User Guide
43

a)

Computer Associates™

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is for
the end user’s informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part, without
the prior written consent of CA. This documentation is proprietary information of CA and protected by the copyright
laws of the United States and international treaties.

Notwithstanding the foregoing, the user may print a reasonable number of copies of this documentation for its own
internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy. Only
authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of the
license for the software of the user will have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and
effect. Should the license terminate for any reason, it shall be the user’s responsibility to return to CA the reproduced
copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct or
indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user’s
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or
DFARS Section 252.227.7013(c)(1)(ii) or applicable successor provisions.

0 2001 Computer Associates International, Inc., One Computer Associates Plaza, Islandia, New York 11749. All
rights reserved.

All trademarks, trade names, service marks, or logos referenced herein belong to their respective companies.

Contents

Chapter 1: Infroducing CA-IDMS Server

Who Should Use this Document. 1-1
Components of CA-IDMS SeIVETot e e 1-2
The ODBC and JDBC DIivVers 1-2
CA-IDMS Server Architecture. 1-4

Chapter 2: Preparing to Install CA-IDMS Server

Windows Software Prerequisites 2-1
About CAICCI/PC. .. 2-1
About the ODBC Driver Managerutiitii e 2-2
About the Java Virtual Machine 2-3

Delivery of COmMpONnents. 2-4

Mainframe Software Prerequisites. 2-5

0OS/390 Software Prerequisites. 2-5

Chapter 3: Setting Up Your CA-IDMS System

Installing the Host Component. 3-1
Setting Up CA-IDMS Server 3-2
Defining the CA-IDMS System e 3-2
Defining a CAICCILINe e 3-3
Creating the CASERVER Task. 3-4

Contents iii

Setting Up Database ACCESS i 3-5

Setting Up SQL ACCESSottt 3-5
Utilizing Page Groups 3-6
Setting Up SQL Access to Non-SQL Databases ... 3-6
Setting up Catalog VIEWS.o 3-10
Handling Invalid Numeric Data 3-11
Pseudo-conversational Processing 3-12
Tuning Pseudo Conversational Processing 3-13

Chapter 4: Installing the Client on Windows

Preparing to Install CA-IDMS SEIVer. i 4-1
Uninstalling Previous Versions i 4-1
Installing CA-IDMS Server on Windows. 4-2

Chapter 5: Configuring the Client on Windows

Configuring CAICCI/PC ... 5-1
Defining Data Sources 5-2
Data Source Types. 5-2
Adding a New Data SOUICE. e 5-2
Saving the Data Source Definition. 5-5
Testing the Data Source Definition 5-5
Editing the Data Source Definition 5-5
Setting Up a Server 5-6
Setting ODBC OptiONSo 5-8
Performance Considerations for ODBC Options 5-11
Specifying CA-IDMS Administrator Defaults 5-11
Logging Errors and Trace Information. i 5-13
Setting Language Options. 5-14
Using the International Tab. 5-14
Using a Custom Conversion DLL 5-21
Enabling a Custom Conversion DLL. 5-21
Developing a Custom Conversion DLL 5-22
Configuring the JDBC Server.......... 5-28

Chapter 6: Using the ODBC Driver on Windows

Connecting to a Predefined Data Source........... i 6-1
Connecting Dynamically to a Data Source Not Previously Defined 6-2

iv. CA-IDMS Server User Guide

Chapter 7: Using the CA-IDMS JDBC Server on Windows

Installing the JDBC Server e e 7-1
Configuring the Web Server for Applets 7-2
Using the JDBC Server on Windows NT 7-2
Using the JDBC Server on Windows 98 7-2

Chapter 8: Installing the Client on OS$/390

Installing the Client Components for UNIX System Services 8-2
Step 1: Load the Installation Files 8-2
Step 2: Customize the Installation Files. i 8-2
Step 3: Upload OS/390 Datasets e 8-4
Step 4: Customize the Installation JCL. L 8-4
Step 5: Set Upa New OMVS Groupand User.. 8-6
Step 6: Allocate the HES 8-7
Step 7: Create the Installation Directory inthe HFS 8-7
Step 8: Create Subdirectories, Allocate Datasets, and Prelink Object Modules 8-8
Step 9: Install the Executable Modules Using SMP/E ... 8-8
Step 10: Set File Access Bits 8-9
Step 11: Delete Unnecessary Files 8-9

Chapter 9: Configuring the Client on OS/390

Configuring CA-IDMS 9-1
Specifying Environment Variables. 9-2
Editing the Configuration File. 9-3

Chapter 10: Using the Client on OS/390

Configuring Applications to Use CA-IDMS Server, 10-1
Configuring the Web Server to Use CA-IDMS Server ...t .. 10-2
Controlling the JDBC Server i 10-3

Monitoring the JDBC Server 10-4

Chapter 11: Using the Client on Other Platforms

Using the JDBC Driver on Other Platforms 11-1
Using the JDBC Server on Other Platforms i, 11-2

Contents v

Appendix A: ODBC Programmer Reference

Debugging User SESSIONS e A-1
Error Messages. A-1
ODBC Conformance Levels A-2
API Conformance Levels.. A-2
SQL Conformance Levels. A-5
Database Type Mapping Between OBDC and CA-IDMS, A-8
CA-IDMS to ODBC Data Type Mapping.............. i A-9
ODBC to CA-IDMS Data Type Mappingt A-10
Driver-Specific Data Types A-11
SQLDriverConnect Connection String Format. A-11
Supported Attribute Keywords and Attribute Values A-12
Driver-Specific Connect Options. A-13
Supported Isolation and Lock Levels. A-13
Bulk Insert Support. A-13
Retrieving Network Set Information. A-14

Appendix B: JDBC Programmer Reference

JDBC CONfOrmMancCe.ttt et e e e e e e e B-1
APICONfOrmance e B-2
SQL CONfOIMAaNCEottt et B-3

Database Type Mapping Between JDBC and CA-IDMS i, B-4
CA-IDMS to JDBC Data Type Mapping. B-4

Connection Parameters B-6
IDMS URL Format. e B-6
DriverPropertyInfo o B-7
Dynamic Positioned Updates B-8

Sample Programs B-8
s ' 4 1] ' B-8
IdmsExample B-9

Appendix C: Windows Registry Information

Registry Information C-1
HKEY_LOCAL_MACHINE\Software\ODBC\ODBCINST.INI., C-2
HKEY_LOCAL_MACHINE\Software\ODBC\NODBC.INI. i, C-3
HKEY_CURRENT_USER\Software\ODBC\NODBC.INI.o, C4
HKEY_LOCAL_MACHINE\Software\ComputerAssociates\CA-IDMS....................... Cc4
Values. .. C-13

vi CA-IDMS Server User Guide

Appendix D: Configuration File Information

Configuration File Data D-1
Environment Variables D-1
SECHIONS D-2

Appendix E: Passing Accounting Information to CA-IDMS

Supplying Accounting Information. E-1
Using Accounting Information E-2

Appendix F: Configuring CAICCI for TCP/IP

Installation NOtes F-1
Specifying Protocol Parameters for TCP/IP F-2
Tracing a Communications Problem F-4
Testing the Configuration F-5
Exiting the CAICCI-PC Properties Dialog e F-6
Index

Contents vii

Chapter

1 Infroducing CA-IDMS Server

CA-IDMS Server provides open access to data stored in CA-IDMS databases,
allowing you to maintain existing corporate databases and make your data
available to new client-server and web-based applications. CA-IDMS Server
provides support for dynamic Structured Query Language (SQL) using both the
Open Data Base Connectivity (ODBC) and Java Data Base Connectivity (JDBC)
application program interfaces.

CA-IDMS Server 4.3 supports ODBC on all 32-bit versions of Windows, and
supports JDBC on all platforms supporting Java 1.1 or later, including Windows
and OS/390.

Included on the CD is CA-IDMS Server 3.0, which runs on Windows 3.1 and
provides support for ODBC applications as well as compiled SQL embedded in
CA-Visual Realia COBOL applications. CA-IDMS Server 3.0 must be used in the
Windows 3.1 environment.

Who Should Use this Document

This guide assumes you are a new user of CA-IDMS Server with experience
using either Microsoft Windows or OS/390, and have familiarity with CA-IDMS
and database access.

Use this document if you are a CA-IDMS database administrator or system
administrator, an ODBC or JDBC application developer, or the end user of an
application using CA-IDMS Server to access a CA-IDMS database.

m If you are a database administrator or end user, use this document to define
data sources to access CA-IDMS data from a client application.

m System administrators should use this document to set up a CA-IDMS
system for access by CA-IDMS Server.

m If you are an application developer, use this document to understand how
ODBC and JDBC Application Program Interface (API) requests are
implemented in CA-IDMS Server.

Infroducing CA-IDMS Server 1-1

Components of CA-IDMS Server

Components of CA-IDMS Server

CA-IDMS Server consists of both host and client components.

The host component is installed on your CA-IDMS system and enables the
Common Communications Interface (CAICCI) line driver to communicate with
the client components. CAICCI services are installed on the same operating
system image as your CA-IDMS system. CAICCI is a component of Unicenter
TNG Framework for OS/390, CA-Common Infrastructure Services (CA-CIS), or
CA90s Services, depending on your operating system.

The client components include the CA-IDMS ODBC Driver, the CA-IDMS JDBC
Driver, the CA-IDMS JDBC Server, the native CA-IDMS SQL client interface,
and, on Windows, CAICCI/PC. These components have a client relationship
with CA-IDMS, but, from an application perspective, they form part of the
application server.

The ODBC and JDBC Drivers

The ODBC and JDBC drivers translate industry standard SQL requests into the
form used by the native client interface. The native interface implements the
same protocol used by CA-IDMS online and batch applications written in
COBOL and CA-ADS. It communicates with CA-IDMS using CAICCL
Supported protocols include TCP/IP and LU2 for Windows clients and Cross
Memory Services for OS/390 clients.

The CA-IDMS ODBC Driver

The CA-IDMS ODBC Driver can be used on all Windows platforms (for
Windows 3.1 use CA-IDMS Server 3.0, included on the CD). The ODBC driver
implements the ODBC 2.5 specification and works with ODBC 3.X applications
when the ODBC 3.0 (or later) Driver Manager is installed.

The CA-IDMS ODBC Driver always calls the native interface directly.
Applications using the ODBC Driver run on the machine on which both CA-
IDMS Server and CAICCI/PC are installed. Web-based applications running in
browsers use ODBC indirectly through technologies, such as Active Server
Pages, which appear as the application to the ODBC Driver.

1-2 CA-IDMS Server User Guide

Components of CA-IDMS Server

The CA-IDMS JDBC Driver

The CA-IDMS JDBC Driver can be used on Java 1.1 (or later) platforms,
including Windows and OS/390. The JDBC Driver implements the JDBC 1.2
specification, but it also can be used with JDBC 2.0 applications that do not call
JDBC 2.0 specific methods.

The CA-IDMS JDBC Diriver calls the native interface directly when both are
installed on the same platform. Applications using the JDBC Driver can run on
the same machine on which both CA-IDMS Server and CAICCI are installed.
Web based applications running in browsers use JDBC indirectly, through
technologies such as Java Servlets or Java Server Pages, which appear as the
application to the JDBC Driver.

The CA-IDMS JDBC Server

The CA-IDMS JDBC Server acts as an intermediate server between the JDBC
Driver and the CA-IDMS system, and allows applications to use JDBC directly
when running on platforms on which the native SQL client interface is not
installed. The JDBC Driver uses TCP/IP to communicate with the JDBC Server,
and the JDBC Server invokes the native interface on behalf of the JDBC Driver.
The JDBC Server is often used with a web server to support JDBC applets, but
can also be used to run standalone JDBC applications.

The JDBC Server is not used when the application and the native interface run on
the same platform. It is only needed when the application or applet runs on a
platform on which the native interface is not installed.

Infroducing CA-IDMS Server 1-3

Components of CA-IDMS Server

CA-IDMS Server Architecture

The following diagram illustrates the way in which the CA-IDMS Server
software components fit together when the client platform is Windows:

Web Server

JDBC
Driver [N\Q

Browser \
Client

JDBC
Driver

17

App

Java
Client

1F Jf

B

Servlet ASP

CA-IDMS/DB

1L 1

JDBC JDBC ODBC
Server Driver Driver

i

I 3 Jf

SQL Option

SQL Client Interface

i

i

CClI Line Driver

CAICCI

i

Windows Client Components

CAICCI

Host Components

Both the ODBC and JDBC drivers are supported for Windows applications,
represented here by the web server. The Windows client and CA-IDMS
communicate using either TCP/IP or LU2. In this diagram the combination of
the web server, servlet, and ASP boxes represent the applications. CA-IDMS
Server also supports traditional ODBC and JDBC client-server applications, such

as CA-Visual Express.

1-4 CA-IDMS Server User Guide

Components of CA-IDMS Server

For More Information

The following diagram illustrates how the CA-IDMS Server software
components fit together when the client platform is OS/390:

- -
s =
JDBC CA-IDMS/DB
Driver [N Serviet
Browser \ ﬁ II
Client
JDBC JDBC ;
Server Driver SQL Option
JDBC U U "
Driver SQL Client Interface CCl Line Driver
App
CAICCI) e CAICCI
N
Java
Client 0S/390 Client Components Host Components

The CA-IDMS JDBC Driver is supported for OS/390 applications, represented
here by the web server. The OS/390 client and CA-IDMS communicate using
Cross Memory Services.

The host components are the same whether the native client is installed on
Windows or OS/390.

You may find it useful to refer to the following documents when setting up your
CA-IDMS system to work with CA-IDMS Server:

CA-IDMS Installation and Maintenance — OS,/390
CA-IDMS System Generation

CA-IDMS System Operations

CA-IDMS Database Administration

CA-IDMS SQL Reference

CA-IDMS SQL Programming Guide

CA-IDMS DML Reference — COBOL

Unicenter TNG Framework for OS/390, CA-CIS, or CA90s Services
documentation

Information about ODBC is available at www.microsoft.com. Information about
JDBC is available at www.java.sun.com.

Intfroducing CA-IDMS Server 1-5

http://www.microsoft.com/
http://www.java.sun.com/

Infroducing CA-IDMS Server 1-1

il Preparing to Install CA-IDMS
pJl Server

This chapter summarizes the software prerequisites for CA-IDMS Server on
Windows and the mainframe.

Windows Software Prerequisites

CA-IDMS Server requires the following software to be installed on the PC:

m Microsoft Windows 95 or 98, Windows NT 4.0 (Service Pack Release 3 or
higher), Windows Millennium, or Windows 2000.

m TCP/IP or LU2 communications protocols
m CAICCI/PC
m ODBC Driver Manager 2.5, or later

m Java 1.1 or later virtual machine for JDBC support

About CAICCI/PC

CAICCI/PC provides a common interface between the CA-IDMS ODBC Driver
and various communications protocols. CAICCI/PC is distributed on the
Unicenter TNG Framework for OS/390, CA-CIS, or CA90s Services tape for your
mainframe operating system. The CAICCI/PC runtime interface for TCP/IP can
be installed as part of the CA-IDMS Server installation.

CAICCI/PC must be installed to use ODBC, the CA-IDMS JDBC Server, and
JDBC applications that connect directly to CA-IDMS. It is not necessary to install
CAICCI/PC on client workstations that will use JDBC only through applets
running in a Web browser. Additionally, it is not necessary to reinstall
CAICCI/PC when upgrading from CA-IDMS Server Versions 4.0 or later.

Preparing to Install CA-IDMS Server 2-1

Windows Software Prerequisites

The multi-threaded version of CAICCI/PC for TCP/IP can be installed as part of
the CA-IDMS Server installation. Only the run-time DLL is installed. For your
convenience, the complete CAICCI/PC installation is included in the CCI
directory on the CA-IDMS Server CD. Copy the file ccipcw32.exe to a directory
on your hard disk, and run it to extract the installation files. Then run the
extracted install.exe.

For additional information about CAICCI/PC for TCP/IP, see the appendix
“Configuring CAICCI for TCP/IP” in this guide. For information about
downloading and configuring CAICCI/PC and supported network transport
products, refer to Unicenter TNG Framework for OS/390, CA-CIS, or CA90s
Services documentation, depending on your operating system.

About the ODBC Driver Manager

The ODBC Driver Manager provides the link between ODBC enabled
applications and ODBC drivers, and is installed automatically by newer releases
of many Microsoft products, including Windows NT, Office, and Internet
Explorer. CA-IDMS Server conforms to the ODBC 2.5 specification and will work
with the ODBC 2.5, or later, Driver Manager. To verify the version of ODBC
installed on your machine, click the ODBC 32 icon in the Windows Control Panel
and select the About tab. For detailed information about CA-IDMS Server
conformance to the ODBC standard, refer to the “ODBC Programmer Reference”
appendix in this guide.

The ODBC Driver Manager must be installed before installing CA-IDMS Server
to use ODBC, and is recommended for use with the CA-IDMS JDBC Server and
JDBC applications that connect directly to CA-IDMS. It is not necessary to install
it on client workstations that will only use JDBC through applets running in a
Web browser. Additionally, it is not necessary to reinstall the ODBC Driver
Manager when upgrading from CA-IDMS Server Versions 4.0 or later.

With the release of ODBC 3.5, Microsoft has embedded the ODBC Driver
Manager into the Microsoft Data Access Components (MDAC), along with
ActiveX Data Objects, the OLE DB Provider for ODBC, and updated ODBC
drivers for Microsoft SQL Server, Microsoft Access, and Oracle. Since the ODBC
Driver Manager components can no longer be redistributed separately, they are
not installed as part of the CA-IDMS Server installation. Additional information
about ODBC and MDAC is available from the Microsoft web site.

2-2 CA-IDMS Server User Guide

Windows Software Prerequisites

The latest version of MDAC can be freely downloaded directly from the
Microsoft web site, www.microsoft.com. For your convenience, the typical
MDAC installation, mdac_typ.exe, is included in the Microsoft directory on the
CA-IDMS Server CD. This file can be run directly from the CD.

CA-IDMS Server supports 16-bit applications, using the 16-bit ODBC Driver
Manager to route the API requests to the 32-bit ODBC driver. This Driver
Manager can be installed using CA-IDMS Server 3.0, which has an option to
install the Driver Manager only. For your convenience, the CA-IDMS Server 3.0
installation disk image, idmsrv30.zip, is included in the Serv30 directory on the
CA-IDMS Server CD. This file must be unzipped onto a writable disk before the
installation is run.

About the Java Virtual Machine

A Java Virtual Machine (JVM) is an interpreter that executes Java programs,
which are stored on disk as class files. CA-IDMS Server conforms to the JDBC 1.2
specification and requires a Java 1.1 (or later) compliant Virtual Machine. For
detailed information about CA-IDMS Server conformance to the JDBC standard,
refer to the “JDBC Programmer Reference” appendix in this guide. Additional
information about JDBC and Java is available on the World Wide Web at
Wwww.java.sun.com.

Recommended JVMs for CA-IDMS Server are the JVM installed as part of the
Microsoft Internet Explorer 4.01, Service Pack 1 (or later), and the Sun
Microsystems Java Run Time Environment (JRE) 1.1.8 or later. You can verify the
version of the Microsoft JVM, if installed, by entering “jview” at the command
prompt. The commands used to verify the version of the Sun JVM vary
depending on the version, and on whether the JRE or JDK is installed, but are
generally either “jre” or “java version”.

The latest version of the Microsoft JVM can be freely downloaded directly from
the Microsoft web site, www.microsoft.com. For your convenience, the JVM 5.0
installation, msjavx86.exe, is included in the Microsoft directory on the CA-IDMS
Server CD, and can be run directly from the CD.

Preparing to Install CA-IDMS Server 2-3

http://www.microsoft.com/
http://www.java.sun.com/
http://www.microsoft.com/

Delivery of Components

The latest versions of the Sun Microsystems JRE can be freely downloaded
directly from the JavaSoft web site, www.java.sun.com. For your convenience,
the JRE 1.1.8 and 1.3 installation files are included in the Sun directory on the
CA-IDMS Server CD. These files can be run directly from the CD.

The CA-IDMS Java Command Facility (JCF) demo applet uses the Swing classes
from Sun Microsystems. They are not included with the Microsoft JVM or the
Sun JRE 1.1, but can be downloaded from Sun's web site. They are installed as
part of the Sun JRE 1.3. When the JCF demo is installed, the swingalljar file
containing these classes is installed in the CA-IDMS Server\Java\classes
directory.

Delivery of Components

Delivery of the Computer Associates software components utilized by
CA-IDMS Server is shown in the chart below:

Software Base Product Installation Medium

Component

CA-IDMS Server ~ CA-IDMS Server CA-IDMS Server CD

ODBC and JDBC

Drivers

CAICCI/PC Unicenter TNG Framework for Base product tape or
0S/390, CA-CIS, or CA90s Services CA-IDMS Server CD.

CAICCI and Unicenter TNG Framework for Base product tape

CAIENF 0S/390, CA-CIS, or CA90s Services

CA-IDMS CA-IDMS CA-IDMS

CA-IDMS Server CA-IDMS Server CA-IDMS tape

(host component)

2-4 CA-IDMS Server User Guide

http://www.java.sun.com/

Mainframe Software Prerequisites

Mainframe Software Prerequisites

CA-IDMS Server requires the installation of CA-IDMS Release 12.0 (or later) on
the mainframe. You will also need the SQL option. The host component of CA-
IDMS Server is delivered on the CA-IDMS installation tape for Release 14.0 and
higher, and on the CA-Host Server tape for prior releases. APAR LO88882
should be applied to Release 14.0 and 14.1 on MVS to update the host
component. The updated host component is also included in the Service Pack 4
tape for these releases, and the Release 15.0 tape. Refer to the CA-IDMS
Installation and Maintenance Guide for more information about installing
CA-IDMS Server on the mainframe.

APAR LO09385 should be applied to CA-IDMS 12.01 systems with gen level 9506
or later. This corrects an infinite loop than can occur in the CV when a command
with a "piggybacked suspend” (CA-IDMS Server automatically pseudo
converses) is rolled back due an error. This problem was fixed in CA-IDMS
Server 14.0.

CA-IDMS Server requires the installation of the Unicenter TNG Framework for
05/390, CA-CIS, or CA90s Services components CAIENF (Event Notification
Facility) and CAICCI (Common Communications Interface) on the mainframe.
For information about installing CAIENF and CAICCI on the mainframe, refer to
Unicenter TNG Framework for OS/390, CA-CIS, or CA90s Services
documentation.

0S/390 Software Prerequisites

The CA-IDMS JDBC Driver and JDBC Server run in the UNIX System Services
(USS) environment on OS/390. They must be installed and set up on the
mainframe. The JVM must also be installed and available in the USS
environment. TCP/IP must be installed and configured correctly to use the JDBC
Server. For additional information about installing USS, TCP/IP, and the JVM,
refer to IBM documentation.

Preparing to Install CA-IDMS Server 2-5

Preparing to Install CA-IDMS Server 2-1

Chapter

3 Setting Up Your CA-IDMS System

This chapter describes the mainframe procedures necessary to establish
communications between Windows applications and CA-IDMS using

CA-IDMS Server, and provides information to help you access existing CA-IDMS
databases. The chapter also includes a description of how network records
appear to SQL, as well as information about Numeric data, and pseudo
conversational processing.

Installing the Host Component

CA-IDMS Server includes a host component, installed on all mainframe
operating systems, that allows encrypted passwords to be sent from the client to
the CA-IDMS System. This host component is compatible with CA-IDMS 12.0
and all later releases, as well as all releases of CA-IDMS Server. The host
component must be installed on each secured CA-IDMS system.

Attempts to connect to a secured CA-IDMS system with the earlier version of the
host component installed will fail when password encryption is enabled.

The host component consists of an object module, RHDCDOLB, linked with the
CAICCI line driver, RHDCDOLV. The object module is delivered on the
CA-IDMS tape for Release 15.0, and is available on service packs for Release 14.0
and 14.1.

Setting Up Your CA-IDMS System 3-1

Setting Up CA-IDMS Server

Setting Up CA-IDMS Server

To set up CA-IDMS Server access on the mainframe, each CA-IDMS system to be
accessed as a CA-IDMS data source server must be generated with the following
definitions:

m A CAICCl line

s A PTERM/LTERM pair for each concurrent session with the CA-IDMS
system

m A CA-IDMS Server task

m The SQL definitions in the catalog area of the dictionary associated with the
CA-IDMS system

Defining the CA-IDMS System

The following section describes the procedure to define the CA-IDMS system-
generation parameters to support communications using CA-IDMS Server.
Include these definitions in each CA-IDMS system to be accessed from a
CA-IDMS data source.

For detailed information about these system-generation statements and how to
use the system-generation compiler, refer to CA-IDMS System Generation.
Additionally, CA-IDMS System Operations provides information about
configuring and maintaining CA-IDMS systems.

Examples The examples in this chapter assume that CA-IDMS Server will be used to
access two sample CA-IDMS systems, System 81 and System 82, from a PC.

An Inventory dictionary, INVDICT, is associated with System 81. Associated
with System 82 is BENEDICT, a Benefits dictionary. INVDICT and BENEDICT
contain the definitions of the tables to be accessed from the PC. Data source
definitions on the PC refer to the mainframe dictionary names.

3-2 CA-IDMS Server User Guide

Defining the CA-IDMS System

The following diagram illustrates the sample CA-IDMS system network:

% SYSTEM &1 SYSTEM B2 %

IMWDICT BEMEDICT
AT CANCC
Lire CAICC Lire
[e |
| I
Invertory Data Benefts Data
Source Definition Source Definition

Defining a CAICCI Line

CAICCI provides communication between mainframes, or between a mainframe
and PC, independent of any particular communications protocol or access
method. A CAICCI line connects a CA-IDMS system with the CAICCI network.
Define a CAICCI line in each CA-IDMS system to be accessed as a CA-IDMS
data source.

Add one CAICCI line for the CA-IDMS system you are defining, plus a physical
terminal (PTERM) and logical terminal (LTERM) pair for each concurrent session
with the CA-IDMS system.

Each client process uses at least one PTERM/LTERM pair when connected to a
CA-IDMS system. Define a minimum of one PTERM/LTERM pair for each PC to
be used concurrently to access the CA-IDMS system. If more than one
application will be used on the same PC to access the CA-IDMS system, you
must define additional PTERM/LTERM pairs for each additional application.
For example, if 5 PC users each run 2 ODBC applications concurrently, define 10
PTERM/LTERM pairs.

When multi-threading is enabled, each ODBC or JDBC connection uses one
PTERM/LTERM pair. For example, if you have a single PC running a World
Wide Web server application, and wish to support concurrent access to CA-
IDMS by 25 World Wide Web browser clients, define 25 PTERM/LTERM pairs.

Setting Up Your CA-IDMS System 3-3

Defining the CA-IDMS System

Example

The following example defines a CAICCI line for System 81. The LINE, PTERM,
and LTERM statements define a CAICCI line with two physical terminals,
allowing two PC users to be logged on to System 81 at the same time:

ADD SYSTEM 81
SYSTEM ID IS SYSTO081

ADD LINE CCILINE
TYPE IS CCI.

ADD PTERM PTECCIO1
TYPE IS BULK

ADD LTERM LTECCIO1
PTERM IS PTECCIOL.

ADD PTERM PTECCIO2
TYPE IS BULK

ADD LTERM LTECCIO2
PTERM IS PTECCIO2.

Creating the CASERVER Task

The TASK statement defines a task and its characteristics, including the code
used to invoke the task. The default task code is CASERVER. You can override
the default task code if you want to control resources per user or to apply
additional security.

The CASERVER task code is similar to the RHDCNP3S task code, which controls
the resource limits and time-out values for CA-IDMS external user sessions.
Define a CASERVER task code for each CA-IDMS system to be accessed by
CA-IDMS Server. To do this, perform the following steps:

1. From the system-generation compiler, enter the command:

DISPLAY TASK RHDCNP3S AS SYNTAX.

The system-generation compiler displays the definition of the RHDCNP3S
task code.

2. Erase the DISPLAY TASK statement at the top of the screen.

3. Change the name of the task code, RHDCNP3S, to CASERVER (or the task
code name you have chosen). Modify the task definition to add the
INTERNAL parameter, if it is not already there, and to set an appropriate
value, in seconds, for the EXTERNAL WAIT parameter for your users (for
example, set 1800 for a 30-minute wait).

Note: If you do not define a CASERVER task code, CA-IDMS uses the
RHDCNP3S task code to define the characteristics for a CA-IDMS Server session.

3-4 CA-IDMS Server User Guide

Setting Up Database Access

Setting Up Database Access

CA-IDMS Server uses dynamic SQL to access a CA-IDMS database from an
ODBC or JDBC application. Both the SQL Option and the host component of CA-
IDMS Server must be installed on the CA-IDMS system. The database can be
defined using the Schema compiler or SQL Data Description Language (DDL). In
either case, you must include the appropriate SQL definitions in the dictionary
associated with the CA-IDMS system. The SQL definitions reside in the catalog
area of the dictionary.

Setting Up SQL Access

The following suggestions are useful when setting up SQL access to
CA-IDMS databases:

To access a non-SQL-defined database using SQL, define an SQL schema that
identifies the network schema and the segment where the data is stored. The
network schema must conform to the rules described throughout this
chapter.

If the application does not qualify table references with schema names,
define one or more CA-IDMS/DC profiles that set a default schema name.
You may need to ask your Data Base Administrator (DBA) for assistance.

To limit the size of the list of tables returned to an ODBC application, create
an Accessible Tables View that returns a subset of the default view, and set it
as an option for specific data source. Using such a view of accessible tables
can generate a more meaningful list of tables for each user and improve
performance.

Note: Since registry settings are generally not available to Java applets, the
JDBC driver always uses the default view, SYSCA.ACCESSIBLE_TABLES.

Define views in the catalog to provide easy access to non-SQL-defined
databases or application-specific data. For example, consider using a view
when joining tables using the set-name condition. However, if you choose to
do so, remember that views created by joining two or more tables cannot be
updated.

Implement table procedures to provide easy access to non-SQL-defined
databases or application-specific data. For example, consider using a table
procedure to navigate a complicated network database. Table procedures can
also be used to update databases.

Setting Up Your CA-IDMS System 3-5

Setting Up Database Access

Utilizing Page Groups

A page group is a physical database definition attribute set by the database
administrator during database definition. The catalog and the target database
can be in different page groups. Unless the Mixed Page Group Feature of CA-
IDMS 14.1 is activated, tables from mixed page groups cannot be accessed with a
single request. Additionally, once a table from one page group has been
accessed, a COMMIT command must be issued before a table from a different
page group can be accessed.

To use data sources defining data from mixed page groups:

m Define a different data source and a different Accessible Tables View for each
page group when the catalog contains definitions of tables from mixed page
groups. Each Accessible Tables View should include tables from a single
page group so that the end user cannot accidentally access mixed page
groups after a table list function is performed.

m Use the Automatic Commit option when accessing tables in different page
groups.

Note: Automatic Commit is enabled by default, and can be disabled using
an ODBC or JDBC function.

Mixed page groups are supported by CA-IDMS Release 14.1, so these restrictions
do not apply when the data source is on a 14.1 or later system and the Mixed
Page Group Binds feature has been activated.

Refer to the CA-IDMS Database Administration — Volume 1 or the CA-IDMS
14.1 Features Guide for more information about using page groups.

Setting Up SQL Access to Non-SQL Databases

This section reviews the transformations used by the SQL engine when reading

definitions of non-SQL records. When using SQL to access non-SQL records, the
entity names coded in the SQL syntax must follow the conventions described in
the following sections.

3-6 CA-IDMS Server User Guide

Setting Up Database Access

Accessing Non-SQL Records Using SQL Statements

To reference an SQL table in SQL statements, code the table name preceded by a
schema name qualifier. For example, in this statement:

SELECT * FROM DEMOSCH.SAMPLE

SAMPLE is the table name and DEMOSCH is the SQL schema in which it is
defined.

The combination of schema name and table name allows the SQL compiler to
look up the definition of the table in the SQL catalog.

To access a non-SQL record from an SQL statement, code the record name in the
same way. Define an SQL schema that maps to the corresponding non-SQL
schema, and use the SQL schema name to qualify all subsequent references to
non-SQL records in SQL DML statements. For example:

CREATE SCHEMA SQLNET

FOR NONSQL SCHEMA PRODDICT.CUSTSCHM;
SELECT * FROM SQLNET."ORDER-REC";

For more information about defining SQL schemas, see the CA-IDMS SQL
Reference for syntax and information about accessing non-SQL databases and
CA-IDMS Database Administration for process-related information.

Transforming Non-SQL Record and Set Names

Non-SQL record and set names may contain embedded hyphens, which are
allowed in the naming conventions for non-SQL schemas, but not in the naming
conventions for SQL schemas. To use record and set names with embedded
hyphens in an SQL statement, enclose the names in double quotes, for example,
"CUST-REC-123".

Transforming Non-SQL Element Names

In non-SQL element names, CA-IDMS automatically transforms embedded
hyphens to underscores when they are referenced through SQL. For example, to
access the CUST-NUMBER element in a non-SQL record, you must code
CUST_NUMBER in an SQL statement.

Setting Up Your CA-IDMS System 3-7

Setting Up Database Access

Creating SQL Synonyms

When a FOR LANGUAGE SQL synonym is defined for a non-SQL record,
CA-IDMS uses the element synonyms for all SQL access. SQL synonyms are used
only for element names.

Defining SQL synonyms for non-SQL records is sometimes the only way to
overcome column name limitations within SQL. Some non-SQL element names
do not make satisfactory SQL column names, even after hyphens are changed to
underscores. For example, if a non-SQL element name begins with a numeric
character, you must still use double quotes around the element name. To access
123-ORD-NUM, for example, code "123_ORD_NUM" in an SQL statement.

Elements That Cannot Be Transformed

Group elements, REDEFINES elements, FILLERS, and OCCURS DEPENDING
ON elements are not available for access by SQL. To the SQL user, it is as if these
elements were not defined in the non-SQL record. However, the subordinate

elements of a group definition are available for access, as are the base elements to
which a REDEFINES is directed.

Fixed OCCURS Element Definitions

Although OCCURS...DEPENDING ON declarations are not available for SQL
access, fixed OCCURS definitions are available. To the SQL user, a fixed
OCCURS element appears as one column for each occurrence of the element. The
column name for each occurrence is the original element name followed by an
underscore and an occurrence number. If the element is declared with multiple
OCCURS levels, the corresponding column names contain one underscore and
one occurrence number for each dimension of the OCCURS declaration.

For example, the element definition BUD-AMT OCCURS 12 TIMES generates the
following column names:

BUD_AMT 01, BUD_AMT 02, BUD_AMT ©3...BUD_AMT 12.

Note: The occurrence number attached to the column name must be large
enough to accommodate the largest subscript from the corresponding element
definition.

3-8 CA-IDMS Server User Guide

Setting Up Database Access

The base element name, combined with the appended occurrence information,
cannot have more than 32 characters. If it does, you must define an SQL
synonym for the non-SQL record.

Although the CA-IDMS SQL implementation allows 32-character column names,
other SQL implementations restrict column names to 18 characters. Some ODBC
client software, in particular, may require SQL synonyms for non-SQL records to
limit the size of the transformed column names to 18 characters.

Tip: Another way to define shorter names is to create a view of the record
and specify view column names.

Defining Keys

To access a control-key definition (of a CALC, INDEX, or sorted set) using SQL,
the control-key definition must not include a FILLER element. If it does, change
the non-SQL record definition, assigning a name other than FILLER to the
elements in question.

In addition, the control-key definition cannot incorporate the subordinate
elements of a group level REDEFINES when these elements are smaller in size
than the base element being redefined, as in the following example:

02 ELEM1 PIC X(8).

02 ELEMIREDEF REDEFINES ELEM1.

03 ELEM1A PIC S9(8) COMP.
03 ELEM1B PIC S9(8) COMP.

An error occurs if ELEM1A and ELEM1B are used in the control key definition,
because they are smaller than the element they redefine (although combined they
are equal to ELEM1). When this condition occurs, change the redefining group,
which contains the smallest subordinate elements, into the base-element
definition. Use the base-element definition in the control key specification. For
example, ELEM1REDEF should be the base-element definition in the sample
above, and ELEM1 should be coded so that it redefines ELEM1REDEF.

Setting Up Your CA-IDMS System 3-9

Setting Up Database Access

Setting up Catalog Views

SYSCA.ODBC_INDEX

Both ODBC and JDBC provide metadata APIs that return information about
schemas, tables, columns, and indexes from the SQL catalog. CA-IDMS Server
uses table procedures and views in the SYSCA schema to access catalog
information. Typically, these are installed into the catalog when CA-IDMS is
installed. Additional views may require definition, depending on the version of
CA-IDMS you use.

This table procedure is used to return index and CALC key information for
network records as well as SQL tables. The ODBC driver uses this table
procedure to implement the SQLStatistics and SQLSpecialColumns functions. If
this table procedure is not installed, the ODBC driver queries the catalog
SYSTEM.INDEX and SYSTEM.INDEXKEY tables, and returns information only
for SQL defined tables.

The JDBC driver uses this table procedure to implement the corresponding
DatabaseMetaData.getIndexInfo and getBestRowIdentifer methods. This table
procedure is required for JDBC support.

Gen level 9506 or later of CA-IDMS 12.01, or later, is required to use this feature,
and includes the DDL to define the table procedure (contained in VIEWDDL)
and the table procedure load module IDMSOINX), which is installed in the
same library as the updated CA-IDMS nucleus modules. In most cases, the table
procedure is already defined. If not, the DDL to define it is contained in
IDMSOINX.DDL, which is installed in the CA-IDMS Server directory.

SYSCA.ACCESSIBLE_ SCHEMAS

This view returns a list of schemas containing tables accessible to the user. It is
used by the JDBC driver to implement the DatabaseMetaData.getSchemas
method, and is required for JDBC support. The ODBC driver does not use this
view.

This view is defined for CA-IDMS Release 15.0 and later. For CA-IDMS Release
14.1 and earlier, the DDL contained in ACCVIEWS.DDL, installed in the CA-
IDMS Server\Java directory, should be run against every catalog that will be
accessed using JDBC.

Refer to the CA-IDMS SQL Reference for more information about accessing
non-SQL-defined databases using SQL.

3-10 CA-IDMS Server User Guide

Handling Invalid Numeric Data

Handling Invalid Numeric Data

One of the most useful features of CA-IDMS is its ability to access network
records using SQL. These network records are often redefined and have multiple
formats, causing problems when data in a record occurrence is not in the correct
format for the type of the SQL column derived from the network schema record
definition. In particular, decimal fields are sometimes redefined as character
fields, and may contain spaces, low values, or other data that is not a valid
packed or zoned decimal value. This violates the data integrity provided by the
CA-IDMS SQL option, which ensures that data stored in an SQL table is valid for
the column type.

In this situation, an application like the Online Command Facility (OCF), with
direct access to the fetch buffer returned by CA-IDMS, can display a special
indicator for the value (for example, a string of asterisks). Interfaces like ODBC
and JDBC, however, are expected to convert the data to the format requested by
the application, and data integrity is assumed.

CA-IDMS Server provides an Invalid Decimal option to handle this situation,
allowing the client to specify what the ODBC and JDBC drivers should return to
the application when invalid data is received from CA-IDMS. Options are:

m Return Error: The default option. Drivers return an error to the application.
The ODBC driver returns SQL_ERROR to the application, which can use the
SQLError function to retrieve the associated error message. The JDBC driver
returns an SQLException containing the error message. No value is returned
in the output buffer provided by the application.

m Return Null: The drivers attempt to return NULL for the column value. The
ODBC driver sets the length/indicator value to SQL_NULL_DATA. It
returns an error if the pointer to the length/ indicator buffer supplied by the
application is 0. The JDBC driver returns either 0 or null, as specified by the
ResultSet.getXXX method, or true for ResultSet.wasNull. The drivers will
attempt to return NULL even if the column in the result set is NOT NULL.

m Return 0: The driver always returns zero. This can be useful when the
application does not provide a length/indicator buffer for a column that is
NOT NULL.

m Ignore: The value returned to the application is undefined. This option is
provided for compatibility with previous versions of the ODBC driver, and
is not supported by the JDBC driver.

The ODBC driver prints a message to the log when tracing is enabled, no matter
which option is selected.

Setting Up Your CA-IDMS System 3-11

Pseudo Conversational Processing

The Return Null option does not work if the application does not check for a
NULL value when the result set column is defined as NOT NULL. By default, an
SQL column returned for a network record is treated as NOT NULL because
there is no NULL indicator field in the database. Since a result set column that is
an expression does allow NULL values, one solution is to enclose the column
name in a VALUE scalar function, as in the following example:

SELECT VALUE (WARD_TOTAL_0430) FROM EMPDEMO.”HOSPITAL-CLAIM”

This forces CA-IDMS to build a result set that includes a NULL indicator for the
WARD-TOTAL-430 field in the HOSPITAL-CLAIM network record, and the
drivers report that the column allows NULL values.

It may be convenient to define views on network records that wrap DECIMAL
and NUMERIC columns in VALUE functions, at least when the database is
known to contain invalid data.

Pseudo Conversational Processing

CA-IDMS Server uses pseudo-conversational processing to minimize resource
use on the CA-IDMS system. It does this by issuing a SUSPEND command
whenever a transaction ends. When autocommit is enabled, a transaction ends
after the execution of every statement updating the database. When autocommit
is disabled, the application explicitly ends a transaction using the ODBC
SQLTransact function or the JDBC Connection.commit or Connection.rollback
method. To optimize performance, the COMMIT and SUSPEND commands are
“piggybacked” onto other requests to avoid additional network traffic whenever
possible.

To minimize contention with other transactions, CA-IDMS Server also attempts
to commit (and suspend) when a cursor is closed. It can do this only if the
connection has no uncommitted updates (only possible when autocommit is
disabled), no other open cursors, and no prepared statements. The COMMIT,
SUSPEND, and CLOSE commands are actually piggybacked onto the FETCH
command to minimize network traffic. The piggybacked CLOSE and COMMIT
commands are executed only if the cursor reaches the end, that is, the FETCH
returns SQLCODE = 100. The piggybacked SUSPEND command is always
executed. The drivers also attempt to commit and suspend when the application
explicitly closes an open cursor.

The SUSPEND command ends the CA-IDMS task unless a cursor is open to
process a catalog function. To minimize contention with application tables, both
the ODBC and JDBC drivers use a separate session to access data from the SQL
catalog. The task can only end when a SUSPEND has been issued for both the
“main” and “catalog” sessions. The drivers suspend the catalog session
automatically when all cursors used to process catalog requests reach the end or
are explicitly closed.

3-12 CA-IDMS Server User Guide

Using International Character Sets with JDBC

Tuning Pseudo Conversational Processing

The default options attempt to balance network traffic, CA-IDMS resource use,
and contention with other transactions. You can set options in the Windows
registry or OS/390 configuration file to tune pseudo-conversational processing, if
appropriate for your application.

Since CA-IDMS Server suspends the session whenever it commits a transaction,
you can disable autocommit to reduce the number of pseudo-converses. Your
application must then explicitly commit the transaction at appropriate intervals.
Use the ODBC SetConnectOption function or JDBC Connection.setAutoCommit
method to control autocommit..

CA-IDMS Server attempts to commit and suspend when it closes a cursor, even
when autocommit is disabled. You can use the CloseCommit option to prevent
this. If your application uses a SELECT command to invoke a table procedure
that updates the database, you must make sure that the table procedure commits
any updates.

You can use the FetchSuspend option to prevent CA-IDMS Server from
suspending the session after each FETCH. The default is disabled when the CA-
IDMS System is 14.0 or earlier. The session is suspended when the cursor is
closed unless both autocommit and CloseCommit are disabled. Note that this
can cause slightly more network traffic when the result set is small, since the
SUSPEND must sent as a separate command rather than piggybacked onto a
FETCH.

These options are described in more detail in the “Windows Registry
Information” and “Configuration File Information” appendices of this manual.

Using International Character Sets with JDBC

All character data is represented as Unicode in Java. Each JVM provides a set of
converter classes that convert Unicode to and from specific character sets. The
character set is identified by an encoding name and the converter class names
are derived from the encoding. For example, Cp037 is the encoding that
corresponds to the IBM EBCDIC code page 037, CharToByteCp037 is the name of
the class that converts from Unicode to this variant of EBCDIC, and
ByteToCharCp037 is the class that converts from EBCDIC to Unicode.

A JVM typically includes a small set of basic converter classes with the standard
class libraries. These support conversion to the encodings used on the platform
where the JVM runs. The Sun and IBM implementations also include a more
extensive set of converter classes in the i18n jar file.

Setting Up Your CA-IDMS System 3-13

Using International Character Sets with JDBC

The CA-IDMS JDBC Driver uses these built in converter classes to convert
character data from the Unicode representation used by the Java VM to the
EBCDIC encoding used by CA-IDMS. How this actually happens depends on
the platform where the JDBC Driver runs and how it calls the native CA-IDMS
interface.

The native SQL Client Interface, commonly called “QCLI”, runs on mainframes,
Windows, and OS/390 USS. All CA-IDMS applications use a version of it,
including ADS dialogs, COBOL programs, OCF, IDMSBCF, and the CA-IDMS
ODBC Driver. The CA-IDMS JDBC Driver can call QCLI directly on Windows
and OS/390 USS, and via the CA-IDMS JDBC Server from all Java 1.1 (or later)
platforms.

When the CA-IDMS JDBC Driver calls QCLI directly it converts Unicode data to
the encoding used by QCLI, usually the "default" platform encoding for the
machine. On OS/390 USS this is typically the same EBCDIC encoding used by
CA-IDMS. On Windows, however, this is ASCII, which the CA-IDMS Server
communications layer converts to EBCDIC, just as it does for the CA-IDMS
ODBC Driver.

The default platform encoding is given by the file.encoding system property, and
is usually determined by the JVM when it is installed or started. The default
encoding is used whenever a Java program reads or writes character data in
native format without explicitly specifying an encoding.

You can specify the encoding that the CA-IDMS JDBC Driver uses to convert
data passed to QCLI by adding the ca.jdbc.file.encoding system property on the
java command line, for example:

-Dca. jdbc.file.encoding=Cp037

This overrides the default encoding for the CA-IDMS JDBC Driver only and does
not affect the encoding used by other classes.

When the CA-IDMS JDBC Driver connects to CA-IDMS via the CA-IDMS JDBC
Server, QCLI is actually called by the JDBC Server. The JDBC Server is
responsible for ensuring that Unicode data is converted to the native encoding.
On OS/390 this is EBCDIC, while on Windows it is ASCII, which is converted by
the communications layer. The ca.jdbc.file.encoding system property can be
used to override the default encoding for the JDBC Server, although it is usually
more convenient to specify the Encoding setting in the Proxy section of the
0S/390 configuration file or the Windows registry.

3-14 CA-IDMS Server User Guide

Using International Character Sets with JDBC

To minimize mainframe resource usage the JDBC Server requests that the JDBC
Driver convert data into the native CA-IDMS encoding. When the connection is
first established, the JDBC Server passes the desired encoding name to the JDBC
Driver. If the corresponding converter class is accessible to the JDBC Driver, it is
used for all data exchanged with the JDBC Server, offloading most of the
conversion. If the converter class is not accessible (as is often the case with the
Microsoft JVM) data is exchanged with the JDBC Server in either UTF-8 or
Unicode, as specified by the Unicode option in the Proxy section. The JDBC
Server then converts the data to the specified encoding.

The Proxy options are described in more detail in the “Windows Registry
Information” and “Configuration File Information” appendices of this manual.
A list of supported character encodings is available at

http:/ /java.sun.com /j2se /1.3 /docs/guide/intl /encoding.doc.html.

Setting Up Your CA-IDMS System 3-15

http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.html

Chapter

4 Installing the Client on Windows

This chapter describes the installation of CA-IDMS Server in Windows, and
identifies the steps you must take before installing the product.

Preparing to Install CA-IDMS Server

Before you install CA-IDMS Server, the following must be installed:
m Network transport software, either LU2 or TCP/IP.

s CAICCI/PC

m ODBC Driver Manager

m Java VM to use the JDBC driver

Obtain the following information from your CA-IDMS system administrator:

m The name of the dictionary containing the definitions of the tables you want
to access.

m The node name of the system on which the dictionary resides.

m The task code defined for the CA-IDMS Server. The default task code is
CASERVER.

On Windows NT and Windows 2000, you must use a user ID with
administrative privileges when installing CA-IDMS Server and CAICCI/PC.

Uninstalling Previous Versions

Because there have been changes to the locations where certain files are stored,
we recommend that you uninstall any previous versions of CA-IDMS Server to
remove old items from the Start menu. For the most up-to-date information
about uninstalling earlier versions of CA-IDMS Server, refer to the readme.txt
file included on the CD. Do not remove your data source definitions.

Installing the Client on Windows 4-1

Installing CA-IDMS Server on Windows

Installing CA-IDMS Server on Windows

1. To allow shared components to be updated properly, exit all Windows
applications, including Microsoft Office tool bars, before beginning the
installation of CA-IDMS Server.

2. Insert the CA-IDMS Server CD into your CD-ROM drive. The CA-IDMS
Server installation begins automatically. If it does not, right-click on the CD
icon in the My Computer window and select Auto Start.

3. Before copying the files from the installation disk onto your system, the
Installer displays the readme.txt file, containing information unavailable
when this document was prepared.

4. Choose an installation option from among the following:

m Select Typical to install all components of CA-IDMS Server, including
the ODBC driver, JDBC driver, JCF demo, and javadoc

m Select Compact to install the ODBC driver only
m Select Custom to choose which components to install

Choose Custom to copy the CAICCI/PC Dynamic Link Library (DLL) for
TCP/IP into the Windows/SYSTEM directory along with the CA-IDMS
Server DLLs. This ensures the use of the correct version of CAICCI for multi-
threaded applications.

Note: The ODBC driver is always selected, since it installs components also
used by the JDBC driver.

5. The CA-IDMS Server Installer updates the Windows registry with
information required by the ODBC Driver Manager, and invokes a dialog
that allows you to add data sources, defaults, or options defined for
CA-IDMS Server 3.0 16-bit data sources to the registry.

You can add data sources either as User data sources, available only to the
user currently signed on, or as System data sources, available to all users and
services of the machine. Server definitions, defaults, and global options are
always available to all users and services. Data sources used by Windows NT
services or the CA-IDMS JDBC Server must be defined as system data
sources. See the chapter “Using the CA-IDMS JDBC Server on Windows” in
this guide for information about the JDBC Server.

6. The CA-IDMS Server Installer displays a dialog allowing you to run the
ODBC Administrator to modify or add additional data source, server, and
option definitions.

7. The CA-IDMS Server menu is added to the Start Menu.

For more information about defining data sources, refer to the chapter
“Configuring the Client on Windows” in this guide.

4-2 CA-IDMS Server User Guide

Chapter

5 Configuring the Client on Windows

A data source is the description of a database you want to access from an ODBC
or JDBC application. The CA-IDMS JDBC driver can use ODBC data source
definitions to access CA-IDMS databases. The JDBC driver does not use the
ODBC driver at run time.

This chapter discusses the elements of a data source definition and how to use
the CA-IDMS ODBC Administrator dialog to define and administer a data
source definition.

CA-IDMS Server provides a context-sensitive online Help facility. Click the Help
button displayed in any dialog to obtain Help about that dialog.

Configuring CAICCI/PC

You must configure CAICCI/PC to use either LU2 or TCP/IP. For TCP/IP,
specify the host where the CCITCP job (the mainframe job supporting TCP
connections for CCI) runs. You can use the CAICCI/PC Properties dialog to
configure CAICCI with the same properties for all data sources. When
CAICCI/PC is configured for TCP/IP, you can also use the CA-IDMS ODBC
Administrator to configure CAICCI/PC with different properties for each data
source.

If you install only the CAICCI/PC DLL as part of the CA-IDMS Server
installation, you must use the CA-IDMS ODBC Administrator to configure
CAICCI/PC, unless you have previously installed the complete CAICCI/PC
product.

For information about setting CAICCI/PC options, refer to the appendix
“Configuring CAICCI for TCP/IP” in this guide.

Configuring the Client on Windows 5-1

Defining Data Sources

Defining Data Sources

The CA-IDMS ODBC Administrator, accessed from the Control Panel or CA-
IDMS Server menu, allows you to define a connection between the Windows
application and CA-IDMS. You can also use the CA-IDMS ODBC Administrator
to define a Server, establish Administrator default settings, set language options,
specify ODBC options, or configure the CA-IDMS JDBC Server.

Data Source Types

CA-IDMS allows you to define new data sources as either User data sources or
System data sources. User data sources are available only to the user who
defined them. System data sources are available to all users and services of the
machine. Server definitions, defaults and global options are always available to
all users and services. Typically, data sources meant to be used by Windows NT
services must be defined as System data sources. For example, data sources must
be defined as System data sources to be used by the CA-IDMS JDBC Server.

Adding a New Data Source

When adding a new data source, you must specify the type of data source, and
include the name of the dictionary where the SQL tables are defined as well as
the name of the CA-IDMS system containing the dictionary. Use the ODBC Data
Source Administrator to begin the process of adding a new data source.

To access the ODBC Data Source Administrator dialog from the Windows
Control Panel double-click the Microsoft ODBC Administrator icon. To access
this dialog from the CA-IDMS Server menu, select Start, Programs, CA-IDMS
Server, ODBC Administrator.

The ODBC Data Source Administrator dialog lists the names of each defined
data source, followed by the database driver in parentheses. If no Data Source
Name (DSN) is listed, select either the User DSN or System DSN tab and click the
Add button to invoke the Create New Data Source dialog.

5-2 CA-IDMS Server User Guide

Defining Data Sources

The Create New Data Source dialog lists all installed drivers. Select CA-IDMS
and click Finish. The CA-IDMS ODBC Administrator dialog appears:

CA-IDMS DDBC Administrator [2] |
International I JODEC Server I About I
Diata Source | Server I Optionz Defaultz I Log Optionz

Test |

Data Source: I

Dictiohany: {

Server I ;]

— [Global Options
¥ Enable Multithreading

[rvalid Decimal &ction; Return Errar ;]

E k. I Cancel][] Help

The Data Source tab of the CA-IDMS ODBC Administrator dialog allows you to
define a new data source, or to modify the dictionary or server of an existing
data source. You must supply the following essential information to define a
data source:

Data Source: Specify the name of the data source. To add a new data source,
enter a character string of up to 32 characters in this field. Use a combination of
letters, numbers, spaces, or special characters. When modifying an existing data
source, the name cannot be changed.

Dictionary: (Optional) Specify the DBNAME or segment name of the dictionary
containing the definitions of the tables you want to access. This name must be
defined in the DBNAME table on the CA-IDMS system identified by the server
name. The default is the first eight characters of the DSN.

Configuring the Client on Windows 5-3

Defining Data Sources

Server: Specify the name of the Server identifying the CA-IDMS node containing
the dictionary that defines the tables you want to access. Enter a new name or

select an existing name from the pull-down list. This field is required, and can be
either the Node Name of the host CA-IDMS system or a 1- to 32-character logical

name of a Server defining the Node Name and options.

Under Global Options, specify the following:

Enable Multithreading: Allows concurrent access to the CA-IDMS system by all
connections in the same application. Note that this option affects all data source
descriptions. This option is enabled by default.

Invalid Decimal Action: Specify how the ODBC and JDBC drivers handle invalid
Decimal and Numeric data. Specify the return of Null, 0, or an error to the

application. See the section “Handling Invalid Numeric Data” in the chapter

“Setting Up Your CA-IDMS System” in this guide for more information

regarding the available options.

CA-IDMS ODBC Admimstrator EH |
Intermational I JDEC Server I Akt
Data Source I S epver I Optiohs I Defalts I Lag Options
Test |
Data Source: Ilh'-.-'entn:lr_l,l
Dictionary: {INVDICT
Server ISystemE‘I ;]
— [alobal Options
¥ Enable Multithreading
Irrealid Decimal Action: Return Error ;]
E ak. I Cancel Apply Help

Note: The examples in this chapter contain information based on the sample
CA-IDMS system network illustrated in the chapter, “Setting Up Your CA-IDMS
System,” in this guide. The values displayed are based on the system-generation

statements defined for System 81 and System 82.

5-4 CA-IDMS Server User Guide

Defining Data Sources

Saving the Data Source Definition

After you have created your data source definition, click OK to save the
definition to the registry, close the CA-IDMS ODBC Administrator dialog, and
return to the Data Sources dialog. To save the definition without closing the CA-
IDMS ODBC Administrator, click Apply. Click Cancel to return to the Data
Sources dialog without saving the definition.

Testing the Data Source Definition

You can verify that your data source is defined correctly, and that CA-IDMS
Server is installed correctly, using the Test Connect application. Click the Test
button, to invoke the CA-IDMS Test Connect dialog:

CA-IDMS Test Connect |

Connect

Cata Source:; ||nvent|:ur_'.'

Cancel

Uzer 1d: Iirwuser

Pazzword: I““’“"“‘"

Plif

Help

The DSN identified in the ODBC Administrator appears in the Data Source field,
and cannot be changed. In the User ID field, enter a valid user ID for the
CA-IDMS system associated with the data source named. If required for the
system, supply a password in the Password field and click Connect. The test
program connects to the data source using the CA-IDMS ODBC driver.

Editing the Data Source Definition

Once you have saved your data source definition, you may find it necessary to
edit or update the information. To edit a data source definition, access the
Microsoft ODBC Administrator and select the data source to be edited. Click the
Configure button to invoke the CA-IDMS ODBC Administrator dialog. Edit the
information and click Apply or OK.

Configuring the Client on Windows 5-5

Setting Up a Server

Setting Up a Server

To define a Server, which specifies the CA-IDMS system containing the
databases, use the Server tab on the CA-IDMS ODBC Administrator dialog. You
can also use this dialog to add or change a Server definition, or to override
default CCI options for this Server.

CA-IDMS ODBC Administrator

International | JDBC Server I About
[rata Source Server | Optionz Drefaulkz I Log Options

—IDkAS Opti
S Delete |

Hame: Syatemnsl

Mode Mame:

Wia Mode:

Taszk Code:

MF Yerzion; Server 4.2 or earlier ;I

— CCI Optionz

Wl ait Timeout

Server Mame:

Server Port:

] 4 Cancel Apply Help

Under IDMS Options, specify the following:

Name: Displays the selected Server name, from the Data Source page. The name
cannot be changed here.

Node Name: Specify the Node Name of the system containing the tables you
want to access. This is the System ID specified in the system generation
parameters. This field is optional, and defaults to the first eight characters of the
server name, which must be in upper case, if nothing is specified.

Via Node: (Optional) Specify the node with which CAICCI establishes a
connection. The system identified here must contain a RESOURCE table entry for
the system identified by Node Name. Use this option when the system
containing your tables does not communicate directly with CAICCI.

5-6 CA-IDMS Server User Guide

Setting Up a Server

Task Code: Specify an alternate Task Code to be used for statistics and limit
checking. The value you enter must be defined to the CA-IDMS system using the
TASK system generation statement. If no value is entered, the default Task Code
of CASERVER is used.

MF Version: Specify the version of the mainframe component installed on the
CA-IDMS system. The default is 4.2 or Earlier. When the MF Version option is set
to 4.3 or Later, all signons will be rejected unless the mainframe component
included with CA-IDMS Server Version 4.3 is installed on that system.

To use the following CCI Options, the multi-threaded version of CAICCI must be
installed, although multi-threading need not be enabled for the ODBC driver.

Wait Timeout: Specify the number of seconds to wait for a reply from the server.
This setting overrides the Reply Wait Timeout, specified using the CAICCI/PC
Properties dialog, for this Server only. When this limit is exceeded, a
communications error is returned and the connection can no longer be used. If
multi-threading is enabled, the application can continue processing other
connections. Choose one of the following options:

m Enter 0 to use the default value set by CAICCI

m Enter -1 to specify an indefinite wait (this is interpreted as the largest
positive integer)

m Enter a specific time, in seconds

Server Name: Specify the name or TCP/IP address of the CAICCI host server.

This overrides the default CAICCI server name specified using the CAICCI/PC

Properties dialog for this server only, and allows concurrent access to multiple
CAICCI servers.

Server Port: Specify the TCP/IP port of the CAICCI host server. This overrides
the default CAICCI server port, specified using the CAICCI/PC Properties
dialog, for this Server only. Enter 0 to use the default value set by CAICCI,
typically 1202.

Delete: Delete the server definition and close the dialog.

Configuring the Client on Windows 5-7

Setting ODBC Options

Setting ODBC Options

Select the Options tab to set ODBC options for a specified data source. Only the
ODBC Driver uses these options.

|nternational
D ata Source I

Access Mode:
Tranzaction |zolation;

Commit Behaviar:

Server

I . JOBLC Server
: Options

ODBC Optionz for Data Source: [nyventany

RE&D “WHITE

] efault.s I

IFEE.-’-‘-.D COMMITTED

|CLOSE CURSORS

Abot

Lag Optionz

CA-IDMS ODBC Administrator [2] |

Bulk. Fetch Row Count;

[T Cache SOL Tables [Fetch Peal as Double

[T Enable Ensure [Prompt for Account

¥ Use Accessible T ables Wiew Mame: IS"r’S CAACCESSIBLE_TABLES

Help

Cancel Apply

The DSN appears at the top of the dialog. Modify the displayed options for
database access using this data source:

Access Mode: Specify the level of access to the database to allow. Choose either
of the following;:

m Read Write: Allows applications to read and update the database. This is the
default setting.

m Read Only Allows applications to read the database. This option is
recommended, unless you intend to update data in the CA-IDMS database.

This option can be set and queried by the application using the
SQLSetConnectOption and SQLGetConnectOption functions.

5-8 CA-IDMS Server User Guide

Setting ODBC Options

Transaction Isolation: Specify the degree to which your transactions impact, and
are impacted by, other users accessing the same data. Choose either:

m Read Committed: Prevents access to data updated by another user, before it
has been committed. This corresponds to the CURSOR STABILITY option of
the CA-IDMS SQL SET TRANSACTION statement, and is the default setting.

m Read Uncommitted: Permits only retrieval operations to be executed by the
user; update requests are rejected. This option can only be selected in
conjunction with a Read Only Access Mode, and corresponds to the
TRANSIENT READ option on the SET TRANSACTION statement.

This option is defined by the ODBC specification and can be set and queried by
the application using the SQLSetConnectOption and SQLGetConnectOption
functions. For more information about the SET TRANSACTION statement, see
the CA-IDMS SQL Reference Guide.

Commit Behavior: Specify the way in which COMMIT operations affect cursors
in CA-IDMS. Choose one of the following options:

m Close and Delete Cursors: Forces the application to prepare and execute the
next statement.

m Close Cursors: Allows applications to execute a statement without calling
prepare again. This is the default setting.

m Preserve Cursors: Maintains cursors in the same position as before the
Commit operation, allowing applications to execute or fetch without
preparing the statement again.

This is a CA-IDMS Server extension allowing you to optimize ODBC usage by
different applications. The ODBC application can use the SQLGetInfo function to
query this setting.

Bulk Fetch Row Count: Specify the number of database rows to be fetched in a
single database request, to improve performance. The default is 100. Valid values
are 1 to 30000. Choose the default unless experience suggests another value for
performance reasons.

Cache SQL Tables: Specify that the CA-IDMS Server caches table lists returned
by the SQLTables function. Although the default setting is Off, enabling this is
recommended. This option improves performance by reducing the amount of
time it takes to retrieve a list of tables, but does not always provide the most
current view of existing tables. When selected, CA-IDMS Server uses the cached
result to process repeated SQLTables requests. CA-IDMS Server flushes the
cache whenever you turn off this option, change the request parameters, change
the name of the Accessible Tables view, or disconnect from a session.

Enable Ensure: Select this option to enable the ENSURE parameter of the
SQLStatistics function.

Configuring the Client on Windows 5-9

Setting ODBC Options

The ENSURE parameter of the SQLStatistics function call normally results in an
UPDATE STATISTICS command to CA-IDMS SQL against the named table. For
large tables, this can cause deadlocks or communication timeout errors. The
default, disabling the Ensure option, is recommended unless a specific
application requires otherwise.

Fetch Real as Double: This option forces the CA-IDMS Server to return single
precision floating point numbers as double precision to avoid the rounding that
can occur when numbers are passed from the mainframe to the PC.

Note: Some loss of precision is unavoidable when converting between the
floating point formats, because different numbers of bits are used to encode the
exponent and mantissa.

Prompt for Account: Causes the SQLDriverConnect function to display a dialog
if the optional Account parameter is not passed on the connection string. See the
CA-IDMS Server Administration manual for more information.

Use Accessible Tables View Name: Check the Use Accessible Tables View Name
field to enable you to enter the name of a view to use for the SQLTables function,
instead of using the catalog tables directly. Use this field to specify the default
view, SYSCA.ACCESSIBLE_TABLES, or define a different view in the catalog
and enter it in this field.

When a catalog contains a large number of table definitions, performance can be
improved by specifying a view name, to create a tailored view of the tables of
interest to the end user. For example, the SYSCA.ACCESSIBLE_TABLES view
returns only those tables to which the user has Select authority. You can also
limit tables based on schema or authorization. In addition, this feature is useful
when security requirements do not allow direct access to the catalog tables.

If you specify a different name, be sure that it contains at least the same columns
as SYSCA.ACCESSIBLE_TABLES, although it can contain additional columns.
The view definition must include the following columns:

SCHEMA (CHAR(18))
TABLE (CHAR(18))
TYPE (CHAR(1))

For information about the SYSCA.ACCESSIBLE_TABLES view, see the
CA-IDMS SQL Reference Guide.

Click the Apply or the OK button to save changes to the defaults in the registry.
Click Cancel to close the dialog without saving any new changes.

5-10 CA-IDMS Server User Guide

Specifying CA-IDMS Administrator Defaults

Performance Considerations for ODBC Options

The following ODBC options can affect the performance of the CA-IDMS Server
ODBC driver:

m Cache SQL Tables: Reduces the time it takes to retrieve a list of tables, but
does not always provide the most current view of existing tables.

m Enable Ensure: When disabled, this prevents the SQLStatistics function from
issuing commands to update table statistics.

m Use Accessible Tables View: Specifies the name of a view, so that only a list
of the tables of interest to the end user is returned.

Refer to Microsoft documentation about ODBC software for more information
about the various ODBC functions mentioned in the previous descriptions.

Specifying CA-IDMS Administrator Defaults

Administrator defaults establish settings for new data sources, applied by the
CA-IDMS Administrator each time you define a new data source. Existing data
source definitions are not affected. Use the Defaults tab to change default ODBC
option settings.

Configuring the Client on Windows 5-11

Specifying CA-IDMS Administrator Defaults

I JOBLC Server
Optionz

|nternational

Data Source I Server I

Default Options for Mew Data Sources

D efaulkz

Abot

CA-IDMS ODBC Administrator [2] |

| Lag Optionz

Access Mode:

RE&D “WHITE

Tranzaction |zolation;

IFEE.-’-‘-.D COMMITTED

Commit Behaviar:

Bulk. Fetch Row Count;
[T Cache SOL Tables

[T Enable Ensure

¥ Use Accessible T ables Wiew Mame:

|CLOSE CURSORS

[Fetch Peal as Double

[Prompt for Account

IS"r’S Ca ACCESSIBLE_TABLES

Help

Cancel Apply

The fields on the Defaults tab are identical to those on the Options tab. For a
description of each option, see the previous section “Setting ODBC Options” in
this chapter.

5-12 CA-IDMS Server User Guide

Logging Errors and Trace Information

Logging Errors and Trace Information

CA-IDMS Server writes messages for some types of errors to a log file. Specify
the name and directory of this log file using the Log Options tab. You can also
use this tab to override default log file specification and options, or to enable
tracing of JDBC, ODBC, SQL, and internal function calls.

CA-IDMS DDBC Administrator [2] |
International I JDEC Server I About |
Data Source I Server I Options Defaults Log Options
— Log Optionz
Log File: C:\Program Files\CA-DMS Servercaidms.log

[T &ppend to cument log fils

— Client Trace
[ODBC [~ JDBC
[~ FDE ™ 5oL
[FDE GEN I~ DTS
I uTiL [DTS-CCI

ak. Cancel Apply Help

Log options affect all data sources. For example, if you specify a log file name, all
trace entries are written to the specified file. You cannot specify different log
options for different data sources.

The default log file name is CAIDMS.LOG. CA-IDMS Server writes messages to
the log file about the status of the database connection. Client trace options

control tracing on the PC.

Under Log Options, specify the following options:

Configuring the Client on Windows 5-13

Setting Language Options

Log File: Specify the name of the log file into which the CA-IDMS Server enters
messages indicating the status of the database connection. If you omit path
information in the file name, CA-IDMS Server creates the file in the directory
specified during installation to contain the CA-IDMS Server files. The log file
must be in a directory available for write access by all users. The log file name
cannot be set or queried at run time.

Append To Current Log File: This option causes the log file to be appended with
new information every time an ODBC session is started. If this option is chosen,
care should be taken to clean out file information that is no longer needed.

Typically, tracing is enabled only to research a problem in conjunction with
Computer Associates Technical Support. Select the check boxes under Client
Trace Options as requested by Computer Associates Technical Support to collect
trace information:

m ODBC - enables tracing of calls to the ODBC driver

m FDE - enables tracing of Format Descriptor Element (FDE) conversion calls
m FDE GEN - no longer used

m UTIL - enables tracing of internal utility calls

m JDBC - enables tracing of calls to the JDBC driver

m SQL - enables tracing of calls to the native SQL client interface

m DTS- enables tracing of calls to the Data Transport Services (DTS) interface
m DTS-CCI —enables tracing of calls from DTS to CAICCI

Setting Language Options

When CA-IDMS transfers character data between the host system and a PC it
uses translation tables based on English as spoken in the United States (U.S.
English). You can override the default and create a customized translation table
if your host system or PC uses code pages based on another language.

Note: The language setting is a global option, affecting all data sources. You
cannot establish different language options for different data sources. These
conversions are performed for both the ODBC and JDBC drivers.

Using the International Tab

Use the International tab to select the Country Extended Code Page (CECP) or
Double Byte Character Set (DBCS) used to translate character data transferred
between the PC and the host. Under ASCII-EBCDIC Conversion, select one of the
following options:

CA-IDMS Server User Guide

Setting Language Options

Default: Specify the use of the default conversion tables.
CECP: Enable the CECP options in the Country Extended Code Pages box
DBCS: Enable the DBCS options in the Double Byte Character Set box

Custom: Enable Custom Conversion options

Selecting, Creating, and Editing CECP Translation Tables

Under ASCII - EBCDIC Conversion, select CECP to enable the CECP options to
convert data transferred between CA-IDMS and the ODBC application. Under
Country Extended Code Pages, select the file containing the conversion tables.

Data Source |
|nternational

" Default

—ASCI-EBCDIC Convversion

CA-IDMS ODBC Administrator

Server

¥ CECP

HE|
I Options Defaults I Log Options
JDEC Server I About
" DBCS = Custom

— Country Extended Code Pages

Conversion Table Eile:

II::"uF'r-:ngram Filez\CAADMS Server\H237ansit |

Edt.. |

= auEe Bute Ehanacier Set

[Earversan ekl Ipe;

[Eatersmt [1athle Eath:

I™ | Enatle Halwidth Katakana

INnne

IE: WProgram Filez\Ca-1DMS Server

= [Estanm [Eanyenson

[Eatersmar WL HEme;

OF.

Help

| Cancel Apply

To select a translation table, enter the name of the table file in the Conversion
Table File field or click the Browse button to select from the list of available files.

Click the Edit button to activate the Translation Editor to create or edit a

translation table.

Configuring the Client on Windows 5-15

Setting Language Options

Creating or Editing a Translation Table

From the menu bar, select File, Open to open an existing translation table.

CA-IDMS Translation Table Editor - H237anzi tab

[l 'ta EBCDIC Chil+d
EBCDIC to ASCIl Chi+E

LCode Pages...

For a new or existing translation table, select Edit, Code Pages to access the
CA-IDMS Country Extended Code Page Selection dialog. This dialog allows you
to select the code pages to use for your translation table.

CA-IDMS Country Extended Code Page Selection

Host Code Page: [{nekl el (NG|

Cancel
PC Code Page: [437 English U.5.) | ki

5-16 CA-IDMS Server User Guide

Setting Language Options

The Host Code Page list includes the following Code Pages for the EBCDIC
character set on the mainframe:

Code Page Representative Language

037 English (U.S.) English and most other European languages

273 German, Austrian German and Austrian German

277 Norwegian Norwegian

278 Finnish, Swedish Finnish and Swedish

280 Italian Italian
284 Spanish Spanish
285 English (U.K.) English and most European languages

297 French (AZERTY) French, using the AZERTY keyboard

500 Belgian, Swiss Belgian, Swiss French, and Swiss German

The PC Code Page list box includes the following Code Pages for the ASCII
character set:

Code Page Representative Language

437 English (U.S.) English and most other European languages
850 Multilingual (LatinI) Most languages using the Latin alphabet

852 Slavic (Latin II) Slavic languages using the Latin alphabet

860 Portuguese English and Portuguese

863 Canadian-French English and French Canadian

865 Nordic Scandinavian languages (Swedish, Norwegian)

Configuring the Client on Windows 5-17

Setting Language Options

Customizing a Translation Table

After creating a translation table, you may need to add EBCDIC/ASCII
conversions that are not supported in the standard code pages. The Translation
Table Editor provides two edit windows — one for the ASCII to EBCDIC
translation table and the other for the EBCDIC to ASCII translation table. To
activate either window, select the appropriate option from the Edit menu.

Each window displays a table of 256 hexadecimal values. Each entry in the table
represents the output character set code value indexed by the input character set
code value.

For example, the following window represents the ASCII to EBCDIC translation
table for Canadian French on the PC and U.S. English on the host machine. The
ASCII value for a space (* °) in the Canadian French code page is 20 (in
hexadecimal). The corresponding EBCDIC value for a space in the U.S. English
code page is 40.

&= CA-IDMS Translation Table Editor - H237ansi.tab

File Edit Help
iyl ¢ EBCDIC to ASCI Table E
il A1 2 3 4 5 & 7?7 8 2 A B C D E F
2188: 8@ A1 B2 A3 BD A% SE 7F 81 82 83 AB AC AD BE A@F
NiG: 1@ 14 12 13 84 8L 68 87 18 19 88 89 4C 1D 92 1F
4128: 23 94 1C 95 96 8A 17 1B 97 98 79 Al A2 85 @6 A7
5138: A3 A4 16 AS A6 1E A7 B4 A8 A7 C1 C2 14 15 C3 14
6l48: 20 C4 83 B4 85 AB C? 86 87 A4 7B 2E 3C 28 2B B3
58: 26 82 88 82 BA Al BC BE 8D Ei 21 24 2a 29 3B AA
816A: 2D 2F E4 BE E6 E7 ER 8F 88 a5 2C 2C 25 5F 3E 3F
M78: F2 980 F4 F5 Fo F? F8 F? 86 6B 3a 23 48 27 3D 22
AlBA: ED 61 62 63 64 65 66 67 68 67 AE AF 8C 8D BE F1
Bi?8: F8 6A 6B 6C 6D 6E 6F 78 71 72 A6 A7 21 9D 22 9F
ClaAd: E6 VE 73 74 75 76 77 78 79 74 AD A8 AC 5B AE AF
DiBA: SE 2C 2D F? B4 BY E3 AC AB B? 5B 5D BC 5D BE EBF
ElCA: 7B 41 42 43 44 45 46 47 48 47 CA 93 94 95 A2 CF
FiDB: 7D 44 4B 4C 4D 4E 4F 58 %1 52 DA 76 81 27 A3 978
EA: 5C F6 53 54 55 56 57 58 59 54 FD EB 99 ED EE EF
Fa: 38 31 32 33 34 35 36 37 38 39 FA FB 774 FD FE FF

The generated tables convert control codes between their ASCII and EBCDIC
equivalents, where possible. (Releases prior to CA-IDMS Server 4.0 converted all
control codes to x'00" or null bytes.)

5-18 CA-IDMS Server User Guide

Setting Language Options

To customize the table, use the mouse or keyboard to select a hexadecimal value
and replace it with another. The editor ignores all characters except the numbers
0 through 9 and letters A through F (including lowercase). Use the mouse to
move the cursor, or use the following keystrokes:

Key Moves Cursor

Arrow keys One digit in the direction of the arrow
Home To beginning of row

End To end of row

PageUp To top row

PageDown To bottom row

Enter Beginning of next row

Ctrl+Left Arrow, Right Arrow Left or right one entry

Ctrl+Home, End Beginning or end of table

Saving a Translation Table

Included Tables

To save a translation table, choose Save from the File menu. To save a translation
table under a new name, select File, Save As. The default file extension for
translation table files is .tab

Several code page conversion tables are provided with this release and are
installed in the CA-IDMS Server directory. These files are identified by the
extension .tab and contain tables used at run time to convert between ASCII and
EBCDIC. These tables are:

Table Converts

h237ansi.tab Host code page 237 (Austrian/German) to ANSI. Control codes
are converted from EBCDIC to x'01' and from ASCII to x'00'.

sgeransi.tab Siemens German to ANSI. Control codes are converted from
EBCDIC to x'01' and from ASCII to x'00'.

danish.tab Host code page 037 to pc code page 850. Control codes are
converted

swedish.tab Host code page 037 to pc code page 850. Control codes are
converted

Configuring the Client on Windows 5-19

Setting Language Options

Enabling DBCS Processing

DBCS options enable the conversion of multi-byte character data exchanged by
CA-IDMS Server and the CA-IDMS System. Under ASCII-EBCDIC Conversion,
select the DBCS option.

CA-IDMS DDBC Administrator [2] |
[ata Source | Server I Options I Defaults I Log Optians
[nternational I JOBC Server I About

—ASCI-EBCDIC Corvversion

' Default " CECP &+ DBCS " Custom

= Eauntiy Extended Code Fages
[Eatersimam 1able Eile IE:'&F‘rngram FileshCa-DMS ServertH237ansit ;

Edlit.. Erowze,.

— Daouble Byte Character Set
Converzion T able Type: [

Lonversion Table Path: IE:HPrngram Files\CA-DMS Server

[Enable Half ‘width K.atakana

= [EUEbanT By s

[Earersmam WL HEme; I

ak. Cancel Apply Help

Under Double Byte Character Set, set the following options:

Conversion Table Type: Use the drop-down list to select the types of DBCS used
by your CA-IDMS system.

Conversion Table Path: Specify the path of the subdirectory containing the DBCS
conversion tables. Typically, the default is accepted.

Enable Half Width Katakana: Check this box to enable half width Katakana
support when DBCS is enabled. All lowercase characters in CHAR and
VARCHAR data are treated as half width Katakana. This does not affect
GRAPHIC, VARGRAPHIC, and mixed data within SO and SI in CHAR and
VARCHAR types. Only uppercase Roman text can be transferred between the
mainframe and the PC when this option is enabled.

5-20 CA-IDMS Server User Guide

Using a Custom Conversion DLL

Using a Custom Conversion DLL

A Custom Conversion DLL is used to convert character data exchanged by CA-
IDMS Server and the CA-IDMS System. This can be useful when the ASCII -
EBCDIC conversions cannot be specified by modifying the CECP tables. The
following sections describe implementation information for a Custom
Conversion DLL.

Enabling a Custom Conversion DLL

On the International tab, under ASCII-EBCDIC Conversion, select Custom.

CA-IDMS ODEC Administrator EH |
Data Source | Server I Cptions Defaults I Log Optionz
International I JOBC Server I About

—ASCI-EBCDIC Convversion

" Default " CECF i~ DECS % Custony

= Eauntiy Extended Eade Bages
Earversan able Eile II::"uF'r-:ngram Filez\CAADMS Server\H237ansit |

Edlit:.. Browee.. |

= auEe Bute Ehanacier Set
[Earyensan Table Tvpe; INnne j

{EaryErsion jatle st IE:"\F'rngram FilezhCA-IDMS Server

I™ | Enatle Halwidth Katakana

— Custom Canversion

Corversion DLL Mame: IE: wuzerdirveuztom. dll

[] 4 I Cancel Apply Help

Under Custom Conversion, in the Conversion DLL Name field, specify the name
of the Custom Conversion DLL. Include the path if the DLL is not in a directory
that will be searched automatically by Windows, such as the SYSTEM32
subdirectory or a directory specified in the PATH.

Configuring the Client on Windows 5-21

Using a Custom Conversion DLL

Developing a Custom Conversion DLL

API Reference

A custom conversion DLL replaces the DLL used by CA-IDMS Server to handle
DBCS. This DLL is dynamically loaded when it is first used, and called for each
character field sent to or received from the CA-IDMS system. This includes SQL
syntax, input parameters, output data, and some internal control blocks.

A custom conversion DLL can be written in any language that supports the
Microsoft Windows DLL calling conventions. It must be thread safe.

The following section describes the API that the conversion DLL must
implement, and how CA-IDMS Server uses each function in the APL

A custom conversion DLL must implement each function described here. The
function prototypes and constants are defined in cadbcs.h, installed in the CA-
IDMS Server directory. This header file includes additional functions used by
other CA products. Since CA-IDMS Server does not use them, they are not
documented here.

DBCSAlloc
UINT DBCSAlloc (HANDLE * hDBCS)

Allocates the environment needed to do character conversion. This is the first call
made to the conversion DLL, which must return a handle to the environment.
CA-IDMS Server uses this handle for all subsequent calls.

Arguments:
hDBCS: Buffer for environment handle.

Returns:
DBCS_SUCCESS: Function completed successfully
DBCS_NO_MEMORY: Unable to allocate memory
DBCS_INVALID_HANDLE: hDBCS is Null

5-22 CA-IDMS Server User Guide

Using a Custom Conversion DLL

DBCSInit

UINT DBCInit(HANDLE hDBCS, UNIT fType, LPSTR 1pPath)

Initializes the conversion environment. For real DBCS processing, this specifies
particular DBCS conversion tables. The custom conversion DLL can perform any
initialization not completed in DBCSAlloc, or it can just return.

Arguments:
hDBCS:
fType:
IpPath:

Returns:
DBCS_SUCCESS:
DBCS_NO_MEMORY:

Environment handle
Conversion type, 1 for a custom DLL

Path to translation tables

Completed successfully

Unable to allocate memory

DBCS_INVALID_HANDLE: hDBCS is Null
DBCS_TRANS_NOT_SUPPORTED

DBCS_FILE_NOT_FOUND

SetDBCSOption

UINT SetDBCSOption(HANDLE hDBCS, BYTE nOption, BOOL bFlag)

Sets conversion options.

Arguments:
hDBCS:
nOption:

bFlag:

Environment handle.

Option type:
DBCS_KATAKANA
DBCS_NULL_TERMINATED
DBCS_PAD_SPACES

True to enable, False to disable

Configuring the Client on Windows 5-23

Using a Custom Conversion DLL

Returns:
DBCS_SUCCESS: Completed successfully
DBCS_NO_MEMORY: Unable to allocate memory
DBCS_INVALID_HANDLE: hDBCS is Null
GetDBCSLength

UINT GetDBCSLength (HANDLE hDBCS, LPSTR sBuffer, LPSTR nBufferLen, UINT
fType, UNIT * nLength)

Computes the converted data length.

Arguments:
hDBCS: Environment handle.
sBuffer: Input buffer
nBufferLen: Input buffer length
fType: Input data format:
DBCS_MF (EBCDIC)
DBCS_PC (ASCII)
nLength: Buffer for converted length
Returns:
DBCS_SUCCESS: Completed successfully
DBCS_NO_MEMORY: Unable to allocate memory
DBCS_INVALID_HANDLE: hDBCS is Null
DBCS_ERR_PARM: Invalid parameter passed

5-24 CA-IDMS Server User Guide

Using a Custom Conversion DLL

DBCStoPC

UINT DBCStoPC(HANDLE hDBCS, LPSTR sInBuffer, UINT nInBufferLen, LPSTR
sOutBuffer, UINT nOutBufferLen, UINT fType, UINT * nLength)

Converts the input buffer from EBCDIC to ASCIL The caller must allocate the
output buffer and provide an output field for the converted length. Since CA-
IDMS Server always sets the DBCS_NULL_TERMINATED option to False, the
DLL should not null terminate the converted data.

Arguments:
hDBCS: Environment handle.
sBuffer: Input buffer
nBufferLen: Input buffer length
nInBufferLen: Input buffer length
sOutBuffer: Output buffer
nOutBufferLen: Output buffer length
fType: SQL data type:
DBCS_CHAR (includes VARCHAR)
DBCS_GRAPHIC (includes VARGRAPHIC)
nLength: Buffer for converted length
Returns:
DBCS_SUCCESS: Completed successfully
DBCS_NO_MEMORY: Unable to allocate memory
DBCS_INVALID_HANDLE: hDBCS is Null
DBCS_ERR_PARM: Invalid parameter passed
DBCS_TRUNCATION: Converted data was truncated

Configuring the Client on Windows 5-25

Using a Custom Conversion DLL

DBCStoMF

UINT DBCStoMF (HANDLE hDBCS, LPSTR sInBuffer, UINT nInBufferLen, LPSTR
sOutBuffer, UINT nOutBufferLen, UINT fType, UINT * nLength)

Converts the input buffer from ASCII to EBCDIC. The caller must allocate the
output buffer and provide an output field for the converted length. The
DBCS_PAD_SPACES option indicates whether the data is fixed or variable
length. When True, the DLL should pad the converted data with spaces (in

EBCDIC).

Arguments:
hDBCS:
sBuffer:
nBufferLen:
ninBufferLen:
sOutBuffer:
nOutBufferLen:

fType:

nLength:

Returns:
DBCS_SUCCESS:
DBCS_NO_MEMORY:

Environment handle.

Input buffer

Input buffer length

Input buffer length

Output buffer

Output buffer length

SQL data type:

DBCS_CHAR (includes VARCHAR)
DBCS_GRAPHIC (includes VARGRAPHIC)

Buffer for converted length

Completed successfully

Unable to allocate memory

DBCS_INVALID_HANDLE: hDBCS is Null

DBCS_ERR_PARM:
DBCS_TRUNCATION:

Invalid parameter passed

Converted data was truncated

5-26 CA-IDMS Server User Guide

Using a Custom Conversion DLL

DBCSEnd
UINT DBCEnd (HANDLE hDBCS)

Terminates the DBCS environment. CA-IDMS Server calls this function before
unloading the DLL, which should free all resources for the DBCS environment
specified by the handle.

Arguments:
hDBCS: Environment handle.
Returns:
DBCS_SUCCESS: Completed successfully
DBCS_INVALID_HANDLE: hDBCS is Null
DBCS_FREE_ERROR: Unable to free memory

How CA-IDMS Server Uses the API

DBCSAlloc

DBCSInit

SetDBCSOption

GetDBCSLength
DBCStoPC
DBCStoMF

DBCSEnd

CA-IDMS Server calls the custom conversion DLL functions as follows:
Called before any other processing is done

Called after DBCSAlloc and before any other processing. CA-IDMS Server
passes the DBCS type, arbitrarily set to 1, and path specified on the CA-IDMS

International tab as parameters. These can be ignored.

Called before DBCStoMF and DBCStoPC with the DBCS_KATAKANA option.
False when Katakana is not enabled, and can be ignored.

Called before DBCStoPC with the DBCS_NULL_TERMINATE option. Always
False, as the CA-IDMS ODBC driver sets the null terminator on all character
data.

Called before DBCStoPC with the DBCS_PAD_SPACES option. This option is 1
(TRUE) when the SQL data type is CHAR, 0 (FALSE) when it is VARCHAR

Called before DBCStoMF when the ASCII string is SQL syntax.
Called for each field converted from EBCDIC to ASCII.
Called for each field converted from ASCII to EBCDIC.

Called before unloading the DLL

Configuring the Client on Windows 5-27

Configuring the JDBC Server

Configuring the JDBC Server

The CA-IDMS ODBC Administrator is used to configure the JDBC Server to
allow access to CA-IDMS from browser applets. Note that neither the CA-IDMS
JDBC driver nor the JDBC Server actually uses ODBC at runtime. To configure
the JDBC Server, select any CA-IDMS data source from the ODBC Administrator,
and then select the JDBC Server tab.

CA-IDMS ODEC Administrator EH |
Data Source I Server | Cptions | Defaults I Log Optionz
|nternational JDBC Server | About
—Log and Trace Options
Fart; [Log Conmection E vents
W ait Timeaut [Trace Internal Calls
Beply Tirmeout [Snap Mative Buffers

— Remote Server

Marne:

Fart:

[] 4 I Cancel Apply Help

Port: Specify the TCP/IP port the JDBC Server uses to listen for connection
requests. JDBC applications should specify this value in the Uniform Resource
Locator (URL) that identifies the database. For information about the URL
recognized by the CA-IDMS JDBC Driver, see the “]DBC Programmer
Reference” appendix. The default is 3709.

Wait Timeout: The number of seconds the JDBC Server waits for a request from
the JDBC Driver. When this value is exceeded, the JDBC Server considers the
connection to have failed. The default setting, 0, causes the JDBC Server to wait
indefinitely.

5-28 CA-IDMS Server User Guide

Configuring the JDBC Server

Reply Timeout: Specify the number of seconds the JDBC Server waits for a
response from CA-IDMS. When this value is exceeded, the JDBC Server
considers the connection to have failed. The default setting, 0, causes the JDBC
Server to wait indefinitely.

Under Log and Trace Options, select the following options:

Log Connection Events: Enables logging of connection requests and terminations
by the JDBC Server to the Windows NT Application Event Log. By default, only
startup, shutdown, and error events are logged.

Trace Internal Calls: Enables tracing of debugging information to the CA-IDMS
Server log file. Only internal method calls made by the Java code are traced. Use
the Log Options tab to enable tracing of native method calls.

Snap Native Buffers: Enables display of the data buffers sent and received by the
JDBC Server in the CA-IDMS Server log file.

It is possible to route JDBC connections to another JDBC Server before
communicating with CA-IDMS. This can be useful when security requirements
prevent the machine on which the web server is running from directly
connecting to the mainframe. Under Remote Server, specify the following to use
a remote server:

Name: The DNS name or IP address of the remote JDBC Server machine.
Port: The listener port of the remote JDBC Server. The default is 3709.

See the chapter “Using the CA-IDMS JDBC Server on Windows” in this guide for
more information.

Configuring the Client on Windows 5-29

Chapter

6 Using the ODBC Driver on Windows

Many ODBC applications use the CA-IDMS DriverConnect dialogs to connect to
data sources. If your application uses them, the CA-IDMS DriverConnect dialogs
allow you to connect to an existing data source, or, in some cases, to connect
dynamically to a data source that has not been previously defined.

This chapter discusses the elements of data source connection, and how to use
the two CA-IDMS DriverConnect dialogs to connect to data sources. These
dialogs are implemented in the CA-IDMS ODBC driver.

Although the JDBC Driver uses the same types of information, it does not
display any dialogs, leaving the collection of such information to the JDBC
application. See the appendix “]JDBC Programmers Reference” in this guide for
more information about connecting to a data source using JDBC.

Connecting to a Predefined Data Source

Many applications use the Select Data Source dialog to connect to a data source
that has been previously defined using the ODBC Administrator dialog. In the
Select Data Source dialog, select the desired data source from a list of defined
sources and click OK.

The CA-IDMS DriverConnect dialog appears, with the name of the data source
identified in the Data Source field. This field cannot be changed.

CA-IDMS DriverConnect

Daata Source; IInventu:ur_u ak.

User |d; Iinvuser Cancel

Pazzword: I”’“‘"”"“" Help

Account; I

ail

Using the ODBC Driver on Windows 6-1

Connecting Dynamically to a Data Source Not Previously Defined

Enter your user ID and password, and an optional account, if your site requires
it, in the fields on the CA-IDMS DriverConnect dialog. Click OK to connect to the
specified data source.

Connecting Dynamically to a Data Source Not Previously

Defined

Some applications allow you to connect to a data source dynamically without
first adding or defining the data source. If your application supports this, the
CA-IDMS DriverConnect dialog appears.

CA-IDMS DriverConnect

I
Dictionarny: IlNUDIET
Cancel |
MHode Name: ISYSTDDB1
Help |
User Id: Iirwuser
Pazzword: I’“"“‘m
— O phional
Taszk Code: IE.-'-‘-.SEFE"«.-"E R
Account: I
— CCI Ophions

Wit Timeout ||:|

Server Mame: IEEISEH"-.-"EFE

Server Part: |1 204

Supply the data source connection information to be in effect for the duration of
the session. This information is similar to some of the data source definition
information specified with the ODBC Administrator dialog.

Under Required, enter the following information:

Dictionary: Specify the DBNAME or segment name of the dictionary containing
the definitions of the tables you want to access. This name must be defined in the
DBNAME table on the CA-IDMS system identified by the server name.

Node Name: Specify the Node Name of the system containing the tables you
want to access. This is the SYSTEMID specified in the system generation
parameters.

6-2 CA-IDMS Server User Guide

Connecting Dynamically to a Data Source Not Previously Defined

User ID: Enter a valid user ID for the CA-IDMS system.

Password: If required for the system, enter a password in this field

Under Optional, specify the following:

Task Code: Specify an alternate Task Code to be used for statistics and limit
checking. The value you enter must be defined to the CA-IDMS system using the
TASK system generation statement. If no value is entered, the default Task Code
of CASERVER is used.

Account: Enter your account, if your site requires it.

Under CCI Options, specify the following options:

Wait Timeout: Specify the number of seconds to wait for a reply from the server.
This setting overrides the Reply Wait Timeout specified for this Server only.
When this limit is exceeded, a communications error is returned and the
connection can no longer be used. If multi-threading is enabled, the application
can continue processing other connections. Options are:

m Enter 0 to indicate the use of the default value set by CAICCI
m Enter -1 to indicate an indefinite wait (the largest positive integer)
m Enter a specific time, in seconds

Server Name: Specify the name or TCP/IP address of the CAICCI host Server,
overriding the default CAICCI Server name for this connection only.

Server Port: Specify the TCP/IP port of the CAICCI host Server, and override the
default CAICCI Server port for this connection only. Enter 0 to use the default
value set by CAICCI, typically 1202.

Note: This data source exists only for the duration of the connection.

Using the ODBC Driver on Windows 6-3

il Using the CA-IDMS JDBC Server on
Y4l Windows

The CA-IDMS JDBC Server is a Java application that acts as a proxy server for
the CA-IDMS JDBC driver, allowing a JDBC applet running in a web browser to
access a CA-IDMS System.

Java Applet J Wieh Server

CA-IDMS CA-IDMS
JDBC Driver ™ joBc Server | CADMS
Wk Server Windowes MT Q=590

The JDBC Server is implemented as a Windows NT service and supports web
servers running on Windows NT. A command line version is also provided to
support web servers running on other Java 1.1 (or later) platforms. The Java
security model generally prevents an applet from opening a socket connection
with a machine other than the web server from which it was loaded.

Installing the JDBC Server

The CA-IDMS JDBC Server is installed automatically when the Typical option is
selected during the installation of CA-IDMS Server. If you select the Custom
installation option, the CA-IDMS JDBC Server is selected and installed by
default. CA-IDMS Server can be reinstalled to add the JDBC Server, if needed.
The CA-IDMS JDBC Server must be installed on the same machine as the web
server.

If the Custom installation option is used and the ODBC Driver is not installed,
the registry settings for the JDBC Server must be set manually. The JDBC Server
can be used only as an intermediate server and must access CA-IDMS via
another JDBC Server running on either OS/390 UNIX System Services or a
Windows machine with the complete product installed.

Using the CA-IDMS JDBC Server on Windows 7-1

Configuring the Web Server for Applets

Configuring the Web Server for Applets

The CA-IDMS JDBC Driver classes must be installed in a directory accessible to
web pages accessed from the web server. These classes are distributed as both
standard Java archive (JAR) and as Microsoft cabinet files. These files,
idmsjdbc jar and idmsjdbc.cab, are installed into the Java\classes subdirectory of
the CA-IDMS Server directory. Define a virtual directory for the web server
pointing to this directory, or copy the class files to an existing accessible
directory.

Include an ARCHIVE parameter naming idmsjdbc.jar in the Applet tag of the
HTML page. A PARAM cabinets tag can also be used with Internet Explorer to
name the idmsjdbc.cab archive. You can refer to the Idms]cf applet for an
example of how to do this. Refer to the “Idms]cf” section of the “JDBC
Programmer Reference” appendix for more information. See idmsjcf.html in the
CA-IDMS Server Java directory.

Using the JDBC Server on Windows NT

Use the CA-IDMS Server menu or the Windows NT Control Panel Services
applet to start the CA-IDMS JDBC Server service. By default, it is installed as a
manually started Windows NT service. You can use the Control Panel to set it to
start automatically.

The URL used by the applet identifies the address of the JDBC Server. An ODBC
data source included in the URL must be a system data source to be recognized
by the JDBC Server. See the appendix “]JDBC Programmer Reference” in this
guide for a description of the URL recognized by the CA-IDMS JDBC driver.

Using the JDBC Server on Windows 98

The CA-IDMS JDBC Server can be used on Windows 98, 95, and Millennium
Edition. A version of the JDBC Server service wrapper, jsrv.exe, is installed in the
CA-IDMS Server\Java directory. This version invokes the JVM using the Java
command (as provided by the JRE or Java Development Kit (JDK) from Sun
Microsystems). It can also be used on Windows NT and 2000, if desired. Like the
Windows NT service version, configuration settings are maintained in the
registry, and can be updated using the CA-IDMS ODBC Administrator.

7-2 CA-IDMS Server User Guide

Using the JDBC Server on Windows 98

This version of the JDBC Server is controlled like the OS/390 version (refer to the
“Controlling the JDBC Server” section of the chapter “Using the Client on
0S/390” for more information). The following commands can be executed in a
command window or as part of a batch file:

Command Description
jsrv start Starts the JDBC server as a background process
jsrv stop Stops the JDBC Server

jsrv suspend Suspends the JDBC Server

jsrv resume Resumes the J]DBC Server
jsrv status Checks the JDBC Server status
jsrv debug Starts the JDBC Server as a foreground process

The PATH environment variable must include the directory to the Java
executable, installed as part of the JRE or JDK. The CLASSPATH environment
variable must include the complete path to the CA-IDMS JDBC Server archive,
idmsjsrv.jar.

The JDBC Server sends status messages to the Windows NT Event Log. See the
“Monitoring the [DBC Server” section in the “Using the Client on OS/390”
chapter of this guide for more information. See the section “Using the [DBC
Server on Other Platforms” of the chapter “Using the Client on Other Platforms”
in this guide for more detailed command information.

7

Using the CA-IDMS JDBC Server on Windows 7-3

Chapter

S Installing the Client on OS$/390

CA-IDMS Server for OS/390 is distributed on the CA-IDMS Server CD. The
installation process consists of three parts:

1. Copy the distribution files from the CA-IDMS Server CD to any directory on
your hard disk, customize them, and upload them to OS/390 data sets using
FTP.

This part of the installation process is done in the Windows environment,
using a text editor such as Notepad or Word and a command prompt
window. You may find it helpful to set the Command Prompt window or
buffer size larger in order to see messages produced by the batch files used.

2. Set up the OS/390 UNIX System Services Hierarchical File System (HFS)
where the run-time files will be installed.

This part of the installation process is performed with a mixture of batch jobs
and commands entered into the OMVS shell. The user ID may need to be
authorized to allocate datasets on SMS packs, or to set up a new OMVS
group and owner, depending on the optional steps used.

3. Link and install the run-time software into the HFS using SMP/E. This is
done using batch jobs.

CA-IDMS Server for OS/390 calls CAICCI directly, and does not use the OMVS
interface, libcci.so. Installation of Unicenter TNG Framework for OS/390 is not a
prerequisite to use CA-IDMS Server on OS/390.

Installing the Client on OS/390 8-1

Installing the Client Components for UNIX System Services

Installing the Client Components for UNIX System Services

The procedure to install the CA-IDMS Server client components for UNIX
System Services involves steps performed in Windows and in OS/390.

Step 1: Load the Installation Files

Insert the CA-IDMS Server CD into a CD drive. When the CA-IDMS Server setup
window is displayed, select the Copy the OS/390 Installation Files option and
follow the prompts to load the installation files onto your hard disk.

If the setup window does not appear automatically when you insert the CD,
open a My Computer window, right click on the CD icon, and select AutoPlay,
or simply copy the files from the \OS390\DATA directory on the

CA-IDMS Server CD into a directory of your choice. You must turn off the Read
Only attribute of the files before editing them.

Step 2: Customize the Installation Files
Edit pdsedit.bat, using any text editor in Windows, and run it to customize the
installation files:

pdsload.txt: Contains FTP commands to upload the distribution files to
0S/390 data sets and run the reload batch job.

pdsload.jcl: OS/390 JCL for the batch job that reloads the JCL, object, and

export partitioned data from the uploaded distribution files.

In Windows 95, you may have to increase the environment variable space for the
MS-DOS windows used to run pdsedit.bat.

8-2 CA-IDMS Server User Guide

Installing the Client Components for UNIX System Services

If you must rerun pdsedit.bat, the original versions of these files are backed up
as pdsback.txt and pdsback.jcl. The following variables are customized in both
files:

Variable Description

$USER$ User ID on this OS5/390 system

HLQ High-level qualifiers of the data set names used during installation
$VOLSER$ Name of the disk pack for the data sets

The following variables are customized in pdsload.txt:

Variable Description

$HOST$ The DNS name or TCP/IP address of the OS/390 system where
the files will be uploaded

$PASSS Password on this OS/390 system

The following variables are customized in pdsload.jcl:

Variable Description
$UNIT$ Disk unit associated with the VOLSER, typically 3390 or SYSDA
$CLASS$ Job class, typically A

$MSGCLASS$ Message class, typically X to hold output

Note that the only variables modified in pdsload.jcl are on the JOB card.

Installing the Client on OS/390 8-3

Installing the Client Components for UNIX System Services

Step 3: Upload OS/390 Datasets

Run the pdsload.bat batch file in a command prompt window. This invokes FTP
with the commands in pdsload.txt to upload the files and submit the JCL
contained in pdsload.jcl. Check the status of the batch job on OS/390. This job
allocates and populates four OS/390 datasets:

Dataset Description

$HLQS$.JCL Jobs to complete the remainder of the installation

$HLQS$.0BJ Modules to be pre-linked and linked into HFS

$HLQS$.EXP Export modules used in the pre-link process

HLQ.TAR Archive containing HFS files

This is the end of the work done in Windows. All remaining steps are done in
0S/390.

Step 4: Customize the Installation JCL

Edit the JOBCARD, JOBCARD?2, and SRVINS00 members in the JCL library,
allocated in the previous step, to customize them for your environment. The
SERVEMAC member is an edit macro used to make the necessary changes.

JOBCARD contains the JOB card to be used in all the required installation jobs.
Some jobs are optional because the environmental changes they make, such as
allocating more space on an SMS pack or creating a new OMVS group and user,

may be unnecessary at your site. These jobs, which require increased authority,
use JOBCARD?2.

SRVINSO00 contains the JCL for all the installation jobs, in the form of a series of
IEBGENER steps to create customized members of the JCL library for each job
step. SRVINSO0 contains 21 literal strings to be modified as appropriate for your
environment.

You can change each value in these files manually, or use the SERVEMAC edit
macro to customize the three files as described in the following sections. All of
the values have defaults.

Using the SERVEMAC Edit Macro

SERVEMAC contains 21 numbered boxes, each containing a literal string, a
description of the item, and a value to be used for the global change. To use
SERVEMAC, change the values as needed, save the file to a library that can be
accessed by your TSO session (as described below), edit each of the three
members, and invoke the macro by entering it on the command line.

8-4 CA-IDMS Server User Guide

Installing the Client Components for UNIX System Services

An edit macro is a collection of ISPF editor commands that can be invoked when
the file is open in the ISPF editor. Note that you cannot run an edit macro like
SERVEMAC from ISPF Option 6 as if it were a CLIST.

An edit macro must be available to your TSO session. The easiest way to make an
edit macro available is to copy it into a CLIST library already concatenated to
SYSPROC in your TSO logon proc. If you do not have authority to update any
CLIST libraries, you can temporarily concatenate this library to SYSPROC until
you log off, by issuing the following two TSO commands:

ALLOC DD(TEMP) DATASET('lib.containing.servemac') SHR REU
CONCAT DD(SYSPROC TEMP)

Scroll through the resulting SRVINS00 member. To change the values, cancel out
of the SRVINSO0 member, make additional changes to SERVEMAC, and repeat.
You may wish to make a copy of SRVINSOO before beginning.

When you have used SERVEMAC to customize SRVINSQ00, go on to the ‘Set Up
a New OMVS Group and User’step.

Editing the JCL Manually

If you choose not to use the SERVEMAC edit macro, edit JOBCARD, JOBCARD?2,
and SRVINSO00 and change all occurrences of the literals. The data is case-
sensitive, and must be in upper case. Turn CAPS ON and press Caps Lock before
making changes.

Value Description

%USER% For JOB cards, user ID

%ACCT% For JOB cards, account number

%CLASS% For JOB cards, job class for short jobs

%MSG% For JOB cards, message class

%HLQ% High level qualifiers of data set names used during
installation.

%VOLSER% Disk pack for permanent datasets

%UNIT% Disk unit associated with above VOLSER

%WORK% Disk unit for temporary datasets

%]JCLLIB% Name of this library

SYSOUT=* SYSOUT class

SYS1.MACLIB 0S5/390 system macro library

CEE.SCEEMSGP Message dataset for LE370 C linker

Installing the Client on OS/390 8-5

Installing the Client Components for UNIX System Services

Value Description
CEE.SCEEOB] Resolution object libraries for LE370
CEE.SCEELKEX

CEE.SCEELKED Libraries containing callable BPX routines
SYS1.CSSLIB

If you must allocate an SMS dataset to create space in the HFS, the following
global changes are also required.

%HFSDSN%: Data set name for HFS allocation on an SMS volume
%SMSSTORC%: Disk unit to ensure HFS allocation on an SMS volume

The following global changes are optional and are based on site-specific security
requirements. These global changes can be omitted if the files can be installed
into the HFS using an existing user and group.

%TUSER%: User ID of an authorized security administrator able to use
RACF, CA-ACF2, or CA-TOP SECRET commands to create a new OMVS
owner and administrator for the CA-IDMS Server HFS files.

%PW%: Password for this user
Make the following global change in the SRVINS00 member. This data is case-
sensitive. Turn CAPS OFF and ensure that the Caps Lock key is not pressed.
%IDMSDIR%: The path of the install directory in the HFS.
Review the customized SRVINSOO job and submit it to create customized install

jobs in members SRVINS01 through SRVINS10. This job contains COMPRESS
steps and may be rerun.

Step 5: Set Up a New OMVS Group and User

Submit SRVINSO1 to issue security administrator commands to set up a new
OMVS group and user. This new user will be the owner and administrator of the
CA-IDMS Server HFS files.

This job is optional. If the run-time files can be installed into the HFS using an
existing user and group, then this job is not required.

Before running this job, delete the portions of the job pertaining to security
software not installed at your site.

8-6 CA-IDMS Server User Guide

Installing the Client Components for UNIX System Services

Step 6: Allocate the HFS

Submit SRVINS02 to allocate the HFS. CA-IDMS Server requires approximately
1.3 MB in the HFS during the installation. Log files created at run time may
require additional space, and can be allocated in a separate HFS devoted to
temporary files, if desired.

This job is optional. You can install CA-IDMS Server into an existing HFS if space
is available.

Step 7: Create the Installation Directory in the HFS

Create the CA-IDMS Server installation directory in the HFS. In all files where
%IDMSDIR% was referenced and changed to the case-sensitive path name, the
path name must point to this directory.

If you allocated a new HFS, the OMVS superuser must perform the following
steps:

1. Create a mount point and mount the new HFS

2. Declare the owning group and user for the mount point
3. Set up initial file permissions
4

Execute the following commands, reflecting the customized values from the
previous step “Customize the JOBCARD” under the OMVS shell, invoked by
entering the TSO OMVS command:

mkdir -m 775 /idmssrv

/samples/mountx /7dmssrv IDMSSRV.HFS
chown ISADMIN:ISGROUP /srv

Note: File permission bits are set to 775, indicating that only the owning user,

or users connected to the owning group, can update this directory. All other
users have only read and execute authority.

To make this mount permanent, update the BPXPRMxx member in
SYS1.PARMLIB and add a mount entry. The following is an example of the
statement to add:

MOUNT FILESYSTEM('HFSDSN')

MOUNTPOINT('/ idmsdir')
TYPE (HFS) MODE (RDWR)

Where idmsdir is the installation directory specified by %IDMSDIR% and
HFSDSN is the name of the dataset specified by %HFSDSN%.

Installing the Client on OS/390 8-7

Installing the Client Components for UNIX System Services

Step 8: Create Subdirectories, Allocate Datasets, and Prelink Object Modules

Submit SRVINSO3 to copy the tar file to the HFS and extract it to create the
CA-IDMS Server subdirectories and files (other than executables, which are
installed using SMP/E, as described in the following section). The tar file is not
used after this step and can be deleted from the HFS after it is extracted to save
space, if desired. This job uses BPXBATCH to execute OMVS commands. Output
is written to srvins03.out and srvins03.err, which contains error messages, if
any.

Submit SRVINS04 to allocate datasets used by the CA-IDMS Server installation
process.

Submit SRVINSO05 to prelink the object modules into the indirect object (INDOB])
library.

Step 9: Install the Executable Modules Using SMP/E

Submit SRVINSO06 to create a new SMP/E environment. Omit this job if you are
installing CA-IDMS Server into an existing SMP/E environment, such as the CA-
IDMS environment.

The FMID for the portion of CA-IDMS Server delivered on the CA-IDMS tape is
CXS2000. The FMID for this portion of CA-IDMS Server is CXS430E (Open
Edition). CXS2000 and CXS430E can both be installed into the same SMP/E
environment (the CA-IDMS SMP/E environment), but you are not required to
do so.

Submit SRVINS07 to customize the SMP/E CSI for CA-IDMS Server. If you are
installing into an existing SMP/E environment, ensure that the global zone
contains DDDEFs and that the environment contains an SMPLTS dataset. If the
global zone does not contain DDDEFs, add them using SRVINS06 as a guide, or
add additional DD statements to the SRVINSOS job. If the SMPLTS library does
not exist, you must allocate it, using the SRVINS07 job as a guide.

Submit SRVINS08 to run SMP/E to receive, apply, and accept the executable
modules. This job links the prelinked object modules from INDOB]J into the
/ idmsdir/bin directory in the HFS.

8-8 CA-IDMS Server User Guide

Installing the Client Components for UNIX System Services

Step 10: Set File Access Bits

Submit SRVINSQ9 to set the appropriate mode bits for the executable files in the
/ idmsdir/bin directory. The user ID associated with this job must be the owner
of the files or have superuser authority. BPXBATCH output is written to
srvins09.out and srvins09.err.

Submit SRVINSI10 to set the appropriate mode bits for the JSRV service wrapper
to allow it to run under the user ID of the owner instead of the user ID that starts
the service. The user ID associated with this job must be the owner of the file or
have superuser authority. BPXBATCH output is written to srvins10.out and
srvins10.err.

Step 11: Delete Unnecessary Files

You can delete the following files from the installation directory for space
reasons, when the installation is complete:

m hfs.tar
m instpax
= *out

m terr

Installing the Client on OS/390 8-9

Chapter

o) Configuring the Client on OS/390

This chapter describes how to configure CA-IDMS Server in the OS/390 UNIX
System Services (USS) environment for use by JDBC enabled applications, as
well as the environment variable settings and configuration file information
needed to access a CA-IDMS database. It assumes that you are familiar with the
0S/390 USS shell and HFS.

Configuring CA-IDMS

CA-IDMS Server is installed into a subdirectory in the HFS. For more
information about installation, see the chapter “Installing the Client on OS/390”
in this guide. This subdirectory, specified when the product is installed, is
referred to in this document as /idmsdir. Its structure is as follows:

m /idmsdir. Configuration file and JDBC server shell scripts

m /idmsdir/bin: Executable files, including the JDBC Server service wrapper
and native SQL client interface DLLs (shared object libraries)

m /idmsdir/classes: Java archive (jar) files including the CA-IDMS JDBC
Driver, JDBC Server, and JCF demo.

m /idmsdir/log: Default directory for the log (trace) file.

See the “Using the JDBC Server on Other Platforms” section of the chapter
“Using the Client on Other Platforms” for information about configuring
CA-IDMS Server for use with applets and JDBC enabled applications running on
other platforms.

Configuring the Client on OS/390 9-1

Configuring CA-IDMS

Specifying Environment Variables

You must specify the locations of the executables, DLLs, and Java class files for
an OS5/390 application to use CA-IDMS Server in the USS environment. Set the
standard UNIX environment variables to specify these locations:

m PATH: Specifies the locations of executable files.
m LIBPATH: Specifies the locations of DLL files.
m CLASSPATH: Specifies the locations of Java class files.

For example, to run a JDBC application that uses the CA-IDMS JDBC Driver,
these variables could be set as follows:

set PATH $JAVA HOME/bin:$PATH

export PATH

set LIBPATH /idmsdir/bin:$LIBPATH

export LIBPATH

set CLASSPATH /idmsdir/classes/idmsjdbc.jar:$CLASSPATH
export CLASSPATH

In this case, $JAVA_HOME identifies the directory where Java is installed, and
/idmsdir represents the directory chosen when CA-IDMS Server was installed.
Note that it is not necessary to include the /idmsdir/bin directory in the PATH
to run a Java application. It is not necessary to set these environment variables
when using the supplied shell scripts to run the JDBC Server. These environment
variables are automatically set in the shell scripts installed in the /idmsdir
directory.

If you do not use the supplied shell scripts to run the CA-IDMS JDBC Server, the
environment variables might be set as follows:

set PATH $JAVA HOME/bin:/idmsdir/bin:$PATH

export PATH

set LIBPATH /idmsdir/bin:$LIBPATH

export LIBPATH

set CLASSPATH /idmsdir/classes/idmsjsrv.jar:$CLASSPATH
export CLASSPATH

Optional environment variables, specific to CA-IDMS, include:
m IDMS_CFG_PATH: Specifies the configuration file name or path.
s IDMS_CFG_RELOAD: Forces reloading of the configuration file.

The use of these is described in the appendix “Configuration File Information” in
this guide.

9-2 CA-IDMS Server User Guide

Configuring CA-IDMS

Editing the Configuration File

The configuration file contains data source definitions, CA-IDMS system access
path information, global option settings, and JDBC Server options,
corresponding to the information maintained in the registry on the Windows
platform. The file is formatted as a text file with sections containing lists of key-
value pair parameters, similar to a Windows .ini file. You must edit this file
manually for OS/390.

This file, by default, is named caidms.cfg and is found in the installation
directory, but you can use the IDMS_CFG_PATH environment variable to give it
a different name, or to locate it elsewhere.

For example, to locate the caidms.cfg file in the application directory
/usr/appdir:

set IDMS_CFG_PATH /usr/appdir/
export IDMS_CFG_PATH

Data Source Definitions

A JDBC-enabled application connects to a database by specifying a URL. Each
JDBC driver specifies the format of the URL it can recognize. The URL
recognized by the CA-IDMS JDBC Driver includes a data source name similar to
an ODBC style data source. The DSN is defined in the configuration file, where it
is associated with the dictionary name of the catalog defining the SQL schema, a
node name identifying the CA-IDMS system, and other optional information. For
a complete description of the URL, see the appendix “]DBC Programmer’s
Reference” in this guide.

The following sample illustrates a data source definition defined in the
configuration file:
[APPLDICT]

Dictionary=APPLDICT
Server=SYST0O001

[Server SYSTO001]
Resource=SYST0001
AlternateTask=CASERVER

This syntax allows meaningful names to be used for the data source and server
names. Using an explicit server section allows optional information to be
specified for a CA-IDMS system. When using all default values, this is equivalent
to the following minimal data source definition:

[APPLDICT]
Server=SYSTO001

Since the characters [or | may be difficult to use on 3270 terminals or emulators,
you can substitute $ characters; for example, SAPPLDICTS$.

Configuring the Client on OS/390 9-3

Configuring CA-IDMS

Configuring the JDBC Server

The JDBC Server can be customized with settings in the [Proxy] section of the
configuration file, or you can accept the default settings for any or all of the
following options:

Host: (Optional) Specify the DNS name or TCP/IP address of the host. This can
be used to force the JDBC Server to listen for connection requests on a specific
TCP/IP stack. This is not needed when the host has only one stack.

Port: Specify the TCP/IP that the server uses to listen for connection requests. If
the port is changed from the default, 3709, client applications must specify the
correct port in the URL.

Encoding: Specify the way character data is converted. The JVM represents all
character data internally as Unicode. Ultimately this data must be converted to
the native platform encoding used by CA-IDMS, a variant of EBCDIC specified
by the code page. The Java platform includes classes to convert between Unicode
and the various character encodings. The encodings supported by a particular
Java implementation depend on the vendor.

The default platform encoding on OS/390 OMVS is Cp1047. The corresponding
character conversion classes are generally not available on other platforms. Since
character conversion can be offloaded to the client when the character conversion
classes are available, performance may be improved by specifying an encoding
that can be done on the client. Cp037 is a standard IBM encoding supported by
the Sun and IBM Java implementations.

In the absence of documentation, it may be possible to determine the encodings
supported by converted classes supplied with the Java implementation. These
are generally named ByteToCharXXXXXX.class and CharToByteXXXXXX.class,
where XXXXXX is the encoding name. On the Java 2 Platform these classes are
included in a separate archive file, il8n.rt.

WaitTimeOut: Specify how long the JDBC Server waits for the next request from
a connected client. The default, 0, specifies an indefinite wait. However, it is
usually best to set a timeout value to drop the connection when the client has
been inactive for some reasonable time interval. For example, set this value to
1800 to specify a timeout of 30 minutes.

LogLevel: Control the types of messages sent to the system log or operator
console. The default, 8, sends start up, shut down, error, and warning messages.

Other Configuration File Information

You can specify global options, including the location of the CA-IDMS log (trace)
file, trace flags for debugging, and character set encoding in the [Options] section
of the configuration file. See the appendix “Configuration File Information,” for
detailed information about all options and settings in the configuration file.

9-4 CA-IDMS Server User Guide

Chapter

10 Using the Client on OS$/390

This chapter describes how to use CA-IDMS Server in the USS environment on
0S5/390. CA-IDMS Server supports JDBC-enabled applications running in the
USS environment, as well as client applications running on other platforms.

The CA-IDMS JDBC Driver always runs on the same platform as the client
application. Applications running on OS/390 use the CA-IDMS JDBC Driver on
0S/390, which, in turn, uses the CA-IDMS native client interface to access the
CA-IDMS system.

Remote client applications use a local (from the application’s point of view) copy
of the CA-IDMS JDBC Driver, which uses TCP/IP to communicate with the CA-
IDMS JDBC Server on OS/390. The CA-IDMS JDBC Server acts as a proxy server,
calling the native client interface on behalf of the remote JDBC driver.

Note: Applications running on OS/390 do not need the JDBC Server to
communicate with a CA-IDMS system.

Configuring Applications to Use CA-IDMS Server

JDBC-enabled applications running on OS/390 must be able to find the
CA-IDMS Server executable files, which include both Java classes and native
DLLs. The PATH, LIBPATH, and CLASSPATH environment variables provide
this information.

JDBC-enabled applets and applications running on other platforms need only the
JDBC driver. The native DLLs are not used on the remote system. The CA-IDMS
JDBC Diriver, idmsjdbc.jar, can be downloaded from the Web Server with the
applet, or can be installed in a directory named in the CLASSPATH environment
variable on the remote system. See the chapter “Using the Client on Other
Platforms” in this guide for more information.

Using the Client on OS/390 10-1

Configuring Applications to Use CA-IDMS Server

It is usually convenient to define a data source name for each CA-IDMS database
to be accessed using JDBC. A DSN can be included in the URL recognized by the
CA-IDMS JDBC Diriver, and can reference a data source definition in the
CA-IDMS Server configuration file, caidms.cfg. A data source defines all
connection information needed to access the database, including the database
name, Node and Task Code. It is also possible to connect to a CA-IDMS database
without a DSN, using DriverProperties.

See the chapter “Configuring the Client on OS/390” in this guide for more
information about setting the required environment variables and defining data
sources. See the appendix “]DBC Programmer’s Reference” in this guide, for
information on the URL format and DriverPropertylnfo objects used by the CA-
IDMS JDBC Driver.

Configuring the Web Server to Use CA-IDMS Server

For an applet to use the CA-IDMS JDBC Driver, the classes must be accessible to
web pages accessed from the web server. These classes are installed in a standard
Java archive file, idmsjdbc jar. The subdirectory containing this file should be
defined to the web server. For the IBM HTTP Server, an entry similar to the
following can be added to the httpd.conf file:

pass /idmsdir /idmsdir/classes

The APPLET tag in the web page should include an ARCHIVE tag referencing
the CA-IDMS JDBC Driver JAR file. For example, an HTML page that runs the
CA-IDMS JCF demo might look like the following:

<APPLET CODE="IdmsJcf.class">

CODEBASE="1idmsd1ir"

ARCHIVE="idmsjcf.jar,idmsjdbc.jar"
</APPLET>

10-2 CA-IDMS Server User Guide

Configuring Applications to Use CA-IDMS Server

Controlling the JDBC Server

The CA-IDMS JDBC Server can be controlled using the OMVS shell or with batch
jobs. Four batch jobs are included in the installed sample JCL Partitioned Data

Set:

JCL Member Description

JSRVSTRT Starts the JDBC server
JSRVSTOP Stops the JDBC Server
JSRVSUSP Suspends the JDBC Server
JSRVRESU Resumes the JDBC Server

These jobs use BPXBATCH to run the corresponding shell scripts. See the chapter
“Installing the Client on OS/390” for more information on customizing the
sample JCL.

The following table describes the scripts used to control the JDBC Server from
the OMVS shell:

Shell Script Description

jsrv.start Starts the JDBC server as a background process

jsrv.stop Stops the JDBC Server

jsrv.suspend Suspends the JDBC Server

jsrv.resume Resumes the J]DBC Server
jsrv.status Checks the JDBC Server status
jsrv.debug Starts the JDBC Server as a foreground process

The shell scripts set environment variables, described in the chapter
“Configuring the Client on OS/390”, and run the CA-IDMS JDBC Server Service
wrapper, which starts the JVM and passes control to the JDBC Server entry point.

Using the Client on OS/390 10-3

Monitoring the JDBC Server

When the JDBC Server starts, it typically forks a new process and detaches from
the terminal. All tracing and debugging is written to the log file specified in the
configuration file. When started in debug mode, the JDBC Server runs in the
foreground and stays attached to the terminal. Tracing output can be redirected
to the standard output. Messages to the system log can also be echoed on the
standard output. Press Enter to shut down the JDBC Server.

Typically, the JDBC Server gets all run-time options from the configuration file.
When debugging, it may be convenient to specify some options on the command
line. The shell scripts pass up to 10 options to the jsrv executable. When more
options are required, jsrv can be executed directly, if the necessary environment
variables have been set. For detailed information on the command line options
see the “Using the JDBC Server on Other Platforms” section of the chapter
“Using the Client on Other Platforms” in this guide.

Monitoring the JDBC Server

The JDBC Server sends status messages to the system log or operator console.
These messages have a standard format to facilitate monitoring with Unicenter
TNG Framework and other system management products. These messages are
identified by message number, which conforms to the standard OS/390 message
format, PPPNNNNS, where:

PPP: Product specific prefix: “UJS
NNNN: Message number: “0000-9999”
S: Severity level:
m E: Error
s W:Warning
m I Information
m D: Debugging
The destination and level of messages written are controlled by settings in the

configuration file. See the appendix “Configuration File Information” in this
guide for more information.

10-4 CA-IDMS Server User Guide

Monitoring the JDBC Server

Messages sent include the following:

UJS0001I - Server started

UJS0002I - Server stopped

UJS0003D - Server stopping

UJS0004D - Server waiting for connection
UJS0005I - Server suspended

UJS0006I - Server resumed

UJS01011I - Client thread started
UJS0102I - Client thread stopped
UJS0103D - Client thread stopping
UJS0104I - Client thread to remote server
UJS0105D - Client thread loaded class
UJS0200E - General error

UJS0201E - Socket I/O error

U]JS0202E - Packet protocol error

Since the message text can include additional information, only the message
number should be used to identify specific events.

Using the Client on OS/390 10-5

Chapter

11 Using the Client on Other Platforms

Installable versions of CA-IDMS Server are available for OS/390, Windows 2000,
Windows NT, Windows 98, and Windows 95. The CA-IDMS JDBC Driver and
JDBC Server can also be used on other platforms that support Java 1.1 (or later)
and TCP/IP.

Note: The CA-IDMS JCF demo also requires support for the Swing classes on
the client machine.

“Installing” CA-IDMS Server on Other Platforms

CA-IDMS Server can be “installed” on these platforms by copying archive files
from the CA-IDMS Server CD, extracting the needed class or jar files, and setting
the CLASSPATH environment variable to point to them. The CA-IDMS Server
CD contains the following archive files in the /classes directory:

» idmsjdbc.tar compiled class files, archived in jar files

m idmssamp.tar sample program source files

Use either the tar or pax utility, whichever is available, to extract the needed files
on variants of UNIX. On Windows, the files can simply be copied directly from
the /classes directory on the CA-IDMS Server CD.

Using the JDBC Driver on Other Platforms

Applications, application servers, and servlets running on platforms other than
Windows or OS/390 can use the CA-IDMS JDBC Driver to communicate with a
CA-IDMS system. CA-IDMS Server need not be installed or configured on these
platforms. No native methods are used. The JDBC Driver uses TCP/IP to
communicate directly with the CA-IDMS JDBC Server running on Windows or
05/390. The CA-IDMS JDBC Server does not need to run on the application
platform.

Using the Client on Other Plafforms 11-1

Using the JDBC Server on Other Platforms

To use the CA-IDMS JDBC Driver on other platforms:

1. Extract or copy the JDBC Driver, idmsjdbc.jar, to the client machine. For
example, on UNIX, assuming you have copied the archive idmsjdbc.tar to
the /classes directory:

cd /classes
tar -xovf idmsjdbc.tar idmsjdbc.jar

2. Update the CLASSPATH environment variable to point to the JDBC Driver
archive file. For example, on Windows:

set CLASSPATH=c:\classes\idmsjdbc.jar ;%CLASSPATH%
On UNIX:
set CLASSPATH=/classes/idmsjdbc.jar:$CLASSPATH

3. Specify the system where the JDBC Server is running as part of the URL used
to connect to the database. For example:

jdbc:idms://hostname/datasource

See the “Connection Parameters” section of the appendix “JDBC Programmer’s
Reference” of this guide, for more information about the URL format.

Using the JDBC Server on Other Platforms

The CA-IDMS JDBC Server can be used as a command line application to
support web servers running on platforms other than Windows and OS/390. The
JDBC Server application is provided as a Java archive file, and is actually the
same file used by the JDBC Server service on OS/390 and Windows 98 or 95.
Because the native code has not been ported to all platforms, certain limitations

apply:
m The service wrapper is not supported. Start and stop the JDBC Server by

running the JVM, specifying the main class file. It can be run as a
background process.

m The configuration file is not supported. Specify options on the command
line.

m The log file is not supported. Redirect stderr for messages and stdout for
trace information.

m The native SQL client is not supported. Connections are routed to CA-IDMS
via a JDBC Server running on Windows or OS/390, which is treated as a
remote server.

11-2 CA-IDMS Server User Guide

Using the JDBC Server on Other Platforms

To use the JDBC Server as a command line application:

1. Extract the JDBC Server archive file, idmsjsrv.jar, on the client machine. For
example, on UNIX, assuming you have copied the archive to the /classes
directory:

cd /classes
tar -xovf idmsjdbc.tar idmsjsrv.jar

2. Update the CLASSPATH environment variable to point to the JDBC Server
archive file. For example:

set CLASSPATH=/classes/idmsjsrv.jar:$CLASSPATH
3. Start the JDBC Server with a command similar to:
java ca.idms.proxy.ProxyMain start -h host 1>out 2>err &

where host specifies the DNS name or TCP/IP address of the Windows or
0S/390 machine where the native JDBC Server is running, out specifies the
name of the trace file, and err specifies the name of the log file.

4. Stop the JDBC Server with:

java ca.idms.proxy.ProxyMain stop

Options equivalent to those specified in the configuration file on OS/390 or
using the ODBC Administrator on Windows are specified on the command line:

Options Description
-2 Print this information
-h host Host listener name or IP address
-p port Host listener IP port
-q count Host listener queue length
-r host Remote host name or IP address
-s port Remote IP port
-c Enable control by remote client
-e encoding Override platform encoding
-u Specify Unicode fallback encoding
-w seconds Client wait timeout interval
-t seconds Server reply timeout interval
-b seconds Socket blocking timeout interval
-v [level] Syslog message level (level = 10 if not specified)
-1 level Trace log message level

Using the Client on Other Platforms 11-3

Using the JDBC Server on Other Platforms

Options Description
-d option [option] Enable debugging with the following trace options,

where option can be:

trace enable debug tracing

native enable native trace

snap enable object display

buffer enable native buffer display

object enable native object display

-1 class [class] Include class in trace

“x class [class] Exclude class from trace

For detailed information about these options, see the appendix “Configuration
File Information” in this guide.

11-4 CA-IDMS Server User Guide

Appendix

A ODBC Programmer Reference

The ODBC interface allows a Windows application to access different databases
using SQL, without specifically targeting any particular database. A module
called an ODBC driver is used to link an application to a specific database.

The ODBC interface was developed by Microsoft and is aligned closely with the
international-standard ISO Call-Level Interface.

Debugging User Sessions

Error Messages

CA-IDMS Server writes messages to the default PC log file, CAIDMS.LOG,
specified on the Log and Trace Options tab of the CA-IDMS ODBC
Administrator dialog, described in the “Logging Errors and Trace Information”
section of the “Configuring the Client on Windows” chapter of this guide. These
messages relay the status of the PC-to-mainframe database connection. Common
messages relate to a user’s authorization to sign on to the database, CCI timeouts,
and unsuccessful connections because the CA-IDMS system is down.

Error messages returned by CA-IDMS Server have one of the following formats,
depending on the component in which the error is detected:

[CA][IDMS ODBC Driver]Message text...
[CA][IDMS ODBC Driver][CA-IDMS]Message text...

The CA-IDMS ODBC driver generates the first type of message when it detects
an error condition. The second type of message is generated as a result of an
error detected within the ODBC data source, which includes CAICCI, CA-IDMS,
and the network components.

ODBC Programmer Reference A-1

ODBC Conformance Levels

ODBC Conformance Levels

CA-IDMS Server conforms to the ODBC 2.5 standard. Unless otherwise noted, all
descriptions of ODBC in this document refer to ODBC 2.5.

Microsoft ODBC documentation specifies ODBC conformance in two areas:
ODBC API conformance and ODBC SQL conformance. A driver must support all
functionality in a conformance level in order to claim conformance to that level,
but is not restricted from supporting some of the functionality of higher levels.
ODBC defines functions that allow an application to determine the functionality
supported by a driver in detail, including the API and SQL conformance levels,
as well as specific API function, data type, and scalar function support.

API Conformance Levels

Core API

The ODBC 2.5 API includes three conformance levels:

m Core API supports a set of Core functions in the X/Open and SQL Access
Group (SAG) CLI specification.

m Level 1 supports Core functionality plus an extended set of functions.

m Level 2 supports Core API and Level 1 functionality, as well as an extended
set of functions.

The three conformance levels are described in the following sections.

The ODBC 2.5 Core API corresponds to the functions in the X/Open and SAG
CLI specification, with a few minor differences. The Core API provides the
minimum services to support dynamic SQL, including connection establishment
and termination, SQL statement execution, retrieval of results, and transaction
control.

The CA-IDMS ODBC driver supports all Core API functions. The Core API
functions are as follows:

m ConfigDSN: For use by configuration programs

s SQLAllocConnect

m SQLAllocEnv

m SQLAllocStmt

m SQLBindCol

A-2 CA-IDMS Server User Guide

ODBC Conformance Levels

SQLBindCol
SQLCancel
SQLColAttributes
SQLConnect
SQLDescribeCol
SQLDisconnect
SQLError
SQLExecute
SQLExecDirect
SQLPFetch
SQLFreeConnect
SQLFreeEnv
SQLFreeStmt

SQLGetCursorName: Used by ODBC Cursor Library

SQLNumResultCols

SQLPrepare
SQLRowCount

SQLSetCursorName

SQLSetParam: Supported by ODBC Driver Manager for ODBC 1.0
applications only. Replaced by SQLBindParameter (see the following section)

SQLTransact

ODBC Programmer Reference A-3

ODBC Conformance Levels

Level 1 API

The ODBC 2.5 Level 1 extension to the API supports the Core functionality and
also allows the application to set connection and statement options, retrieve
information about driver and data source capabilities, and retrieve catalog
information.

The CA-IDMS ODBC driver supports all Level 1 API functions. The Level 1 API
functions are as follows:

m SQLBindParameter: Replaces SQLSetParam

s SQLColumns

m SQLDriverConnect

m SQLGetConnectOption

m SQLGetFunctions: Implemented by ODBC driver manager
m SQLGetInfo

m SQLGetStmtOption

m SQLGetTypelnfo

m SQLParamData

m SQLPutData

m SQLSetConnectOption

m SQLSetStmtOption: No asynchronous operation; can set timeout, but it is

ignored
m SQLSpecialColumns: CA-IDMS does not support auto update columns
m SQLStatistics
m SQLGetData
m SQLTables

A-4 CA-IDMS Server User Guide

ODBC Conformance Levels

Level 2 API

The ODBC 2.5Level 2 extension to the API supports the Core and Level 1
functionality and also allows scrollable bulk cursors, retrieval of input parameter
descriptions, and retrieval of additional catalog information.

The CA-IDMS ODBC driver supports the following Level 2 API functions:

SQLParamOptions
SQLMoreResults
SQLNumParams
SQLNativeSQL

SQL Conformance Levels

The ODBC 2.5 defines three conformance levels for SQL grammar:

Minimum grammar supports minimal DDL, simple SELECT, INSERT,
searched UPDATE and DELETE, simple expressions, and the CHAR data

type.
Core grammar supports the SQL statements and functionality proposed by
the X/Open and SQL Access Group CAE specification (1992).

Extended grammar supports common SQL extension supported by different
database management systems.

The following sections describe the three conformance levels.

Minimum SQL Grammar

The Minimum SQL Grammar is defined by ODBC 2.5 to provide a basic level of
conformance. It supports minimal DDL, simple SELECT, INSERT, searched
UPDATE and DELETE, simple expressions, and the CHAR and VARCHAR data

types.

CA-IDMS supports the Minimum SQL Grammar.

ODBC Programmer Reference A-5

ODBC Conformance Levels

Integrity Enhancement Facility (IEF)

CA-IDMS Server supports referential integrity. Although CA-IDMS Server
supports Integrity Enhancement Facility (IEF) functionality, it does not support
the syntax defined in the ODBC specification, as noted in the following list.
Implementation of IEF is optional for the ODBC driver and does not affect the
SQL Conformance Level supported by the driver.

sal Statement Comments
CREATE TABLE clauses:

DEFAULT CA-IDMS supports WITH DEFAULT, and allows
default values of NULL, 0, or blank

UNIQUE CA-IDMS does not support specification of
uniqueness constraints at column or table level. A
unique index can be defined to provide the same
effect.

PRIMARY KEY CA-IDMS does not support specification of a
primary key at column or table level. A unique index
can be defined to provide the same effect.

REFERENCES CA-IDMS does not support specification of
referential constraints on the CREATE TABLE
statement, at column or table level. CREATE
CONSTRAINT statement can be used to define
referential constraints.

CHECK CA-IDMS does not support specification of CHECK
constraints at column level. CHECK constraints can
be specified at table level.

DROP TABLE

RESTRICT CA-IDMS supports CASCADE. Does not support the
RESTRICT keyword. The absence of CASCADE
implies RESTRICT.

REVOKE
CASCADE/RESTRICT CA-IDMS does not support the CASCADE and

RESTRICT options on REVOKE.

A-6 CA-IDMS Server User Guide

ODBC Conformance Levels

Core SQL Grammar

The Core SQL Grammar corresponds to the X/Open and SQL Access Group
CAE draft specification (1991). It is similar to, but not precisely the same as, the
ANSI SQL2 standard. The Core SQL Grammar supports the Minimum SQL
Grammar and adds more DDL, full SELECT, positioned UPDATE and DELETE,
subquery, set expressions, and additional data types.

CA-IDMS supports the complete Core SQL Grammar.

The CA-IDMS driver converts the following ODBC SQL statements to CA-IDMS
SQL:

SQl Statement Comments
CREATE INDEX user.index =~ The CA-IDMS ODBC driver removes the
DROP INDEX user.index qualifier from the index name if present.
GRANT UPDATE CA-IDMS does not support column level
(column-list) REFERENCES security. CA-IDMS driver removes the column
(column-list) list and grants UPDATE to all columns of the
table.
Extended SQL Grammar

The Extended SQL Grammar supports the Minimum and Core SQL Grammar
and adds outer joins, scalar functions, date/time literals, batch SQL statements,
procedure calls, and additional data types.

CA-IDMS does not support the Extended SQL Grammar. Although CA-IDMS
does support outer joins, it does not support the outer join syntax. CA-IDMS
does not support procedure calls.

The ODBC driver supplied with CA-IDMS Server does not support outer joins
and procedure calls. Scalar functions in escape sequences are passed to the data
source unchanged except that the escape sequence itself is converted to spaces.
SQL statements submitted in batch jobs are also not supported.

CA-IDMS supports data types that map to all ODBC data types.

ODBC Programmer Reference A-7

Database Type Mapping Between OBDC and CA-IDMS

The ODBC driver supplied with CA-IDMS Server Release 4.0 does not support
the following statements specified in the ODBC Extended SQL syntax:

Statement Comments

ODBC procedure extension CA-IDMS does not support procedures.

outer join LEFT OUTER]JOIN CA-IDMS supports outer join using the
PRESERVE keyword, but the semantics are not

identical.
statement-list CA-IDMS and the CA-IDMS ODBC driver do
not support this statement.
ODBC scalar function CA-IDMS supports scalar functions that map to
extension a subset of the ODBC scalar functions, but does

not support the ODBC escape sequences for
translation of scalar functions.

DELETE WHERE CURRENT Supported by using the ODBC Cursor Library.

OF cursor
SELECT FOR UPDATE Supported by using the ODBC Cursor Library.
UPDATE WHERE CURRENT Supported by using the ODBC Cursor Library.
OF cursor

Database Type Mapping Between OBDC and CA-IDMS

The following tables describe how ODBC data types map to CA-IDMS
database data types. The tables organize the data types by SQL
conformance level. You can also use the SQLGetTypelnfo ODBC
function to return detailed information about the mapping of ODBC and
CA-IDMS data types.

A-8 CA-IDMS Server User Guide

Database Type Mapping Between OBDC and CA-IDMS

CA-IDMS to ODBC Data Type Mapping

The following chart shows how CA-IDMS data types map to ODBC data types.

CA-IDMS Data Type ODBC Data Type
BINARY SQL_BINARY
CHAR SQL_CHAR
CHARACTER VARYING (VARCHAR synonym) SQL_VARCHAR
DATE SQL_DATE
DECIMAL SQL_DECIMAL
DOUBLE PRECISION - See below* SQL_DOUBLE
FLOAT - See below* SQL_FLOAT
GRAPHIC (DBCS Disabled) SQL_BINARY
GRAPHIC (DBCS Enabled) CAID_GRAPHIC
INTEGER SQL_INTEGER
LONGINT SQL_BIGINT
NUMERIC SQL_NUMERIC
REAL — See below* SQL_REAL
SMALLINT SQL_SMALLINT
TIME SQL_TIME
TIMESTAMP SQL_TIMESTAMP
UNSIGNED DECIMAL SQL_DECIMAL
UNSIGNED NUMERIC SQL_NUMERIC
VARCHAR SQL_VARCHAR
VARGRAPHIC (DBCS Enabled) CAID_VARGRAPHIC
VARGRAPHIC (DBCS Disabled) SQL_BINARY

- *Floating point conversion subject to rounding errors due to format differences.

ODBC Programmer Reference A-9

Database Type Mapping Between OBDC and CA-IDMS

ODBC to CA-IDMS Data Type Mapping

The following chart shows how ODBC data types map to CA-IDMS data types.

ODBC Data Type CA-IDMS Data Type
CAID_GRAPHIC - DBCS Enabled GRAPHIC
CAID_VARGRAPHIC - DBCS Enabled = VARGRAPHIC
SQL_BINARY BINARY
SQL_LONGVARBINARY BINARY
SQL_CHAR CHAR

SQL_DATE DATE
SQL_DECIMAL DECIMAL
SQL_DOUBLE DOUBLE PRECISION
SQL_FLOAT - See below* DOUBLE PRECISION
SQL_REAL - See below* REAL
SQL_INTEGER INTEGER
SQL_BIGINT LONGINT
SQL_NUMERIC NUMERIC

SQL_BIT SMALLINT
SQL_SMALLINT SMALLINT
SQL_TINYINT SMALLINT
SQL_TIME TIME
SQL_TIMESTAMP TIMESTAMP
SQL_LONGVARCHAR VARCHAR
SQL_VARCHAR VARCHAR

- *Floating point conversion subject to rounding errors due to format differences.

A-10 CA-IDMS Server User Guide

SQLDriverConnect Connection String Format

Driver-Specific Data Types

When DBCS processing is enabled, the CA-IDMS GRAPHIC and VARGRAPHIC
data types are mapped to driver-specific ODBC SQL data types, as allowed by
the ODBC 2.5 specification: These types are defined as CAID_GRAPHIC and
CAID_VARGRAPHIC in the CAIDOOPT.H header file which is installed in the
CA-IDMS Server directory. These data types are returned by SQLColumns,
SQLDescribeCol, and SQLColAttributes, and they should be used with
SQLBindParameter to define input parameters for GRAPHIC and
VARGRAPHIC columns.

Since most applications are not specifically designed to handle DBCS data as
defined by CA-IDMS, these types are treated in the same manner as SQL_CHAR
and SQL_VARCHAR. The default C type for both is SQL_C_CHAR, and the
precision is specified in bytes. Note that on CA-IDMS the length is specified in
DBCS characters, which is half the precision specified using the CA-IDMS ODBC
driver.

When DBCS is not enabled, GRAPHIC and VARGRAPHIC are both mapped to
SQL_BINARY, with a default C type of SQL_C_BINARY and precision equal to
the length in bytes.

SQLDriverConnect Connection String Format

CA-IDMS supports additional keywords for the SQLDriverConnect connection

string.

The connection string takes one of the following forms:
DSN=data_source_name;[;attribute=value[;attribute=value]...]
DRIVER={CA-IDMS}[;attribute=value[;attribute=value]...]

ODBC Programmer Reference A-11

SQLDriverConnect Connection String Format

Supported Attribute Keywords and Attribute Values

The following table provides a summary of the connection string attribute
keywords and attribute values supported on the SQLDriverConnect function.
This table includes both the keywords defined as part of the Microsoft ODBC
specification and those defined as extensions for CA-IDMS Server. These
keywords correspond to the fields in the DriverConnect dialogs as well as to the
information used to define data sources and servers in the ODBC Administrator.

Keyword Defined By Attribute Value

DSN Microsoft Data source name

DRIVER Microsoft Driver name (cannot use with DSN)

DICT Computer Dictionary name (use with DRIVER only)
Associates

NODE Computer CA-IDMS System ID (use with DRIVER only)
Associates

TASK Computer Alternate task code (use with DRIVER only)
Associates

UID Microsoft User ID

PWD Microsoft Password

ACCT Computer Account information, if used
Associates

CCINAME Computer CAICCI host server name or IP address
Associates (optional, use with DRIVER only)

CCIPORT Computer CAICCI host server port (optional, use with
Associates DRIVER only)

WAIT Computer CAICCI reply wait timeout (optional, use with
Associates DRIVER only)

The following is an example of a connection string for CA-IDMS Server:

DSN=CA-IDMS database;UID=JELKAOL;PWD=XYZZY;ACCT=R45-87

Refer to the Microsoft ODBC Programmer’s Reference for more information
about calling the SQLDriverConnect function. See the online help and the
chapter “Using the ODBC Driver on Windows,” in this guide for information
about the DriverConnect dialog. See the chapter “Configuring the Client on
Windows,” for more information about attribute values.

A-12 CA-IDMS Server User Guide

Driver-Specific Connect Options

Driver-Specific Connect Options

The ODBC options that can be specified for a data source using the ODBC
Administrator can also be specified during program execution using
SQLSetConnectOption and SQLSetStmtOption. These options and their values
are defined in CAIDOPT.H, installed in the CA-IDMS Server directory.

Supported Isolation and Lock Levels

Transaction isolation is set with the SQLSetConnectOption ODBC API function.
The default transaction isolation can be set using the ODBC Administrator. The
ability to set the default transaction isolation is an IDMS extension. The CA-
IDMS ODBC Driver supports the following two transaction isolation levels:

SQL_READ_COMMITTED: The default. Corresponds to the SET
TRANSACTION CURSOR STABILITY CA-IDMS SQL Statement.

SQL_READ_UNCOMMITTED: Corresponds to the SET TRANSACTION
TRANSIENT READ CA-IDMS SQL Statement.

Bulk Insert Support

CA-IDMS Server supports the ODBC 2.5 Core and Level 1 API functions listed in
the section “API Conformance Levels,” earlier in this appendix. To facilitate Bulk
Inserts, the CA-IDMS Server also supports the Level 2 functions
SQLParamOptions and SQLMoreResults.

To ensure that the ODBC driver takes advantage of the CA-IDMS
INSERT...BULK feature, use parameter markers (?) in the VALUES clause of the
INSERT statement. Do not use a combination of parameter marks and constant
values.

ODBC Programmer Reference A-13

Bulk Insert Support

Retrieving Network Set Information

You can use the SQLExecuteDirect function with the following syntax to return
information about network sets used to join network records accessed as SQL
tables.

$SETS owner table table

where:

owner is the name of the SQL schema containing the names of the dictionary
and network schema where the records are defined. This value applies to all
tables and appears to the ODBC application as the TABLE_OWNER returned
by SQLTables.

table is the name of a record in the network schema. Enter from zero to two
table arguments. Each table argument must be unique and must be defined
in the same network schema. This value appears to the ODBC application as
the TABLE_NAME returned by SQLTables.

The owner and table name arguments are case-sensitive. The following list
identifies the contents of the result set, which depends on what you specify for
the table arguments:

m If you specify no table arguments, the result set contains a list of all sets in
the network schema referenced by owner

m If you specify one table argument, the result set contains a list of all sets in
the network schema referenced by owner in which table is either the owner
or a member

m If you specify two table arguments, the result set contains a list of all sets in
the network schema referenced by owner between the two tables, where
either is the owner or member

The result columns are described in the following table. All columns are defined

as VARCHAR(18):
Column Name Description
SET_NAME Network set name

SCHEMA_NAME SQL schema name (ODBC owner)
OWNER_NAME Network owner record name (ODBC table)
MEMBER_NAME Network owner record name (ODBC table)

A-14 CA-IDMS Server User Guide

Appendix

B JDBC Programmer Reference

The JDBC interface allows Java applications to access different databases without
specifically targeting any particular database. A set of classes called a JDBC
driver is used to link an application to a specific database. The JDBC interface
was developed by Sun Microsystems based on ODBC 2.5, and, like ODBC, is
consistent with the X/OPEN Call Level Interface (CLI).

This appendix provides information useful to developers of Java applications
intended to access CA-IDMS databases. A general familiarity with Java and
JDBC is assumed.

The javadoc generated from the CA-IDMS JDBC driver source code contains
additional information about the CA-IDMS implementation of JDBC. This HTML
format documentation is installed, optionally, in the CA-IDMS Server directory
and can be accessed from the CA-IDMS Server menu.

JDBC Conformance

CA-IDMS Server conforms to the JDBC 1.2 specification, which is included in the
Java 1.1 (or later). Unless otherwise noted, all descriptions of JDBC in this
document refer to JDBC 1.2.

JDBC Programmer Reference B-1

JDBC Conformance

APl Conformance

JDBC does not define conformance levels in the same sense that ODBC does. A
JDBC driver must implement all methods defined in the specification. However,
the driver can return an exception, or a 0 or null value, to indicate that it cannot
do what the method requires. The CA-IDMS JDBC driver implements the
following methods only to satisfy the JDBC specification:

m CallableStatement.execute

m CallableStatement.executeQuery

m CallableStatement.executeUpdate

m CallableStatement.getBigDecimal

m CallableStatement.getBoolean

m CallableStatement.getByte

m CallableStatement.getBytes

m CallableStatement.getDate

m CallableStatement.getDouble

m CallableStatement.getFloat

m CallableStatement.getInt

m CallableStatement.getLong

m CallableStatement.getObject

m CallableStatement.getShort

m CallableStatement.getString

m CallableStatement.getTime

m CallableStatement.getTimestamp

m CallableStatement.registerOutParameter
m CallableStatement.wasNull

m Connection.setCatalog: Catalog name not used to qualify tables

m DatabaseMetaData.getCatalogs

B-2 CA-IDMS Server User Guide

JDBC Conformance

DatabaseMetaData.getColumnPrivileges: Information not available in
catalog

DatabaseMetaData.getCrossReference
DatabaseMetaData.getExportedKeys
DatabaseMetaData.getImportedKeys
DatabaseMetaData.getPrimaryKeys
DatabaseMetaData.getProcedures
DatabaseMetaData.getProcedureColumns
DatabaseMetaData.getTablePrivileges
DatabaseMetaData.getVersionColumns
ResultSetMetaData.getCatalog: Information not available in SQLDA
ResultSetMetaData.getSchemaName
ResultSetMetaData.getTableName

Statement.cancel: Client cannot cancel mainframe task

Statement.getMoreResults: Batched statements not supported

Refer to the javadoc for more detailed information, including the specific values
and exceptions returned by the CA-IDMS JDBC Driver methods.

SQL Conformance

To be JDBC compliant, a JDBC driver must support ANSI SQL-92 Entry Level.
This is consistent with ODBC 3.0. With a few minor exceptions, CA-IDMS
conforms to the ANSI SQL-92 entry level standard. Both the CA-IDMS ODBC
and JDBC drivers pass most SQL statements to CA-IDMS essentially unchanged,
other than converting escape sequences into CA-IDMS equivalents. For more
information about SQL conformance, refer to the appendix “ODBC Programmer
Reference” in this guide.

JDBC Programmer Reference B-3

Database Type Mapping Between JDBC and CA-IDMS

Database Type Mapping Between JDBC and CA-IDMS

The following tables describe how JDBC data types map to CA-IDMS database
data types. Java applications can use the DatabaseMetaData.getTypelnfo method
to return detailed information about the mapping of JDBC and CA-IDMS data

types.

CA-IDMS to JDBC Data Type Mapping

The following chart shows how CA-IDMS types map to JDBC data types when
data is returned in a result set:

CA-IDMS Data Type JDBC Data Type

SMALLINT SMALLINT

INTEGER INTEGER

LONGINT BIGINT

REAL REAL

FLOAT REAL (Precision < 25).

FLOAT FLOAT (Precision > 24).
DOUBLE PRECISION DOUBLE

DECIMAL DECIMAL

UNSIGNED DECIMAL DECIMAL

NUMERIC NUMERIC

UNSIGNED NUMERIC NUMERIC

CHAR CHAR

GRAPHIC CHAR (DBCS must be enabled)
VARCHAR VARCHAR

VARGRAPHIC VARCHAR (DBCS must be enabled)
BINARY BINARY

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP

B-4 CA-IDMS Server User Guide

Database Type Mapping Between JDBC and CA-IDMS

JDBC to CA-IDMS Data Type Mapping

The following chart shows how JDBC data types map to CA-IDMS types when a

parameter value is set.

JDBC Data Type CA-IDMS Data Type
BIT SMALLINT

TINYINT SMALLINT
SMALLINT SMALLINT
INTEGER INTEGER

BIGINT LONGINT

REAL REAL

FLOAT DOUBLE PRECISION
DOUBLE DOUBLE PRECISION
DECIMAL DECIMAL
NUMERIC NUMERIC

CHAR CHAR

VARCHAR VARCHAR
LONGVARCHAR VARCHAR

BINARY BINARY
VARBINARY BINARY
LONGVARBINARY BINARY

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP

JDBC Programmer Reference B-5

Connection Parameters

Connection Parameters

This section describes the information needed to connect to a CA-IDMS database
using JDBC, including the URL formats and DriverProperties recognized by
CA-IDMS JDBC driver. This information is passed to the JDBC
DriverManager.getConnection method.

IDMS URL Format

A URL is used to locate a resource on the Internet. A URL always begins with a
protocol followed by a colon, such as http: or ftp:, and the rest of the string is
defined by the protocol. In keeping with the Internet orientation of Java and
JDBC, URLSs are used to identify databases. The JDBC specification defines
conventions for the format of JDBC URLs. Each JDBC driver defines the actual
format of the URLs that it recognizes. The general format of a JDBC URL is:

protocol: subprotocol: subname

protocol is always jdbc. subprotocol and subname are defined by the JDBC
driver.

The CA-IDMS JDBC driver recognizes two URLs with subprotocol idms. The
location of the native CA-IDMS SQL client interface and the data source or
dictionary name are specified by the subname.

m jdbc:idms:database: - This format is used when the JDBC driver runs on the
same machine as the native CA-IDMS SQL client interface. This is typically
the case when a Java application is running on the machine where CA-IDMS
Server is installed. The JDBC driver calls the native interface directly.

m jdbc:iidms://hostname:port/ database: - This format is used when the JDBC
driver is running on a different machine than the native CA-IDMS SQL client
interface. This is typically the case when a Java applet is running in a web
browser and CA-IDMS Server is installed on the machine where the web
server is running. The JDBC driver communicates with the CA-IDMS JDBC
Server, which calls the native interface directly. hostname is the DNS name
or IP address of the web server, and portis the IP port that was specified as
the CA-IDMS JDBC Server listener.

In either case, database can be an ODBC data source name or the dictionary
name of the catalog containing the table definitions. When database is an ODBC
data source name, the actual dictionary and physical connection information are
resolved by the CA-IDMS Server native interface, and must be defined on the
system where the native code runs. When database is a dictionary name, the
physical connection information is specified by DriverPropertyInfo objects.

B-6 CA-IDMS Server User Guide

Connection Parameters

DriverPropertyinfo

JDBC DriverPropertyInfo objects are analogous to the connection attributes used
by the ODBC SQLDriverConnect and SQLBrowseConnect functions. For the
CA-IDMS JDBC driver, they are used to specify user ID, password, and optional
accounting information. They can also be used to specify physical connection
information, allowing an application to connect to a CA-IDMS database without
requiring the definition of an ODBC data source. CA-IDMS supports the
following driver properties:

Name

Description

user

User ID to sign onto CA-IDMS. Always required.

password

Password associated with the user ID. Required to connect to a
secured CA-IDMS system.

account

Accounting information. An optional feature that may be used by
the CA-IDMS system. A user exit must be installed on the DC
system to process the information. See the appendix “Passing
Accounting Information to CA-IDMS” for more information.

node

DC NODE name, identifying the CA-IDMS system containing the
database, and allowing a connection to be established without
defining an ODBC data source. Use of this property implies that the
subname contains a DICTNAME.

via

NODE name of an intermediate CA-IDMS DC system, used to route
requests to the target system. Used when a physical connection
cannot be established directly to the CA-IDMS DC system
containing the SQL database. Only valid if node is specified.

task

DC TASK code that invokes the internal CA-IDMS SQL server
interfaces. Only valid if node is specified.

host

DNS name or IP address of the CAICCI host server, for use by the
native CA-IDMS Server SQL client interface. Only valid if node is
specified. Typically, the default is used.

port

IP port of the CAICCI host server. Valid only if host is specified.
Typically, the default is used.

JDBC Programmer Reference B-7

Sample Programs

Dynamic Positioned Updates

The CA-IDMS JDBC driver supports positioned updates and deletes in dynamic
SQL, when connected to a CA-IDMS Release 14.0, or later, system. For prior
releases, the ResultSet setCursorName and getCursorName methods are
implemented only to conform to the JDBC specification, and are not used
internally.

In order to use positioned updates and deletes, the FOR UPDATE clause must be
specified in the SQL query statement. According to the JDBC specification, the
SQL query must have the form:

SELECT FOR UPDATE ... FROM ... WHERE ...

CA-IDMS expects the FOR UPDATE clause at the end of the syntax:
SELECT ... FROM ... WHERE ... FOR UPDATE

The CA-IDMS JDBC driver will recognize the clause in either location, and move
it to the end before passing the syntax to CA-IDMS, if necessary.

To optimize performance, the CA-IDMS JDBC driver attempts to fetch up to 100
rows at a time. Since row currency is at the last row, issuing a positioned update
or delete would not have the expected effect. Specifying the FOR UPDATE clause
causes the driver to fetch one row at a time.

Sample Programs

IdmsJcf

Two simple SQL query utilities are included as sample programs distributed
with CA-IDMS Server. Neither requires installation of CA-IDMS Server. You can
simply copy the class files to the client machine along with the CA-IDMS JDBC
driver.

This can be thought of as a simple Java version of OCF, providing a Graphical
User Interface (GUI) query facility. It can be run either as an application or as an
applet on any machine supporting the Swing classes. Both source code and
compiled class files are installed, as well as a sample HTML page to invoke it as
an applet. On the Windows platform, a shortcut is added to the CA-IDMS Server
menu to run it as an application.

B-8 CA-IDMS Server User Guide

Sample Programs

IdmsExample

Idms]Jcf uses the Swing classes to implement its user interface. These classes must
be accessible to the application or applet, and, for best performance, should be
installed on the client machine. Simply copy the swingall jar file, containing the
classes, to the client machine and set the CLASSPATH environment variable to
point to it. For example, in Windows, set an environment variable as:

CLASSPATH=C:\Program Files\CA-IDMS Server\Java\classes\swingall jar
When the JCF demo is installed on Windows, the swingall jar file containing the

swing classes is copied into the CA-IDMS Server\Java\classes directory. This
allows the JCF demo to run on the machine where CA-IDMS Server is installed.

To run to the CA-IDMS JCF applet demo in a web browser, the CA-IDMS JDBC
Server must be running on the web server. Since JdbcTest is the default data
source, it may be convenient to define a data source called JdbcTest.

On OMVS these samples are installed in the CA-IDMS installation directory:
n /idmsjdir/jcf/Idms]cf java: source code, entry point and Ul

» /idmsjdir/jcf/JdbcTable.java: source code, JDBC calls

» /idmsjdir/jcf/idmsjcf.html: sample web page to invoke as applet

» /idmsjdir/classes/idmsjcf.jar: compiled Idms]cf classes

This can be thought of as a simple Java version of BCF. It reads a series of SQL
commands from a text file and writes the results to the standard output. Since it
has no GUI, it can be run from any command line interface, including a 3270
terminal on OS/390. Both source code and a compiled class file are installed,
along with a shell script to invoke it, and a sample SQL input file. The script and
sample input file contain documentation on the command line options.

On OMVS the following samples are installed in the CA-IDMS installation
directory:

m /idmsjdir/example/IdmsExample.java: source code

m /idmsjdir/example/example.sql: sample SQL input file

m /idmsjdir/example/example: shell script to run IdmsExample.class

» /idmsjdir/classes/IdmsExample.class: compiled sample program

On Windows, both sample programs are optionally installed in the
corresponding subdirectories of the CA-IDMS Server\Java directory. For other
platforms, the Java class files are provided in idmsjdbc.tar and the source files in

idmssamp.tar. Both are found in the /classes directory on the CA-IDMS Server
CD.

JDBC Programmer Reference B-9

Appendix

C Windows Registry Information

The registry is a database used by Windows to store system and application
information. It replaces the ini files used in Windows 3.1.

Registry Information

This section describes the information stored in the registry and used by
CA-IDMS Server. This information is provided to help you identify problems
that may arise with CA-IDMS Server. The registry information is maintained
using the 32-bit ODBC Administrator, available from the Control Panel. Unlike
ini files, it cannot be edited directly, but it can be edited using the registry editor
provided by Microsoft. Only advanced users should attempt to edit the registry
directly, since an error can disable not only CA-IDMS Server, but also Windows
itself.

The registry is structured as a hierarchical database, with keys, subkeys, and
values. At the top level are four or five keys, two of which are used by the ODBC
and CA-IDMS Servers. HKEY_LOCAL_MACHINE contains information about
hardware and software common to all users of the machine.
HKEY_CURRENT_USER contains preferences and application settings for the
current user. A subkey is analogous to a directory path and is specified in a
similar fashion. The following are the subkeys used by ODBC and CA-IDMS:

s HKEY_LOCAL_MACHINE\Software \ODBC\ODBCINST.INI

s HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI

s HKEY_CURRENT_USER\Software \ODBC\ODBC.INI

s HKEY_LOCAL_MACHINE\Software\ComputerAssociates\CA-IDMS

Under each of these keys are subkeys corresponding to the section names used in
ini files. At the lowest level are value names, corresponding to the key names
used in ini files, and the values themselves. The remainder of this appendix
describes the information in these subkeys.

Windows Registry Information C-1

Registry Information

HKEY_LOCAL_MACHINE\Software\ODBC\ ODBCINST.INI

This section contains information about the ODBC drivers installed on the
machine, and corresponds to the ODBCINST.INI file used in Windows 3.1. The
CA-IDMS Server installer program adds the information for the CA-IDMS ODBC
driver using the ODBC installer DLL when the product is installed. This key
contains the following information (note that the Value Name column assumes
that CA-IDMS is the only installed ODBC Driver). These values are documented
in more detail in the ODBC SDK Reference.

Subkey Value Name Description

ODBC Core UsageCount Driver manager usage count

ODBC CA-IDMS Each installed ODBC driver has an entry.

Drivers Value name is the driver name. Value data is
Installed.

CA-IDMS Each installed driver has a subkey, whose

name is the name of the driver.

APILevel Driver ODBC API conformance level. For
CA-IDMS, value is 1.

ConnectFunctions Connect functions supported by driver. For
CA-IDMS, value is YYN.

Driver Driver DLL name and path.

DriverODBCVer Version of ODBC supported by driver. For
CA-IDMS, value is 02.50.

FileExtns Not used for CA-IDMS.

FileUsage Not used for CA-IDMS.

Setup Driver setup (configurator) DLL name and
path.

SQLLevel Driver SQL conformance level. For CA-IDMS,
valueis 1.

UsageCount Driver usage count

Default Driver Name of ODBC driver for default data source.

C-2 CA-IDMS Server User Guide

Registry Information

HKEY_LOCAL_MACHINE\Software\ODBC\ ODBC.INI

This section contains information about system data sources, which are available
to all users of the system, as well as system services. It corresponds to the
ODBC.INI file used in Windows 3.1. The CA-IDMS Server configurator
maintains this information using the ODBC installer DLL when the ODBC
administrator is used from the Control Panel. The ODBC.INI key contains the

following subkeys and values:

Subkey Value Name Description

ODBC Data Sources DSN

Each data source has an entry. Value
Name is the data source name. Value
Data is the driver name. For CA-IDMS,
this is CA-IDMS.

DSN

Each data source has a subkey whose
name is the data source name.

Driver

Driver DLL name and path, copied from
the ODBCINST.INI key.

Dictionary

DBNAME or segment name of the
CA-IDMS dictionary defined in the
CA-IDMS DBNAME table on the target
CA-IDMS system. Value comes from the
CA-IDMS ODBC Administrator dialog
Dictionary field. Default is the first eight
characters of data source name.

Server

Specifies the user-defined server name.

Default

Default data source can contain the same
values as other data source definitions.

Windows Registry Information C-3

Registry Information

HKEY_CURRENT_USER\ Software\ODBC\ ODBC.INI

This section contains information about user data sources, available only to the
currently signed-on users of the system, and corresponds to the ODBC.INI file
used in Windows 3.1.

The CA-IDMS Server configurator maintains this information using the ODBC
installer DLL. The structure of the information under this key is the same as the
ODBC.INI subkey of HKEY_LOCAL_MACHINE.

HKEY_LOCAL_MACHINE\Software\ ComputerAssociates\ CA-IDMS

Servers

This section contains information about global options, data source default
options, and server definitions for all users and system services, and corresponds
to the CAIDDSILINI file used in Windows 3.1.

Data source information, previously maintained in the CAIDDSLINI file, is now
stored under the ODBC.INI keys, to support user and system data sources. The
CA-IDMS Server configurator maintains this information directly.

The CA-IDMS key contains information that CA-IDMS uses to establish a
connection to a CA-IDMS database anywhere in a network of CA-IDMS systems.
The CA-IDMS key can contain these subkeys:

m Servers subkey, to associate a server name with an ODBC driver name

m Server server_name subkey, for each server to define its database access path
information

m Options subkey, for log settings, language settings, and path
m Defaults subkey, for default database settings

The Servers subkey lists all servers defined using the CA-IDMS ODBC
Administrator dialog.

The Servers subkey contains the parameter server_name, which is always
CA-IDMS, the name of the ODBC driver.

C-4 CA-IDMS Server User Guide

Registry Information

Server Server name

Values

The Server server_name subkey contains information describing a CA-IDMS
system. It contains the following values:

Value Name Value
Resource node_name
AlternateTask task_code
Node via_node_name
CCIServerName cci_name
CCIServerPort port
WaitTimeOut wait

Version 011

server_name: Specifies a server name listed in the Servers section and referenced
by a data source definition.

Resource=node_name: (Optional) Specifies the value of SYSTEMID. This is
specified in the SYSTEM statement of the system generation of the target system.
If a node_name is not specified, CA-IDMS Server uses the first eight characters of
the server_name to identify the target system.

AlternateTask=task_code: (Optional) Identifies an alternate task defining the
resource limits and timeout values for a session. The default is CASERVER. Any
task identified, whether the default or another task you define, must be defined
as a task on the CA-IDMS System Generation TASK Statement. This value comes
from the Task Code field on the Server tab of the CA-IDMS ODBC Administrator
dialog. For more information on resource limits for external user sessions, see
CA-IDMS System Generation and CA-IDMS System Operations.

Node=via_node_name: (Optional) Specifies the node with which CAICCI will
establish a connection. The system identified by via_node must contain a
RESOURCE table entry for the system identified by node name. Use this option
when the system containing your tables does not directly communicate with
CAICCL

CCIServerName=cci_name: Identifies the DNS name or IP address where the
CCITCP Server is running. If not specified, the default server defined for CAICCI
is used.

CClIServerPort=cci_port: (Optional) Specifies the IP port identifying the CCITCP
Server on the node defined by cci_name. If not specified, the default port defined
for CAICCI is used. This is normally 1202, and typically should not be specified
here.

Windows Registry Information C-5

Registry Information

Options

WaitTimeOut=wait: Specifies the number of seconds CAICCI will wait for a
response from the CA-IDMS system. When this interval is exceeded, CA-IDMS
Server considers the connection to have failed. Set this to 0 to cause CAICCI to
use the default value specified with the CAICCI/PC Properties dialog.

Version=0 | 1: Specifies the version of the CA-IDMS Server mainframe
component installed on the CA-IDMS system. The default, 0, indicates Version
4.2 or Earlier. Set this to 1 to specify Version 4.3 or Later.

Passwords can be sent to the CA-IDMS system in encrypted form, which requires
the installation of an updated CA-IDMS Server mainframe component to enable
the CAICCI line driver to recognize the password. Use this option to enable
password encryption when connecting to a secured CA-IDMS system with the
new version of the mainframe component installed.

Note: Specifying 4.3 or Later when the new version of the mainframe
component has not been installed will cause connection attempts to the secured
system to fail. Consult your Data Base Administrator for more information.

The Options subkey contains global options. This key is updated with the values
you select in the Options, Defaults, Log Options, and International tabs of the

CA-IDMS ODBC Administrator dialog.

The Options subkey contains the following parameters for global options:

Value Name Value
CloseCommit 011

FetchSize integer_value
FetchSuspend 011
FetchSuspendClose 011
InvalidDecimal integer_value
DbcsPath dbcs_path
DbcsType dbcs_type
cadcdc32.dll dIl_name
AsciiEbcdicTables translation_table name
LogkFile log file name
LogOptions log_option_values
MultiThread 011

JdbcTrace integer_value

C-6 CA-IDMS Server User Guide

Registry Information

Values

Value Name Value

OdbcTrace integer_value
SQLTrace integer_value
DtsTrace integer_value
DnsTrace integer_value
CmTrace integer_value
FdeTrace integer_value
UtilTrace integer_value

CloseCommit=0 | 1: When enabled, the CA-IDMS Server sends a COMMIT
following a CLOSE when autocommit is off. The default value is 1, enabled. This
option is also considered enabled when autocommit is on. The COMMIT (or
COMMIIT CONTINUE) is normally piggybacked onto the FETCH or CLOSE
request when no other cursors are open and no updates are pending. This can
also be specified in a specific Data Source section.

FetchSize=integer value: Specifies the maximum size that the JDBC driver will
attempt to use for a FETCH buffer. The default is 128,000. Depending on the
platform and implementation of the CAICCI interface, a smaller buffer may be
used. Typically, this should be left at the default setting. Specifying too large a
value may cause the JVM to run out of memory.

FetchSuspend=011: When enabled, CA-IDMS Server causes a SUSPEND to be
piggybacked onto each BULK FETCH, ending the IDMS-DC task. The default is
1, enabled, if the CA-IDMS system is Release 14.01 or later. If the CA-IDMS
system is Release 14.00 or earlier, the default is 0, because enabling this option
would cause an extra network request for otherwise. This can also be specified in
a specific Data Source section.

FetchSuspendClose=0 | 1: Causes a conditional SUSPEND to be piggybacked
onto each FETCH. The default is 0, disabled. The SUSPEND is to be done only if
the cursor reaches the end. This is not currently supported by CA-IDMS. This can
also be specified in a specific Data Source section.

Windows Registry Information C-7

Registry Information

InvalidDecimal=integer._value: Specifies how the CA-IDMS ODBC and JDBC
drivers will handle invalid packed or zoned decimal data returned in a result set
column. Options are:

0 - Return error, the default.
1 - Return NULL.

2 - Return 0.

3 - Ignore, ODBC only.

DbcsPath=dbcs_path: Specifies the path to the DBCS translation tables, typically
the direction specified when CA-IDMS Server is installed.

DbcsType=dbcs_type: Specifies the integer value identifying the DBCS
Language, as defined by the DBCS Types subkey.

cadcdc32.dll=dIl_name: Specifies the name of a user supplied customized
character conversion DLL, used by the native client interface to convert between
ASCII and EBCDIC. The name can be qualified with a path. DbcsType must be
set to a non-zero value, typically 1, to enable the use of the specified DLL.

AsciiEbcdicTables=translation_table_name: Specifies the name of the CECP
translation table selected to convert EBCDIC data on the server to ASCII data on
the PC, and vice versa. The value comes from the International tab of the
CA-IDMS ODBC Administrator dialog.

LogFile=Ilog_file_name: Specifies the name of the log file, if other than the default
log name. This value comes from the Log File field on the Log Options tab of the
CA-IDMS ODBC Administrator dialog.

LogOptions=Ilog_option_values: Specifies log options as a bit mask. The bit flag,
0x0001, appends information to the existing log file, if any.

MultiThread=011: Specifies whether CA-IDMS Server processes ODBC
connections or multiple threads concurrently. A setting of 1 enables multi-
threaded access, a setting of 0 disables it. The default is 1.

XxxxTrace=integer_value: Specifies the flag bits used to control tracing.
Computer Associates Technical Support uses these trace flags to resolve
CA-IDMS Server problems. The integer_value must be in the range of 0, which
signifies all options off, to 65535, which signifies all options on. This value can be
specified as a decimal or hexadecimal integer. Descriptions of the individual bit
flags are as follows:

JdbcTrace (ca.idms.*): Any non-zero value enables tracing
OdbcTrace (CAIDOD32.DLL):

0x0002 // Trace internal functions
0x0004 // Trace function parms
0x0008 // Trace thread locks
0x0010 // Snap SQL syntax
0x0100 // Snap environment block
0x0200 // Snap connection block
0x0400 // Snap statement block

C-8 CA-IDMS Server User Guide

Registry Information

0x0800 // Snap SQLDA
SqlTrace (CAIDQC32.DLL):

0x0002 // Time SQL calls

0x0004 // Snap SQL SQLSID
0x0008 // Snap SQL DSICB

0x0010 // Snap SQL SQLCA

0x0020 // Snap SQL SQLCIB
0x0040 // Snap SQL SQLPIB
0x0080 // Snap SQL parm buffer
0x0100 // Snap SQL tuple buffer
0x0200 // Snap SQL input SQLDA
0x0400 // Snap SQL output SQLDA
0x0800 // Snap SQL syntax string
0x4000 // Trace server calls

0x8000 // Snap server interface blocks

DtsTrace (CAIDTD32.DLL):

0x0002 // trace external calls
0x0004 // trace events

0x0008 // trace events

0x0010 // snap user data arrays
0x0020 // trace events

0x0040 // snap PCE

0x0080 // snap LCE

DnsTrace (CAIDTD32.DLL):

0x0010 // snap unconverted send data
0x0020 // snap converted send data
0x0040 // snap received data

0x0080 // snap converted received

CmTrace (CAIDTD32.DLL):

0x0001 // trace CCI and internal function calls
0x0002 // elapsed CCI call timings

FdeTrace (CAIDFD32.DLL):

0x0001 // trace external generate calls (for precompiler)
0x0002 // trace external convert calls

0x0004 // trace external ASCII-EBCDIC conversion calls
0x0010 // trace internal calls

0x0100 // snap format descriptors

0x1000 // snap input (unconverted) data

0x2000 // snap output (converted) data

UtilTrace (CAIDUT32.DLL):

0x0001 // Trace external calls
0x0002 // Trace internal calls
0x0004 // Trace DllEntry calls

Windows Registry Information C-9

Registry Information

Defaults

Values

The ODBC Configurator is normally used to enable and disable tracing. Since
tracing can add overhead and affect performance, it should be disabled under

normal circumstances.

The Defaults subkey contains the default ODBC options, used when adding a
new data source. This key is updated from the options you select in the Defaults
tab of the CA-IDMS ODBC Administrator dialog.

The Defaults subkey contains the following values for default options for new
data sources. Data Source subkeys in the ODBC.INI key also contain these

values.

Value Name Value
AccessibleTables 011
AccountPrompt 011
CacheSQLTables 011
CatalogTable view_name
CommitBehavior 01112
EnableEnsure 011
FetchDouble 011
FetchRows integer_value
Path path_name
ReadOnly 011
Txnlsolation 112

AccessibleTables=0 | 1: When set to 1, the ODBC driver uses the
SYSCA.ACCESSIBLE_TABLES view, or another view defined by you, for the
SQLTables function. A setting of 0 disables this option. This value comes from
the Use Accessible Tables View Name field.

AccountPrompt=0 | 1: Directs the ODBC driver to prompt for information if the
ACCT keyword is not supplied in the connection string passed to
SQLDriverConnect. See the appendix “Passing Accounting Information to

CA-IDMS,” for more information.

C-10 CA-IDMS Server User Guide

Registry Information

CacheSQLTables=0 | 1: When set to 1, CA-IDMS Server caches the table list
returned from an SQLTables call. A value of 0 disables this option. This value
comes from the Cache SQL Tables option.

CatalogTable=view_name: Specifies the name of the view to use for the
SQLTables function, if other than the default view name. This value comes from
the Accessible Tables View Name field.

CommitBehavior=01112: Specifies the way a COMMIT operation affects cursors
in CA-IDMS. This also determines the value returned by the ODBC SQLGetInfo
function for the SQL_CURSOR_COMMIT_BEHAVIOR option. Values are:

0 specifies SQL_CB_DELETE. All open cursors are closed, and all prepared
statements are deleted. Specified by selecting Close and Delete Cursors in the
Commit Behavior field.

1 specifies SQL_CB_CLOSE. All open cursors are closed, but prepared
statements are not deleted. Specified by selecting Close Cursors in the
Commit Behavior field.

2 specifies SQL_CB_PRESERVE. All cursors remain open, and their position
is preserved. Prepared statements are not deleted. Specified by selecting
Preserve Cursors in the Commit Behavior field.

EnableEnsure=0|1: When set to 1, CA-IDMS Server honors the ENSURE
parameter of the SQLStatistics function call. A setting of 0 disables this option.
This value comes from the Enable Ensure field.

FetchDouble=0 | 1: When set to 1, CA-IDMS converts four-byte floating point
numbers to eight-byte floating point before returning them to CA-IDMS Server.
This value comes from the Fetch Real as Double field.

FetchRows=integer._value: Specifies the number of database rows that
CA-IDMS Server fetches at a time. The default for the ODBC driver is 100. The
default for the JDBC driver is the number of rows that fit in a 30K buffer. This
value comes from the Bulk Fetch Row Count field.

Path=path_name: Specifies the directory where files used by CA-IDMS Server
are installed. The default is x: \Program Files\CA-IDMS Server, where x:
identifies the disk drive. Note that the ODBC and CA-IDMS Server DLLs are
installed in the Windows\System(32) directory.

ReadOnly=0 | 1: Specifies the access mode for the Windows application. A setting
of 0 specifies Read Write. A setting of 1 to specifies Read Only. This value comes
from the Access Mode field.

Txnlsolation=1 | 2: Specifies the degree to which your transactions impact, and
are impacted by, other users accessing the same data. A setting of 1 specifies
Read Uncommitted, 2 specifies the default setting, Read Committed. This value
comes from the Transaction Isolation field.

Specify these options on the Defaults tab in the CA-IDMS ODBC Administrator
dialog. For an individual data source, these values can also be specified using the
Options tab. In this case, the values are stored under the data source name
subkey in the registry.

Windows Registry Information C-11

Registry Information

DBCS Types
The DBCS Types subkey identifies the languages that have DBCS support. The
values are added when CA-IDMS Server is installed.

Proxy

The Proxy subkey contains information used to the configure the CA-IDMS
JDBC Server, and contains the following values:

Value Name Value

Host host_name
Port integer
RemoteHost host_name
RemotePort integer
Encoding integer_value
Unicode 011

Backlog integer_value
TimeOut integer
WaitTimeOut integer
SocketTimeOut integer_value
LogLevel integer_value
LogTrace integer_value
Trace 011

Snap 011

C-12 CA-IDMS Server User Guide

Registry Information

Values

Host=host_name: (Optional) Specifies the DNS name or IP address the JDBC
binds to when listening for client connection requests. This can be used to force
the JDBC Server to listen for connection requests on a specific TCP/IP protocol
stack on a multi-homed host (a machine with multiple TCP/IP stacks). The
default is to listen on all available stacks.

Backlog=integer_value: Specifies the maximum length of the listener queue.
When this is exceeded, connections are refused. Note that this is not the
maximum number of client connections that can be supported. The default is 50.

Encoding=character_encoding_name: Specifies the character encoding that the
JDBC Server requests the JDBC Driver to use when sending and receiving
character data. If not specified, the default encoding for the JVM is requested.
The character encoding class must be accessible to the JDBC Driver when
invoked by the client application or applet.

Unicode=0 | 1: Enables the use of Unicode for character encoding when the JDBC
Driver is unable to use the requested encoding. The default value, 0, specifies the
use of UTF-8, which is supported by all Java platforms.

SocketTimeOut=integer._value: Specifies the number of seconds the JDBC Server
waits, or blocks when reading data from a socket. While a socket is being read,
the thread is blocked, and is not able to recognize an event that stops the thread.
When this interval expires, the thread checks if the JDBC Server is still running,
and, if so, issues another read on the socket. It continues until the wait or reply
timeout has expired. A high value reduces JDBC Server overhead. A low value
allows the server to respond to shutdown events more quickly. Setting this to 0
causes the thread to block forever, and is not recommended. The default is 60
seconds.

LogLevel=integer._value: Specifies the level of messages sent to the Windows NT
Event Log.
0 - Disable messages.
4 - Error messages.
6 - Warning messages.
8 - Information messages, including start and stop events. This is the default.
10 - Verbose information messages, including client start and stop events.

12 - Debugging messages, not including general trace output.

Windows Registry Information C-13

Registry Information

LogTrace=integer._value: Specifies the level of log messages sent to the trace file.
Options are identical to LogLevel options.

Port=integer._value: The IP port the JDBC Server listens on for connection
requests. The default value is 3709.

RemoteHost=host_name: (Optional) Specifies the DNS name or IP address of
another JDBC Server, used to forward packets to the CA-IDMS system.

RemotePort=integer_value: Specifies the IP port address of the remote host. If
used, the default value is 3709.

TimeOut=integer_value: Specifies the number of seconds the JDBC Server will
wait for a response from the CA-IDMS server. The default, 0, causes the JDBC
Server to wait indefinitely.

WaitTimeOut=integer_value: Specifies the number of seconds the JDBC Server
will wait for a request from the JDBC client. The default, 0, causes the JDBC
Server to wait indefinitely.

Trace=0|1: Enables tracing of internal function calls. Output is written to the CA-
IDMS log file.

Snap=01: Enables display of data buffers sent and received in the CA-IDMS log
file.

C-14 CA-IDMS Server User Guide

Appendix

D Configuration File Information

On OS/390 and other UNIX platforms, CA-IDMS Server uses a configuration file
to store information about database definitions, server definitions, global
options, and JDBC Server options. This file is similar in format to the ini file used
in Windows.

Configuration File Data

Data is organized into sections, identified by square brackets (for example,
[section_name]). Within each section, parameters are defined by key-value pairs,
delimited by an equal sign (for example, key=value). A comment is indicated by
a semi-colon.

Since many 3270 devices and emulators do not support square brackets, dollar
signs or percent symbols can be used instead. The closing symbol is also
optional.

Environment Variables

IDMS_CFG_PATH=path_name: By default, the configuration file is named
caidms.cfg and is located in the CA-IDMS Server directory. The
IDMS_CFG_PATH environment variable can be used to specify a different file or
directory.

IDMS_CFG_RELOAD=0/1: For optimal performance on OS/390, the
configuration file is copied into a memory file when the libutil.so DLL is initially
loaded into a process. When the IDMS_CEG_RELOAD environment variable is
set to 1 the configuration file is reloaded from the file system each time libutil.so
is loaded. This overrides the CacheConfig option set in the configuration file
itself. The default value is 0.

Configuration File Information D-1

Configuration File Data

Sections

Datasource

Server

The configuration file includes the following sections:

m [datasource_name]: Defines the SQL catalog and CA-IDMS system for each
database.

m [Server server_name]: Defines optional access information for each CA-IDMS
system.

m [Options]: Contains other global options.
m [Proxy]: Contains information used by the CA-IDMS JDBC Server.

The [datasource_name] section identifies CA-IDMS databases, and is specified
in the JDBC URL. One is required for each database to be accessed using CA-
IDMS Server. A datasource_name section may contain the following parameters:

Dictionary=dict_name: Specify the name of the CA-IDMS dictionary
containing the SQL schema definitions for the tables or network records to be
accessed. This name is defined in the CA-IDMS DBNAME table on the target
CA-IDMS system. The default value is the first eight characters of the
datasource_name.

Server=server_name: Specify the CA-IDMS system used to access the data.
This name can be either a NODE Name or a user-defined Server name,
referring to a Server server_name section containing additional connection
information. This parameter is required.

The [Server server_name] section contains information describing a CA-IDMS
System. The Server server_name section may contain the following parameters:

Resource=node_name: (Optional) Identify the value of SYSTEMID as specified
in the system generation parameters of the target system. If a node name is not
specified, CA-IDMS Server uses the first eight characters of server_name to
identify the target system.

AlternateTask=task_code: (Optional) Identify an alternate task defining the
resource limits and timeout values for a session. The default is CASERVER. The
task named must be defined as a task on the CA-IDMS System Generation TASK
Statement. For more information about resource limits for external user sessions,
see the CA-IDMS System Generation and CA-IDMS System Operations Guides.

D-2 CA-IDMS Server User Guide

Configuration File Data

Options

Node=via_node_name: (Optional) Specify an intermediate node to route the
connection to the target system. The system identified by via node must contain
a RESOURCE table entry for the system identified by node name. Use this option
when the system containing the tables to be accessed does not directly
communicate with CAICCIL.

WaitTimeOut=integer_value: Specify the number of seconds CAICCI waits for a
response from the CA-IDMS system. When this interval is exceeded, CA-IDMS
Server considers the connection to have failed. A setting of 0 causes CAICCI to
wait indefinitely.

Version=0/1: Identify the version of the CA-IDMS Server mainframe component
installed on the CA-IDMS system.

m 0 -indicates Version 4.2 or Earlier. This is the default setting
m 1 -indicates Version 4.3 or Later

Passwords can be sent to the CA-IDMS system in encrypted form, which requires
the installation of an updated CA-IDMS Server mainframe component to enable
the CAICCI line driver to recognize the password. Use this option to enable
password encryption when connecting to a secured CA-IDMS system with the
Version 4.3 or later mainframe component installed.

Note: If you specify 4.3 or Later and the new version of the mainframe
component has not been installed, connection attempts to the secured system to
will fail. Consult your Data Base Administrator for more information.

The [Options] section contains global options, including path information,
logging options, and debugging flags. The Options section may contain the
following parameters:

CacheConfig=0/1: Enables or disables caching of the configuration file in
memory. The default value is 1, enabled. The IDMS_CFG_RELOAD environment
value can be used to override this setting when necessary to refresh the cache.

CloseCommit=0 | 1: Causes a COMMIT to be sent following a CLOSE when
autocommit is off. The default value is 1, enabled. This is also considered enabled
when autocommit is on. The COMMIT (or COMMIT CONTINUE) is normally
piggybacked onto the FETCH or CLOSE request when no other cursors are open
and no updates are pending. This can also be specified in a specific Data Source
section.

FetchRows=integer_value: Specify the number of database rows that

CA-IDMS Server fetches at a time. The default is the number of rows that fit in a
30K buffer. This is generally the amount of data that can be transferred in a
single CAICCI request.

Configuration File Information D-3

Configuration File Data

FetchSize=integer_value: Specify the maximum size that the JDBC driver will
attempt to use for a FETCH bulffer. The default is 128,000. Depending on the
platform and implementation of the CAICCI interface, a smaller buffer may be
used. This should normally be left at the default setting. Specifying too large a
value may cause the Java Virtual machine to run out of memory.

FetchSuspend=0/1: Causes a SUSPEND to be piggybacked onto each BULK
FETCH, ending the IDMS-DC task. The default is 1, enabled, if the CA-IDMS
system is Release 14.01 or later. Since this would cause an extra network request
for Release 14.00 and earlier, the default is 0 otherwise. This can also be specified
in a specific Data Source section.

FetchSuspendClose=0/1: Causes a conditional SUSPEND to be piggybacked
onto each FETCH. The default is 0, disabled. The SUSPEND is to be done only if
the cursor reaches the end. This is not currently supported by CA-IDMS. This can
also be specified in a specific Data Source section.

InvalidDecimal=integer._value: Specify how the CA-IDMS JDBC driver handles
invalid packed or zoned decimal data returned in a result set column. Choose
one of the following options:

0 - Return error. This is the default setting
1 - Return NULL
2 - Return 0

LogFile=log _file_path: Specify the log file destination. The default is
/idmsdir/log/caidms.log. When this value ends in a */’ the default name is
appended to the specified path.

LogOptions=integer_value: Specify log options as a bitmask. The bit flags are:

0x0010 - Display 8-byte thread ID in trace (OS/390)
0x0020 - Send messages to the system log (SYSLOG). This is the default
0x0040 - Send messages to the system console (OS/390)

XxxxITrace=integer_value: Specify the flag bits used to control tracing. Computer
Associates Technical Support uses these flags to diagnose CA-IDMS Server
problems. The integer_value is a bit mask used to specify individual trace
options. A setting of 0 turns all options off, and a setting of 65535, or OxFFFF,
turns all options on. Specify this value as a decimal or hexadecimal integer.
Descriptions of the bit flags are as follows:

JdbcTrace (idmsjdbc jar)
Any non-zero value enables tracing
SqlTrace (libcli.so):

0x0002 // Time SQL calls
0x0004 // Snap SQL SQLSID
0x0008 // Snap SQL DSICB
0x0010 // Snap SQL SQLCA
0x0020 // Snap SQL SQLCIB
0x0040 // Snap SQL SQLPIB

D-4 CA-IDMS Server User Guide

Configuration File Data

Proxy

0x0080 // Snap SQL parm buffer
0x0100 // Snap SQL tuple buffer
0x0200 // Snap SQL input SQLDA
0x0400 // Snap SQL output SQLDA
0x0800 // Snap SQL syntax string
0x4000 // Trace server calls

0x8000 // Snap server interface blocks

DtsTrace (libtd0d.so):

0x0002 // Trace external calls
0x0004 // Trace events

0x0008 // Trace events

0x0010 // Snap user data arrays
0x0020 // Trace events

0x0040 // Snap PCE

0x0080 // Snap LCE

DnsTrace (libtd0d.so):

0x0010 // Snap unconverted send data
0x0020 // Snap converted send data
0x0040 // Snap received data

0x0080 // Snap converted received

CmTrace (libtd0d.so):

0x0001 // Trace CAICCI and internal function calls
0x0002 // Elapsed CAICCI call timings

0x0004 // Snap control blocks

0x0008 // Debug #CAICCI calls on OS/390

0x0010 // Trace signon failures

UtilTrace (libutil.so):

0x0001 // Trace external calls
0x0002 // Trace internal calls

The [Proxy] section contains information used to configure the CA-IDMS JDBC
Server. It may contain the following parameters:

Host=host_name: (Optional) Specify the DNS name or IP address the JDBC will
bind to when it listens for client connection requests. This can be used to force
the JDBC Server to listen for connection requests on a specific TCP/IP protocol
stack on a multi-homed host (a machine with multiple TCP/IP stacks). The
default is to listen on all available stacks.

Port=port: Specify the IP port that the JDBC Server listens on for connection
requests. The default is 3709.

Configuration File Information D-5

Configuration File Data

Backlog=integer._value: Specify the maximum length of the listener queue. When
this length is exceeded, new connections are refused. Note that this is not the
maximum number of client connections that can be supported. The default is 50.

RemoteHost=host_name: (Optional) Specify the DNS name or IP address of an
intermediate JDBC Server used to forward packets to the CA-IDMS system. This
value is optional.

RemotePort=port: Specify the IP port address of the remote host. The default
value is 3709.

RemoteControl=0/1: Enables a remote client to control the JDBC Server; to
SUSPEND, RESUME, or STOP it. The default value, 0, allows remote clients only
to check the STATUS of the JDBC Server.

Encoding=character_encoding_name: Specify the character encoding that the
JDBC Server requests the JDBC Driver to use when sending and receiving
character data. If not specified, the default encoding for the JVM is requested.
The character encoding class must be accessible to the JDBC Driver when
invoked by the client application or applet.

Unicode=0/1: Enable the use of Unicode as the character encoding when the
JDBC Diriver is unable to use the requested encoding. The default value, 0,
specifies the use of UTF-8, which is supported by all Java platforms.

TimeOut=integer_value: Specify the number of seconds that the JDBC Server
waits for a response from the CA-IDMS server. The default, 0, causes the JDBC
Server to wait indefinitely.

WaitTimeOut=integer_value: Specify the number of seconds that the JDBC
Server waits for a request from the JDBC client before assuming the connection
has been terminated. The default, 0, causes the JDBC Server to wait indefinitely.

SocketTimeQOut=integer_value: Specify the number of seconds the JDBC Server
waits, or blocks, when reading data from a socket. While a socket is being read,
the thread is blocked, and is not able to recognize an event that stops the thread.
When this interval expires, the thread checks if the JDBC Server is still running,
and, if so, issues another read on the socket, continuing until the wait or reply
timeout has expired. A high value reduces JDBC Server overhead, while a low
value allows the server to respond to shutdown events more quickly. Setting this
to 0 will cause the thread to block forever, and is not recommended. The default
is 60 seconds.

Trace=0/1: Enable tracing of internal function calls. Output is written to the CA-
IDMS log file.

Snap=0/1: Enable display of data buffers, sent and received, in the CA-IDMS log
file.

LogLevel=integer_value: Specify the level of messages sent to the system log or
console. Choose one of the following options:

0 - Disable messages

4 - Error messages

D-6 CA-IDMS Server User Guide

Configuration File Data

6 - Warning messages

8 - Information messages, including start and stop events. This is the default.
10 - Verbose information messages, including client start and stop events

12 - Debugging messages, not including general trace output.

LogTrace=integer_value: Specify the level of log messages sent to the trace file.
Options are identical to the options for LogLevel.

Configuration File Information D-7

Appendix

Passing Accounting Information to
| D3l CA-IDMS

This appendix describes how to use CA-IDMS Server to pass accounting
information from the PC client to the backend CA-IDMS system.

Supplying Accounting Information

You can supply as many as 32 bytes of accounting information using one of the
following methods:

m Enter the value in the Account field of the ODBC DriverConnect dialog.

m Pass the value as a connection attribute with the key ACCT to the ODBC
SQLDriverConnect function.

m Pass the value as a DriverPropertyInfo object with the key acct to the JDBC
DriverManager.getConnection method.

The first character of accounting information must be a space or the information
will be ignored.

For additional information about the ODBC DriverConnect dialog, see the
chapter “Using the ODBC Driver on Windows” in this guide. For more
information about the ODBC SQLDriverConnect connection string, see the
“ODBC Programmer Reference” appendix in this guide. For information about
the JDBC DriverManager getConnection method, see the “]DBC Programmer
Reference” appendix.

Passing Accounting Information to CA-IDMS E-1

Supplying Accounting Information

Using Accounting Information

The supplied accounting information is passed to the backend, and is stored in
an area accessible from the PTE for use by accounting and security exits.

For example, the information could be used by either exit 4 or 5 to change header
information in the statistics block described by #STRDS.

Refer to the guide CA-IDMS System Operations for more information about
programs invoked by user exits.

The following table describes how the accounting data can be found:

Field Name Control Block Comments

TCELTEA TCE Points to the LTE. Determine whether it is a
CAICCI-related LTE (type is LTEBULK).

LTEPTEA LTE Points to the PTE.

PTELACCT PTE Points to a 32-byte accounting information area.

This area will be binary zeros if no accounting
information was passed from the PC or if the
frontend is not a PC.

For more information about field names in various IDMS control blocks, see the
manual CA-IDMS DSECT Reference.

Example The following is sample code for locating accounting information:
USING TCE,R9
L R5,TCELTEA Get the LTE
USING LTE,R5
CLI LTETYP,LTEBULK Is this a BULK type
BNE RETURN No....Return
L R6,LTEPTEA Get the PTE address
USING PTE,R6
L R7,PTELACCT R7 points to 32-byte area

E-2 CA-IDMS Server User Guide

Appendix

F Configuring CAICCI for TCP/IP

The Unicenter TNG Framework for OS/390, CA-CIS, or CA90s version of
CAICCI/PC includes multi-threading support when configured for TCP/IP. This
version can be downloaded from the latest Unicenter TNG Framework for
0S5/390, CA-CIS, or CA90s tape. For your convenience, the CCI subdirectory of
the CA-IDMS Server CD contains a self-extracting file to install CAICCI/PC. The
following brief overview provides information about configuring and using
CAICCI/PC with TCP/IP. For further information, refer to Unicenter TNG
Framework for OS/390 documentation.

Installation Notes

It is not necessary to reinstall CAICCI/PC when upgrading from earlier versions
of CA-IDMS Server. However, after installing the Unicenter TNG Framework for
0S5/390 version of CAICCI/PC, multi-threaded TCP/IP support may not be
enabled. When some versions of CAICCI/PC are installed, the older, single-
threaded, version of the TCP/IP DLL may replace the multi-threaded version. To
correct this, use the CAICCI-PC Properties dialog to modify TCP/IP parameters,
and click the OK or Apply button. This restores the multi-threaded version.

Note that this does not occur when TCP/IP DLL is installed in the same
directory as the CA-IDMS Server DLLs, as part of the CA-IDMS Server
installation.

The CAICCI/PC DLL for TCP/IP can be installed into the Windows\System or
Windows\System32 directory along with the CA-IDMS Server DLLs. This
updates the run time DLL when CAICCI/PC is already installed for TCP/IP and
can be selected using the Custom installation option.

Configuring CAICCI for TCP/IP F-1

Specifying Protocol Parameters for TCP/IP

Specifying Protocol Parameters for TCP/IP

Invoke the CAICCI-PC Properties dialog from the Start Menu to specify and
configure a communications protocol. From the Start Menu, select CACCI NT
Applications, then select CAICCI NT Configuration. To specify protocol
parameters for TCP/IP, select the TCP/IP tab in the CAICCI-PC Properties
dialog;:

i CAICCI-PC Properties |

Test IT[:PJ'IP LUz I Trace

[Settings for connection via Windows Sockets ll_hl

— CCl Server |dentification

Marme ar IP addrezs: ILISILD.-’-‘-.MY

Puort: |1 202
— CCl Clent [dentificatian

Syztem Mame: IHDSD.ﬁ.m

— CCl Timeout [ntervals

Reply &t |300
Ready to Receive:

Feady to Send:

|

ok | Eancell gppl_l,ll Help |

Name or IP Address: Specify the DNS name or IP address of the server acting as
a gateway for CAICCI requests. Typically, you would enter an Internet address
for the CAICCI server. To use a DNS name, you must be running a TCP/IP
transport configured to work with a Domain Name Server, and the name you
enter must be defined to the name server.

Port: Specify the port number for the CAICCI server to use. The default is 1202.
When CAICCI/PC is configured to provide multi-threading support, the
application can override the CAICCI server name and port.

System Name: Enter a different name to identify your PC, or to override the
System Name defined by TCP/IP. By default, CAICCI uses the first eight
characters of the name defined by TCP/IP. When the name is truncated the
resulting ID may duplicate an ID on another machine. To avoid this, or to use a
preferred ID, enter a new name in the System Name field.

F-2 CA-IDMS Server User Guide

Specifying Protocol Parameters for TCP/IP

After identifying the CAICCI Server, the Port number, and the CAICCI Client
system name, the TCP/IP configuration is set. The CAICCI-PC Properties dialog
sets the remaining parameters based on the selected software. Click OK to accept
the default settings and exit this dialog.

The remaining fields in this dialog set timeout options when CAICCI/PC is
installed to provide multi-threaded support.

Reply Wait: Specify the number of seconds for CAICCI to wait for a response
from the other CAICCI application. When this limit is exceeded, the local
application may continue to wait or assume an error and terminate the
connection. Enter one of the following:

m A specific number of seconds
m -1: CAICCI/PC waits indefinitely

m 0: CAICCI/PC polls indefinitely for a response. This option is supported
for compatibility with previous versions of CAICCI/PC. Using a
nonzero timeout value is more efficient and results in lower processor
use by the application.

Ready to Receive: Enter the time interval that CAICCI/PC will wait for the
individual packets:

m Specify -1 for CAICCI to wait indefinitely
m Specify 0 to cause CAICCI to poll indefinitely
A setting of -1 is recommended in most situations.

Ready to Send: Enter the time interval for CAICCI/PC to wait to be able to send
data over a connection. Values are entered as they are for the Ready to Receive
option. The default is 60.

Configuring CAICCI for TCP/IP F-3

Tracing a Communications Problem

Tracing a Communications Problem

CAICCI allows you to optionally generate an internal trace file. This file is used
by product support to trace communication problems. To enable the creation of
this file, select the Trace tab in the CAICCI-PC Properties dialog.

i CAICCI-PC Properties |

Test | 1cPap | w2 | trace
|5&ttings for Diagnozstic Trace il b

—LCCl Trace
I i d

[T Snhap Packets Change... |

In:::"-.temp'xn::c:itran:e.ln:ng

CAICCI-PC Configurator Yersion 1.1.2
Copyright 1335, 1337, 1338 by
Computer Azzociates International, [ne.

One Computer Aszociates Plaza
lzlandia, MY 11738-7000

ok I Eancell gppl_l,ll Helm |

Enabled: Select this option to enable the displayed trace file.

Snap Packets: Select this option to display each buffer as it is sent to, or received
from, the underlying socket layer.

CCITRACE.TRC: The default filename for the trace file. This file is already in
ASCII format and need not be converted.

Change: Click this button to change the name and location of the default trace
file.

Data packets can be traced when CAICCI/TCP is installed to provide multi-
threading support.

Important!: To return to the default trace file, repeat the above steps to return to
the Diagnostic Trace dialog, and click Cancel, instead of selecting a file.

F-4 CA-IDMS Server User Guide

Testing the Configuration

Testing the Configuration

After selecting and configuring a communications protocol, test the
configuration to verify that it has correctly established contact with the host. A
series of error messages are returned if the communication fails.

This option is useful because it differentiates between errors related to the
communications protocol configuration and errors related to the Computer
Associates solution application. This option allows you to locate errors precisely
and quickly, and modify your protocol or options until the communication is
successful.

To test your configuration, select the Test tab from the CAICCI-PC Properties
dialog to display the CAICCI Test log.

Note: You cannot use the Test option if you have not applied your CAICCI
settings. The Test tab displays the message “Pending changes have not been
applied” if your settings are not in effect. To apply your settings, click the Apply
button. If you click OK, you must re-access the CAICCI-PC Properties dialog to
test your settings.

i CAICCI-PC Properties |

.........................

Test || TcPar | Luz | Trace

.........................

The active protocol is TCPSIP ll_h'

Configuration test beginning...
Cilnit was successful
CoiTerm was successhul
Configuration test camplete

Test log:

ok | Eancell gppl_l,ll Help |

Configuring CAICCI for TCP/IP F-5

Exiting the CAICCI-PC Properties Dialog

Click Start to begin the configuration test. Status messages and error messages
appear in the Test log.

Exiting the CAICCI-PC Properties Dialog

After establishing and testing your communications protocol, click OK to close
the CAICCI-PC Properties dialog. The selected protocol and options will remain
in effect until you modify them.

F-6 CA-IDMS Server User Guide

Index

A B

Access Mode option, 5-8, C-11 Bit flags, C-8, D-4

Accessible tables view, 3-6, 5-10, 5-11, C-10, C-11 Bulk Fetch Row Count, 5-9, C-7, C-11, D-3, D-4
Account parameter, 5-10, C-10 Bulk Insert support, A-13

Accounting information
passing to CA-IDMS, E-1

using, E-2 C
Adding data sources, 5-2
Allocating datasets, 8-8 Cache SQL Tables option, 5-9, 5-11, C-11
Alternate task code, defining, 3-4 CAICClI line, defining, 3-3
API conformance levels CAICCI/PC, F-1
Core API, A-2 defining to a CA-IDMS system, 3-3
JDBC Driver, B-2 installing, 2-1
Level 1, A4 mainframe requirements, 2-5
Level 2, A-5 setup for, 5-1
ODBC driver, A-2 CAICCI-PC Properties dialog, F-2
API reference, 5-22 CA-IDMS
ASCII data data type mapping and JDBC, B-4
code pages for, 5-17 datg type mapping and ODBC, A-8
translating, 5-14 to 5-19 defining, 3-2
) DriverConnect dialog, 6-1, 6-2
Attributes isolation and lock levels, A-13
supported keywords and values, A-12 mainframe software requirements, 2-5

CA-IDMS Server
Administrator dialog, 5-6
language options, 5-14 to 5-19
Windows installation prerequisites, 4-1

CA-IDMS Server Architecture, 1-4
CA-IDMS Server for OS/390, 8-1

Index-1

CA-IDMS to JDBC data type mapping, B-4
CA-IDMS to ODBC data type mapping, A-9
CAIENF facility, 2-5

CASERVER task code, 3-4, 4-1

Catalog views, 3-10

CCILINE in system generation, 3-3

CECP translation tables, 5-18
using, 5-15 to 5-19

Character data, translating, 5-14 to 5-19

Client components for UNIX System Services
installing, 8-2

CloseCommit option, C-7, D-3

Code page
for host, 5-17
for PC, 5-17

Commit Behavior options, 5-9, C-11

Communication problems
tracing, F-4

Components of CA-IDMS Server, 1-2

Configuration file
editing, 9-3
environmental variables, D-1

Configuration file data, D-1

Configuration file sections, D-2
datasource_name, D-2
Options, D-3
Proxy, D-5
Server server_name, D-2

Configuring applications to use CA-IDMS Server, 10-
1

Configuring the JDBC Server, 5-28, 9-4

Configuring the web server for applets, 7-2

Configuring the web server to use CA-IDMS Server,

10-2

Conformance levels, A-2, B-1
API, A-2, B-2
Core API, A-2
Core SQL Grammar, A-7
Extended SQL Grammar, A-7
Level 1 API, A4
Level 2 API, A-5
Minimum SQL Grammar, A-5
SQL, A-5

Connecting dynamically to a data source, 6-2
Control-key definition, 3-9
Controlling the JDBC Server, 10-3

Core API conformance level, A-2
supported functions, A-2

Core SQL Grammar conformance level, A-7

Country Extended Code Page
for host languages, 5-17
for PC languages, 5-17
using, 5-15 to 5-19

Creating subdirectories, 8-8
Creating translation tables, 5-16

Custom Conversion DLL, 5-21
API reference, 5-22
developing, 5-22
enabling, 5-21

Customizing the JDBC Server, 9-4

Customizing translation tables, 5-18

D

Data source
defaults, 5-11

Data sources
adding, 4-2
adding, 5-2
connecting to, not previously defined, 6-2
connecting to, predefined, 6-1
defining, 5-2, 9-3
editing, 5-5
maintaining, 5-5
options, 5-11 to 5-12
testing connection for, 5-5
types, 5-2

Data type mapping, A-8 to A-10, B-4
Data types, CA-IDMS, A-9, B-4

Data, converting
floating point numbers, 5-10, C-11
language options, 5-14 to 5-19, C-8

Database access
and page groups, 3-6
setting up, 3-5

DBCS processing, 5-20

Index-2 CA-IDMS Server User Guide

DBCS Types subkey, C-12

Debugging user sessions, 5-29, A-1
error messages, A-1

Default
data source options, 5-11

Defaults subkey, C-10

Defining
CAICCI line, 3-3
CA-IDMS host systems, 3-2
CASERVER task code, 3-4
data sources, using ODBC, 5-2

Double Byte Character Set processing, 5-20
DriverPropertyInfo, B-7

Driver-Specific connect options, A-13
Driver-specific data types, A-11

Dynamic positioned updates, B-8

FetchSize option, C-7, D-4

FetchSuspend and FetchSuspendClose options, C-7,
D-4

File access bits
setting, 8-9

Fixed OCCURS element definitions, 3-8
Floating point number, conversion, 5-10, C-11

Functions
Core API, A-2
Level 1 API, A-4
Level 2 API, A-5

H

EBCDIC data
code pages for, 5-17
translating, 5-14 to 5-19

Editing the configuration file, 9-3
Editing the data source definition, 5-5
Editing the JCL manually, 8-5
Editing translation tables, 5-16, 5-19
Enable Ensure database option, C-11
Enable Ensure option, 5-10, 5-11
Encoding, 9-4, C-13, D-6

Environmental variables, D-1
specifying, 9-2

Extended SQL Grammar conformance level, A-7

EXTERNAL WAIT parameter, on Task statement, 3-4

Handling invalid numeric data, 3-11

HFS
allocating, 8-7
creating the installation directory, 8-7

Host code page, 5-17
Host Component, 3-1

Hyphens
in record and set names, 3-7
in record element names, 3-7

Fetch Real as Double database option, C-11
Fetch Real as Double option, 5-10

IDMS URL format, B-6
IEF. See Integrity Enhancement Facility

INACTIVE INTERVAL parameter, on Task statement,
3-4

Included tables, 5-19

Installation
Compact option, 4-2
Custom option, 4-2
Custom option, 7-1
customizing files, 8-2
customizing JCL, 8-4
loading files, 8-2
Typical option, 4-2
Typical option, 7-1

Installing CA-IDMS Server
CAICCI/PC, 2-1

Index-3

mainframe software prerequisites, 2-5
0S/390 software prerequisites, 2-5
Windows prerequisites, 4-1

Installing\ CA-IDMS Server on other platforms, 11-1
Installing CA-IDMS Server on Windows, 4-2

Installing the client components for UNIX System
Services, 8-2

Installing the JDBC Server, 7-1

Integrity Enhancement Facility (IEF), A-6
INTERNAL parameter, on Task statement, 3-4
Invalid Decimal option, 3-11, 5-4, C-8, D-4
Isolation level, CA-IDMS, A-13

Java Virtual Machine. JVM

JCL
customizing, 8-4
editing, 8-5

JDBC Driver, 1-3
conformance levels, B-1
data type mapping, B-4
overview of, B-1
using on other platforms, 11-1

JDBC Driver conformance levels
API, B-2
SQL, B-3

JDBC Server, 1-3
configuring, 5-28, 9-4
controlling, 10-3
installing, 7-1
monitoring, 10-4
using on Other Platforms, 11-2

JDBC to CA-IDMS data type mapping, B-5
VM, 2-3

K

Level 1 API conformance level, supported functions,
A-4

Level 2 API conformance level, supported functions,
A-5

Line, CAICCI, 3-3

Listener queue
maximum length, C-13, D-6

Lock level, CA-IDMS, A-13

Log file, 5-13, 5-29, C-8, C-13, D-4, D-6
to debug user sessions, 5-29, A-1, C-13, D-6
writing trace information to, 5-13

Logging
options, C-8, D-4

M

Maintaining data sources, 5-5

Messages, in log file, 5-13, 5-29, A-1, C-8, C-13, C-14,
D-4, D-6

MF Version option, 5-7, C-6, D-3

Minimum SQL Grammar conformance level, A-5
Monitoring the JDBC Server, 10-4
Multithreading, 5-4, F-1

N

Keys and subkeys, C-1

Navigational DML database access
setting up, 3-5
using SQL statements, 3-7

Network set information
retrieving, A-14

Non-SQL database record
accessing using SQL, 3-7
element name

length, 3-9
transforming, 3-7
name, transforming, 3-7

Non-SQL database set name, transforming, 3-7

Index-4 CA-IDMS Server User Guide

O

ODBC Administrator dialog
data source
adding, 5-2
maintaining, 5-5
options, 5-11 to 5-12
testing connections, 5-5
Data Source tab, 5-3
Defaults tab, 5-11
International tab, 5-14
JDBC Server tab, 5-28
Log Options tab, 5-13
Options tab, 5-8
Server tab, 5-6

ODBC Diriver, 1-2
conformance levels, A-2
data type mapping, A-8
overview of, A-1

supported API functions, A-2, A-4, A-5

ODBC Driver conformance levels
API, A-2
Core API, A-2
Core SQL Grammar, A-7
Extended SQL Grammar, A-7
Level 1 API, A-4
Level 2 API, A-5
Minimum SQL Grammar, A-5
SQL grammar, A-5

ODBC Driver Manager, 2-2

ODBC to CA-IDMS data type mapping, A-10

OMVS group and user, 8-6
Options subkey, C-6

Options, for data sources
default, 5-11
setting, 5-11 to 5-12

0S/390
datasets, uploading, 8-4
installation, 8-1
Software Prerequisites, 2-5

Other platforms, using, 11-1

Page groups, and database access, 3-6

Performance considerations for ODBC options, 5-11

Personal computer
code pages, 5-17

Positioned updates and deletes, B-8
Prelinking object modules, 8-8
Protocol parameters for TCP/IP, F-2
Proxy subkey, C-12

Read Committed /Uncommitted option, 5-9, C-11

Read Only/Write access mode, 5-8, C-11

Record
accessing using SQL, 3-7
name, transforming, 3-7

Record element
unavailable, 3-8

Record element name
length, 3-9
transforming, 3-7

Registry information, C-1

Remote JDBC Server, 5-29, C-14, D-6

Retrieving network set information, A-14

RHDCNP3S task code, 3-4
Row, bulk fetch, 5-9, C-7, C-11, D-3, D-4

Index-5

Sample Programs
IdmsExample, B-9
Idms]cf, B-8

SERVEMAC edit macro, 8-4

Server
architecture, 1-4
setting up, 5-6

Server Server_name subkey, C-5
Servers subkey, C-4

Set name, transforming, 3-7

Set up a new OMVS group and user, 8-6

Set up for
CAICCI/PC, 5-1
CA-IDMS Server on the mainframe, 3-2
CASERVER task, 4-1
servers, 5-6

Setting default data source options, 5-11
Setting file access bits, 8-9

Setting up
catalog views, 3-10
database access, 3-5
SQL access, 3-5
SQL to non-SQL database access, 3-6

Socket
reading data from, C-13, D-6

Software requirements, mainframe
CA-IDMS, 2-5

SQL conformance levels, A-5

SQL Conformance Levels, B-3
Core SQL Grammar, A-7
Extended SQL Grammar, A-7
Minimum SQL Grammar, A-5

SQL Data Sources dialog, 6-1

SQL database access
sample CA-Visual Realia COBOL program, E-1
setting up, 3-5, 3-6

SQL synonym, for non-SQL records, 3-8
SQLDriverConnect connection string format, A-11

Subkeys
DBCS Types, C-12
Defaults, C-10
Options, C-6
Proxy, C-12
Server Server_name, C-5
Servers, C-4

Supported attribute keywords, A-12
Supported attribute values, A-12
SYSCA.ACCESSIBLE_ SCHEMAS, 3-10

SYSCA.ACCESSIBLE_TABLES, 3-6, 5-10, 5-11, C-10,
C-11

SYSCA.ODBC_INDEX, 3-10

Tables, accessible, 3-6, C-10
Task code, 5-7, 6-3, C-5, D-2
defining, 3-4
for set up, 4-1

Testing
CAICCI settings, F-5
connections to data sources, 5-5

Trace options, 5-13, 5-29, C-8, C-14, D-4, D-7, F-4
Tracing a communications problem, F-4
Transaction isolation levels, A-13

Transaction Isolation option, 5-9, C-11

Translation editor
keystrokes, 5-19

Translation tables, 5-15 to 5-19, C-8
CECP, 5-15 to 5-19, 5-18
creating, 5-16
customizing, 5-18
editing, 5-16
for non-character-based languages, 5-15 to 5-19
included, 5-19
saving, 5-19

Index-6 CA-IDMS Server User Guide

U

Unicode, 94, C-13, D-6

Uninstalling previous versions, 4-1

URL format, B-6

Use Accessible Table View option, 3-6, C-10

Use Accessible Tables View Name option, 5-10, 5-11,
C-11

User session
debugging, 5-29, A-1

Using SMP/E to install executable modules, 8-8

Using the JDBC Driver
on other platforms, 11-1

Using the JDBC Server
on other platforms, 11-2
on Windows 95, 7-2
on Windows 98, 7-2
on Windows Millennium, 7-2
on Windows NT, 7-2

Using the JDBC Server on other platforms, 11-2

\'

Version option, 5-7, C-6, D-3

View, SYSCA.ACCESSIBLE_TABLES, 5-10, 5-11, C-11
View, SYSCA_ACCESSIBLE_TABLES, 3-6, C-10

w

Windows 95
using the JDBC Server on, 7-2

Windows 98
using the JDBC Server on, 7-2

Windows installation, 4-2

Windows Me
using the JDBC Server on, 7-2

Windows NT
Using the JDBC Server on, 7-2

Windows registry, C-1

Index-7

	CA-IDMS Server User Guide
	Contents
	Chapter 1: Introducing CA-IDMS Server

	Chapter 1: Introducing CA-IDMS Server
	Who Should Use this Document
	Components of CA˚IDMS€Server
	The ODBC and JDBC Drivers
	The CA-IDMS ODBC Driver
	The CA-IDMS JDBC Driver
	The CA-IDMS JDBC Server

	CA-IDMS Server Architecture
	
	For More Information

	Chapter 2: Preparing to Install CA-IDMS Server
	Windows Software Prerequisites
	About CAICCI/PC
	About the ODBC Driver Manager
	About the Java Virtual Machine

	Delivery of Components
	Mainframe Software Prerequisites
	OS/390 Software Prerequisites

	Chapter 3: Setting Up Your CA-IDMS System
	Installing the Host Component
	Setting Up CA IDMS Server
	Defining the CA IDMS System
	Defining a CAICCI Line
	Creating the CASERVER Task

	Setting Up Database Access
	Setting Up SQL Access
	Utilizing Page Groups
	Setting Up SQL Access to Non˚SQL Databases
	Accessing Non˚SQL Records Using SQL Statements
	Transforming Non˚SQL Record and Set Names
	Transforming Non˚SQL Element Names
	Creating SQL Synonyms
	Elements That Cannot Be Transformed
	Fixed OCCURS Element Definitions
	Defining Keys

	Setting up Catalog Views
	SYSCA.ODBC_INDEX
	SYSCA.ACCESSIBLE_ SCHEMAS

	Handling Invalid Numeric Data
	Pseudo Conversational Processing
	Tuning Pseudo Conversational Processing

	Using International Character Sets with JDBC

	Chapter 4: Installing the Client on Windows
	Preparing to Install CA˚IDMS€Server
	Uninstalling Previous Versions

	Installing CA˚IDMS€Server on Windows

	Chapter 5: Configuring the Client on Windows
	Configuring CAICCI/PC
	Defining Data Sources
	Data Source Types
	Adding a New Data Source
	Saving the Data Source Definition
	Testing the Data Source Definition
	Editing the Data Source Definition

	Setting Up a€Server
	Setting ODBC Options
	Performance Considerations for ODBC Options

	Specifying CA˚IDMS Administrator Defaults
	Logging Errors and Trace Information
	Setting Language Options
	Using the International Tab
	Selecting, Creating, and Editing CECP Translation Tables
	Creating or Editing a Translation Table
	Customizing a Translation Table
	Saving a Translation Table
	Included Tables
	Enabling DBCS Processing

	Using a Custom Conversion DLL
	Enabling a Custom Conversion DLL
	Developing a Custom Conversion DLL
	API Reference
	How CA-IDMS Server Uses the API

	Configuring the JDBC Server

	Chapter 6: Using the ODBC Driver on Windows
	Connecting to a Predefined Data Source
	Connecting Dynamically to a Data Source Not Previously Defined

	Chapter 7: Using the CA-IDMS JDBC Server on Windows
	Installing the JDBC Server
	Configuring the Web Server for Applets
	Using the JDBC Server on Windows NT
	Using the JDBC Server on Windows 98

	Chapter 8: Installing the Client on OS/390
	Installing the Client Components for UNIX System Services
	Step 1: Load the Installation Files
	Step 2: Customize the Installation Files
	Step 3: Upload OS/390 Datasets
	Step 4: Customize the Installation JCL
	Using the SERVEMAC Edit Macro
	Editing the JCL Manually

	Step 5: Set Up a New OMVS Group and User
	Step 6: Allocate the HFS
	Step 7: Create the Installation Directory in the HFS
	Step 8: Create Subdirectories, Allocate Datasets, and Prelink Object Modules
	Step 9: Install the Executable Modules Using SMP/E
	Step 10: Set File Access Bits
	Step 11: Delete Unnecessary Files

	Chapter 9: Configuring the Client on OS/390
	Configuring CA-IDMS
	Specifying Environment Variables
	Editing the Configuration File
	Data Source Definitions
	Configuring the JDBC Server
	Other Configuration File Information

	Chapter 10: Using the Client on OS/390
	Configuring Applications to Use CA˚IDMS€Server
	Configuring the Web Server to Use CA˚IDMS€Server
	Controlling the JDBC Server

	Monitoring the JDBC Server

	Chapter 11: Using the Client on Other Platforms
	“Installing” CA-IDMS Server on Other Platforms
	Using the JDBC Driver on Other Platforms
	Using the JDBC Server on Other Platforms

	Appendix A: ODBC Programmer Reference
	Debugging User Sessions
	Error Messages

	ODBC Conformance Levels
	API Conformance Levels
	Core API
	Level 1 API
	Level 2 API

	SQL Conformance Levels
	Minimum SQL Grammar
	Integrity Enhancement Facility (IEF)
	Core SQL Grammar
	Extended SQL Grammar

	Database Type Mapping Between OBDC and CA˚IDMS
	CA˚IDMS to ODBC Data Type Mapping
	ODBC to CA˚IDMS Data Type Mapping
	Driver-Specific Data Types

	SQLDriverConnect Connection String Format
	Supported Attribute Keywords and Attribute Values

	Driver-Specific Connect Options
	Supported Isolation and Lock Levels
	Bulk Insert Support
	Retrieving Network Set Information

	Appendix B: JDBC Programmer Reference
	JDBC Conformance
	API Conformance
	SQL Conformance

	Database Type Mapping Between JDBC and CA˚IDMS
	CA-IDMS to JDBC Data Type Mapping
	JDBC to CA˚IDMS Data Type Mapping

	Connection Parameters
	IDMS URL Format
	DriverPropertyInfo
	Dynamic Positioned Updates

	Sample Programs
	IdmsJcf
	IdmsExample

	Appendix C: Windows Registry Information
	Registry Information
	HKEY_LOCAL_MACHINE\Software\ODBC\ODBCINST.INI
	HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI
	HKEY_CURRENT_USER\Software\ODBC\ODBC.INI
	HKEY_LOCAL_MACHINE\Software\ComputerAssociates\CA˚IDMS
	Servers
	Server Server_name
	Values
	Options
	Values
	Defaults
	Values
	DBCS Types
	Proxy

	Values

	Appendix D: Configuration File Information
	Configuration File Data
	Environment Variables
	Sections
	Datasource
	Server
	Options
	Proxy

	Appendix E: Passing Accounting Information to CA-IDMS
	Supplying Accounting Information
	Using Accounting Information

	Appendix F: Configuring CAICCI for TCP/IP
	Installation Notes
	Specifying Protocol Parameters for TCP/IP
	Tracing a Communications Problem
	Testing the Configuration
	Exiting the CAICCI-PC Properties Dialog

	Index

