
Definition Language (DDDL) or the IDMS schema compiler. Internal pictures cannot
be defined or atered by using the online or batch compiler.

How the Input is Converted: Before edited input is moved into program variable
storage, if editing is on it is converted into its internal format based on the internal
picture defined for the record element associated with the input field. The internal
picture for a map field is the internal picture of the related record element.

Maximum Length: An internal picture can contain a maximum of 32 characters.
The characters used to construct aphanumeric, aphabetic, and numeric internal
pictures are listed in the table below:

Data Type Character Description
Alphanumeric X A single aphanumeric character.
(n) Follows an X to represent n consecutive

repetitions of aphanumeric characters.

N must be an integer in the range 1 through

9999.
Alphabetic A A single aphabetic character (A through 2).
(n) Follows an A to represent n consecutive

repetitions of alphabetic characters.

N must be an integer in the range 1 through
9999.

Numeric 9 A single numeric character (0 through 9).

3-10 CA-IDMS Mapping Facility

3.4 Automatic Editing Criteria

Data Type Character

Description

(n)

Follows a 9 to represent n consecutive
repetitions of numeric characters.

Preceding an implied decimal point position, n
must be an integer in the range 1 through
9999.

Following an implied decimal point position, n
must be an integer in the range 1 through 255.

Represents a decimal point position in fixed
decimal numeric data. An internal picture can
contain only one decimal. If afixed decimal
picture does not contain a V, the decimal
position for the picture is after the rightmost
9.

Indicates that signed data is maintained as
either positive or negative. When used, S
must be the first character in an internal
picture.

. (decimal
point)

Represents the decimal point in floating point
data with DISPLAY usage only. An internal
picture can contain only one decimal point.

Indicates the start of the floating point
exponent. When used, an E must be preceded
by at least one 9 and followed by at least one
9.

How are the Elements Stored at Runtime?: A USAGE clause in the record
element definition determines the method of storing values for an element at runtime.
The USAGE clause for an element associated with a map field can specify one of the

following storage methods:

Storage method Will store data this way

DISPLAY Values are stored one character to a byte according to
EBCDIC conventions. DISPLAY must be specified for
aphanumeric and aphabetic internal pictures.
DISPLAY can also be specified for numeric internal

pictures.
COMP Numeric values are stored in binary format.
COMP-1 Numeric values are stored in internal floating point

(short precision) format.

Chapter 3. Automatic Editing and Error Handling 3-11

3.4 Automatic Editing Criteria

Storage method Will store data this way

COMP-2 Numeric values are stored in internal floating point (long
precision) format.

COMP-3 Numeric values are stored in packed decimal format.

Note: COMP, COMP-1, -2, and -3 usages apply only to numeric data. Internal
pictures cannot be specified for elements with COMP-1 or COMP-2 usage.

» For more information on record element definitions and the USAGE clause, see
the the CA-IDMSIDD DDDL Reference Guide.

3.4.6 External Pictures

Automatic editing uses the external picture for a field on mapout and mapin as
follows:

Mapout: On mapout, the external picture describes how data for the field is
displayed on aterminal screen. The following example illustrates the interaction of
output data and an external picture:

Program variable External Picture Field Display
storage value

123456789 HXXX-XX-XXXX #123-45-6789
99365 99/999 99/365

Mapin: On mapin, automatic editing uses the external picture as follows:

® The external picture is checked to determine if the characters in the field are valid.
An external picture can be NUMERIC, ALPHABETIC, or ALPHANUMERIC;
data in the field must conform to the external picture specifications to be valid.

® The external picture is used to eliminate insertion characters from data.

The following example illustrates the interaction of input data and an external picture:

User Input External Picture Value Stored
#123-45-6789 HXXX-XX-XXXX 123456789
99/365 99/999 99365

The external picture and input data are processed from left to right. If automatic
editing is not enabled for both the map and field, the externa picture is not used on
mapin.

3-12 CA-IDMS Mapping Facility

3.4 Automatic Editing Criteria

3.4.6.1 Implicit External Pictures

What is an Implicit External Picture?: If the developer does not use the online
or batch compiler to explicitly specify an external picture for the field, an implicit
external picture is constructed for a field. The implicit external picture is derived
from the internal picture and/or from the usage mode defined for the related record
element.

If Automatic Editing is not Enabled: The status of automatic editing for the field
determines the external picture that is constructed for the field:

If automatic editing is not enabled for the field, the online compiler constructs the
external picture for afield:

® The data type is aphanumeric

®m The length is determined by the length (in characters/bytes) that is specified by

the internal picture and/or by the usage mode of the associated record element

For example, the table below illustrates how an external picture is constructed for a
field for which automatic editing is not enabled:

Internal Picture Usage Mode External Picture
XXX DISPLAY X(3)
A(8) DISPLAY X(8)
S99V 99 DISPLAY X(4)
S9(4) COMP X(2)
COMP-1 X(4)
COMP-2 X(8)
9(7)V99 COMP-3 X(5)

Note: Internal pictures cannot be specified for COMP-1 or COMP-2 elements. The
above external pictures for COMP-1 and COMP-2 elements are the default external
pictures for these elements when automatic editing is disabled for afield. To avoid an
error (such as PROG-470, PROG-402, or PROG-403), automatic editing should be
enabled for al fields with usage other than DISPLAY .

If Automatic Editing is Enabled: If automatic editing is enabled for the field, the
online compiler assigns an external picture to the field:

® |f an external picture is defined for the associated element, that external picture
is assigned to the field

® |f an external pictureis not defined for the element, the mapping facility
constructs an external picture for the field:

Chapter 3. Automatic Editing and Error Handling 3-13

3.4 Automatic Editing Criteria

— The data type is the same as the data type of the internal picture, when
applicable. Fields associated with COMP-1 and COMP-2 elements are
assigned predetermined numeric external pictures.

— Thelength is determined by the length (in characters/bytes) that is specified
by the internal picture, when applicable.

— The composition is derived from the internal picture according to the
trandlation equivalents listed in the table below.

The table below illustrates how an external picture is constructed for a field when
automatic editing is enabled:

Internal Picture Usage Mode External Picture
XXX DISPLAY X(3)
A(8) DISPLAY A(8)
S99V 99 DISPLAY +99.99
S9(4) COMP (Half word) +9(8)
+9(4) S9(8) COMP (Full word)
S9(16) COMP (Double word) +9(4)
COMP-1 +9.9(7)+99
COMP-2 +9.9(16)+99
9(7)V99 COMP-3 9(7).99

Note: Internal pictures cannot be specified for COMP-1 or COMP-2 elements. The
above external pictures for COMP, COMP-1, -2 and -3 elements are the default
external pictures for these elements when automatic editing is enabled for a field.

Internal to External Translation

Internal Picture External Picture Character
Character

X X

A A

9 9

S S

Y, . (Decimal point)

E E

. (Decimal point) . (Decimal point)

3-14 CA-IDMS Mapping Facility

3.4 Automatic Editing Criteria

3.4.6.2 Explicit External Pictures

To explicitly specify an external picture for a field, the developer uses the online or
batch compiler. If an explicit external picture is specified for the field, an implicit
external picture is not built.

When to Specify an External Picture: An external picture can be explicitly
specified for a map field either during a map-definition session or in the IDD record
element definition.

During Map Definition: An external picture is explicitly specified at map definition
in any of the following:

® The Edit picture prompt on the Field Definition screen
» The EXTERNAL PICTURE clause of the batch compiler MFLD statement.

An external picture specification made for a map field overrides any other external
picture specification that has been made for the field.

Using IDD: An externa picture can be explicitly defined by using IDD. Specifying
INTERNAL for the map field's external picture causes the online compiler to use the
external picture associated with the record element definition. External pictures for
record elements are defined in the IDD DDDL RECORD ELEMENT or COBOL
substatement.

» For more information on these substatements, see the CA-IDMS DD DDDL
Reference Guide.

How External Pictures are Constructed: If INTERNAL is specified for the map
field's external picture but the record element is not associated with an external picture,
the online compiler will construct an external picture as described in the table below:

Data Type Character Description
Alphanumeric X A single aphanumeric character.

B A single blank character; B can appear
anywhere in the picture.

Other Characters other than A, B, or
parentheses can be used as insertion
characters.

Numeric 9 A single numeric character (0 through
9).
z An insertion character when it is

preceded by a 9, a decimal point, or a
zero-suppression character. Otherwise, a
Z is a zero-suppression character.

Chapter 3. Automatic Editing and Error Handling 3-15

3.4 Automatic Editing Criteria

Data Type

Character

Description

$

Multiple dollar signs at the beginning of
an external picture represent a floating
dollar sign. The dollar sign is an
insertion character when preceded by a
9, adecimal point, or a zero-suppression
character.

Multiple asterisks at the beginning of an
external picture provide check
protection. The asterisk is an insertion
character when preceded by a 9, a
decimal point, or a zero-suppression
character.

In the first position of an external
picture, indicates signed data, and
appears as either a minus sign or a plus
sign depending on the sign of the data.
Multiple plus signs at the beginning of
an external picture represent a floating
sign. The plus sign is an insertion
character when preceded by a 9, a
decimal point, or a zero-suppression
character.

- (Minus sign)

In the first position of an externa
picture, indicates signed data. The sign
position appears as a blank if the data is
positive and as a minus sign if the data
iS negative.

Multiple minus signs at the beginning of
an external picture represent a floating
sign. The minus sign is an insertion
character when it is preceded by a9, a
decimal point, or a zero-suppression
character.

3-16 CA-IDMS Mapping Facility

3.4 Automatic Editing Criteria

Data Type

Character

Description

. (Decimal point)

Used as adecimal point. Datais
aligned with the decimal point in an
external picture and is truncated or
padded when necessary. The decimal
point terminates zero suppression when
zero-suppression characters precede the
decimal point. Zero-suppression
characters become insertion characters if
placed after a decimal point. The first
period in a series of period characters is
the decimal point in a picture. If no
decimal point exists in the data, a
decimal point is assumed after the
rightmost numeric character. The
comma (,) is used as a decimal point if
DECIMAL POINT IS COMMA is
specified.

A single blank character; B can appear
anywhere in the picture.

(n)

Followsa9, A, Z, $ *, +, -, or Bto
represent n consecutive repetitions of the
character. N must be an integer in the
range 1 through 9999. When used
following an implied decimal point
position, as represented by a V, n must
be in the range 1 through 255.

Indicates the decimal point position in
fixed decimal data

E+99

Indicates a floating point data field.
The mantissa can be positive or
negative. The exponent must be two
numeric digits preceded by a plus sign.
If more than two digits are entered, the
online compiler truncates the picture; if
less than two digits are entered, the
picture is extended. The online
compiler supplies a default external
picture if automatic editing is enabled
for the field. The default external
picture for internal short float type data
fields is +9.9(7)E+99. The default
external picture for internal long float
type data fields is +9.9(16)E+99.

Chapter 3. Automatic Editing and Error Handling 3-17

3.4 Automatic Editing Criteria

Data Type Character Description

Other Characters other than 9, Z, $, *, +, -, B,
V, or parentheses can be used as
insertion characters.

Special Considerations: An alphanumeric external picture must be specified for a
field associated with a group element, regardless of the data type of the subordinate
elements in the group.

Alphanumeric, aphabetic, and numeric external pictures must begin with specific
characters:

® Alphanumeric pictures must begin with either X or B

= Alphabetic pictures must begin with either A or B

. Numeric pictures must begin with one of the following characters:

B

4
9
$

*

Allowing Insertion Characters: Including insertion characters in external pictures
provides the terminal operator with flexibility in supplying data. The terminal operator
need only type necessary data characters; the operator can include insertion characters

in data, but omitting these characters does not constitute an error.

For example, given a telephone number with an external picture of
XXXBXXX-XXXXB#BXXX, the terminal operator could enter any of the following
values:

617 555-1212 # 341

617555-1212#341

6175551212341

6175551212

Considerations: The following considerations apply to the use of insertion
characters in external pictures:

® |nsertion characters can be included in external pictures to assist terminal
operators in reading or interpreting output data. Insertion characters do not
become part of the stored data.

3-18 CA-IDMS Mapping Facility

3.4 Automatic Editing Criteria

® [nsertion characters that are embedded in zero-suppression characters are not
displayed until a significant digit appears in the data.

® The dollar sign ($) is the only insertion character that can occupy the first position
in an external picture.
The following considerations apply to data supplied in fields with numeric external
pictures:

» Leading and/or trailing blanks are automatically deleted from data entered in
numeric fields. Thus, the terminal operator can start entering numeric data in any
field position.

A decima point is assumed to exist after the rightmost digit of a terminal
operator's input if the following conditions are in effect:

— A decimal point is defined in the external picture for the field
— No decimal point is supplied by the operator.

The sample external picture 99.99 affects the display of numeric data in the
examples in the following table:

Value input by operator Value displayed

1 01.00
1 00.10
10 10.00

Truncation: If data typed by the termina operator exceeds the length permitted by
the external picture, excess characters are deleted from the data as described in the
table below:

Type of field Truncation process
Alphanumeric The rightmost characters are deleted from the data
Numeric ® |f excess characters are supplied to the right of the

decimal, the rightmost (low-order) characters are deleted
from the data.

® |f excess characters are supplied to the left of the
decimal, the leftmost (high-order) characters are deleted
from the data.

Data from which low-order characters are deleted is moved to program variable
storage as usual. Numeric data from which high-order characters are deleted is not
moved to program variable storage; an input error occurs for the field

Sample Truncations: The sample external pictures shown below demonstrate how
excess characters are deleted from data:

Chapter 3. Automatic Editing and Error Handling 3-19

3.4 Automatic Editing Criteria

External picture Operator inputs Data stored as
XXX A234 A23

AAA WXYZ WXY

999 1234 no data

99.99 234 23.40

99.99 1234 no data

99.99 23.456 23.45

A CA-ADS dialog or application program can determine whether excess data has been
deleted from data in a field by inquiring if the field has been truncated.

3.4.7 Edit and Code Tables

3.4.7.1 Overview

Existing edit and code tables can be optionally associated with map fields. Automatic
editing uses the edit and code tables for a field on mapout and mapin as follows:

= On mapout, the code table (if any) is used to convert stored data to its decoded
form for display at the terminal.

= On mapin, the edit and code tables for a field are used as described below:

— The edit table (if any) is used to validate operator input. An edit table can

contain either valid or invalid values:

— If the edit table contains valid values, data input in the map field is
valid only if it is listed in the table

— If the edit table contains invalid values, data input in the map field is
valid only if it is not listed in the table

— The code table (if any) is used to convert data typed in afield to its encoded
form for storage. In this way, the code table also validates data unless NOT
FOUND is used to pass incorrect data through.

A given map field can have a maximum of one edit table and one code table enabled
for it. Edit and code tables cannot be specified for a field that is associated with a
group element unless al its elements are defined with usage DISPLAY.

The arrangement of values in a table, the searching algorithm for a table, and the
relationship between a table and a map load module that uses the table are determined
by the IDD DDDL statement that defines the table.

»> The definition of tables is discussed in Appendix D, “Generating Edit and Code
Tables’ on page D-1.

3-20 CA-IDMS Mapping Facility

3.4 Automatic Editing Criteria

3.4.7.2 Values in Edit and Code Tables

Edit and code tables contain the values used by automatic editing. Values in a table
can be either numeric or aphanumeric depending on the data type specified when the
table was created.

3.4.7.3 Edit Table Values

Edit table values must be compatible with the data type and length of data to be
evaluated at runtime. The configuration of input data at runtime depends on the
specific automatic editing processes that are performed on the data.
Automatic editing performs the following processes prior to edit table operations:
» Numeric input data isreversed if REVERSE NUMERIC is enabled for the field.
» Data is altered according to external picture specifications for example:
— Leading and trailing blanks are stripped from numeric data

— The decimal point in numeric data is aligned with the decimal point in the
external picture

— Insertion characters are stripped from data
— Characters that exceed the length specified by the external picture are deleted
from the data

Insertion characters are not included in edit table values. For example, the following
sample edit table lists values for a ROOM NUMBER field with an external picture of
X-X(3) and an interna picture of X(4):

External Picture Edit Table Values
E-101 E101
E-203 E203
G-221 G221

3.4.7.4 Code Table Values

Code table values specify encoded and decoded values:

» Encoded values specify data that can be stored in program variable storage. The
data type and length of encoded values must be compatible with the internal
format for the field with which the code table is associated. The internal format
for afield is determined by the internal picture defined for the associated record
element.

For example, the following sample encoded values are valid in terms of their
corresponding internal pictures:

Chapter 3. Automatic Editing and Error Handling 3-21

3.4 Automatic Editing Criteria

Encoded value Internal picture Definition
0s XX department value
01 9(2) state value

» Decoded values specify data that can be displayed on a terminal screen. The data
type and length of decoded values must be valid in terms of the external picture
for the field with which the code table is associated. Insertion characters are not
included as decoded values in code tables.

For example, the following sample decoded values are valid in terms of their
corresponding external pictures:

Encoded value Internal picture Definition
OFFICE X(20) department value
SERVICES

ALABAMA X(20) state value

On mapin, the edit table (if any) is invoked before the code table (if any) for a field.
DDDL Compiler Options: DDDL compiler conventions apply when specifying
values for edit and code tables:
» Delimit words or clauses by using one of the following delimiter characters:
— Blank
— Comma
— Period
— Semicolon
— Colon
— Apostrophe
— Parenthesis
— Quotation mark

» Embed one or more delimiter characters by enclosing the value that contains
delimiter characters in a pair of site-standard quote characters. The single quote
() is the default. For example, the value OFFICE SERVICES in the following
sample code table contains an embedded blank character:

3-22 CA-IDMS Mapping Facility

3.4 Automatic Editing Criteria

01 SHIPPING
02 PERSONNEL
03 ACCOUNTING
04 MARKETING

05 'OFFICE SERVICES'

Single quotes around the value OFFICE SERVICES indicate that the space
character between the two words in the value is part of the value rather than a
delimiter between two values.

» Embed the site-standard quote character in avalue by coding the quote
character twice. For example, the value USER'S SITE in the following sample
code table includes the default quote character ('):

50 DENVER

60 '"BOSTON RGNL OFFICE'
70 'CHICAGO RGNL OFFICE'
85 "USER''S SITE

» For more information on DDDL compiler conventions and specifying values for
tables, see the CA-IDMSIDD DDDL Reference Guide.

Special Values: The following special values can be included in code tables to
facilitate use of the tables at runtime:

» The NOT FOUND keyword can be included in a code table to define a catchall
for a decoded or encoded value:

— Asan encoded value, NOT FOUND ensures that an unanticipated stored
value does not cause an abend on mapout. The decoded value that
corresponds to NOT FOUND is displayed for unanticipated input.

— As adecoded value, NOT FOUND ensures that unanticipated input does not
cause an input error when evaluated by the code table. The encoded value
that corresponds to NOT FOUND is stored for unanticipated data.

NOT FOUND must not be enclosed in quotation marks when used as a keyword.
For example, the following sample code table for a DEPARTMENT field includes
NOT FOUND as an encoded and a decoded value:

01 SHIPPING

02 PERSONNEL

03 ACCOUNTING

04 MARKETING

05 '"OFFICE SERVICES'
00 NOT FOUND

NOT FOUND MISSING

Chapter 3. Automatic Editing and Error Handling 3-23

3.4 Automatic Editing Criteria

The value 00 is stored for the field when an operator supplies a value that is not
included as a decoded value in this sample table. The word MISSING is
displayed when a value other than 01, 02, 03, 04, 05, or 00 is stored for the field.

»»> For more detailed information on the NOT FOUND keyword, see
Appendix D, “Generating Edit and Code Tables’ on page D-1.

The null value, ("), two consecutive quotation marks, should be included as a
decoded value in a code table in the following cases:

— The numeric data field is to be filled with zeros when automatic editing is
enabled and the operator presses the ERASE EOF key, as specified by either
of the following options:

— The Zero when null option on the Map Read/Write Options screen

— The ZEROED WHEN NULL option of the batch compiler MFLD
statement

— The alphanumeric data field is defined without a pad character.

The following sample code table for a DEPARTMENT field included the null
value as a decoded value:

00 L)
01 SHIPPING

02 PERSONNEL
03 ACCOUNTING
04 MARKETING
05 'OFFICE SERVICES'

\ J

The decoded value 00 is stored for this example when the operator presses
ERASE EOF at the beginning of the associated alphanumeric map field and
submits a null value for the field.

3.4.8 Enabling tables

Built-in Edit or Code Tables: If arecord element includes an edit and/or code
table in its definition, the table is referred to as a built-in edit or code table. The
built-in edit or code table is available to any map data field that uses the record. The
built-in table for a field is used for the field if both of the following conditions are
met:

Automatic editing is enabled for the field (and map).
The map developer does not use the mapping facility to specify an edit/code table.

Suppressing Built-in Tables: To suppress use of a built-in table without using
another table, the developer must disable automatic editing for the field.

The map developer overrides the use of a built-in table (if any) by specifying a
stand-alone table for the field. Stand-alone tables are created in the data dictionary by
the DDDL TABLE statement.

3-24 CA-IDMS Mapping Facility

3.4 Automatic Editing Criteria

Specifying a Stand-alone Table: The developer uses the online or batch compiler
to specify a stand-alone table:

The Edit table name and Code table name prompts on the Additional Edit Criteria
screen can be used to specify the name of atable to be used for the field. For
example, the statel table is specified as an unlinked edit table of valid values in the
sample screen below.

Additional Edit Criteria Page 3 of 7
Map name: EYHTST1 Version: 1
Element name EMP-STATE-0415 Subscript
In record EMPLOYEE Version 100
Edit table name . . . STATEl Version 1 Link with map (/) _
Edit type 1 1.valid values 2.Invalid values
Code table name . . . Version Link with map (/) _

Error message (specify ID or text)

ID. Prefix __ Number

DC365801 Map options processed successfully

Fl=Help F3=Exit F4=Prev Fb5=Next F6=Preview F7=Bkwd F8=Fwd

Suppressing a Stand-alone Table: To suppress use of a specified stand-alone
table without specifying another table, the map developer can eliminate the name of
the table from the Additional Edit Criteria screen by performing either of the following
actions:

® Pressing the ERASE EOF key to erase the table name

® Typing blanks over the table name

Specifying a Stand-alone Table using the Batch Compiler: The EDIT
TABLE and CODE TABLE clauses of the batch compiler MFLD statement can
be used to specify the name of the table to be used for the field. For example, the
DEPTEDIT table is specified as an unlinked edit table of valid values in the sample
MFLD statement below:

ADD MFLD DEPT-ID
DFLD ID-0410
EDIT TABLE IS DEPTEDIT
NOLINK
USAGE IS VALIDATE.

Alternate Names

Chapter 3. Automatic Editing and Error Handling 3-25

3.4 Automatic Editing Criteria

Type of table Alternate name Reason

Built-in Tightly coupled Because each table is part of
the element for which it is
defined

Stand-alone Loosely coupled Because they are separate

from the record elements
with which they are
associated

Linked VS. Unlinked: When the map developer specifies a stand-alone table for
use during automatic editing, the table must be designated either linked or unlinked as

described below:

If thetableis This happens

Linked The table is included in the map load module with
which it is associated.

Unlinked The table is loaded at runtime by the map load module

with which it is associated.

Enabling a table as an unlinked table eliminates the need to regenerate maps that use
the table, should the table definition change. A stand-alone table is specified as linked
or unlinked on the same screen or in the same batch MFLD statement that names the
table for a field.

» For more information on the definition of built-in and stand-alone table, see
Appendix D, “Generating Edit and Code Tables’ on page D-1.

3-26 CA-IDMS Mapping Facility

3.5 Error-Handling Criteria

3.5 Error-Handling Criteria

What is Error-handling?: Error handling alerts the terminal operator if an input
€rror occurs.

A field is considered to be in error if any of the following conditions exist:

>

The input (or the encoded equivalent) does not conform to the internal picture.
The input does not conform to the external picture.

Numeric input is truncated on the left (high-order truncation).

No input is supplied for a required field.

The input is determined to be invalid, based on the edit table used for the field.

The input does not match any decoded values in the code table used for the field,
and no catchall value is defined for decoded values.

The input is determined to be in error according to criteria defined by a
user-written edit module.

For more information about the use of the automatic editing to establish

correct/incorrect input conditions for error handling see 3.4, “Automatic Editing
Criterid’ on page 3-8, later in this section.

For more information about the definition and use of user-written edit modules see
Appendix C, “User-Written Edit Modules’ on page C-1.

What Error-handling Criteria can be Defined?: The following table lists the
error-handling criteria that can be defined for each map. Each criterion is described

separately below:

Criteria Use

Attributes for correct Identify correct input and input that has not been edited

input

Attributes for incorrect Identify erroneous input

input

Error message Provides the terminal operator with any messages
associated with the field in error

A termina adarm Informs the terminal operator that an input error has

occurred

Chapter 3. Automatic Editing and Error Handling 3-27

3.5 Error-Handling Criteria

3.5.1 Attributes for Correct and/or Incorrect Input

Definition: Attributes that are used when the mapped display is initially mapped out

are assigned individually to fields when the fields are defined. Attributes used to draw
attention to correct and/or incorrect data are assigned to an entire map when the map is
defined. These error-handling attributes override the field-level attributes when an edit

error is redisplayed.

How to Define Attributes: Either the online or batch compiler can be used to
define attributes for correct and/or incorrect fields:

» Page two of the General Options screen can be used to establish attributes for
use by error handling. The developer selects attributes on this screen to establish
those attributes for use with error-handling.

® The batch compiler MAP statement ON EDIT ERROR clause can be used to
establish attributes for error handling. The following specifications can be made
for the ON EDIT ERROR clause:

— The INCORRECT FIELDS ATTRIBUTES specification names attributes
for fields that contain incorrect input.

— The CORRECT FIELDS ATTRIBUTES specification names attributes for
fields that contain correct input.

The list of available attributes is detailed in 2.4.2, “Attributes for Fields’ on
page 2-13.

Attributes that are defined for correct fields are also used to redisplay variable fields
for which editing was not performed.

3.5.2 Error Messages

Default Error Message: Error handling provides a default error message for any
field. The message has the following format:

ERROR AT row, column

How to Override the Default Message: The developer can override the default
error message for afield by specifying an error message for use by error-handling.
The online or batch compiler can be used to define an error message:

= The Error message prompt on the Additional Edit Criteria screen can be used to
establish an error message for the field being defined. The error message can be
supplied at the time the map field is defined, can be defined in the data dictionary,
or can be the default message.

3-28 CA-IDMS Mapping Facility

3.5 Error-Handling Criteria

Additional Edit Criteria Page 3 of 7
Map name: EYHTST1 Version: 1
Element name EMP-STATE-0415 Subscript
In record EMPLOYEE Version 100
Edit table name . . . Version Link with map (/) _
Edit type _1l.valid values 2.Invalid values
Code table name . . . Version Link with map (/) _

Error message (specify ID or text)
ID. Prefix __ Number

Text. NOT A VALID STATE CODE

DC365801 Map options processed successfully

Fl=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd F8=Fwd

In the screen above, the developer specifies a message on the line after the Text
prompt. The message, NOT A VALID STATE CODE, is specified for the data
field that follows STATE in this example.

» The ERROR MESSAGE clause of the batch compiler MFLD statement can be
used to establish an error message for the field being defined. You can either
accept the default message, or define the error message in the data dictionary.

For example, an error message is defined for the EMP-STATE map field in the
following sample MFLD statement:

ADD MFLD EMP-STATE
REQUIRED
EXTERNAL PICTURE IS 'XX'
ERROR MESSAGE IS
'NOT A VALID STATE'.

Defining a Message Field for a Map: An error message displays an input error
only if a message field is defined for the map. The developer defines a message field
for a map by using the online or batch compiler:

» The ELEMENT NAME and SUBSCRIPT prompts on the second page of the
Field Definition screen are used as follows:

— ELEMENT NAME -- The developer types the keyword SMESSAGE (or
$M) to establish a variable field as a message field.

— SUBSCRIPT -- The developer optionally specifies the maximum number of
characters that the message field can contain in the SUB field (default is 80).

Note: When the developer enters either SMESSAGE or $M in the
ELEMENT NAME field and presses <Enter>, the literal, SUBSCRIPT,

Chapter 3. Automatic Editing and Error Handling 3-29

3.5 Error-Handling Criteria

changes to LENGTH and i
sample screen below.

rrelevant fields are darkened, as illustrated in the

Field Definition Page 1 of 7
Map name: EYHTST1 Version: 1
...5...10...15...20...25...30...35...40...45...50...55...60...65...70...75...80
~...5...10...15...20...25...30...35...40...45...50...55...60...65...70...75...80
Field at row 21 column 80 Drop field (/) _
Element name: $message Subscript 80
In record Version
Edit Picture
Display intensity 1 1. Normal 2. Bright 3. Hidden
At end of field 3 1. Auto-tab 2. Lock keyboard 3. Take no action
Unprotected (/) / Required (/).
Automatically edited (/) Skipped by tab key (/)
DC366004 Specify the variable field and any attributes
Fl=Help F3=Exit F4=Prev F5=Next F6=Preview F8=Fwd
Field Definition Page 1 of 7
Map name: EYHTST1 Version: 1
...5...10...15...20...25...30...35...40...45...50...55...60...65...70...75...80
...5...10...15...20...25...30...35...40...45...50...55...60...65...70...75...80
Field at row 21 column 80 Drop field (/) _
Element name: $MESSAGE Subscript 80
Display intensity 2 1. Normal 2. Bright 3. Hidden
At end of field 3 1. Auto-tab 2. Lock keyboard 3. Take no action
Unprotected (/) Required (/).
Automatically edited (/) Skipped by tab key (/)
DC366004 Specify the variable field and any attributes
Fl=Help F3=Exit F4=Prev F5=Next F6=Preview F8=Fwd

» The MESSAGE LENGTH clause of the batch compiler MFLD statement is
used to establish a variable panel field as a message field and specify the
maximum number of characters that the message field can contain.

For example, a message field (MESS]) is defined for a map in the following
sample MFLD statement:

3-30 CA-IDMS Mapping Facility

3.5 Error-Handling Criteria

ADD MFLD MESS1
MESSAGE LENGTH 80.

How are Messages Displayed?: The message field for a map displays the error
message for afield in error if the dialog or program that uses the map redisplays the
map with error-handling attributes. When several data fields contain incorrect input,
the message field displays as many error messages as possible, in order of occurrence
from top to bottom, right to left, of the incorrect data fields. A blank is displayed

between each error message.

3.5.3 Alarm Status on Input Error

You can enable or disable the error alarm feature using the following:
® The Sound alarm on error prompt on the General Options screen

m The ON EDIT ERROR clause of the batch compiler MAP statement

Chapter 3. Automatic Editing and Error Handling 3-31

3.6 Automatic Editing at Runtime

3.6 Automatic Editing at Runtime

If automatic editing is not enabled for a field, data in the field is handled as follows:

= On mapin, data that has been changed (or for which the MDT is set on) is
justified, padded, or zeroed as specified by each map field definition. The data is
then moved to program variable storage if the Transmit data entry field on the
Map Read/Write Options screen is / for input.

= On mapout, data is moved directly to the output buffer from program variable
storage. The data is then transmitted to the screen if DATA isY (YES) for
output.

Automatic editing is performed on mapin and mapout only if editing is enabled at the
map level and only for fields for which editing is specificaly enabled.

» For more information on enabling automatic editing for a map and its fields, see
3.3, “Enabling Automatic Editing and Error Handling” on page 3-6 earlier in this
section.

When enabled for a map and field, automatic editing validates and edits data supplied
by the operator. Each field is evaluated according to specifications made for the field
when the field was defined. Automatic editing operations that take place during mapin
and mapout operations are presented in this section.

3.6.1 Mapin Operations

Automatic editing operates on a single field at atime. Fields for which automatic
editing is enabled are evaluated in order of occurrence on the map. Automatic editing
evaluates and edits each field, as illustrated in the figure below.

A given automatic editing operation must be completed without errors before
automatic editing can advance to the next editing operation for that field. Automatic
editing stops editing a field when an input error is detected in the field; the data is not
moved to storage.

Automatic editing completes editing for a field in which no input error is detected by
performing the following steps:

® The edited data is moved to the CA-ADS record buffers or the program variable
storage associated with the map

» Automatic editing either begins for the next field to be edited or finishes for the
map:
— Automatic editing begins for the next field on the map to be edited until all
designated fields have been evaluated by automatic editing

— Automatic editing is completed for the map if all fields for which automatic
editing is enabled have been edited

3-32 CA-IDMS Mapping Facility

3.6 Automatic Editing at Runtime

= Automatic editing converts alphabetic characters to upper case if TRANSLATE
TO UPPER CASE was specified for the field

» Automatic editing removes trailing underscore characters if UNDERSCORE
BLANK FIELD was specified for the field

3.6.1.1 Automatic Editing on Mapin for Non-pageable Maps, Headers, and
Footers

The figure below illustrates how automatic editing is handled on mapin operations for
a non-pageable map and the header and footer areas of a pageable map.

VARIABI E
FlELD

| z

REQUIRED V_ * Y
FIFID REVERSE
? NUMERIG IF
APPLICABLE

DATA

VALID
({CXTCRNAL
PICTURE}

CONVFRT COMMA
10 DECIMAL
IF APPROPRIATE

N !

DEIEIE
LEALING/I RAILING
BLANKS

Y

VALUE

VALID FOR

FIELD
?

TABLE FOR
FIELD
?

VALUE

IN TABLE
?

AlIGN DECIMAI
IN DATA WITH
EXTERNAL
PICTURE

}_.7

GCONVERT VALUE STRIP QUT
TO ENCODED INSERTION
CHARACIERS
VALUE
DATA
VALID? N DATA EXTRA
(INTERNAL LO';‘STEEF}&:?N HIGH-ORDER
PICTURE]
) PICTURE CHARACTERS
? ?
CONVERT DATA N
TQ INTERNAL DELETE LOW-
FORMAT FOR ORDER EXGESS
: : FIELD CHARAGTERS
PAD. ZERO, On N
JUSTIFY DATA,
AS SPECIFIED
FOR FIELD
MOVE DATA TO SET ERROR
PROGRAM FLAG ON
VARIABLL FOR FIELD
STORAGE
T

ANY

MORE VARIABI E

FIELDS
?

RETURN GONTROL|
TO DIALOG
OR PROGRAM

Chapter 3. Automatic Editing and Error Handling 3-33

3.6 Automatic Editing at Runtime

3.6.1.2 Automatic Editing on Mapin for Pageable Maps

Automatic editing on mapin occurs as soon as the GET DETAIL statement in the
process code is initiated. The code must check automatic editing for the results. The
procedure illustrated above is implemented however, it takes place after the GET
DETAIL statement is encountered in the process code.

Additionally, automatic editing error messages found on input (mapin - after the GET
DETAIL statement has been issued) are immediately moved into the message buffer
area and cannot be suppressed.

How the Online Compiler Responds to Errors: |If input is found to be in error
during editing, the online compiler responds as follows:

1. Thefield isidentified as being in error.

2. Automatic editing ends for the field.

3. Automatic editing either continues with the next appropriate field on the map or
relinquishes control to the program that requested the mapin, as described below:

» |f there is another data field on the map to be edited, editing begins for
that field.

n |f there are no more fields on the map to be edited, control returns to the
CA-ADS dialog or the application program:

— Control returnsto the CA-ADS dialog that requested the mapin, as
instructed by the EXECUTE ON EDIT ERRORS specification for the
diaog.

If EXECUTE ON EDIT ERRORS is YES, control passes to the
appropriate response process.

If EXECUTE ON EDIT ERRORS is NO, control does not pass to the
response process until the operator either corrects al input errors detected
by automatic editing or terminates the dialog.

— Control returns to the application program that requested the mapin.
»»> For more information on how dialogs and programs respond to input errors in
maps, see 3.7, “Error Handling at Runtime” on page 3-36 later in this section.
Considerations: The following considerations apply to runtime automatic editing:
» Automatic editing does not evaluate data in a response field

® Only data fields for which the MDT is set on are transmitted to program variable
storage. The MDT can be set:

— If the operator has entered a value in the field
— If the program has been modified

— If the MDT option was specified for the field at map definition

3-34 CA-IDMS Mapping Facility

3.6 Automatic Editing at Runtime

= |nput must be supplied in a required field; failure to supply input constitutes an
input error

® Input does not have to be supplied in afield that is not a required field

Determining if a Field is Changed or Erased: Map inquiry statements issued
by the CA-ADS dialog or application program that uses the map determine that data is
changed or erased when the ERASE EOF key is pressed:

m A field isidentified as changed when ERASE EOF erases the contents of the
field in either of the following cases:

— A pad character is defined for an aphanumeric field
— ZEROED WHEN NULL is specified for a numeric field

A fidd is identified as erased when ERASE EOF is pressed for the field while
the cursor is at the first position of an alphanumeric field for which no pad
character is defined.

3.6.2 Mapout Operations

Automatic editing operates on a single field at atime. Automatic editing processes
each field as illustrated in the figure below. A given automatic editing operation must
be completed without errors for a field before automatic editing can advance to the
next editing operation for that field.

A tranglation character can be defined at system generation to be output when invalid
data is found on mapout. If the trandlate character is defined as a null or a blank, no
trandlation is performed. The default translation character values is the at character
(@). Data that contains invalid character values (such as packed data that cannot be
unpacked or bit data) is converted to a single @ character; the @ character is
displayed in the field when the map is displayed.

The code table (if any) for afield is used to convert an encoded stored value to a
decoded display value. The dialog or program that uses the map abends if an
unanticipated stored value is evaluated by a code table that does not include the
keywords NOT FOUND as an encoded value.

Automatic editing places blanks in numeric input if the Blank when zero option is on
for the field and the input contains only zeros.

Automatic editing converts input to external format from internal format by processing
the external picture for the field from right to left. If an error occurs during this
phase, the task requesting the mapout is abended.

Automatic editing places underscores in a blank field if UNDERSCORE BLANK
FIELD was selected for the field.

Edit tables are not used in mapout operations.

Chapter 3. Automatic Editing and Error Handling 3-35

3.7 Error Handling at Runtime

3.7 Error Handling at Runtime

When is a Field in Error?: A field is identified as being in error when automatic
editing detects an error in that field on mapin. User-written edit modules, CA-ADS
dialogs, and application programs can perform their own editing and validation and
specify whether a field is in error.

Defining Attributes for Redisplay: The CA-ADS dialog or application program
that uses a map can redisplay a map that contains fields in error.

Attributes can be defined for the redisplay of correct and incorrect fields. Such
error-handling attributes can be used to draw the operator's attention to input errors.
Error messages can be specified for fields in error. Additionaly, the terminal alarm
can be sounded when a map contains input errors. Specifications for the redisplay of
maps with input errors are made as follows:

» The mapping facility can be used to make error-handling specifications for a map
when the map is defined

» The CA-ADS dialog or application program that issues the mapout can modify
error-handling specifications for the map

Error-handling attributes defined by the mapping facility are available for use when
automatic editing and error-handling are enabled for the map (regardless of the
individual field settings).

»»> For information on how to enable automatic editing and error-handling for a map,
see 3.3, “Enabling Automatic Editing and Error Handling” on page 3-6 earlier in this
section.

The ways in which CA-ADS dialogs and application programs redisplay maps are
contrasted in the figure below. Dialogs and programs can be set up to handle input
errors as described below.

= A CA-ADS dialog EXECUTE ON EDIT ERRORS YES/NO specification
determines how the dialog executes if fields are in error:

— YES specifies that control passes to the appropriate response process. The
response process can include statements to determine if errors have been
detected on mapin, to set additional fields in error, and so forth.

A DISPLAY command must be used to redisplay the map for the operator.
The map is redisplayed according to current error-handling specifications.

— NO gpecifies that control is not passed to the response process. The map is
redisplayed according to current error-handling specifications. The terminal
operator must correct all map fields that are in error before control passes to
the appropriate response process.

»»> For more information about the CA-ADS features and syntax, see the CA-ADS
Reference Guide.

3-36 CA-IDMS Mapping Facility

3.7 Error Handling at Runtime

® An application program includes Data Manipulation Language (DML) statements
to determine if errors have been detected on mapin, to set additional fields in
error, and so forth. A DML statement can issue a mapout to redisplay the map
according to current error-handling specifications.

Dialogs, Programs, and Input Errors

CA-ADS dialeg

DIALOG
EXECUTES DISPLAY
COMMAND TO
MAPQUT SCREEN

Application program
PROGRAM
EXECUTES

MAPQUT
COMMAND

QPERATOR
PRESSES
CONTROI KFY AND
TRANSMITS DATA

INITIATE
RESPONSE

PROCESS

]

DISPLAY

COMMAND

ISSUED
?

PERATOR
REDISPLAY MAPOUT SCREEN (;HESSES WITH ERROR
WITH ERROR
SCREEN CONTRQOL KEY AND ATTRIBUTES
WIIH ERHORS ATTRIBUTES TRANSMITS DATA (F ANY)
(IF ANY)

!

PROGRAM
EXECUTES
MAPIN
COMMAND

INPUI
ERRORS
?

YES

PROGRAM

RESUMES
EXECUTION

CONTINUE
EXECUTION

COMMAND YES
ISSUED

?

CONIINUE
EXECUTION

An application program should not issue mapout requests with the NEWPAGE
(ERASE) specification during error-handling; NEWPAGE (ERASE) maps out all map
fields, including literal fields, and changes MDT settings.

»> For more information about the development of application programs that interact
with maps, see the appropriate CA-IDMS DML Reference.

Steps Performed by Runtime Mapping: When a CA-ADS dialog or application
program redisplays a map for which automatic editing and error-handling are enabled,
current error-handling attributes are automatically used for the field.

The list and diagram that follow illustrate the steps performed by runtime mapping:

» Modified data tags are set for correct fields.

Chapter 3. Automatic Editing and Error Handling 3-37

3.7 Error Handling at Runtime

Correct-field attributes (if any) take effect for fields that are not in error or that
were not edited.

Incorrect-field attributes (if any) take effect only for fields that are in error.
The cursor is displayed at the first map field in error.

Blank required fields or any edited field for which data was not transmitted are
redisplayed with a question mark (?) character.

Data that is not in error is moved from the I/O buffer to program variable storage
on a mapin operation if DATA isY (YES) on mapin for the field.

Data that isin error is not moved from the 1/O buffer to protected variable storage
on a mapin operation.

On an initial display of a map by an ADS dialog, all literals and data fields are
transmitted even if afield isin error. However, in all other cases, during a
mapout operation, if any field is flagged as being in error, then, for al fields (both
correct and incorrect), only attribute bytes are transmitted back to the screen; no
data is moved from program variable storage to the screen.

3-38 CA-IDMS Mapping Facility

3.7 Error Handling at Runtime

Error Handling at Runtime

NO

PREPARE TO
DISPLAY OR
REDISPLAY
SCREEN

ERROR FLAGS

ON?

YES

ALTER ATTRIBUTES
OF CORRECT
FIELDS

YES

SET MODIFIED
DATA TAGS ON FOR
INCORRECT FIELDS

{

SET MODIFIED
DATA TAGS ON FOR
GORRECT FIELDS

ATTRIBUTES
FOR CORRECT
FIELDS?

NO

ALTER ATTRIBUTES
OF INCORRECT
FIELDS

AN
ATTRIBUTES
FOR INCORRECT
FIELDS?,

NO

RING TERMINAL
ALARM

YES

ALARM
ON INPUT
ERRQOR?

NO

DISPLAY QUESTION

DISFLAY CURSQOR
AT FIRST
INCORRECGT FIELD

DATA
NOT INPUT

MARK IN FOR FIELD
IN EARQOAZ,
FIELD
I NO
GOLLEGT ERROR
MESSAGES FOR
INCORRECT FIELDS
DISPLAY
SGREEN

Chapter 3. Automatic Editing and Error Handling 3-39

3-40 CA-IDMS Mapping Facility

Chapter 4. Pageable Maps

41 OVEIVIBW . . . 4-3
42 Areasof PagegbleMaps 4-4
4.3 Map-paging SeSSIONS 4-6
4.3.1 Sequence of Eventsin a Map-paging Session 4-7
4.4 Diadog and Program Operations, 4-10
44.1 Map-Paging Session Options 4-10
44.1.1 Putting Optionsinto Effect 4-10
4.4.1.2 Specifying Paging and Update Requests 4-12
4.4.1.3 Backpaging Capability 4-14
4414 PagingMode 4-15
4.4.2 Building and Displaying Fields 4-16
4421 BuildingFields 4-16
4422 Displaying Fields 4-17
4423 Summary of Commands 4-18
443 Retrieving Modified Data 4-18
45 Runtime Considerations 4-20
4.6 Creating PageableMaps 4-21
4.6.1 Overview 4-21
4.6.2 Using the Online Compiler 4-21
4.6.3 Using the Batch Compiler 4-21

Chapter 4. Pageable Maps 4-1

4-2 CA-IDMS Mapping Facility

4.1 Overview

4.1 Overview

What is a Pageable Map?: A pageable map isa map that can contain unlimited
occurrences of a set of map fields. Each occurrence of the set of fields is called a
detail occurrence.

A pageable map can contain more detail occurrences than can fit on the terminal
operator's screen at one time. The runtime system stores detail occurrences
sequentialy in the order in which they are created by pageable map commands and
divides them into pages based on the number of occurrences that can fit on the
termina operator's screen. One page of occurrences can be displayed on the screen at
any one time.

Example of a Pageable Map: For example, a pageable map might display
information about a department and list all the employees within the department. The
set of map fields related to employee information occurs once for each employee to be
listed. These detail occurrences of employee information are created at runtime by
pageable map commands and can be displayed to the terminal operator one page at a
time.

What's in this Section?: This section discusses the use and definition of pageable
maps by presenting the following topics:

® Areas of pageable maps

. Map paging sessions

» Dialog and program operations

= Runtime considerations

» Creating pageable maps

Chapter 4. Pageable Maps 4-3

4.2 Areas of Pageable Maps

4.2 Areas of Pageable Maps

A pageable map is divided into three areas, as illustrated in the figure below:

EMPLOYEE PERSONAL DATA

EMPLOYEE NAME: JANE FERNDALE

EMPLOYEE NUMBER: 0032 SOCIAL SECURITY NUMBER: 034-56-7890
EMPLOYEE NAME: TOM FITZHUGH

EMPLOYEE NUMBER: 0081 SOCIAL SECURITY NUMBER: 112-34-5678
EMPLOYEE NAME: GEORGE FONRAD

EMPLOYEE NUMBER: 0045 SOCIAL SECURITY NUMBER: 092-34-7890
EMPLOYEE NAME: ROBIN GARDNER

EMPLOYEE NUMBER: 0053 SOCIAL SECURITY NUMBER: 022-34-4444
EMPLOYEE NAME: JENNIFER GARFIELD

EMPLOYEE NUMBER: 0003 SOCIAL SECURITY NUMBER: 021-99-4516
PAGE: 0004

Three Areas of a Pageable Map

The header area (optional) is a rectangular area located across the top of the
screen that contains one or more rows of map fields associated with header
information. The header area information is displayed whenever the map is

displayed.

The footer area (optional) is a rectangular area located across the bottom of the
screen that contains one or more rows of map fields associated with footer
information. The footer information is displayed whenever the map is displayed.

The detail area (required) is a rectangular area located across the middle of the
screen that contains the detail occurrence for the map.

The set of fields in the detail occurrence is defined in the detail area only once.
At runtime, the number of detail occurrences that are displayed in the detail area
depends on the space available on the screen after accounting for the header and
footer information.

Examples of each Area: For example, a pageable map used to display a
department record and all associated employee records might contain the following
information:

Header area -- The title of the map and department information

Footer area -- A message field, a page field to display the current page number,
and literal fields with information about how to page through the map

Detail area -- Detail occurrences of employee information

4-4 CA-IDMS Mapping Facility

4.2 Areas of Pageable Maps

What is a Map Page?: The term map page refers to a runtime display made up of
the header and footer map fields and a page of detail occurrences. The page of
occurrences that is displayed at any given time is determined by the value of the
system $PAGE field. For example, if a department with 25 employees is displayed on
a pageable map that can hold a maximum of 10 employee occurrences, the value in
the system $PAGE field determines the occurrences that are displayed:

® |f $PAGE equals 1, occurrences 1 through 10 are displayed.

® |f $PAGE equals 2, occurrences 11 through 20 are displayed.

n |f $PAGE equals 3, occurrences 21 through 25 are displayed.
The value in the $PAGE field can be specified by the operator or by the dialog or
program. The current value in the system $PAGE field can be displayed on a map by

associating $PAGE with a field on the pageable map that is associated with the system
$PAGE fidld.

Chapter 4. Pageable Maps 4-5

4.3 Map-paging Sessions

4.3 Map-paging Sessions

What is a Map-paging Session?: When a CA-ADS dialog or an application
program uses a pageable map at runtime, a map-paging session takes place. CA-ADS
dialog or application program commands build and display detail occurrences for map
pages during a map-paging session. The operator can update information in data fields
and can access different map pages by pressing control keys or specifying page
numbers.

The fields in a detail occurrence are defined once when the map is created. At
runtime, these fields are repeated as many times on a page as possible to fill the detail
area. Each repetition of the detail occurrence represents a record occurrence.

For example, the screens below contrast the definition and run time detail occurrences
for a pageable map:

® At definition time, the fields in the detail area are associated with dictionary
elements or with system-supplied fields.

= At runtime, commands in the CA-ADS dialog premap process or the application
program move stored data to the appropriate work record elements before
displaying the map. When the map is displayed, the variable field associated with
WK-1D-0415 displays the identification number of a different employee in each
detail occurrence. Each detail occurrence displays information about the particular
employee identified in the WK-1D-0415 field.

Definition Time

EMPLOYEE PERSONAL DATA

EMPLOYEE NAME:

EMPLOYEE NUMBER: H SOCIAL SECURITY NUMBER:
4]

PAGE: a

1. Associated with WK-NAME-0415

4-6 CA-IDMS Mapping Facility

4.3 Map-paging Sessions

2. Associated with WK-ID-0415

3. Associated with WK-SS-NO-0415

4, Associated with system-supplied $Message field
5. Associated with system-supplied $Page field

Runtime

EMPLOYEE PERSONAL DATA

EMPLOYEE NAME: JANE FERNDALE

EMPLOYEE NUMBER: 0032 SOCIAL SECURITY NUMBER: 034-56-7890
EMPLOYEE NAME: TOM FITZHUGH

EMPLOYEE NUMBER: 0081 SOCIAL SECURITY NUMBER: 112-34-5678
EMPLOYEE NAME: GEORGE FONRAD

EMPLOYEE NUMBER: 0045 SOCIAL SECURITY NUMBER: 092-34-7890
EMPLOYEE NAME: ROBIN GARDNER

EMPLOYEE NUMBER: 0053 SOCIAL SECURITY NUMBER: 022-34-4444
EMPLOYEE NAME: JENNIFER GARFIELD

EMPLOYEE NUMBER: 0003 SOCIAL SECURITY NUMBER: 021-99-4516
PAGE: 0004

4.3.1 Sequence of Events in a Map-paging Session

1. The map-paging session is initiated according to specifications or commands in
the CA-ADS dialog or application program that uses the pageable map.

» For information on CA-ADS statements for pageable maps, see the CA-ADS
Reference Guide.

For information on PL/I statements for pageable maps, see Appendix G, “PL/I
DML Statements for Pageable Maps’ on page G-1.

For information on Assembler or COBOL statements, refer to either the CA-IDMS
DML Reference - Assembler or the CA-IDMS DML Reference - COBOL.

2. Detail occurrences are created by statements in the dialog or program.
Occurrences are stored sequentially in the order that they are created and are
divided into pages based on the number of detail occurrences that can fit on the
terminal screen at one time. A detail occurrence is displayed on the terminal
screen only when the map page to which the occurrence belongs is displayed.

3. A map page is displayed by the CA-ADS runtime system or the DC runtime
system as a result of one of the following:

Chapter 4. Pageable Maps 4-7

4.3 Map-paging Sessions

® The first detail occurrence on the second page of occurrencesis
constructed. The first page of detail occurrences in a map-paging session is
automatically displayed. The CA-ADS process or program module that
creates detail occurrences continues to execute and can create additional detail
occurrences.

n A display command is issued by the dialog (except when the command
immediately follows the display of the first page of occurrences, as described
above).

n A display is done automatically when the dialog has no premap process

Note: The CA-ADS runtime system (which executes CA-ADS dialogs) and the
DC runtime system (that executes application programs) are both referenced by
the term program runtime system in the remainder of this section. The term
runtime mapping system refers to a separate part of the runtime system that
handles only mapping functions at runtime.

»> For information on display commands for pageable maps, see 4.4.2, “Building
and Displaying Fields’ on page 4-16 later in this section.

The terminal operator optionally modifies map data fields in the header or
footer areas or in any of the detail occurrences of the current map page.
Map-field modifications are subject to restrictions specified at map-definition or
map runtime:

® At map-definition time, fields can be protected from operator input.

® At map runtime, modifications can be restricted by specifications made in
the CA-ADS dialog or application program:

— The paging mode option (UPDATE/BROWSE) determines whether
modifications can be made to a pageable map.

— Map modification commands determine whether modifications can be
made to individual fields.

»> For more information on paging mode options, see 4.4.1, “Map-Paging
Session Options” on page 4-10, later in this section.

For more information on map modification commands, see 6.3, “Map Inquiry and
Modification” on page 6-6.

The terminal operator optionally makes a paging request to specify the next
map page to be displayed in either of the following ways:

® By pressing a control key associated with paging forward or backward one
page:

— <PF8> pages the detail area forward one page.
— <PF7> pages the detail area backward one page.
These control key settings are system generation options.
® By specifying an integer value in the page field (if any) on the map.
® By typing first or last over the page field on the map.

4-8 CA-IDMS Mapping Facility

4.3 Map-paging Sessions

6.

10.

11

— First brings the operator to the first page of detail occurrences.
— Last brings the operator to the last page of detail occurrences.
The terminal operator presses a control key, initiating the following:

®m Theinternal representation of data fields is updated to reflect changes
made by the terminal operator if the operator pressed any key other than
<Clear>, <PA1>, <PA2>, <PA3>,

» The $PAGE value is updated if a paging request was made in any of the
following ways:

— The operator pressed a key associated with paging forward or backward
— The operator specified a value in the page field (if any) on the map

— The dialog or program set the value of the $PAGE field on the previous
mapin operation

m The flow of control is determined by the paging-type option specified for
the dialog or program

»»> For more information on paging-type specifications, see 4.4.2, “Building
and Displaying Fields’ on page 4-16 later in this section.

Modified detail occurrences are retrieved by commands in the dialog or
program. Data is updated to program variable storage according to specifications
made for each field.

» For information on retrieval commands for pageable maps, see 4.4.3,
“Retrieving Modified Data” on page 4-18 later in this section.

Detail occurrences are modified by either the program runtime system or the
mapping runtime system, as specified by the paging-type for the map-paging
session.

»»> For information on paging-type options, see 4.4.2, “Building and Displaying
Fields’ on page 4-16 later in this section.

Additional detail occurrences are created at any time by commands in the
dialog or program. New detail occurrences are stored at the end of the set of
detail occurrences in the session scratch record.

» For information on commands that create new detail occurrences, see 4.4.2,
“Building and Displaying Fields’ on page 4-16 later in this section.

A page of the map is displayed by either the program runtime system or the
mapping runtime system, as specified by the paging-type for the map-paging
session.

The map-paging session is terminated according to specifications or commands
in the CA-ADS dialog or application program that uses the pageable map.

Chapter 4. Pageable Maps 4-9

4.4 Dialog and Program Operations

4.4 Dialog and Program Operations

Pageable maps are used at runtime by CA-ADS dialogs and application programs.
Specifications for a dialog or program determine how a pageable map can be used at
runtime. For example, options specified for a map-paging session determine whether
the operator can page backward or update information on the map.

Specifications and statements in a dialog or program perform the following functions
at runtime. These specifications and statements are discussed separately below:

» Establish map-paging session options

® Build and display fields

» Retrieve modified data

Note: The CA-ADS runtime system (which executes CA-ADS dialogs) and the DC
runtime system (that executes application programs) are both referenced by the term
program runtime system in the remainder of this section. The term runtime
mapping system refers to a separate part of the runtime system that handles only
mapping functions at runtime.

4.4.1 Map-Paging Session Options

4.4.1.1 Putting Options into Effect

CA-ADS: CA-ADS issues a #STRTPAG and #ENDPAG request for you under the
conditions specified in the table below:

Options Under these conditions

are...

Specified When a pageable map is associated with a dialog

Retained Across dialogs when all of the following conditions are met:

» The dialog that passes control and the dialog that receives
control are associated with the same pageable map.

® The dialog that passes control and the dialog that receives
control are defined with the same map-paging session options.

® Control is passed by means of a LINK, INVOKE, or RETURN
command.

4-10 CA-IDMS Mapping Facility

4.4 Dialog and Program Operations

Options Under these conditions
are...
Ended When any of the following conditions are met:

= The application terminates normally
» The application aborts

® The application passes control to another dialog under any of
the following conditions:

— The dialog receiving control is associated with a different
pageable map than the one that initiated the map paging
session

— The dialog receiving control has different map paging
dialog options than the dialog that initiated the map paging
session

— The dialog that initiated the map paging session issues the

TRANSFER command, either by way of a CA-ADS
PROCESS statement or an EXECUTE NEXT function

— The dialog that initiated the map paging session returns
control to a higher level

— POP or POPTOP is issued and the menu receiving control
is at a higher level than the dialog that started the paging
session

Application Programs: With COBOL, PL/1, and Assembler, the program must
explicitly issue the paging requests.

Options are... Under these conditions

Specified In the DML statement that initiates the paging session:
= By the COBOL or PL/I STARTPAGE statement
By the Assembler #STRTPAG macro

Retained Across program branches if no DML command to initiate a
new paging session or terminate the existing session is
encountered.

Chapter 4. Pageable Maps 4-11

4.4 Dialog and Program Operations

Options are... Under these conditions

Ended By a DML statement that either explicitly terminates the
current paging session or begins a new paging session and
implicitly terminates the current paging session:

m The COBOL or PL/I ENDPAGE statement explicitly
terminates a map-paging session; the STARTPAGE
statement (above) implicitly terminates the current
map-paging Session.

m The Assembler #ENDPAG macro explicitly terminates a
map-paging session; the #STRTPAG macro (above)
implicitly terminates the current map-paging session.

4.4.1.2 Specifying Paging and Update Requests

Paging-type Specification: The paging-type specification for a dialog or program
determines whether the program or the runtime mapping system handles paging and
update requests. Paging and update requests are made when the operator presses a
control key:

= A paging request to display a different page of the map is made if either of the
following cases applies when the operator presses a control key:

— The control key is associated with paging forward or backward.

— The value in the $PAGE field has been altered by the operator or the
diaog/program that uses the map, and the control key is not <Clear>, <PA1>,
<PA2>, or <PA3> (which do not transmit data).

® An update request (to update operator modifications to the scratch record for the
paging session) is made when the MDT is set on for fields and the operator
presses a control key other than <Clear>, <PA1>, <PA2>, or <PA3>.

Three Types of Paging: One paging-type option must be specified for a dialog or
program that uses a pageable map. The paging options affect the flow of control when
an operator presses a control key during a paging session as described in the table

below:

Option Affect on flow of control

NOWAIT (default) Specifies that the runtime mapping system automatically
handles all paging and update transactions. Control is passed to the
program runtime system only when neither an update nor a paging
reguest is made when the operator presses a control key.

WAIT Specifies that runtime mapping automatically handles paging

transactions that do not cause data to be updated. Control is passed
to the program runtime system when an update or non-paging
reguest is made.

4-12 CA-IDMS Mapping Facility

4.4 Dialog and Program Operations

Option Affect on flow of control

RETURN Specifies that the mapping runtime system does not handle any
terminal transactions in the paging session. Control is passed to the
program runtime system whenever the operator presses a control
key.

Note: runtime mapping does not update program variable storage unless a MAP IN

command is issued. In cases where the operator can update data, it is recommended
that WAIT or RETURN be specified for the map-paging session so that data can be
retrieved as it is updated.

CA-ADS automatically handles all MAPIN and MAPOUT commands.

Paging Paging request * Non-paging request
Type No MDT set Any MDT No MDT set Any MDT set
%t * % * %

NOWAIT Runtime Runtime Control Runtime
mapping mapping passes to the mapping
displays the displays the program redisplays the
reguested reguested runtime same map page
map page map page system

WAIT Runtime Control Control Control passes
mapping passes to the passes to the to the program
displays the program program runtime system
reguested runtime runtime
map page system system

RETURN Control Control Control Control passes
passes to the passes to the passesto the to the program
program program program runtime system
runtime runtime runtime
system system system

* |f <Clear>, <PA1>, <PA2>, or <PA3> is pressed, and that key is not
associated with backward or forward paging, refer instead to the Non-paging
Request heading.

** |f <Clear>, <PA1>, <PA2>, or <PA3> is pressed, refer to the No MDT Set
column under the same heading.

How to Specify the Paging-type: The paging-type is specified for an CA-ADS

dialog or application program as follows:

Chapter 4. Pageable Maps 4-13

4.4 Dialog and Program Operations

Language Option/Clause
CA-ADS = NOWAIT/WAIT/RETURN option — Map Specifications
screen in ADSC
» PAGING TYPE clause
COBOL or NOWAIT/WAIT/RETURN clause — STARTPAGE statement
PL/I
Assembler TYPE=NOWAIT/WAIT/RETURN clause — #STRTPAG macro

» For information on CA-ADS specifications for pageable maps, see the CA-ADS
Reference Guide.

» For information on PL/I statements for pageable maps, see Appendix G, “PL/I
DML Statements for Pageable Maps’ on page G-1.

»»> For more information on COBOL or Assembler pageable map statements, refer to
either the CA-IDMS DML Reference - Assembler or the CA-IDMS DML Reference -
COBOL.

4.4.1.3 Backpaging Capability

Definition: The backpaging specification for a dialog or program determines whether
the terminal operator can display a previous map page during a map-paging session.
The following considerations apply to the backpaging option:

n |f backpaging is allowed (default), detail occurrences of previous pages must be
retained during the map-paging session.

» |f backpaging is not allowed, the previous page of detail occurrences is deleted
when a new map page is displayed.

How to Enable Backpaging: Backpaging is enabled/disabled for a CA-ADS
dialog or application program by one of the following specifications:

Language Option/Clause

CA-ADS BACKPAGE(YES/NO) option — Map Specifications screen in
ADSC

COBOL or BACKPAGE/NOBACKPAGE clause — STARTPAGE statement

PL/I

Assembler BACKPAG=YES/NO clause — #STRTPAG macro

»> For information on CA-ADS specifications for pageable maps, see the CA-ADS
Reference Guide.

4-14 CA-IDMS Mapping Facility

4.4 Dialog and Program Operations

For information on PL/I statements for pageable maps, see CA-IDMS DML Reference -
PL/I.

For more information on COBOL or Assembler pageable map statements, refer to
either the CA-IDMS DML Reference - Assembler or the CA-IDMS DML Reference -
COBOL.

4.4.1.4 Paging Mode

Definition: The paging mode specification for a dialog or program determines
whether the termina operator can modify variable map fields:

» UPDATE specifies that the terminal operator can modify variable map fields,
subject to restrictions specified for the map either at map-definition time or by the
dialog or program that uses the map.

» BROWSE gpecifies that the terminal operator can modify only the page and
response fields (if any) of the map. The MDTs for variable fields on a map can
be set only according to specifications made either in the map-definition or by the
dialog or program that uses the map.

Note: UPDATE cannot be specified if backpaging is not allowed and NOWAIT is
specified as the paging-type.

How to Specify the Paging Mode: The paging mode is specified for a CA-ADS
dialog or application program as follows:

Language Option/Clause
CA-ADS » UPDATE/BROWSE option — Map Specifications screen in
ADSC

® PAGING MODE clause — BACKPAGE (YesgNo)

COBOL or UPDATE/BROWSE clause of the STARTPAGE statement
PL/I
Assembler FLAG=UPDATE/BROWSE clause of the #STRTPAG macro

»> For information on CA-ADS specifications for pageable maps, see the CA-ADS
Reference Guide.

For information on PL/I statements for pageable maps, see Appendix G, “PL/I DML
Statements for Pageable Maps’ on page G-1.

For more information on COBOL or Assembler pageable map statements, refer to
either the CA-IDMS DML Reference - Assembler or the CA-IDMS DML Reference -
COBOL.

Chapter 4. Pageable Maps 4-15

4.4 Dialog and Program Operations

4.4.2 Building and Displaying Fields

Statements in CA-ADS dialogs and application programs can be used to create and
display header and footer fields during a map-paging session when execution is under
dialog or program control. Execution is under dialog or program control when:

® The first page of detail occurrences has not been displayed

® The operator presses a control key that passes control from the mapping runtime
system to the program runtime system, as specified by the paging-type
specification for the session.

» For information on the paging-type specification, see 4.4.2, “Building and
Displaying Fields’ earlier in this section.

4.4.2.1 Building Fields

CA-ADS and Data Manipulation Language (DML) statements that build individual
detail occurrences from stored values or operator modifications are as follows:

Language Option/Clause

CA-ADS PUT DETAIL statement

COBOL or MAP OUT DETAIL statement

PL/I

Assembler #MREQ OUT DETAIL=YES statement

How it Works: The header and footer areas of the map are stored in the scratch area
and are built automatically when the first PUT DETAIL command is executed. As a
result, any modifications to the header or footer are ignored after that point.

As the program runtime system builds detail occurrences for a pageable map, it stores
the occurrences sequentially in the order in which they are created.

»> For information on CA-ADS specifications for pageable maps, see the CA-ADS
Reference Guide.

»» For information on PL/I statements for pageable maps, see Appendix G, “PL/I
DML Statements for Pageable Maps’ on page G-1.

»»> For more information on COBOL or Assembler pageable map statements, refer to
either the CA-IDMS DML Reference - Assembler or the CA-IDMS DML Reference -
COBOL.

4-16 CA-IDMS Mapping Facility

4.4 Dialog and Program Operations

4.4.2.2 Displaying Fields

If the AUTODISPLAY option is on for the dialog, the program runtime system
automatically displays the first page of a pageable map when the first detail occurrence
of the second page of occurrences is created. The first page of a pageable map
consists of fields in the header and footer areas and the first page of detail

occurrences.

The program runtime system continues to build detail occurrences after the first page
of the map is displayed, if necessary. After the first page is displayed, control is
passed to the terminal operator as described below:

B CA-ADS - Control is passed to the terminal operator when a DISPLAY command
is issued after the final detail occurrence is built for the map.

m COBOL, PL/I, and Assembler programs -- Control is passed to the terminal
operator immediately after the first page of detail occurrences is displayed. The
terminal operator can page through the map while additional detail occurrences are
being built. A mapin operation can be initiated after all detail occurrences for a
pageable map are built.

Requesting Display of Detail Occurrences: The following table lists the
statements that request display of a page of detail occurrences and pass control to the
terminal operator:

Language Option/Clause

CA-ADS DISPLAY statement

COBOL or MAP OUT RESUME statement
PL/I

Assembler #MREQ OUT RESUME statement

How Statements are used: The statements above are used in the following ways:

® Toinitiate a mapout when mapout operations are under the control of the
program runtime system, as determined by the paging-type option for the paging
session.

» For more information, see 4.4.2, “Building and Displaying Fields’ on
page 4-16 earlier in this section.

® To display the first page of a pageable map (application program only) when
fewer detail occurrences are built than can be displayed on the first page of the
map. COBOL and PL/I programs issue a status code and Assembler programs
return a value when the first page of a pageable map is displayed. If the
appropriate status code or value has not been received when the runtime system
finishes building detail occurrences for the map, a MAP OUT RESUME or
#MREQ OUT RESUME statement must be used to display the first page of the

map.

Chapter 4. Pageable Maps 4-17

4.4 Dialog and Program Operations

4.4.2.3 Summary of Commands

Language

Create Single
Occurrence

Display Page

CA-ADS

PUT DETAIL

The PUT DETAIL statement that creates
the first detail occurrence of the second
page causes the first page of occurrences
to be displayed.

A DISPLAY statement causes the
specified page of occurrences to be
displayed.

COBOL
PL/I

MAP OUT
DETAIL

The MAP OUT DETAIL statement that
creates the first occurrence of the second
page causes the first page of occurrences
to be displayed.

A MAP OUT RESUME statement causes
the specified page of occurrences to be

displayed.

Assembler

#MREQ OUT
DETAIL

The #MREQ OUT DETAIL statement
that creates the first occurrence of the
second page causes the first page of
occurrences to be displayed.

A #MREQ OUT RESUME statement
causes the specified page of occurrences
to be displayed.

»> For information on CA-ADS specifications for pageable maps, see the CA-ADS

Reference Guide.

For information on PL/I statements for pageable maps, see Appendix G, “PL/I| DML
Statements for Pageable Maps’ on page G-1.

For more information on COBOL or Assembler pageable map statements, refer to
either the CA-IDMS DML Reference - Assembler or the CA-IDMS DML Reference -

COBOL.

4.4.3 Retrieving Modified Data

What is Retrieved?:
pageable map can be retrieved on mapin:

Modified data in fields in the header and footer area for a

® The CA-ADS runtime system automatically retrieves modified values from the
header or footer.

4-18 CA-IDMS Mapping Facility

4.4 Dialog and Program Operations

m The COBOL or PL/l MAP IN HEADER statement is used to retrieve a modified
value in either the header or footer area

» The Assembler #MREQ MAP IN HEADER=YES statement is used to retrieve a
modified value in either the header or footer area

The retrieved value from each modified field (MDT set on) in the header or footer
area is updated to program variable storage if DATA isY (YES) for the field.

The mapping runtime system updates a scratch record when operator modifications are
made to fields in detail occurrences but does not update program variable storage.
Therefore, CA-ADS dialogs and application programs that use pageable maps in the
UPDATE paging mode must include statements that update program variable storage
when necessary.

CA-ADS and the DMLs provide statements that retrieve modified detail occurrences,
either all data fields or only those fields in the occurrence for which the MDT is set on
can be retrieved. The retrieved value for each modified field (MDT set on) in the
detail occurrence is moved to program variable storage if DATA is specified as Y
(YES) for the field on mapin.

CA-ADS and DML commands that retrieve modified detail occurrences are as follows:

Language Retrieve from Retrieve from Detail
Header/Footer Area Occurrence

CA-ADS Fields automatically retrieved GET DETAIL statement

COBOL MAP IN HEADER statement MAP IN DETAIL statement

PL/I

Assembler #MREQ IN HEADER=YES #MREQ IN DETAIL=YES
statement Statement

Note: Note: The HEADER specification in each statement retrieves data from
both the header and footer areas.

»> For information on CA-ADS specifications for pageable maps, see the CA-ADS
Reference Guide.

For information on PL/I statements for pageable maps, see Appendix G, “PL/I DML
Statements for Pageable Maps’ on page G-1.

For more information on COBOL or Assembler pageable map statements, refer to
either the CA-IDMS DML Reference - Assembler or the CA-IDMS DML Reference -
COBOL.

Chapter 4. Pageable Maps 4-19

4.5 Runtime Considerations

4.5 Runtime Considerations

The detail occurrence for a pageable map cannot occupy more lines than are available
in the detail area at runtime.

Size Constraints on Maps: A pageable map can be displayed on screens of
varying sizes. The following constraints apply:
A map cannot be displayed on a screen that is narrower than the map.

® A pageable map can only be displayed on a screen if the runtime detail areais
large enough to hold at least one complete detail occurrence.

» The footer (if available) will adjust to the different devices. For example, if the
footer starts three lines from the bottom of the screen, the footer will start on:

Line 22 of a 24X80
Line 30 of a 32X80
Line 41 of a 43X80
Line 25 of a 27X132

Constraints on System-supplied Fields: The following considerations apply to
system-supplied fields on a pageable map:

= A maximum of one message field can be defined on a map. If defined, the
message field for a pageable map should be defined as follows:

— In the header or footer area, if the most important messages for the map are
generated by the ADS DISPLAY MESSAGE command.

— In the detail occurrence, if the most important messages for the map are
generated by the ADS PUT DETAIL MESSAGE command. At runtime, the
single message field defined in the detail occurrence is mapped out once in
each occurrence in the detail area.

» A page field can be defined in the header or footer area of a pageable map. The
page field is associated with the system $PAGE field when the map is defined by
using the mapping facility. At runtime, the page field displays the number of the
current map page. If the page field is unprotected, the operator can key a page
number, first, or last in the field to request display of a page.

® A response field can be defined in the header or footer area of a pageable map.
A response field is meaningful only when the map is used by a CA-ADS dialog.

4-20 CA-IDMS Mapping Facility

4.6 Creating Pageable Maps

4.6 Creating Pageable Maps

4.6.1 Overview

Pageable maps are created by using either the online or batch compiler of the
CA-IDMS mapping facility. Specifications made during map-definition establish the
map as a pageable map and define the following pageable map features:

® Header area (optional)
® Detail area

® Detail occurrence

» Footer area (optional)

» For more information on the areas and detail occurrence of a pageable map, see
4.2, “Areas of Pageable Maps’ on page 4-4 earlier in this section.

4.6.2 Using the Online Compiler

Use the online compiler to state the specifications for a pageable map as follows:
» Select the Pageable option on the first General Options screen

m Specify the boundaries of the detail area by using the Pageable Options screen
in the Field Definition process as described below:

— If the field or litera is the only one in the detail area, select Option 1
— If the field is the first of two or more fields in the detail area, select Option 2

— If the field is the last field or literal in the detail area, select Option 3. The
detail occurrence will end at the last character position in this field.

— If the field is the first field or literal in the footer area, select Option 4. This
defines the end of the detail area and the beginning of the footer.

After the map has been compiled using the Compile action on the Main Menu screen,
you can use it in MAPC.

» For more information on using the online mapping compiler screens, see
Chapter 8, “Online Mapping Compiler Reference” on page 8-1.

4.6.3 Using the Batch Compiler
The map developer makes pageable map specifications for a map by using clauses of
batch compiler statements:

» PAGEABLE clause of the MAP statement — Designates that the map is a
pageable map

Chapter 4. Pageable Maps 4-21

4.6 Creating Pageable Maps

» DETAIL START clause of the PFLD or MFLD (for MAP AUTOPANEL)
statements — Establishes:

— The end of the header area (if any) on the line immediately above the line
that contains the attribute byte for the field assigned the DETAIL START
specification

— The start of the detail area on the line that contains the attribute byte of the
field being defined

— Thefirst field of the detail occurrence on the line that contains the attribute
byte of the field being defined

The field assigned the DETAIL START specification must begin on a new line
(that is, it cannot begin on a line that contains characters for a field in the header
area).

= DETAIL END clause of the PFLD or MFLD (for MAP AUTOPANEL)
statements — Establishes that the detail occurrence for the map is to end at the
final character position of the current field

» FOOTER START clause of the PFLD or MFLD (for MAP AUTOPANEL)
statement — This clause is optional. If it is used, it establishes:

— The start of the footer area on the line that contains the attribute byte for
the field. The footer area ends at the end of the screen.

— The end of the detail area on the line immediately above the line that
contains the attribute byte of the field assigned the FOOTER START
specification.

The field assigned the FOOTER START specification cannot begin on a line that
contains characters for a field in the detail occurrence. If assigned, the FOOTER
START specification must be assigned to a field below the field assigned the
DETAIL END specification.

Considerations: DETAIL START, DETAIL END, and FOOTER START can only
be assigned to fields after the owner map has been designated as pageable. Only one
pageable map area specification can be made on any given row of the map. For
example, the DETAIL END and FOOTER START specifications cannot be assigned
to different fields on the same row.

A map is not ready for use until the map utility has been used to generate a map load
module for the completed map-definition.

»> For more information on using the batch compiler, see Chapter 10, “Batch
Compiler Coding Considerations’ on page 10-1 through Chapter 13, “Batch Utility
Reference” on page 13-1.

4-22 CA-IDMS Mapping Facility

Chapter 5. The Help Facility

51 OVEIVIEW 5-3
52 Terminology 5-4
53 Creating Map-level Help 5-5
5.3.1 Creating the Text of theHelpMessage 55
5.3.2 Associating the Help Text withaMap 55
533 TedstingtheResults 5-7
54 Creating Fidld-level Help 5-10
5.4.1 Creating the Text of theHelpMessage 5-10
5.4.2 Associating the Help Text withaField 511
543 TedstingtheResults 5-13
55 UsingtheHelp System 5-15
551 Overview 5-15

Chapter 5. The Help Facility 5-1

5-2 CA-IDMS Mapping Facility

5.1 Overview

5.1 Overview

The help system in the Mapping facility allows you to create help messages for an
entire map or a specific field on a map.

Help created using the help system has the following advantages over user-written
help:

® Processing of the help request is transparent to the dialog or program that uses the
map.

® During a help session, the help system preserves the map attributes and any data
that has been entered, but not yet stored, until the help session is over. When the
session is over, the system restores that information.

® Help can be added to an existing system without changing any code and without
having to recompile any dialogs or programs.

This chapter provides step-by-step instructions on how to create the text and associate
it with a map or field as well as a brief overview of how to use the help system.

CAUTION:

Physical Terminals (PTERMs) should be defined with the READBUFFER option.
PTERMs defined with NOREADBUFFER may not function properly. Seethe
CA-IDMS System Generation manual for more information on the READBUFFER
PTERM option.

Chapter 5. The Help Facility 5-3

5.2 Terminology

5.2 Terminology

Y ou should be aware of the following definitions before you begin working on the

help system:

Term

Definition

Field-level help

Help that applies to a specific field on a map.

Map-level help

Help that applies to an entire map.

Text module

A module in IDD that contains the text of either a
map-level or afield-level help message. Each help
message is stored in a separate text module.

Help load module

The load module that contains each map- and field-level
help text module associated with a map. There is only
one help load module per map.

Half-window format

Help that displays on the half of the screen that does not
contain the cursor. With field-level help this allows the
user to view simultaneously, the help text and the field
in question.

Full-window format

Help that displays across the entire screen.

5-4 CA-IDMS Mapping Facility

5.3 Creating Map-level Help

5.3 Creating Map-level Help

Summary of Steps: To create map-level help, perform the steps listed below. The
steps are described in detail on the following pages:

» Create and store the text for the message in IDD

® Associate that text with the map using the mapping compiler

m Compile the map

» Optionally, you can test the results using the DC/UCF system task, SHOWMAP.

5.3.1 Creating the Text of the Help Message

Steps: To create and store the help text, perform the following steps:
1. Signonto IDD

2. Enter the following all at once, as illustrated on the sample screen below:
ADD MODULE your-maphelp-text-module LANGUAGE IS HELP MODULE SOURCE FOLLOWS

The text of your help message
MSEND.

CAUTION:
If aline of help text exceeds 72 characters, it will be truncated when it is
displayed as help for the map.

3. Save the module

Sample Screen

IDD 15.0 ONLINE NO ERRORS DICT=SYSDICT 1
ADD MODULE MAP-HELP-EXAMPLE LANGUAGE IS HELP MODULE SOURCE FOLLOWS

THIS IS HELP FOR THE ENTIRE MAP.
MSEND.

5.3.2 Associating the Help Text with a Map

Naming Conventions: When an application is being migrated at the load module
level, both the map module and the help module associated with it must be moved.
Therefore, it is suggested that you maintain consistent naming conventions that will
make it easy to identify the connection between a map and its associated help load

Chapter 5. The Help Facility 5-5

5.3 Creating Map-level Help

module. In examples provided, the fourth character is used to identify whether the
entity isamap (M) or a help load module (H).

Steps: After you create the help text, you must associate it with the appropriate map
using either the online map compiler, MAPC, or the batch compiler, RHDCMAP1.
An example using MAPC follows:

Note: The following steps assume that the map with which you are associating the
help already exists. If not, create the map first following the instructions in 7.3,
“Using the Online Compiler” on page 7-5.

1. Access MAPC

2. On the main menu, enter the name of the map with which you want to associate
the help and select the Map-Level help text definition option, as shown below:

Add Modify Compile Delete Display Switch

CA-IDMS OnTine Map Compiler

Computer Associates International, Inc.

Map name CHRMEMP1
Map version 1
Dictionary name SYSDICT
Dictionary node
Screen 2 1. General options
2. Map-Level help text definition
3. Associated records
4. Layout
5. Field definition

Command ===>
Enter Fl=Help F3=Exit F10=Action

3. On the Map-Level Help Text Definition screen shown below:

» Enter the name of the load module that contains all the help for the map in
the Help Name field.

n Specify the PF key that will be used to access help for the map.

CAUTION:

If avalueis not entered in the Help key field, the default is the SYSGEN
OLM statement value, which defaults to <PF1>. The PF key value
assigned for help supersedes that defined for any other purpose. For
example, if <PF1> is defined to a dialog as invoking a response, and
<PF1> is also defined as the help key, the help system will get control.

n Specify whether the help should be displayed in a full or half window in the
Window format field.

® In the Origin of help text field, specify option 2 and provide the name of the
IDD module that contains the help text.

5-6 CA-IDMS Mapping Facility

5.3 Creating Map-level Help

® Press <Enter>.

Origin of help text . .

Enter Fl=Help F3=Exit F4=Prev

Map-Level
Map name: CHRMEMP1 Version:
Help name: CHRMHLP1 Help key:
Window format 1

DC366303 Help text options processed successfully

Help Text Definition Page 1 of 1
1

PFO1 Drop Help (/) _
. Half 2. Full
. No text
. Module MAP-HELP-EXAMPLE

Version 1

F5=Next F6=Preview

4. Compile the map using the Compile option on the main menu:

Add Modify Compile Delete

Display Switch

1. Compile

2. View Messages

line Map Compiler

F3=Exit

es International, Inc.

Map name CHRMEMP1
Map version 1
Dictionary name SYSDICT
Dictionary node
Screen 5 1. General options
2. Map-Level help text definition
3. Associated records
4. Layout
5. Field definition
Command ===>
Enter Fl=Help F3=Exit F10=Action

5.3.3 Testing the Results

Steps

1. After you compile the map, you can test the results using the DC/UCF system

task, SHOWMAP, as shown below:

Chapter 5. The Help Facility 5-7

5.3 Creating Map-level Help

V81 ENTER NEXT TASK CODE:
showmap chrmempl

2. When the map displays, place the cursor anywhere on the map and press the PF
key defined for help for the map:

EMP-ID
<--{cursor}

EMP-FIRST-NAME
EMP-LAST-NAME
EMP-STREET
EMP-CITY

EMP-STATE
EMP-ZIP-FIRST-FIVE
EMP-PHONE

STATUS

NEXT RESPONSE

- J

3. Help will be displayed as described below:

» |If the cursor is on afield for which field-level help has been defined, or is an
occurrence of afield for which field-level help has been defined, field-level
help is displayed

n For all other fields and other areas of the map, map-level help is displayed

5-8 CA-IDMS Mapping Facility

5.3 Creating Map-level Help

MAP-EMP-1D

MAP-EMP-FIRST-NAME
MAP-EMP-LAST-NAME
MAP-EMP-STREET

MAP-EMP-CITY

F3=EXIT

THIS IS HELP FOR THE ENTIRE MAP

SCROLL: 010

Chapter 5. The Help Facility 5-9

5.4 Creating Field-level Help

5.4 Creating Field-level Help

Summary of Steps: To create field-level help, perform the steps listed below
which are described in detail on the following pages.

» Create and store the text for the message in IDD

® Associate that text with the field using either the online map compiler, MAPC, or
the batch compiler, RHDCMAPL. An example using MAPC follows:

— Access the layout screen
— Select the appropriate field

— Usethe Field-level Help Text Definition screen to specify the name of the
help load module and text module

= Compile the map
» Optionally, you can test the results using the DC/UCF system task, SHOWMAP.

5.4.1 Creating the Text of the Help Message
To create and store the help text, perform the following steps:

Steps
1. Signonto IDD

2. Enter the following:
ADD MODULE your-fieldhelp-text-module LANGUAGE IS HELP MODULE SOURCE FOLLOWS

The text of your help message
MSEND.

CAUTION:
If aline of help text exceeds 72 characters, it will be truncated when it is
displayed as help for the map.

3. Save the module

Sample Screen

IDD 15.0 ONLINE NO ERRORS DICT=SYSDICT 1
ADD MODULE FIELD-HELP-EXAMPLE LANGUAGE IS HELP MODULE SOURCE FOLLOWS

THIS IS HELP FOR A SINGLE FIELD
MSEND.

5-10 CA-IDMS Mapping Facility

5.4 Creating Field-level Help

5.4.2 Associating the Help Text with a Field

Steps:

An example using MAPC follows:

1. Access MAPC

2. On the main menu, enter the name of the map with which you want to associate

the help and select the Layout option.

After you create the help text, you must associate it with the appropriate field
using either the online map compiler, MAPC, or the batch compiler, RHDCMAPL1.

Add Modify Compile Delete Display Switch

CA-IDMS OnTine Map Compiler

Computer Associates International, Inc.

Map name CHRMEMP1
Map version 1
Dictionary name SYSDICT

Dictionary node

Screen 4 1. General options
2. Map-Level help text definition
3. Associated records
4. Layout
5. Field definition

Command ===>
Enter Fl=Help F3=Exit F10=Action

3. On the Layout screen, identify which field you want to associate the help with by

overtyping the field mark with a selection character, in this case %, as shown

below, or by placing the cursor on the selected field and pressing <PF2>:

Note: If the field is an OCCURS field, you need only define help once; that
message will automatically display when the PF key is placed on any occurrence

of the field.

Chapter 5. The Help Facility 5-11

5.4 Creating Field-level Help

sMAP-EMP-ID % *

sMAP-EMP-FIRST-NAME H *
;MAP-EMP-LAST-NAME H *

sMAP-EMP-STREET H *

;MAP-EMP-CITY s
;MAP-EMP-STATE =
;MAP-EMP-ZIP-FIRST-FIVE ;___ =
;MAP-EMP-PHONE : *

;MAP-STATUS I

Enter Fl=Help F2=Select F3=Exit F4=Prev F5=Next F6=Preview F8=Bottom
F9=SetCursor F10=Deselect F11=AltKeys

- J

4. From the layout screen, press <PF5> to move to the Field Definition screen, then
overtype the page number with 4 to move to the Field-Level Help Text Definition
screen.

On the Field-level Help Text Definition screen shown below:

» Enter the name of the load module that contains all the help for the map in
the Help Name field.

CAUTION:
Only one help load module exists per map.

» Specify the PF key that will be used to access help for the map.

CAUTION:

If avalueis not entered in the Help key field, the default is the SYSGEN
OLM statement value, which defaults to <PF1>. The PF key value
assigned for help supersedes that defined for any other purpose. For
example, if <PF1> is defined to a dialog as invoking a response, and
<PF1> is also defined as the help key, the help system will get control.

» Specify whether the help should be displayed in a full or half window in the
Window format field.

® |nthe Origin of help text field, specify option 2 and provide the name of the
IDD module that contains the help text.

® Press <Enter>.

5-12 CA-IDMS Mapping Facility

5.4 Creating Field-level Help

DC366303 Help text options proc

Enter Fl=Help F3=Exit F4=Pre

Field-Level Help Text Definition Page 4 of 7
Map name: CHRMEMP1 Version: 1
Help name: CHRMHLP1 Help key: PFO1 Drop Help (/) _
Element name MAP-EMP-ID Subscript
In record MAP-EMPLOYEE Version 1
Window format 1 1. Half 2. Full
Origin of help text . . 2 1. No text
2. Module FIELD-HELP-EXAMPLE
Version 1

essed successfully

v F5=Next F6=Preview F7=Bkwd F8=Fwd

5. Compile the map using the Compile

option on the main menu:

Add Modify Compile Delete

Display Switch

1. Compile
2. View Mess

ages |line Map Compiler

F3=Exit

es International, Inc.

Map name CHRMEMP1
Map version 1
Dictionary name SYSDICT
Dictionary node
Screen 5 1. General options
2. Map-Level help text definition
3. Associated records
4. Layout
5. Field definition
Command ===>
Enter Fl=Help F3=Exit F10=Action

5.4.3 Testing the Results

1. After you compile the map, you can see a prototype of the help text by using the

DC/UCF system task, SHOWMAP.

V81 ENTER NEXT TASK CODE:
showmap chrmempl

Chapter 5. The Help Facility 5-13

5.4 Creating Field-level Help

2. Place the cursor on the field to display the help text associated with it:

-

EMP-ID # <--{cursor}
EMP-FIRST-NAME
EMP-LAST-NAME
EMP-STREET

EMP-CITY

EMP-STATE
EMP-ZIP-FIRST-FIVE
EMP-PHONE

STATUS

NEXT RESPONSE

3. When you press the PF key associated with help for the map, the help text is
displayed for the field:

MAP-EMP-ID

MAP-EMP-FIRST-NAME
MAP-EMP-LAST-NAME
MAP-EMP-STREET

MAP-EMP-CITY

THIS IS HELP FOR A SINGLE FIELD.

F3=EXIT SCROLL: 010

5-14 CA-IDMS Mapping Facility

5.5 Using the Help System

5.5 Using the Help System

55.1 Overview

To use the help system the user simply presses the key specified for Help at the
bottom of the screen.

Foreign Language Support: The Help facility provides a scrolling feature to use
if there is more than one page of information.

The table below specifies the commands that can be entered for each language:

Language Top First Bottom End Last Next
English TOP FIR BOT END LAS
TO Fl BO EN LA
T F B E L
German SPI ERS BOD LEZ NIE
SP ER BO LE NI
I B L N
French ANE ZYX
AN zY
A 4
Spanish PRI ULT TER
PR UL TE
P U

Chapter 5. The Help Facility 5-15

5-16 CA-IDMS Mapping Facility

Chapter 6. Runtime Considerations

6.1 OVEIVIEW 6-3
6.2 Mapout and Mapin Operations 6-4
6.21 CA-ADSDIidogs 6-4
6.22 Other Languages 6-5
6.3 Map Inquiry and Modification 6-6
6.3.1 Statements 6-6
6.3.2 Temporary VS Permanent Modifications 6-6
6.3.3 Write Control Characters (WCC) 6-7
6.4 Message Field Considerations L. 6-8
6.5 Attributes 6-9

Chapter 6. Runtime Considerations 6-1

6-2 CA-IDMS Mapping Facility

6.1 Overview

6.1 Overview

This section provides an overview of the use of map load modules by application
programs and dialogs. The following topics are presented in this section:

. Mapout and mapin operations

= Map inquiry and modification

Message field considerations

Attributes

» Mapping mode data transmission by CA-ADS diaogs is presented in the CA-ADS
Reference Guide.

Mapping mode of data transmission by application programs is presented in the
CA-IDMS DML Reference - COBOL, CA-IDMS DML Reference - Assembler, and in the
CA-IDMS DML Reference - PLI/I.

For a listing of runtime error codes and messages, see CA-IDMS Messages and Codes.

Chapter 6. Runtime Considerations 6-3

6.2 Mapout and Mapin Operations

6.2 Mapout and Mapin Operations

Overview of Activities: The following activities occur on mapout and mapin:

® On mapout, data from program storage is transmitted to the terminal if DATA is
Y (YES) for mapout:

Literal and variable fields are both transmitted:

— The CA-ADS runtime system transmits both literal and variable fields
when NEWPAGE is specified in the ADSO sysgen statement for
CA-ADS dialogs.

— An application program transmits both literal and variable fields when
NEWPAGE is specified in the statement that issues the mapouit.

Literal fields only are transmitted by an application program if LITERALS is
specified in the DML statement that issues the mapout.

Variable fields only are transmitted as follows:

— The ADS runtime system transmits only variable fields when a dialog's
map is already displayed as the result of a previous mapout.

— An application program transmits only variable fields if neither
NEWPAGE nor LITERALS is specified in the statement that issues the
mapout.

Neither literals nor variables are transmitted on mapout if there is a field
found to be in error.

= On mapin, data which has been modified or for which the MDT has been set is
transmitted to program variable storage if DATA is'Y (YES) for mapin and the
field is not found to be in error.

»> For information on mapout and mapin of pageable maps, see 4.6, “Creating
Pageable Maps’ on page 4-21.

6.2.1 CA-ADS Dialogs

CA-ADS dialogs request mapout and mapin operations as described in the table below:

This operation I's performed when

Mapout

®m No premap process is executed at the beginning of
a dialog because:

— Thereis no premap
— Or, the ENTRY POINT was set to MAP

m A DISPLAY statement is executed in a premap or
response process

6-4 CA-IDMS Mapping Facility

6.2 Mapout and Mapin Operations

This operation I's performed when

Mapin The operator presses a control key to initiate an 1/0
response process in the CA-ADS runtime system

»> For more information on CA-ADS mapout and mapin commands, see the CA-ADS
Reference Guide.

6.2.2 Other Languages

IDMS/UCF COBOL, Assembler, and PL/I programs specify mapout and mapin by
using CA-IDMS DML statements specific to each language:

COBOL and PL/I

This operation Requests

MAPOUT The transmission of data from application program
storage to the terminal.

MAPIN A transmission of data from the terminal to application
program storage.

MAPOUTIN A mapout operation followed by a mapin operation.

Assembler

This operation Requests

#MREQ OUT A transfer of data from application program storage to
the terminal.

#MREQ IN A transfer of data from the terminal to application

program storage.

#MREQ OUTIN A mapout operation followed by a mapin operation.

The MAPOUTIN and #MREQ OUTIN statements are used in conversational (rather
than pseudo-conversational) programs.

» For more information on DML mapout and mapin commands, see the appropriate
CA-IDMS DML Reference for COBOL, Assembler, or PL/I.

Chapter 6. Runtime Considerations 6-5

6.3 Map Inquiry and Modification

6.3 Map Inquiry and Modification

CA-ADS and the CA-IDMS Data Manipulation Languages (DMLSs) provide statements
that allow the application developer to inquire about and modify maps:

6.3.1 Statements

Inquiry Statements: Inquiry statements can be used to examine certain results of a
mapin operation, such as whether any data fields have been changed, truncated, or
erased.

Modification Statements: Maodification statements can be used to modify options
specified during map-definition, such as display color or intensity, and to modify the
result of a previous mapping operation.

Summary of Statements: The table below lists the statements used to examine
mapin results or to make temporary or permanent changes to a map:

Language Inquiry M odification

CA-ADS IF statement in Attributes MODIFY MAP
conjunction with
conditional global

variables
COBOL INQUIRE MAP DML MODIFY MAP
PL/I DML INQUIRE MAP DML MODIFY MAP
Assembler DML #MAPINQ DML #MAPMOD

6.3.2 Temporary VS Permanent Modifications

The difference between temporary and permanent map modifications is:
» Temporary modifications apply to the next mapout operation only.

®» Permanent modifications remain in effect for all mapout operations for the map
until explicitly revoked by one of the following actions:

— A subsequent, overriding map modification statement is issued for the map at
runtime

— The map control block is reinitialized (as when the map is used by a CA-ADS
dialog or a CA-IDMS application program)

— The application program (task) that uses the map terminates

— The dialog that uses the map either terminates or becomes inactive in the
current application thread

6-6 CA-IDMS Mapping Facility

6.3 Map Inquiry and Modification

Note: If both temporary and permanent modifications are specified, the temporary
changes override the permanent changes for the first mapout operation only.

6.3.3 Write Control Characters (WCC)

If a CA-ADS or DML map modification statement specifies a write control character
(WCC) for the map, al WCC options that the map defines are overridden; the default
values specified below are used for unspecified WCC options:

Language Default value For this option
CA-ADS NOMDT RESETMDT/NOMDT
COBOL NOKBD RESETKBD/NOKBD
PL/1 NOALARM ALARM/NOALARM
NOPRT STARTPRT/NOPRT
Assembler RESETMDT RESETMDT/NOMDT
RESETKBD RESETKBD/NOKBD
NOALARM ALARM/NOALARM
NOPRT STARTPRT/NOPRT

Chapter 6. Runtime Considerations 6-7

6.4 Message Field Considerations

6.4 Message Field Considerations

Displaying Error Messages: A maximum of one message field can be defined on
any given map; a message field can be of any length. When severa data fields submit
incorrect input, the message field displays as many error messages as possible, in order
of occurrence (from top to bottom and left to right) of the incorrect data fields.

Messages in the Detail Area: A message field that is defined in the detail area of
a pageable map is mapped out once in each occurrence of the detail occurrence in the
detail area. Messages generated by the CA-ADS DISPLAY MESSAGE statement are
not displayed if the message field is defined in the detail occurrence for the map.

Message Sources: A message field displays messages generated from either of the
following sources:

® The error-handling capability of the CA-IDMS mapping facility

» The CA-ADS dialog or application program that uses the map

If more than one error message is to be displayed in the message field, as many
messages are displayed as will fit in the message field. A space character separates

messages.

Default Error Message: If an error occurs in a field for which no message has
been defined, the default error message is used. The message has the following
format:

ERROR AT row,column

If a Message Field is not Defined: Dialogs and application programs react as
described below when a message is sent to a map for which no message field is
defined:

» A CA-ADS dialog displays the message on the default CA-ADS message screen
(unless the error occurs in a pageable map session, in which case the message is
ignored)

» A CA-IDMS application program ignores the message; processing continues and
the operator does not view the message

6-8 CA-IDMS Mapping Facility

6.5 Attributes

6.5 Attributes

Conflicts: The runtime mapping system does not allow conflicting attributes to be
associated with a single map field. If an attribute specified in a map modification
command conflicts with a previously established attribute, the new attribute overrides
the existing attribute. For example, specification of BRIGHT overrides a previously
established DARK attribute; specification of UNDERSCORE overrides a previous
REVERSE-VIDEO specification.

How Attributes are Determined: The attributes used for fields are determined as
follows:

Attributes specified for individual fields are used for the particular fields when a
map is mapped out.

Attributes specified for error-handling override the attributes specified for data
fields on a map when the map is redisplayed with error-handling attributes:

— Correct field attributes are used for al data fields that contain correct input
and for fields that were not edited on mapin.

— Incorrect field attributes are used for al data fields that contain input errors.

The actual attributes for individual fields and for error-handling are determined at
runtime:

» Temporary modifications specified for the given field by CA-ADS or DML

statements take priority over any contradicting attributes previously specified for
the field.

Permanent modifications made by CA-ADS or DML statements override any
contradicting attributes previously defined for the field.

Attributes defined for the field by the online mapping compiler or the batch
compiler are used when neither temporary nor permanent modifications override
them.

Neither temporary nor permanent modifications ater the map definition or the map
load module.

Chapter 6. Runtime Considerations 6-9

6-10 CA-IDMS Mapping Facility

Chapter 7. Online Compiler Overview

7.1 Overview
7.2 Accessing the Online Compiler 7-4

7.3 Using the Online Compiler 7-5
731 Overview 7-5
732 What ScreensareUsed? 7-5
7.3.3 Using the Main Menu Screen 7-6
734 Usingtheactionbar 7-7
7.35 Overview of asession 7-11
7.3.6 Usingthe functionkeys 7-13

7.3.6.1 How to Move, Copy, and Delete Text 7-14

Chapter 7. Online Compiler Overview 7-1

7-2 CA-IDMS Mapping Facility

7.1 Overview

7.1 Overview

Using the online compiler, developers can define, compile, modify, and delete
CA-IDMS maps in an online environment. The online compiler performs the following
functions:

® Requests user specifications for defining, copying, modifying, and deleting
map-related entity occurrences through a series of screens

m Constructs and stores map entity occurrences, based on the map developer
specifications

m Compiles or deletes map load modules
Although the online compiler performs most operations that are available through the
batch compiler and utility, there are still specific reasons to use the batch compiler and

utility. For example, a developer would use the batch compiler to generate device
groupings for the map and the batch utility to decompile a map.

The online compiler can modify maps that were created by either the online compiler
or the batch compiler and batch utility (unless the map defines device groupings, since
maps for multiple devices cannot be simultaneously represented by the online
compiler).

» For more information on the batch compiler and utility, see Chapter 9, “Batch
Compiler and Batch Utility Overview” on page 9-1.
What's in this Chapter?: This chapter discusses:

= How to initiate an online compiler session

» What the screens look like

= How to use the action bar

®» How to use the function keys

Chapter 7. Online Compiler Overview 7-3

7.2 Accessing the Online Compiler

7.2 Accessing the Online Compiler

From CA-IDMS: Specify the appropriate CA-IDMS task code for your site, for
example, MAPC. Task codes are defined at system generation and can vary from site
to site.

Directly from Another Task: If the task is executing under the transfer control
facility, Specify the appropriate CA-IDMS task code (for example, MAPC) in
conjunction with the SWITCH activity

From the SWITCH Pull Down Menu: Specify the task code of the task to which
you want to transfer.

The SWITCH facility enables the map developer to transfer directly from one
CA-IDMS task to another. For example, the developer can transfer between the online
compiler, the CA-ADS application generator, the CA-ADS dialog generator, and online
IDD. When control is transferred from a task, the current session of that task is
suspended if necessary. A task can have severa suspended sessions.

Information specified for a map is maintained in a queue record during an online
session. When a new session is initiated, as when the online compiler is invoked from
CA-IDMS, a new queue record is built. When a suspended session is invoked, the
gueue record from the suspended session is used.

»> Refer to the CA-IDMS Transfer Control Facility manual for more information on
how to use the transfer control facility.

7-4 CA-IDMS Mapping Facility

7.3 Using the Online Compiler

7.3 Using the Online Compiler

7.3.1 Overview

Online compiler screens prompt a map developer for information about a map and, in
some cases, are used to specify a course of action during the map definition process.

7.3.2 What Screens are Used?

The following six primary screens can be accessed during an online compiler session.
The Main Menu displays automatically when the compiler is invoked, but the other
screens must be invoked either from the Main Menu screen or from each other.
Additionally, some of the screens have more than one page on which you can enter
additional information:

The Main Menu screen establishes basic information about the map such as name
and version number.

The Main Menu screen also contains the action bar which can be used instead of
entering a command on the command line. The developer can use the action bar
to initiate an add, copy, modify, display, delete, or compile of a map, or to move
to another task.

The General Options screens (two pages) establish the options that apply to the
map such as the type of map, display and print options, and attributes for
re-displayed fields.

The Map-level Help Text screen establishes the connection between the map and
the IDD module that contains the help text.

The Associated Records screen establishes the records associated with the map.
The Autopaint option is also accessed from this screen.
The Layout screen is used to position map fields on the map.

The Field Definition screen establishes field-specific options. Information is
collected using seven separate pages as follows:

— Field Definition

— Map Read/Write Options
— Additional Edit Criteria

— Field-level Help

— Device-dependent Options
— User-defined Edit Modules
— Pageable Options

Chapter 7. Online Compiler Overview 7-5

7.3 Using the Online Compiler

7.3.3 Using the Main Menu Screen

When a developer signs on to the online compiler, the first screen displayed is the
Main Menu screen shown below. This screen is used both to provide basic
information about and to initiate action on a map.

Add Modify Compile Delete Display Switch

CA-IDMS Online Map Compiler

Computer Associates International, Inc.

Map name
Map version
Dictionary name
Dictionary node

Screen General options

Map-Level help text definition
Associated records

Layout

Field definition

GOl WMN =

Copyright (C) 1972,1999 Computer Associates International, Inc.

Command ===>
Enter Fl=Help F3=Exit F10=Action

How are the Areas Used?: The three areas of the screen are used as follows:

® The action bar at the top of the screen can be used as an dternative to entering a
command on the command line. The developer can use the action bar to initiate
an add, modify, display, compile, or delete of a map or to switch to another task.

When a developer selects an action, a pull-down window displays. The window
contains options related to the action.

»> The action bar is discussed in more detail in 7.3.4, “Using the action bar” on
page 7-7, later in this section.

® The selection area in the middle of the screen prompts th developer to supply
basic information related to the map and to specify which screen should be
displayed next.

®» The command line close to the bottom of the screen can be used instea of the
action bar to perform a particular action. Rather than moving the cursor to the
action bar, the developer can enter a command beside the arrow.

® The function keys at the bottom of the screen are the keys the develope can use
to move from screen to screen within the compiler as well as to display help and

map images

7-6 CA-IDMS Mapping Facility

7.3 Using the Online Compiler

7.3.4 Using the action bar

What's in this Section?:

This section explains the actions that can be performed

using the action bar at the top of the Main Menu screen. It presents each pull-down

window and describes how to use it.

Using the Defaults:
select the default, press [Enter].

ADD

The first entry on a pull down menu is always the default. To

Add Modify Compile

Delete Display Switch

Copy from Map
Name
Version __
11. AN
2. Format

F3=Exit

Map version
Dictionary name
Dictionary node

Screen

Command ===>
Enter

CA-IDMS Online Map Compiler

Computer Associates International, Inc.

DC366148 Map EYHTST9 has not been found

Fl=Help F3=Exit F10=Action

G WMN =

General options

Map-Level help text definition
Associated records

Layout

Field definition

How to use the Window

» Before accessing the ADD function, you must supply the name of the map you are
creating and optionally the version number. If a version number is not entered,
the dictionary-set default will be displayed.

® |f you want to copy an existing map, enter the name and version of that map.

» If you are copying a map, indicate if you want to copy the layout and the records
and elements associated with the original map (1) or just the layout (2).

® To confirm your choice, press [Enter].

Chapter 7. Online Compiler Overview 7-7

7.3 Using the Online Compiler

MODIFY

Add Modify Compile Delete Display Switch

1. Checkout
2. Release DC Online Map Compiler
3. List Checkout
F3=Exit sociates International, Inc.
Map name EYHTST9
Map version 1

Dictionary name
Dictionary node

General options

Map-Level help text definition
Associated records

Layout

Field definition

G WN =

Command ===>
Enter Fl=Help F3=Exit F10=Action

How to use the Window: The MODIFY action controls the checkin/checkout
procedures of the online compiler as follows:

» Checkout — Allows the developer working on a map to have sole access to it.
The map is protected from additional updates until it has been checked in.

» Release — Releases the developer's hold on the map and allows updates by other
developers. If changes have been made since the map was checked out, and the
map has not been re-compiled, a warning message will be displayed stating that
the changes exist in awork file.

m List Checkout — Displays a list of all maps that are checked out to the user 1D
that is signed on. For each map, it identifies the following:

— Map name
— Which version of the map is checked out

— Which dictionary the map belongs to

7-8 CA-IDMS Mapping Facility

7.3 Using the Online Compiler

COMPILE

Add Modify Compile Delete Display Switch

1. Compile
2. View Messages

F3=Exit

Map name EYHTST9
Map version 1
Dictionary name
Dictionary node
Screen _ 1.
2.
3.
4. Layout
5.

Command ===>
Enter Fl=Help F3=Exit F10=Action

Map Compiler

es International, Inc.

General options
Map-Level help text definition
Associated records

Field definition

How to use the Window: From this window, you can either compile a map or

view the messages from a previous compile.

DELETE

Add Modify Compile Delete Display Switch

2. Delete map

2 1. Delete changes

Compiler

C| F3=Exit

atio| Confirm delete
1. Reject

Map name EYHTST9
Map version 1
Dictionary name
Dictionary node
Screen _ 1. General
2.
3.
4. Layout
5.

Command ===>
Enter Fl=Help F3=Exit F10=Action

Map-Level help text definition
Associated records

Field definition

2. Confirm

options

Chapter 7. Online Compiler Overview 7-9

7.3 Using the Online Compiler

How to use the Window: You can either delete the map entirely or delete only the
changes made since the last compile. As a safety measure, if you choose to delete the
map completely, a second window will be displayed that prompts you to confirm the
delete.

DISPLAY

Add Modify Compile Delete Display Switch

1. Browse
CA-IDM 2. Summary |[mpiler
3. Image
Computer ional, Inc.
F3= Exit
Map name EYHTST9

Map version 1
Dictionary name
Dictionary node

. General options

. Map-Level help text definition
. Associated records

. Layout

. Field definition

Screen

G WMN =

Command ===>
Enter Fl=Help F3=Exit F10=Action

How to use the Window: You can display information about a map in any of
three ways.

®» Browse — Displays all the screens associated with a map. The information
pertains to the map as it was last compiled.

® Summary — Displays a one-page summary report of the map containing vital
statistics on the map such as when it was created, updated, compiled, and who
created and modified it.

® |mage — Displays the map as it would look to an end-user. If the user is
currently modifying the map, IMAGE includes the uncompiled modifications.

7-10 CA-IDMS Mapping Facility

7.3 Using the Online Compiler

7.3.5 Overview

SWITCH

Add Modify Compile Delete Display Switch

Task ID

CA-IDMS Onlin

F3=Exit
Computer Associates

Map name
Map version
Dictionary name
Dictionary node

Screen General options

Map-Level help text definition
Associated records

Layout

Field definition

s wWwnN =

Command ===>
Enter Fl=Help F3=Exit F10=Action

How to use the Window: From this window you can leave the online compiler
and move to another CA-IDMS task by entering the task code in the Task ID field.

of a session

The following figure provides an overview of the online compiler screens and the
relationships among them.

» For detailed information about how to use the function keys, see 7.3.6, “Using the
function keys’ on page 7-13.
In the drawing,

m Opt n refers to the screen options on the Main Menu screen

® Fn refers to the function key used to move between the screens

» For detailed information about each screen, see Chapter 8, “Online Mapping
Compiler Reference” on page 8-1.

Chapter 7. Online Compiler Overview 7-11

7.3 Using the Online Compiler

.
Opt| General ——F8—> General
— Options Options
1 1 <«—F7 2
1r—
F5 Fa4

Opt I‘Mip

— Level

2 | Help
1
F5 F4
{
Main Opt| Assoc Autopaint
Menu —— Records ——»Selection
3 |Screen
/|__
F5
F4
F9 F5
v
Optr
— Layout +«——-
4
ll\
F2
F4
F5
| F8 F8 | F8
Opt| Field ——»Map ——Add ——Field
— Def ReadWrite Edit Level

5 <«— 0Options <«——/Criteria «——Hel
_T_I F7 P | P

F7 I F7 —
F8 F7

, F8 F8 v
Pageable «———User <«—Device
Options Edit Dependent
F4 ——»Modules ——>0Options
F7 | F7 L—}

Hints: When using the Field Definition screens (Option 5), you can move between
pages by overtyping the page number at the top of the screen.

If you are providing information about a literal, you can only use the Field Definition
and Pageable Options screens.

7-12 CA-IDMS Mapping Facility

7.3 Using the Online Compiler

7.3.6 Using the function keys

Use: To move from screen to screen or from page to page within a screen, you must
use the function keys. Function keys are displayed at the bottom of each screen and
may vary depending on the screen.

Most keys have the same function through out the MAPC compiler; <F1> is help,
<F4> returns to the previous function screen, etc. Some keys keys have different
functions in the Layout screen. For example, <F10> resets all fields selected for edit.
Below is alist of the main keys and their function within the Layout screen. In
addition, alternate keys are used to tailor the layout of the screen and consequently,
are displayed only on the Layout screen. To toggle between the main keys and the
alternate keys, press <PF11> (AltKeys).

Main keys

Key Name(s) Function

F1 Help Displays help information for the function

F2 Select Identifies a field on which further action will be taken

F3 Exit Processes the information and returns to the previous
function

F4 Prev Returns to previous function as listed on the main menu
screen

F5 Next Moves to next function as listed on the main menu screen

F6 Preview Displays the map layout as it would look to the end user

F7 Top Displays the top of the map layout

F8 Bottom Moves to the bottom of the map layout

F9 SetCursor Sets initial cursor position on the map

F10 Deselect Resets all selected fields for edit so they won't be edited

F11 AltKeys Toggles between the Main and the Alternate function keys

which are used on the Layout screen

Alternate Keys

Key Name(s) Function

F1 Help Displays help information for the function

F2 Mark Identifies a field on which further action will be taken
F3 Copy Copies the marked field or block to the location of the

cursor

Chapter 7. Online Compiler Overview 7-13

7.3 Using the Online Compiler

Key Name(s) Function

F4 Move Moves the marked field or block to the location of the
cursor

F5 Delete Deletes the marked field or block

F6 Preview Displays the map layout as it would look to the end user

F7 Top Displays the top of the map layout

F8 Bottom Moves to the bottom of the map layout

F9 Propogate Copies afield on every line to the cursor

F10 ClrMark Erase(s) mark from fields

F11 MainKeys Toggles between the Main and Alternate function keys

7.3.6.1 How to Move, Copy, and Delete Text

The following information gives detailed instructions on how to use the Move, Copy,
and Delete alternate function keys on afield, a line, and on blocks of lines.
Move Key (F4)
® To move afield:
1. Cursor to the field to be moved
2. Press Mark (F2)
3. Cursor to the new position
4. Press Move (F4)
® To move aline
1. Press Mark (F2) twice on the line to be moved
2. Cursor to the new line position
3. Press Move (F4)
= To move a block of lines:
1. Press Mark (F2) on the top and bottom lines of the text to be moved
2. Cursor to the top line of the new position

3. Press Move (F4)

Copy Key (F3)
® To copy afied:
1. Cursor to the field to be copied
2. Press Mark (F2)

7-14 CA-IDMS Mapping Facility

7.3 Using the Online Compiler

3. Cursor to the new position
4, Press Copy (F3)
= To copy aline
1. Press Mark (F2) twice on the line to be copied
2. Cursor to the new line position
3. Press Copy (F3)
® To copy ablock of lines:
1. Press Copy (F3) on the top and bottom lines of the text to be copied
2. Cursor to the top line of the new position

3. Press Copy (F3)

Delete Key (F5)

® To delete afield:
1. Cursor to the field to be deleted
2. Press Mark (F2)
3. Press Delete (F5)

B To deletealine
1. Press Mark (F2) twice on the line to be deleted
2. Press Delete (F5)

= To delete a block of lines:
1. Press Mark (F2) on the top and bottom lines of the text to be deleted
2. Press Delete (F5)

Chapter 7. Online Compiler Overview 7-15

7-16 CA-IDMS Mapping Facility

Chapter 8. Online Mapping Compiler Reference

81 Overview 8-3
8.2 TheMain Menu Screen 8-4
8.3 General Options— Pagel, 8-6
84 Genera Options— Page2, 89
8.5 Map-level Help Text Definition 8-11
8.6 Associated Records 8-12
8.7 Layout 8-15
8.8 Fied Definition Screens 8-18
8.8.1 Field Definition 8-18
8.8.2 Map Read/write Options 8-21
8.8.3 Additional Edit Criteria 8-25
8.8.4 Field-level Help Text Definition 8-27
8.8.5 Device-dependent Options 8-28
8.8.6 User-defined Edit Modules 8-31
8.8.7 PagesbleOptions 8-32

Chapter 8. Online Mapping Compiler Reference 8-1

8-2 CA-IDMS Mapping Facility

8.1 Overview

8.1 Overview

This section describes each screen used to create a map. The screens are presented in
the order in which they typically would be used:

Main Menu

General Options - Two screens

Map-Level Help

Associated Records

L ayout
Field Definition

Map Read/Write Options
Additional Edit Criteria
Field-Level Help
Device-Dependent Options
User-Defined Edit Modules
Pageable M aps

Chapter 8. Online Mapping Compiler Reference 8-3

8.2 The Main Menu Screen

8.2 The Main Menu Screen

Description: The Main Menu is the first screen displayed in a session. It is used to
provide basic information about the map such as the name and version number and to
initiate the map definition session.

After a map has been added, it also can be deleted or compiled from this screen.

Sample Screen

Add Modify Compile Delete Display Switch

CA-IDMS Online Map Compiler

Computer Associates International, Inc.

Map name
Map version
Dictionary name
Dictionary node

Screen General options

Map-Level help text definition
Associated records

Layout

Field definition

Ol WN =

Copyright (C) 1972,1999 Computer Associates International, Inc.

Command ===>
Enter Fl=Help F3=Exit F10=Action

Field Descriptions:

Map name 1 - 8 character name of the map being defined, modified, deleted, or
compiled. Map name:

® Must begin with an alphanumeric or national character such as a
pound sign (#), at sign (@), or dollar sign ($)

= Cannot contain embedded period or blanks

Map version The version number of the map being defined; must be in the range
1-9999. Default is the data dictionary default version number as
defined in the DDDL SET OPTIONS statement.

Dictionary The dictionary used to store and retrieve the map and load modules.

name When you sign on, the dictionary is the one specified in your user
profile if there is one. If a dictionary is not specified in your
profile, the primary dictionary for the CA-IDMS system or node is
the default. In either case, the dictionary name can be overridden by
issuing the DCUF SET DICTNAME command.

8-4 CA-IDMS Mapping Facility

8.2 The Main Menu Screen

Dictionary
node

The node name of the dictionary in the distributed database system
network. The developer uses the DICTNODE option to specify the
location of the dictionary and the name of the node that controls the
load area where the map load module is stored.

Default is the node specified in the most recently issued DCUF SET
DICTNODE command in the current CA-IDMS session. If no
DCUF SET DICTNODE command has been issued, the local node
is the default node.

Changing the dictionary name or node modifies the mode for the
current session.

Screen

A list of the screens that can be accessed to enter more information
about the map.

For More Information: For more information about the action bar, see 7.3.4,
“Using the action bar” on page 7-7.

For more information on the function keys, see 7.3.6, “Using the function keys’ on

page 7-13.

Chapter 8. Online Mapping Compiler Reference 8-5

8.3 General Options — Page 1

8.3 General Options — Page 1

Description:

This screen is the first of two screens used to enter general

information about the map. Information entered here includes the title of the map,
device information, display and print options as well as indicators for automatic

editing, decimal point handling, and the message prefix.

Sample Screen

General Options Page 1 of 2

Map name: EYHTST9 Version: 1

Description. . .

Type 1 1. Standard 2. Pageable 3. Videotex

Screen sizes (/) / 24 by 80 /32 by 80 / 43 by 80 / 27 by 132

Automatic editing (/)/

Decimal point is comma (/) . . _

Message prefix DC

Display options Unlock keyboard (/). /

Turn off MDT (/) /

Fl=Help F3=Exit F4=Prev

Alarm Options Sound alarm on mapout (/)
Sound alarm on edit error (/)
Print screen when displayed (/). . . . _
Line control 1 1. No formatting 3. 64 chars per line

2. 40 chars per Tine 4. 80 chars per line

Print options
(3280-type)

F5=Next F6=Preview F8=Fwd

Field Definitions

Description The title of the map. This is for documentation purposes only.

Type The type of map. For example, a standard one-page map, a
pageable map, or a videotex map. Videotex refers to the
French display devices that are connected to the national
phone system.

Screen sizes The terminal screen sizes on which the map can be used. At

least one must be selected; a maximum of four can be
selected. The default device specifications are determined by
the screen size of the device on which the map is being
defined.

Device specifications must be specified when you creste the
map; they cannot be changed online. To change the
specifications, you must use the batch compiler and utility.

»»> For more information on using the batch compiler, see
10.7, “Compiler Action Verbs’ on page 10-11.

8-6 CA-IDMS Mapping Facility

8.3 General Options — Page 1

Automatic editing

Indicates whether automatic editing and error-handling are
enabled for the map:

n / (default) — Globally enables automatic editing and
error-handling for the map.

. Blank — Globally disables automatic editing and
error-handling for the map; editing and error-handling
criteria (if any) defined for map fields are ignored.

»> For more information on enabling and disabling automatic
editing, see 3.3, “Enabling Automatic Editing and Error
Handling” on page 3-6.

Decimal point is
comma

Specifies the character to be used as the decimal point for
numeric fields on the map:

m /| — Specifies that the comma (,) character is used as the
decimal point in numeric fields, in accordance with
international format. An external picture for the field also
must comply with international format, with the comma as
the decimal point.

® Blank — Specifies that the period (.) character is used as
the decimal point in numeric fields.

The default setting for the Decimal point is comma prompt is
determined at system generation.

Message prefix

Defines the prefix for messages for the map.

Display options

® Unlock keyboard — Specifies whether the keyboard is
unlocked after a mapout operation:

— [(default) — Specifies that the keyboard is unlocked.

— Blank — Specifies that the keyboard remains locked
until the operator presses the RESET key.

® Turn off MDT — Specifies whether modified data tags
(MDTys) for data fields are reset when the map is mapped
out:

— [(default) — Specifies that all MDTs are reset
(turned off) when the map is mapped out.

— Blank — Specifies that MDTSs are left unchanged
when the map is mapped out.

The Set modified data tag specification for individual
fields on the Map Read/Write Options screen overrides
this field.

Chapter 8. Online Mapping Compiler Reference 8-7

8.3 General Options — Page 1

Alarm options ® Sound alarm on mapout — Specifies whether the
termina alarm sounds when the map is mapped out:

— | — Specifies that the alarm is sounded. This
specification is meaningful only if the terminal is
equipped with a hardware alarm.

— Blank (default) — Specifies that the alarm is not
sounded.

m Sound alarm on edit error — Specifies whether the
terminal alarm sounds when the map contains edit errors:

— | — Specifies that the alarm is sounded. This
specification is meaningful only if the termina is
equipped with a hardware alarm.

— Blank (default) — Specifies that the alarm is not

sounded.
Print options ® Print screen when displayed — Specifies whether a
(3280-type) 3280-type printer prints the screen on a mapout:
— | — Specifies that the printer starts printing on
mapout.
— Blank (default) — Specifies that the printer does not
print.
® Line control — Defines line control for 3280-type
printers.
1. No formatting — Specifies that new-line characters

are used in the data stream.

2. 40 chars per line — Specifies that data is divided
into 40-character lines.

3. 64 chars per line — Specifies that data is divided
into 64-character lines.

4, 80 chars per line — Specifies that data is divided
into 80-character lines.

8-8 CA-IDMS Mapping Facility

8.4 General Options — Page 2

8.4 General Options — Page 2

Description: This screen is the second of two screens used to enter general
information for the map. This screen is used to specify attributes for fields that are
redisplayed during an error cycle.

Sample Screen

General Options Page 2 of 2
Map name: EYHTST9 Version: 1
Attributes for redisplayed fields In error Not in error
Display intensity 1. Normal 2. Bright 3. Hidden 2 _
Highlighting 1. Blink 3. Underline _ _

2. Reverse video

Color 1. White 4. Blue 7. Turquoise . . 2
2. Red 5. Yellow 8. Default
3. Green 6. Pink

Entry options 1. Protect 2. Unprotect
1. Numeric 2. Alphanumeric
1. Set MDT 2. Reset MDT
Detect with light pen (/) /
Tab key selection (/)

DC366804 Select map options

Fl=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd

Field Definitions

Note: For the following fields, specify the options for fields in error and those not in
error.

Display intensity Specifies whether the field is displayed and whether a
displayed field appears at normal or bright intensity:

1. Normal — Specifies that the field is displayed at
normal intensity.

2. Bright — Specifies that the field is displayed at
brighter than normal intensity; the field appears
highlighted on the screen.

3. Hidden — Specifies that the field is not displayed.
Data written to the field from program storage or
entered by the operator is not visible. Password
fields are often attributed the Hidden attribute.

Highlighting For 3279 machines only: specifies whether the field
blinks, is displayed in reverse video, or is underlined.

Chapter 8. Online Mapping Compiler Reference 8-9

8.4 General Options — Page 2

Color

Specifies the color of the field, or of the background if
Reverse video is specified for the field. The devel oper
can only specify one display color. Default specifies
that the default display color for the terminal is used.
Attributes other than default take effect only when the
map is displayed at a 3279-type terminal.

Entry options

Protect/Unprotect — Identifies whether the field is
protected from data entry (1) or open to data entry

.
Numeric/Alphanumeric — Specifies whether the
field is numeric (1) or alphanumeric (2).

Set MDT/Reset MDT — Specifies whether the
modified data tag should be set automatically during
a mapout operation or only when the contents of the
field are altered by the terminal operator.

Detect with light pen — Specifies whether the
field can be detected with a light pen.

Tab key selection — Specifies whether the operator
can use to move the cursor to the field at
runtime.

When this option is on, NOSKIP and
UNPROTECTED are specified for a field.

8-10 CA-IDMS Mapping Facility

8.5 Map-level Help Text Definition

8.5 Map-level Help Text Definition

Description: This screen is used to associate help text previously defined in IDD
with amap. You can also specify what type of window is used to display help.

Sample Screen

Map-Level Help Text Definition

Map name: EYHTST1 Version: 1
Help name: eyhhtstl Help key: PFO1 Drop Help (/) _
Window format 1 1. Half 2. Full
Origin of help text . . 2 1. No text
2. Module EYHHELP1
Version 1

DC366306 Select help text options

Enter Fl=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd F8=Fwd

Field Definitions

Help name The name of the help load module that holds all the compiled help
text associated with the map. The name must be a unique entity
name.

Drop Help Used to indicate if the help should be disassociated from the map.

Window A code used to indicate if the help text is displayed in a half (1) or

format full (2) window.

Origin of help ~ Specify the name of the IDD module that contains the help text for
text this map.

Chapter 8. Online Mapping Compiler Reference 8-11

8.6 Associated Records

8.6 Associated Records

Description: This screen is used to enter the schema or work records to be used by
the map, and optionally specifies role names for records.

Accessing the Autopaint Feature: The autopaint feature which lets you create a
map automatically, is also initiated from this screen.
To use the autopaint feature;
» Enter the record information and press <F9>.
The autopaint feature displays a screen that lists each record and its elements.
m Select the elements you want to be included on the map.
® To view the newly created screen, use the Layout screen.

»> For more information on the Autopaint feature, see 1.2.3, “A Sample Session” on
page 1-5.

Sample Screen

Associated Records Page 1 of 1
Map name: EYHTST1 Version: 1

Record name Version Role name Drop

(/)

DC366604 Specify the map records

Fl=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd F8=Fwd F9=Autopaint

8-12 CA-IDMS Mapping Facility

8.6 Associated Records

Field Definitions

Record name

Identifies the names of records that contain elements
referenced by the map.

If alogical record is used, the developer names al of the
records containing elements that are part of the logical record
and that are used in the map-definition. The name of the
logical record is later specified in the dialog or program using
the map.

Version

Identifies the version number of each specified record. If not
specified, the default version is the value in the IDD OPTION
FOR DICTIONARY DEFAULT FOR EXISTING VERSION.
If the IDD EXISTING VERSION option is not set, the default
version is 1. The developer can use the version field to
specify a different version of a record for an existing map.

Overstriking the field with a new version number deletes the
old record version from the map. The new record version is
added to the map.

All map fields associated with elements in the old record are
associated with the corresponding elements in the new record,
by element name. If the new record version omits any
elements associated with the previous record version, the
related map fields are deleted from the map. If an external
picture has been explicitly defined for a map field, changing
the record version number does not change the external picture
of the element, even if the internal picture is different in the
new record version.

Chapter 8. Online Mapping Compiler Reference 8-13

8.6 Associated Records

Role name

Specifies a role name that is to be used for the record at
runtime. Role names typically are used when a given record
type is to be used in more than one context. For example, the
developer might specify the EMPLOY EE record layout twice
for a map that uses the EMPLOY EE record for both
employee-related and manager-related fields on a single map:

® One specification of the EMPLOY EE record would not
include a role name for the record.

® The second specification of the EMPLOY EE record
would include a valid role name for the record (for
example, MANAGER). The role name must be used in
subsequent references to the record in the map-definition.

A role name can be established in either of the following two
ways:

1. It can be previously defined for the record in the
subschema used by the dialog or program. The online
compiler will not verify the subschema role name; it must
be provided by the user at map-definition.

2. 1t can be unique to the map, established at map-definition
by specifying it on this screen.

Drop

Allows the developer to disassociate the the selected record or
role name from the map. To disassociate a record from a
map, type a dash (/) beside the record or role name. All map
data fields are disassociated from the map when it is dropped.

8-14 CA-IDMS Mapping Facility

8.7 Layout

8.7 Layout

Description: This screen is used to format the map. If the Autopaint feature has
been used, the layout is automatically displayed. Otherwise, the screen will be blank.

Effects of Screen Size on Map Design: Developing or modifying a map on a
device that is larger than the smallest screen size specified on the first page of the
General Options screen, can present certain problems.

If you try to define a field on the Layout screen outside of the boundaries of the
smallest device specifications size, the Mapping facility indicates the error by
discarding the misplaced fields and echoing the Layout screen. When the errors are
corrected, you can proceed through the map-definition sequence.

For example, a map that is to be displayed on a 24X80 screen size can be modified on
a 32X80 terminal. However, if you try to establish any fields in rows 25 through 32,
the online compiler discards these fields and echo the Layout screen.

How to Change the Map: If you want to rearrange the fields or ater them in any
way, press <F11> to display the alternate keys. The aternate keys are used to
maneuver the fields.

»> For detailed information about what function each alternate key performs, see
7.3.6, “Using the function keys’ on page 7-13.

Chapter 8. Online Mapping Compiler Reference 8-15

8.7 Layout

Sample Screen

EMP-1D-0415

EMP-FIRST-NAME-0415

EMP-LAST-NAME-0415

EMP-STREET-0415

EMP-CITY-0415

EMP-STATE-0415

EMP-Z1P-0415

SS-NUMBER-0415

DEPT-ID-0410

Enter Fl=Help F2=Select F3=Exit F4=Prev F5=Next F6=Preview F8=Bottom
F9=SetCursor Fl0=Deselect F11=AltKeys Drop all selected fields: _

To Delete All Selected Fields: Position the cursor at the beginning of the field to
be marked for deletion. Press <PF2> and move the cursor to the end of the section to
be marked. Press <PF2> and al the fields within the section of the same type as the
first selected field, i.e. data or literal, are marked. Or you can type the field select
character over each attribute byte of each field to be selected.

Enter any non-blank character into a new field on the last line. You are warned that
all selected fields will be deleted unless the drop field is cleared or a key other than
<Enter> is pressed.

If you want to manipulate the fields, press <F11> and the screen is displayed with the
Alternate Function keys, as shown below.

8-16 CA-IDMS Mapping Facility

8.7 Layout

Fl=Help F2=Mark F3=Copy F4=Move Fb5=Delete F6=Preview F8=Bottom
F9=Propagate F10=ClrMark F11l=MainKeys

Subscript increment: 1

To Propagate a Field: From the Alternate Function keys screen, put the cursor
under any data or literal field and press <F9>. The field above the cursor is copied
onto each lower line until it is copied to the cursor's line, until a field that would
overlap a copied field is encountered, or until the maximum subscript is reached.

If the field to be propagated is an occurring data field and its subscript is to be
incremented by a number other than 1, you must enter the subscript increment into a
new field on the last line before pressing <F9>.

Chapter 8. Online Mapping Compiler Reference 8-17

8.8 Field Definition Screens

8.8 Field Definition Screens

8.8.1 Field Definition
Description: This is one of seven screens used to specify information about a
particular field. This screen is used to enter a miscellaneous assortment of information

about afield.

Sample Screen

Field Definition Page 1 of 7

Map name: EYHTST1 Version: 1
...5...10...15...20...25...30...35...40...45...50...55...60...65...70...75...80

EMP-1D-0415
...5...10...15...20...25...30...35...40...45...50...55...60...65...70...75...80
Field at row 7 column 26 Drop field (/) _

Element name: EMP-ID-0415 Subscript

In record EMPLOYEE Version 100

Edit Picture 9(4)

Display intensity 1 1. Normal 2. Bright 3. Hidden

At end of field 3 1. Auto-tab 2. Lock keyboard 3. Take no action
Unprotected (/) / Required (/).
Automatically edited (/) / Skipped by tab key (/)

DC366004 Specify the variable field and any attributes

Fl=Help F3=Exit F4=Prev F5=Next F6=Preview F8=Fwd

Field Definitions

Field at row/column Specifies the location of the field on the map.

Drop field Specifies whether the field should be deleted.

Element name The name of the record element associated with the
field.

In record The name of the record with which the element is

associated. The record must be previously defined for
the map using the Associated Records screen.

Subscript Subscript for field with OCCURS clause.

Version The version number of the record.

8-18 CA-IDMS Mapping Facility

8.8 Field Definition Screens

Edit picture

Enables automatic editing and establishes an external
picture for the field for use by automatic editing. A
developer can specify one of the following to establish a
particular external picture:

. An external picture, such as XX/XX/XX or
XXX-XX-XXXX

® The word INTERNAL, which requests that the
map use the external picture associated with the
record element (or the picture constructed for the
field)

When automatic editing has been enabled for the field
by a different specification, the external picture
associated with the record element (or the picture
constructed for the field) is displayed for Edit picture

»» For more information about external pictures and
automatic editing, refer to Chapter 3, “Automatic
Editing and Error Handling” on page 3-1.

Display intensity

Specifies whether the field is displayed and whether a
displayed field appears at normal or bright intensity:

1. Normal — Specifies that the field is displayed at
normal intensity.

2. Bright — Specifies that the field is displayed at
brighter than normal intensity; the field appears
highlighted on the screen.

3. Hidden — Specifies that the field is not displayed.
Data written to the field from program storage or
entered by the operator is not visible. Password
fields are often attributed the Hidden attribute.

At end of field

1. Auto-tab
2. Lock keyboard
3. Take no action

Chapter 8. Online Mapping Compiler Reference 8-19

8.8 Field Definition Screens

Unprotected

Specifies whether the field accepts operator input:

/| — Specifies that the field is open to data entry or
modification. Data in an unprotected data field is
transmitted to program variable storage on mapin if
all of the following conditions are true:

— Modifications have been made to the field (the
MDT is set on).

— Automatic editing does not detect an input error
in the data.

— The Transmit data entry option has been chosen
on the Map Read/Write Options screen.

® Blank — Specifies that the field does not accept
user input. Any attempt to enter, modify, or delete
data in the field is physically restricted by a
3270-type terminal. If MDT is set
programmatically data is read. Data in a Protected
field on some glass TTY terminals can be
overridden by the terminal operator; however,
operator modifications are ignored on mapin.

Required

Indicates if data must be entered in the field.

Automatically edited

Indicates if automatic editing is enabled.

» /| — Enables automatic editing for the field.
Automatic editing is to be performed for the field if
automatic editing is also enabled for the entire map
on the Associated Records screen.

® Blank (default) — Disables automatic editing for
the field.

Automatic editing is not performed for the field,
even if automatic editing is enabled for the entire
map on the first General Options screen.

Editing can be enabled for a field by entering a slash (/)
in the Automatically edited field or by supplying an
external picture, edit table name, or code table name on
the Additional Edit Criteria screen. The most recent
specification takes precedence and determines whether
automatic editing is enabled or disabled. For example,
if the Automatically edited field is blank, and the
developer later names an edit table for the field,
automatic editing is enabled.

If the format of the record element associated with the
data field is not DISPLAY, editing must be enabled so
that conversion to DISPLAY format is performed.

8-20 CA-IDMS Mapping Facility

8.8 Field Definition Screens

Skipped by tab key

/| — Specifies that the operator cannot use to

position the cursor on this field at runtime; the
cursor skips over this field and is positioned on the
next unprotected field. Choosing this option
specifies NUMERIC and PROTECTED for the
field.

Blank (default for variable fields) — Specifies that
the cursor is positioned at the start of the field when
the operator presses the key at runtime.
Choosing this option specifies UNPROTECTED for
afield.

8.8.2 Map Read/write Options

Description: This is one of seven screens used to enter information for a specific
field. This screen specifies how fields are handled on the mapin and mapout

operations.

Chapter 8. Online Mapping Compiler Reference 8-21

8.8 Field Definition Screens

Sample Screen

Map Read/Write Options Page 2 of 7
Map name: EYHTST1 Version: 1
Element name EMP-ID-0415 Subscript
In record EMPLOYEE Version 100
Map Read Transmit data entry (/) /
options Zero when null (/). /
Translate to upper case (/) _
Justify data. 1 1. Left 2. Right
Pad character format . Display _
Hexadecimal . . __
Map Write Blank when zero (/) _
options Underscore blank fields (/)

Display without trailing blanks
Set modified data tag (/)

Transmit. 1 1. Data and attribute byte 3. Erase field

DC366404 Select input/output edit options

Fl=Help F3=Exit F4=Prev

2. Attribute byte only 4. Nothing

F5=Next F6=Preview F7=Bkwd F8=Fwd

Field Definitions:

Map Read options

Identifies characteristics of the field that pertain to mapin
operations.

® Transmit data entry — Specifies whether the transmitted

contents (if any) of the field are to be moved
automatically into program variable storage on a mapin
operation:

— [(default) — Specifies that data is automatically
moved into program variable storage if MDT is set on
for the field before a mapin operation

— Blank — Specifies that the data contained in the field
is not moved automatically into program variable
storage, even if the MDT is set on

Zero when null — Specifies whether the numeric field is
to be filled with zeros when automatic editing is enabled
for a numeric field and the terminal operator nulls (erases)
the contents of the field, as by pressing the ERASE EOF
key. The following options are available:

— [(default) — Specifies that the field is filled with
zeros of the appropriate data type when automatic
editing is enabled for a given field and map and the
operator nulls the entire field

8-22 CA-IDMS Mapping Facility

8.8 Field Definition Screens

Map Read options
(continued)

— Blank — Specifies that data aready contained in the
buffer is retained when the entire field is filled with
nulls

® Trandate to upper case — Specifies if the field should be

translated to upper case upon mapin

Justify data — Specifies how operator input is to be
aligned for transmission to variable storage:

1. Left — Specifies that input is left-justified
2. Right — Specifies that input is right-justified

Pad character format — Specifies a pad character for an
alphanumeric field in character or hexadecimal format.

No pad character is used for a field in either of the
following cases:

— The developer does not specify a pad character

— The developer cancels a pad character for a field by
pressing the ERASE EOF key for the PAD CHAR
field in which the pad character was specified, and
does not specify another pad character

Unwanted data can be stored for a field for which no pad
character is defined. For example, the following values
are stored for afield if JOHNSON is mapped out, the
operator presses the ERASE EOF key to erase the field,
and the operator then types SMITH:

— If no pad character is defined for the field,
SMITHON is stored for the field. The operator
would have to key blanks over ON to eliminate these
characters from the data.

— If apad character is defined for the field, SMITH
is stored for the field.

Chapter 8. Online Mapping Compiler Reference 8-23

8.8 Field Definition Screens

Map Write options

Blank when zero — Indicates how a humeric field being
edited is to be mapped out when automatic editing is
enabled for the field and the value for the field is O:

— | — Specifies that blanks are displayed in the field

— Blank (default) — Specifies that zeros are displayed
in the field

Underscore blank fields — Specifies that blank fields on
amap are underscored. On mapin, trailing underscores
are removed.

Display without trailing blanks — Specifies whether
trailing blanks are to be eliminated from the field being
edited before it is displayed:

— | — Specifies that the contents of the field are
displayed without trailing blanks (if any). Old data
may remain in the field after operator aterations if
NEWPAGE is NO in either the CA-ADS sysgen
statement or the DML statement that issues the
mapout in an application program.

— Blank — Specifies that the contents of the field are
displayed with trailing blanks, if any.

Set modified data tag — Specifies whether the modified
data tag is set automatically during a mapout.

Transmit — Specifies how the contents of the field are to
be moved on a mapout

1. Data and attribute byte — Specifies that data and
the attribute byte is transmitted.

2. Attribute byte only — Specifies that only the
attribute byte for the field is transmitted to the screen;
data in the record buffer is not sent to the terminal.

3. Erase field — Specifies that data is not transmitted to
the screen; the field is initialized to null or low
values, depending on whether the field is numeric or
aphanumeric.

4. Nothing — Specifies that neither data nor attribute
byte is transmitted. Any data previoudly in the field
continues to display.

8-24 CA-IDMS Mapping Facility

8.8 Field Definition Screens

8.8.3 Additional Edit Criteria

Description: This is one of seven screens used to enter information for a specific
field. This screen is used to enter the edit table, code table, and error message

information for a field.

Sample Screen

Map name: EYHTST1

Additional Edit Criteria Page 3 of 7

Element name EMP-STATE-0415
In record EMPLOYEE

Edit table name . .
Edit type 1.valid values 2.Invalid values

Code table name . . .

Error message (specify ID or text)

NOT A VALID STATE CODE

1

Subscript
Version 100
Version 1 Link with map (/) _

Version Link with map (/) _

Number

DC365801 Map options processed successfully

Fl=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd F8=Fwd

Chapter 8. Online Mapping Compiler Reference 8-25

8.8 Field Definition Screens

Field Definitions:

Edit table name

Enables automatic editing and specifies the name of an
existing stand-alone table to be used as the edit table.

If editing is enabled elsewhere for the field and no edit
table is supplied, the default edit table is the built-in
table (if any) defined in the associated record €lement.
If atable name is not supplied here or in the record
element, no edit table is used.

® Version — Specifies the version of the edit table,
default is 1.

® Link with map — Specifies whether the edit table
is linked as part of the map load module or is
loaded dynamically at runtime:

— | — Specifies that the table is linked to the map
load module that usesit. Thisis useful for
tables that contain items that cannot be used
readily by another record element.

— Blank (default) — Specifies that the table is
loaded dynamically. This specification is useful
when the contents of a table change frequently.

Note: Edit tables can only be associated with a group
element if the group is made up of DISPLAY elements.

» For more information on the use of edit tables, see
3.4.7, "Edit and Code Tables” on page 3-20.

Edit type

Indicates whether the table is one of valid or invalid
tables:

» Blank (default) — Specifies the edit type defaults
to the TYPE parameter for the table in the IDD.
Tables are defined as valid or invalid depending on
the IDD 'TABLE... TYPE IS EDIT VALID' or
‘TABLE... TYPE IS EDIT INVALID'.

1. Valid values — Specifies the table contains valid
values for the field. An error occurs when the
operator inputs a value that is not contained in the
table.

2. Invalid values — Specifies the table contains
invalid or incorrect values. An error occurs when
the operator inputs a value that is contained in the
table.

8-26 CA-IDMS Mapping Facility

8.8 Field Definition Screens

Code table name Enables automatic editing and specifies the name of an
existing stand-alone table to be used as the code table
for the field being edited.

If editing is enabled elsewhere for the field but the a
code table name is not provided, code table is the table
(if any) defined in the record element associated with
the field. If a code table name is not provided and does
not exist in the record element, no code table is used.

m Version — Specifies the version of the code table,
default is 1.

® Link with map — Specifies whether the code table
is linked as part of the map load module or is
loaded dynamically at runtime:

— | — Specifies that the table is linked to the map
load module that usesit. Thisis useful for
tables that contain items that cannot be used
readily by another record element.

— Blank (default) — Specifies that the table is
loaded dynamically. This specification is useful
when the contents of a table change frequently.

Note: Code tables can only be associated with a group
element if the group is made up of DISPLAY elements.

»» For more information on the use of code tables, see
3.4.7, “Edit and Code Tables’ on page 3-20.

Error message Used to specify the number of an existing message or
the developer-written text of the error message that is
displayed for the field.

The default is the message prefix specified on the
Genera Options screen. If no prefix is specified, DC is
used.

8.8.4 Field-level Help Text Definition

Description: This is one of seven screens used to enter information for a specific
field. This screen is used to specify help information for a field.

Chapter 8. Online Mapping Compiler Reference 8-27

8.8 Field Definition Screens

Sample Screen

Map name:

Field-Level Help Text Definition Page 4 of 7
EYHTSTI Version: 1
Help name: EYHHTST1 Help key: PFO1 Drop Help (/) _

Element name EMP-ID-0415 Subscript
In record EMPLOYEE Version 100
Window format 1 1. Half 2. Full
Origin of help text . . 1 1. No text

2. Module

Version 1

DC366306 Select help text options

Enter

Fl=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd F8=Fwd

Field Definitions

Help name The name of the load module that contains all the compiled help
information for the map and the associated fields.

Drop Help Used to indicate if the help should be deleted.

Window tfcode used to indicate if the help text is displayed in a half (1) or

format full (2) window.

Origin of help Specify the name of the IDD module that contains the help text for

text this field.

8.8.5 Device-dependent Options

Description:

field.

This is one of seven screens used to enter information for a specific

8-28 CA-IDMS Mapping Facility

8.8 Field Definition Screens

Sample Screen

Device-Dependent Options Page 5 of 7
Map name: EYHTST1 Version: 1
Element name EMP-ID-0415 Subscript
In record EMPLOYEE Version 100

Numeric data only (/) . . . _
Reverse numeric (/) _
Detect with 1ight pen (/) /
Outline options (/) _Top _ Bottom _ Left _ Right

Highlighting. _ 1. Blink 2. Reverse video 3. Underline

DC365704 Select device dependent options

Fl=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd F8=Fwd

..... 8 1. White 3. Green 5. Yellow 7. Turquoise
2. Red 4. Blue 6. Pink 8. Device default

Field Definitions:

Numeric data only Specifies whether any character or just numeric

characters can be entered:

m |f the terminal is not equipped with the NUMERIC
hardware feature, the operator can enter any
character in the field. To restrict input to numeric
characters in this case, a numeric external picture
must be assigned to the field and automatic editing
must be enabled for the field and map.

m [f the terminal is equipped with the NUMERIC
feature, the field accepts only numeric input.

Numeric input includes:
® Numeric digitsin the range 0 — 9
® The decimal point

® The minus sign

Chapter 8. Online Mapping Compiler Reference 8-29

8.8 Field Definition Screens

Reverse numeric

Specifies whether the contents of a numeric field are
reversed on mapin and again on mapout. This option is
used for numeric fields when hardware modifications
cause input to be entered from right to left.

REVERSE NUMERIC is the default for new fields
when NUMERIC FIELD ORDER IS REVERSED is
specified in the OLM statement at system generation.

A blank in this field indicates that the field is not
reversed on mapin or mapout, which is the default for
new fields when NUMERIC FIELD ORDER IS
STANDARD is specified at system generation.

Detect with light pen

Specifies whether the field can be detected with a light
pen.

Outline options

Enables one or more of the following outline options if
the terminal supports DBCS characters:

m Top — Draws a line above the current field. The
line:

— Starts above the first displayable character
position in the field

— Ends either at the delimiter of the current field
(for delimited fields) or the start of the next
field

® Bottom — Draws a line below the current field.
The line:

— Starts below the first displayable character
position in the field

— Ends either at the delimiter of the current field
(for delimited fields) or the start of the next
field

n Left — Draws aline to the left of the field.
®» Right — Draws a line to the right of the field.

Highlighting

Specifies whether the field will blink, be displayed in
reverse video, or be underlined.

Color

The runtime color of the field, or of the background if
Reverse video is specified. The developer can specify
only one display color. Device default specifies that the
default display color for the terminal is used. Color
attributes other than device default take effect only when
the map is displayed at a 3279-type terminal.

8-30 CA-IDMS Mapping Facility

8.8 Field Definition Screens

8.8.6 User-defined Edit Modules

Description:

This is one of seven screens used to enter information for a specific

field. This screen is used to specify the name of the input and output edit modules.
Additionally, it is used to indicate when the edit module is invoked.

Sample Screen

Map name: EYHTST1

In record EMPLOYEE

Fl=Help F3=Exit F4=Prev

User-Defined Edit Modules
Version: 1

Element name EMP-ID-0415

Input edit module name:

Invoke input edit module: _

Output edit module name:

Invoke output edit module: _

DC367004 Specify user defined input and/or output modules

F5=Next F6=Preview F7=Bkwd F8=Fwd

Page 6 of 7

Subscript

Version 100

. Instead of automatic editing
Before automatic editing
After automatic editing

W N =

Instead of automatic editing
Before automatic editing
. After automatic editing

W N =

Field Definitions:

Input edit module name

The name of a user-written edit module to process input
after transmission on a mapin operation.

»»> For more information on the use of user-written edit
modules, see Appendix C, “User-Written Edit Modules’
on page C-1.

Invoke input edit module

Specifies if the edit module should be invoked instead
of, before, or after automatic editing.

Output edit module name

The name of a user-written output edit module used
before display on an output operation.

Invoke output edit module

Specifies if the edit module should be invoked instead
of, before, or after automatic editing.

Chapter 8. Online Mapping Compiler Reference 8-31

8.8 Field Definition Screens

8.8.7 Pageable Options

Description:

This is one of seven screens used to enter information about a specific

field. This screen is used if the field is either:
n The only field/litera in the detail area

1 The first field/litera in the detail area

® The last fiel

d/literal in the detail occurrence

» The first field/literal in the footer

Sample Screen

Pageable Options Page 7 of 7
Map name: EYHTST1 Version: 1
Element name EMP-ID-0415 Subscript
In record EMPLOYEE Version 100

Assignment

DC366903 Select field/literal assignment for pageable map

Fl=Help F3=Exit F4=Prev F5=Next F6=Preview F7=Bkwd

1. Only field/literal in detail

2. First field/literal in detail

3. Last field/literal in detail

4. First field/literal in footer

8-32 CA-IDMS Mapping Facility

8.8 Field Definition Screens

Field Definitions:

Assignment

The information entered in these fields defines the
specifications for a pageable map. The information you
provide describes the element in the Element name field at the
top of the screen:

. Only field/literal in detail — If the element is the only
field or literal in the detail area, enter 1.

n First field/literal in detail — |f the element is the first
field or literal in the detail area, enter 2.

= Lad field/literal in detail — If the element is the last
field or literal in the detail occurrence, enter 3. The
detail occurrence ends at the last character position in the
field.

n First field/literal in footer — If the element is the first
field or literal in the footer area, enter 4.

This field defines the beginning of the footer area and the
end of the detail area.

»» For more information on pageable maps, see Chapter 4,
“Pageable Maps’ on page 4-1.

Chapter 8. Online Mapping Compiler Reference 8-33

8-34 CA-IDMS Mapping Facility

Chapter 9. Batch Compiler and Batch Utility

Overview
9.1 Overview 9-3
9.2 Compiler and Utility Functions 9-4
921 Panelsand Maps 9-5

Chapter 9. Batch Compiler and Batch Utility Overview 9-1

9-2 CA-IDMS Mapping Facility

9.1 Overview

9.1 Overview

The batch compiler and batch utility allow users to define, generate, modify, and
delete maps in a batch environment. Together, they provide an aternative to the
online mapping compiler described earlier in this manual.

To generate maps using the batch component of the mapping facility, it is necessary to
be familiar with the following topics which are discussed separately in this section:
® Functions performed by the batch compiler and utility

® Functions performed by the map and panel entity occurrences

Chapter 9. Batch Compiler and Batch Utility Overview 9-3

9.2 Compiler and Utility Functions

9.2 Compiler and Utility Functions

The CA-IDMS mapping facility compiler and utility provide the following capabilities:

Component

Capability

Batch compiler
(RHDCMAPY)

Accepts, validates, and compiles mapping language
statements that are written by a map developer or
generated by the decompile process of the map utility

Populates the data dictionary with entity occurrences
that are generated when input mapping language
statements are compiled

Provides input statement listings that present
information and provide error messages (if any) about the
compile operation

Batch utility
(RHDCMPUT)

Uses entity occurrences stored in the data dictionary to
perform the following functions:

Generate map load modules used by CA-ADS dialogs
and programs

Produce reports about map-related entity occurrences
created by the online mapping compiler or the batch
compiler

Decompile maps into executable mapping language
statements

Delete map load modules from the load area

A map load module is the version of the map that can be used by CA-ADS dialogs
and by the CA-IDMS System Generation programs. Necessary map-related entity
occurrences must exist in the data dictionary before the map utility can generate a new
or modified map load module.

Batch Compiler and Utility Functions: Functions performed by the batch
compiler and utility are illustrated in the figure below:

9-4 CA-IDMS Mapping Facility

9.2 Compiler and Utility Functions

MAP AND
PANEL
SOURCE

BATCH
COMPILER

DATA
DICTIONARY

DDLDML AREA

INPUT STREAM
AND ERROR

STATEMENT
LISTING

N~

PANEL REPORT/IMAGE
QCCURRENCES
UTILITY SCREEN
MAP IMAGES
OCCURRENCES
w MAP AND
DDLDCLOD AREA PANEL
SOURCE
MAP LOAD LOAD DECOMPILE/
MODULES DELETE TERSE

9.2.1 Panels and Maps

What is a Map?: From the terminal operator's point of view, a map is a screen
display that is used for input and output operations. From a map developer's point of
view, the screen display viewed by the operator is the product of a map load module
that is generated from entity occurrences in the data dictionary.

What Does the Batch Compiler Do?:
map-related entity occurrences in the data dictionary. The following entity occurrences
are generated and maintained by the batch compiler:

The batch compiler is used to establish

Chapter 9. Batch Compiler and Batch Utility Overview 9-5

9.2 Compiler and Utility Functions

Type of
Occurrence

Specifies

Performs these functions

PANEL and
related PFLD
(panel field)
occurrences

The screen layout for a
map

The panel typicaly:

® Specifies the device types on which
the screen layout can display and
establishes any specia display
conditions necessary for each device
type

» Assembles panel field occurrences
that store the following information
for individual fields:

— Location by row and column

— Characteristics such as display
intensity or color

— Values for literal fields

9-6 CA-IDMS Mapping Facility

9.2 Compiler and Utility Functions

Type of Performs these functions
Occurrence
MAP and Usage information for a ~ The map typically:
related' MFLD m Specifies a PANEL occurrence on
(map field) ; ;

which the map occurrence is to be
occurrences

based

Specifies runtime events that occur
when a map load module generated
from the MAP and PANEL
occurrences is executed, such as
whether the keyboard is locked or
unlocked

Specifies whether automatic editing
and error-handling are available at
runtime

Selects PFLD occurrences from the
associated PANEL occurrence and
specifies the following information
for the fields in MFLD (map field)
occurrences:

— Type of field usage (that is,
data, literal, message, page, or
response field)

— Predefined schema or work
record elements to be linked
with data fields.

— Automatic editing, input, and
output information for data
fields

Mapping Language Statements:

Two sets of mapping language statements that

can be used to generate PANEL, PFLD, MAP, and MFLD occurrences are presented
in Chapter 11, “Batch Compiler Statements’ on page 11-1.

Panels, Maps, and Record Elements:

The following figure illustrates the

relationship between panels, maps, and record elements.

Chapter 9. Batch Compiler and Batch Utility Overview 9-7

9.2 Compiler and Utility Functions

DATA

(~_DiCTIONARY.

RECORDS/
RECORD
ELEMENTS

B

N

MAFP DATA

/FIELDS ONLY

~_

with elements in records.

MAP FIELD
OCCURRENCE

MAP OCCURRENCE

\ PANEL FIELD
/ OCCURRENCE

ALL MAP FIELDS

PANEL
OCCURRENCE

A panel defines a screen layout and a map associates panel fields

9-8 CA-IDMS Mapping Facility

Chapter 10. Batch Compiler Coding Considerations

101 Overview 10-3
10.2 Compiler Security 10-4
10.2.1 Security at the Compiler Level L. 10-4
10.2.2 Security atthe Map Level 10-4
10.3 Compiler Signon 10-6
10.4 Compiler Directives 10-7
10.5 Compiler Statement Coding Requirements 10-8
10.6 Compiler Statement Sequencing, 10-9
10.6.1 MAP AUTOPANEL and MFLD Statement Sequencing 10-9
10.6.2 PANEL, PFLD, MAP, and MFLD Statement Sequencing 10-10
10.7 Compiler ActionVerbs 10-11
10.7.1 The MODIFY Verb 10-12
10.7.2 The DELETEVerb 10-13

Chapter 10. Batch Compiler Coding Considerations 10-1

10-2 CA-IDMS Mapping Facility

10.1 Overview

10.1 Overview

The coding considerations that are presented in this section apply when developers use
the batch compiler to generate, modify, or delete map-related entity occurrences in the
data dictionary. The following topics are presented:

Compiler security

Compiler signon

Compiler directives

Compiler statement coding requirements
Compiler statement sequencing

Compiler action verbs

Chapter 10. Batch Compiler Coding Considerations 10-3

10.2 Compiler Security

10.2 Compiler Security

Batch compiler security prohibits unauthorized map developers from adding,
modifying, and/or deleting map-related entity occurrences. The batch compiler
performs a security check whenever the map developer using the batch compiler
specifies the name of a map to be added, modified, or deleted. If the security check
fails, the map developer cannot perform the specified action.

Security is established by using the IDD Data Dictionary Definition Language (DDDL)
and can be applied at the compiler level and at the map level. The two levels of
security are discussed separately below.

10.2.1 Security at the Compiler Level

Security at the batch compiler level restricts the actions that a map developer can
specify for any map. Security at the batch compiler level is governed by the following
IDD statements:

m SET OPTIONS ... SECURITY FOR CA-IDMS System Generation | S ON/OFF
specifies whether security is in effect for CA-IDMS entity types accessed by the
compiler. If CA-IDMS security is off, the map developer immediately passes the
compiler level security check. If security is on and the map developer has not
used the SIGNON statement (presented later in this section) to provide signon
information, the developer immediately fails the security check. Otherwise, the
map developer passes or fails the security check based on information specified by
the USER statement (see below).

» ADD/MOD USER user-name ... INCLUDE/EXCLUDE
DELETE/DISPLAY MAP/PANEL specifies the actions that the map developer
has the authority to perform. The map developer passes or fails the security check
depending on whether the developer has authority for the specified action.

» For more information on the SET OPTIONS and USER statements, see the
CA-IDMS DD DDDL Reference Guide.

If the map developer fails the compiler-level security check, an error message is
generated. |f the developer passes the security check, the batch compiler performs a
security check at the map-specific level.

10.2.2 Security at the Map Level

Security at the map level restricts the actions that a map developer can perform for the
named map. If no MAP-098 record exists for the named map (that is, if no MAP
statement has been issued in IDD or at system generation for the named map), the map
developer immediately passes the security check. Otherwise, security is governed by
the following two clauses of the MAP statement in IDD:

® PUBLIC ACCESS FOR ALL/NONE/UPDATE/MODIFY/

10-4 CA-IDMS Mapping Facility

10.2 Compiler Security

REPLACE/DELETE/DISPLAY specifies the actions that any user can specify
for the named map. If the PUBLIC ACCESS clause is not included in the MAP
statement or if the action requested by the map developer is allowed for any user,
the developer immediately passes the security check. Otherwise, the developer
passes or fails the security check based on information specified by the
INCLUDE/EXCLUDE USER clause of the MAP statement (see below).

» |NCLUDE/EXCLUDE USER user-name REGISTERED FOR
PUBLIC ACCESS/ALL/UPDATE/MODIFY/REPLACE/
DELETE/DISPLAY specifies the actions that the map developer has the authority
to specify for the named map. If the developer's user name is not included in the
MAP statement, the developer immediately fails the security check. Otherwise,
the map developer passes or fails the security check depending on whether the
developer has authority for the action specified for the named map.

If the map developer fails the map-level security check, an error message is generated.
If the developer passes the security check, the batch compiler initiates compile
operations for the specified map.

» For more information on the MAP statement, see the CA-IDMSIDD DDDL
Reference Guide.

Chapter 10. Batch Compiler Coding Considerations 10-5

10.3 Compiler Signon

10.3 Compiler Signon

The batch compiler SIGNON statement can be included in batch source statements to
provide signon information. A maximum of one SIGNON statement can be included
for a given batch compiler job. If included, the SIGNON statement must be positioned
in batch source statements as follows:

® SIGNON must follow introductory compiler directives (that is, ICTL, OCTL,
and ISEQ directives). Compiler directives are presented later in this section.

8 SIGNON must precede compiler statements (that is PANEL, MAP, MAP
AUTOPANEL, MFLD, and PFLD statements). Compiler statements are presented
in Chapter 11, “Batch Compiler Statements’ on page 11-1.

The SIGNON statement integrates the batch compiler with IDD security features. |If
activated, 1DD security is used to protect panel and map data dictionary occurrences
from unauthorized modification and deletion. Security information included in the
signon information determines the authority granted to the developer for data
dictionary access.

»»> For more information on batch compiler security, see 10.2, “Compiler Security” on
page 10-4.

Syntax

»»—— SIGnon >

USER user-name |_ J
E IS 3 PASSword —m’ gassword
= IS

REVerse NUMeric

USER IS user-name-aq
Specifies the existing 1- through 32-character name of the map developer as

specified by a DDDL USER statement. If the name contains embedded blanks, the
string must be enclosed in quotes.

PASSWORD IS password
Specifies the 1- through 8-character password (if any) of the developer. A
password is defined for a developer in the OCF USER statement that establishes
the corresponding user-name in the SIGNON statement.

REVERSE NUMERIC
Specifies that the reverse-numeric display option is to be given to al numeric map
fields that are generated or modified in the batch run. The REVERSE NUMERIC
clause specified in the SIGNON statement overrides any conflicting MFLD
REVERSE NUMERIC specifications (if any) in the accompanying batch source
Statements.

Note: A developer who does not supply a user-name and password where applicable
when IDD security is enabled for the batch compiler can access only entities that are
available for public access.

10-6 CA-IDMS Mapping Facility

10.4 Compiler Directives

10.4 Compiler Directives

The compiler directive statements provided by the compiler mapping language are
placed in compiler source statements to specify information for use during compilation
and report generation. Available compiler directive statements are listed in the table

below:

Statement

Function

ICTL=(start-column-n,
end-column-n)

Directs the compiler to scan only the column
range specified for meaningful data. The default
specification is 1-80.

OCTL=(line-count-n)

Specifies the number of lines to appear on each
page of the panel and map reports.

| SEQ=(start-column-n,
end-column-n)

Directs the compiler to perform sequence checking
on source statements falling within the specified
column range.

EJECT

Directs the compiler to continue the printing of the
output report on a new page.

SPACE space-count-n

Directs the compiler to skip from 1 through 9
blank lines between lines of the output report.
Only one blank is alowed between SPACE and
the integer specified.

* comment-text*

Directs the compiler to interpret characters
following the asterisk as comment text.

Comments always start with an asterisk but can be
terminated by another asterisk or by the end of the
card image.

Considerations: Each compiler directive in compiler source statements must
occupy aline by itself. The following considerations apply to the use of compiler

directives:

m |CTL, OCTL, and ISEQ statements must precede al statements in mapping

language source statements.

» EJECT and SPACE statements can be coded anywhere in mapping language

source statements.

Chapter 10. Batch Compiler Coding Considerations 10-7

10.5 Compiler Statement Coding Requirements

10.5 Compiler Statement Coding Requirements

The following general coding requirements apply when using batch compiler source
statements:

m Statements and keywords can start in any column. The compiler scans the column
range specified in the ICTL compiler directive statement for meaningful data. The
default column range is from 1 through 80.

® One or more blanks or commas are required between keywords.

® A statement can be coded on more than one line, but keywords cannot be split
across lines.

m A period terminates a statement unless the period is contained in a comment or a
quoted literal string.

= Any quoted literal can be continued from one line to ancther. The final character
of the first line must be in the end column, as specified in the ICTL compiler
directive statement discussed in the previous table. The first character in the
continued literal must begin in the start column of the next line. No continuation
character is required.

10-8 CA-IDMS Mapping Facility

10.6 Compiler Statement Sequencing

10.6 Compiler Statement Sequencing

The batch compiler provides two sets of mapping language statements, as described in
Chapter 11, “Batch Compiler Statements’ on page 11-1. Each set of mapping
language syntax defines source statements that create and maintain panel, panel field,
map, and map field entity occurrences in the data dictionary:

. MAP AUTOPANEL and MFLD statements are used to define map and map
field occurrences explicitly. Panel and panel field occurrences are generated
automatically by the mapping facility when MAP AUTOPANEL and associated
MFLD statements generate map and map field occurrences.

» PANEL, PFLD, MAP, and MFLD statements are used to define panel, panel
field, map, and map field occurrences explicitly.

Sequencing requirements for each set of mapping language syntax are listed separately
below.

10.6.1 MAP AUTOPANEL and MFLD Statement Sequencing

A MAP AUTOPANEL statement must be followed immediately by the MFLD
statements that define its related fields. The following considerations apply when the
developer prepares source composed of MAP AUTOPANEL and MFLD statements:

® The map occurrence generated by the most recently executed MAP statement
is established as current for subsequent MFLD statements.

® Associated panel and panel field occurrences are created when map and map
field entity occurrences are generated by MAP AUTOPANEL and associated
MFLD statements.

Sample Statement: The following abbreviated sample statements illustrate MAP
AUTOPANEL and MFLD statement sequencing:

ADD MAP ONEMAP
AUTOPANEL
ADD MFLD
ADD MFLD
ADD MFLD
ADD MFLD

In the above example, entity occurrences for a map named ONEMAP and occurrences
for related map fields are generated. Associated panel and panel field occurrences are
generated by the batch compiler from information specified in the MAP AUTOPANEL
and MFLD statements.

Chapter 10. Batch Compiler Coding Considerations 10-9

10.6 Compiler Statement Sequencing

10.6.2 PANEL, PFLD, MAP, and MFLD Statement Sequencing

The following order of specification applies when the developer prepares source
composed of PANEL, PFLD, MAP, and MFLD statements:

» A PANEL statement must be followed immediately by the PFLD statements
that defineitsrelated fields. The panel occurrence generated by the most
recently executed PANEL statement is established as current both for subsequent
PFLD statements and subsequent MAP statements.

A MAP statement must be followed immediately by the MFLD statements
that defineitsrelated fields. The following considerations apply:

— The panel occurrence named by the MAP statement must exist in the data
dictionary before the MAP statement is compiled.

— The map occurrence generated by the most recently executed MAP statement
is established as current for subsequent MFLD statements.

Sample Statements: The following abbreviated sample statements illustrate
PANEL, PFLD, MAP, and MFLD statement sequencing:

ADD PANEL NEWPANEL
ADD PFLD EMP-ID
ADD PFLD EMP-FNAME
ADD PFLD EMP-LNAME
ADD PFLD DEPT-CODE

ADD MAP NEWMAP
PANEL IS NEWPANEL
ADD MFLD EMP-ID
ADD MFLD EMP-FNAME
ADD MFLD EMP-LNAME
ADD MFLD DEPT-CODE

In the above example, the NEWPANEL panel occurrence is defined before related
pand fields are defined; the NEWPANEL panel occurrence becomes current for the
map occurrence generated by the ADD MAP NEWMAP statement.

It is not necessary to generate panel occurrences in the same compiler run as related
map occurrences.

10-10 CA-IDMS Mapping Facility

10.7 Compiler Action Verbs

10.7 Compiler Action Verbs

Where can Verbs be Used?: The compiler provides the verbs ADD, MODIFY,
and DELETE that specify the action the map compiler should perform on the
accompanying mapping source statements. Each verb can be specified for any of the
following statements in the CA-IDM S mapping language syntax:

This statement Generates...
MAP AUTOPANEL Map and panel occurrences
MFLD (MAP AUTOPANEL only)
Map field and panel field occurrences
PFLD Panel field occurrences
MAP Map occurrences
MFLD Map field occurrences

» For more information about the mapping language statements listed above, see
Chapter 11, “Batch Compiler Statements’ on page 11-1.

What do the Verbs Do?: The operations performed by the ADD, MODIFY, and
DELETE verbs are as follows:

. ADD establishes a new occurrence in the data dictionary. If the occurrence
specified by an ADD verb aready exists in the data dictionary, the statement that
contains the verb is flagged as an error.

» MODIFY changes an existing occurrence in the data dictionary. The tables on
the following pages summarize considerations that apply when using the MODIFY
verb for automatic and manual panel definition.

» DELETE removes an existing occurrence from the data dictionary. Deleted
occurrences cannot be reconstructed from map load modules that were generated
from those occurrences. The tables on the following pages summarize
considerations that apply when using the DELETE verb.

Defaults: When a verb is not specified with a CA-IDMS mapping statement, the
following defaults apply:

m ADD is the default verb when the occurrence specified by the statement does not
aready exist in the data dictionary.

» MODIFY is the default verb if the occurrence specified by the statement already
exists in the data dictionary.

CAUTION:
DELETE must be specified explicitly; it is never the default action.

Chapter 10. Batch Compiler Coding Considerations 10-11

10.7 Compiler Action Verbs

Modifying a DEVICE Specification: Different versions of the same panel can be
established for a variety of screen sizes by using the DEVICES clause of the MAP
AUTOPANEL or the PANEL statement. Since information specified by the
DEVICES clause can affect many other MAP clauses, the MODIFY verb does not
modify the DEVICES clause. To change a DEVICES specification, the developer
should use the following procedure:

1. Decompile the panel and all associated maps by using a map utility process and

save the resulting outpuit.

2. Delete the maps affected by the change. This action implicitly deletes all map
fields that belong to the deleted maps.

3. Delete the panel occurrence itself. This action implicitly deletes all associated

panel fields.

4. Add the revised panel occurrence with the new DEVICES specification, followed
by the associated pandl field, map, and map field occurrences.

10.7.1 The MODIFY Verb

Statements for Automatic Panel Definition

Statement

Description

MODIFY MAP
AUTOPANEL

Modifies a map occurrence in the data dictionary
and/or establishes currency for subsequent MFLD
statements. The related panel occurrence is updated
only if the panel occurrence has not been used to
generate additional map occurrences.

The map occurrence must be respecified in its
entirety; no previously defined specifications are
retained since MODIFY MAP AUTOPANEL
functions as implicit DELETE and ADD operations.

MODIFY MFLD

Modifies a map field occurrence and its related panel
field occurrence in the data dictionary.

The map field occurrence must be respecified in its
entirety; no previously defined specifications are
retained since MODIFY MFLD (for MAP
AUTOPANEL) functions as implicit DELETE and
ADD operations.

Statements for Manual Panel Definition

10-12 CA-IDMS Mapping Facility

10.7 Compiler Action Verbs

Statement

Description

MODIFY PANEL

Modifies a panel occurrence in the data dictionary
and/or establishes panel currency for subsequent
PFLD statements.

Any existing specifications, except for a DEVICES
specification, can be modified. Previously omitted
specifications can be added.

MODIFY PFLD

Modifies a panel field occurrence in the data
dictionary.

Previously omitted specifications can be added;
however, a new FOR specification can be added only
if the newly specified device is already defined in the
DEVICES clause in the owner PANEL statement.

MODIFY MAP

Modifies a map occurrence in the data dictionary
and/or establishes map currency for subsequent MFLD
statements.

Any existing specification can be modified.
Previously omitted specifications can be added;
however, a new ORIGIN FOR specification cannot be
added unless the newly specified device is already
defined in the DEVICES clause of the owner panel
Statement.

A modified USING RECORDS clause must rename
all previoudly named records in the order in which
they were originally named, followed by new record
specifications.

MODIFY MFLD

Modifies a map field occurrence in the data
dictionary.

Any existing specification can be modified.
Previously omitted specifications can be added.

10.7.2 The DELETE Verb

Statements for Automatic Panel Definition

Statement

Description

DELETE MAP
AUTOPANEL

Deletes a map occurrence and all related map field
occurrences from the data dictionary. The related
panel and panel field occurrences that have been
generated from the map are deleted from the data
dictionary.

Chapter 10. Batch Compiler Coding Considerations 10-13

10.7 Compiler Action Verbs

Statement

Description

DELETE MFLD

DELETE MFLD is not a legal option within
automatic panel definition syntax. A MODIFY MAP
AUTOPANEL statement followed by MODIFY
MFLD statements can be used to respecify a map and
panel; the MFLD statements specify the fields to be
created.

Statements for Manual Panel Definition

Statement

Description

DELETE PANEL

Deletes a panel occurrence and all related panel field
occurrences from the data dictionary.

All map occurrences derived from the panel
occurrence can be deleted.

DELETE PFLD

Deletes a panel field occurrence from the owner panel
occurrence in the data dictionary.

DELETE MAP

Deletes a map occurrence and all related map field
occurrences from the data dictionary and dissociates
the map from the panel occurrence. If the pandl is
not associated with any map occurrences, the panel
and panel field occurrences are also deleted from the
data dictionary.

DELETE MFLD

Deletes a map field occurrence from the owner map
occurrence in the data dictionary.

10-14 CA-IDMS Mapping Facility

Chapter 11. Batch Compiler Statements

111 Overview 11-3
11.2 Afttributes List 11-5
11.2.1 How to use the Attributes List 11-5
11.3 Statements for Automatic Panel Definition 11-9
11.3.1 Overview 11-9
11.3.2 MAP AUTOPANEL Statement Syntax 11-9
1133 Examples 11-17
11.34 MFLD Statement Syntax 11-18
11.35 Examples 11-34
11.4 Statements for Manual Panel Definition 11-35
11.4.1 PANEL Statement Syntax 11-35
1142 Examples, 11-37
1143 PFLD Statement Syntax 11-37
1144 Examples 11-42
1145 MAP Statement Syntax 11-43

Chapter 11. Batch Compiler Statements 11-1

11-2 CA-IDMS Mapping Facility

11.1 Overview

11.1 Overview

The batch compiler provides two sets of compiler statements for creating maps and
panels:

m Statements that automatically define panels — These statements are used to
create, modify, and delete map and map field occurrences in the data dictionary.
Panel and panel field occurrences are created and updated automatically when map
and map field occurrences are created and updated. The following statements are
used for automatic panel definition:

— The MAP AUTOPANEL statement defines panel and map occurrences.

— The MFLD statement for MAP AUTOPANEL defines panel field and map
field occurrences.

. Statements that manually define panels — These statements are used to create,
modify, and delete map, map field, panel, and panel field occurrences. The
following statements are used for manual panel definition:

The PANEL statement defines and generates a panel occurrence.

The PFLD statement defines and generates a panel field occurrence.

The MAP statement defines and generates a map occurrence.

The MFLD statement defines and generates a map field occurrence.

Automatic panel definition is contrasted with manual panel definition in the following
figure:

AUTOMATIC PANEL DEFINITION DATA

DICTIONARY
DD MAP ONEMA

O ;
AUTOPANEL PANEL AND
ADD MFLD #| PANEL FIELD
ADD MFLD OCCURRENCES
ADD MFLD
/ MAP AND

™ MAP FIELD
\ OCCURRENCES

Chapter 11. Batch Compiler Statements 11-3

11.1 Overview

)

MANUAL PANEL DEFINITION DATA
DICTIONARY

(

'ADD PANEL NEWPANEL

ADD PFLD EMP-ID
ADD PFLD EMP-FNAME
ADD PFLD EMP-LNAME PANEL AND
ADD PFLD DEPT-CODE | . | PANEL FIELD
/ OCCCURRENCES

ADD PANEL NEWPANE

ADD PFLD EMP-ID
ADD PFLD EMP-FNAME
ADD PFLD EMP-LNAME MAP AND
ADD PFLD DEPT-CODE | . | MAP FIELD
/ OCCURRBENCES

What's in this Section?: The statements used to define panels and statements
automatically and manually are presented separately below, following a discussion of
the attributes list which can be used when defining a panel either automatically or
manually.

11-4 CA-IDMS Mapping Facility

11.2 Attributes List

11.2 Attributes List

Attributes that can be assigned to any given field are defined in the attributes-list

parameter. This parameter appears in the following clauses:

11.2.1 How to use the Attributes List

ON EDIT ERROR INCORRECT FIELDS ATTRIBUTES clause of the MAP

statement

ON EDIT ERROR CORRECT FIELDS ATTRIBUTES clause of the MAP

statement ON EDIT ERROR specification
ATTRIBUTES clause of the PFLD statement

ATTRIBUTES clause of the MFLD (for MAP AUTOPANEL) statement

The same list of attributes is available for use in each mapping language clause that
allows a map developer to specify attributes for a field. For clarity and convenience,
the complete syntax for attributes-list is presented only once in this section.

CAUTION:
The default values apply only to the ATTRIBUTES clauses of the PFLD
statement and the MFLD (for MAP AUTOPANEL) statement. No default values
apply to the INCORRECT FIELDS ATTRIBUTES and CORRECT FIELDS
ATTRIBUTES clauses.

Syntax

>
»>-

ALPHAnumeric
_E NUMeric j
PROTected —_l_
_‘: UNPROTected
—— SKIP

DETECTable T
L NONDETECTable

REVerse-video
[NORMaT-video ——,

UNDERscore —_I_
_E NOUNDERscore

BLue

RED
PINk
GREen
TURquoise
YELTow
WHIte
NOColor

\
A

Chapter 11. Batch Compiler Statements 11-5

11.2 Attributes List

Parameters

ALPHANUMERIC/NUMERIC
Specifies the characters that can be entered in the field:

ALPHANUMERIC (default for variable fields) specifies that the operator can
enter any character.

NUMERIC (default for literal fields) specifies that the operator can enter
characters as follows:

— If the terminal is not equipped with the NUMERIC hardware
feature, the operator can enter any character in the field. To restrict
input to numeric characters in this case, a numeric external picture must
be assigned to the field and automatic editing must be enabled for the
field and map, as specified in Chapter 3, “Automatic Editing and Error
Handling” on page 3-1.

— If theterminal is equipped with the NUMERIC feature, the field
accepts only numeric input.

Numeric input can include the following characters:
— Numeric digits in the range 0 through 9
— The decimal point (.)

— The minus sign (-)

PROTECTED/UNPROTECTED
Indicates whether the field can accept operator input:

PROTECTED (default for literal fields) specifies that the field is input
protected. Any attempt to enter, modify, or delete data in the field is
physicaly restricted by a 3270-type terminal. Datain a PROTECTED field
on some glass TTY terminals can be overwritten by the operator; however,
operator modifications are ignored on mapin. |If PROTECTED is specified
with either the ADD MFLD (for MAP AUTOPANEL) or the ADD PFLD
statement, the DELIMIT/NODELIMIT clause of either statement defaults to
NODELIMIT.

UNPROTECTED (default for variable fields) specifies that the field is open
to data entry or modification. Data in an unprotected data field is transmitted
to program variable storage on mapin if al of the following conditions are
true:

— Modifications have been made to the field (the MDT is set on).
— Automatic editing does not detect an input error in the data.
— DATA issettoY (YES) for input in the MFLD statement for the field.

If UNPROTECTED is specified with an ADD operation, the
DELIMIT/NODELIMIT clause defaults to DELIMIT.

11-6 CA-IDMS Mapping Facility

11.2 Attributes List

SKIP
Specifies that the operator cannot use the TAB key to position the cursor on the
field; the cursor is advanced to the next UNPROTECTED field. Indicating SKIP
for afield specifies NUMERIC and PROTECTED for the field.

DETECTABLE/NONDETECTABLE
Specifies whether the field is detectable by the selector light pen:

» DETECTABLE gspecifies that the field is detectable by light pens.

» NONDETECTABLE (default) specifies that the field is not detectable by
selector light pens. NONDETECTABLE does not apply to the INCORRECT
FIELDS ATTRIBUTES or CORRECT FIELDS ATTRIBUTES clause.

DISPLAY/DARK/BRIGHT
Indicates whether the field is displayed and, if displayed, whether it appears at
normal or bright intensity:

B DISPLAY (default) specifies that the field is displayed at normal intensity.

» DARK specifies that the field is not displayed. Data written to the field from
program variable storage or entered by the operator is not visible on the

screen.

» BRIGHT specifies that the field is displayed at high intensity; the field
appears highlighted at runtime.

BRIGHT fields are aways DETECTABLE; DARK fields can never be
DETECTABLE.

MDT/NOMDT
Data fields only; indicates whether the modified data tag (MDT) is set on

automatically for the field on a mapout operation:
m MDT specifies that the modified data tag is set on automatically on mapout.

® NOMDT (default) specifies that on mapout the MDT is not automatically set
on; the MDT is set on only when the contents of the field are altered by a

terminal operator.

BLINK/NOBLINK
Specifies whether the field is to blink at runtime:

m BLINK specifies that the field blinks. The BLINK attribute takes effect only
when the map is displayed at a 3279-type terminal.

® NOBLINK (default) specifies that the field does not blink.

REVERSE-VIDEO/NORMAL-VIDEO
Indicates whether the field is displayed in reverse or normal video:

. REVERSE-VIDEO specifies that the color of the characters in the field and
of the background are reversed. The REVERSE-VIDEOQ attribute takes effect
only when the map is displayed at a 3279-type terminal.

= NORMAL-VIDEO (default) specifies that the color of the characters in the
field and of the background are not reversed.

Chapter 11. Batch Compiler Statements 11-7

11.2 Attributes List

UNDERSCORE/NOUNDERSCORE
Indicates whether the field is underscored:

» UNDERSCORE specifies that the field is underscored. The UNDERSCORE
attribute takes effect only when the map is displayed at a 3279-type terminal.

= NOUNDERSCORE (default) specifies that the field is not underscored.

BLUE/RED/PINK/GREEN/TURQUOISE/YELLOW/WHITE/NOCOLOR
Specifies the runtime color of the field, or of the background if
REVERSE-VIDEO is specified for the field. Only one display color can be
specified for a given field. NOCOLOR (default) specifies that the default display
color for the terminal is used. Color attributes other than NOCOLOR take effect
only when the map is displayed at a 3279-type terminal.

Note: BLINK, UNDERSCORE, and REVERSE-VIDEO are mutually exclusive. For
example, neither REVERSE VIDEO nor UNDERSCORE can be assigned to a field for
which the BLINK attribute is defined.

11-8 CA-IDMS Mapping Facility

11.3 Statements for Automatic Panel Definition

11.3 Statements for Automatic Panel Definition

11.3.1 Overview

The developer explicitly defines map and map field occurrences when using statements
that automatically define panels. Related panel and panel field occurrences are
generated and updated automatically. The compiler action verbs ADD, MODIFY, and
DELETE define the overall purpose of the mapping statements.

» For information about the ADD, MODIFY, and DELETE verbs, refer to 10.7,
“Compiler Action Verbs’ on page 10-11.

Statements You can use

The MAP AUTOPANEL statement defines and generates a map occurrence and
automatically generates a related panel occurrence for the map occurrence. The
AUTOPANEL clause is aways included in a MAP statement that automatically
generates a panel occurrence.

The MFLD statement defines and generates a map field occurrence and
automatically generates a related panel field occurrence for the map field
occurrence.

A MAP AUTOPANEL statement must be followed immediately by the MFLD
statements that define its related fields. The MAP AUTOPANEL and MFLD
statements are presented separately below.

11.3.2 MAP AUTOPANEL Statement Syntax

A MAP AUTOPANEL statement typically is used to perform the following functions:

Create or maintain a map occurrence and its associated panel occurrence in the
data dictionary

Identify the map occurrence with a unique combination of name and version
number

Identify the associated panel occurrence with a unique name composed of the
name of the map and the suffix ~-AUTOPANEL

Specify the particular devices suitable for the map at runtime
Identify the records and roles referenced by map data fields

Enable globa automatic editing and error-handling, specifying correct-field and
incorrect-field attributes

Specify various termina hardware control functions (such as alarm or numeric
options) to be invoked during mapout operations

Syntax

Chapter 11. Batch Compiler Statements 11-9

11.3 Statements for Automatic Panel Definition

A\
A\

_]

|E MAP map-name

ADD — |— VERsion version
MODIFY — E IS }
DELETE — =

v

\ 4

L DATETIME m» date-time-stamp]
IS

>
>

message-prefix —

L MSG PREFIX B DC «
£

»— AUTOPANEL DEVices = (device-code) T
—E (24x80, 32x80, 43x80, 27x132) 4—‘
ALL

A\

v

RESident
L NONRESident « |

L SYStem ﬁ dc-version J
IS

v

A\

v

L USING
REC

' |
—— (—I— record-name B l)

version dL ROLEname role-name J

EDIT «
NOEDIT J4 L CURSOR at panel-field-name J

\ 4

RESET « a I LOCK I
NORESET L[MODIFIED jJ UNLOCK <J L[KEYBM
MOD KEY

ALARM —_|_|: STARTPRT NLCR « PAGeable
NOALARM « NOPRT « 40CR NONPAGeable «]
64CR
80CR

»
>

v

L DECimal point Comma j—‘
E IS } L Period «

v

11-10 CA-IDMS Mapping Facility

11.3 Statements for Automatic Panel Definition

\ 4
\4

L HELP

—[LOAD MODule ﬁ module-name
IS

L SOUrce —E NONE

MODuTe module-name

il

I— version —H version
IS

\ 4
v

—[HALF screen H—‘
FULL screen

_]

L HELPKEY ﬁ PFnn
IS

\

L ON edit ERROR T]
INCORRECT fields ATTRibutes = (attributes-list)

L CORRECT fields ATTRibutes = (attributes-list) J

> | >

L SOUND T ALARM j—‘
NOALARM «

L ORIGIN for —|: ALL J t (row column)—l
5]
(¢ device-code J—

Parameters

ADD/MODIFY/DELETE
Specifies the action taken with regard to the MAP statement. ADD, MODIFY,
and DELETE access for a map is subject to security restrictions specified for the
batch compiler and individual maps, as outlined in 10.2, “Compiler Security” on
page 10-4.

\ 4

MAP map-name
Specifies the unique 1- through 8-character name for the map being defined,
modified, or deleted. The following considerations apply to the composition of
map-name:

® Map-name can consist of any alphanumeric or special characters.

Chapter 11. Batch Compiler Statements 11-11

11.3 Statements for Automatic Panel Definition

= Map-name must begin with an alphanumeric or nationa character; for
example, pound sign (#), a sign (@), or dollar sign ($).

®» Map-name must not contain embedded period or blank characters.

VERSION IS version-n
Optionally specifies a version number to further identify the map. Version-n must
be in the range 1 through 9999. If omitted, version-n defaults to the data
dictionary version default, as defined by the Data Dictionary Definition Language
(DDDL) SET OPTIONS statement.

DATETIME IS date-time-stamp
The map compiler DATETIME clause is returned in map source statements when
you use the map utility to decompile a map.

If you use the DATETIME option to decompile a map from one DC system and
add it to another system:

= Do not change decompiled map sour ce statements. If you change
statements, unpredictable errors will occur at runtime when you access the

map.
» Define identical record element descriptions on each system. You can
accomplish this by using IDD.

MSG PREFIX IS message-pr €efix
Defines the two-character prefix to be used as the default prefix for any MFLD in
the map that is defined using the ERROR MESSAGE clause.

AUTOPANEL
Specifies that panel and panel field occurrences are generated automatically when
MAP and associated MFLD statements generate map and map field occurrences.

DEVICES=
(device-code-a) /(24X80,32X80,43X80,27X132)/ALL specifies the devices with
which the map can be used:

n (Device-code-a) specifies devices (screen size) with which the map can be
used. Valid screen sizes are 12X40, 12X80, 24X80, 32X80, 43X80, and
27X132.

Commas must be used to separate device-code-a specifications when more
than one device is chosen. Device specifications in the DEVICES clause
must be enclosed in parentheses; for example,
DEVICES=(12X40,24X80,43X 80).

m (24X80,32X80,43X80,27X132) is the default specification given to the map.
m ALL specifies that the map can be used with all valid screen sizes.

To reserve a map field for use on only a subset of the devices specified in the
DEVICES clause, FOR clauses can be included in an MFLD statement for MAP
AUTOPANEL. FOR clauses can also be used to specify values or attributes for a
field displayed on specific devices.

The MODIFY verb does not update the DEVICES specification.

11-12 CA-IDMS Mapping Facility

11.3 Statements for Automatic Panel Definition

» See 10.7, “Compiler Action Verbs’ on page 10-11 for more information.

SYSTEM IS dc-version-n
Specifies the version number of a CA-IDMS system with which the map is
associated. Dc-version-n is the 1- through 4-character identifier assigned to the
system at system generation.

RESIDENT/NONRESIDENT
Indicates whether the map load module is resident in storage at system runtime:

n RESIDENT specifies that the map load module is resident. This is useful for
frequently used maps.

» NONRESIDENT (default) specifies that the map load module is not resident;
the load module is loaded dynamically when required for a program mapping
request.

USING RECORDS
(record-name /(record-name version-n) ROLENAM E role-name

Specifies the list of predefined schema and/or work records used by the map and
optionally specifies role names for records:

» Record-name identifies the name of a record that contains elements referenced
by the map. If record-name is not unique in the data dictionary, the version
number of the necessary schema or work record must be supplied; the default
value for version-n is specified at system generation.

If alogical record is being used, the developer names the records containing
elements that are part of the logical record and that are used in the map
definition. The logical record name is later specified by the dialog or
program using the map.

» ROLENAME role-name specifies the role nam used for the record at
runtime. Role names are needed when a given record type is referenced in
more than one context. For example, the developer might specify the
EMPLOQY EE record layout twice for a map that uses the EMPLOY EE record
for both employee-related and manager-related fields on a single map:

— One specification of the EMPLOY EE record would not include a role
name for the record.

— The second specification of the EMPLQOY EE record would include a
valid role name for the record (for example, MANAGER). The role
name must be used in subsequent references to the record in the
map-definition.

The specified role name can be established in two ways:

— The role name can be previously defined for the record by a logical
record definition in the subschema used by the program or dialog.

— The role name can be unique to the map, defined at map definition time
on the Associated Records screen or via the batch compiler.

Chapter 11. Batch Compiler Statements 11-13

11.3 Statements for Automatic Panel Definition

EDIT/NOEDIT
Indicates whether automatic editing and error-handling are enabled for the map, as
follows:

» EDIT (default) globally enables automatic editing and error-handling for the
map.

» NOEDIT globally disables automatic editing and error-handling for the map;
editing and error-handling criteria (if any) defined for map fields are ignored.

» For more information on enabling and disabling automatic editing, see 3.3,
“Enabling Automatic Editing and Error Handling” on page 3-6.

RESET/NORESET MODIFIED
Indicates whether the modified data tags (MDTs) for data fields are reset
automatically on a mapout operation:

n RESET (default) specifies that all MDTSs are reset (turned off) when the map
is mapped out.

» NORESET specifies that MDTSs are left unchanged when the map is mapped
out.

The MDT/NOMDT specification in the MFLD ATTRIBUTES clause for a field
overrides the RESET/NORESET specification for that field if the map-level and
field-level specifications differ. If MDT is chosen for a field, the MDT is set on
regardless of the RESET MDT specification.

»» For more information on the MDT/NOMDT setting, see 2.4.2, “Attributes for
Fields’ on page 2-13.

LOCK/UNLOCK KEYBOARD
Specifies whether the keyboard unlocks automatically after a mapout operation:

» L OCK specifies that the keyboard remains locked until the operator presses
the RESET key.

® UNLOCK (default) specifies that the keyboard is unlocked after a mapout.

ALARM/NOALARM
Indicates whether a terminal alarm sounds automatically on a mapout operation:

n ALARM specifies that the terminal alarm sounds on a mapout operation.
This specification is meaningful only if the terminal is equipped with a
hardware alarm.

= NOALARM (default) specifies that the terminal alarm does not sound on
mapout.

STARTPRT/NOPRT
Specifies whether the contents of the printer terminal buffer should be printed
automatically upon completion of data transmission on a mapout operation:

» STARTPRT specifies that the contents of the printer terminal buffer are
printed. This specification is meaningful only for mapping operations
associated with 3280-type printers.

11-14 CA-IDMS Mapping Facility

11.3 Statements for Automatic Panel Definition

B NOPRT (default) specifies that the contents of the printer termina buffer are
not printed.

NL CR/40CR/64CR/80CR
Specifies character-per-line formatting for printer output:

» NLCR (default) specifies that no line formatting is performed on the printed
output. Printing skips to a new line only when new line (NL) and carriage
return (CR) characters are encountered.

m 40CR specifies that the buffer contents are printed at 40 characters per line.
® B4CR specifies that the buffer contents are printed at 64 characters per line.
m 80CR specifies that the buffer contents are printed at 80 characters per line.

These specifications are applicable only if the STARTPRT clause is specified for
the map.

PAGEABLE/NONPAGEABLE
Specifies whether the map is pageable:

» PAGEABLE specifies that the map is pageable. A pageable map is a map
that can display more than one page of information at runtime.

» NONPAGEABLE (default) specifies that the map is not a pageable map.

»> For more information on pageable maps, see Chapter 4, “Pageable Maps’ on
page 4-1.

DECIMAL POINT IS COMMA/PERIOD
Specifies the decimal point character for numeric fields on the map:

B COMMA specifies that the comma (,) is used as the decima point, in
accordance with international format. An external picture for the field also
must be specified in international format, with the comma as the decimal
point.

» PERIOD (default) specifies that the period (.) is used as the decima point.

HELP
Specifies whether help will be implemented for the map.

Note: Thisis a 12.0 and later feature.

NO/LOAD MODule module name
If there is Help for the map, the name of the load module that contains all the
help source for the map.

HELPKEY IS PFnn
The PFKey designated as the Help key for the map.

SOUrce NONE/M ODule module-name
The name of the IDD module that contains the help text for the map.

If module name is specified, you can optionally specify:
® The version number

. Whether the help is displayed on a full or half screen

Chapter 11. Batch Compiler Statements 11-15

11.3 Statements for Automatic Panel Definition

ON EDIT ERROR
Defines incorrect-field attributes, correct-field attributes, and alarm status for use
when a dialog or map redisplays a map that contains input errors. The following
clauses assign error-handling criteria:

INCORRECT FIELDS ATTRIBUTES=(attributes-list) specifies attributes
that are assigned to incorrect fields when an edit error occurs. Typically,
incorrect fields are given an attribute such as BRIGHT or BLINK to draw the
operator's attention to the erroneous data. No default attributes are defined.

» Syntax for the attributes-list is discussed in 11.2, “Attributes List” on
page 11-5, earlier in this section.

CORRECT FIELDS ATTRIBUTES=(attributes-list) specifies attributes
that are assigned to correct and unedited fields when an edit error occurs. No
default attributes are defined.

»> Syntax for the attributes-list is discussed in 11.2, “ Attributes List” on
page 11-5, earlier in this section.

SOUND ALARM/NOALARM specifies whether a terminal alarm sounds on
input error:

— ALARM indicates that the alarm is sounded. This option is meaningful
only when a terminal is equipped with a hardware alarm.

— NOALARM (default) indicates that the alarm is not sounded.

For example, a dialog or program can include code to redisplay a map when an
error is detected in a field on mapin. When the display is mapped back out,
incorrect-field attributes take effect for fields that are in error, and correct-field
attributes take effect for fields that are not in error. The termina operator can
correct the errors and resubmit the map.

>

For information on the use of error-handling specifications, see 3.5,

“Error-Handling Criterid’ on page 3-27.

»> For information on how dialogs and programs override specifications made in
the ON EDIT ERROR clause, see see 6.3, “Map Inquiry and Modification” on

page 6-6.
ORIGIN FOR (device-code)/ALL IS (row column)

Positions the origin of the runtime map at a row/column location on specified
devices:

Device-code names one device. Available device-code specifications are
12X 40, 12X 80, 24X80, 32X80, 43X80, and 27X132. The specified device
must be defined in the DEVICES clause of the MAP statement. More than
one ORIGIN FOR device-code clause can be included in a single MAP
Statement.

Parentheses are required when a device code(s) is specified.

ALL names all devices defined in the DEVICES clause of the MAP
statement.

11-16 CA-IDMS Mapping Facility

11.3 Statements for Automatic Panel Definition

®» Row column specifies the coordinates at which the upper left-hand corner of
the runtime map is plotted for al devices specified in the ORIGIN FOR
specification. Only one row column specification can be made for a given
ORIGIN FOR clause; if specified, it must be enclosed in parentheses. If not
specified, column defaults to 1.

Parentheses are required around the row column coordinates.
11.3.3 Examples
Examples of the MAP AUTOPANEL statement are shown below.
Example 1. Adding a Map Occurrence

The sample MAP AUTOPANEL statement shown below adds a map occurrence
named MEALS:

ADD MAP MEALS VERSION IS 2
AUTOPANEL DEVICES=(24X80)
USING RECORDS MEALS-REC VERSION 1
NOEDIT.

The MEALS-REC schema record is used by the sample map occurrence. Automatic
editing is disabled by the NOEDIT specification. A panel occurrence is generated
automatically for the MEALS map occurrence and given the name
MEALS-AUTOPANEL.

Example 2: Modifying a Map Occurrence

The sample MAP AUTOPANEL statement shown below modifies the map occurrence
established in the previous example:

MOD MAP MEALS VERSION IS 2
AUTOPANEL DEVICES=(24X80)
USING RECORDS MEALS-REC VERSION 1
EDIT
ON ERROR
INCORRECT ATTRIBUTES (BRIGHT)
CORRECT ATTRIBUTES (DISPLAY).

Automatic editing is enabled by the EDIT clause. Attributes for the redisplay of
incorrect and correct fields are added to the map. The related MEALS-AUTOPANEL
panel is also modified by this sample statement unless the panel has been used as the
basis for other map occurrences.

Chapter 11. Batch Compiler Statements 11-17

11.3 Statements for Automatic Panel Definition

Example 3: Positioning a Map on a Device

The sample MAP AUTOPANEL statement shown below defines a map occurrence
that can be displayed on two different devices at runtime:

ADD MAP SEATS
AUTOPANEL DEVICES=(12X40,24X80)
USING RECORDS PASS-REC VERSION 1
ORIGIN FOR 12X40 IS 5,5
ORIGIN FOR 24X80 IS 10,20.

The upper left-hand corner of the runtime SEATS map is positioned at row 5, column
5 on 12X40 devices. The upper left-hand corner of the runtime map is at row 10,
column 20 on 24X 80 devices. For more information on the placement of maps on
different devices, see 12.2.2, “Positioning Maps on Different Devices’ on page 12-8 in
Section 11.

Example 4. Deleting a Map Occurrence
The sample MAP AUTOPANEL statement shown below deletes the MEALS map

occurrence version 2 and simultaneously deletes any map field occurrences that belong
to the map:

DEL MAP MEALS VERSION IS 2.

The related MEALS-AUTOPANEL panel occurrence and its panel field occurrences
are deleted from the data dictionary by this sample statement unless the panel has been
used as the basis for other map occurrences.

11.3.4 MFLD Statement Syntax

Functions Performed: An MFLD statement for MAP AUTOPANEL is used to
add a map field to a map by performing the following functions:

» Creating and maintaining a single map field occurrence and associated panel field
occurrence for the specified map and panel occurrences in the most recent MAP
AUTOPANEL statement.

» |dentifying the map field occurrence in the data dictionary with a name that is
unique within the owner map occurrence.

® |dentifying the panel field occurrence with a name composed of a 5-digit identifier
with the prefix AUTOPF. The name AUTOPF00001 is assigned to the first panel
field occurrence generated for the map, AUTOPF00002 is assigned to the second
panel field occurrence generated for the map, and so forth.

m Specifying characteristics for the field, such as the following:

— Field occurrences for multiply-occurring fields

11-18 CA-IDMS Mapping Facility

11.3 Statements for Automatic Panel Definition

Screen locations of the field by row and column

Physical attributes of the field, such as display color
Field values for literal fields

Delimit characteristics

Variable field type, as follows:

— The DFLD specification establishes the field as a data field and relates it
to a single existing record element in the data dictionary. Additional
specifications, such as automatic editing criteria, can be made for data
fields.

— The MESSAGE LENGTH specification establishes the field as a
message field and defines the length of the field. establishes the field as
a page field and defines the length of the field.

— The RESPONSE LENGTH specification establishes the field as a
response field and defines the length of the field. A response field is
meaningful only when the map is used by a CA-ADS dialog.

Syntax

Chapter 11. Batch Compiler Statements 11-19

11.3 Statements for Automatic Panel Definition

v

MF1d

A\
A\

ADD —
MODify —

v

A\

|_ 0CCURS —E 1 «

occurrence-count times

il

v

A\

|: FOR ALL « J
FOR (—\L dev1ce code J—

|—AT

- (o —[co]umn j)

—|: ANYwhere

A\

v

L ATTRibutes = NONE
L il
(attributes-Tist)
DELIMit SKIP « :l—
E IS } [NOSKIP
NODELIMit
L PAGing type DETail STart
IS DETail ENd
= FOOTer STart
NUL1

A\

v

L VALue —m—['data-value'
IS | J
= (=] 'data-value' 1)

L (occurrence count)

CURSOR] >
NOCURSOR «

LITeral « ><
MESSage LENgth —[engt_—,—

80 «

PAGE LENgth 4
RESPonse LENgth length

Lgge—J |

DF1d dfld-specifications

Expansion of dfld-specifications

11-20 CA-IDMS Mapping Facility

11.3 Statements for Automatic Panel Definition

»»—— data-field-name

\4

L (subscript-number)]

|— VERsion version-number —l

L OF —|: record-name

role-name

»
| 2

\4

L HELP

»

—— SOUrce NONE
—[MODule module-name

v

]

|— VERsion ﬁ version-number
IS

t HALF screen j
FULL screen

>—E REQuired
OPTional « i

L REVerse NUMeric Yesj—‘
E IS } E No

\4

v

\4

L UNDERSCORE when blank No <«
|— Yes —J

NOEDIT «

EXTernal PICture —E 'picture’
INTernal]

\4

> | >

]

ZEROed « when null J — DISPTay =« when zero
t 1 i

RETAINed — BLANK

»—— EDIT TABle —m—[NULL «
IS table-name
= |— VERsion version-number —l

A\ 4

Chapter 11. Batch Compiler Statements 11-21

11.3 Statements for Automatic Panel Definition

v

LINK « |
L NOLINK JL USAGE is VALIDate
AE INVALIDate
DEFault «

| CODE TABle mi NULL « :|_J|

IS A table-name L J ’. LINK «
= VERSION version-number NOLINK

A\

v

L ERROR MESSage —— 'messa e'—J

— message-id —
— NULL «

A\ 4
v

|— MSG PREFIX |_ DC « ————
|: IS j message-prefix —

\ 4

e — e B B —
ify e 0« —J—‘
—[Right —E with Titeral

L DATA T YES «
NO

A\
v

L UPPERCASE B NO <_J
YES

A\ 4
v

|_ _J WITH AUTOedit NO «
EDIT edit-module-name —E BEFore
E IS E| AFTer

\ 4
v

L
FOR OUTPUT
Il

|— BACKscan —E YES j—‘ |— DATA YES «
NO < —E N —

ERASE
ATTRibute —

A\

. —><
EDIT edit-module-name —E BEFore
{ IS } AFTer

Parameters

ADD/MODIFY
Specifies the action taken with regard to the MFLD statement. The DELETE verb
cannot be specified for MFLD statements for MAP AUTOPANEL.

11-22 CA-IDMS Mapping Facility

11.3 Statements for Automatic Panel Definition

» For information on how to remove a field occurrence from a map occurrence
that was defined by a MAP AUTOPANEL statement, see 10.7, “Compiler Action
Verbs’ on page 10-11.

MFLD

Introduces the clauses that define a map field and associated panel field
occurrence.

OCCURS l/occurrence-count TIMES

Specifies the number of times the field is to appear on the map; the default is 1.

FOR ALL /(device-code-a)

AT

Associates the specified screen sizes with field specifications established by
subsequent AT, ATTRIBUTES, DELIMIT, and VALUE clauses. If the map is
used with more than one screen size, multiple FOR specifications can be included
in the MFLD statement to establish different information for each screen size.

»> For a more detailed description of this latter use of the FOR specification, see
12.2.1, “Defining Versions of Maps for Different Devices’ on page 12-4.

A field is associated with specific devices as follows:

m ALL specifies that subsequent clauses of the MFLD statement apply to all
screen sizes specified in the related DEVICES clause.

n (Device-code-a) specifies one or more devices. Subsequent clauses of the
MFLD statement apply only to the designated screen sizes. More than one
device-code-a specification can be included in a FOR clause. The number of
valid device-code-a specifications depends on the number of screen types
declared in the related DEVICES specification.

Valid screen sizes are 12X40, 12X 80, 24X80, 32X 80, 43X80, and 27X132.
Device specifications must be enclosed in parentheses and separated by
commas, for example, FOR (12X 40,12X80).

ANYWHERE/ (row,1/column)

Specifies the screen coordinate of the attribute byte for a field by row and column.
The coordinate establishes the location of a runtime field on a given screen. An
attribute byte is a nondisplayable character that precedes the displayed field and
defines the field's attributes.

The field itself is displayed starting at the coordinate that immediately follows the
nondisplayable attribute byte. For example, a field displays starting in coordinate
(5,11) for an AT (5,10) specification.

The following considerations apply to the placement of attribute bytes and fields:

» Specifying the coordinates for the final column of a row places the first
displayable character for a field in the first column of the next row.

» Specifying the coordinates for the final column of the final row on a screen
places the first displayable character for afield in the first column of the first
row (1,1).

» Specifying coordinates that cause a field to exceed the remaining length on a
given row results in a field that is split at the end of the screen and wrapped

Chapter 11. Batch Compiler Statements 11-23

11.3 Statements for Automatic Panel Definition

around to either the next row or the top of the screen, depending on the row
in which the coordinates were placed.

Screen coordinates are designated as follows:

. ANYWHERE specifies that the field can appear anywhere on the screen.
ANYWHERE is meaningful only with mapin operations for which the
requesting program reads extraneous data. Extraneous data is data that is not
associated with a field at a specific row/column location.

® (Row-n,column-n) specifies the row and column coordinates for the attribute
byte for the field:

— Row-n identifies a horizontal position on the screen.
— Column-n identifies a vertical position on the screen; the default column
is 1.
The following considerations apply when positioning multiply-occurring fields:
» Each occurrence of the field requires its own row-n,column-n specification;

multiple row-n,column-n specifications can be made in one AT clause, if
necessary.

n |f there are more row-n,column-n specifications than multiply-occurring fields
specified in the OCCURS clause, the compiler input statement listing returns
an error message.

® AT specifications can occur in any order; they are assigned to corresponding
OCCURS vaues in order of iteration.

ATTRIBUTES=NONE/(attributes-list)
Specifies the attributes for the field. Only one ATTRIBUTES clause can occur in
agiven MFLD statement. ATTRIBUTES specifications apply to all occurrences
of the field. Valid specifications are as follows:

® NONE removes all attribute specifications from the map and panel field
occurrences being defined by the MFLD statement. The following runtime
considerations apply when NONE is specified for a field:

— Thefield is displayed with the attributes defined for the preceding field if
the preceding field is not delimited.

— Thefield is displayed with the default display attributes provided by the
device if the preceding field is delimited or if there is no preceding field.

— Thefield is displayed beginning in the column position specified in the
AT clause, since there is no attribute character for the field.

n (Attributes-list) specifies a list of attribute that apply to the field.

» For more information on available attributes, see 11.2, “Attributes List”
on page 11-5 earlier in this section.

DELIMIT/NODELIMIT
Specifies whether a delimit character is placed after the final position of a data
field:

11-24 CA-IDMS Mapping Facility

11.3 Statements for Automatic Panel Definition

B DELIMIT IS SKIP/NOSKIP specifies that an internal delimit character is
placed after the final position of the field, as determined by the external
picture of the associated record element. The action of the cursor when it
reaches the delimit character and the disposition of excess characters are
determined by one of the following specifications:

— SKIP (default) specifies that the cursor is advanced automatically to the
start of the next UNPROTECTED field when operator input reaches the
delimit character. If there are no more UNPROTECTED fields on the
map, the cursor is placed at the start of the current field. Characters
typed after the internal delimit character is reached are placed in the field
to which the cursor advances. SKIP is the default if DELIMIT is
specified.

— NOSKIP specifies that the cursor remains at the delimit character when
operator input reaches the end of the field. Subsequently typed input
locks the keyboard until the operator presses the RESET key. The TAB
key advances the cursor to the next UNPROTECTED field.

» NODELIMIT specifies that no internal delimit character is assigned to the
field. The operator is not informed when input reaches the end of the field,
and can continue typing until the attribute byte of the next field is reached.
On mapin, the external picture of the record element associated with the field
determines the amount of operator input that is stored. Input that exceeds the
length of the externa picture is ignored; a CA-ADS dialog or application
program can include commands to inquire whether extraneous data has been
input for a NODELIMIT field.

PAGING TYPE ISDETAIL START/DETAIL END/FOOTER START/NULL
(pageable maps only)

Specifies whether the field begins or ends the detail occurrence or an area on the
pageable map:

m DETAIL START performs the following functions:

— Begins the detail area on the line that contains the attribute byte of the
field being defined

— Begins the detail occurrence on the line that contains the attribute byte
of the field being defined

— Endsthe header area (if any) on the line immediately above the line
that contains the attribute byte for the field assigned the DETAIL START
specification

The field assigned the DETAIL START specification must begin on a new

line (that is, it cannot begin on a line that contains characters for a field in the
header area).

» DETAIL END specifies that the detail occurrence for the map is to end at the
final character position of the current field. The detail area for the map is not
terminated by DETAIL END; FOOTER START (below) can be used to
terminate the detail area.

Chapter 11. Batch Compiler Statements 11-25

11.3 Statements for Automatic Panel Definition

® FOOTER START performs the following functions:

— Begins the footer area on the line that contains the attribute for the field.
The footer area ends at the end of the screen.

— Ends the detail area on the line immediately above the line that contains
the attribute byte of the field assigned the FOOTER START specification.

The field assigned the FOOTER START specification must begin on a new
line (that is, it cannot begin on a line that contains characters for a field in the
DETAIL END field). If assigned, the FOOTER START specification must be
made for a field below the field assigned the DETAIL END specification.

® NULL (default) specifies that the field does not begin or end a detail or an
area on the map. The NULL setting can be used to override a previous
DETAIL START, DETAIL END, or FOOTER START specification for a
field.

»»> For more information on the areas of pageable maps, see Chapter 4,
“Pageable Maps’ on page 4-1.

VALUE IS data-value/((occur rence-count) data-value)
Supplies string values to literal fields:

» Datavalue assigns a value to a singly-occurring literal field. The specified
value must be enclosed in quotation marks.

® ((Occurrence-count) data-value) assigns a value to a literal field or assigns
discrete values to multiple occurrences of a literal field:

— (Occurrence-count) identifies one or more field occurrences by order of
iteration. Values are assigned to the literal fields specified in the AT
clause by order of iteration of the row/column specifications rather than
by their order of display on the mapped screen. For example, with a
literal field that occurs four times, the specification VALUE IS ((2) 'ABC'
(1) 'DEF (1) 'GHI") assigns the value ABC to the first and second field
occurrences, DEF to the third field occurrence, and GHI to the fourth
field occurrence.

— Data-value specifies the value assigned to each occurrence or group of
literal field occurrences. The supplied value must be enclosed in
guotation marks.

A maximum of 256 characters can be specified for a literal field in data-value

CURSOR/NOCURSOR
Specifies the mapout location of the cursor at runtime:

® CURSOR specifies that the cursor is located at the start of the indicated field
when the map is mapped out.

. NOCURSOR (default) specifies that the cursor is not located at the start of
the indicated field when the map is mapped out.

If CURSOR is specified in more than one MFLD statement for a given map, the
runtime cursor is positioned at the field for which CURSOR was last specified at

11-26 CA-IDMS Mapping Facility

11.3 Statements for Automatic Panel Definition

compile time. If CURSOR is not specified for any field on the map, the default
runtime cursor location is the first UNPROTECTED field on the screen, or at
coordinate 1,1 if there are no UNPROTECTED fields.

LITERAL
Specifies that the field is a literal field. A literal field is given a string value in
the VALUE IS clause. If LITERAL, MESSAGE LENGTH, PAGE LENGTH,
RESPONSE LENGTH, or DFLD is not specified in the MFLD statement,
LITERAL is the default.

MESSAGE LENGTH length
Specifies that the field is a message field. If included, length must be an integer
greater than or equal to 1 and less than or equal to the total number of character
positions on the smallest screen for which the map is intended. The default for

length-n is 80.

PAGE LENGTH 4
Specifies that the field is a page field.

RESPONSE LENGTH length
CA-ADS only. Specifies that the field is a response field. If included, length must
be an integer in the range 1 through 32. The default is 8.

DFLD data-field-name (subscript) OF record-name/role-name
Specifies that the field is a data field and associates the field with the record
element named by data-field-name:

» Datafield-name specifies an element that is already defined to the data
dictionary by means of the CA-IDMS/DB schema compiler or the IDD DDDL
compiler.

m Subscript-n specifies the subscript of the record element if the element is
multiply-occurring.

® OF record-name/role-name names the record or role to which the associated
element belongs:

— Record-name VERSION version-n specifies the name of a schema or
work record that is aready defined in the data dictionary and is specified
in the USING RECORDS clause for the map. A record name for an
element must be specified when the same data-field-name occurs in more
than one record used by the map.

VERSION version-n must be used to specify the version number of the
record if record-name is not unique in the map.

— Role-name specifies the role name of arecord. The role name can be
previously defined for a record in the subschema used in the program or
dialog, or the role name can be a unique name that is established at map
definition in the ROLENAME clause of the MAP statement.

The length of a data field is not specified in the DFLD clause; the length is
determined in one of the following ways:

» The EXTERNAL PICTURE clause of the MFLD statement (described
below) can determine the length of a data field, as follows:

Chapter 11. Batch Compiler Statements 11-27

11.3 Statements for Automatic Panel Definition

— If EXTERNAL PICTURE explicitly specifies an external picture for
the field, that external picture determines the length of the field.

— If EXTERNAL PICTURE specifies INTERNAL, an external picture is
constructed from the internal picture specified for the element named by
data-field-name, and that external picture determines the length of the
field.

®» The external picture associated with the record element (if any) determines
the length of the field if the MFLD statement does not specify an external
picture.

® The external picture derived from the internal picture specified for the
field (if automatic editing is enabled for the map and field) determines the
length of the field if the record element definition does not specify an external
picture.

A data field can contain as many character positions as are available on the
smallest screen for which the map is intended, minus one character position
for the attribute byte for the field.

Remaining MFLD clauses supply automatic editing and error-handling information
for the field being defined. For details on features enabled by the clauses listed
below, see Chapter 3, “Automatic Editing and Error Handling” on page 3-1. The
following MFLD clauses apply only when DFLD is specified for the field:

»> For details on features enabled by the clauses listed below, see Chapter 3,
“Automeatic Editing and Error Handling” on page 3-1.

HELP
Specifies whether help will be implemented for the field.

Note: Thisis a 12.0 and later feature.

SOUrce NONE/M ODule module-name
The name of the IDD module that contains the help text for the field.

If module name is specified, you can optionally specify:
® The version number
& Whether the help is displayed on a full or half screen

REQUIRED/OPTIONAL
Indicates whether operator input is required in the field:

» REQUIRED specifies that input is required. An input error occurs if the
terminal operator does not enter data for the field.

n OPTIONAL (default) specifies that input is optional.

REVERSE NUMERIC IS YES/NO
Specifies whether the contents of a numeric field are reversed on mapin and again
on mapoult:

® YES gpecifies that data for the field is reversed on mapin, and again on
mapout. REVERSE NUMERIC is used for numeric fields when hardware
modifications cause input to be entered from right to left. YES is the default

11-28 CA-IDMS Mapping Facility

11.3 Statements for Automatic Panel Definition

for new fields when REVERSE NUMERIC is specified in the SIGNON
statement for the batch run.

NO specifies that data for the field is not reversed on mapin or on mapout.
The NO specification is overridden when the developer specifies REVERSE
NUMERIC in the SIGNON statement for the batch run.

UNDERSCORE when blank NO/YES
Indicates if the field should be underscored if it is blank. On mapin, trailing
underscores are removed.

Note: Thisis a12.0 and later feature.

EXTERNAL PICTURE ISINOEDIT
Indicates whether the field is processed by automatic editing and error-handling,
and establishes an external picture for use in editing. The following options are
available:

NOEDIT (default) disables automatic editing and error-handling for the field.

EXTERNAL PICTURE IS enables automatic editing for the field and
specifies the external picture for the field during automatic editing, the action
to be taken by automatic editing should the terminal operator erase the field,
and/or the display format for NUMERIC fields that contain only zeros, as
follows:

— Picture/INTERNAL specifies the externa picture for the field. For
information on external pictures, see 3.4.6, “External Pictures’ on
page 3-12.

Picture specifies an actual external picture, such as XX/XX/XX or
XXX-XX-XXXX.

— INTERNAL (default) requests that the map use the externa picture
defined for the associated record element (or the picture constructed for
the field).

— ZEROED/RETAINED WHEN NULL specifies the action taken when
automatic editing is enabled for a numeric field and the terminal operator
erases the contents of the field (for example, by pressing the ERASE
EOF key).

ZEROED (default) requests the field be filled with zeros of the
appropriate data type when automatic editing is enabled for the given
map and field and the operator erases the contents of the field.

RETAINED indicates that the data contained in the buffer should be
retained when the operator erases the contents of the field.

— DISPLAY/BLANK WHEN ZERO indicates the action taken when
automatic editing is enabled for a numeric field that contains only zeros.

DISPLAY (default) requests that the zeros be displayed.
BLANK requests that blanks be displayed instead of zeros.

Chapter 11. Batch Compiler Statements 11-29

11.3 Statements for Automatic Panel Definition

Note: For a group data field, the only valid external picture is an aphanumeric
one. Note also that edit and code tables are not supported for group data fields.

EDIT TABLE IS table-name/NULL
Specifies the edit table used for the field if automatic editing is enabled for the
field and map:

» Table-name specifies the name of an existing stand-alone table used as the
edit table for the field. For more information on the use of edit tables, see
3.4.7, “Edit and Code Tables’ on page 3-20.

If editing is enabled elsewhere for the field and no edit table is named by
using the EDIT TABLE IS clause, the default edit table is the built-in table (if
any) defined in the associated record element. If no edit table is named by
the EDIT TABLE IS clause or defined in the element definition, no edit table
isused. The following clauses can be included in an EDIT TABLE IS
specification when the edit table is named:

— VERSION version-n specifies the version of the edit table used. The
default is 1.

— LINK/NOLINK specifies whether the edit table is linked as part of the
map load module or is loaded dynamically at runtime:

LINK (default) indicates that the named edit table is to be linked as part
of the map load module. The LINK specification is particularly useful
for tables that contain items that cannot be used readily by another record
element.

NOLINK indicates that the table is loaded dynamically at runtime.
NOLINK is useful when the contents of a table change frequently.

— USAGE ISVALIDATE/INVALIDATE/
DEFAULT indicates whether the edit table is a table of valid values or
invalid values:

VALIDATE specifies that the table contains valid values. An error
occurs when the terminal operator enters a value that does not appear in
the table.

INVALIDATE specifies that the table contains invalid values. An error
occurs when the terminal operator enters a value that appears in the table.

DEFAULT (default) specifies that the VALID or INVALID specification
given in the table definition should be used for the table.

® NULL (default) specifies that no stand-alone edit table is used for the field at
runtime. NULL does not suppress use of the built-in edit table for the field.

CODE TABLE IS table-name/NUL L
Specifies the code table used for the field if automatic editing is enabled for the
field and map:

» Table-name specifies the name of an existing stand-alone code table used for
the field if automatic editing is enabled for the field. For more information
on the use of code tables, see 3.4.7, “Edit and Code Tables’ on page 3-20.

11-30 CA-IDMS Mapping Facility

11.3 Statements for Automatic Panel Definition

If editing is enabled elsewhere for the field, and no code table is named by
using the CODE TABLE IS clause, the default code table is the built-in code
table (if any) defined in the associated record element. If no code table is
named by the CODE TABLE IS clause or defined in the element definition,
no edit table is used. The following clauses can be included in a CODE
TABLE IS specification when a code table is named:

— VERSION version-n specifies the version of the code table used. The
default is one.

— LINK/NOLINK specifies whether the code table is linked as part of the
map load module or is loaded dynamically at run time:

LINK (default) indicates that the named code table is to be linked as part
of the map load module. LINK is useful for tables that contain items that
cannot be used readily by another record element.

NOLINK indicates that the table is loaded dynamically at runtime.
NOLINK is useful when the contents of a table change frequently.

» NULL (default) specifies that no stand-alone code table is used for the field
at runtime. NULL does not suppress use of the built-in code table for the
field.

ERROR MESSAGE message/message-id/NULL
Defines the error message returned on mapout if the field isin error. The
message is displayed in the message field defined for the map. If the map has no
message field, the message is not displayed and processing continues normally
(with CA-ADS, the message is displayed on the CA-ADS default message screen).
The developer can specify any one of the following options:

®n Message specifies the text of the message displayed if the field is in error.
Message must be enclosed in quotation marks.

» Message-id specifies the 6-digit message identifier of the data dictionary
message displayed if the field is in error. The map compiler adds the prefix
DC to this 6-digit identifier to construct the actual identifier of the data
dictionary message.

n NULL (default) specifies that the default error message is used if the field
contains incorrect input. The default message has the following format:

ERROR AT row,column

MSG PREFIX IS message-pr efix
Defines the two-character prefix to be used to locate the message in the dictionary
of the message defined in the previous ERROR MESSAGE parameter when the
field is found to be in error at runtime. The value defaults to the value specified
in the MSG PREFIX parameter in the MAP statement.

FOR INPUT
Specifies functions performed for data on a mapin operation:

JUSTIFY LEFT/RIGHT

Specifies how operator input is to be aligned for transmission to program variable
storage:

Chapter 11. Batch Compiler Statements 11-31

11.3 Statements for Automatic Panel Definition

n LEFT (default) specifies that input is left-justified.
n RIGHT specifies that input is right-justified.

PAD NO/WITH literal
Specifies a pad character for an alphanumeric field in character or hexadecimal
format:

» NO (default) specifies that data is not padded.

n WITH literal specifies the pad character for a field in character or
hexadecimal format. Character literals are specified as C'c', where ¢ denotes a
character literal. Pad characters in hexadecimal format are specified as X'nn',
where nn denotes a two-digit hexadecimal value. Hexadecimal format is
recommended when specifying the blank character as the pad character for a
field.

Pad characters are used to avoid unwanted data being stored for a field on mapin.
For example, a data field containing the name JOHNSON is mapped out. The
operator presses the ERASE EOF key to erase the field, typesin SMITH, and
presses Enter. The value mapped to variable storage depends on whether a pad
character is defined for the field:

® |f no pad character is defined for the field, SMITHON is stored for the
field. The operator would have to key blanks over ON to eliminate these
characters from the data.

® |f a blank pad character is defined for the field, SMITH is stored for the
field.

DATA YESINO
Indicates whether the transmitted contents (if any) of the field are to be moved
automatically into program variable storage on a mapin operation:

» YES (default) specifies that the contents of the field are automatically moved
into program variable storage if transmitted from the terminal. Data is
transmitted from the terminal when the MDT is set on for the field before a
mapin operation.

. NO specifies that data contained in the field is not moved automatically into
program variable storage, even if the MDT is set on.

UPPERcase YES/NO
Indicates if field should be displayed in uppercase.

Note: Thisis a12.0 and later feature.

EDIT IS edit-module-name WITH AUTOEDIT
Optionally specifies the name of an existing user-written edit module to process
input after transmission on a mapin operation. The relationship between the user
edit module and automatic editing is determined by the WITH AUTOEDIT clause
as follows:

® NO (default) specifies that automatic editing is not performed for the field;
only the user-written edit module is used.

11-32 CA-IDMS Mapping Facility

11.3 Statements for Automatic Panel Definition

» BEFORE specifies that automatic editing is performed immediately before
the user edit module edits the input.

n AFTER specifies that automatic editing is performed immediately after the
user edit module edits the input.

» User edit modules are discussed in Chapter 3, “Automatic Editing and Error
Handling” on page 3-1.

FOR OUTPUT
Specifies functions to be performed for data prior to a mapout operation:

BACKSCAN YES/NO
Indicates whether trailing blanks are to be eliminated from the field prior to
display:

m YES specifies that the contents of the field are displayed without trailing
blanks (if any). Old data may remain in the field after operator aterations if
NEWPAGE is set to NO in either the ADS/OnLine sysgen statement or the
DML statement that issues the mapout.

m NO (default) specifies that the contents of the field are displayed with trailing
blanks (if any).

DATA YES/NO/ERASE/ATTRIBUTE
Indicates whether data in program variable storage is to be transmitted to the
screen on a mapout operation:

® YES (default) specifies that data is transmitted.

®m NO specifies that neither data nor the attribute byte are transmitted. Any data
previously in the field continues to display.

m ERASE specifies that data is not transmitted; the field on the screen is
initialized to null or low values, depending on whether the field is humeric or
aphanumeric.

B ATTRIBUTE specifies that only the attribute byte for the field is transmitted;
data in the record buffer is not sent to the terminal.

EDIT IS edit-module-name WITH AUTOEDIT
Optionally specifies the name of an existing user-written edit module to process
data before display on a mapout operation. The relationship between the user edit
module and automatic editing is determined by the WITH AUTOEDIT clause as
described below:

B NO (default) specifies that automatic editing is not performed; only the
user-written edit module is used.

» BEFORE specifies that automatic editing is performed immediately before
the user edit module edits the field.

n AFTER specifies that automatic editing is performed immediately after the
user edit module edits the field.

»> User-written edit modules are discussed in Chapter 3, “Automatic Editing and
Error Handling” on page 3-1.

Chapter 11. Batch Compiler Statements 11-33

11.3 Statements for Automatic Panel Definition

11.3.5 Examples
The examples presented below illustrate use of the MFLD statement.
Example 1: Adding a Map Field Occurrence to a Map Occurrence

The sample MAP AUTOPANEL and MFLD statements shown below add two fields to
the MEALS map:

ADD MAP MEALS VERSION IS 10
AUTOPANEL DEVICES=(24X80)
USING RECORDS MEALS-REC VERSION 1
NOEDIT.

ADD MFLD
AT (7,7)
ATTRIBUTES (PROTECTED BRIGHT)
VALUE IS 'FIRST CLASS'.

ADD MFLD
AT (10,7)
ATTRIBUTES (PROTECTED BRIGHT)
VALUE IS 'TOURIST CLASS'.

Example 2: Deleting a Map Field Occurrence from a Map Occurrence

The MAP AUTOPANEL and MFLD statements shown below €liminate the TOURIST
CLASS field from the MEALS map:

MOD MAP MEALS VERSION IS 10
AUTOPANEL DEVICES=(24X80)
USING RECORDS MEALS-REC VERSION 1
EDIT
ON ERROR
INCORRECT ATTRIBUTES (BRIGHT)
CORRECT ATTRIBUTES (DISPLAY).

ADD MFLD
AT (7,7)
ATTRIBUTES (PROTECTED BRIGHT)
VALUE IS 'FIRST CLASS'.

The FIRST CLASS map and panel fields are retained for the MEALS map.

11-34 CA-IDMS Mapping Facility

11.4 Statements for Manual Panel Definition

11.4 Statements for Manual Panel Definition

The developer explicitly defines panel, panel field, map, and map field occurrences
when using compiler statements that manually define panels. The compiler action
verbs ADD, MODIFY, and DELETE define the overall purpose of the mapping
statements.

» For information about the ADD, MODIFY, and DELETE verbs, refer to 10.7,
“Compiler Action Verbs’ on page 10-11.
Statements You can use

» The PANEL statement defines and generates a panel occurrence.

m The PFLD statement defines and generates a panel field occurrence.

» The MAP statement defines and generates a map occurrence that is associated
with a specific panel occurrence.

» The MFLD statement defines and generates a map field occurrence. The map
field occurrence is associated with a specific panel field occurrence from the panel
occurrence named by the owner MAP statement.

Conditions: A PANEL statement must be followed immediately by the PFLD
statements that define its related fields. A panel occurrence defined by PANEL and
PFLD statements must exist in the data dictionary before MAP and MFLD statements
can be used to generate a map occurrence based on the panel record. A MAP
statement must be followed immediately by the MFLD statements that define its
related fields.

The PANEL, PFLD, MAP, and MFLD statements and their clauses are presented
separately below.

11.4.1 PANEL Statement Syntax

The PANEL statement typically is used to perform the following functions:
m Create or maintain a panel occurrence in the data dictionary

® |dentify the panel occurrence with a unique combination of hame and version
number

m Specify the particular devices suitable for use with the panel

PFLD statements that immediately follow a PANEL statement establish fields for that
panel; a panel generally has severa panel fields.

Syntax

Chapter 11. Batch Compiler Statements 11-35

11.4 Statements for Manual Panel Definition

> PANel panel-name |_ J »><
ADD — VERsion version number
MODi fy — E IS]
DELete — =
»— DEVices = —— (device-code) ><
— (24x80, 32x80, 43x80, 27x132) <
— ALL
Parameters

ADD/MODIFY/DELETE
Specifies the action taken with regard to the PANEL specification. For
information about these verbs, see 10.7, “Compiler Action Verbs’ on page 10-11.
ADD, MODIFY, and DELETE access for a panel is subject to security restrictions
specified for the batch compiler and individual maps, as outlined in 10.2,
“Compiler Security” on page 10-4.

PANEL panel-name
Supplies a 1- through 32-character name for the panel. The following
considerations apply to the composition

alphanumeric or special characters. character; for example, pound sign (#), at
sign (@), or dollar sign ($). or blank characters.

VERSION |S version
Optionally specifies a version number to further identify the map. Version must
be in the range 1 through 9999. If omitted, version defaults to the data dictionary
default as defined by the Data Dictionary Definition Language (DDDL) SET
OPTIONS statement.

DEVICES=(device-code)/(24X80,32X80,43X80,27X 132)/AL L
Specifies the devices with which the map can be used:

n (Device-code-a) specifies a device (screen size) with which the map can be
used.

Valid screen sizes are 12X40, 12X80, 24X 80, 32X80, 43X80, and 27X132.
Commas must be used to separate device-code-a specifications when more
than one device is specified. Device specifications in the DEVICES clause
must be enclosed in parentheses; for example,
DEVICES=(12X40,24X80,43X 80).

m (24X80,32X80,43X80,27X132) is the default specification given to the map.

m ALL specifies that the map can be used with all valid screen sizes.
Using a Field on a Subset of Devices: To reserve a map field for use on only a
subset of the devices specified in the DEVICES clause, FOR clauses can be included

in a PFLD statement for the field. FOR clauses are also used to specify values or
attributes to be used when a field is displayed on specific devices.

Effect of the MODIFY Verb: The MODIFY verb does not update the DEVICES
specification.

11-36 CA-IDMS Mapping Facility

11.4 Statements for Manual Panel Definition

» For more information, see 10.7, “Compiler Action Verbs’ on page 10-11.
11.4.2 Examples

Examples of the PANEL statement are shown below.

Example 1. Adding a Panel Occurrence

The sample PANEL statement shown below adds the the MEALS-PANEL panel
occurrence to the data dictionary:

ADD PANEL MEALS-PANEL VERSION IS 2
DEVICES=(24X80) .

The sample MEALS-PANEL panel defined by this sample PANEL statement is
defined for 24X 80 screens.

Example 2: Modifying a Panel Occurrence

The sample PANEL statement shown below modifies the MEALS-PANEL panel in the
data dictionary:

MOD PANEL MEALS-PANEL VERSION IS 2
DEVICES=(24X80,43X80) .

Existing pandl fields (if any) defined for the MEALS-PANEL panel are retained by the
panel.

Example 3: Deleting a Panel Occurrence

The sample PANEL statement shown below deletes the MEALS-PANEL panel and all
associated panel fields (if any) from the data dictionary:

DEL PANEL MEALS-PANEL VERSION IS 2.

11.4.3 PFLD Statement Syntax
Functions Performed: A PFLD statement typically is used to perform the
following functions:

» Create and maintain a single panel field occurrence for the panel established in the
most recent PANEL statement.

Chapter 11. Batch Compiler Statements 11-37

11.4 Statements for Manual Panel Definition

Identify the panel field occurrence in the data dictionary with a name that is
unique within the owner panel occurrence.

Specify characteristics for the field, such as the following:
— Fied occurrences for multiply-occurring fields
— Screen locations of the panel field by row and column
— Physical attributes of the field, such as display color
— Field values for literal fields

— Delimit characteristics

ADD —
MODify —

E PF1d panel-field-name
DELete —

v

L B
OCCURS T 1 . !

occurrence-count times

\ 4

\ 4

— FOR ALL « J
— FOR (L device:code) 1)

L ar

—|: ANYwhere |
91 <) I

T
v— (row-number —[

wJ

L ATTRibutes = —E NONE] |

(attributes list)

DELIMit SKIP <J
E IS } C NOSKIP

NODELIMit
L PAGing type DETail STart]
IS DETail END —
= FOOTer STart —
NULL «

|— VALue m—['data-value'
e N
= - 'data-value')

L (occurrence-count) i

Parameters

ADD/MODIFY/DELETE

Specifies the action taken with regard to the MFLD statement.

11-38 CA-IDMS Mapping Facility

11.4 Statements for Manual Panel Definition

PFLD

Introduces the clauses that define a panel field and associated pand field
occurrence.

OCCURS l/occurrence-count TIMES

Specifies the number of times the field is to appear on the panel; the default is 1.

FOR ALL /(device-code-a)

AT

Associates the specified screen sizes with field specifications established by
subsequent AT, ATTRIBUTES, DELIMIT, and VALUE clauses. If the pandl is
used with more than one screen size, multiple FOR specifications can be included
in the PFLD statement to establish different information for each screen size; for a
more detailed description of this latter use of the FOR specification, see 12.2.1,
“Defining Versions of Maps for Different Devices’ on page 12-4.

A field is associated with specific devices as follows:

m ALL specifies that subsequent clauses of the PFLD statement apply to all
screen sizes specified in the related DEVICES clause.

» (Device-code-a) specifies one or more devices. Subsequent clauses of the
PFLD statement apply only to the designated screen sizes. More than one
device-code-a specification can be included in a FOR clause. The number of
valid device-code-a specifications depends on the number of screen types
declared in the related DEVICES specification.

Valid screen sizes are 12X40, 12X 80, 24X80, 32X 80, 43X80, and 27X132.
Device specifications must be enclosed in parentheses and separated by
commas, for example, FOR (12X 40,12X80).

ANYWHERE/ (row,1/column)

Specifies the screen coordinate of the attribute byte for a field by row and column.
The coordinate establishes the location of a runtime field on a given screen. An
attribute byte is a nondisplayable character that precedes the displayed field and
defines the field's attributes.

The field itself is displayed starting at the coordinate that immediately follows the
nondisplayable attribute byte. For example, a field displays starting in coordinate
(5,11) for an AT (5,10) specification.

The following considerations apply to the placement of attribute bytes and fields:

» Specifying the coordinates for the final column of a row places the first
displayable character for a field in the first column of the next row.

» Specifying the coordinates for the final column of the final row on a screen
places the first displayable character for afield in the first column of the first
row (1,1).

» Specifying coordinates that cause a field to exceed the remaining length on a
given row results in a field that is split at the end of the screen and wrapped
around to either the next row or the top of the screen, depending on the row
in which the coordinates were placed.

Screen coordinates are designated as follows:

Chapter 11. Batch Compiler Statements 11-39

11.4 Statements for Manual Panel Definition

. ANYWHERE specifies that the field can appear anywhere on the screen.
ANYWHERE is meaningful only with mapin operations for which the
requesting program reads extraneous data. Extraneous data is data that is not
associated with a field at a specific row/column location.

® (Row-n,column-n) specifies the row and column coordinates for the attribute
byte for the field:

— Row-n identifies a horizontal position on the screen.

— Column-n identifies a vertical position on the screen; the default column
is 1.

The following considerations apply when positioning multiply-occurring fields:

» Each occurrence of the field requires its own row-n,column-n specification;
multiple row-n,column-n specifications can be made in one AT clause, if
necessary.

n |f there are more row-n,column-n specifications than multiply-occurring fields
specified in the OCCURS clause, the compiler input statement listing returns
an error message.

® AT specifications can occur in any order; they are assigned to corresponding
OCCURS vaues in order of iteration.

ATTRIBUTES=NONE/(attributes-list)
Specifies the attributes for the field. Only one ATTRIBUTES clause can occur in
agiven MFLD statement. ATTRIBUTES specifications apply to al occurrences
of the field. Valid specifications are as follows:

» NONE removes all attribute specifications from the map and panel field
occurrences being defined by the MFLD statement. The following runtime
considerations apply when NONE is specified for a field:

— Thefield is displayed with the attributes defined for the preceding field if
the preceding field is not delimited.

— Thefield is displayed with the default display attributes provided by the
device if the preceding field is delimited or if there is no preceding field.

— Thefield is displayed beginning in the column position specified in the
AT clause, since there is no attribute character for the field.

n (Attributes-list) specifies a list of attributes that apply to the field.

» For more information on available attributes, see 11.2, “Attributes List”
on page 11-5 earlier in this section.

DELIMIT/NODELIMIT
Specifies whether a delimit character is placed after the final position of a data
field:

» DELIMIT IS SKIP/NOSKIP specifies that an internal delimit character is
placed after the final position of the field, as determined by the external
picture of the associated record element. The action of the cursor when it

11-40 CA-IDMS Mapping Facility

11.4 Statements for Manual Panel Definition

reaches the delimit character and the disposition of excess characters are
determined by one of the following specifications:

— SKIP (default) specifies that the cursor is advanced automatically to the
start of the next UNPROTECTED field when operator input reaches the
delimit character. If there are no more UNPROTECTED fields on the
map, the cursor is placed at the start of the current field. Characters
typed after the internal delimit character is reached are placed in the field
to which the cursor advances. SKIP is the default if DELIMIT is
specified.

— NOSKIP specifies that the cursor remains at the delimit character when
operator input reaches the end of the field. Subsequently typed input
locks the keyboard until the operator presses the RESET key. The TAB
key advances the cursor to the next UNPROTECTED field.

NODELIMIT specifies that no internal delimit character is assigned to the
field. The operator is not informed when input reaches the end of the field,
and can continue typing until the attribute byte of the next field is reached.
On mapin, the external picture of the record element associated with the field
determines the amount of operator input that is stored. Input that exceeds the
length of the external picture is ignored; a CA-ADS dialog or application
program can include commands to inquire whether extraneous data has been
input for a NODELIMIT field.

PAGING TYPE ISDETAIL START/DETAIL END/FOOTER START/NULL
(pageable maps only)

Specifies whether the field begins or ends the detail occurrence or an area on the
pageable map:

DETAIL START performs the following functions:

— Begins the detail area on the line that contains the attribute byte of the
field being defined

— Begins the detail occurrence on the line that contains the attribute byte
of the field being defined

— Endsthe header area (if any) on the line immediately above the line
that contains the attribute byte for the field assigned the DETAIL START
specification

The field assigned the DETAIL START specification must begin on a new

line (that is, it cannot begin on aline that contains characters for a field in the
header area).

DETAIL END specifies that the detail occurrence for the map is to end at the
final character position of the current field. The detail area for the map is not
terminated by DETAIL END; FOOTER START (below) can be used to
terminate the detail area

FOOTER START performs the following functions:

— Begins the footer area on the line that contains the attribute for the field.
The footer area ends at the end of the screen.

Chapter 11. Batch Compiler Statements 11-41

11.4 Statements for Manual Panel Definition

— Ends the detail area on the line immediately above the line that contains
the attribute byte of the field assigned the FOOTER START specification.

The field assigned the FOOTER START specification must begin on a new
line (that is, it cannot begin on a line that contains characters for a field in the
DETAIL END field). If assigned, the FOOTER START specification must be
made for a field below the field assigned the DETAIL END specification.

® NULL (default) specifies that the field does not begin or end a detail or an
area on the map. The NULL setting can be used to override a previous
DETAIL START, DETAIL END, or FOOTER START specification for a
field.

»»> For more information on the areas of pageable maps, see Chapter 4,
“Pageable Maps’ on page 4-1.

VALUE IS data-value/((occur rence-count) data-value)
Supplies string values to literal fields:

» Datavalue assigns a value to a singly-occurring literal field. The specified
value must be enclosed in quotation marks.

® ((Occurrence-count) data-value) assigns a value to a literal field or assigns
discrete values to multiple occurrences of a literal field:

— (Occurrence-count) identifies one or more field occurrences by order of
iteration. Values are assigned to the literal fields specified in the AT
clause by order of iteration of the row/column specifications rather than
by their order of display on the mapped screen. For example, with a
literal field that occurs four times, the specification VALUE IS ((2) 'ABC'
(1) 'DEF (1) 'GHI") assigns the value ABC to the first and second field
occurrences, DEF to the third field occurrence, and GHI to the fourth
field occurrence.

— Data-value specifies the value assigned to each occurrence or group of
literal field occurrences. The supplied value must be enclosed in
guotation marks.

A maximum of 256 characters can be specified for a literal field in data-value.

11.4.4 Examples
The examples presented below illustrate use of the PFLD statement.
Example 1: Adding a Panel Field Occurrence to a Panel Occurrence

The sample PANEL and PFLD statements shown below add the literal FIRST-CLASS
pane field to the MEALS-PANEL panel:

11-42 CA-IDMS Mapping Facility

11.4 Statements for Manual Panel Definition

ADD PANEL MEALS-PANEL VERSION IS 2
DEVICES=(24X80) .

ADD PFLD FIRST-CLASS
AT (7,7)
ATTRIBUTES (PROTECTED BRIGHT)
VALUE IS 'FIRST CLASS'.

Example 2: Modifying a Panel Occurrence

The sample PANEL and PFLD statements shown below add the MEALS-HEAD?2
panel field to the MEALS-PANEL panel:

MOD PANEL MEALS-PANEL VERSION IS 2.

ADD PFLD MEALS-HEAD2
AT (3,25)
ATTRIBUTES (PROTECTED BRIGHT)
VALUE IS 'MEALS SELECTION SCREEN'.

Panel fields (if any) that are already defined for MEALS-PANEL are retained by the
panel occurrence.

11.4.5 MAP Statement Syntax

Functions Performed: A MAP statement typically is used to perform the
following functions:

» Create or maintain a map occurrence in the data dictionary

= |dentify the map occurrence with a unique combination of name and version
number

» |dentify the existing panel occurrence on which the map is based
» |dentify the records or roles referenced by map data fields

» Enable global automatic editing and error-handling, specifying correct-field and
incorrect-field attributes

m Specify various termina hardware control functions (such as alarm or numeric
options) to be invoked during mapout operations

The actual map is constructed with MFLD statements, presented later in this section,
by selecting fields from the panel occurrence named in the MAP statement and by
associating the variable panel fields with record elements defined in the data
dictionary.

Syntax

Chapter 11. Batch Compiler Statements 11-43

11.4 Statements for Manual Panel Definition

A4
A\ 4
\4

_]

MAP map-name |_
ADD — VERsion version
E MODIFY — E IS }
DELETE — =

— >

\ 4

L DATETIME m» date-time-stamp
IS

> >
>

L MSG PREFIX B DC «
£

message-prefix —

A\
v

L PANel panel-name |_ J
E IS } VERsion ﬁ version
= IS

\ 4

v

RESident
] L NONRESident =]

L SYStem ﬁ dc-version
IS

> >
>

l— USING
% REC"%J
REC

A\

v

L,

T
— (—— record-name
|— version J |— ROLEname role-name —J

>—— EDIT < ,
NOEDIT L CURSOR at panel-field-name —
|: RESET « J | t LOCK |
NORESET L': MODIFIED jJ UNLOCK <J L[KEYBOARD
MOD KEY
ALARM —J—E STARTPRT NLCR « PAGeable
NOALARM « NOPRT « 40CR NONPAGeable « J
64CR
80CR
L DECimal point Comma j—J
E IS } [Period «

v

v

v

»
>

v

11-44 CA-IDMS Mapping Facility

11.4 Statements for Manual Panel Definition

\ 4
\4

L HELP

—[LOAD MODule ﬁ module-name
IS

L SOUrce —E NONE

MODuTe module-name

il

I— version —H version
IS

\ 4
v

—[HALF screen H—‘
FULL screen

_]

L HELPKEY ﬁ PFnn
IS

\

L ON edit ERROR T]
INCORRECT fields ATTRibutes = (attributes-list)

L CORRECT fields ATTRibutes = (attributes-list) J

> | >

L SOUND T ALARM j—‘
NOALARM «

L ORIGIN for —|: ALL J t (row column)—l
5]
(¢ device-code J—

Parameters

ADD/MODIFY/DELETE
Specifies the action taken with regard to the MAP statement. ADD, MODIFY,
and DELETE access for a map is subject to security restrictions specified for the
batch compiler and individual maps, as outlined in 10.2, “Compiler Security” on
page 10-4.

\ 4

MAP map-name
Specifies the unique 1- through 8-character name for the map being defined,
modified, or deleted. The following considerations apply to the composition of
map-name:

® Map-name can consist of any alphanumeric or special characters.

Chapter 11. Batch Compiler Statements 11-45

11.4 Statements for Manual Panel Definition

= Map-name must begin with an alphanumeric or nationa character; for
example, pound sign (#), a sign (@), or dollar sign ($).

®» Map-name must not contain embedded period or blank characters.

VERSION IS version-n
Optionally specifies a version number to further identify the map. Version-n must
be in the range 1 through 9999. If omitted, version-n defaults to the data
dictionary version default, as defined by the Data Dictionary Definition Language
(DDDL) SET OPTIONS statement.

DATETIME IS date-time-stamp
The map compiler DATETIME clause is returned in map source statements when
you use the map utility to decompile a map.

If you use the DATETIME option to decompile a map from one DC system and
add it to another system:

= Do not change decompiled map sour ce statements. If you change
statements, unpredictable errors will occur at runtime when you access the

map.

» Define identical record element descriptions on each system. You can
accomplish this by using IDD.

MSG PREFIX IS message-pr €efix
Defines the two-character prefix to be used as the default prefix for any MFLD in
the map that is defined using the ERROR MESSAGE clause.

PANEL panel-name
Specifies the name of the panel with which the map is associated. The panel
occurrence must already be defined in the data dictionary.

VERSion is version
Optionally specifies a version number to further identify the panel occurrence. If
omitted, version defaults to the data dictionary version default as defined by the
Data Dictionary Definition Language (DDDL) SET OPTIONS statement.

SYSTEM IS dc-version-n
Specifies the version number of a CA-IDMS system with which the map is
associated. Dc-version-n is the 1- through 4-character identifier assigned to the
system at system generation.

RESIDENT/NONRESIDENT
Indicates whether the map load module is resident in storage at system runtime:

» RESIDENT specifies that the map load module is resident. This is useful for
frequently used maps.

» NONRESIDENT (default) specifies that the map load module is not resident;
the load module is loaded dynamically when required for a program mapping
request.

11-46 CA-IDMS Mapping Facility

11.4 Statements for Manual Panel Definition

USING RECORDS
(record-name/(record-name version-n) ROLENAME role-name)

Specifies the list of predefined schema and/or work records used by the map and
optionally specifies role names for records:

» Record-name identifies the name of a record that contains elements referenced
by the map. If record-name is not unique in the data dictionary, the version
number of the necessary schema or work record must be supplied; the default
value for version-n is specified at system generation.

If alogical record is being used, the developer names the records containing
elements that are part of the logical record and that are used in the map
definition. The logical record name is later specified by the dialog or
program using the map.

» ROLENAME role-name specifies the role name used for the record at
runtime. Role names are needed when a given record type is referenced in
more than one context. For example, the developer might specify the
EMPLOYEE record layout twice for a map that uses the EMPLOY EE record
for both employee-related and manager-related fields on a single map:

— One specification of the EMPLOY EE record would not include a role
name for the record.

— The second specification of the EMPLOY EE record would include a
valid role name for the record (for example, MANAGER). The role
name must be used in subsequent references to the record in the
map-definition.

The specified role name can be established in two ways:

— The role name can be previously defined for the record by a logical
record definition in the subschema used by the program or dialog.

— The role name can be unique to the map, defined at map definition time
on the Associated Records screen or via the batch compiler.

EDIT/NOEDIT
Indicates whether automatic editing and error-handling are enabled for the map, as
follows:

n EDIT (default) globally enables automatic editing and error-handling for the
map.

= NOEDIT globally disables automatic editing and error-handling for the map;
editing and error-handling criteria (if any) defined for map fields are ignored.

» For more information on enabling and disabling automatic editing, see 3.3,
“Enabling Automatic Editing and Error Handling” on page 3-6.

RESET/NORESET MODIFIED
Indicates whether the modified data tags (MDTs) for data fields are reset
automatically on a mapout operation:

B RESET (default) specifies that all MDTs are reset (turned off) when the map
is mapped out.

Chapter 11. Batch Compiler Statements 11-47

11.4 Statements for Manual Panel Definition

» NORESET specifies that MDTSs are left unchanged when the map is mapped
out.

The MDT/NOMDT specification in the MFLD ATTRIBUTES clause for a field
overrides the RESET/NORESET specification for that field if the map-level and
field-level specifications differ. If MDT is chosen for a field, the MDT is set on
regardless of the RESET MDT specification.

»> For more information on the MDT/NOMDT setting, see 2.4.2, “Attributes for
Fields’ on page 2-13.

LOCK/UNLOCK KEYBOARD
Specifies whether the keyboard unlocks automatically after a mapout operation:

n L OCK specifies that the keyboard remains locked until the operator presses
the RESET key.

» UNLOCK (default) specifies that the keyboard is unlocked after a mapout.

ALARM/NOALARM
Indicates whether a terminal alarm sounds automatically on a mapout operation:

n ALARM specifies that the terminal alarm sounds on a mapout operation.
This specification is meaningful only if the terminal is equipped with a
hardware alarm.

= NOALARM (default) specifies that the terminal alarm does not sound on
mapoult.

STARTPRT/NOPRT
Specifies whether the contents of the printer terminal buffer should be printed
automatically upon completion of data transmission on a mapout operation:

» STARTPRT specifies that the contents of the printer terminal buffer are
printed. This specification is meaningful only for mapping operations
associated with 3280-type printers.

® NOPRT (default) specifies that the contents of the printer terminal buffer are
not printed.

NL CR/40CR/64CR/80CR
Specifies character-per-line formatting for printer output:

» NLCR (default) specifies that no line formatting is performed on the printed
output. Printing skips to a new line only when new line (NL) and carriage
return (CR) characters are encountered.

® 40CR specifies that the buffer contents are printed at 40 characters per line.
. B64CR specifies that the buffer contents are printed at 64 characters per line.
® 80CR specifies that the buffer contents are printed at 80 characters per line.

These specifications are applicable only if the STARTPRT clause is specified for
the map.

11-48 CA-IDMS Mapping Facility

11.4 Statements for Manual Panel Definition

PAGEABLE/NONPAGEABLE
Specifies whether the map is pageable:

» PAGEABLE specifies that the map is pageable. A pageable map is a map
that can display more than one page of information at runtime.

» NONPAGEABLE (default) specifies that the map is not a pageable map.

»> For more information on pageable maps, see Chapter 4, “Pageable Maps’ on
page 4-1.

DECIMAL POINT IS COMMA/PERIOD
Specifies the decimal point character for numeric fields on the map:

. COMMA specifies that the comma (,) is used as the decimal point, in
accordance with international format. An external picture for the field also
must be specified in international format, with the comma as the decimal
point.

» PERIOD (default) specifies that the period (.) is used as the decimal point.

HELP
Specifies whether help will be implemented for the map.

Note: Thisis a 12.0 and later feature.

NO/LOAD MODule module name
If there is Help for the map, the name of the load module that contains all the
help source for the map.

HELPKEY IS PFnn
The PFKey designated as the Help key for the map.

SOUrce NONE/M ODule module-name
The name of the IDD module that contains the help text for the map.

If module name is specified, you can optionally specify:
= The version number
. Whether the help is displayed on a full or half screen

ON EDIT ERROR
Defines incorrect-field attributes, correct-field attributes, and alarm status for use
when a dialog or map redisplays a map that contains input errors. The following
clauses assign error-handling criteria:

» INCORRECT FIELDS ATTRIBUTES=(attributes-list) specifies attributes
that are assigned to incorrect fields when an edit error occurs. Typically,
incorrect fields are given an attribute such as BRIGHT or BLINK to draw the
operator's attention to the erroneous data. No default attributes are defined.

» Syntax for the attributes-list is discussed in 11.2, “Attributes List” on
page 11-5, earlier in this section.

» CORRECT FIELDS ATTRIBUTES=(attributes-list) specifies attributes
that are assigned to correct and unedited fields when an edit error occurs. No
default attributes are defined.

Chapter 11. Batch Compiler Statements 11-49

11.4 Statements for Manual Panel Definition

»> Syntax for the attributes-list is discussed in 11.2, “ Attributes List” on
page 11-5, earlier in this section.

SOUND ALARM/NOALARM specifies whether a terminal alarm sounds on
input error:

— ALARM indicates that the alarm is sounded. This option is meaningful
only when a terminal is equipped with a hardware alarm.

— NOALARM (default) indicates that the alarm is not sounded.

For example, a dialog or program can include code to redisplay a map when an
error is detected in a field on mapin. When the display is mapped back out,
incorrect-field attributes take effect for fields that are in error, and correct-field
attributes take effect for fields that are not in error. The termina operator can
correct the errors and resubmit the map.

»»> For information on the use of error-handling specifications, see 3.5,
“Error-Handling Criteria’ on page 3-27.

» For information on how dialogs and programs override specifications made in
the ON EDIT ERROR clause, see see 6.3, “Map Inquiry and Modification” on

page 6-6.
ORIGIN FOR (device-code)/ALL 1S (row column)

Positions the origin of the runtime map at a row/column location on specified
devices:

Device-code names one device. Available device-code specifications are
12X40, 12X 80, 24X80, 32X 80, 43X80, and 27X132. The specified device
must be defined in the DEVICES clause of the MAP statement. More than
one ORIGIN FOR device-code clause can be included in a single MAP
Statement.

Parentheses are required when a device code(s) is specified.

ALL names all devices defined in the DEVICES clause of the MAP
statement.

Row column specifies the coordinates at which the upper |eft-hand corner of
the runtime map is plotted for all devices specified in the ORIGIN FOR
specification. Only one row column specification can be made for a given
ORIGIN FOR clause; if specified, it must be enclosed in parentheses. If not
specified, column defaults to 1.

Parentheses are required around the row column coordinates.

11-50 CA-IDMS Mapping Facility

Chapter 12. Batch Compiler Execution and JCL

121 Overview 12-3
12.2 Special Coding Features of the Batch Compiler 12-4
12.2.1 Defining Versions of Maps for Different Devices 12-4
12.2.2 Positioning Maps on Different Devices 12-8
12.3 Batch Compiler JCL 12-10
1231 OS390 JCL 12-10
1232 VSE/IESA JCL 12-12
1233 VM/ESA JCL 12-14
1234 BS2000/0SD JCL 12-16
12.4 Compiler Reportsand Messages 12-18
1241 Diagnostic Messageso 12-18
1242 Error MeSSages 12-18

Chapter 12. Batch Compiler Execution and JCL 12-1

12-2 CA-IDMS Mapping Facility

12.1 Overview

12.1 Overview

The developer submits batch compiler statements in JCL to create and maintain map
and panel entity occurrences in the data dictionary according to instructions provided
by mapping statements. Reports provided by the batch compiler inform the map
developer of the outcome of the compile, and provide diagnostic and error messages
when necessary.

This section describes special coding features provided by the batch compiler, presents
the JCL required to run the programs that add, modify, or delete a map or panel
occurrence and provides information about compiler reports and messages.

Chapter 12. Batch Compiler Execution and JCL 12-3

12.2 Special Coding Features of the Batch Compiler

12.2 Special Coding Features of the Batch Compiler

Clauses provided by the batch compiler can be used to define special versions of maps
for different devices and to position and center batch-defined maps on different
devices.

Each of these special coding features of the batch compiler is presented below.

12.2.1 Defining Versions of Maps for Different Devices

Supported Screen Sizes: The following terminal screen (that is, device) sizes are
supported by the batch compiler:

m 12X40

m 12X80

B 24X80

= 32X80

m 43X80

B 27x132
Defining Device-independent Maps: A map load module that can be used with
more than one device type is said to be device-independent. A map developer uses the
batch compiler to define a device independent map by specifying different screen

layouts for each device on which the map can be displayed. For example, it might be
necessary to define shorter literal fields for a 12X40 device than for a 43X80 device.

The DEVICES clause of the MAP AUTOPANEL or PANEL statement is used to
specify the list of devices that is valid for the map being defined. The list of devices
can be subdivided into device groupings; a different screen layout can be specified for
each device grouping.

Defining Device Groupings: Device groupings are established at the field level by
using MFLD (for MAP AUTOPANEL) or PFLD statements. Use any of the following
techniques to establish device groupings:

= |nclude multiple FOR specifications within one MFLD or PFLD statement, as
shown below:

12-4 CA-IDMS Mapping Facility

12.2 Special Coding Features of the Batch Compiler

ADD PANEL JOB-DATA
DEVICES=(12X40,24X80,32X80) .

ADD PFLD NUM-POSITIONS.
ATTRIBUTES=(BRIGHT,BLUE)
FOR (12X40)
AT (2,40)
VALUE IS '# POSITIONS'
FOR (24X80)
AT (3,80)
VALUE IS 'NUMBER OF POSITIONS'
FOR (32X80)
AT (3,80)
VALUE IS 'TOTAL NUMBER OF POSITIONS'.

The FOR clauses in the above example establish the following device groupings:

— Thefirst FOR clause establishes a device grouping valid for 12X40 devices.
At runtime, the litera field displays as follows:

— The attribute byte for the field is at coordinate 2,40; the literal begins at
the next coordinate (3,1)

— The litera is # POSITIONS

— The second FOR clause establishes a device grouping valid for 24X80
devices. At runtime, the literal field displays as follows:

— The attribute byte for the field is at coordinate 3,80; the literal begins at
the next coordinate (4,1)

— The literal is NUMBER OF POSITIONS

— Thethird FOR clause establishes a device grouping valid for 32X80 devices.
At runtime, the literal field displays as follows:

— The attribute byte for the field is at coordinate 3,80; the literal begins at
the next coordinate (4,1)

— The litera is TOTAL NUMBER OF POSITIONS

Clauses before the first FOR clause in an MFLD or PFLD statement apply to each
subsequently established device grouping. In the above example, the
ATTRIBUTES clause displays each literal field established in the PFLD statement
in bright blue.

Specify multiple screen sizes in a single FOR clause of an MFLD or PFLD
statement, as illustrated below:

ADD MAP EMP-INFO
AUTOPANEL DEVICES=(24X80,32X80,43X80).

ADD MFLD
FOR (24X80,32X80)
AT (14,15)
VALUE IS 'DEPT NAME'.

The FOR clause in the above sample MFLD statement establishes a device
grouping made up of two device types (24X80 and 32X80). A third device

Chapter 12. Batch Compiler Execution and JCL 12-5

12.2 Special Coding Features of the Batch Compiler

grouping (43X80) is implicitly created; however, no value is assigned to the latter
device grouping by this MFLD statement.

» Specify different screen sizesin individual MFLD or PFLD statements, as
illustrated below:

ADD MAP CEXME413
AUTOPANEL DEVICES=(24X80,32X80,43X80)
USING (EMPOSITION 100).

ADD MFLD

FOR (24X80)

AT (14,15)

DFLD SALARY-AMOUNT-0420.
ADD MFLD

FOR (32X80)

AT (20,15)

DFLD SALARY-AMOUNT-0420.

Each MFLD (for MAP AUTOPANEL) statement in the above example associates
a screen field with the SALARY-AMOUNT-0420 record element by establishing a
device grouping:

— Thefirst MFLD statement establishes a device grouping valid for 24X80
devices. At runtime, the attribute byte for the field is at coordinate 14,15; the
value begins at the next coordinate (14,16).

— The second MFLD statement establishes a device grouping valid for 32X80
devices. At runtime, the attribute byte for the field is at coordinate 20,15; the
value begins at the next coordinate (20,16).

A third device grouping (43X80) is implicitly created in the above example;
however, values for SALARY-AMOUNT-0420 are not displayed on 43X80
devices.

» Specify a combination of the above options, as illustrated below:

ADD MAP CEXME413 VERSION 2
AUTOPANEL DEVICES=(24X80,32X80,43X80)
USING (EMPOSITION 100).

ADD MFLD

FOR (24X80,32X80,43X80)

AT (10,15)

DFLD SALARY-GRADE-0420.
ADD MFLD

FOR (24X80)

AT (14,15)

DFLD SALARY-AMOUNT-0420.
ADD MFLD

FOR (32X80)

AT (20,15)

DFLD SALARY-AMOUNT-0420.

Reconciling Conflicting Specifications: The batch compiler reconciles any
conflicting device grouping specifications made by the map developer so that any
given screen size belongs to only one device grouping. Since 24X80 and 32X80 are

12-6 CA-IDMS Mapping Facility

12.2 Special Coding Features of the Batch Compiler

each specified in two different device grouping specifications in the above sample
statements, the batch compiler subdivides the first device grouping and assigns the
specifications made for the grouping to each of the three device groupings (24X 80,
32X80, and 43X80) established by the second and third MFLD statements.

For example, the following device groupings are established by the above sample
Statements:

® A device grouping for 24X80 devices displays the following values at runtime:
— SALARY-GRADE-0420 values are displayed at 10,15.
— SALARY-AMOUNT-0420 values are displayed at 14,15.

® A device grouping for 32X80 devices displays the following values at runtime:
— SALARY-GRADE-0420 values are displayed at 10,15.
— SALARY-AMOUNT-0420 values are displayed at 20,15.

m A device grouping for 43X80 devices displays runtime values for the
SALARY-GRADE-0420 element at 10,15.

The batch compiler subdivides conflicting device grouping specifications only as much
as necessary to insure that each screen size belongs to a maximum of one device
grouping. For example, two device groupings are established when the following
sample statements are compiled:

ADD MAP CEXMJKD2
AUTOPANEL DEVICES = (24X80, 32X80, 43X80)
USING (INSURANCE-PLAN 100).
ADD MFLD
FOR (24X80,32X80)
AT (14,15)
DFLD COMPANY-NAME-0435.
ADD MFLD
FOR (24X80,32X80,43X80)
AT (15,15)
DFLD GROUP-NUMBER-0435.

The three screen sizes specified in the DEVICES clause of the MAP AUTOPANEL
statement above are divided into two device groupings:

= The device grouping for 24X80 and 32X80 devices displays values for the
COMPANY-NAME-0435 and GROUP-NUMBER-0435 elements.

m The device grouping for 43X80 devices displays values only for the
GROUP-NUMBER-0435 element.

An AT specification for a device grouping must be valid for the smallest device
(screen size) in the device grouping. For example, AT (16,32) cannot be specified for
a device grouping that contains the 12X 40 device type.

The ORIGIN FOR clause also creates device groupings, as explained in 12.2.2,
“Positioning Maps on Different Devices’ on page 12-8, later in this section.

Chapter 12. Batch Compiler Execution and JCL 12-7

12.2 Special Coding Features of the Batch Compiler

Effects of Device Groupings: The use of device groupings to achieve device
independence can affect batch compiler performance, batch utility panel and map
reports, and map load module overhead:

® The batch compiler validates row and column specifications based on the
smallest screen size within each device grouping. A row/column specification of
(20,25), for example, would be acceptable for the (24X80,32X80,43X80) device
grouping but would not be acceptable for the (12X40,24X80,32X80) device
grouping since the specified screen location cannot be accommodated on the
12X40 screen.

® The batch utility produces panel and map reports that list as many screen
formats as there are device groupings associated with the specified panel/map.
Each format illustrates only the smallest screen size within a device grouping. For
example, if the device groupings (12X40,43X80), (24X80,32X80), and (12X80)
have been defined for panel/map fields associated with the panel, the map utility
report displays three screen formats, with screen sizes of 12X40, 24X80, and
12X80.

= A map load module contains a separate panel occurrence for each device group,
even if there is only one panel field specification that is different.

Maps defined with device groupings cannot be displayed or edited by using the online
mapping compiler since that compiler can only display one screen layout for a given
map-definition.

12.2.2 Positioning Maps on Different Devices
The origin for a map is its upper left-hand coordinate.

The ORIGIN FOR clause of the MAP or MAP AUTOPANEL statement centers or
repositions an entire runtime map on a terminal screen by performing the following
functions:

m Specifies one or more devices (by screen size) and creates a device grouping

» Specifies the coordinate at which the origin of the panel/map is placed on the
designated devices at runtime

For example, the origin for the map defined by the following sample MAP statement
would be located at coordinate 10,20 when displayed on 24X80 devices and at
coordinate 30,20 on 43X 80 devices at runtime:

ADD MAP EMPDATA
AUTOPANEL DEVICES=(24X80,43X80)
ORIGIN FOR (24x80) IS (10,20)
ORIGIN FOR (43X80) IS (30,20).

Map Positioning for Different-size Devices: The effects of an ORIGIN FOR
specification on devices of two different sizes are illustrated in the following figure:

12-8 CA-IDMS Mapping Facility

12.2 Special Coding Features of the Batch Compiler

The origin of the panel/map is positioned at row 5,
column 5 for the smaller device. The origin is positioned at
row 10, column 20 for the larger device.

12 X 40 SCREEN 24 X 80 SCREEN

(5.5)

(10,20)

PANEL
FIELDS

PANEL
FIELDS

ORIGIN FOR 12 X 40 IS (5,5)

MAP DEFINITION

ORIGIN FOR 24 X 80 IS {10,20)
ADD MAP PASSDATA

PANEL IS RESERVATION DATA
ORIGIN FOR 12 X 40 IS 5,5
ORIGIN FOR 24 X 80 IS 10,20.

Chapter 12. Batch Compiler Execution and JCL 12-9

12.3 Batch Compiler JCL

12.3 Batch Compiler JCL

The map compiler accepts compiler statements that were either written by the map
developer or generated by the DECOMPILE or TERSE process of the map utility.

The resulting entity occurrences are placed in the DDLDML area of the data dictionary
and can be used:

» By the batch utility, to generate map load modules for application programs

» By DML processors, to interpret and expand mapping requests coded in
CA-IDMS application programs

By the CA-ADS compiler, to interpret and expand mapping requests in CA-ADS
dialogs

The batch compiler executes in update mode. Run the batch compiler through the
central version or as alocal CA-IDMS/DB program with active journal files to protect
the integrity of the data dictionary.

12.3.1 OS/390 JCL

//RHDCMAP1 EXEC PGM=RHDCMAP1,REGION=1024K
//STEPLIB DD DSN=idms.dba.load1lib,DISP=SHR
// DD DSN=idms.loadlib,DISP=SHR
//sysctl DD DSN=idms.sysct1l,DISP=SHR
//dcmsg DD DSN=idms.sysmsg.dd1dcmsg,DISP=SHR
//SYSLST DD SYSOUT=A

//SYSPCH DD DUMMY

//SYSIDMS DD =

DMCL=dmc1-name

DICTNAME=appldict

sysidms parameters

//SYSIPT DD *

source statements

idms.dba.loadlib Data set name of CA-IDMS load library that contains
the DMCL and database table load modules

idms.loadlib Data set name of CA-IDMS load library that contains
the CA-IDMS executable modules

idms.sysctl Data set name of SYSCTL file

idms.sysmsg.ddidecmsg Data set name of the system message area

dmcl-name The name of the dictionary the DMLF precompiler
should access

appldict The name of the application dictionary that should be
accessed

12-10 CA-IDMS Mapping Facility

12.3 Batch Compiler JCL

sysidms parameters A list of SYSIDMS parameters for this job

Note: - For detailed information about the SYSIDMS parameters, see the
CA-IDMS Database Administration manual.

Local Mode: To execute in local mode, perform these steps:
® Remove the sysctl DD statement.
® Add the following statements:

//dictdb DD DSN=idms.appldict.dd1dml,DISP=SHR
//sysjrnl DD DSN=idms.tapejrnl,DISP=(NEW,CATLG),UNIT=tape

dictdb DDname of application dictionary definition area

idms.appldict.ddidml Data set name of application data dictionary DDLDML
area

sysirnl DDname of first tape journa file

idms.tapejrnl Data set name of first tape journal file

Chapter 12. Batch Compiler Execution and JCL 12-11

12.3 Batch Compiler JCL

12.3.2 VSE/ESA JCL

// UPSI b

// DLBL SYSIDMS,'#SYSIPT'

// EXTENT sys020,nnnnnn,,,ssss,1111
// ASSGN sys020,DISK,VOL=nnnnnn,SHR
// EXEC RHDCMAP1

sysidms parameters

/*

o

Appropriate UPSI switch, 1-8 characters, if specified in
the IDMSOPTI module

#SY SIPT If #SYSIPT is used, the individual parameters must be
listed in the SYSIDMS parameters statement.

This can also be defined as a disk dataset, in which
case #SY SIPT is replaced by the name of the file
containing the parameters and the parameters are not

listed.
sys020 Logical unit assignment of output file
nnnnnn Volume serial number of disk storage device
SSSS Relative starting track

1l Number of tracks

sysidms parameters A list of SYSIDMS parameters for this job

Note: - For detailed information about the SY SIDMS parameters, see the
CA-IDMS Database Administration manual.

12-12 CA-IDMS Mapping Facility

12.3 Batch Compiler JCL

Local Mode: To execute in local mode, perform these steps:
®» Remove the UPSI specification.
= Add the following statements:

// DLBL dictdb,'idms.dictdb',,DA

// EXTENT sys005,nnnnnn

// ASSGN sys005,DISK,VOL=nnnnnn, SHR

// TLBL sysjrnl,'idms.tapejrnl',,nnnnnn,,f
// ASSGN sys0@09,TAPE,VOL=nnnnnn

dictdb Filename of application data dictionary
idms.dictdb File-id of application data dictionary
sys005 Logica unit assignment of data dictionary
sysirnl Filename of tape journal file

idms.tapejrnl File-id of tape journa file

f File number of tape journal file

sys009 Logica unit assignment of tape journa file

Chapter 12. Batch Compiler Execution and JCL 12-13

12.3 Batch Compiler JCL

12.3.3 VM/ESA JCL

FILEDEF SYSPCH DUMMY

FILEDEF SYSLST PRINTER

FILEDEF CDMSLIB DISK IDMSLIB LOADLIB A6
FILEDEF SYSIDMS DISK sysidms input a
FILEDEF SYSIPT DISK comp input a
GLOBAL LOADLIB IDMSLIB

OSRUN RHDCMAP1

sysidms input a Filename, filetype, and filemode of the file containing
the SYSIDMS input parameters

comp input a Filename, filetype, and filemode of the file that
contains batch compiler source statements

Note: - For detailed information about the SY SIDMS parameters, see the
CA-IDMS Database Administration manual.

Local Mode: To execute in local mode, perform these steps:

1. Specify that RHDCMAPL is executing in local mode by performing one of the
following:

® Link RHDCMAP1 with an IDMSOPTI program that specifies local execution
mode.

» Modify the OSRUN statement:

OSRUN RHDCMAP1,PARM="LOCAL~*"

Note: This option is valid only if the OSRUN command is issued from a
System Product interpreter or an EXEC?2 file.

n Specify *LOCAL* as the first input parameter of the file identified by comp
input a.

12-14 CA-IDMS Mapping Facility

12.3 Batch Compiler JCL

2. Add the following statements before the OSRUN statement:

FILEDEF dictdb DISK dictdb dictfile d

(RECFM F LRECL pppp BLKSIZE pppp XTENT nnnn
FILEDEF jljrnl DISK jljrnl jrnlfile k

(RECFM F LRECL pppp BLKSIZE pppp XTENT nnnn

dictdb DDname of the application data dictionary file

dictdb dictfile d Filename, filetype, and filemode of the application data
dictionary file

PpRP Page size of the file

nnnn Number of pages in the file

idjrnl DDname of the first disk journal file

pijrnl jrnifile k Filename, filetype, and filemode of the first disk journal

file

Chapter 12. Batch Compiler Execution and JCL 12-15

12.3 Batch Compiler JCL

12.3.4 BS2000/0SD JCL

/ADD-FILE-LINK L-NAME=CDMSLIB,F-NAME=idms.dba.loadlib
/ADD-FILE-LINK L-NAME=CDMSLIB1,F-NAME=idms.loadli
/ADD-FILE-LINK L-NAME=CDMSLODR,F-NAME=idms.loadlib
/ADD-FILE-LINK L-NAME=sysctl,F-NAME=idms.sysct1,SHARED-UPD=*YES
/ADD-FILE-LINK L-NAME=SYSIDMS,F-NAME=idms.sysidms
/ASSIGN-SYSDTA TO=*SYSCMD

/START-PROG *MOD (ELEM=RHDCMAP1,LIB=idms.1oadlib,RUN-MODE=*ADV)
source statements

o

o

idms.dba.loadlib Filename of the load library containing the DMCL and
database name table load modules

idms.loadlib Filename of the load library containing the CA-IDMS
executable modules

sysctl Linkname of SYSCTL file

idms.sysctl Filename of SYSCTL file

idms.sysidms Filename of the file containing the SYSIDMS
parameters

Note: - For detailed information about the SYSIDMS parameters, see the
CA-IDMS Database Administration manual.

Local Mode: To execute the compiler in local mode:
® Remove the ADD-FILE-LINK command for the sysctl file
® Add:

/ADD-FILE-LINK L-NAME=dictdb,F-NAME=idms.appldict.ddldml,SHARED-UPD=*YES
/ADD-FILE-LINK L-NAME=sysjrnl,F-NAME=idms.tapejrnl

sysirnl Linkname of IDMS journal file

idms.tapejrnl Filename of IDMS journal file

dictdb Linkname of data dictionary

idms.appldict.ddidml Filename of the application dictionary definition area

12-16 CA-IDMS Mapping Facility

12.3 Batch Compiler JCL

Sample Job Stream: The input job stream for the batch compiler with sample
MAP AUTOPANEL and MFLD statements, and JCL is illustrated as follows:

/ .MAP1 REMARK
/ADD-FILE-LINK L-NAME=CDMSLIB,F-NAME=$IDMS.DBA.LOADLIB
/ADD-FILE-LINK L-NAME=CDMSLIB1,F-NAME=$IDMS.LOADLIB
/ADD-FILE-LINK L-NAME=CDMSLODR,F-NAME=$IDMS.LOADLIB
/ADD-FILE-LINK L-NAME= SYSCTL,F-NAME=$IDMS.SYSCTL,SHARED-UPD=*YES
/ADD-FILE-LINK L-NAME=SYSIDMS,F-NAME=xDUMMY
/ASSIGN-SYSDTA TO=+*SYSCMD
/START-PROG *MOD (ELEM=RHDCMAP1,LIB=$1DMS.LOADLIB,RUN-MODE=*ADV)
DICTNAME=TSTDICT
END-SYSIDMS

ADD MAP CEXME028

AUTOPANEL

USING ((EMPLOYEE 100))

EDIT

RESET UNLOCK NOALARM NOPRT NLCR.

ADD MFLD
FOR (24X80, 32X80, 43X80, 27X132)
AT (4,25)
ATTR = BRIGHT PROTECTED
VALUE IS 'EMPLOYEE PHONE INFORMATION'
LITERAL.

ADD MFLD
FOR (24X80, 32X80, 43X80, 27X132)
AT (8,25)
VALUE IS EMPLOYEE ID
LITERAL.

ADD MFLD
AT (8,45)
DFLD EMP-ID-0415
OF EMPLOYEE VER 100
EXT PIC IS INT.

ADD MFLD
VALUE IS 'PHONE NUMBER'
LITERAL.

ADD MFLD
AT (12,45)
DFLD EMP-PHONE-0415
OF EMPLOYEE VER 100
EXT PIC IS INT.

Chapter 12. Batch Compiler Execution and JCL 12-17

12.4 Compiler Reports and Messages

12.4 Compiler Reports and Messages

Compiler syntax and input validation messages are returned to the user on the compiler
input statement report. Diagnostic and error messages are provided on the input
statement report when source statements input to the map compiler contain errors.
Each type of message is discussed below.

12.4.1 Diagnostic Messages
The following diagnostic information is provided on an input statement report when
errors are encountered:

8 Theword ERROR or WARNING below the statement number of the erroneous
source line

® A dollar sign ($), positioned:

— Under the first character of the source line that could not be successfully
processed

— Under the period that terminates a map source statement to indicate that a
logic error has occurred

® The action taken by the compiler for each mapping language statement, as
follows:

— ADDED -- The statement is accepted and the definition is added in the data
dictionary.

— MODIFIED -- The statement is accepted and the definition is modified in the
data dictionary.

— DELETED -- The statement is accepted and the definition is deleted from the
data dictionary.

— NO ACTION -- The statement is rejected. The NO ACTION message
implies the following:

— At least one E-level error has been detected.

— No occurrence is added, modified, or deleted in the data dictionary for
the statement.

12.4.2 Error Messages

Error messages appear on a separate page at the end of the input statement listing.
The batch compiler lists error messages in the following format:

STMT SVRTY ERROR FOUND MESSAGE
nnnn severity-Tlevel nnnnnn found-text message-text

The error messages provide the following information:

® STMT (nnnn) identifies the compiler-generated statement number for each line
that contains an error.

12-18 CA-IDMS Mapping Facility

12.4 Compiler Reports and Messages

n SVRTY (severity-level) identifies the severity level of the input error. The
following severity levels can be returned:

— W (warning) -- Flags potential problems in the source code; the statement
containing the error is processed. W-level messages provide information
about potential problems and do not necessarily indicate errors.

— E (eror) -- Identifies erroneous input; the statement containing the error has
been rejected. The error must be corrected before the code can be compiled.

— F (fatal) -- Identifies errors that affect more than one map source statement.
The error must be corrected before the code can be compiled.

® ERROR (nnnnnn) provides the 6-digit identifying number for the error message
provided in the MESSAGE column described below.

» FOUND (found-text) identifies the erroneous portion of the given input line.
Either of the following items are listed in this column:

— The first eight characters of the parameter in error
— A period () character to indicate that an end-of-statement error has occurred

. MESSAGE (message-text) specifies the nature of the problem encountered by the
map compiler. For a detailed description of error codes and messages, see
CA-IDMS Messages and Codes.

The error message page of the compiler input-statement listing also specifies the
number of coding errors encountered. The listed number does not necessarily
represent the actual number of errors in the source code. For example, rejection of a
PANEL, PFLD, MAP, or MFLD statement might cause the map compiler to reject
subsequent correct statements simply because the proper currency has not been
established. The following section was left out because the previous sample compiled
without reports It should be inserted again.

Sample Report: A sample input-statement listing that contains diagnostic and error
messages is provided in the following figure. The source for this example contains
only three actual errors:

m The ATTRIBUTES specifications in line 10 are not enclosed in parentheses.
® The VALUE specification in line 17 is not enclosed in quotation marks.
» The MFLD statement in line 29 is missing the required AT specification.

The batch compiler returns 16 errors as a result of the actua errors in the sample
compile.

Chapter 12. Batch Compiler Execution and JCL 12-19

12.4 Compiler Reports and Messages

CAGJFO CA-IDMS/DC MAPPING COMPILER PHASE 1 CA-IDMS/DC IS A PROPRIETARY SOFTWARE PRODUCT

VERSION 15.0

STMT ITEM NUMBER
MAP 1

PFLD 1

COWONOUTAR WN -

—

*%% ERROR %%

*%x% ERROR #***

*x% UNKNOWN KEYWORD
*x%x UNKNOWN KEYWORD

11

*x% UNKNOWN KEYWORD
*x% UNKNOWN KEYWORD
*x% UNKNOWN KEYWORD
*x% UNKNOWN KEYWORD
*x% UNKNOWN KEYWORD
*x% UNKNOWN KEYWORD

17
*%% ERROR %%
*%% ERROR #***
*x% UNKNOWN KEYWORD
*x% UNKNOWN KEYWORD

20 PFLD 3
22 MFLD 3

26 PFLD 4

28
**%* ERROR #*#*%
**%* ERROR #*#*%

MFLD 4
29
30 PFLD 5
31
32 MFLD 5
33
34

*kk
*kk

*kK
*kK
*kK
*kk
*kK
*kK

*kK
*kK

ADD

LICENSED FROM COMPUTER ASSOCIATES INTERNATIONAL, INC.
-- MAPPING INPUT STATEMENT LISTING --
MAP CEXMEO28

AUTOPANEL
USING ((EMPLOYEE 100))

EDIT

RESET UNLOCK NOALARM NOPRT NLCR. VERSION

ADD

ADD

ADD

ADD

ADD

MFLD
FOR (24X80, 32X80, 43X80, 27X132)
AT (4,25)
ATTR = BRIGHT PROTECTED
$

$
$

$
VALUE IS 'EMPLOYEE PHONE INFORMATION'
$

$
$

LITERAL.

MFLD
FOR (24X80, 32X80, 43X80, 27X132)
AT (8,25)
VALUE IS EMPLOYEE ID
$

$
$
LITERAL.

MFLD

AT (8,45)

DFLD EMP-ID-0415

OF EMPLOYEE VER 100
EXT PIC IS INT.

MFLD
VALUE IS 'PHONE NUMBER'
LITERAL.

$

$

MFLD

AT (12,45)

DFLD EMP-PHONE-0415
OF EMPLOYEE VER 100
EXT PIC IS INT.

DATE

12/07/60

1

*kk

TIME PAGE
113808 1

ADDED #**

NO ACTION #xx*

NO ACTION #%+*

ADDED #%*x*

NO ACTION #xx*

ADDED #%x*

12-20 CA-IDMS Mapping Facility

12.4 Compiler Reports and Messages

CAGJFO CA-IDMS/DC MAPPING COMPILER PHASE 1
VERSION 15.0
STMT SVRTY ERROR

10 E 386005
10 E 388001
10 E 388017
10 E 388017
11 E 388017
11 E 388017
11 E 388017
11 E 388017
11 E 388017
11 E 388017
17 E 386008
17 E 388001
17 E 388017
17 E 388017
28 E 386027
28 E 388001
16 ERRORS

PROCESS=LOAD
MAP=CEXMEO28,VERSION=00001

FOUND
BRIGHT
BRIGHT
BRIGHT
PROTECTE
VALUE
IN
'EMPLOYE
PHONE
INFORMAT

EMPLOYEE
EMPLOYEE
EMPLOYEE
1D
LITERAL
LITERAL

MESSAGE

ATTRIBUTE CLAUSE REQUIRES A PARENTHESIZED LIST IN PANEL FIELD STATEMENT
INVALID PANEL FIELD NAME SPECIFIED IN MAP FIELD STATEMENT

INVALID KEYWORD
INVALID KEYWORD
INVALID KEYWORD
INVALID KEYWORD
INVALID KEYWORD
INVALID KEYWORD
INVALID KEYWORD
INVALID KEYWORD

IN
IN
IN
IN
IN
IN
IN
IN

CA-IDMS/DC IS A PROPRIETARY SOFTWARE PRODUCT DATE TIME PAGE
LICENSED FROM COMPUTER ASSOCIATES INTERNATIONAL, INC. 12/07/60 113808 2

MAP
MAP
MAP
MAP
MAP
MAP
MAP
MAP

VALUE CLAUSE FOR PANEL

INVALID PANEL FIELD NAME SPECIFIED IN MAP FIELD STATEMENT
INVALID KEYWORD IN MAP FIELD STATEMENT

INVALID KEYWORD IN MAP FIELD STATEMENT

AT LEAST ONE 'AT' CLAUSE IS REQUIRED FOR ADD OF PANEL FIELD
INVALID PANEL FIELD NAME SPECIFIED IN MAP FIELD STATEMENT

FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD

STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
MUST BE FOLLOWED BY A STRING OR PARENTHESIZED LIST

Note: CAGJFO in the upper left-hand corner of the Error Message page is the release

number.

Chapter 12. Batch Compiler Execution and JCL 12-21

12-22 CA-IDMS Mapping Facility

Chapter 13. Batch Utility Reference

131 Overview 13-3
13.2 Batch Utility Statements 13-4
13.21 PROCESS Statement 13-4
1322 PANEL Statement 13-9
1323 MAPStatement 13-10
13.3 Batch Utility JCL 13-12
1331 OS/390JCL o 13-12
1332 VSE/IESAJCL 13-14
1333 VM/ESA JCL 13-15
13.3.4 BS2000/0OSD JCL 13-17
13.35 SampleJCL 13-18

Chapter 13. Batch Utility Reference 13-1

13-2 CA-IDMS Mapping Facility

13.1 Overview

13.1 Overview

The batch utility uses information defined in the data dictionary to perform the
following activities:

® Generate map load modules
® Produce map and panel reports
® Produce a facsimile of a map and panel on a terminal screen

» Decompile map and panel occurrences generated by either the batch or the online
compiler into map source code that can be used as input to the batch compiler

» Delete map load modules

The batch utility also is used to migrate a map from one dictionary to another.
Decompiled batch source code from one dictionary can be compiled on another
dictionary, and a new load module can be generated from the newly compiled map
code.

The statements and JCL necessary to use the batch mapping utility are presented
below.

Chapter 13. Batch Utility Reference 13-3

13.2 Batch Utility Statements

13.2 Batch Utility Statements

The following statements control batch utility operations:

» The PROCESS statement specifies the operations to be performed.

» The PANEL statement specifies the panel occurrences to be processed.

» The MAP statement specifies the map occurrences to be processed.
Syntax for each of these utility statements is presented below, followed by examples of
their use.

Note: No SIGNON to dictionary card is used because no DDLDML area updates are
possible from the batch utility.

13.2.1 PROCESS Statement

The PROCESS statement specifies the actions to be taken by the batch utility. The
following genera rules apply when coding PROCESS statements:

= One or more PROCESS statements must be submitted in each batch utility run

» When multiple PROCESS statements are specified, each successive PROCESS
statement overrides the previous one

» A PROCESS statement specifies the action to be taken for the utility PANEL and
MAP statements that follow it

Syntax
[)
»»—— PROCESS = { LOAD > <
REPORT
—[IMAGE —J
DECOMPILE
'L TERSE — 1L , DATETIME I_YES
NO
ALL
DELETE
Parameters
LOAD

Generates a map load module and stores the module in the DDLDCLOD area of
the data dictionary. LOAD applies only to MAP statements; at least one MAP
statement must follow a PROCESS LOAD statement.

REPORT/IMAGE
Generates a report and/or a copy of the screen format for all specified map and
panel occurrences:

® REPORT prints a screen image and report for the specified map and panel
occurrences as shown in the figure below

» |IMAGE prints a screen image for the specified map and panel occurrences

13-4 CA-IDMS Mapping Facility

13.2 Batch Utility Statements

DECOMPILE/TERSE
Produces source code from data dictionary map and panel occurrences:

» DECOMPILE provides all specifications made for the named map and/or
panel occurrences

» TERSE provides only non-default specifications for the named map and/or
panel occurrences

Output for either DECOMPILE or TERSE is written to SYSPCH and consists of
executable source code suitable for processing by the map compiler. The
decompile process does not affect the load module.

DATETIME date-time-stamp
DATETIME has the following options:

® YES — Includes the map's date/time stamp in the decompiled map's source
code. The date/time stamp is returned in the DATETIME clause in the newly
decompiled map source statements.

® NO (default) — Decompiles the map without retaining the map's date/time
stamp.

Note: DATETIME is only an option for decompile operations
(PROCESS=DECOMPILE or PROCESS=TERSE).

DELETE
Logically deletes map load modules from the DDLDCLOD area. The actua
deletion is performed at CA-IDMS startup. DELETE applies only to MAP
statements; at least one MAP statement must follow a PROCESS DELETE
statement. The DELETE operation has no effect on map occurrences in the
DDLDML area. The map compiler must be used to delete map or panel
occurrences.

ALL
Requests that LOAD, REPORT, and DECOMPILE be performed. ALL applies
only to MAP statements; at least one MAP statement must follow a PROCESS
ALL statement.

Note: When multiple processes are specified, each must be separated by a comma, as
shown below:
PROCESS=REPORT, LOAD

Sample Report and Code: As aresult of specifying DECOMPILE,REPORT, the
map utility produces a report, a screen image, and mapping language source code as
shown on the following pages.

Chapter 13. Batch Utility Reference 13-5

13.2 Batch Utility Statements

EJECT
MAP CEXMEO28 VERSION 1
AUTOPANEL
DEVICES = (24X80, 32X80, 43X80, 27X132)
NONRESIDENT
USING ((EMPLOYEE 100))
EDIT
RESET UNLOCK NOALARM NOPRT NLCR
NONPAGEABLE
DECIMAL POINT IS PERIOD
HELP NO

ON EDIT ERROR
SOUND NOALARM.

SPACE 2
MFLD
FOR (24X80, 32X80, 43X80, 27X132)
AT (4, 25)

ATTRIBUTES = (ALPHANUMERIC,PROTECTED,DETECTABLE,BRIGHT,NOMDT,
NOBLINK,NORMAL-VIDEO,NOUNDERSCORE,

NOCOLOR)
NODELIMIT
VALUE = ((1) 'EMPLOYEE PHONE INFORMATION')
NOCURSOR
LITERAL.
SPACE 2
MFLD
FOR (24X80, 32X80, 43X80, 27X132)
AT (8, 25)

ATTRIBUTES = (NUMERIC,PROTECTED,NONDETECTABLE,DISPLAY,NOMDT,
NOBLINK,NORMAL-VIDEO,NOUNDERSCORE,

NOCOLOR)
NODELIMIT
VALUE = ((1) 'EMPLOYEE ID')
NOCURSOR
LITERAL.
SPACE 2

13-6 CA-IDMS Mapping Facility

13.2 Batch Utility Statements

MFLD

FOR (24X80, 32X80, 43X80, 27X132)

AT (8, 45)

ATTRIBUTES = (ALPHANUMERIC,UNPROTECTED,NONDETECTABLE,DISPLAY,NOMDT,
NOBLINK,NORMAL-VIDEO,NOUNDERSCORE,
NOCOLOR)

DELIMIT = SKIP

NOCURSOR

DFLD EMP-ID-0415
OF EMPLOYEE VER 100
HELP SOURCE NONE
OPTIONAL
REVERSE NUMERIC IS NO
EXTERNAL PICTURE IS INTERNAL
ZEROED WHEN NULL
DISPLAY WHEN ZERO
FOR INPUT
JUSTIFY LEFT
PAD NO
DATA YES
UPPER NO
FOR OUTPUT
DATA YES
BACKSCAN NO.
SPACE 2
MFLD
FOR (24X80, 32X80, 43X80, 27X132)
AT (12, 25)
ATTRIBUTES = (NUMERIC,PROTECTED,NONDETECTABLE,DISPLAY,NOMDT,
NOBLINK,NORMAL-VIDEO,NOUNDERSCORE,

NOCOLOR)
NODELIMIT
VALUE = ((1) 'PHONE NUMBER')
NOCURSOR
LITERAL.
SPACE 2
MFLD
FOR (24X80, 32X80, 43X80, 27X132)
AT (12, 45)

ATTRIBUTES = (ALPHANUMERIC,UNPROTECTED,NONDETECTABLE,DISPLAY,NOMDT,
NOBLINK,NORMAL-VIDEO,NOUNDERSCORE,
NOCOLOR)

DELIMIT = SKIP

NOCURSOR

DFLD EMP-PHONE-0415
OF EMPLOYEE VER 100
HELP SOURCE NONE
OPTIONAL
REVERSE NUMERIC IS NO
EXTERNAL PICTURE IS INTERNAL
ZEROED WHEN NULL
DISPLAY WHEN ZERO
FOR INPUT
JUSTIFY LEFT
PAD NO
DATA YES
UPPER NO
FOR OUTPUT
DATA YES
BACKSCAN NO.
CAGJFO CA-IDMS/DC MAP UTILITY

THE FOLLOWING SYMBOLS REPRESENT ATTRIBUTE CHARACTERS:
U - UNPROTECTED ALPHANUMERIC FIELD

/

P - PROTECTED ALPHANUMERIC FIELD
/

N - UNPROTECTED NUMERIC FIELD

/
S - AUTOSKIP FIELD (PROTECTED AND NUMERIC)
/

DATE: 12/05/00 TIME: 171634 PAGE 3

Chapter 13. Batch Utility Reference 13-7

13.2 Batch Utility Statements

CAGJFO CA-IDMS/DC MAP UTILITY DATE: 12/05/00 TIME: 171634 PAGE 4
REPORT FOR MAP CEXMEO28 VERSION 1 COMPILE DATE: 12/05/60 COMPILE TIME: 171458
DEVICES: 24X80, 32X80, 43X80, 27X132

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 8 8 90 95 100 165 110 115 120 125 130

PEMPLOYEE PHONE INFORMATION
/EMPLOYEE PHONE INFORMATION
/EMPLOYEE PHONE INFORMATION

SEMPLOYEE ID U....S

/ /o

/ /
(CURSOR) -

SPHONE NUMBER Uoervnnnnnn S

/ / /

/ / /

5 106 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100 105 110 115 120 125 130
CAGJFO CA-IDMS/DC MAP UTILITY DATE: 12/05/60 TIME: 171634 PAGE 5
REPORT FOR MAP CEXMEO28 VERSION 1 COMPILE DATE: 12/05/60 COMPILE TIME: 171458
DEVICES: 24X80, 32X80, 43X80, 27X132
USING RECORDS:

EMPLOYEE VERSION 100
WCC: NOALARM, UNLOCK KEYBOARD, RESET MODIFIED, NOPRT, NLCR
PANEL CEXME©28-AUTOPANEL VERSION 1
PFLD: AUTOPF00001 AT (4,25)

ATTRIBUTES = (ALPHANUMERIC,PROTECTED,DETECTABLE,BRIGHT,NOMDT,
NOBLINK,NORMAL-VIDEO,NOUNDERSCORE,
NOCOLOR)
NODELIMIT
LITERAL STRING
PFLD: AUTOPF00002 AT (8,25)
ATTRIBUTES = (NUMERIC,PROTECTED,NONDETECTABLE,DISPLAY,NOMDT,
NOBLINK,NORMAL-VIDEO,NOUNDERSCORE,
NOCOLOR)
NODELIMIT
LITERAL STRING
PFLD: AUTOPF00003 AT (8,45)
ATTRIBUTES = (ALPHANUMERIC,UNPROTECTED,NONDETECTABLE,DISPLAY,NOMDT,
NOBLINK,NORMAL-VIDEO,NOUNDERSCORE,

NOCOLOR)
DELIMIT SKIP
DFLD: EMP-ID-0415 OF EMPLOYEE
HELP SOURCE NONE
OPTIONAL

EXTERNAL PICTURE IS INTERNAL
ZEROED WHEN NULL DISPLAY WHEN ZERO
INPUT: JUSTIFY LEFT, UPPER NO, DATA YES, PAD NO
OUTPUT: BACKSCAN NO, DATA YES
PFLD: AUTOPF00004 AT (12,25)

ATTRIBUTES = (NUMERIC,PROTECTED,NONDETECTABLE,DISPLAY,NOMDT,
NOBLINK,NORMAL-VIDEO,NOUNDERSCORE,
NOCOLOR)

NODELIMIT

LITERAL STRING

13-8 CA-IDMS Mapping Facility

13.2 Batch Utility Statements

PFLD: AUTOPF00005 AT (12,45)
ATTRIBUTES = (ALPHANUMERIC,UNPROTECTED,NONDETECTABLE,DISPLAY,NOMDT,
NOBLINK,NORMAL-VIDEO,NOUNDERSCORE,

NOCOLOR)
DELIMIT SKIP
DFLD: EMP-PHONE-0415 OF EMPLOYEE
HELP SOURCE NONE

OPTIONAL
EXTERNAL PICTURE IS INTERNAL
ZEROED WHEN NULL DISPLAY WHEN ZERO
INPUT: JUSTIFY LEFT, UPPER NO, DATA YES, PAD NO
OUTPUT: BACKSCAN NO, DATA YES
MAP LOAD MODULE GENERATED IN LOAD AREA FOR CEXMEO28, SIZE = 424

END OF CA-IDMS/DC MAP UTILITY

13.2.2 PANEL Statement

A PANEL statement designates a panel occurrence to be processed by a PROCESS
statement. The following processes apply to panel occurrences:

» REPORT prints a screen image and report for specified panel occurrences.
B |MAGE prints a screen image for specified panel occurrences.

» DECOMPILE produces the default and non-default compiler source statements
for specified panel occurrences. DECOMPILE also produces its output as card
images with syntax in fixed locations, one statement clause per line. Therefore,
use it when the definition may be modified.

» TERSE produces the non-default compiler source statements for specified panel
occurrences. Because TERSE fills each line, it is not recommended if you want
to edit the output. It should be used when the map is being backed up or

migrated.
Syntax
> PANEL = B ALL i <

panel-name B
,VERSION = —[1 «
version-number

Parameters
ALL

Specifies that al panel occurrences in the data dictionary are to be processed as
specified in the PROCESS statement that precedes the PANEL statement. For
example, the sample code shown below prints a screen image for each panel in the
data dictionary:

PROCESS=IMAGE
PANEL=ALL

VERSION=version-n
Specifies a panel occurrence to be processed as indicated in the PROCESS
statement that precedes the PANEL statement. For example, the sample code
shown below produces a screen image and report for the CEXLEJKD panel:

Chapter 13. Batch Utility Reference 13-9

13.2 Batch Utility Statements

PROCESS=REPORT
PANEL=CEXLEJKD

VERSION=version-n
Optionally specifies the version number of the panel occurrence. The default is 1.

13.2.3 MAP Statement

A MAP statement is submitted after a PROCESS statement to designate the map
occurrences to be processed.

Syntax
»—— MAP = ALL > <
L ,SYSTEM = dc-version-number _
CHANGED
L ,SYSTEM = dc-version-number i
map-name B
,VERSION = —|: 1 «
version-number
Parameters

ALL,SYSTEM=dc-version-n
Specifies that all map occurrences in the data dictionary are to be processed as
specified in the PROCESS statement that precedes the MAP statement. For
example, the sample code shown below loads all maps in the data dictionary:

PROCESS=LOAD
MAP=ALL

MAP=ALL cannot be specified with PROCESS=DELETE; this restriction prevents
the inadvertent deletion of map load modules.

SY STEM=dc-version-n optionally specifies that only map occurrences associated
with the specified CA-IDMS system are processed. For example, the sample code
shown below loads al maps in system 7:

PROCESS=LOAD
MAP=ALL,SYSTEM=07

CHANGED,SY STEM=dc-version-n
Specifies that modified map occurrences are to be processed as specified in the
preceding PROCESS statement. All map occurrences in the data dictionary that
have been modified since they were last generated are processed. For example,
the sample code shown below loads all modified and ungenerated maps in the
dictionary, generates a report for each map, and finally decompiles each map:

PROCESS=ALL
MAP=CHANGED

MAP=CHANGED cannot be specified with PROCESS=DELETE; this restriction
prevents the inadvertent deletion of map load modules.

SY STEM=dc-version-n optionally specifies that only modified map occurrences
that are associated with the specified CA-IDMS system are processed.

13-10 CA-IDMS Mapping Facility

13.2 Batch Utility Statements

Map-name,VERSI ON=version-n
Specifies that the named map occurrence is to be processed as specified in the
PROCESS statement that precedes the MAP statement. For example, the
following sample code decompiles map CEXME104:

PROCESS=DECOMPILE
MAP=CEXME104,VERSION=1

VERSION=version-n (default is 1) optionally specifies the version number of the
map occurrence; the default is 1.

Considerations: The MAP clause aso applies to corresponding panel occurrences
when both of the following conditions apply:

» The MAP statement names a map occurrence created by batch statements for
automatic panel definition or by the online mapping compiler.

» The MAP statement modifies a REPORT, IMAGE, DECOMPILE, TERSE, and/or
DELETE operation, as specified in the PROCESS statement that precedes the
MAP statement.

A PANEL statement should not be included when the MAP clause conforms to both of
the conditions listed above.

Multiple processes and multiple MAP and PANEL statements can be included in a
single batch utility run, as shown below:

PROCESS=REPORT,DECOMPILE
MAP=MAINTMAP

MAP=CUSTMAP

MAP=0RDMAP
PROCESS=REPORT
PANEL=MAINTPAN
PANEL=CUSTPAN
PANEL=0RDPAN
PROCESS=DELETE
MAP=METMAP

The sample code shown above requests the following operations:

» REPORT and DECOMPILE operations for maps MAINTMAP, CUSTMAP,
and ORDMAP

» REPORT operations for maps MAINTPAN, CUSTPAN, and ORDPAN
» DELETE operation for the METMAP load module

Chapter 13. Batch Utility Reference 13-11

13.3 Batch Utility JCL

13.3 Batch Utility JCL

The batch utility executes in update mode. Run the batch utility through the central
version or as a loca CA-IDMS/DB program with active journa files to protect the

integrity of the data dictionary.

13.3.1 OS/390 JCL

//RHDCMPUT EXEC PGM=RHDCMPUT,REGION=1024K
//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.loadlib,DISP=SHR
//sysctl DD DSN=idms.sysctl,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.dd1dcmsg,DISP=SHR

//SYSIDMS DD *
DMCL=dmc1-name
DICTNAME=appldict
sysidms parameters
//SYSIPT DD *
control statements

//SYSLST DD SYSOUT=A
//SYSPCH DD SYSOUT=A

idms.dba.loadlib

Data set name of load library that contains the DMCL
and database name table load modules

idms.loadlib

Data set name of load library that contains the
CA-IDMS executable modules

idms.sysctl

Data set name of SYSCTL file

idms.sysmsg.ddidemsg

Data set name of the system message area

sysidms parameters

A list of the SYSIDMS parameters that pertain to this

job.

dmcl-name

The name of the dictionary the DMLF precompiler
should access

appldict

The name of the application dictionary that should be
accessed

Note: - For more information on the SY SIDMS parameter, see the CA-IDMS
Database Administration guide.

13-12 CA-IDMS Mapping Facility

13.3 Batch Utility JCL

Local Mode: To execute the batch utility in loca mode:

. Remove the sysctl DD statement.

= Add the following statements:

//dictdb DD DSN=idms.appldict.ddldml,DISP=0LD

//dloddb DD DSN=idms.appldict.ddldclod,DISP=0LD

//sysjrnl DD DSN=idms.tapejrnl,DISP=(NEW,CATLG),UNIT=tape

dictdb

DDname of application dictionary definition area

idms.appldict.ddidml

Data set name of application dictionary definition area

dioddb

DDname of application dictionary definition load
library area

idms.appldict.ddidclod

Data set name of application dictionary definition load
library area

sysirnl DDname of the tape journal file
idms.tapejrnl Data set name of the tape journal file

Chapter 13. Batch Utility Reference 13-13

13.3 Batch Utility JCL

13.3.2 VSE/ESA JCL

// UPST b

// DLBL SYSIDMS,'#SYSIPT'

// EXTENT sys020,nnnnnn,,,ssss,1111
// ASSGN sys020,DISK,VOL=nnnnnn,SHR
// EXEC ~ RHDCMPUT

SYSIDMS parameters

/*

o

Appropriate UPSI switch, 1-8 characters, if specified in
the IDMSOPTI module

#SY SIPT If #SYSIPT is used, the individual parameters must be
listed in the SYSIDMS parameters statement below

Can aso be defined as a disk dataset, where #SY SIPT
is replaced with the name of the file containing the
SYSIDMS parameters and the parameters are not listed

separately
user.output File-id of output file
sys020 Logical unit assignment of output file
nnnnnn Volume serial number of disk storage device
SSSS Relative starting track

1l Number of tracks

SYSIDMS parameters A list of the SYSIDMS parameters that pertain to this

job.

Note: - For more information on the SY SIDMS parameter, see the CA-IDMS
Database Administration guide.

13-14 CA-IDMS Mapping Facility

13.3 Batch Utility JCL

13.3.3 VM/ESA JCL

FILEDEF SYSLST PRINTER

FILEDEF SYSPCH DISK syspch output a
FILEDEF SYSIDMS DISK sysidms input a
FILEDEF SYSIPT DISK util input a
GLOBAL LOADLIB IDMSLIB

OSRUN RHDCMPUT

syspch output a Filename, filetype, and filemode of the card-image
output file
sysidms input a Filename, filetype, and filemode of the file that

contains the SYSIDMS parameters

util input a Filename, filetype, and filemode of the file containing
batch utility control statements

Note: - For more information on the SY SIDMS parameter, see the CA-IDMS
Database Administration guide.

Local Mode: To execute the batch utility in loca mode:

1. Specify that RHDCMPUT is executing in local mode by performing one of the
following:

m Link RHDCMPUT with an IDMSOPTI program that specifies local execution
mode

» Modify the OSRUN statement:

OSRUN RHDCMPUT PARM="#*LOCAL*"

Note: This option is valid only if the OSRUN command is issued from a
System Product interpreter or an EXEC?2 file.

m Specify *LOCAL* as the first input parameter of the file identified by util
input a

Chapter 13. Batch Utility Reference 13-15

13.3 Batch Utility JCL

2. Add the following statements before the OSRUN statement:

FILEDEF dictdb DISK dictdb dictfile d

(RECFM F LRECL pppp BLKSIZE pppp XTENT nnnn
FILEDEF jljrnl DISK jljrnl jrnlfile k

(RECFM F LRECL pppp BLKSIZE pppp XTENT nnnn
FILEDEF dloddb DISK dloddb dictfile f

(RECFM F LRECL pppp BLKSIZE pppp XTENT nnnn

dictdb

DDname of the application data dictionary

dictdb dictfile d

Filename, filetype, filemode of the application data
dictionary file

pppp

Page size of the file

nnnn

Number of pages in the file

jiijrnl

DDname of the first disk journal file

jlirnl jrnlfile k

Filename, filetype, and filemode of the first disk journal
file

dloddb

DDname of the data dictionary load area

dloddb dictfile f

Filename, filetype, and filemode of the data dictionary
load area

13-16 CA-IDMS Mapping Facility

13.3 Batch Utility JCL

13.3.4 BS2000/0SD JCL

/ADD-FILE-LINK L-NAME=CDMSLIB,F-NAME=idms.dba.loadlib
/ADD-FILE-LINK L-NAME=CDMSLIBI1,F-NAME=idms.loadlib
/ADD-FILE-LINK L-NAME=CDMSLODR,F-NAME=idms.lo0adlib
/ADD-FILE-LINK L-NAME=sysctl,F-NAME=idms.sysct1,SHARED-UPD=+*YES
/ADD-FILE-LINK L-NAME=SYSIDMS,F-NAME=1idms.sysidms
/ASSIGN-SYSOPT TO=temp.pch

/ASSIGN-SYSDTA TO=+SYSCMD

/START-PROG *MOD (ELEM=RHDCMPUT,LIB=idms.1o0ad1ib,RUN-MODE=*ADV)
control statements

idms.dba.loadlib Filename of CA-IDMS load library that contains the
DMCL and database name table

idms.loadlib Filename of the load library that contains the CA-IDMS
executable modules

idms.sysidms Linkname of file that contains the SYSIDMS
parameters

sysctl Linkname of SYSCTL file

idms.sysctl Filename of SYSCTL file

temp.pch Filename of output file that is to contain source

statements output by the DECOMPILE option. If
DECOMPILE is not specified, the SY SOPT
reassignment can be ignored.

Note: - For more information on the SY SIDMS parameter, see the CA-IDMS
Database Administration guide.

Local Mode: To execute the batch utility in local mode:
® Remove the ADD-FILE-LINK command for the sysctl file
= Add:

/ADD-FILE-LINK L-NAME=dictdb,F-NAME=idms.appldict.ddldml,SHARED-UPD=*YES
/ADD-FILE-LINK L-NAME=d1oddb,F-NAME=idms.appldict.ddldclod,SHARED-UPD=*YES
/ADD-FILE-LINK L-NAME=sysjrnl,F-NAME=idms.tapejrnl

dictdb Linkname of data dictionary

idms.appldict.ddidml Filename of the application dictionary definition area
dloddb Linkname of data dictionary load area
idms.appldict.ddidclod Filename of the application dictionary load area
sysirnl Linkname of IDMS journal file

Chapter 13. Batch Utility Reference 13-17

13.3 Batch Utility JCL

idms.tapejrnl Filename of IDMS journal file

13.3.5 Sample JCL

The input job stream for the batch utility with batch utility statements and JCL is
illustrated below. The map, PASSDATA, which was defined using the online
compiler, is decompiled by the sample code; the resulting source is sent to a
card-image data set; and a report for the map is produced. Executable code for the
map CEXMEO028 is compiled and loaded into the DDLDCLOD area of the data
dictionary.

//MPUT81 EXEC PGM=RHDCMPUT,REGION=4096K
//STEPLIB DD DSN=DBDC.SYSTEM81.R150.NTWKLOAD,DISP=SHR
// DD DSN=DIST.CAGJFO.LOADLIB,DISP=SHR
//SYSCTL DD DSN=DBDC.SYSTEM81.SYSCTL,DISP=SHR
//SYSLST DD SYSOUT=+
//SYSPCH DD SYSOUT=+
//SYSIDMS DD =

DICTNAME=TSTDICT
//SYSIPT DD *

PROCESS=ALL

MAP=CEXME028,VERSION=00001

Error Messages: |If errors are present in batch utility source statements, the utility
returns diagnostic messages in the listing generated with each run. Messages issued by
the batch utility are displayed in the following format:

nnnnnn severity-Tevel message-text

The following information is represented by the above format:
= Nnnnnn represents the 6-digit identifying number for the error message.
® Severity-level represents the severity associated with the message:

— W (warning) identifies potential problems in the source code. The statement
that contains the potentia error is processed and processing continues.

— E (error) identifies erroneous input. The statement that contains the error is
rejected and processing continues. The source code must be corrected before
the code can be successfully compiled.

— F (fatal) identifies errors that affect more than one map source statement.
Processing is terminated and the errors must be corrected before the source
code can be compiled.

» Message-text represents the error message that applies to the given error.

13-18 CA-IDMS Mapping Facility

Appendix A. Integrated Data Dictionary Mapping

Entities
Al Overview A-3
A.2 Data Dictionary Entities used by the Mapping Compilers A-4
A.21 Builder Codes A-4
A.2.2 Element Occurrences A-5
A.2.3 Record OCCUITENCES o oo A-7
A.24 Panel Occurrences A-8
A25 Map Occurrences A-9
A.2.6 Message OCCUITENCES o v it A-10
A.27 TableOccurrences A-11
A.2.8 Map and Table Load Module Occurrences A-12
A.3 Data Dictionary Entities Updated by Mapping Compilers A-13
A.3.11 Map Compiler Statements A-13
A.3.1.2 Online Mapping Compiler Screens A-14
A.4 Critical Changes A-15
A.5 Coordinated Use of the Online and Batch Compilers A-17

Appendix A. Integrated Data Dictionary Mapping Entities A-1

A-2 CA-IDMS Mapping Facility

A.1 Overview

A.1 Overview

The CA-IDMS mapping compilers make extensive use of the data dictionary as a
source of information and as a storage location for map-related entity occurrences and
map load modules. By using this central resource, the mapping compilers share
information with other Computer Associates products, thus promoting data integrity
and stability.

This appendix focuses on the integration and interaction of the mapping compilers with
other Computer Associates data management products. The following topics are
presented:

» Data dictionary entities used by the mapping compilers
» Data dictionary entities updated by the mapping compilers
m Critical changes to data dictionary entities and related recompilation requirements

m Coordinated use of the batch and online mapping compilers

Appendix A. Integrated Data Dictionary Mapping Entities A-3

A.2 Data Dictionary Entities used by the Mapping Compilers

A.2 Data Dictionary Entities used by the Mapping Compilers

When is the Data Dictionary Used?: The batch and online compilers retrieve
information from and update information in the data dictionary at map compilation and
map runtime:

= At map compilation, the batch and online compilers use map-related and table
data dictionary entities, as follows:

— Both map compilers verify that each specified occurrence is defined in the
data dictionary.

— Both compilers access information from record elements, such as the internal
picture, external picture, or edit table defined for or associated with a map
definition.

® At program runtime, application programs invoke map load modules as needed.
A map load module can, in turn, invoke stand-alone tables and map help load
modules stored in the load area.

Entities used by Compilers: The following data dictionary entities are used by
the mapping compilers:

» Element occurrences

® Record occurrences

® Map occurrences

. Message occurrences

® Table occurrences

» Map and table load modules

» Help modules
The establishment, use, and/or modification of each of these entity occurrences is

discussed below, following a brief discussion of the builder codes used to identify the
owner of many entity occurrences.

A.2.1 Builder Codes

What is a Builder Code?: When an entity occurrence is established in the data
dictionary, a builder code is assigned to the occurrence. The builder code designates
the component of the Computer Associates data management system that owns the
entity and is allowed to make structural modifications to the entity. If the entity
occurrence is subsequently used by a different product, the builder code may change to
reflect the current use of the entity.

Some components, such as CA-IDD, access the builder code when modifications to an
entity occurrence are attempted. Builder codes and their associated components are
shown in the following table:

A-4 CA-IDMS Mapping Facility

A.2 Data Dictionary Entities used by the Mapping Compilers

Builder Code Input Source

CA-IDMS mapping compilers

DDDL compiler

CA-IDMS-CV/DC sysgen compiler (source records)

CA-IDMS-CV/DC sysgen compiler (object records)

Schema compiler

Subschema compiler

DML processors

CA-ADS dialog generator

CA-ADS application generator
CA-IDMSDIRL utility

X102 |IZ|I<|0O|T|O|O|O

For example, a CA-IDD-built occurrence has a builder code of D, which specifies that
IDD owns the occurrence and that modifications can be made to the occurrence.

Copying a CA-IDD-built Occurrence: Consequences of copying a CA-1DD-built
occurrence are described below:

m |f the occurrence is copied into a schema, the builder code changesto S. A
builder code of S indicates to the DDDL compiler that only nonstructural
modifications, such as commentary and documentational entries, can be made by
the DDDL compiler.

® |f the occurrence is copied into both a map and a schema, the builder code
changesto S.

m |f the occurrence is copied into a CA-IDMS map by the mapping compilers, the
builder code changes to C. A builder code of C indicates to the DDDL compiler
that limited modifications can be made.

When a schema or a CA-IDMS map is deleted, the builder code changes back to D
and modifications can then be made by the DDDL compiler.

» For more information on builder codes, see CA-IDMS System Generation.

A.2.2 Element Occurrences

What is an Element?: A record element is a logical subdivision of a record; an
element cannot be addressed without first addressing the record to which the element
belongs.

Element occurrences define group or elementary data items that can be used in
CA-IDD-built records or CA-IDMS/DB schema-built records. Elements used by maps

Appendix A. Integrated Data Dictionary Mapping Entities A-5

A.2 Data Dictionary Entities used by the Mapping Compilers

must be defined in the dictionary and must be members of records prior to map
compilation.

Establishing Element Occurrences: Element occurrences can be established in
the data dictionary in one of the following ways:

» The ADD ELEMENT statement submitted to the DDDL compiler establishes a
free-standing element that can be included in a CA-IDD-built record or that can be
included automatically in a schema-built record.

» The RECORD statement submitted to the DDDL compiler, in conjunction with
the RECORD ELEMENT substatement or the COBOL substatement, establishes a
CA-1DD-built record and all elements that participate in that record. If the
element specified in the substatement matches an existing element record, the
existing record is used. Otherwise, a new element occurrence is created.

» The RECORD DESCRIPTION section of schema DDL submitted to the schema
compiler establishes CA-IDMS/DB schema-built records in the data dictionary.
All elements that participate in the schema records are automatically established in
the data dictionary.

Elements are the building blocks that form records. The batch and online compilers
use element occurrences as they appear in records rather than as free-standing items.

How the Information is Used: Information defined for the record element in the
data dictionary is used by either the batch or online compiler:

» Theinternal picture for the element is used to derive characteristics of the
element, such as length or usage.

® The external picture for the element is used to determine the external
characteristics of afield if both of the following conditions are true;

— The external picture is defined at the element level and not overridden at the
map-field level.

— Automatic editing is enabled for the map field.

® The edit table is used by automatic editing and error-handling in editing data if
both of the following conditions are true:

— The edit table is defined at the record level and not overridden at the
map-field level.

— Automatic editing is enabled for the map field.

» The code table is used by automatic editing in encoding and decoding data if both
of the following conditions are true:

— The code table is defined at the record level and not overridden at the
map-field level.

— Automatic editing is enabled for the map field.

A-6 CA-IDMS Mapping Facility

A.2 Data Dictionary Entities used by the Mapping Compilers

Considerations: An element occurrence defined in the data dictionary can be
modified or deleted. The following considerations apply to the deletion of element
occurrences.

= An element that participates in a record cannot be deleted.

. An element that participates in a group element structure cannot be deleted.

Critical changes to dictionary-defined record elements, such as a change in an
element's picture, necessitate regenerating maps and recompiling programs that use
those maps (refer to A.4, “Critical Changes’ on page A-15 later in this section).

A.2.3 Record Occurrences

What is a Record Occurrence?: A record occurrence is the basic addressable
unit of datain CA-IDMS/DB. A record consists of a fixed or variable number of
characters subdivided into units called elements. Records that are used by maps must
be defined in the dictionary prior to map compilation.

Establishing a Record Occurrence: Record occurrences can be established in
the data dictionary in one of the following ways:

n The ADD RECORD statement submitted to the DDDL compiler establishes a
record entity occurrence in the data dictionary. For more information on the ADD
RECORD statement and other DDDL statements, see the CA-IDMS DD DDDL
Reference Guide.

® The RECORD DESCRIPTION SECTION of the schema DDL submitted to the
schema compiler establishes record entity occurrences in the data dictionary.

» For more information on the DDL schema compiler, see the CA-IDMS
Utilities manual .

Considerations: The following considerations apply to the modification or deletion
of records:

m |f arecord participates in a CA-IDMS/DB schema, the record cannot be deleted
from the dictionary. Additionally, no structural modifications can be made to the
record; however, commentary and documentational entries can be added or
modified.

® A record synonym that participates in a CA-IDMS/DB schema, subschema, or
CA-IDMS map cannot be removed or excluded from the dictionary.

A view id (established by a DDDL PROGRAM statement) that is active in a
CA-IDMS/DB subschema cannot be removed from the dictionary.

® A record that participates in a map can be modified, with the following
exceptions:

— A record element that participates in a map cannot be removed from the
record or replaced. This restriction applies aso to group el ements that
contain subordinate elements that participate in maps. REPLACE RECORD
ELEMENTS implicitly performs a remove and an insert operation.

Appendix A. Integrated Data Dictionary Mapping Entities A-7

A.2 Data Dictionary Entities used by the Mapping Compilers

A.2.4 Panel Occur

Several DDDL commands cause the removal or replacement of record
elements. If the record elements or subordinate elements to be removed or
replaced participate in maps, the operation is not performed. If the record
elements or subordinate elements do not participate in maps, the operation is
performed as usual. The following commands perform a remove operation:

— REMOVE RECORD ELEMENT

— REPLACE RECORD ELEMENT

— REMOVE ALL

— COBOL substatement

The following commands perform a replace operation:

— REBUILD RECORD ELEMENTS followed by RECORD ELEMENT
substatements

— REPLACE RECORD ELEMENT

— The occurrence count of the OCCURS clause cannot be decreased if the
decrease causes a map field to be made obsolete. For example, if the twelfth
occurrence of a record element is used by a map, and an attempt is made to
modify the record and decrease the occurrence count to eleven, an error
occurs and the modification is not performed. This rule applies to group
record elements as well as to elementary record elements.

Certain modifications to map-owned occurrences require that the map be
recompiled if the map is to reflect the changes in the occurrence. Other
modifications require that the map, as well as the programs using the map, be
recompiled.

»> For further details, see A.4, “Critical Changes’ on page A-15, later in this
section.

rences

Panel occurrences stored in the data dictionary define display screens. Panel
occurrences are associated with map occurrences and can be established in the data

dicti

onary in any of the following four ways:

The CA-IDM S online mapping compiler establishes panel occurrences in the
dictionary when it creates a map. Panels established with this option are identified
by the -OLMPANEL suffix.

The ADD PANEL statement submitted to the CA-IDMS batch compiler
establishes panel occurrences in the data dictionary.

The ADD MFLD statement (for MAP AUTOPANEL) submitted to the
CA-IDMS batch compiler establishes panel occurrences in the data dictionary.
Panels established with this option are identified by the -AUTOPANEL suffix.

The ADD PANEL statement submitted to the DDDL compiler establishes panel
occurrences in the data dictionary. Such panels are documentational only.

A-8 CA-IDMS Mapping Facility

A.2 Data Dictionary Entities used by the Mapping Compilers

» For more information on the DDDL ADD PANEL statement, see the
CA-IDMSIDD DDDL Reference Guide.

Panel occurrences are stored in the DDLDML area of the data dictionary.

Considerations:

used to modify or delete panel occurrences. The following considerations apply to the
modification or deletion of panel occurrences:

A pandl record created by batch compiler statements for manual panel definition is

not deleted when maps associated with the panel are deleted.

A panel occurrence generated either by batch compiler automatic panel definition
or by the online compiler is affected by the deletion of an associated map:

— The panel occurrence is automatically deleted when the panel occurrence
has not been associated with any other map occurrences.

— The panel occurrence is not affected when the panel occurrence has been
associated with other map occurrences.

CAUTION:

If a map was originally compiled using the online compiler, and then
decompiled and recompiled in batch, pane occurrences will not be
automatically deleted.

A panel occurrence associated with one or more maps cannot be deleted until all
associated maps have been deleted.

A panel occurrence established by the CA-IDMS mapping compilers cannot be
modified or deleted by the DDDL compiler, except to modify comments.

Changing a DEVICE Specification: The DEVICES specification of a panel
cannot be modified. To change a DEVICES specification, the following procedure
must be used:

1

5.

Decompile the panel and associated maps, saving the decompiled source for later
use.

Delete all maps associated with the panel.
Delete the panel occurrence itself.

Define a new panel with the updated DEVICES specification by using the
decompiled source.

Define the associated maps using the decompiled source.

A.2.5 Map Occurrences

Map occurrences stored in the data dictionary associate record elements with panel
field occurrences for existing panel occurrences.

Appendix A. Integrated Data Dictionary Mapping Entities A-9

The CA-IDMS mapping facility batch and online compilers can be

A.2 Data Dictionary Entities used by the Mapping Compilers

Establishing Map Occurrences: Map occurrences can be established in the data
dictionary in any of the following three ways:

® By using the CA-IDMS online mapping compiler

» By using the ADD MAP or ADD MAP AUTOPANEL statements of the
CA-IDMS batch compiler

® By using the ADD MAP statement of the CA-IDD DDDL compiler (such maps
are documentational only);

»» For more information, see the CA-IDMSIDD DDDL Reference Guide.
Map occurrences are stored in the DDLDML area of the data dictionary.

The CA-IDMS mapping facility online and batch compilers can modify or delete map
occurrences from the data dictionary.

Considerations: The following considerations apply to the modification or deletion
of map occurrences:

» Deleting a map occurrence that was generated by batch compiler statements for
manual panel definition does not affect the associated panel occurrence.

» Deleting a map occurrence that was generated either by either the online or batch
compiler statements for automatic panel definition affects the associated panel
occurrence:

— The associated panel occurrence is deleted unless the panel has been
associated with additional map occurrences.

— The associated panel occurrence is not affected if the panel has been
associated with additional map occurrences.

» Map occurrences that are created by the online or batch compilers cannot be
deleted by the DDDL compiler; the DDDL compiler can be used only to modify
comments.

A.2.6 Message Occurrences

Message occurrences stored in the data dictionary define informational messages.
These messages can be established only through the ADD MESSAGE statement
submitted to the DDDL compiler. Such messages can be modified at any time through
the DDDL compiler.

»» For more information, see the CA-IDMSIDD DDDL Reference Guide.

Messages stored in the data dictionary can be associated with maps by the mapping
facility batch or online compiler. A CA-ADS dialog or application program can
include statements that cause a map to be redisplayed due to input errors. Error
messages are displayed for each field in error in the message field (if any) defined for
the map. If a map has no message field, error messages are not displayed and
processing continues (with CA-ADS the message is displayed on the CA-ADS default
message screen).

A-10 CA-IDMS Mapping Facility

A.2 Data Dictionary Entities used by the Mapping Compilers

A message can be specified in a map field occurrence generated by the CA-IDMS
mapping facility and thus be included in a map load module. This type of message
does not constitute a message occurrence and can only be modified by using the
mapping facility online or batch compilers.

A.2.7 Table Occurrences

Table occurrences stored in the data dictionary define edit and code tables that are
used by the automatic editing feature of the CA-IDMS mapping facility. Edit tables
contain lists of single values and/or ranges of values against which data field values in
amap are verified. Code tables contain lists of values according to which data field
values are encoded and record element values are decoded.

Types of Tables: Three types of edit and code tables exist in the data dictionary:

= A built-in table is created by the EDIT/CODE TABLE clause in either the
RECORD ELEMENT or the COBOL substatement of the DDDL RECORD
statement. A built-in table is associated with an individual record element in the
dictionary.

» A linked stand-alone table is created by the DDDL ADD TABLE statement of
CA-IDD. A stand-alone table is not associated with a particular record element in
the dictionary. The term linked indicates that a copy of such atableis
incorporated into the map load module.

®» Anunlinked stand-alone table is created and generated by the DDDL ADD
TABLE statement of CA-IDD. A stand-alone table is not associated with a
particular record element in the dictionary. The term unlinked indicates that such
atable is dynamically loaded as a separate load module at program runtime.

A built-in table is also called a tightly coupled table since the table is associated with
an individua record element in the dictionary. A stand-alone table is also called a
loosely coupled table since the table is not associated with a particular record element
in the dictionary.

Considerations: A table can be modified or deleted at any time by an authorized
user once the table is established in the data dictionary. The following considerations
apply to the modification or deletion of a table occurrence:

® When a built-in table is modified, any map load modules that use the record
element in which the table is defined must be recompiled. This step is necessary
because an element and its tables are incorporated into map load modules that
specify the element. It is not necessary to recompile dialogs or programs that use
the recompiled maps.

» When a linked stand-alone table is modified, any maps that use the table must
be recompiled. This step is necessary because a linked stand-alone table is
incorporated into map load modules that specify the table. It is not necessary to
recompile dialogs or programs that use the recompiled maps.

» When an unlinked stand-alone table is modified, it is not necessary to
recompile maps that access the table.

Appendix A. Integrated Data Dictionary Mapping Entities A-11

A.2 Data Dictionary Entities used by the Mapping Compilers

»> For more information on edit and code tables, see Appendix D, “Generating Edit
and Code Tables’ on page D-1.

For more information on the DDDL RECORD or ADD TABLE statements, see the
CA-IDMS DD DDDL Reference Guide.

A.2.8 Map and Table Load Module Occurrences

Establishing Load Modules: Load module occurrences in the data dictionary
define modules that can be used by the CA-IDMS/DB central version, CA-IDMS, and
CA-ADS Load modules are stored in the DDLDCLOD area of the data dictionary.
Map, table, and help load modules are established in the data dictionary in the
following ways:

» The GENERATE clause of the ADD TABLE statement submitted to the
DDDL compiler establishes a loosely coupled edit or code table as a load module
in the data dictionary.

®» The Compile action on the Main Menu establishes a map as aload module in
the data dictionary.

Note: The help load module is created when its corresponding map is compiled.

® The PROCESS=LOAD statement submitted to the CA-IDM S batch utility
establishes a map as a load module in the data dictionary.

Considerations: The following considerations apply to the modification or deletion
of aload module:

® Once aload module has been stored in the data dictionary, only a user with ALL
authority can delete the load module or have it punched to a SY SPCH file.

» When a previously loaded map load module is recompiled, the DCMT VARY
PROGRAM map-name NEW COPY command must be used to ensure that the
new version of the module is loaded in either of the following cases:

— The batch utility is used to recompile the module.

— MAPC is used to recompile the module and the OLM sysgen option NEW
COPY IS N is defined for the online compiler.

For either of the cases specified above, if the DCMT VARY PROGRAM
command is not used and the previous version of the map load module has not
been deleted or overlayed, the old version of the map load module is used.

» When a map is recompiled and the sysgen option is NEW COPY IS N, the load
module should also be varied NEW COPY.

» When a stand-alone edit or code table description is modified, it must be
recompiled by the GENERATE option of the CA-IDD DDDL TABLE statement
if the table load module is to reflect changes in the table definition.

®» When a stand-alone edit or code table load module is modified, the map load
module that uses that table as a linked table must be recompiled if it is to reflect
changes in the table.

A-12 CA-IDMS Mapping Facility

A.3 Data Dictionary Entities Updated by Mapping Compilers

A.3 Data Dictionary Entities Updated by Mapping Compilers

At map generation, the batch and online compilers update the dictionary by adding,
modifying, or deleting map occurrences and load modules and by establishing links
between maps and dictionary entities that the maps access. For example, a record is
updated to reflect the use of that record by the map. While the map occurrence exists
in the dictionary, the record cannot be deleted.

The mapping facility batch and online compilers establish and maintain map and panel
occurrences by updating the following data dictionary records:
= MAP-098 occurrences represent map occurrences.

. MAPRCD-125 occurrences relate CA-IDMS maps to a schema or work record
that the map uses.

. MAPFLD-124 occurrences represent map field occurrences.
» PANELFLD-121 occurrences represent panel field occurrences.

» PFLD-DATA-147 occurrences are logical extensions of PANELFLD-121
occurrences that contain device-dependence tables for panel fields.

® PROG-051 occurrences represent maps as programs in the data dictionary; a flag
in the record indicates that the record is a map.

= MODMAP-195 occurrences relate CA-IDMS maps to edit and code tables and to
modules containing help text.

These data dictionary records are shown in the following table along with the
CA-IDMS statements and operations that update each record in the data dictionary:

A.3.1.1 Map Compiler Statements

PANEL PFLD MAP MAP MFLD (AUTO-
MFLD AUTO- PANEL)
PANEL

MAP-098 X X
MAPPRCD-125 X X
MAPFLD-124 X X
PANEL-118 X

PANELFLD-121 X X
PFLD-DATA-147 X

PROG-051

DDLDCLOD
AREA

Appendix A. Integrated Data Dictionary Mapping Entities A-13

A.3 Data Dictionary Entities Updated by Mapping Compilers

PANEL PFLD MAP MAP MFLD (AUTO-
MFLD AUTO- PANEL)
PANEL

Map Utility X
Load statement

A.3.1.2 Online Mapping Compiler Screens

Initial Added Correct/ Field Field Extend
Definit Records Incorrect Select Edit Field
Edit

MAP-098 X X X F

MAPRCD-
125

MAPFLD- F X X
124

PANEL- X
118

PANEL- X F X X
FLD-121

PFLD- X F X X
DATA-147

PROG-051 G

DDLDCLOD G
AREA

* F indicates records updated on FINISH or GENERATE.
G indicates records updated on GENERATE only.

»> [For a detailed description of data dictionary records, see the CA-IDMS Dictionary
Structure Reference Guide.

A-14 CA-IDMS Mapping Facility

A.4 Critical Changes

A.4 Critical Changes

A critical change is one that requires entities that use or are used by the changed
entity to be recompiled. The date/time stamps will be in conflict until all necessary
entities are recompiled. If the date/time stamp for a map load module conflicts with
the date/time stamp of a dialog or program that uses the map load module, an error
results.

What is a Critical Change?: The following types of changes, which are
considered critical, update the date/time stamps for panel and map occurrences:

Adding a variable field to a map/panel

Deleting a variable field from a map/panel
» Changing a pageable map to a nonpageable map, or vice versa

Changing the version of a record

To update the date/time stamp for the map load module and incorporate the critical
changes that were made, recompile the map load module.

What to Recompile: The following entities must be recompiled when a map load
module is recompiled due to a critical change:

n CA-ADS diaogs (if any) that use the map
m Application programs (if any) that use the map

The developer can identify the dialogs and programs that have been compiled against a
map by displaying the map occurrence with CA-IDD.

When a developer copies a map and optionally edits existing field definitions for the
newly copied map, it is not considered a critical change. Therefore, the date/time
stamp is the same for the original and the copied map. Alternative maps must all have
the same date/time stamp.

CAUTION:
If a developer copies a map and then moves the fields to different positions, it is
considered a critical change.

» For more information on alternative maps, see Appendix F, “Alternative Maps’ on
page F-1.

IDD produces a list of maps that must be recompiled when CA-IDD is used to modify
a record such that map recompilation is necessary. The list of maps is followed by a
message that informs the developer if dialogs and programs that use the map need to
be recompiled when the map is recompiled.

IDD modifications and regeneration/recompilation requirements for maps and programs
are summarized in the following table.

Appendix A. Integrated Data Dictionary Mapping Entities A-15

A.4 Critical Changes

For details concerning the modification of records and record elements, see the
CA-IDMS DD DDDL Reference Guide.

M odification Required Maps Required
Dialogs/Programs

PICTURE X X
USAGE X X
REDEFINES X X
OCCURS count X X
SIGN X X
EDIT TABLE X

CODE TABLE X

EXTERNAL PICTURE X

RECORD ELEMENT X X

specification

A-16 CA-IDMS Mapping Facility

A.5 Coordinated Use of the Online and Batch Compilers

A.5 Coordinated Use of the Online and Batch Compilers

Use of the online mapping compiler, the batch compiler, and the batch utility can be
coordinated to develop and maintain maps. The relationships among the data
dictionary, batch compiler, batch utility, and the online compiler are illustrated in the
following figure:

MAP SOURCE
STATEMENTS

BATCH
COMPILER

DATA
DICTIONARY

DDLDML AREA

PANEL AND oLM

MAP
OCCURRENCES

BATCH LOAD

—

DDLDCLOD AREA

MAP and HELP

LOAD GENERATE

UTILITY

MODULES

R

DECOMPILE/
TERSE MAP SOURCE
STATEMENTS
I
PANEL AND MAP
REPORT/IMAGE REPORTS AND
SCREEN IMAGES

For example, a map developer might perform the following sequence of actions to
coordinate the use of the online compiler, the batch compiler, and the batch utility:

1. Develop a new map by using the online compiler

2. Revise the map in response to a mgjor revision of a data dictionary entity by
performing the following actions:

a

Obtain map source statements by using the DECOMPILE or TERSE process
of the batch utility

Delete the occurrences and load module for the map by using the online
compiler

Update the decompiled source statements, as necessary

Appendix A. Integrated Data Dictionary Mapping Entities A-17

A.5 Coordinated Use of the Online and Batch Compilers

d. Compile the updated source code, redefining the map

e. Generate a load module for the updated map by using the LOAD process of
the batch utility

The following considerations apply to the coordinated use of the mapping compilers:

. The online compiler can be used to modify or delete a batch-generated map
under the following conditions:

— The name of the map panel is composed of the map name and the suffix
-OLMPANEL.

— The map does not define device groupings.

— The map does not contain device specifications for devices smaller than
24X80.

® The batch compiler and utility can be used to decompile, revise, and recompile a
map created by the online compiler. Panels created by the online compiler are
processed automatically by the map utility REPORT and DECOMPILE processes,
the panel need not be explicitly named.

DECOMPILE or TERSE move the definition of a map from one dictionary to
another. The map can then be recompiled on the target dictionary. A map load
module can be moved from one load area to another (or to a load library) using
the DDDL PUNCH command, but programs and dialogs cannot be compiled
against a map for which there is no source definition in the DDLDML area of the
dictionary.

A-18 CA-IDMS Mapping Facility

Appendix B. Using Glass TTY Terminals

B.1 Overview B-3
B.2 TTY Environment B-4
B.3 Restrictions B-6
B.4 Preparing Device Independence Statements B-7
B.5 RHDCTTBL JCL and Execution B-14
B.51 OS/390JCL B-14
B.52 VSE/ESA JCL B-15
B.53 VM/ESAJCL B-16
B.54 BS2000/0SD JCL B-17

Appendix B. Using Glass TTY Terminals B-1

B-2 CA-IDMS Mapping Facility

B.1 Overview

B.1 Overview

Most maps prepared by using the online or batch compiler and utility can be displayed
on a visual-display teletypewriter termina (glass TTY). Before attempting to map to
or fromaglass TTY, the user must prepare a device independence table for the given
TTY, as described throughout this appendix.

Note: Key names and control codes discussed in this appendix do not apply to all
glass TTY terminals. Documentation of a given TTY termina should be consulted to
verify the keys and codes used by that terminal.

Types of Tables: Severa different device independence tables can be created at a
site, as described below:

= A unique device independence table may have to be created for each type of glass
TTY termina available at a site. In other cases, a given device independence
table can be used for a group of terminals.

» Different device independence tables can be created for the same type of TTY if,
for example, some users need to see different attribute byte symbols on their TTY
screens or are accustomed to associating different functions with particular
function keys.

At the beginning of a terminal session, the operator loads a specific device
independence table by using the DCUF SET SCREEN statement. The RHDCTAPR
module uses the specified TTY device independence table during runtime.

» For more information about the DCUF SET SCREEN statement, refer to CA-IDMS
System Generation.

Steps: To create a device independence table, the user must perform the following
steps:
1. Prepare statements that establish data conversion information for the given TTY.

2. Assemble and link those statements into an RHDCTTBL module and execute the
module.

These steps are discussed separately below, following information about the TTY
environment and the restrictions imposed on mapping by TTY limitations.

Note: Throughout this appendix, both 3270- and 3279-type terminals are referred to
as 3270-type terminals.

Appendix B. Using Glass TTY Terminals B-3

B.2 TTY Environment

B.2 TTY Environment

Cursor Position: Cursor position on mapout is specified in the map-definition. A
mapout operation writes a map to the TTY and positions the cursor as it would be
positioned on a 3270-type terminal.

Attribute Byte: Each field on mapout is physically preceded by an invisible
attribute byte. A display symbol for the attribute byte can be defined in a device
independence table. Attribute byte symbols can be used to mark the location of the
field and to inform the operator whether the field is unprotected, delimited, blank and
protected, or in error. Default attribute byte symbols are presented in the following
table:

Default symbol Meaning

+ Unprotected fields

! Blank, protected field
* Delimited field

? A field in error

The attribute byte symbols that are defined in a device independence table provide the
terminal operator with information about a given field. The symbols that are presented
in this table can be overridden when a device independence table is generated.

Protected Fields: TTY terminals do not physically protect fields; the operator can
key characters into any location on the map. Data keyed into a field that is defined as
an UNPROTECTED field is transmitted and processed as usual. Data is ignored on
mapin if it is typed into a field that is designated as PROTECTED or into a portion of
the map on which no fields are defined.

Keys: Each termina defines the keys or key sequences that cause the cursor to be
moved on the screen. Terminal-defined key associations must be repeated in a device
independence table that is generated for a given terminal. The key assignments
presented in the table below are typical for some glass TTY terminals. Documentation
for any given terminal should be consulted for the cursor-movement key assignments
that are valid for that terminal.

Typical Cursor Movement Keys: A device independence table specifies the
terminal-defined keys or key sequences that are used to move the cursor on the screen.
The TTY key associations presented in this table are typical of some glass TTY
terminals. Documentation for any given terminal should be consulted for the
cursor-movement key assignments that are valid for that terminal.

Default TTY key Function

<CtrI>H Cursor-left

B-4 CA-IDMS Mapping Facility

B.2 TTY Environment

Default TTY key Function
<Ctrl>J Cursor-down
<Ctrl> K Cursor-up
<Ctrl> L Cursor-right
<Ctrl> <Home> Home

TTY control keys can be defined to act like 3270-type attention keys. Attention key
assignments that are typical for some glass TTY terminals are listed in the table below.
Documentation for any given termina should be consulted for the attention key
assignments that are valid for that terminal.

3270 Key Typical function Default Statement = hex-value-a
of the 3270 key TTY Key
<Enter> Send data to host Return CENTER=0D
<Clear> Return to higher <Ctrl>Zz CCLEAR=1A
level
<PF1> Help <Ctrl> F CPF1=06
<PF2> <Ctrl> | CPF2=09
<PF3> <CtrI> R CPF3=12
<PF4> <CtrI> S CPF4=13
<PF5> <Ctrl>T CPF5=14
<PF6> <Ctrl>U CPF6=15
<PF7> Display previous <Ctrl>V CPF7=16
page
<PF8> Display next page <Ctrl>W CPF8=17
<PF9> Swap screens <Ctrl> X CPF9=18
<PA1> Refresh screen <Ctrl>Y CPA1=19

The operator pressesa TTY key or key sequence to invoke the 3270-type function
associated with the key in the device independence table. The right-hand column of
this table presents the RHDCTTBL statements that establish these particular key
relationships.

Appendix B. Using Glass TTY Terminals B-5

B.3 Restrictions

B.3 Restrictions

TTY limitations impose the following restrictions on maps:

® Maps that contain fields that wrap around from the bottom to the top of the screen
are not supported. A map is not a wraparound map if only the cursor returns to
the upper left from the lower right coordinate at runtime.

® The last position on the screen is unavailable. For example, data cannot be
mapped to or from the position 24,80 on a 24X 80 screen.

. Maps with overlapping fields are not supported.

The following restrictions should also be noted:

m TTY keys that do not put control codes into the data stream (such as
SHIFT/CLEAR and CTRL/Q) should not be used, since RHDCTAPR registers
user activity according to the control codes it receives.

» The online mapping compiler can only be run at a 3270-type terminal.

= A map generated through either batch or the online mapping compiler can be
displayed on TTY and 3270-type terminals under the following conditions:

— A map that is wider than a given screen can not display on that screen.

— A map can only display at a terminal if the screen size for the terminal is
specified in the map-definition. A TTY usualy has a size of 24X80.

— A map can only display at aTTY terminal if the existing device independence
table for the TTY terminal is specified at the beginning of the terminal
session.

B-6 CA-IDMS Mapping Facility

B.4 Preparing Device Independence Statements

B.4 Preparing Device Independence Statements

The #TTYDIT macro is the core of the RHDCTTBL utility used to create TTY tables.
Through it, the user defines the TTY environment and establishes protocol information.

Protocol coding is accomplished by editing the RHDCTTBL program which contains
the #TTYDIT macro. The RHDCTTBL program is delivered with the tape and is
installed in the source library. Assembling the RHDCTTBL program creates the TTY
protocol device independence table. Executing the RHDCTTBL program adds the
device independence table to the load area.

Sample assembly and execution JCL are provided later in this section. Syntax for
#TTYDIT macro statements is shown below:

»——— #TTYDIT ACTION = ADD NAME = table-name >
4E MODIFY El
DELETE

" L ROW = T gzw<number‘ j_J]
L coL = T gg1:mn-number j-J]
- L SSIZE = T gggo:d-siz;,—J]
- L BUFL = T gggfir-siz;,——‘]

L SUPF = _E hex-value

4E «

\ 4

\4

L SPRF = —[hex-value

5A «

\ 4

\4

L DELM = hex value

rexcialie 7

\ 4

\4

L FERR = hex value
6F «

Appendix B. Using Glass TTY Terminals B-7

B.4 Preparing Device Independence Statements

A\

v

L _
HMRW = _E row-number
01 «
> B 3 >
HMCL = _E column-number j—‘
01 «
> |_ 3 il—‘ >
KYBD = _E N
Y «
» |_ i} jJ >
ASKI = —E N
Y «
> I_ i} >
ALRM = _E hex-value :,—‘
07 «
> I_ i} >
UNLK = _E hex-value :,—‘
0O «
| 2 |_ C i} >
THM = _E hex-value :,—‘
1E «
| 2 |_ i} >
UPLN = _E hex-value :,—‘
0B «
> I_ i} >
DNLN = _E hex-value :,—‘
0A «
> I_ i} >
FRSP = _E hex-value :,—‘
0C «
> |_) >
BKSP = _E hex-value :’—J
08 «

L ESC = _E hex-value

1B «

L _
CCLEAR = _[hex-value
1A «

L _
CENTER = _[hex-value
0D «

B-8 CA-IDMS Mapping Facility

B.4 Preparing Device Independence Statements

\ 4
\4

L CPOSn = hex-value _

\ 4

v

L CPFn = hex-value _

L CPAn = hex-value _

L PCURn = hex-value _

\
\4

L PCLR = —[hex-value va]ue

\ 4

v

L
PDROW = —[
N «
- T heculue
ROWDELM = hex-value
00 «
L -
PDCOL = —[Y
N «

- L J_I
COLDELM = _E hex-value
00 «

L
DECIMAL = —[
N «

#TTYDIT ACTION=ADD/MODIFY/DELETE
Specifies the action to be taken:

\ 4

v

y
v

®m ADD specifies that a new device independence table is to be created. ADD is
the default specification if no table with the specified name exists.

» MODIFY specifies that the named device independence table is to be
modified. MODIFY is the default specification if the named table already
exists.

» DELETE specifies that the named device independence table is to be deleted.

NAME= table-name
Specifies a 3-character name suffix for the table. The table is known to
CA-IDMS as $TTY @table-name. The default for table-name is ADM.

ROW=row-n
Specifies the number of screen rows on the given type of glass TTY terminal.
The default for row-n is 24.

COL=column-n
Specifies the number of screen columns on the given type of glass TTY terminal.
The default for column-n is 80.

Appendix B. Using Glass TTY Terminals B-9

B.4 Preparing Device Independence Statements

SSIZE=record-size-n
Specifies the size, in bytes, of the area in program variable storage that stores all
data to be transmitted. The default for record-size-n is 900.

BUFL =buffer-size-n
Specifies the size, in bytes, of the TTY inbound buffer. The default for
buffer-size-n is 500.

SUPF=hex-value-a
Specifies the character attribute symbol that marks the start of an unprotected field
on the TTY screen. The value for hex-value-a must be supplied in hexadecimal
format. The default for hex-value-a is the plus sign (+); hex 4E.

SPRF=hex-value-a
Specifies the character attribute symbol that marks the start of a blank protected
field on the TTY screen. The default is 5A.

Note: Any character, including a space character, can be specified for SUPF,
SPRF, DELM, and/or FERR. The same character can be specified for more than
one attribute symbol.

DEL M=hex-value-a
Specifies the character attribute symbol that marks the location of the delimit
character on a delimited field. The value for hex-value-a must be supplied in
hexadecimal format. The default for hex-value-a is the asterisk (*); hex 5C.

FERR=hex-value-a
Specifies the character attribute symbol that marks a data field containing
erroneous input (as determined by automatic editing or by a user edit module).
The value for hex-value-a The default for hex-value-a is the question mark (?);
hex 6F.

HMRW=row-number-n
Specifies the 2-digit coordinate for the cursor home row. The default for
row-number-n is O1.

HM CL =column-number-n
Specifies the 2-digit coordinate for the cursor home column. The default for
column-number-n is 01.

KYBD=N/Y
Specifies whether the host should send the control code defined by the UNLK
statement to the terminal to unlock the keyboard. Y (the default) specifies that it
is necessary to send an unlock character to the terminal. Any other response
suppresses the unlock code and should be used when the keyboard does not lock
or when the terminal does not recognize an unlock code.

ASKI=N/Y
Specifies whether control codes in subsequent statements specify ASCII or
EBCDIC codes; it is not permissible to mix ASCII and EBCDIC codes in a given
table specification. Y (the default) indicates that all control codes in the table
specification are in ASCII; any other response indicates that al subsequent control
codes are in EBCDIC.

B-10 CA-IDMS Mapping Facility

B.4 Preparing Device Independence Statements

ALRM =hex-value-a
Specifies the hex control code to ring the terminal alarm. The default for
hex-value-a is 07 (the ASCII mnemonic for this code is BEL).

UNLK=hex-value-a
Specifies the hex control code to unlock the keyboard. The default for
hex-value-a is OE (the ASCII mnemonic for this code is SO).

CTHM =hex-value-a
Specifies the hex control code that returns the cursor to the home position, as
defined by the HMRW= and HMCL = statements presented above. The default for
hex-value-a is 1E (the ASCII mnemonic for this code is RS).

UPL N=hex-value-a
Specifies the hex control code for upward cursor movement (cursor up). The
default for hex-value-a is OB (the ASCIlI mnemonic for this code is VT).

DNL N=hex-value-a
Specifies the hex control code for downward cursor movement (cursor down).
The default for hex-value-a is OA (the ASCII mnemonic for this code is LF).

FRSP=hex-value-a
Specifies the hex control code for forward cursor movement (cursor right). The
default for hex-value-a is OC (the ASCII mnemonic for this code is FF).

BK SP=hex-value-a
Specifies the hex control code for backward cursor movement (cursor left). The
default for hex-value-a is 08 (the ASCII mnemonic for this code is BS).

ESC=hex-value-a
Specifies the hex control code for the ESC (ESCAPE) key. The default for
hex-value-a is 1B (the ASCII mnemonic for this code is ESC).

CCLEAR=hex-value-a
Specifies the hex control code that functions as the 3270 clear key aid byte. The
default for hex-value-ais 1A (the ASCII mnemonic for this code is SUB).

CENTER=hex-value-a
Specifies the hex control code for the RETURN (ENTER) key. The default for
hex-value-a is OD (the ASCII mnemonic for this code is CR).

CPOSNn= hex-value-a
Where n is an integer from 1 to 80, specifies the hex control codes for absolute
cursor positions. Each code specifies a unique row/column screen location.

CPFn=hex-value-a
Where n is an integer from 1 to 24, specifies hex control codes for control keys.
The control code specified for CPF1 is trandated to respond as though PF1 were
pressed on a 3270-type terminal; the control code for CPF2 functions as PF2; the
control code for CPF3 functions as PF3; and so forth.

Default values for hex-value-a are presented in the table located at the end of
this section. To override either a default or user-specified setting, the user must
specify both a new code and a null value for the given setting.

Appendix B. Using Glass TTY Terminals B-11

B.4 Preparing Device Independence Statements

CPAn=hex-value-a
Where n is an integer from 1 to 3, specifies hex control codes for control keys
that correspond to the PA keys on 3270-type terminals. The default value for
CPA1 is 19, which corresponds to CTRL/Y in ASCII. There are no defaults for
CPA2 and CPA3. To override either a default or user-specified setting, the user
must specify both a new code and a null value for the given setting.

PCURN=hex-value-
Where n is an integer from 1 to 3, specifies the hex control codes for the leading
control bytes in the cursor positioning protocol. The value specified for PCUR1 is
the first byte in the protocol; PCUR2 specifies the second byte; and PCUR3
specifies the third byte (if any). If all three PCUR statements are assigned values,
there will be three leading control bytes and PCURLEN must be set to 3. The
default for PCURL is 1B (ESC in ASCII) and the default for PCUR2 is 3D (= in
ASCII). Thereis no default for PCUR3. The leading position cursor protocol is
combined with the row/column delimit protocol (if any) to position the cursor
during execution of the application program.

PCL R=hex-value-a
Specifies the hexadecimal control code that clears the screen. This is the protocol
transmitted to the TTY terminal. The default for hex-value-a is 1A; (the ASCII
mnemonic for this code is SUB).

PDROW=Y/N
Specifies whether protocol is needed to delimit the row parameter of the position
cursor protocol. N (the default) indicates that protocol is not required.

ROWDEL M=hex-value-a
Specifies the hex control code that is the protocol required to delimit the row
parameter of the position cursor protocol. This value is used only if PDROW is
specified as Y. The default for hex-value-ais 00.

PDCOL=Y/N
Specifies whether protocol is needed to delimit the column parameter of the
position cursor protocol. N (the default) indicates that protocol is not required.

COLDELM=hex-value-a
Specifies the hex control code that is the protocol required to delimit the column
parameter of the position cursor protocol. This value is used only if PDCOL is
specified as Y. The default for hex-value-ais 00.

DECIMAL=Y/N
Specifies whether the protocol to position the cursor requires decimal numbers for
the row/column parameters. N (the default) indicates that row/column is specified
in hexadecimal format and that CPOSnh values are to be used. Y indicates that
row/column is specified in decimal format and that specified CPOSnh values are
not to be used. If Y is specified, the row/column numbers are converted to
decimal numbers from the 3270 data stream by the glass TTY runtime system.

Absolute Cursor Positions: Each default hex-value-a value in the following table
specifies a single row/column screen position for internal use. The ASCII values
presented in this table are typical absolute cursor position values. Documentation for

B-12 CA-IDMS Mapping Facility

B.4 Preparing Device Independence Statements

any given terminal should be consulted for the absolute cursor position values that are
valid for that terminal.

CPOS= hex CPOS= hex CPOS= hex CPOS= hex
-value -value -value -value -a
-a -a -a
1 20 21 34 41 48 61 5C
2 21 22 35 42 49 62 5D
3 22 23 36 43 4A 63 5E
4 23 24 37 44 4B 64 5F
5 24 25 38 45 4c 65 60
6 25 26 39 46 4D 66 61
7 26 27 3A 47 4E 67 62
8 27 28 3B 48 4F 68 63
9 28 29 3C 49 50 69 64
10 29 30 3D 50 51 70 65
11 2A 31 3E 51 52 71 66
12 2B 32 3F 52 53 72 67
13 2C 33 40 53 54 73 68
14 2D 34 41 54 55 74 69
15 2E 35 42 55 56 75 6A
16 2F 36 43 56 57 76 6B
17 30 37 44 57 58 77 6C
18 31 38 45 58 59 78 6D
19 32 39 46 59 5A 79 6E
20 33 40 47 60 5B 80 6F

Appendix B. Using Glass TTY Terminals B-13

B.5 RHDCTTBL JCL and Execution

B.5 RHDCTTBL JCL and Execution

RHDCTTBL must be assembled and linked each time it is executed to create or update
a device independence table. The JCL necessary to assemble, link, and execute the
RHDCTTBL module is presented below:

»> Thisis an SMP module. Refer to the section on system modification in the
CA-IDMS installation manual for your operating system.

B.5.1 OS/390 JCL

EXEC ASMFCL
//ASM.SYSLIB DD DSN=idms.maclib,DISP=SHR
DD DSN=sys1.maclib,DISP=SHR
//ASM.SYSIN DD *
rhdcttbl source statements
//LKED.SYSLMOD DD DSN=idms.loadlib,DISP=SHR
//LKED.SYSIN DD =
INCLUDE SYSLMOD(RHDCTTBL)
INCLUDE SYSLMOD(IDMSUTIO)
INCLUDE SYSLMOD(IDMS)
INCLUDE SYSLMOD (IDMSDATE)
ENTRY TTBLEP1
NAME RHDCTTBL (R)
// EXEC PGM=RHDCTTBL
//STEPLIB DD DSN=idms.load1ib,DISP=SHR
//SYSLST DD SYSOUT=A
//sysctl DD DSN=idms.sysctl,DISP=SHR

idms.maclib Data set name of CA-IDMS macro library
sys.maclib Data set name of system macro library
idms.loadlib Data set name of CA-IDMS load library
sysctl DDname of the SYSCTL file

idms.sysctl Data set name of SYSCTL

B-14 CA-IDMS Mapping Facility

B.5 RHDCTTBL JCL and Execution

B.5.2 VSE/ESA JCL

// OPTION CATAL
PHASE RHDCTTBL,*
// EXEC ASMA90
rhdcttbl source statements
/*

INCLUDE IDMSUTIO
INCLUDE IDMSDATE
INCLUDE IDMS
ENTRY TTBLEP1

// EXEC LNKEDT

/*

// UPSI b

// EXEC RHDCTTBL

1o

Appropriate UPS| switch, 1-8 characters, if specified in
the IDMSOPTI module

Appendix B. Using Glass TTY Terminals B-15

B.5 RHDCTTBL JCL and Execution

B.5.3 VM/ESA JCL

GLOBAL MACLIB IDMSLIB CMSLIB OSMACRO
FILEDEF TEXT DISK ttbl TEXT a3
ASSEMBLE usersrc (NODECK OBJECT PRINT NOTERM
TXTLIB DEL utextlib ttbl
TXTLIB ADD utextlib ttbl
FILEDEF SYSLST PRINTER
FILEDEF SYSLMOD DISK uloadlib LOADLIB a6
(RECFM V LRECL 1024 BLKSIZE 1024
FILEDEF objlib DISK utextlib TXTLIB a
FILEDEF objlibl DISK IDMSLIB1 TXTLIB A2
GLOBAL LOADLIB uloadlib
LKED linkctl (LET LIST MAP XREF NCAL RENT NOTERM PRINT SIZE 512K 64K

linkage editor control statements (Iinkctl)

INCLUDE objlib (ttbl)
INCLUDE objlibl (IDMSUTIO)
INCLUDE objlibl (IDMS)
INCLUDE objlibl (IDMSDATE)
ENTRY TTBLEPL

NAME RHDCTTBL(R)

FILEDEF CDMSLIB DISK IDMSLIB LOADLIB A6
GLOBAL LOADLIB IDMSLIB
OSRUN RHDCTTBL

ttbl TEXT a3 Filename, filetype, and filemode of the file that
contains the generated assembled text

usersrc Filename of the file containing user source code

utextlib Filename of the user text library

uloadlib LOADLIB a6 Filename, filetype, and filemode of the user load library

objlib DDname of the user object library

objlibl DDname of the first CA-IDMS/DB object library

linketl Filename of the file that contains the linkage editor

control statements

B-16 CA-IDMS Mapping Facility

B.5 RHDCTTBL JCL and Execution

B.5.4 BS2000/0SD JCL

/ADD-FILE-LINK L-NAME=ALTLIB,F-NAME=idms.maclib
/ASSIGN-SYSDTA TO=+SYSCMD

/START-ASSEMBH

//COMPILE SOURCE=srcfile

// ,MACRO-LIB=+*LINK(ALTLIB)

// ,COPY-LIB=*LINK(ALTLIB,MACRO-ONLY)

// ,COMP-ACT=MOD-GEN (MODULE-FORMAT=0M)

// ,MOD-LIB=idms.obj1ib.user(ELEM=RHDCTTBL)
// ,COMPILER-TERMINATION= (MAX-ERROR-NUMBER=0)
//END

/REM-FILE-LINK ALTLIB

/START-BINDER

//START-LLM-CREATION INTERNAL-NAME=RHDCTTBL
//INC-MOD LIB=idms.obj1ib.user,ELEM=RHDCTTBL
//INC-MOD LIB=idms.loadlib,ELEM=IDMS
//INC-MOD LIB=idms.loadlib,ELEM=IDMSUTIO
//INC-MOD LIB=idms.loadlib,ELEM=IDMSDATE

//SAVE-LLM LIB=idms.loadlib.user,ELEM=RHDCTTBL(VER=@),0VER=YES

// ,ENTRY-POINT=IDMSENTR

//END

/ADD-FILE-LINK L-NAME=CDMSLIB,F-NAME=idms.dba.loadlib
/ADD-FILE-LINK L-NAME=CDMSLIB1,F-NAME=idms.loadlib
/ADD-FILE-LINK L-NAME=CDMSLODR,F-NAME=idms.load1ib

/ADD-FILE-LINK L-NAME=sysctl,F-NAME=idms.sysctl,SHARED-UPD=+YES

/START-PROG *MOD (ELEM=RHDCTTBL,LIB=idms.load1ib.user,RUN-MODE=*ADV)

idms.maclib

Filename of CA-IDMS/DB macro library

srcfile

Filename of the file containing RHDCTTBL source
statements

idms.objlib.user

Filename of user object library

idms.loadlib

Filename of CA-IDMS/DB load library

idms.loadlib.user

Filename of user load library

sysctl

Linkname of SYSCTL file

idms.sysctl

Filename of SYSCTL file

Appendix B. Using Glass TTY Terminals B-17

B-18 CA-IDMS Mapping Facility

Appendix C. User-Written Edit Modules

Cl Overview e C-3
C.2 Coding considerations C-4
C.2.1 Registers Immediately Prior to User Edit Module C-4
C.22 System Macros C5
C.221 #START MaCro it C-5
C.222 #RTN MaCro C-6
C.23 System DSECTS o C-6
C.3 Input Modules for Mapin Operations C-8
C31 Formatof Data C-8
C.3.2 Parameters Passed to Input Modules C-8
C.3.3 Macrosfor Input Modules C-9
C.3.4 Samplelnput Module C-10
C.4 Output Modules for Mapout Operations C-14
C4l Formatof Data C-14
C.4.2 Parameters Passed to Output Modules C-15
C.4.3 Macros for Output Modules C-15
C.4.4 Sample Output Module C-15

Appendix C. User-Written Edit Modules C-1

C-2 CA-IDMS Mapping Facility

C.1 Overview

C.1 Overview

Definition: A user-written edit module is a program module that can be used to
supplement or replace automatic editing and error handling on mapin and/or mapout.
A user-written edit module should be used only when it performs an operation that is
not available through the automatic editing and error handling features that the
CA-IDMS mapping facility provides.

Steps: The following steps are involved in writing and using a user-written edit
module:

1. Planning and coding the module
2. Preprocessing, compiling, and link editing the module

3. Specifying the module for use by the CA-IDMS mapping facility

Specifying an Existing Module: An existing module is specified for use during
runtime mapping by using either the online compiler or the batch compiler of the
CA-IDMS mapping facility:

= The online mapping compiler User-Defined Edit Module screen can be used to
specify a user-written edit module, as explained in the documentation of that
screen in Chapter 11, “Batch Compiler Statements’ on page 11-1.

® The batch compiler MFLD (for MAP AUTOPANEL) and MFLD statements can
be used to specify a user-written edit module, as explained in the documentation
of either statement in Chapter 11, “Batch Compiler Statements’ on page 11-1.

User-written edit modules must be written in Assembler. Preprocessing, compiling,
and link editing of Assembler modules is detailed in the CA-IDMS DML Reference -
Assembler. Planning and coding considerations that apply to all user-written edit
modules are presented below, followed by considerations that apply specifically to
either mapin or mapout operations.

Appendix C. User-Written Edit Modules C-3

C.2 Coding considerations

C.2 Coding considerations

User-written edit modules for the CA-IDMS mapping facility are not CA-IDMSDC
exits, CA-IDMS/DC controls the execution of the user-written edit module.

Since user-written edit modules are considered subroutines by Runtime mapping, they
do not receive storage protection in the same manner as application programs. It is
advisable to conform to the register usage demonstrated in this appendix when coding
and testing user edit modules so that user edit modules do not modify system storage
aress.

The following points, which are discussed separately below, should be considered
when planning a user-written edit module for mapin or mapout operations:

» Registers immediately prior to user edit-module execution

® System macros that must be included in user edit modules

m System DSECTS that are used by user edit modules

C.2.1 Registers Immediately Prior to User Edit Module

Registers 2-12: The online compiler saves the contents of registers two through
twelve in a save area prior to calling a user-written edit module. The save areais
configured as shown in the following table. The register values stored in the save area
are passed back to the appropriate registers after the user-written edit module finishes

executing.

Word Contents

1 The return value from the #START macro (discussed later in this
section); register 12 points to this word on entry to the user edit module

2 The value from register 11

3 The value from register 12 (not the register 12 value passed to the user
edit module)

4 The value from register 2

5 The value from register 3

6 The value from register 4

7 The value from register 5

8 The value from register 6

9 The value from register 7

10 The value from register 8

11 The value from register 9

C-4 CA-IDMS Mapping Facility

C.2 Coding considerations

Word Contents

12 The value from register 10

13 The address of word 1 of this save area

14 The start of the 18-word save area for the user edit module; register 13

points to this word on entry to the edit module

Registers 1 and 13-15: Registers 1 and registers 13 through 15 are used for
communication:

® R1 contains the address of the parameter list passed by Runtime mapping to the
user-written edit module.

® R13 contains the address of the 18-word save area reserved for the user-written
edit module to use.

® R14 contains the address to return at end of processing.

® R15 contains the address of the user-written edit module entry point.

C.2.2 System Macros
User-written edit modules should begin with the #START macro and exit with the
#RTN macro. Modules that do not include these macros must include code that
performs the equivalent functions.
The #START and #RTN macros are presented separately below.

C.2.2.1 #START Macro
The #START macro indicates the start of a routine. #START sets up addressability
for the issuing program, using register 12 as the base register. #START must be the

first instruction in a user-written edit module that uses CA-IDMS calling conventions.

Syntax

»»—— Tabel

\ 4
A

L INTernal -

L abel
Specifies a label for the entry point established by the #START macro. It is
necessary to specify a label in a #START instruction for a user-written edit
module.

INTERNAL
Prevents the #START macro from generating an entry point. INTERNAL should
not be specified in a user-written edit module.

Sample Instruction: The following sample instruction establishes an entry point
with the name XTEPL:

XTEP1 #START

Appendix C. User-Written Edit Modules C-5

C.2 Coding considerations

»»For further information on the #START macro and the MPMODE parameter,
consult the CA-Systems Operation Manual.

C.2.2.2 #RTN Macro

The #RTN macro terminates a routine and returns control to the calling routine.

#RTN loads the return address from the TCE stack into register 14, adjusts register 13
to point to the top of the currently available position in the stack, and issues a BR 14
instruction. A sample of the code generated by #RTN is presented below:

SH R13,=H'4'

L R13,0(,R13)

L R14,0(,R13)
BR R14

#RTN must be the last instruction executed in a user-written edit module that uses
CA-IDMS calling conventions.

Syntax

»»—— Jlabel

A\
A

Specification of alabel is optional. The following sample instruction establishes the
label RTRN1 for a #RTN macro:

RTRN1 #RTN

C.2.3 System DSECTs

The following table lists the system DSECTS used during execution of a user-written
edit module and the copy book names used to name the DSECTS:

DSECT Copy book name Purpose

Module

IBH COPY #IBHDS Provides the terminal input buffer header
in the buffer chain

MCE COPY #MCHDS Provides the map control element for the
map

MRB COPY #MRBDS Provides the map request block and map
request element for the map

PTE COPY #PTEDS, Provides the physical terminal element

#PTXDS

The macro library installed with CA-IDMS contains all necessary DSECT definitions.

Note: When running your User-Written Edit Modules in SYSTEM MODE, R9 and
R10 must point to the TCE and CSA at the time of any DC request. #CSADS must
be copied in order to utilize it.

C-6 CA-IDMS Mapping Facility

C.2 Coding considerations

» For further information on DSECT definitions, consult the CA-ADS DSECT
Reference Guide.

Appendix C. User-Written Edit Modules C-7

C.3 Input Modules for Mapin Operations

C.3 Input Modules for Mapin Operations

When performed on input, a user-written edit module determines how data is prepared
prior to storage. The module receives data from a map field or from automatic
editing. The following considerations affect the coding of input modules:

» Format of data received and output by input modules
» Parameters passed to input modules
® Macros available for input modules

Each of these topics is discussed separately below, followed by an example of a
user-written edit module for mapin operations.

C.3.1 Format of Data

A user-written edit module can be performed before, instead of, or after automatic
editing. The point at which a user-written edit module is performed affects the format
of data that the module receives and outputs.

Input Data: The user-written edit module must be prepared to receive data in the
format that is appropriate to the point at which the module executes:

» When executed before or instead of automatic editing, a user-written edit
module for mapin operations receives data in external format for the field.

® When executed after automatic editing, a user-written edit module for mapin
operations receives data in internal format for the field.

Output Data: The user-written edit module must output data in the format that is
appropriate to the point at which the module executes:

» When executed before automatic editing, a user-written edit module for mapin
operations must output data in external format for the field. Runtime mapping
repoints the address of the map field to the first byte, permitting automatic editing
to edit the map field into internal format.

» When executed instead of or after automatic editing, a user-written edit module
for mapin operations must output data in internal format for the field.

C.3.2 Parameters Passed to Input Modules

Runtime mapping loads the specified user-written edit module from the CA-IDMS/DC
load library. The address words placed in the parameter list summarized in the table
below are referenced from CA-IDMS/DC off the address passed in register 1.

Address words 9 and 10 are passed in the parameter list for online maps only. They
are not passed for file maps.

C-8 CA-IDMS Mapping Facility

C.3 Input Modules for Mapin Operations

Address word 9 points to the first byte of input data for the field in the work area. If
the user module is used in conjunction with automatic editing, this is the work area
that must be referenced.

m |f the user edit module is executed before automatic editing and the user edit
module changes the input, modifications should be made to the data to which
word 9 points This data will be passed to automatic editing.

» |f the user edit module is executed after automatic editing, word 9 points to the
data that is passed by automatic editing

If automatic editing is not used, the user edit module can access data for the field
using either address word 4, which references the data in the data stream, or address
word 9, which references the data after it is moved to the work area.

Address Data Element
Word

Data field in target data record (output)

Header for the next input buffer in the buffer chain (IBH DSECT)

End of current input buffer

Start of data for the field in the input buffer (data stream)

Map Request Element for the field (MRE DSECT)

Map Control Element for the field (MCE DSECT)
Physical Terminal Element (PTE DSECT)
Map Request Block (MRB DSECT)

Ol | N || B]|W|IDN]|EF

Start of data in the field, in the work area (start of input)

10 Last byte of data for the field, in the work area (end of input)

Note — Address words 9 and 10 are passed in the parameter list of online maps only

Input data can be placed in a single input buffer or can overflow in a chain of
noncontiguous input buffers. The length, in bytes, of the unedited input data is stored
in the MREINLEN field in the Map Request Element (address word 5). The fourth
address word points to the first byte of the input data in the current input buffer.

C.3.3 Macros for Input Modules

The following system macros are available for use in user-written input modules:

This macro Marks a field ...
#SET MRETERR In error by setting the internal MRETERR flag on for
the field.

Appendix C. User-Written Edit Modules C-9

C.3 Input Modules for Mapin Operations

This macro Marks a field ...

#SET MRECHNG As changed by setting the internal MRECHNG flag on
for the field. If automatic editing is not enabled, the
MRECHNG flag will not be set; the user must supply
code to set and later test the flag.

#SET MREERAS As erased by setting the internal MREERAS flag on for
the field.

#SET MRETRUN As truncated by setting the internal MRETRUN flag on
for the field.

#SET MRETDIF As containing data that is different than the data in the

record buffer.

C.3.4 Sample Input Module

What the Sample Input Module does: The sample edit module shown below
verifies dates supplied by the terminal operator and, if necessary, strips out slashes to
make the operator's input conform to mmddyy format. The sample edit module verifies
that the date conforms to the following rules:

® The date must be numeric.
= The month must be from 01 to 12.
n |f the month is 04, 06, 09, or 11, the date must not be greater than 30.
n |f the month is 02, one of the following two rules must be true:
— If aleap year, the day must not be greater than 29.
— If not aleap year, the day must not be greater than 28.
» For all other months, the day must not be greater than 31.
If the Date is in Error: If the sample edit module determines that the date is valid,
the date is transposed from mmddyy to yymmdd format for storage. If the date isin

error, an error indicator is sent to the map. The erroneous date appears on the map as
200000 if the map is redisplayed to the user for correction.

The sample edit module below is not reentrant.

The #MOPT macro that is included in this sample module generates register equates
for use in coding the module, sets up a CSECT name for the module, and includes the
name of the macro and its date/time stamp in future listings of the module. Use of the
#MOPT macro is optional.

Edit modules can be either SYSTEM or USER MODE programs; the majority are
USER MODE. To specify a user-written edit module mode, use the #MOPT macro.
Set the ENV parameter to USER for the USER MODE program or to SYS or

C-10 CA-IDMS Mapping Facility

C.3 Input Modules for Mapin Operations

SYSTEM for SYSTEM MODE. If you do not set the ENV parameter, the defaults
imply that it is set to USER.

If a DC reguest is issued, USER MODE programs need to be link edited with
IDMSBALI or need to issue a #BALI macro within the user-written edit module. If a
DC request is not issued in the program, there is no need to link edit the program with
IDMSBALI or to issue a #BALI macro within the code.

You don't need to link edit SYSTEM MODE edit modules with IDMSBALI or have

the program contact the #BALI macro. However, the CSA DIRECT must be copied
into your code if you issue any DC request. If you issue a DC request, R9 and R10

must point to the TCE and CSA at the time of the request.

Appendix C. User-Written Edit Modules C-11

C.3 Input Modules for Mapin Operations

COPY #CSADS

COPY #MRBDS

#MOPT CSECT=CSYPDTE®,ENV=SYS
DTEONTRY #START MPMODE=ANY
KEKKKKKKKKKKKkKkhkhkkhkkhkkhkkkhkkhkhkkkhkkkkhkkkhkkhkhkkkhkhkkkhkhkkhkhkkhkhkkkhkhkkkhkhkkkhkhkkhkhkkhkhkkkkhkkkkk*
* R1 POINTS TO AN TEN WORD PARAMETER LIST FOR MAPIN AS FOLLOWS: *
* *
* WORDL O(R1) —> ADDRESS OF DATA FIELD IN TARGET DATA RECORD *
* WORD2 4(R1) —> ADDRESS OF HEADER FOR NEXT INPUT BUFFER *
* WORD3 8(R1) — ADDRESS OF END OF CURRENT INPUT BUFFER *
* WORD4 12(R1) — ADDRESS OF START OF INPUT DATA FOR FIELD *
* WORD5 16(R1) — ADDRESS OF MRE *
* WORD6 20(R1) —> ADDRESS OF MCE *
%« WORD7 24(R1) — ADDRESS OF PTE *
* WORD8 28(R1) —» ADDRESS OF MRB *
* WORD9 32(R1) — ADDRESS OF START OF DATA IN THE WORK AREA *
* WORD1O 36(R1) —> ADDRESS OF LAST BYTE OF DATA IN THE WORK AREA =

L R2,0(R1) GET ADDRESS OF DATA FIELD

L R3,32(R1) GET ADDRESS OF INPUT FIELD

L R4,16(R1) GET ADDRESS OF MAP REQUEST ELMT

USING CSA,R10 BASES DC CSA STORAGE

USING MRE,R4 BASES MAPPING MRE BLOCK

LH R6,MREINLEN R6 <- LENGTH OF INPUT FIELD
CHKLEN8 LA R5,8 R5 <- 8

CR R5,R6 LENGTH=8?

BNE CHKLENG NO, CHECK FOR LENGTH=6

CLI 2(R3),C'/' FORMAT OF XX/..... ?

BNE ~ SETERROR NO, SET INPUT ERROR

CLI 5(R3),C'/' FORMAT OF XX/XX/..?

BNE SETERROR NO, SET INPUT ERROR

MVC 2(2,R3),3(R3) MOVE DAYS OVER

MVC 4(2,R3),6(R3) MOVE YEAR OVER

B CHKNUMS GO CHECK FOR NUMERIC CHARACTERS
CHKLEN6 LA R5,6 R5 <- 6

CR R5,R6 LENGTH=6?

BNE SETERROR NO, SET INPUT ERROR
CHKNUMS LR R7,R3 R7 —» FIRST CHARACTER OF DATE

LA R8,6(,R7) R8 — FIRST CHARACTER PAST DATE
CHKNLOOP CLI ~ 0(R7),C'0" CHARACTER LOWER THAN 'FO'?

BL SETERROR YES, SET INPUT ERROR

CLI 0(R7),C'9' CHARACTER HIGHER THAN X'F9'?

BH SETERROR YES, SET INPUT ERROR

LA R7,1(,R7) INCREMENT CHARACTER POINTER

CR R7,R8 END OF DATE?

BL CHKNLOOP NO, CHECK NEXT DATE CHARACTER

CLC 0(6,R3),=C'000000' IS DATE ZERO?

BE FLIPDATE YES, MOVE DATE TO USER RECORD

CLC 0(6,R3),=C'999999' IS DATE ALL NINES?

BE FLIPDATE YES, MOVE DATE TO USER RECORD

CLC 0(2,R3),=C'12' MONTH > 12?

BH SETERROR

CLC 0(2,R3),=C'00" MONTH = 0?

BE SETERROR

CLC 2(2,R3),=C'00" DAY = 0?

BE SETERROR

CLC 4(2,R3),=C'00' YEAR = 0?

00000100
00000200
00000300
00000400
00000500
00000600
00000700
00000800
00000900
00001000
00001100
00001200
00001300
00001400
00001500
00001600
00001700
00001800
00001900
00002000
00002100
00002200
00002300
00002400
00002500
00002600
00002700
00002800
00002900
00003000
00003100
00003200
00003300
00003400
00003500
00003600
00003700
00003800
00003900
00004000
00004100
00004200
00004300
00004400
00004500
00004600
00004700
00004800
00004900
00005000
00005100
00005200
00005300
00005400
00005500
00005600
00005700

C-12 CA-IDMS Mapping Facility

C.3 Input Modules for Mapin Operations

CHK30DAY

CHKLEAP

CHK29DAY

FLIPDATE

SETERROR
RETURN

CLC
BH
B

SETERROR
0(2,R3),=C'04"
CHK30DAY
0(2,R3),=C'06'
CHK30DAY
0(2,R3),=C'09'
CHK30DAY
0(2,R3),=C'11
CHK30DAY
0(2,R3),=C'02'
CHKLEAP
2(2,R3),=C'31"
SETERROR
FLIPDATE
2(2,R3),=C"30"
SETERROR
FLIPDATE

#GETSTK =(2)

PACK
CvB
SR
LA
DR
LTR
BZ
CLC
BH
B
CLC
BH
MvC
MvC

B
#SET
#RTN
END

0(8,R11),4(2,R3)

R9,0(,R11)
R8,R8

R15,4

R8,R15

R8,R8
CHK29DAY
2(2,R3),=C'28'
SETERROR
FLIPDATE
2(2,R3),=C'29'
SETERROR
0(2,R2),4(R3)
2(4,R2),0(R3)
RETURN
MRETERR

DTEONTRY

APRIL?
JUNE?
SEPTEMBER?
NOVEMBER?

FEBRUARY?

YES, CHECK FOR LEAP YEAR

31 DAYS OR FEWER FOR OTHER MONTHS
IF BAD, SET INPUT ERROR

MOVE DATE TO USER RECORD

30 DAYS OR FEWER FOR SOME MONTHS
IF BAD, SET INPUT ERROR

MOVE DATE TO USER RECORD

GET 2 WORDS OF STORAGE (R11 BASED)
PACK THE YEAR

R9 <- CONVERTED BINARY YEAR

R8 <- ZERO

R15 <- 4

DIVIDE YEAR BY 4

ZERO REMAINDER?

YES, CHECK FOR 29 OR FEWER DAYS
28 DAYS OR FEWER FOR NON-LEAP YEAR
IF BAD, SET INPUT ERROR

MOVE DATE TO USER RECORD

29 DAYS OR FEWER FOR LEAP YEAR

IF BAD, SET INPUT ERROR

MOVE YEAR TO USER RECORD

MOVE MONTH AND DAY TO USER RECORD
RETURN

INDICATE INPUT ERROR TO USER

00005800
00005900
00006000
00006100
00006200
00006300
00006400
00006500
00006600
00006700
00006800
00006900
00007000
00007100
00007200
00007300
00007400
00007500
00007600
00007700
00007800
00007900
00008000
00008100
00008200
00008300
00008400
00008500
00008600
00008700
00008800
00008900
00009000
00009600
00009200
00009300

Appendix C. User-Written Edit Modules C-13

C.4 Output Modules for Mapout Operations

C.4 Output Modules for Mapout Operations

When performed on output, a user-written edit module determines how data is
prepared prior to mapout. The module receives data from program variable storage or
from automatic editing. The following considerations affect the coding of output
modules:

» Format of data received and output by output modules
» Parameters passed to output modules

® Macros available for output modules

Each of these topics is discussed separately below, followed by an example of a
user-written edit module for mapout operations.

C.4.1 Format of Data

A user-written edit module can be performed before, instead of, or after automatic
editing. The point at which a user-written edit module is performed affects the format
of data that is received by and output from the module.

Input Data: A user-written edit module for mapout operations must be prepared to
receive data in the format that is appropriate to the point at which the module
executes:

» When executed before or instead of automatic editing, a user-written edit
module receives data in internal format for the field.

» When executed after automatic editing, a user-written edit module receives data
in external format for the field. Data is only passed to the user edit module after
the data has been edited and automatic editing criteria indicate that the data is
correct.

Output Data: A user-written edit module for mapout operations must output data in
the format that is appropriate to the point at which the module executes:

» When executed before automatic editing, a user-written edit module must output
data in internal format for the field. Output data must be returned to program
variable storage from which the data originaly came (address word 1).

» When executed instead of automatic editing, a user-written edit module must
output data in external format for the field. Output data must be placed in the
target field in the output buffer (address word 2).

» When executed after automatic editing, a user-written edit module must output
data in external format for the field (address word 2).

C-14 CA-IDMS Mapping Facility

C.4 Output Modules for Mapout Operations

C.4.2 Parameters Passed to Output Modules

Runtime mapping loads a user-written edit module from the CA-IDMS/DC load
library. The address words that are placed in the parameter list summarized in the
following table are referenced from CA-IDMS/DC off the address passed in register 1.

Address Data Element

Word

1 Data field in the application program data record

2 Target field in the output buffer for edited data

3 Map Request Element for the data field (MRE DSECT)
4 Map Control Element for the data field (MCE DSECT)
5 Physical Terminal Element (PTE DSECT)

6 Map Request Block (MRB DSECT)

The online compiler inserts an attribute byte in the first position of the output screen
buffer.

If the user-written edit module is executed instead of or after automatic editing,
register 1 must be set to point past the final character of the edited data.

Control returns to runtime mapping after the user edit module and automatic editing (if
executed) finish editing the data. The value in register 1 is used to scan for and
eliminate trailing blanks from the edited data if requested by either the BACKSCAN
option of the online compiler Field Edit screen or the BACKSCAN clause of the batch
mapping MFLD statement.

C.4.3 Macros for Output Modules

The system macro #SET MRETERR is available for use in user-written output
modules. #SET MRETERR indicates that a field contains incorrect data by setting the
internal MRETERR flag on for the field.

C.4.4 Sample Output Module

The sample edit module below transposes a 6-digit date from yymmdd to mmddyy
format. The #MOPT macro included in this sample module generates register equates
for use in coding the module, sets up a CSECT name for the module, and includes the
name of the macro and its date/time stamp in future listings of the module. Use of the
#MOPT macro is optional.

Edit modules can be either SYSTEM or USER MODE programs; the magjority are
USER MODE. To specify a user-written edit module mode, use the #MOPT macro.
Set the ENV parameter to USER for the USER MODE program or to SYS or

Appendix C. User-Written Edit Modules C-15

C.4 Output Modules for Mapout Operations

SYSTEM for SYSTEM MODE. If you do not set the ENV parameter, the defaults
imply that it is set to USER.

If a DC request is issued, USER MODE programs need to be link edited with
IDMSBALI or need to issue a #BALI macro within the user-written edit module. If a
DC request is not issued in the program, there is no need to link edit the program with
IDMSBALI or to issue a #BALI macro within the code.

You don't need to link edit SYSTEM MODE edit modules with IDMSBALI or have
the program contact the #BALI macro. However, the CSA DIRECT must be copied
into your code if you issue any DC request. If you issue a DC request, R9 and R10
must point to the TCE and CSA at the time of the request.

Note: It is recommended that this module be performed before automatic editing so
that an external picture can be used to insert slashes (/) into the date to make it

mm/ddlyy.
COPY #CSADS 00000100

COPY #MRBDS 00000200

#MOPT CSECT=CSYPDTE2,ENV=SYS 00000300

DTE2NTRY #START MPMODE=ANY 00000400
00000500

* R1 POINTS TO A SIX WORD PARAMETER LIST FOR MAPOUT AS FOLLOWS: * 00000600
* * 00000700
% WORD1 O(R1) —> ADDRESS OF DATA IN USER'S RECORD BUFFER * 00000800
% WORD2 4(R1) — ADDRESS OF NEXT POSITION IN OUTPUT BUFFER * 00000900
* WORD3 8(R1) —> ADDRESS OF MRE * 00001000
% WORD4 12(R1) —> ADDRESS OF MCE * 00001100
* WORD5 16(R1) — ADDRESS OF PTE * 00001200
% WORD6 20(R1) —> ADDRESS OF MRB * 00001300
00001400

L R2,0(R1) GET ADDRESS OF DATA FIELD 00001500

L R3,4(R1) GET ADDRESS OF NEXT OUTBUF POS 00001600

L R4,8(R1) GET ADDRESS OF MRE 00001700

USING MRE,R4 00001800

USING CSA,R10 00001900

#TEST MRETERR,OFF=FLIPDATE ARE WE IN AN ERROR CYCLE ? 00002000

MvC 0(6,R3),=C'?700000" MOVE ERROR FIELD TO BUFFER 00002100

B RETURN 00002200

FLIPDATE MVC 0(2,R3),2(R2) MOVE MONTH 00002300
MvC 2(2,R3),4(R2) MOVE DAY 00002400

MvC 4(2,R3),0(R2) MOVE YEAR 00002500

MVC 0(6,R2),0(R3) MOVE REVERSED FIELD INTO BUFFER 00002600

RETURN LA R1,6(R3) INCREMENT USER BUFFER POINTER 00002700
#RTN 00002800

END DTE2NTRY 00002900

C-16 CA-IDMS Mapping Facility

Appendix D. Generating Edit and Code Tables

D.1 HowtoDefineTables D-3
D.2 Stand-done Tables D-4
D.2.1 OVENVIEW D-4
D.22 Examples D-8
D.2.3 Useof the NOT FOUND Condition D-9
D.3 Built-intables D-12
D.3.1 Overview D-12
D.32 Examples D-13

Appendix D. Generating Edit and Code Tables D-1

D-2 CA-IDMS Mapping Facility

D.1 How to Define Tables

D.1 How to Define Tables

Edit and code tables used by automatic editing are defined in the data dictionary
through IDD DDDL statements:

» Stand-alone edit and code tables are defined by the TABLE statement.
Stand-alone tables can be specified for use with any record element at
map-definition time. Stand-alone tables are also called loosely coupled tables.

® Built-in edit and code tables are defined by substatements of the RECORD
statement. Built-in tables belong to and can be used only for the record with
which they are defined. Built-in tables are also called tightly coupled tables.

Stand-alone and built-in tables are presented separately below.

Note: Edit and code tables can only be associated with a group element if the group
is made up of DISPLAY elements.

Appendix D. Generating Edit and Code Tables D-3

D.2 Stand-alone Tables

D.2 Stand-alone Tables

D.2.1 Overview
Stand-alone tables can be associated with any record element at map-definition time.
Stand-alone tables are typically used to list values when:
® The values are subject to change
® The values can be used by several record elements
A stand-alone table is defined and generated by the TABLE statement of DDDL.

Clauses in the TABLE statement determine the search technique, arrangement of
values, and the type of values for a table as described below.

Search Technique: The search technique used for the table is determined by the
SEARCH IS LINEAR/BINARY clause, as described below:

Clause Description

SEARCH IS LINEAR Specifies that a linear search algorithm is used for the
table. The following considerations apply to linear
searches:

® A linear search progresses sequentially through the
table; the first value in the table is examined first,
the second vaue second, and so forth, until either
the target value is found or the end of the table is
reached.

® The arrangement of values in the table, as
established by the SORTED/UNSORTED parameter
discussed later in this section, determines the order
of values in the table and, thus, the order of the
search.

D-4 CA-IDMS Mapping Facility

D.2 Stand-alone Tables

Clause

Description

SEARCH IS BINARY

Specifies that the table is searched with a binary search
algorithm. The following considerations apply to binary
searches:

® A binary search compares the target value against
the table's midpoint value and determines which half
of the table contains the target value. The selected
portion then is halved in the same way; this process
is repeated until either the target value is found or
the end of the table is reached.

® When SEARCH IS BINARY is specified, values in
the table are kept in sorted order, regardless of the
SORTED/UNSORTED specification for the table.
The SORTED/UNSORTED parameter is discussed
later in this section.

® Binary searching cannot be performed on an edit
table that contains ranges, since binary searching
reguires al values in the table are the same length.

® A binary search in a code table can be specified for
either an encoded value or a decoded value (as
specified in the ON ENCODE/DECODE parameter
of the SEARCH IS BINARY clause), but not for
both. If binary searching is performed for encode
values, decode values are searched linearly; if
binary searching is performed for decode values,
encode values are searched linearly.

Arrangement of Values in the Table: The arrangement of values in the table is
determined by the TABLE |S SORTED/UNSORTED clause, as described below:

Clause

Description

TABLE IS SORTED

Specifies that values in the table are sorted in ascending
order according to the EBCDIC collating sequence. The
following considerations apply:

= An edit table of ranges is sorted according to the
lowest value in the range

® A code table is sorted according to its encoded
values

TABLE IS UNSORTED

Specifies that values in the table are not sorted; the table
is stored in the order of its appearance in the defining
TABLE statement.

Appendix D. Generating Edit and Code Tables D-5

D.2 Stand-alone Tables

Type of Values in the Table: The type of values in the table is specified by the
TABLE DATA IS NUMERIC/ALPHANUMERIC clause. This specification affects
the results of atable search. For example, the validity of the value 20b (where the b
character denotes the blank character) depends on the type of values specified for the
table:

. Theentry isvalid if the edit table is an ALPHANUMERIC table of valid values
(20b falls aphabetically in the range 100 through 200)

®» The entry isinvalid if the edit table is a NUMERIC table of valid values (20 fals
numerically outside the range 100 through 200)

Where are Load Modules Stored?: Load modules for stand-alone tables are
stored in the DDLDCLOD area of the data dictionary.

»> For adetailed discussion of DDDL syntax and syntax rules, see the CA-IDMSIDD
DDDL Reference Guide.

Linked vs Unlinked: The map developer specifies whether a stand-alone table is
linked or unlinked when enabling the table:

= A linked table isincluded in the map load module with which it is associated.
Map load modules that use a linked table must be regenerated when changes are
made to the table.

® Anunlinked table is loaded at runtime by the map load module with which it is
associated. It is unnecessary to regenerate map load modules that use an unlinked
table when the table is changed.

It is often preferable to enable stand-alone tables as unlinked tables since stand-alone
tables are typically used as general-purpose tables for severa record elements.

Compiling, Generating, Loading of maps

Linked Stand-alone Tables: The compilation and runtime loading of a map that
uses linked stand-alone tables are illustrated in the following drawing.

D-6 CA-IDMS Mapping Facility

D.2 Stand-alone Tables

A linked stand-alone table becomes part of a map load
module that uses it; the map load module must be recompiled if a linked

table is changed.
DATA
DICTIONARY
DDLDML AREA
TABLE DODL COMPILER
DDDL COMPILER SOURCE (GENERATE)
DDL COMPILER RECORDS/
OR IDMS SCHEMA RECORD
COMPILER ELEMENTS
PANEL BATCH UTLITY
|—’ OCCURRENGE OR OLM
BATCH COMPILER

I—. OCCURRENCE

DDLDCLOD AREA

TABLE LOAD

MODULES

MAP LOAD
MODULE

__| Tees |

S E———

APPLICATION MAP

PROGRAM MAPQUT
MAPIN TABLES

IDMS-DC PROGRAM POOL

Unlinked Stand-alone Tables

Appendix D. Generating Edit and Code Tables D-7

D.2 Stand-alone Tables

An unlinked stand-alone table is used by a map, but is not part of
the map load module; changes to an unlinked table do not affect map load
modules that use the table.

DATA
DICTIONARY

DDLDML AREA

___—______/

DDDL COMPILER

TABLE
SOURCE

DDL COMPILER

RECORDS/

DDDL COMPILER
{(GENERATE)

RECORD
ELEMENTS

OR IDMS SCHEMA
COMPILER

BATCH UTLITY
OR QLM

PANEL
OCCURRENCE

BATCH COMPILER
OR OLM

MAP
I_. OCCURRENCE

DDLDGLOD AREA

MAP LOAD
MODULE

TABLE LOAD

MODULES

I——/

APPLICATION
PROGRAM

MAP TABLES

MAPQUT

MAPIN LOAD

IDMS-DC PROGRAM POOL

D.2.2 Examples

The following examples demonstrate the use of DDDL statements to define and
generate stand-alone tables.

Example 1:

The following sample TABLE statement adds a stand-alone edit table of valid values
to the dictionary; the search technique is linear and the table is unsorted:

D-8 CA-IDMS Mapping Facility

D.2 Stand-alone Tables

ADD TABLE DEPTEDIT

TYPE IS EDIT VALID

SEARCH IS LINEAR

TABLE IS UNSORTED

VALUES ARE (SHIPPING PERSONNEL ACCOUNTING
MARKETING 'OFFICE SERVICES')

GENERATE

Example 2: The following sample TABLE statement adds a stand-alone edit table of
valid values to the dictionary; the search technique is binary:

ADD TABLE NAMEEDIT
TYPE IS EDIT VALID
SEARCH IS BINARY
VALUES ARE
(ADAMS
AGASSIZ
BACH

XERXES
YEATS
ZENO)
GENERATE

Example 3: The following sample TABLE statement adds a stand-alone code table
to the dictionary; the search technique is linear and the table is unsorted:

ADD TABLE DEPTCODE
TYPE IS CODE
SEARCH IS LINEAR
TABLE IS UNSORTED

VALUES ARE
(o1 SHIPPING
02 PERSONNEL
03 ACCOUNTING
04 MARKETING
05 '"OFFICE SERVICES'
00 NOT FOUND
NOT FOUND MISSING)

GENERATE

D.2.3 Use of the NOT FOUND Condition

The following examples illustrate the use of the NOT FOUND condition in the value
list of a code table.

Example 4a: When NOT FOUND (a condition to be acted upon) is used in the
encode column of a code table, the following occurs:

Appendix D. Generating Edit and Code Tables D-9

D.2 Stand-alone Tables

VALUES ARE

(100 MATHEMATICS
200 ENGLISH
300 SCIENCE

NOT FOUND INVALID-DEPT-NO)

= On mapout, NOT FOUND is used as a catchall. At mapout, any value other than
100, 200, or 300 will match the NOT FOUND condition in the table. The
corresponding value, INVALID-DEPT-NO will be moved to the map field.

= On mapin, NOT FOUND produces automatic editing errors under the following
conditions:

— If the value entered does not match a decoded value and if there is no catchall
value.

— If the value entered in the map field is INVALID-DEPT-NO the
corresponding value is NOT FOUND instead of real value. As a result, the
table is re-searched but no match is found.

Example 4b: When NOT FOUND is used in the decode column of the Code
Table's value list, the following processing occurs:

VALUES ARE

(100 MATHEMATICS
200 ENGLISH
300 SCIENCE
000 NOT FOUND)

® NOT FOUND is used as a catchall on map-ins. Any value entered in the map
field, other than Mathematics, English, or Science will match the NOT FOUND
condition and its corresponding value, 000, will be moved to the buffer.

= On mapout, NOT FOUND causes a program to abort as described below:

— If avalue in the buffer does not match an encoded value or a catchall, the
user program will abort with the message, MAPPING DATA ERROR

— If 000 is the value in the buffer, its corresponding value is NOT FOUND.
The encode values are then re-searched looking for a NOT FOUND condition.
When there is no match, the application aborts.

Example 4c: When NOT FOUND is used in both the encode and decode column of
a code table's value list, as shown below, the following processing occurs:

VALUES ARE

(100 MATHEMATICS
200 ENGLISH
300 SCIENCE
000 NOT FOUND

NOT FOUND INVALID-DEPT-NO)

D-10 CA-IDMS Mapping Facility

D.2 Stand-alone Tables

= On mapout and mapin, the NOT FOUND condition is used as a catchall:

Any value other than ENGLISH, MATHEMATICS, or SCIENCE, that is
entered in the map field will match the NOT FOUND condition in the
decoded column and its corresponding value, 000, will be moved to the buffer
on mapin.

On mapin, if an invalid department number is entered in the map field, a
match is found in the decode column and its corresponding value, NOT
FOUND, is moved to the buffer. The decode column is then re-searched
looking for NOT FOUND. When it is found, its corresponding value, 000, is
moved to the map field.

Any value other than 100, 200, 300, or 000 will match the NOT FOUND
condition in the encode column, and its corresponding value,
INVALID-DEPT-NO, is moved to the buffer.

On mapout, if 000 is in the buffer, there is a match in the encode column and
its corresponding value is NOT FOUND. The encode column is then
re-searched looking for NOT FOUND. A match is found and its
corresponding value, INVALID-DEPT-NO, is moved to the map field.

Appendix D. Generating Edit and Code Tables D-11

D.3 Built-in tables

D.3 Built-in tables

D.3.1 Overview

A built-in table belongs to the record element with which it is generated and can only
be used by that element. Built-in tables typically are used to list values in the
following cases:

® The values are unlikely to change before the record element needs to be modified
® Few values are included in the table
® The values are specific to a particular element; the table is unlikely to be needed

for another e ement

The RECORD ELEMENT or COBOL substatement of the DDDL RECORD statement
is used to add or replace an element definition in a record. When either substatement
is executed, edit and/or code tables (if any) defined in the substatement are generated
as built-in tables for the added or replaced element. Either of the following clauses in
a RECORD ELEMENT or COBOL substatement establishes a built-in table for an
element:

» EDIT TABLE
= CODE TABLE
»> For a detailed discussion of DDDL syntax and syntax rules, see the CA-IDMSIDD
DDDL Reference Guide.
Rules for Built-in Tables: The following rules apply to built-in tables:
® Built-in tables are always searched in a linear fashion.
® The values in the table are maintained in unsorted order.
A built-in table is part of each map load module that is associated with the element

that contains the table. A map load module must be regenerated if it is to reflect
changes made to a constituent built-in table.

Compiling, Generating, and Loading

Built-in Tables: The compilation, generation, and runtime loading of a map that
uses built-in tables are illustrated in the figure below.

D-12 CA-IDMS Mapping Facility

D.3 Built-in tables

A built-in table is part of a map load module that uses it; the map
load module must be recompiled if a constituent built-in table is

changed.
/W\
DICTIONARY

___—______/
DDLDML AREA

TABLE DDDL COMPILER
DDDL COMPILER SOURCE {GENERATE)
DDL COMPILER RECORDS/
OR IDMS SCHEMA REGORD
COMPILER ELEMENTS
PANEL BATCH UTLITY
|—' OCCURRENGE OR QLM
BATCH COMPILER
OR OLM MAP
I_. OCCURRENCE

DDLDCLOD AREA

TABLE LOAD
MODULES

MAP LOAD
MODULE

TABLES
\\“ _/

APPLICATION MAP

PROGRAM MAPOUT
MAPIN TABLES

IDMS-DC PROGRAM POOL

D.3.2 Examples

The following examples demonstrate the use of DDDL statements to define and
generate built-in tables.

Example 1. The following sample RECORD ELEMENT statement adds the
DAY -EL element to the DATE-REC record and defines a built-in edit table of valid
values for the element:

ADD RECORD DATE-REC

F.lECORD ELEMENT DAY-EL
EDIT VALID TABLE IS (SUNDAY MONDAY TUESDAY
WEDNESDAY THURSDAY FRIDAY SATURDAY)

Appendix D. Generating Edit and Code Tables D-13

D.3 Built-in tables

Example 2: The following sample RECORD ELEMENT statement adds
MONTH-EL element to the DATE-REC record and defines a built-in code table for
the element:

ADD RECORD DATE-REC

RECORD ELEMENT MONTH-EL
CODE TABLE IS
(01 JANUARY
02 FEBRUARY
03 MARCH
04 APRIL
05 MAY
06 JUNE
07 JuLy
08 AUGUST
09 SEPTEMBER
10 OCTOBER
11 NOVEMBER
12 DECEMBER)

D-14 CA-IDMS Mapping Facility

Appendix E. Estimating Pageable Map Storage

E.1 Definition E-3
E.2 CdculationsUsed E-4
E.3 Estimating the Amount of Storage per Map Page E-5
E.3.1 Amount of Storage per Detail Occurrence E-5
E.3.2 Number of Detail Occurrences per Detall Area E-6
E.4 Determining the Number of Pages per PageableMap E-8

Appendix E. Estimating Pageable Map Storage E-1

E-2 CA-IDMS Mapping Facility

E.1 Definition

E.1 Definition

A pageable map can map out an unlimited number of variable fields at runtime. A
runtime pageable map often provides more than one page of information. The
terminal operator can page through the map during a paging session to view
information that does not fit on the current map page. For more information on
pageable maps, see Chapter 4, “Pageable Maps’ on page 4-1.

The amount of storage available during a runtime paging session is specified at system
generation. Storage is allocated dynamically at runtime, as needed. This appendix
presents a method for determining the amount of storage to specify at system
generation. It is advisable to apply this method to several actual or intended pageable
maps, and to specify the largest amount of storage in the system generation program.

Appendix E. Estimating Pageable Map Storage E-3

E.2 Calculations Used

E.2 Calculations Used

The amount of storage to reserve for a paging session is determined by multiplying the
following values:

® The amount of storage per map page
= The maximum number of pages per pageable map

The methods for determining these values are presented separately below.

Note: The value obtained for paging session storage must be rounded to the nearest
integer when specified in the OLM statement at system generation.

E-4 CA-IDMS Mapping Facility

E.3 Estimating the Amount of Storage per Map Page

E.3 Estimating the Amount of Storage per Map Page

Overview of Calculations: The amount of storage, in bytes, for a runtime map
page is calculated by multiplying the following values:

® The amount of storage per detail occurrence
® The number of detail occurrences that can be mapped out in the detail area for the
map at runtime

The methods for determining each of the above values are presented separately below.

E.3.1 Amount of Storage per Detail Occurrence
The amount of storage per detail occurrence, in bytes, is calculated by adding the
following values:
® The length (in bytes) of all variable fields in the detail occurrence

® The number of variable fields in the detail occurrence multiplied by 40 (40 is the
number of bytes of overhead for each variable field)

® The number of bytes of overhead for the detail occurrence (this value is aways
28)

Example: The fields on the following screen were used as the basis for the
calculations.

EMPLOYEE PERSONAL DATA

EMPLOYEE NAME:?
EMPLOYEE NUMBER:? SOCIAL SECURITY NUMBER:?

PAGE:?

The following calculations were used to estimate the amount of storage required for
the screen:

Appendix E. Estimating Pageable Map Storage E-5

E.3 Estimating the Amount of Storage per Map Page

Length of all variable fields 38
Number of variable fields (x40).......120
Overhead.......ccocoeeveveieieceee, 28

Storage per detail occurrence.......... 186

E.3.2 Number of Detail Occurrences per Detail Area

The number of detail occurrences that can be mapped out in the detail area for the
map at runtime is determined by:

1. Dividing the number of screen lines available for the detail area at runtime by the
number of screen lines in the detail occurrence defined for the detail area

2. Rounding the resulting value down to the next integer if an integer value is not
obtained in the division operation.

Determining the Number of Lines Available at Runtime: The number of
screen lines available for the detail area at runtime depends on the number of lines that
are available on a given terminal screen. To find the number of lines available for the
detail area at runtime, perform the following steps:

1. Add the number of lines reserved for the header area to the number of lines for
the footer area.

2. Subtract the sum from the number of screen lines on the terminal.

Example: The fields on the following screen were used as the basis for our
caculations.

EMPLOYEE PERSONAL DATA

EMPLOYEE NAME:?
EMPLOYEE NUMBER:? SOCIAL SECURITY NUMBER:?

PAGE:?

How Many Detail Occurrences in a Detail Area?: The calculations below were
used to estimate how many detail occurrences can be mapped out to the detail area at
runtime for the map above:

E-6 CA-IDMS Mapping Facility

E.3 Estimating the Amount of Storage per Map Page

runtime screen lines.......cococeveveeeneenne

Lines in detail occurrence...................

Times detail occurrence mapped out

The number of screen lines at runtime and the number of lines in the detail occurrence
determine the number of detail occurrences per detail area. Multiplying this value
with the integer amount of storage per detail occurrence produces the amount of
storage needed for a map page.

Appendix E. Estimating Pageable Map Storage E-7

E.4 Determining the Number of Pages per Pageable Map

E.4 Determining the Number of Pages per Pageable Map

The

maximum number of pages that a pageable map can have in a paging session is

calculated by multiplying the following runtime values:

The maximum number of times the detail occurrence can be repeated for the
entire map, as determined by the data the pageable map is to retrieve.

For example, a pageable map is designed to display the names and identification
numbers of all employees that belong to the department selected by the terminal
operator at runtime. The maximum number of times the detail occurrence can be
repeated for the map is determined by the number of employees in the largest
available department.

The number of times the detail occurrence can be mapped out in the detail
area for the map, as calculated from the following values:

— The number of screen lines available for the detail area at runtime
— The number of screen lines in the detail occurrence

The method for determining the number of times the detail occurrence can be
mapped out in the detail area is presented in E.3, “Estimating the Amount of
Storage per Map Page” on page E-5 earlier in this section.

CAUTION:
It is advisable to plan for a reasonable amount of short-term growth when
estimating the number of pages per pageable map.

E-8 CA-IDMS Mapping Facility

Appendix F. Alternative Maps

F.1 Overview F-3
F.2 Generating Alternative Maps L F-4
F.3 Generating and Assigning Alternate Map Tables F-5
F.3.1 GeneratingMap Tables F-5
F.3.2 Assigning Map TablestoUsers F-6

Appendix F. Alternative Maps F-1

F-2 CA-IDMS Mapping Facility

F.1 Overview

F.1 Overview

Alternative maps can be used in any application in which a dialog or program shows
different copies of the same map to different users. The use of alternative maps
displays an aternative copy of a map to a user if information in the user's signon
record indicates that an alternative copy of maps should be displayed.

Each of the following methods for preparing aternative maps is discussed below:

m Alternative copies of maps are generated by using the CA-IDMS mapping
facility.

m Tables of alternative maps are generated and assigned to user signon records at
system generation.

Appendix F. Alternative Maps F-3

F.2 Generating Alternative Maps

F.2 Generating Alternative Maps

When you copy an existing map to make an aternative map, only noncritical
changes can be made.

CAUTION:
The following are considered critical changes:
» Adding a variable field
» Deleting a variable field
®» Changing a nonpageable map to a pageable map, and vice versa
» Changing record versions
® Moving fields around on a map
Steps: The developer can use the online compiler to generate similar copies of a
map by following these steps:
1. Access the compiler
2. Access the Main Menu screen:

» Specify the pertinent information about the map being created, such as the
name and version number of the map and dictionary

» Select the ADD option from the action bar at the top of the screen.
» Specify the name and version number (if necessary) of the map to be copied

» Indicate whether all record information should be copied, or just the map
layout

3. On the Layout screen, perform any of the following optional steps:
® Change litera fields as necessary

m Use the select-field character (default is the percent sign (%)) to select fields
(if any) to which noncritical specifications are made, such as those listed
below:

— An attribute specification, such as DARK (for fields that should not be
shown to certain users) or PROTECTED (for fields that should not be
altered)

— The name of an edit or code table (particularly useful in a multilingual
environment)

4. On the Field Definition screens, make noncritical changes to fields as appropriate
5. Return to the Main Menu screen and select the Compile option from the
action bar at the top of the screen to generate data dictionary occurrences

CAUTION:
The version numbers of the original map and the copy must be the same.

F-4 CA-IDMS Mapping Facility

F.3 Generating and Assigning Alternate Map Tables

F.3 Generating and Assigning Alternate Map Tables

Alternative map tables are generated and assigned to particular user signon records at
system generation. Alternative maps are not shown to users unless the necessary
information is defined in the system generation program.

The generation of alternative map tables and the assignment of alternative map tables
to users are presented separately below.

F.3.1 Generating Map Tables

The system generation MAPTY PE statement is used to generate an alternative map
table as described below:

= A unique maptype name is specified in the MAPTY PE statement. The maptype
name identifies an aternative map table. For example, the SPANISH maptype
name could be used to identify a table of Spanish-language alternative maps.

m A table of corresponding map copies is built for the table by using clauses of
the MAPTY PE statement. Each MAP map-name-1 MAPS TO map-name-2 clause
in the MAPTY PE statement associates an original map with an appropriate copy.

Sample Alternative Map Table

ADD MAPTYPE SPANISH
MAP ENGMAPO1 MAPS TO SPNMAPO1
MAP ENGMAPO2 MAPS TO SPNMAPO2
MAP ENGMAPO3 MAPS TO SPNMAPO3
MAP ENGMAPO4 MAPS TO SPNMAPOA4.

In the example above, map SPNMAPOL is available for display to a Spanish-speaking
operator when the operator runs a dialog or program that names the ENGMAPOL map.

The use of Wildcards: A generic case can be established in a MAPTY PE
statement when the names of alternative maps are related in a consistent and
predictable manner. A single MAP map-name-1 MAPS TO map-name-2 clause can be
used to construct an alternative map table when a generic case can be named by the
clause. The question mark (?) is used as a mask character when specifying generic
map names in a MAPTY PE statement.

For example, the sample SPANISH alternative map table that is constructed in the
above example can also be constructed by the following sample statement:

ADD MAPTYPE SPANISH
MAP ENGMAP?? MAPS TO SPNMAP??.

Appendix F. Alternative Maps F-5

F.3 Generating and Assigning Alternate Map Tables

The sample SPANISH alternative map table built by the above statement contains the
names of all maps that meet the following criteria:

® The name of the original copy begins with the characters ENGMAP.
» The name of the alternative copy is configured as follows:
— The name begins with the characters SPNMAP.

— The name ends with the same final characters that end the name of the
corresponding original map.

® The date/time stamp is the same for both copies.
For example, map ENGMAPO4 would be added to the SPANISH alternative map table
and associated with map SPNMAPO04 by the sample MAPTY PE statement above.

Either of the following cases would cause ENGMAPO4 and its alternative copy to not
be added to the SPANISH aternative map table:

= The map named SPNMAPO4 has a different date/time stamp than ENGMAP0O4.
» The aternative copy has been given a name that does not conform to the generic

case.

»> For more information on the MAPTY PE statement, see CA-IDMS System
Generation.

F.3.2 Assigning Map Tables to Users

A maptype can be assigned to a user at every signon by adding a MAPTY PE
command to the user profile. For example:

® |n the Sysgen Compiler, enter:

ADD MAPTYPE SPANISH
MAP ENGMAP?? MAPS TO SPNMAP??.

1 |n OCF, enter:

CREATE USER PROFILE LMGO1_PROFILE
ATTRIBUTE
MAPTYPE = SPANISH;

CREATE USER LMGO1
PROFILE LMGO1_PROFILE ... ;

»> For more information on USER PROFILES, refer to CA-IDMS Security
Administration.

F-6 CA-IDMS Mapping Facility

Appendix G. PL/I| DML Statements for Pageable Maps

G.1 Overview e G-3
G.2 DECLARE MAP . . . e G4
G.3 MAPIN G-5
G.4 MAPOUT . . G-8
G.41 STARTPAGE G-10
G.4.2 ENDPAGE G-11

Appendix G. PL/I DML Statements for Pageable Maps G-1

G-2 CA-IDMS Mapping Facility

G.1 Overview

G.1 Overview

Pageable maps are defined by using the CA-IDMS/UCF mapping facility. A CA-ADS
dialog or program that uses a pageable map must include statements to handle storage
and display of fields on the pageable map at runtime. This appendix presents the PL/I
DML statements that enable a program to use pageable maps.

»> The definition and use of pageable maps is presented in Chapter 4, “Pageable
Maps’ on page 4-1.

»> For specifics on CA-ADS statements for pageable maps, see the CA-ADS
Reference Guide.

» For information on COBOL DML statements, refer to the CA-IDMS DML
Reference - COBOL and for Assembler DML statements see the CA-IDMS DML
Reference - Assembler.

PL/I| DML Statements: PL/I DML statements used for pageable maps are listed in
the following table and described separately on the following pages:

Clause Use

DECLARE MAP Specifies that mapping mode termina 1/0 is being used
and names the map used in the program.

MAP IN Requests a transfer of modified pageable map data to
program storage by specifying either the DETAIL or
HEADER clause.

MAP OUT Creates detail occurrences for a pageable map and/or

requests display of map pages when the DETAIL or
RESUME clause is specified.

STARTPAGE SESSION Begins a map-paging session and specifies options for
the session.

ENDPAGE SESSION Terminates a map paging session.

» For information on PL/I, see the CA-IDMS DML Reference - PL/I.

Appendix G. PL/I DML Statements for Pageable Maps G-3

G.2 DECLARE MAP

G.2 DECLARE MAP

A DECLARE MAP statement must be included in a PL/I program to name each map
used by the program.

Syntax

v

»»—— DECLARE (map-name MAP)

L VERSION version-number J

\4
A

s

T
TYPE (STANDARD <«)
L EXTENDED I PAGING —

Map-name MAP
Specifies the name of a predefined map to be used by the program. Map-name
must be a 1- to 8-character name of an existing map load module.

VERSION l/version-n
Optionaly identifies the version of the named map. Version-n is a numeric
constant of the map version desired. The default is 1.

TYPE STANDARD/EXTENDED
Specifies the attributes of the named map:

STANDARD (default)
Indicates that map attributes are those available on standard 3270-type terminals.

EXTENDED
Indicates that map attributes include those available on 3279-type terminals.
Mapping features such as color, blinking fields, and reverse video can be used for
applications running under 3279-type terminals.

PAGING
Specifies that the named map is a pageable map.

G-4 CA-IDMS Mapping Facility

G.3 MAP IN

G.3 MAP IN

The MAP IN statement requests a transfer of data to program storage. After
completion of a MAP IN function, the ERROR-STATUS field of the IDMS-DC
communications block indicates the outcome of a pageable-map operation:

M essage Praoblem

4664 The requested node for a header or detail was either not present or
not updated.

4668 No more modified detail occurrences require mapin.

4672 The scratch record containing the requested detail could not be

accessed (interna error).

Syntax

»»—— MAP IN (map-name) >

A\

»
| 2

10

|— INPUT DATA —E YES
NO
NOIO DATASTREAM FROM (mapped-data-location)

> | >

—E TO (end-mapped-data-location)
MAX LENGTH (data-length)

\
v
A

detail-specification

HEADER
|: PAGE (page-number) —
MODIFIED —M8M8M88 ™ —

A\
\

L DETAIL NEXT «
FIRST

L RETURNKEY (data-field) i

KEY (key-name)
SEQUENCE_NUMBER (sequence-field)

L ReTURNKEY (data-ﬁem)—J

RETURNKEY (data-field)

A

L PAGE (page-number) 1L MODIFIED l

DETAIL
Specifies that the MAP IN operation is to retrieve data from a modified detail
occurrence (MDT set on). The contents of all data fields in the detail occurrence
are retrieved unless MODIFIED is specified for the MAP IN DETAIL statement;
MODIFIED retrieves only modified fields.

Appendix G. PL/I DML Statements for Pageable Maps G-5

G.3 MAP IN

The retrieved detail occurrence is specified by one of the following clauses:

NEXT (default)
Retrieves the next sequential modified detail occurrence. An end-of-data condition
is returned in either of the following cases:

® No detail occurrences have been modified
» All modified detail occurrences have been mapped in already

FIRST RETURNKEY IS data-field-name-v
Retrieves the first available modified detail occurrence.

RETURNKEY IS data-field-name-v optionally specifies the name of a variable
field in which to store the 4-byte key (if any) associated with the retrieved detail
occurrence. |f no value is associated with the detail occurrence, data-field-name-v
is set to 0. Datafield-name-v must be a 4-byte value, but does not have to be a
binary fullword.

Note: A value is associated with a detail occurrence by using the KEY IS
parameter in a MAP OUT DETAIL command for that occurrence.

An end-of-data condition results if all modified detail occurrences have been
retrieved already.

KEY IS key-v
Specifies the modified detail occurrence to retrieve based on the value associated
with the detail occurrence. (A value is associated with a detail occurrence by
using the KEY |S parameter in the MAP OUT DETAIL command for that
occurrence.) Key-v is the name of a 4-byte field.

A detail-not-found condition is returned in either of the following cases:
® The specified occurrence is not a modified detail occurrence
» No detail occurrence with the specified value is found

SEQUENCE_NUMBER IS data-field-name-v RETURNKEY |S data-field-name
Specifies the sequence number of the retrieved data occurrence. Detail
occurrences are built by the application program, and are stored in the sequence in
which they are created. Data-field-name is a binary fullword.

RETURNKEY IS data-field-name-v optionally specifies the name of a variable
field to store the 4-byte value (if any) associated with the retrieved detail
occurrence. |f no value is associated with the detail occurrence, data-field-name-v
is set to zero. Data-field-name-v must be a 4-byte value, but does not have to be
a binary fullword.

A detail-not-found condition is returned in either of the following cases:
® The specified occurrence is not a modified detail occurrence.
» No detail occurrence with the specified value is found.

» RETURNKEY IS data-field-name performs the same operation as the NEXT
clause (described above) and specifies the name of a variable field to store the
4-byte value (if any) associated with the retrieved detail occurrence. (A value
is associated with a detail occurrence by using the KEY IS parameter in a

G-6 CA-IDMS Mapping Facility

G.3 MAP IN

MAP OUT DETAIL command for that occurrence.) If no value is associated
with the detail occurrence, data-field-name-v is set to 0. Data-field-name-v
must be a 4-byte value, but does not have to be a binary fullword.

HEADER
Specifies that the MAP IN operation is to retrieve the contents of data fields in the
header and footer areas. The contents of all data fields in the header and footer
areas are retrieved unless MODIFIED is specified for the MAP IN HEADER
statement; MODIFIED retrieves only modified fields.

MODIFIED
Specifies that only modified fields (MDT set on) are retrieved in the MAP IN

operation.

Appendix G. PL/I DML Statements for Pageable Maps G-7

G.4 MAP OUT

G.4 MAP OUT

The MAP OUT statement is used to create or modify detail occurrences for a pageable
map or to request that a map page be transmitted to the terminal screen. After
completion of a MAP OUT function, the ERROR-STATUS field of the CA-IDMS/DC
communications block indicates the outcome of a pageable-map operation using the
following error messages:

4664 There is no current detail occurrence to be updated (MAP OUT
DETAIL CURRENT only). No action is taken.

4668 The amount of storage defined for pageable maps at system
generation is insufficient. No action is taken. This and subsequent
MAP OUT DETAIL commands are ignored.

4672 No detail occurrence, footer, or header fields exist to be mapped out
by a MAPOUT RESUME command.
4676 The first screen page has been transmitted to the terminal.
Syntax
»»—— MAP OUT (map-name) >
WAIT « ﬂ
NOWAIT

\ 4

v

|: io-specification
no-io-specification —

\ 4

\4
A

DETAIL
tNEW<ﬂ |—KEY (key) |

CURRENT
il

RESUME

L PAGE CURRENT «
NEXT
PRIOR
LAST
FIRST

(page-number) —

A\
\ 4

LIO<

L ourpur i |
DATA —— YES i TT T
_ﬁg NO —— L NEwPAGE | L LITERALS

ERASE
ATTRibute —

v
A

> |

L MESSAGE (message-text) —[T0 (end-message-data-1ocation)jJ
LENGTH (message-data-Tength)

G-8 CA-IDMS Mapping Facility

G.4 MAP OUT

L NOIO DATASTREAM INTO (mapped-data-location)

A\

TO (end-mapped-data-location)
T pot]

\ 4

MAX LENGTH (max-data-length)

»
»

A\
A

|

L RETURN LENGTH INTO (data-actual-length) i

DETAIL

Specifies that the MAP OUT command is to create or modify a detail occurrence
for a pageable map, and optionally associates a numeric key value with the
occurrence:

NEW/CURRENT

specifies whether the detail is to be created or modified:

n NEW (default) creates a detail occurrence of a pageable map. Detall
occurrences are displayed in the order in which they are created.

» CURRENT modifies the detail occurrence that was referenced by the most
recent MAP IN DETAIL or MAP OUT DETAIL statement.

KEY IS key-v (optional)

specifies a value associated with the created or modified detail occurrence. The
value is not displayed on the terminal screen. Key-v is the name of a variable
data field that contains the key of a database record associated with the detail
occurrence.

The specified value is stored as a 4-byte value. When the KEY |S parameter is
used with a MAP OUT DETAIL CURRENT command, the specified value
replaces the value (if any) previously associated with the detail occurrence.

RESUME PAGE IS

Specifies that a page of detail occurrences is mapped out to the terminal from the
session scratch record. Detail occurrences in the scratch record are divided into
pages at runtime based on the number of detail occurrences that can fit on the
screen at one time.

The page of occurrences displayed is determined by the PAGE IS clause:

B CURRENT (default) specifies that the current page is redisplayed. If no
page has been displayed, the first page of the pageable map is displayed.

n NEXT specifies that the page that follows the current page is displayed. |f
no page follows the current page, the current page is redisplayed.

® PRIOR specifies that the page that precedes the current page is displayed. If
no page precedes the current page, the current page is redisplayed.

®m FIRST specifies that the first available page of detail occurrences is
displayed.
m LAST specifies that the page of detail occurrences with the highest available

page number is displayed. field in which is stored the binary fullword
number of the displayed page. A page number is stored in the variable field

Appendix G. PL/I DML Statements for Pageable Maps G-9

G.4 MAP OUT

by a preceding MAP IN PAGE IS data-field-name-v statement that names the
same numeric variable field.

G.4.1 STARTPAGE

A STARTPAGE statement initiates the paging session. It can be followed by any
number of DML commands, including MAP IN and MAP OUT commands. The
map-paging session is terminated by an ENDPAGE command (or by another
STARTPAGE command, if one is encountered before an ENDPAGE command).

After completion of a STARTPAGE function, the ERROR-STATUS field of the
IDMS-DC communications block indicates the outcome of a pageable-map operation:

4604 A paging session was aready in progress when this STARTPAGE
command was received. An implied ENDPAGE was processed
before this STARTPAGE was successfully executed.

Syntax
»»—— STARTPAGE session (map-name) »

> ; ——>
WAIT BACKPAGE « j UPDATE « :| AUTODISPLAY « :|
NOWAIT <« — NOBACKPAGE BROWSE NOAUTODISPLAY

RETURN —

STARTPAGE SESSION map-name
Specifies the beginning of a pageable map session, specifies the name of the
pageable map used for the session, and specifies the map paging options in effect
for the session. The STARTPAGE command must precede any commands (such
as MAP IN) that specify operations performed using the map.

NOWAIT/WAIT/RETURN
Specifies the runtime flow of control when the operator presses a control key:

= NOWAIT (default) specifies that runtime mapping automatically handles all
paging and update transactions. Control is passed to the program only when
neither an update nor paging request is made when the operator presses a
control key.

. WAIT specifies that runtime mapping automatically handles paging
transactions that do not update data. Control is passed to the program when
the operator presses a key that requests an update or a nonpaging operation.

» RETURN specifies that runtime mapping does not handle any terminal
transactions in the paging session. Control is passed to the program when the
operator presses a control key.

runtime mapping does not update program variable storage unless the application
program issues a MAP IN command. In cases where the operator can update
data, it is recommended that WAIT or RETURN be specified for the paging
session so that data can be retrieved as it is updated.

G-10 CA-IDMS Mapping Facility

G.4 MAP OUT

BACKPAGE/NOBACKPAGE
Specifies whether the terminal operator can display a previous map page:

n BACKPAGE (default) specifies that the operator can display previous pages
of detail occurrences.

. NOBACKPAGE specifies that the operator cannot display any page of detail
occurrences with a page number lower than the current page number.
Modifications made on a given page of the map must be retrieved by a MAP
IN statement in the application program prior to a MAP OUT RESUME
statement. The previous page of detail occurrences is deleted from the
session scratch record when a new map page is displayed.

UPDATE/BROWSE
Specifies whether the terminal operator can modify map data fields:

n UPDATE (default) specifies that the terminal operator can modify variable
map fields, subject to restrictions specified for the map either at
map-definition time or by statements in the program.

. BROWSE specifies that the terminal operator can modify only the page and
response fields (if any) of the map. The MDTs for variable fields on the map
can be set on only according to specifications made either in the
map-definition or by statements in the program.

NOBACKPAGE cannot be assigned if UPDATE and NOWAIT are specified for the
session.

G.4.2 ENDPAGE

The ENDPAGE statement terminates a map-paging session, clears the scratch record
for the session, and clears the map paging options for the completed session. A
STARTPAGE/ENDPAGE pair enclose commands that handle a pageable map at
runtime.

Syntax
»»—— ENDPAGE session ;

\ 4
A

Appendix G. PL/I DML Statements for Pageable Maps G-11

G.4 MAP OUT

G-12 CA-IDMS Mapping Facility

Index

Special Characters
@ character 3-35
$PAGE 4-5
detail occurrence 4-6
#TTYDIT macro B-7
<F1> 7-13
<F10> 7-13
<F11> 7-13
<F2> 7-13
<F3> 7-13
<F4> 7-13
<F5> 7-13
<F6> 7-13
<F7> 7-13
<F8> 7-13
<F9> 7-13

Numerics

3270-type terminals 1-18

3279-type terminals 1-18
map field attributes on 2-14

3280-type printers 8-8, 11-14, 11-48
automatic panel definition 11-15, 11-49

A

action bar
defined 7-5
use of 7-6
using 7-7—7-11

ADD 7-7

ADD verb

batch compiler 10-11
adding afield to a map
automatic panel definition 11-18
adding a map load module
batch utility 13-4
modifying a map load module 13-4
adding a map occurrence
batch compiler 10-11
adding maps 7-7
alarm specification
automatic panel definition 11-14, 11-48
online mapping 8-8
ALL specification (batch utility) 13-5

alphabetic data 3-15
alphanumeric data
allowing input of (batch compiler) 11-6
external picture for 3-15
ALPHANUMERIC specification
batch compiler 11-6
dternate keys 7-13
aternate map support
See alternative maps
aternative maps 1-16, F-3
assigning to users F-6
date/time stamp for A-15
DML commands for G-3
generating F-4
names for 2-8
tables F-5
dternative terminal environments B-3
Assembler DMLs G-3
Associated Record screen
changing record version numbers 8-13
associated records
dropping 8-12
erasing 8-12
role name of 8-12
Associated Records screen 7-5
associated records specification
online mapping compiler 8-13
a runtime 3-35
AT specification
automatic panel definition 11-23, 11-39
attention keys B-5
atribute byte 2-13
attribute byte symbol B-4
attributes
a runtime 6-9

batch compiler specification of 11-5, 11-24, 11-40

defaults for literal and variable fields 2-13

description of 2-13

list of 2-13

on error-handling 3-27, 6-9

overriding 2-13

when to specify 2-13
ATTRIBUTES specification

automatic panel definition 11-24, 11-40
automatic editing 3-3

code table 3-20, D-3

defining criteriafor 3-8

edit table 3-20, D-3

Index X-1

automatic editing (continued)
effect of GET DETAIL statement on 3-34
enabling for afield 3-6
enabling for amap 3-6, 8-6
external picture 3-12
internal picture 3-10
on mapin for non-pageable maps 3-33
on mapin for pageable maps 3-34
on mapout 3-35
automatic field transmission
See MDT
automatic panel definition 11-3, 11-9
autopaint, invoking 8-12
AUTOPANEL specification 11-12

B

BACKSCAN specification
automatic panel definition 11-33
batch compiler
action verbs 10-11
automatic panel definition 11-3
automatic versus manua definition 10-9
coding requirements 10-8
defining pageable maps 4-21
description 9-4
device groupings 12-4
diagnostic and error messages 12-18
directives 10-7
JCL 12-10
manual panel definition 11-3
security 10-6
statement sequencing 10-9
batch utility 13-3
date/time stamping a map load module 13-5
decompiling amap 13-5
deleting a map load module 13-5
description 9-4
generating reports 13-4
generating screen images 13-4
JCL 13-12
purpose of 9-6
specifying map occurrences for 13-10
specifying panel occurrences for 13-9
binary data 3-10
Blank when zero
automatic panel definition 11-29
interaction with data 3-3
BLINK specification
batch compiler 11-7
online mapping compiler 8-30

BRIGHT specification
batch compiler 11-7

browse 7-10

builder codes A-4

built-in table 3-24, D-12

C

changes, deleting 7-9
changingamap 7-13
use of alternate keys 7-13
check protection 3-15
checkin/checkout procedures
checkout 7-8
listing checked out maps 7-8
COBOL DMLs G-3
code table D-11
definition of D-3
purpose of 3-20
use of NOT FOUND D-9
color of redisplayed fields 8-9
color options, field 8-28
color specification
batch compiler 11-8
online mapping compiler 8-30
comma as decima point 8-7, 11-15, 11-49
command line, Main Menu screen 7-6
COMP format
defined for an lement 3-11, 3-12
COMP-1 format
default external picture for 3-13
defined for an lement 3-11, 3-12
COMP-2 format
default external picture for 3-13
defined for an element 3-11, 3-12
COMP-3 format
defined for an element 3-11, 3-12
COMPILE 7-9
compiling help text 5-6
compiling maps 7-9
conflicting attributes 6-9
control keys
defined for glass TTY terminals B-5
standards 2-7
conventions for naming entities 2-7
copying maps 7-7
CORRECT FIELDS ATTRIBUTES specification
automatic panel definition 11-16, 11-49
critical changes A-15
cursor
areas of 4-4

X-2 CA-IDMS Mapping Facility

cursor (continued)
control keys for TTY terminas B-4
header area 4-4
on mapout 11-26
redisplayed by automatic editing 3-37
skipping over fields 11-7, 11-25, 11-40
CURSOR/NOCURSOR specification
automatic panel definition 11-26

D

DARK specification
batch compiler 11-7
MAPC 8-9
data dictionary
entities updated by mapping compilers A-13
entities used by mapping compilers A-4
location for map load modules A-12
location for map occurrences A-10
data entry of redisplayed fields,
protecting/unprotecting 8-9
data field
Seefield, data
DATA specification
automatic panel definition 11-32, 11-33
date/time stamp A-15
date/time stamping a map load module
batch utility 13-5
DATETIME specification (batch utility) 13-5
DCUF statement
SET SCREEN specification B-3
decimal point 3-15, 8-7, 11-15, 11-49
DECIMAL POINT IS COMMA/PERIOD
automatic panel definition 11-15, 11-49
decimal points, how to handle 8-6
DECLARE MAP command (PL/l) G-4
decoding data 3-20
DECOMPILE specification (batch utility) 13-5
decompilingamap 13-5
defining fields 8-18—8-33
DELETE 7-9
DELETE specification (batch utility) 13-5
DELETE verb
automatic panel definition 10-11, 10-13
manual panel definition 10-14
deleting
changes 7-9
maps 7-9
deleting a field from a map
batch compiler 10-13

deleting a map load module
batch utility 13-5
deleting a map occurrence
batch compiler 10-11
deleting a record fromamap 8-14
deleting help text for field 8-27
delimit character 11-25, 11-40
DELIMIT specification
automatic panel definition 11-25, 11-40
designing maps 2-6, 8-15
detail area
See also pageable maps, detal area
detail occurrence 4-4
DETAIL END specification
automatic panel definition 11-25, 11-41
detail occurrence
See pageable maps, detail occurrence
DETAIL START specification
automatic panel definition 11-25, 11-41
DETECTABLE specification
batch compiler 11-7
device groupings 12-4, 12-8
device independence B-3
devices defined for a map
automatic panel definition 11-12
enabling for amap 8-6
manual panel definition 11-36
DEVICES specification
automatic panel definition 11-12
manual panel definition 11-36
modifying 10-12
DFLD specification
automatic panel definition 11-27
DISPLAY 7-10
display attributes
See attributes
DISPLAY format 8-20
defined for an element 3-11, 3-12
display intensity specification
MAPC 8-19
display of data 3-11, 3-12
display options 8-6
DISPLAY specification
batch compiler 11-7
MAPC 8-9
DISPLAY WHEN ZERO specification 11-29
automatic panel definition 11-29
displaying maps 7-10
dissociating a record from amap 8-14
dollar amounts 3-15

Index X-3

dropping field level help 8-27
dropping help information 8-11

E

edit criteria forafield 8-25
EDIT IS specification
automatic panel definition 11-32, 11-33
edit module
name of 8-31
when invoked 8-31
edit modules
See user-written edit modules
edit picture 8-19
EDIT specification
automatic panel definition 11-14, 11-47
edit table
definition of D-3
EDIT TABLE IS specification
automatic panel definition 11-30
edit table specification
edit tables associated with afield 8-25
EJECT directive 10-7
element
See record element
encoding data 3-20
ENDPAGE command (PL/I)
entity names
See conventions for naming entities
ERASE EOF key 3-3, 3-35
ERASE specification 3-35
ERASE specification (DML) 3-37
erasing data 3-35
erasing help 8-11
error message associated with afield 8-25
ERROR MESSAGE specification
automatic panel definition 11-31
error messages 3-28
ERROR MSG 8-27
error-handling 3-3, 3-35
aarm 3-31
attributes 3-27, 6-9
correct/incorrect input 3-27
defining criteriafor 3-27
enabling for amap 3-6
error messages 3-28
external picture
explicitly specified 3-15
implicitly built 3-13
purpose 3-13
using IDD to define 3-15

EXTERNAL PICTURE specification
automatic panel definition 11-29
extraneous data 11-24, 11-40

F
field
data 2-12, 11-19
defining valid input characters for 3-10
help 11-28
literal 11-26, 11-27, 11-42
map 2-12
message 2-12, 6-8, 11-19
page 2-12
protected 11-6
required 11-28
response 2-12, 11-19
variable 2-12, 11-19
Field Definition screen 7-5
automatic editing criteria defined on 8-19
field-level help 5-4

Field-Level Help Text Definition screen, using to define

field-level help 5-12
fields
color options 8-28
edit criteriafor 8-25
edit module, name of 8-31
edit module, when invoked 8-31
edit tables associated with 8-25
error message associated with 8-25
highlighting 8-28
light pen, detectable with 8-28
location of 8-32
mapin/mapout, how to handle 8-21
options, device-dependent 8-28
outlining 8-28
pageable options 8-32
read options 8-21
reverse numeric 8-28
write options 8-21
floating dollar sign 3-15
floating point data 3-11, 3-15
footer area
See also pageable maps, footer area
detail area 4-4
FOOTER START specification
automatic panel definition 11-25, 11-41
FOR INPUT specification
automatic panel definition 11-31
FOR OUTPUT specification
automatic panel definition 11-33

X-4 CA-IDMS Mapping Facility

FOR specification
automatic panel definition 11-23, 11-39
use of 12-4
format, maps 8-15
full-window format 5-4
function keys
See also control keys
dternate keys 7-13
Main Menu screen 7-6
overview 7-13
with layout screen 7-13

G

General Options screens 7-5

glass TTY terminads B-3
attention keys B-5
attribute byte symbol B-4
batch compiler and utility usage B-6
control codes B-6
control keys B-5
cursor control keys B-4
description 1-18
device independence table for B-7
protected fields 11-6, B-4
restrictions B-6

H

haf-window format 5-4

header area
See also pageable maps, header area
footer area 4-4

help

adding using automatic panel definition 11-15, 11-49

associating with afield 5-11

associating with map 5-6

compiling, how to 5-6

connecting message to map 5-6

creating 5-4—5-14

creating for afield 5-10—5-14

creating foramap 5-5

DFLD specifications 11-28

display method 5-6

displaying a prototype 5-7

Field-Level Help Text Definition screen,
accessing 5-12

foreign language support 5-15

full-window format 5-4

half-window format 5-4

Help Name field 5-6

help (continued)
how to use 5-15
load module 5-4
message, entering 5-5
naming conventions 5-6
overview 5-3
PF keys, assigning 5-6
scrolling, in foreign languages 5-15
SHOWMAP, using to display prototype 5-7
specifying the field, field-level help 5-11
summary of step, field-level help 5-10
summary of steps, map-level help 5-5
text module 5-4
using IDD to create help text 5-5
help load module 5-4
help text module 5-4
specifying 5-6
help, field-level
deleting 8-27
dropping 8-27
IDD module name 8-27
load module, name of 8-27
window display 8-27
help, map-level
dropping 8-11
IDD module associated with 8-11
specifying name for 8-11
window format 8-11
hidden specification
MAPC 8-19
high-order truncation 3-19
highlighting of redisplayed fields 8-9
highlighting, field 8-28

ICTL directive 10-7

IDD A-15

IDD module name, field help 8-27

image 7-10

IMAGE specification (batch utility) 13-4

INCORRECT FIELDS ATTRIBUTES specification
automatic panel definition 11-16, 11-49

initiating an online compiler session 7-4

input characters 3-10

input error 3-27

inquiry of map (runtime) 6-6

intensity of redisplayed fields 8-9

internal format 3-10

internal picture 3-10

Index X-5

INTERNAL specification
automatic panel definition 11-29
online mapping compiler 8-19
ISEQ directive 10-7

J

JCL
batch compiler (BS2000/0SD) 12-16
batch compiler (CMS) 12-14
batch compiler (0S/390) 12-10
batch compiler (VSE/ESA) 12-12
batch utility (BS2000/0SD) 13-17
batch utility (0S/390) 13-12
batch utility (VM/ESA) 13-15
batch utility (VSE/ESA) 13-14

device independence tables (BS2000/0SD) B-17

device independence tables (0S/390) B-14
device independence tables (VM/ESA) B-16
device independence tables (VSE/ESA) B-15
RHDCMAP1 (BS2000/0SD) 12-16
RHDCMAPL (CMS) 12-14
RHDCMAP1 (0S/390) 12-10
RHDCMAPL (VSE/ESA) 12-12
RHDCMPUT (BS2000/0SD) 13-17
RHDCMPUT (0OS/390) 13-12
RHDCMPUT (VM/ESA) 13-15
RHDCMPUT (VSE/ESA) 13-14
RHDCTTBL (BS2000/0SD) B-17
RHDCTTBL (0OS/390) B-14
RHDCTTBL (VM/ESA) B-16
RHDCTTBL (VSE/ESA) B-15
justify data specification
online mapping compiler 8-23
JUSTIFY specification
automatic panel definition 11-31, 11-32
justifying input 8-23, 11-31

L

Layout screen 7-5
function keys used with 7-13
layout standards 2-9
layout, maps 8-15
light pen
field detectable with 8-28, 11-7
use with redisplayed fields 8-9
listing checked out maps 7-8
LITERAL specification
automatic panel definition 11-27

load module
See map load module
load module, field help 8-27
LOCK/UNLOCK KEYBOARD specification
automatic panel definition 11-14, 11-48
logical record
See role names for records
loosely coupled table
See stand-alone table
low-order truncation 3-19

M

Main Menu screen 7-5
manual panel definition 11-3, 11-35
name assigned to (manual definition) 11-36
map
help 11-15, 11-49
map field occurrence 9-7, 11-3
automatic versus manua definition 11-3
MAP IN command (PL/I)
map inquiry
See inquiry of map (runtime)
map load module A-12
generating (batch utility) 13-4
location in data dictionary A-12
migrating to another dictionary A-18
report for 13-4
map modification
See modification of map (runtime)
map haming conventions
See conventions for naming entities
map occurrence
automatic and manual panel definition 10-9
defining (batch compiler) 11-3, 11-43

name assigned to (batch compiler) 11-11, 11-45

overview A-9
purpose of 9-7
MAP OUT command (PL/I)
map positioning 12-8
map read/write options specification
online mapping compiler 8-22
MAP statement (batch compiler)
automatic panel definition 11-9
manual panel definition 11-43
name assigned to (automatic definition) 11-9
MAP statement (batch utility) 13-10
map utility
See batch utility
map-level help 5-4

X-6 CA-IDMS Mapping Facility

Map-level Help Text screen 7-5
mapin operation 3-32, 6-4
Assembler program 6-5
automatic editing 3-32
COBOL program 6-5
PL/l program 6-5
user-written edit module C-8
mapout attributes
See attributes
mapout operation 6-4
Assembler program 6-5
automatic editing 3-35
COBOL program 6-5

map field characteristics defined for 11-18, 11-37

MDT set 87
MDT set (batch compiler) 11-7, 11-14, 11-47
PL/l program 6-5
printing screen on 8-8
unlocking keyboard on 11-14, 11-48
user-written edit module C-14

maps
See also redisplayed fields
adding 7-7
automatic editing, specifying 8-6
autopaint, invoking 8-12
browsing 7-10
changes, deleting 7-9
checked out, displaying alist of 7-8
checking out 7-8
compile, viewing messages from 7-9
compiling 7-9
copying 7-7
decimal point, how to handle 8-6
defining fields 8-18—8-33
deleting 7-9
designing 8-15
device information, specifying 8-6
display options, specifying 8-6
displaying 7-10
dropping an associated record 8-12
effects of screen size on design 8-15
erasing an associated record 8-12
format 8-15
layout 8-15
message prefix, specifying 8-6
previewing 7-10
print options, specifying 8-6
record, version number 8-12
records associated with 8-12
releasing 7-8
releasingamap 7-8

maps (continued)

role name of record 8-12

schema associated with 8-12

statistics, summary of 7-10

title, specifying 8-6
MDT 8-7, 8-22, 11-14, 11-47
MDT specification

batch compiler 11-7
MDT, set/reset 8-9
message

See also error messages

compile 7-9

occurrences A-10

specifying prefix for 8-6
message field

See field, message
MESSAGE LENGTH specification

automatic panel definition 11-27
MFLD specification

automatic panel definition 11-23
MFLD statement

automatic panel definition 11-18
migrating a map load module to another dictionary A-18
modification of map (runtime) 6-6
modified data tag

See MDT
modified data tag, set/reset 8-9
MODIFY verb

automatic panel definition 10-12

manual panel definition 10-13
modifying a DEVICES specification 10-12
modifying a field (batch compiler)
modifying a map occurrence (batch compiler)

N

name

See also conventions for naming entities

map occurrence 11-11, 11-45
NEWPAGE specification (DML) 3-37
NOALARM specification

automatic panel definition 11-14, 11-48
NOBLINK specification

batch compiler 11-7
NOCOLOR specification

batch compiler 11-8
NODELIMIT specification

automatic panel definition 11-25, 11-41
NOEDIT specification

automatic panel definition 11-14, 11-29, 11-47

externa picture 11-29

Index X-7

NOMDT specification P
batch compiler 11-7

NONDETECTABLE specification PAD CHAR 8-23
batch compiler 11-7 pad character 3-24, 8-23

NONPAGEABLE specification See also PAD CHAR (MAPC)
automatic panel definition 11-15, 11-49 pad specification _
NONRESIDENT specification online mapping compiler 8-23
automatic panel definition 11-13, 11-46 page field
NOPRT specification Seefield, page
automatic panel definition 11-14, 11-48 pegesble maps
NORESET MODIFIED specification defining specifications for - 4-21
automatic panel definition 11-14, 11-47 defining with batch compiler 4-21
normal specification format for 2-10 _
MAPC 8-19 using Pageable Options screen to specify
NORMAL VIDEO specification boundaries 8-32
batch compiler 11-7 PF (program function) keys
MAPC 89 See control keys
NOSKIP specification PF keys for help, assigning 5-6
automatic panel definition 11-25, 11-41 PFLD specification
NOT FOUND D-9 automatic panel definition 11-38
examples of use D-9 PFLD statement (batch compiler) 11-37
NOUNDERSCORE specification PL/I DMLs G-3
batch compiler 11-8 positioning a map on a screen 12-8
NOWAIT specification (pagesble maps) 4-12 prefixes, messages 8-6
numeric data prgwam rlg maps 7-10
externd picture for 3-15 print options 8-6
restricting input to (batch compiler) 11-6 printing screen on mapout 8-8
NUMERIC specification PROCESS statement (batch utility) 13-4
batch compiler 11-6 program runtime system 4-7
program variable storage
automatic transmissionto 8-23
O automatic transmission to (batch compiler) 11-32
OCCURS specification on mapin 3-32
automatic panel definition 11-23, 11-39 PROTECTED specification
OCTL directive 10-7 batch compiler 11-6
ON EDIT ERROR specification protecting a field from operator modification 11-6
automatic panel definition 11-16, 11-49 purpose of 3-20

online compiler
action bar, defined 7-5
initiating an online compiler session 7-4
queue record 7-4
screens, description of 7-5
sequencing through screens 7-5 R
OPTIONAI.‘ speuflcatl_orj_ read options for fields 8-21
automatic panel definition 11-28
options for field, device-dependent 8-28 record . .
’ changing version numbers 8-13

OR;St!\rln;(i)cR ijugeﬁ:gr n 11-16, 11-50 name assigned to (MAPC) A-8
P 0 il occurrences in data dictionary A-7

outliing fi{alz;is 8-28 overview A-8
9, role name (batch compiler) 11-13, 11-47
role names 8-14

queue records used by the online compiler 7-4

X-8 CA-IDMS Mapping Facility

record (continued)
specifying 8-13
specifying (batch compiler) 11-13, 11-47
record element
associating with a map field (batch compiler)
occurrence in data dictionary A-5
record element format 8-20
RECORD ELEMENT substatement
using to define an external picture 3-15
record occurrences A-7
redisplay of map 3-35
redisplayed fields
color of 8-9
data entry, protecting/unprotecting 8-9
detectable with light pen 8-9
highlighting of 8-9
intensity of display 8-9
MDT, set/reset 8-9
Tab, use with 8-9
type, numeric/alphanumeric 8-9
relessingamap 7-8
REPORT specification (batch utility) 13-4
REQUIRED specification
automatic panel definition 11-28
RESET MDT 87
RESET MODIFIED specification
automatic panel definition 11-14, 11-47
RESIDENT specification
automatic panel definition 11-13, 11-46
response field
See field, response
RESPONSE LENGTH specification
automatic panel definition 11-27
restricting input to (batch compiler)
RETAINED WHEN NULL specification
automatic panel definition 11-29
RETURN specification (pageable maps) 4-13
defining with the online compiler 4-21
REVERSE NUMERIC specification
batch compiler 10-6, 11-28
reverse numeric, field 8-28
reverse specification
online mapping compiler 8-30
REVERSE VIDEO specification
batch compiler 11-7
MAPC 8-9
RHDCMAP1 12-10
RHDCMPUT 13-12
RHDCTTBL module B-14
ROLE NAME 8-14

11-27

role names for records

automatic panel definition 11-13, 11-27, 11-47

online mapping compiler 8-14
ROLENAME specification

automatic panel definition 11-13, 11-47
runtime considerations 6-3

S

schema associated with amap 8-12
schema record

See record
screen painting, automatic 8-12
screen size

effects on design 8-15
security

batch compiler 10-4, 10-6

map level 10-4

SHOWMAP 5-7

creating foramap 5-9
signed data 3-15
SIGNON statement (batch compiler) 10-6
SKIP specification

batch compiler 11-7
SOUND ALARM/NOALARM specification

automatic panel definition 11-16, 11-50
SPACE directive 10-7
specifying name for map-level help 8-11
stand-alone table 3-24, D-4
STARTPAGE command (PL/I)
STARTPRT specification

automatic panel definition 11-14, 11-48
statement sequencing

automatic panel definition 10-9

manual panel definition 10-10
SWITCH 7-11
SYSGEN OLM statement 5-6, 5-12
system generation options 2-5
SYSTEM IS specification

automatic panel definition 11-13, 11-46

T

Tab, use with redisplayed fields 8-9
table

dternative map F-5

built-in 3-24, D-12

calculating storage for E-3

code 3-20, D-3

device independence B-3

edit 3-20, D-3

Index X-9

table (continued)
load module A-12
occurrences A-11
stand-alone 3-24, D-4
task codes, switching between 7-11
task id 7-11
tasks, transferring 7-11
teletypewriter terminals
Seeglass TTY terminals
templates for maps 2-9
terminal alarm 3-31, 8-8
TERSE specification (batch utility) 13-5
text
help 5-5
tightly coupled table
See built-in table
trailing blanks 8-24
transfer
from task to task 7-11
SWITCH 7-4
transfer control facility 7-4
translation character 3-35
truncation 3-19
TTY terminals
Seeglass TTY terminals
type of redisplayed fields, numeric/alphanumeric 8-9

U

underline specification
online mapping compiler 8-30
UNDERSCORE specification
batch compiler 11-8
unlocking the keyboard on mapout 11-14, 11-48
UNPROTECTED specification
batch compiler 11-6
online mapping compiler 8-20
update request 4-12
USAGE clause 3-11, 3-12
USAGE IS specification
automatic panel definition 11-30
USER clause (batch compiler) 10-6
user edit modules
See user-written edit modules
user-written edit modules C-3
mapin module C-8
mapin operation (batch compiler) 11-32
mapout module C-14
mapout operation (batch compiler) 11-33
routine to transpose dates C-10, C-15

USING RECORDS specification

automatic panel definition 11-13, 11-47

Vv

VALUE IS specification

automatic panel definition 11-26, 11-42

variable field

Seefield, variable
verbs for batch compiler 10-11
version numbers for records 8-13

W

WAIT specification (pageable maps) 4-12

window display, field help 8-27
window format for help 8-11
work record

See record
write options for fields 8-21

Z

ZERO
interaction with code table 3-24
interaction with data 3-3

ZERO (MAPC)
prompt 8-22

ZEROED WHEN NULL
interaction with code table 3-24
interaction with data 3-3, 3-35
specification 3-3

ZEROED WHEN NULL specification
automatic panel definition 11-29

X-10 CA-IDMS Mapping Facility

	CA-IDMS Mapping Facility
	Contents
	How to Use This Manual
	Who Should use this Manual?
	What does it Describe?
	What's Included in Each Section?
	For More Information
	Understanding Syntax Diagrams
	Sample Syntax Diagram

	Chapter 1. Introduction to the Mapping Facility
	1.1 Overview
	1.1.1 What is the Mapping Facility?
	1.1.2 Online and Batch Capabilities
	1.1.3 Input/ output Operations
	1.1.4 What's in this Chapter?

	1.2 The Online Compiler
	1.2.1 How does it Work?
	1.2.2 What Functions can it Perform?
	1.2.3 A Sample Session

	1.3 The Batch Compiler and Utility
	1.4 Automatic Editing and Error Handling
	1.5 Alternative Maps
	1.6 Terminals Supported by the Mapping Facility

	Chapter 2. Map Design Considerations
	2.1 Overview
	2.2 Preliminary Information Gathering
	2.2.1 Application- specific Information
	2.2.2 Site- specific Information

	2.3 Designing Maps
	2.3.1 General Considerations
	2.3.2 Control Key Standards
	2.3.3 Naming Conventions
	2.3.4 Layout and Display Standards
	2.3.5 Pageable Map Considerations

	2.4 Designing Map Fields
	2.4.1 Types of Fields
	2.4.2 Attributes for Fields

	Chapter 3. Automatic Editing and Error Handling
	3.1 Automatic Editing
	3.2 Error Handling
	3.3 Enabling Automatic Editing and Error Handling
	3.3.1 Overview
	3.3.2 Default Values
	3.3.3 Map- level Editing
	3.3.4 Field- level Editing

	3.4 Automatic Editing Criteria
	3.4.1 Overview
	3.4.2 Display Characteristics
	3.4.3 Data Conversion
	3.4.4 Input Verification
	3.4.5 Internal Pictures
	3.4.6 External Pictures
	3.4.6.1 Implicit External Pictures
	3.4.6.2 Explicit External Pictures

	3.4.7 Edit and Code Tables
	3.4.7.1 Overview
	3.4.7.2 Values in Edit and Code Tables
	3.4.7.3 Edit Table Values
	3.4.7.4 Code Table Values

	3.4.8 Enabling tables

	3.5 Error- Handling Criteria
	3.5.1 Attributes for Correct and/ or Incorrect Input
	3.5.2 Error Messages
	3.5.3 Alarm Status on Input Error

	3.6 Automatic Editing at Runtime
	3.6.1 Mapin Operations
	3.6.1.1 Automatic Editing on Mapin for Non- pageable Maps, Headers, and Footers
	3.6.1.2 Automatic Editing on Mapin for Pageable Maps

	3.6.2 Mapout Operations

	3.7 Error Handling at Runtime

	Chapter 4. Pageable Maps
	4.1 Overview
	4.2 Areas of Pageable Maps
	4.3 Map- paging Sessions
	4.3.1 Sequence of Events in a Map- paging Session

	4.4 Dialog and Program Operations
	4.4.1 Map- Paging Session Options
	4.4.1.1 Putting Options into Effect
	4.4.1.2 Specifying Paging and Update Requests
	4.4.1.3 Backpaging Capability
	4.4.1.4 Paging Mode

	4.4.2 Building and Displaying Fields
	4.4.2.1 Building Fields
	4.4.2.2 Displaying Fields
	4.4.2.3 Summary of Commands

	4.4.3 Retrieving Modified Data

	4.5 Runtime Considerations
	4.6 Creating Pageable Maps
	4.6.1 Overview
	4.6.2 Using the Online Compiler
	4.6.3 Using the Batch Compiler

	Chapter 5. The Help Facility
	5.1 Overview
	5.2 Terminology
	5.3 Creating Map- level Help
	5.3.1 Creating the Text of the Help Message
	5.3.2 Associating the Help Text with a Map
	5.3.3 Testing the Results

	5.4 Creating Field- level Help
	5.4.1 Creating the Text of the Help Message
	5.4.2 Associating the Help Text with a Field
	5.4.3 Testing the Results

	5.5 Using the Help System
	5.5.1 Overview

	Chapter 6. Runtime Considerations
	6.1 Overview
	6.2 Mapout and Mapin Operations
	6.2.1 CA- ADS Dialogs
	6.2.2 Other Languages

	6.3 Map Inquiry and Modification
	6.3.1 Statements
	6.3.2 Temporary VS Permanent Modifications
	6.3.3 Write Control Characters (WCC)

	6.4 Message Field Considerations
	6.5 Attributes

	Chapter 7. Online Compiler Overview
	7.1 Overview
	7.2 Accessing the Online Compiler
	7.3 Using the Online Compiler
	7.3.1 Overview
	7.3.2 What Screens are Used?
	7.3.3 Using the Main Menu Screen
	7.3.4 Using the action bar
	7.3.5 Overview of a session
	7.3.6 Using the function keys
	7.3.6.1 How to Move, Copy, and Delete Text

	Chapter 8. Online Mapping Compiler Reference
	8.1 Overview
	8.2 The Main Menu Screen
	8.3 General Options - Page 1
	8.4 General Options - Page 2
	8.5 Map- level Help Text Definition
	8.6 Associated Records
	8.7 Layout
	8.8 Field Definition Screens
	8.8.1 Field Definition
	8.8.2 Map Read/ write Options
	8.8.3 Additional Edit Criteria
	8.8.4 Field- level Help Text Definition
	8.8.5 Device- dependent Options
	8.8.6 User- defined Edit Modules
	8.8.7 Pageable Options

	Chapter 9. Batch Compiler and Batch Utility Overview
	9.1 Overview
	9.2 Compiler and Utility Functions
	9.2.1 Panels and Maps

	Chapter 10. Batch Compiler Coding Considerations
	10.1 Overview
	10.2 Compiler Security
	10.2.1 Security at the Compiler Level
	10.2.2 Security at the Map Level

	10.3 Compiler Signon
	10.4 Compiler Directives
	10.5 Compiler Statement Coding Requirements
	10.6 Compiler Statement Sequencing
	10.6.1 MAP AUTOPANEL and MFLD Statement Sequencing
	10.6.2 PANEL, PFLD, MAP, and MFLD Statement Sequencing

	10.7 Compiler Action Verbs
	10.7.1 The MODIFY Verb
	10.7.2 The DELETE Verb

	Chapter 11. Batch Compiler Statements
	11.1 Overview
	11.2 Attributes List
	11.2.1 How to use the Attributes List

	11.3 Statements for Automatic Panel Definition
	11.3.1 Overview
	11.3.2 MAP AUTOPANEL Statement Syntax
	11.3.3 Examples
	11.3.4 MFLD Statement Syntax
	11.3.5 Examples

	11.4 Statements for Manual Panel Definition
	11.4.1 PANEL Statement Syntax
	11.4.2 Examples
	11.4.3 PFLD Statement Syntax
	11.4.4 Examples
	11.4.5 MAP Statement Syntax

	Chapter 12. Batch Compiler Execution and JCL
	12.1 Overview
	12.2 Special Coding Features of the Batch Compiler
	12.2.1 Defining Versions of Maps for Different Devices
	12.2.2 Positioning Maps on Different Devices

	12.3 Batch Compiler JCL
	12.3.1 OS/ 390 JCL
	12.3.2 VSE/ ESA JCL
	12.3.3 VM/ ESA JCL
	12.3.4 BS2000/ OSD JCL

	12.4 Compiler Reports and Messages
	12.4.1 Diagnostic Messages
	12.4.2 Error Messages

	Chapter 13. Batch Utility Reference
	13.1 Overview
	13.2 Batch Utility Statements
	13.2.1 PROCESS Statement
	13.2.2 PANEL Statement
	13.2.3 MAP Statement

	13.3 Batch Utility JCL
	13.3.1 OS/ 390 JCL
	13.3.2 VSE/ ESA JCL
	13.3.3 VM/ ESA JCL
	13.3.4 BS2000/ OSD JCL
	13.3.5 Sample JCL

	Appendix A. Integrated Data Dictionary Mapping Entities
	A. 1 Overview
	A. 2 Data Dictionary Entities used by the Mapping Compilers
	A. 2.1 Builder Codes
	A. 2.2 Element Occurrences
	A. 2.3 Record Occurrences
	A. 2.4 Panel Occurrences
	A. 2.5 Map Occurrences
	A. 2.6 Message Occurrences
	A. 2.7 Table Occurrences
	A. 2.8 Map and Table Load Module Occurrences

	A. 3 Data Dictionary Entities Updated by Mapping Compilers
	A. 4 Critical Changes
	A. 5 Coordinated Use of the Online and Batch Compilers

	Appendix B. Using Glass TTY Terminals
	B. 1 Overview
	B. 2 TTY Environment
	B. 3 Restrictions
	B. 4 Preparing Device Independence Statements
	B. 5 RHDCTTBL JCL and Execution
	B. 5.1 OS/ 390 JCL
	B. 5.2 VSE/ ESA JCL
	B. 5.3 VM/ ESA JCL
	B. 5.4 BS2000/ OSD JCL

	Appendix C. User- Written Edit Modules
	C. 1 Overview
	C. 2 Coding considerations
	C. 2.1 Registers Immediately Prior to User Edit Module
	C. 2.2 System Macros
	C. 2.2.1 #START Macro
	C. 2.2.2 #RTN Macro

	C. 2.3 System DSECTs

	C. 3 Input Modules for Mapin Operations
	C. 3.1 Format of Data
	C. 3.2 Parameters Passed to Input Modules
	C. 3.3 Macros for Input Modules
	C. 3.4 Sample Input Module

	C. 4 Output Modules for Mapout Operations
	C. 4.1 Format of Data
	C. 4.2 Parameters Passed to Output Modules
	C. 4.3 Macros for Output Modules
	C. 4.4 Sample Output Module

	Appendix D. Generating Edit and Code Tables
	D. 1 How to Define Tables
	D. 2 Stand- alone Tables
	D. 2.1 Overview
	D. 2.2 Examples
	D. 2.3 Use of the NOT FOUND Condition

	D. 3 Built- in tables
	D. 3.1 Overview
	D. 3.2 Examples

	Appendix E. Estimating Pageable Map Storage
	E. 1 Definition
	E. 2 Calculations Used
	E. 3 Estimating the Amount of Storage per Map Page
	E. 3.1 Amount of Storage per Detail Occurrence
	E. 3.2 Number of Detail Occurrences per Detail Area

	E. 4 Determining the Number of Pages per Pageable Map

	Appendix F. Alternative Maps
	F. 1 Overview
	F. 2 Generating Alternative Maps
	F. 3 Generating and Assigning Alternate Map Tables
	F. 3.1 Generating Map Tables
	F. 3.2 Assigning Map Tables to Users

	Appendix G. PL/ I DML Statements for Pageable Maps
	G. 1 Overview
	G. 2 DECLARE MAP
	G. 3 MAP IN
	G. 4 MAP OUT
	G. 4.1 STARTPAGE
	G. 4.2 ENDPAGE

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

