

Unicenter


 SOLVE:CPT


C Programmers Guide
6.1

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is for
the end user’s informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part, without
the prior written consent of CA. This documentation is proprietary information of CA and protected by the copyright
laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy. Only
authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of the
license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and
effect. Should the license terminate for any reason, it shall be the user’s responsibility to return to CA the reproduced
copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct or
indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user’s
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or
DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

 2003 Computer Associates International, Inc.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

 Contents

Chapter 1: Unicenter SOLVE:CPT Tools
The Unicenter SOLVE:CPT Administrative Interface ... 1–2

Unicenter SOLVE:CPT API Services .. 1–2
The Unicenter SOLVE:CPT FTP Client Callable Service ... 1–2

Automated Transactions ... 1–3
The LISTEN Tool .. 1–4

Diagnostics ... 1–5
MRO Feature.. 1–5

The RECEIVE Tool ... 1–5
Customization.. 1–6
Reliability Factors.. 1–6

Data Processing Errors .. 1–7
Diagnostics.. 1–7

The SEND Tool ... 1–8
Customization.. 1–8
Reliability Factors.. 1–9

Data Processing Error.. 1–10
Diagnostics.. 1–10

The SELECT Tool ... 1–11

Contents iii

Chapter 2: Unicenter SOLVE:CPT API Services
The Unicenter SOLVE:CPT Interface .. 2–2

Unicenter SOLVE:CPT Task-Related User Exit Interface (TRUE).. 2–3
Application Programming Concepts ... 2–3

Client Condensed Pseudo Code .. 2–4
Server Condensed PseudoCode... 2–4

TCP Connection Management ... 2–5
LISTEN ... 2–6
CONNECT... 2–6

TCP Data Transfer.. 2–7
SEND .. 2–8
RECEIVE .. 2–8

UDP Data Transfer and Endpoint Creation ... 2–9
SENDTO... 2–10
RCVFROM ... 2–10

Connection and Endpoint Release... 2–11
Data Translation... 2–12
Facility Management ... 2–13

GIVE.. 2–14
TAKE .. 2–15

Unicenter SOLVE:CPT FTP Client Service ... 2–16
Security Program.. 2–19

Security Program .. 2–20
The Security Communications Block ... 2–21
Security Communications Block... 2–22

Sample Unicenter SOLVE:CPT API Pseudo Code .. 2–23
Client Application Example .. 2–23
Server Application Example 1... 2–25
Server Application Example 2... 2–27
Server Application Example 3... 2–29
Server Application Example 4... 2–31

Unicenter SOLVE:CPT API Sample Programs... 2–32
Client 1 Sample Program ... 2–34
TCP Client 2 Sample Program... 2–35
TCP Server 1 Sample Program.. 2–35
TCP Server 2 Sample Program.. 2–36
Server 3 Sample Program... 2–36
Server 4 Sample Program... 2–36
Server 5 Sample Program... 2–37

iv C Programmer Guide

UDP Client Sample Program... 2–37
UDP Server Sample Program .. 2–37

Using CA-InterTest with Unicenter SOLVE:CPT Applications... 2–38
Compiling and Linking a CPT API Application.. 2–39

Chapter 3: CLOSE Service
Call Syntax... 3–2
Recommended ACL Parameters .. 3–2
Usage Examples.. 3–2

Graceful Close.. 3–3
Abortive Close ... 3–4

Parameter Values Returned in the ACL.. 3–5
C structures ... 3–5
Sample Programs ... 3–6
Completion Information.. 3–6
Return Codes .. 3–7
Usage Notes .. 3–8
Complete Parameter List... 3–10

Chapter 4: CONNECT Service
Call Syntax... 4–2
Recommended ACM Parameters... 4–2
Usage Example ... 4–2
Parameter Values Returned in the ACM .. 4–4
C Structures... 4–4
Sample Programs ... 4–5
Completion Information.. 4–5
Return Codes .. 4–6
Usage Notes .. 4–8
Complete Parameter List... 4–10

Contents v

Chapter 5: FTP Client Service
Call Syntax .. 5–2
Recommended AFT Parameters .. 5–2
 Usage Example .. 5–3

Parameter Values Returned in the AFT... 5–5
C Structures... 5–6
Sample Programs ... 5–6
Completion Information ... 5–7
Return Codes .. 5–7
Module Descriptions ... 5–10

T09TCFCM... 5–10
T09TCFDM... 5–10
T09TCFRM... 5–10

Usage Notes .. 5–11
Complete Parameter List... 5–12

Chapter 6: GIVE Service
Call Syntax .. 6–2
Recommended AFM Parameters ... 6–2
Usage Example ... 6–2
Parameter Values Returned in the AFM... 6–3
C structures ... 6–3
Sample Programs ... 6–3
Completion Information ... 6–4
Return Codes .. 6–4
Usage Notes .. 6–5
Complete Parameter List... 6–6

vi C Programmer Guide

Chapter 7: LISTEN Service
Call Syntax... 7–2
Recommended ACM Parameters... 7–2
Usage Examples.. 7–3

Recommended Server... 7–3
Standard Multithreaded Server... 7–4
Multithreaded Server—Special Start Transaction Needs .. 7–5
Single-Threaded Server .. 7–6
Sample Daughter Task Taking Ownership of a Session.. 7–7

Parameter Values Returned in the ACM .. 7–8
C Structures... 7–8
Sample Programs ... 7–9
Completion Information.. 7–10

Completion Information when the acm_trnid Field Is Set in the cpt_acm ... 7–10
Completion Information when the acm_trnid Field Is Unspecified in the cpt_acm............................ 7–11

Return Codes .. 7–12
Usage Notes .. 7–14
Network Considerations ... 7–16
Complete Parameter List... 7–17
Client-Data Listener Option.. 7–23

Client-Data Option Data Structure ... 7–25
Examples .. 7–25
Invoking the Listener with Translation from a C CPT... 7–26
Example of a C Program, Client-Data Listener... 7–27

Chapter 8: RCVFROM Service
Call Syntax... 8–3
Recommended ADT Parameters.. 8–3
Usage Example ... 8–4
Parameter Values Returned in the ADT.. 8–5
C Structures... 8–5
Sample Programs ... 8–6
Network Considerations ... 8–6
Return Codes .. 8–7
Complete Parameter List... 8–9

Contents vii

Chapter 9: RECEIVE Service
Call Syntax .. 9–2
Receive Methodology Options ... 9–2

Terminology and Receive Concepts Used in the Definitions ... 9–3
BLOCKING... 9–3
NON-BLOCKING.. 9–3
SELECT Tool... 9–3
LL RECEIVE Option.. 9–4
Separator Character RECEIVE Option.. 9–5
Timed RECEIVE... 9–6

Introduction to Receive Methodology Options .. 9–6
Non-Blocking Fixed Length RECEIVE... 9–8

Recommended ADT Parameters ... 9–8
Sample Program Usage... 9–9

Non-Blocking Variable Length RECEIVE.. 9–11
 Recommended ADT Parameters ... 9–11

Sample Program Usage... 9–12
Non-Blocking LL RECEIVE... 9–14

Recommended ADT Parameters ... 9–14
Sample Program Usage... 9–15

Non-Blocking Separator Character RECEIVE... 9–17
Recommended ADT Parameters ... 9–17
Sample Program Usage... 9–18

Blocking Fixed Length RECEIVE.. 9–20
Recommended ADT Parameters ... 9–20
Sample Program Usage... 9–20

Blocking LL RECEIVE .. 9–22
Recommended ADT Parameters ... 9–22
Sample Program Usage... 9–22

Blocking Separator Character RECEIVE.. 9–24
Recommended ADT Parameters ... 9–24
Sample Program Usage... 9–25

Non-Blocking RECEIVE... 9–26
Recommended ADT Parameters ... 9–26
Sample Program Usage... 9–27

Blocking RECEIVE.. 9–28
Recommended ADT Parameters ... 9–28
Sample Program Usage... 9–29

viii C Programmer Guide

Parameter Values Returned in the ADT.. 9–30
C Structures... 9–30
Sample Programs ... 9–31
Completion Information.. 9–31
Return Codes .. 9–32
Usage Notes .. 9–34
Complete Parameter List... 9–36

Chapter 10: SEND Service
Call Syntax... 10–2
Recommended ADT Parameters.. 10–2

LL SEND... 10–3
Separator Character SEND .. 10–3

Usage Examples.. 10–5
Data SEND Example... 10–5
LL SEND Example .. 10–6
Separator Character SEND Example .. 10–7

Parameter Values Returned in the ADT.. 10–8
C Structures... 10–8
Sample Programs ... 10–9
Completion Information.. 10–9
Return Codes .. 10–11
Usage Notes .. 10–12
Complete Parameter List... 10–14

Chapter 11: SENDTO Service
Call Syntax... 11–3
Recommended ADT Parameters.. 11–3
Usage Example ... 11–4
Parameter Values Returned in the ADT.. 11–5
C Structures... 11–5
Sample Programs ... 11–6
Network Considerations ... 11–6
Return Codes .. 11–7
Complete Parameter List... 11–9

Contents ix

Chapter 12: TAKE Service
Call Syntax .. 12–2
Recommended AFM Parameters ... 12–2
Usage Example ... 12–2
Parameter Values Returned in the AFM... 12–3
C Structures... 12–3
Sample Programs ... 12–4
Completion Information ... 12–4
Return Codes .. 12–5
Usage Notes .. 12–6
Complete Parameter List... 12–7

Chapter 13: TRANSLATE Service
Call Syntax .. 13–2
Recommended AXL Parameters .. 13–2
Usage Example ... 13–2

Inbound Translation Example... 13–3
Outbound Translation Example ... 13–4

Custom Translation Table Usage Notes.. 13–5
Parameter Values Returned in the AXL.. 13–6
C Structures... 13–6
Sample Programs ... 13–7
Completion Information ... 13–7
Return Codes .. 13–7
Usage Notes .. 13–9
Complete Parameter List... 13–10

Appendix A: Return Codes
Return Codes ... A–1
Diagnostic Code Field .. A–4
C Structure T09KSRCS ... A–4

x C Programmer Guide

Appendix B: Control Block Layouts
ACL: Argument for CLose Used by the CLOSE API Service...B–2

Offset Table ..B–2
Alphabetized Field Name Cross-Reference Table ..B–3
Sample Structure Member T09KSACL...B–4

ACM: Argument for Connection Management Used by the CONNECT and LISTEN API ServicesB–5
Offsets ...B–5
Alphabetized Field Name Cross-Reference Table ..B–7
Sample Structure Member T09KSACM ...B–9

ADT: Argument for Data Transfer Used by RECEIVE, SEND, RECVFROM, and SENDTO ServicesB–10
AFM: Argument for Facility Management Used by the GIVE and TAKE Services....................................B–12

Offsets ...B–12
Alphabetized Cross-Reference Table..B–13
Sample Structure Member T09KSAFM..B–14

AFT: Argument for File Transfer Used by the FTP Client Service Call ..B–15
Offsets ...B–15
Alphabetized Cross-Reference Table..B–15
Sample Structure Member T09KSAFT ...B–16

AXL: Argument for Data Translation Used by the Translate API Service ...B–18
Offsets ...B–18
Alphabetized Cross-Reference Table..B–20
Sample Structure Member T09KSAXL...B–21

Client Data Listener Transaction Start...B–22
Offsets ...B–22
Alphabetized Cross-Reference Table..B–22
Sample Structure Member T09KSCSKL...B–23

Connection Time Security Program Control Block ...B–23
Offsets ...B–24
Alphabetized Cross-Reference Table..B–25
Sample Structure Member T09KSSEC..B–25

Parameter List Passed to T09MTRAN Initiated Transactions..B–26
T09DLST DSECT Sample ...B–26
Field Descriptions ...B–27

LCA0000 and CFG0000 Control Blocks...B–27
LCA0000 Control Block Listing...B–28
CFG0000 Control Block Listing ...B–28

Contents xi

xii C Programmer Guide

Appendix C: T09MTRAN Programming Notes
Parameter List Passed to T09MTRAN Initiated Transactions .. C–2

Basic Layout Usage Examples.. C–3
EZACONFG Layout Usage Example.. C–4

LCA0000 and CFG0000 Control Block Programming Notes .. C–5

Appendix D: Linking EZASOKET and EZACICAL Applications
Linking EZASOKET Applications .. D–1
Linking EZACICAL Applications .. D–2
IBM C LE Socket Call Support .. D–2

Reentrant IBM C LE CICS Applications ... D–3
Nonreentrant IBM C LE CICS Applications... D–6

SAS/C Socket Call Support ... D–9

 Index

Chapter

1 Unicenter SOLVE:CPT Tools

The Unicenter TCPaccess Programming Toolkit for CICS (Unicenter®
SOLVE:CPT™) is a packaged set of tools to help developers of CICS programs
easily use open networking topologies to access data within a wide area network.

The following topics are discussed in this chapter and provide information about
the Unicenter SOLVE:CPT Tools:

■ Automated Transactions—Describes how to send and receive data over
TCP/IP using transient data queues

■ The LISTEN Tool—Describes the listening and data processing tasks of the
LISTEN tool

■ The RECEIVE Tool—Describes how the RECEIVE tool works, including
reliability factors

■ The SELECT Tool—Describes the SELECT tool which provides pseudo-
conversational receive functions

■ The SEND Tool—Describes the automated SEND tool and what it does.

CPT is comprised of three functional groups:

■ CPT Tools

■ CPT API services

■ CPT Administrative Interface

Unicenter SOLVE:CPT Tools 1–1

The Unicenter SOLVE:CPT Administrative Interface

The Unicenter SOLVE:CPT Administrative Interface
The Unicenter SOLVE:CPT administrative interface is a set of CICS transactions
that enable you to view everything that is currently occurring within CPT. CPT
can facilitate online debugging and analysis of problems with CPT programs.
The interface can be used to see current activity, including logging this
information statistically for future capacity planning. CPT itself and CPT tools
can be dynamically changed and added through these panels. Tracing can be
turned on or off, changed, and viewed online using the administrative interface.
For full documentation of the CPT interface, see the Administrator Guide.

Unicenter SOLVE:CPT API Services

The Unicenter SOLVE:CPT callable API services provide for full duplex (bi-
directional) data transfer across a TCP/IP or OSI networks. This set of services
implements Berkeley System Development (BSD) compatible sockets. The
Unicenter SOLVE:CPT API callable services are a higher-level (smaller) set of
verbs enabling TCP and OSI connection functionality. The API provides a higher
degree of flexibility when writing an application than using Unicenter
SOLVE:CPT tools. The Unicenter SOLVE:CPT API provides full socket
capabilities with an easy interface while enabling the same volume and
performance abilities normally obtained using the base stack assembler API. For
introductory documentation to Unicenter SOLVE:CPT API Services see the
chapter “Unicenter SOLVE:CPT API Services.”

The Unicenter SOLVE:CPT FTP Client Callable Service

The Unicenter SOLVE:CPT FTP client callable service provides the ability to send
or receive a file to CICS. The FTP service allows a subset of data to be easily read
or written to either CICS transient data queue or CICS temporary storage. FTP
provides a quick communication between two remote hosts easily accessible to
CICS. This is fully compatible with all standard FTP client commands. This
service is documented with the Unicenter SOLVE:CPT API services in the
chapter “Unicenter SOLVE:CPT API Services.”

1–2 C Programmer Guide

Automated Transactions

Automated Transactions
The automated tools in the Unicenter SOLVE:CPT are pre-written CICS code that
CICS programmers can use to send and receive data over TCP/IP using transient
data queues.

This feature provides immediate network capabilities with very little
development effort. Application programs simply read and write to transient
data queues.

Unicenter SOLVE:CPT automated transactions provide a variety of processing
options including translation, file or record processing, dynamic queue name
resolution, dynamic host and port resolution, buffering requirements, and
statistics. These automated transactions can be used in combination with user-
written applications or can be used as development tools.

These tools include:

■ LISTEN

■ RECEIVE

■ SEND

The data flow of the automated data transfer transactions is simplex, or in a
single direction. This means that the automated data transfer transactions only
receive or send data. However, the automated transactions can be used in
combination to achieve full-duplex data transfer, or conversational mode, to
achieve a wide range of application uses.

Tools Customization

The tools are customized by Unicenter SOLVE:CPT configuration definition
statements. There is a specific macro instruction in the CPT configuration for
each tool. The configuration macro instructions specify options that control tool
transaction processing.

The tools are controlled by CICS table entries and CPT configuration macro
statements, which are described in the Administrator Guide.

Unicenter SOLVE:CPT Tools 1–3

The LISTEN Tool

The LISTEN Tool
The LISTEN tool is selected by defining the T09MLSTN macro statement. This
configuration macro statement defines an automated listening transaction. The
T09MLSTN macro statement contains operands that define well-known port,
buffering requirements, statistics, and tracing.

Each TCP server port can be defined, along with its associated data processing
transaction ID. The transaction ID can be the RECEIVE tool or a user-written
program.

A LISTEN tool can also be defined to let the client determine the transaction ID
to start or the transient data queue to write client specified data into.

The LISTEN tool is initiated during CPT startup processing and is defined by an
entry in the Unicenter SOLVE:CPT configuration file.

The automated LISTEN tool requires a transaction ID in order for the T09TLSTN
program to be specified in the T09MCICS macro instruction. The default listener
transaction ID is IPTL. The T09TSTRT program initiates the automated LISTEN
tool during CPT initialization. A CICS START command is issued for each
T09MLSTN macro instruction configured.

The automated LISTEN transaction provides a mechanism to handle connection
establishment and data processing application initialization. The data processing
application can be either the Unicenter CPT automated RECEIVE tool or a user-
written routine, providing quick development of server applications.

 CLIENT SERVER

(to well-known port) (to predefined trans ID)

Connect LISTEN tool

User’s TRANS ID

TCP/IP

Note: The LISTEN tool is documented in the Administrator Guide.

1–4 C Programmer Guide

The RECEIVE Tool

Diagnostics

In order to assist in application development, maintenance, support, and
performance tuning, a number of diagnostic tools are provided with LISTEN.
When options in the T09MLSTN macro are defined, tracing and statistics can be
enabled. Traces are provided for internal flow of control, Unicenter SOLVE:CPT
API request arguments, and network data; statistics report the activity on
established connections.

MRO Feature

With the MRO feature, the LISTEN tool can be externalized from CICS in order
to load balance across several CICS regions, thereby providing CICS storage
constraint relief plus all the other benefits provided with running MRO
transactions. However, once an endpoint is established in one CICS, it cannot be
passed to another CICS.

The RECEIVE Tool
The RECEIVE tool consists of:

■ An automated LISTEN transaction

■ An automated RECEIVE transaction

■ A user-written application

The automated LISTEN transaction can spawn an automated RECEIVE
transaction after a client connection is established.

The automated RECEIVE transaction:

 ■ Reads data from the network

■ Processes the data

■ Writes records to a defined transient data queue

The user-written application is triggered when data is written to the transient
data queue according to limits set in the CICS Automatic Transaction
Initialization (ATI) facility. These limits are defined in the Destination Control
Table (DCT) for the queue.

A single LISTEN transaction can spawn multiple, simultaneous RECEIVE data
transactions, thereby servicing multiple clients simultaneously. Hence, the
automated RECEIVE tool is a multithreaded server application.

Unicenter SOLVE:CPT Tools 1–5

The RECEIVE Tool

CICS provides initialization of the user application when data is written to the
transient data queue. A user application simply reads records from the transient
data queue. This provides a transparent network interface for CICS application
developers to receive client application information.

Customization

Customization of the automated RECEIVE tool consists of both CICS resource
definitions and Unicenter SOLVE:CPT configuration statements. CICS resource
definitions are required for the Processing Program Table (PPT), Program
Control Table (PCT), and Destination Control Table (DCT). Unicenter
SOLVE:CPT macro definition statements are required for the automated LISTEN
(T09MLSTN) and RECEIVE (T09MRECV) transactions.

The T09MLSTN macro instructions can specify server information, an automated
RECEIVE transaction ID, and a reference to the T09MRECV configuration entry.
The default automated RECEIVE transaction ID is IPTR. The T09MRECV macro
contains operands specific to the data processing options. The data processing
options specify translations, record or file control, transient data queues,
statistics, and tracing. The transient data queue name can be identified directly,
or dynamically resolved from the first four bytes received from the connection.

Note: The RECEIVE tool is documented in the Administrator Guide.

Reliability Factors

The RECEIVE tool provides a mechanism to handle data processing over the
open network interface. Stream data received is collected into logical records and
written to a transient data queue that can trigger a user-written application.
The idiosyncrasies associated with open network data processing are performed
by the automated transaction. Additionally, the transient data queue
SYNCPOINT and ROLLBACK features are used by the automated RECEIVE
transaction to provide reliable data transfer support at the application layer.

The RECEIVE tool is configured with options that control when and how data is
written to a transient data queue. These options describe parsing requirements:

■ FILE specifies that data is received as a stream and is written to the transient
data queue as a single record without parsing

■ ALL, LL (Logical Length), and SEP (Separator Errors) specify parsing, and
one or more records can be written to the transient data queue

The RECEIVE tool does not explicitly issue SYNCPOINT commands, but rather a
SYNCPOINT command is issued by CICS during task termination. However, the
CICS ROLLBACK facility is used within the RECEIVE tool when an error in
processing is detected.

1–6 C Programmer Guide

The RECEIVE Tool

These general categories classify errors:

■ Transport provider errors

■ Data processing errors

■ Transport Provider Errors

Transport provider errors are determined by a non-zero return code received
from a Unicenter SOLVE:CPT API service request. Typical transport provider
errors are disconnect indications from a remote host and transport provider
termination. Transport provider errors are recorded in the Unicenter SOLVE:CPT
error log and are referred to as the diagnostic code. Transport provider errors
cause an abortive termination of the connection and cause a CICS SYNCPOINT
ROLLBACK command to be issued. The only valid return code that is not
considered an error is a release indication, which is interpreted as an end-of-file
notification.

Data Processing Errors

A data processing error is determined by a logic error. Typical logic errors are:

■ Transient data buffer overflow

■ Translation, logical length (LL)

■ Separator (SEP) errors

Data processing errors are recorded in the Unicenter SOLVE:CPT error log. Data
processing errors cause an abortive termination of the connection and cause a
CICS SYNCPOINT ROLLBACK command to be issued.

Diagnostics

A number of diagnostic tools are provided with RECEIVE to assist in application
development, maintenance, support, and performance tuning. When options in
the T09MRECV macro are defined, tracing and statistics can be enabled. Traces
are provided for internal flow of control, Unicenter SOLVE:CPT API request
arguments, and network data; statistics report bytes processed, log maximum
values, and requests from Unicenter SOLVE:CPT API services.

Unicenter SOLVE:CPT Tools 1–7

The SEND Tool

The SEND Tool
The SEND tool consists of two programs

■ The automated SEND transaction that is triggered by the CICS ATI facility.

■ A user-written application that is responsible for placing data into a transient
data queue. When data is written to a transient data queue, these limits are
defined in the DCT for the queue.

The SEND tool is responsible for establishing a connection and processing data.
There is no restriction on the number of simultaneously executing client
transactions, although you can have only one T09MSEND macro defined for a
specific transient data queue, port, and ipname.

A user application is required to write data or records to the transient data
queue. The initialization of the automated SEND transaction and the transfer of
data is handled transparently. This provides a transparent network interface for
CICS application developers to send information to server applications.

Optionally, the SEND tool can be initiated through its transaction ID.
The command syntax would contain the transaction ID and a transient data
queue name. The SEND tool then process the transient data queue as if initiated
by the ATI facility. This provides a restart mechanism for client applications.

Customization

Customization of the automated SEND tool consists of CICS resource definitions
and a Unicenter SOLVE:CPT configuration statement. CICS resource definitions
are required for the user-written application Processing Program Table (PPT)
and the Destination Control Table (DCT). The DCT entry for the transient data
queue should specify the T09TSEND transaction ID. The default transaction ID
for the T09TSEND program is IPTS. A Unicenter SOLVE:CPT macro definition
statement for the automated SEND (T09MSEND) transaction is required.

T09MSEND contains operands specific to the API transport provider and data
processing options. These specify fixed or dynamic host name and port
resolution, buffering requirements, statistics, and tracing. The data processing
options specify translation, record or file control, transient data queue name,
statistics, and tracing. The configuration options allow a user to select a fixed
server address, or dynamically resolve the server address from the first transient
data queue record. T09MSEND contains only one transient data queue name,
port, and ipname. As such, multiple T09MSEND macros must be defined in
order to address different queues, ports, or ipnames.

Note: The SEND tool is documented in the Administrator Guide.

1–8 C Programmer Guide

The SEND Tool

Reliability Factors

The SEND tool provides a mechanism to handle data processing over the open
network interface. Data is read from a transient data queue and sent over the
connection to a server. The idiosyncrasies associated with open network data
processing is handled by the automated SEND transaction. Additionally, the
automated SEND transaction uses CICS’ transient data queue SYNCPOINT and
ROLLBACK features to provide reliable transfer support.

Unicenter SOLVE:CPT automated SEND transactions are configured with
options that control how data is sent to the transport provider. These options
describe control information required in the data transmission:

■ FILE specifies that a connection is established and released for every record
read from the transient data queue.

■ ALL, LL, and SEP options specify that multiple records can be read from the
transient data queue and sent over the connection. The LL and SEP options
require control information to be incorporated into the output data.

The SEND tool explicitly issues SYNCPOINT commands after a connection is
successfully established and released during FILE option processing. The
SYNCPOINT command is not issued while processing ALL, LL, or SEP options,
but rather a SYNCPOINT command is issued by CICS during task termination.
However, the SEND tool uses the CICS ROLLBACK facility when an error
during processing is detected.

These general categories classify errors:

■ Transport provider errors

■ Data processing errors

■ Transport Provider Error

A transport provider error is determined by a non-zero return code received
from a Unicenter SOLVE:CPT API service request. Typical transport provider
errors are disconnect indications from the remote host and transport provider
termination. Transport provider errors are recorded in the Unicenter SOLVE:CPT
error log and are referred to as the diagnostic code. Transport provider errors
cause an abortive termination of the connection and a CICS SYNCPOINT
ROLLBACK command to be issued. The only valid return code not considered
an error is a release indication, which is interpreted as an end-of-file notification.

Unicenter SOLVE:CPT Tools 1–9

The SEND Tool

Data Processing Error

A data processing error is determined by a logic error. Typical logic errors are
transient data buffer overflow, translation, logical length (LL) and separator
(SEP) errors. Data processing errors are recorded in the Unicenter SOLVE:CPT
error log. Data processing errors cause an abortive termination of the connection
and a CICS SYNCPOINT ROLLBACK command is issued.

Diagnostics

In order to assist in application development, maintenance, support, and
performance tuning, a number of diagnostic tools are provided with SEND.
When options in the T09MSEND macro are defined, tracing and statistics can be
enabled. Traces are provided for internal flow of control, Unicenter SOLVE:CPT
API request arguments, and network data; statistics report bytes processed, log
maximum values, and requests from Unicenter SOLVE:CPTAPI services.

See the Administrator Guide for information on setting up your network
information and enabling these automated tools.

1–10 C Programmer Guide

The SELECT Tool

Unicenter SOLVE:CPT Tools 1–11

The SELECT Tool
The SELECT tool consists of two programs:

■ The automated SELECT transaction

■ A user-written application using the RECEIVE API with the ADTNWAIT
option and the GIVE API with the AFMOPSEL option.

 The SELECT tool enables the user-written application to be pseudo-
conversational. Once the RECEIVE and GIVE calls are performed, the user-
written application can perform an EXEC CICS RETURN. Once the data is
received, the SELECT tool restarts the transaction to process the data.

In order for the RECEIVE transaction to take advantage of the SELECT tool, it
must be coded in a particular way. See the sample program T09PASV5 in
T09SAMP for an example of these steps:

1. The ADTNWAIT option flag is specified for ADTOPCD2 in the ADT for
RECEIVE. This option tells the RECEIVE service to not issue a wait in the
service but instead return to the caller with a CEPWBLCK return code.

2. If the CEPWBLCK return code is returned from RECEIVE, the transaction
then calls the GIVE service using the flag AFMOPSEL in the AFMOPDC1
options field. This tells the GIVE service to have the SELECT tool transaction
perform the wait.

Note: If the GIVE service returns CEPESLCT, then the SELECT tool
transaction is not running.

Once the GIVE service completes successfully, the transaction should return
to CICS. In addition, the AFM argument can have the next transaction ID
placed in AFMNTRAN. This is the transaction that is executed by the
SELECT tool once the RECEIVE is complete. It defaults to the current
transaction.

3. When the wait finishes for the RECEIVE, the SELECT tool transaction starts
the specified transaction. The transaction needs to RETRIEVE the token from
the CICS commarea. The length will only be four bytes and is the Unicenter
SOLVE:CPT token. Since a receive transaction may also be started by a
listener, the program can use the returned length from the RETRIEVE to
determine if only the token was passed or an ACM.

4. The newly started transaction now needs to issue the RECEIVE call again.
All parameters to the RECEIVE, except for ADTBUFFA, must be the same as
when the RECEIVE was issued in Step 1. Various error codes are returned if
not or unpredictable results may occur. This RECEIVE may complete with
any return code including the CPTWBLCK. If the CPTWBLCK occurs, it
returns to Step 2. Otherwise, process the RECEIVE completion.

Note: The SELECT tool is documented in the Administrator Guide.

The Unicenter SOLVE:CPT Interface

■ Using CA-InterTest with Unicenter SOLVE:CPT Applications—Provides a
sample JCL to help you reassemble the CA-InterTest module to exclude
calls to the Unicenter SOLVE:CPT stubs

■ Compiling and Linking a CPT API Application—Provides a sample JCL to
help you compile and link a Unicenter SOLVE:CPT API Sample Programs

The Unicenter SOLVE:CPT Interface
The intent of Unicenter SOLVE:CPT is to provide the highest level of interface
available to the application program without degrading functionality. You can
mix and match between using the Tools, FTP client, or API services within CPT.
In other words, use the easiest Unicenter SOLVE:CPT service that meets your
minimal requirements. A good example of this is using the Unicenter
SOLVE:CPT Listen tool to initiate your application transaction, which then uses
Unicenter SOLVE:CPT API services for two way data transfer. In this example,
you remove the most complicated code (listen logic) from your program while
still maintaining full socket bi-directional capabilities that are desired for a robust
TCP/IP program.

A standard set of Berkeley Systems Development™ (BSD) sockets verbs is
usually 26 or more verbs. Unicenter SOLVE:CPT reduces this number to eight for
your convenience. To allow all the same functionality of BSD sockets with just
eight calls to Unicenter SOLVE:CPT requires the passing of a control block that
contains the same information as the 26+ BSD verbs. Since most of the fields
within these control blocks default quite well, you need only update those
parameter settings that affect the way your particular application needs to
function.

Implementation of the Unicenter SOLVE:CPT API services is controlled through
various subroutine calls. There are internal subroutine calls used to support the
Unicenter SOLVE:CPT environment and external subroutine calls used by
applications for service requests.

■ The internal calls manage resources associated with connections and the
Task-Related User Exit (TRUE) interface

■ The external calls generate service requests related to specific application
tasks

The Unicenter SOLVE:CPT environment management programs are responsible
for initialization, logging, and termination of the TRUE interface. The application
management programs are responsible for functions directly associated with
user-written applications. The application management routines are primarily
concerned with the recovery and cleanup of CICS, and non-CICS resources
associated with user-written applications during task termination.

2–2 C Programmers Guide

The Unicenter SOLVE:CPT Interface

There are some pseudo code samples that show the use of the Unicenter
SOLVE:CPT API services at the end of this chapter.

Unicenter SOLVE:CPT Task-Related User Exit Interface (TRUE)

Unicenter SOLVE:CPT uses the CICS general-use programming interface facility
called task-related user exit (TRUE). The TRUE interface allows applications
access to an external, or non-CICS, resource. The external CICS resource used by
Unicenter SOLVE:CPT is a communication subsystem based on open network
protocols. The communication subsystem is an API to a transport provider.

Application Programming Concepts

The Unicenter SOLVE:CPT API facility supports communication with open
network protocols using a client/server model. The Unicenter SOLVE:CPT API
services are designed to communicate with the transport layer of the
Transmission Control Protocol/Internet Protocol (TCP/IP).

A server application passively listens, or waits, for a connection request. Once a
connection indication from a client application is received and established, data
transfer can begin. The server specifies a transport provider address or port
where it listens for connection requests. This port is called a well-known port.

The client application:

■ Actively connects to a server application

■ Contacts a well-known port for a server

■ Determines the server’s host and port where it initiates the connection

If the server is not listening, the connection request fails. Once a connection is
established, data transfer begins.

Both a client and server application can transfer data simultaneously over a full
duplex connection. Any dependence on data flow control is application specific.

The following sections describe a very high level (condensed version) of pseudo
code for writing a typical client and a typical server application using Unicenter
SOLVE:CPT API services. Following these sections is a more detailed
introduction to each Unicenter SOLVE:CPT API service call. At the end of the
chapter are very detailed pseudo code examples for various client and server
sample applications.

Unicenter SOLVE:CPT API Services 2–3

The Unicenter SOLVE:CPT Interface

Client Condensed Pseudo Code
...

existing legacy application code to assemble data to be sent
...
initialize CPT API control blocks
call CONNECT CPT API service
call SEND CPT API service
call RECEIVE CPT API service(for acknowledgement record)
call CLOSE CPT API service
CICS RETURN

Server Condensed PseudoCode
Listen:

 initialize CPT API control blocks
 call LISTEN CPT API service
 (or recommended use the CPT LISTEN Tool)
 call GIVE CPT API service
 CICS EXEC START(mytran)
 Goto Listen:

mytran:
 initialize CPT API control blocks
 call TAKE CPT API service
 call RECEIVE CPT API service
 ...
 existing legacy application code to process the requested service
 ...
 call SEND CPT API service
 to send result of service requester
 call CLOSE CPT API service
 CICS RETURN

Note: Multiple mytran transactions are spawned depending on the number of
active connections

2–4 C Programmers Guide

TCP Connection Management

TCP Connection Management
TCP connection management is accomplished using the LISTEN and CONNECT
services. These services are responsible for the creation of resources and for the
establishment of connections. A connection is represented by a token.

The token is returned to the application in the Argument for Connection
Management (ACM) and is used for all subsequent Unicenter SOLVE:CPT
service requests related to that connection. Multiple connections or tokens can be
gotten by an application. However, the mechanism used to manage the
connections is controlled by the application.

TCP connection management services associate ownership of a newly
established connection to the calling task. This gives the TRUE management
routines the ability to release resources during normal or abnormal task
termination.

Ownership of resources can be controlled:

■ Automatically by internal Unicenter SOLVE:CPT routines

■ Explicitly by an application through facility management services

TCP connection management services set the operating environment for the
connection. Optional arguments specify transport provider buffering, Unicenter
SOLVE:CPT internal tracing, connection statistics, and subtask initialization.
Such information can only be specified by connection management services and
cannot be modified after a connection is established.

Information related to the newly established connection is returned within the
ACM. This information contains IP host names, IP addresses, transport provider
addresses, and more. The information can be used by the application or ignored.

Both the LISTEN and CONNECT services, when used with IBM TCP/IP, have
non-blocking open options (set through the ACM) that allow control to be
returned immediately to the application program. The SELECT service
subsequently can be called to determine if the request was satisfied. This allows
for server or client application designs that handle more than one port per CICS
transaction.

Unicenter SOLVE:CPT API Services 2–5

TCP Connection Management

LISTEN

The LISTEN service is used by a user-written application to passively listen for
connection requests. This ability provides the application with server support.
The LISTEN service requires an ACM to be initialized by the user application
and a call to the LISTEN service routine.

Successful completion of the LISTEN service returns a token that represents the
established connection with a client. This token is used for all data transfer,
data processing, and connection termination service requests.

Two variations of the LISTEN service allow a data processing transaction to be
initiated internally. The data processing transaction can be predetermined by
specifying the trans ID in the connection management argument or dynamically
by the connecting client. You select this option by initializing a field within the
connection management argument. Completion of the LISTEN service is
generally indicated by an error at Unicenter SOLVE:CPT or transport provider
termination.

Note: There is a LISTEN tool available that can be used instead of coding a
program to use the LISTEN service. See The LISTEN Tool topic in the chapter
“Unicenter SOLVE:CPT Tools.”

CONNECT

The CONNECT service is used by a user-written application to actively establish
a connection with a server, thus providing it with client support. The CONNECT
service requires that an ACM be initialized by the user application and requires a
call to be made to the CONNECT service routine.

Successful completion of the CONNECT service returns a token representing the
established connection with a server. This token is used for all subsequent data
transfer, data processing, and connection termination service requests.

2–6 C Programmers Guide

TCP Data Transfer

TCP Data Transfer
TCP data transfer is accomplished using the SEND and RECEIVE services.
These services are responsible for reliable transmission of data to and from the
transport provider’s API. Data Transfer services require an established
connection and a user application buffer.

The transport provider is not responsible for record or file boundaries. It cannot
be assumed that data transmitted will be received with the same logical
boundaries with which it was sent. Record and file boundaries are transparent to
the transport provider. Thus, applications should be designed with some
mechanism to distinguish logical record or file boundaries.

File boundaries may be the easiest to distinguish. It is possible that a connection
release could indicate the designated end of file, that the sender has completed
transmitting all data, and is closing its half of the full duplex connection.
The receiver can transmit data or simply close the connection.

If record orientated data is to be transmitted, then some predetermined
mechanism used by both the client and server applications should be designed.
Mechanisms such as separator characters, fixed length records, or record header
information can be used to delimit records. The Unicenter SOLVE:CPT tools also
use these mechanisms.

The TCP data transfer services have several options that make programming for
stream-oriented data easier:

■ There are two variations of a timed RECEIVE call that specify the amount of
data to receive before returning to the caller

■ There is an option to send or receive data in logical records where the length
of the record is stored in the first two bytes of the record

■ There is also an option to send or receive data in logical records where the
records are separated by a predefined character sequence

Both the SEND and RECEIVE (IBM TCP/IP) services have non-blocking options
that are set through the argument for data transfer (ADT) that allow control to be
returned immediately to the application program. The SELECT service
subsequently can be called to determine if the request was satisfied. This allows
for server or client application designs that handle more than one port per CICS
transaction.

Unicenter SOLVE:CPT API Services 2–7

TCP Data Transfer

SEND

The SEND service is used by a user-written application to send or output data
over the connection. The SEND service requires that an ADT be initialized by the
application and requires that a call be issued to the SEND service. The data
transfer argument contains a token, data buffer address, and data buffer length.

On completion, a return code field in the ADT indicates success or failure of
request.

RECEIVE

The RECEIVE service is used by a user-written application to receive or input
data from the connection. The RECEIVE service requires that an ADT be
initialized by the application and requires a call to be issued to the RECEIVE
service. The data transfer argument contains a token, data buffer address and
data buffer length.

Upon completion, a return code field in the ADT indicates success or failure of
the request. The data transfer length field must be retrieved to determine the
amount of data received.

2–8 C Programmers Guide

UDP Data Transfer and Endpoint Creation

UDP Data Transfer and Endpoint Creation
Data transfer for UDP is accomplished using the SENDTO and RCVFROM
services. These services also create an endpoint if the caller does not pass an
existing endpoint in the argument for data transfer. UDP endpoints are
represented by a token.

UDP does not provide the reliable data transmission capabilities that TCP does.
UDP works as well as the underlying IP internet and hardware network.
Applications developed for local area networks are probably quite reliable while
the same applications ported to a wide area internet might not be. UDP
applications generally should be developed with logic to account for datagrams
that are lost or out of sequence.

Because reliability is not built into connectionless data transmission, there is no
corresponding overhead for the transport provider. This makes UDP data
transmission faster than TCP data transmission. Since there is no notion of a
connection between two UDP endpoints, whenever data is sent or received it is
transmitted all at once. Applications do not have to be designed to extract logical
records from variable length streams of data.

Both the SENDTO and RCVFROM (IBM TCP/IP) services have non-blocking
options set through the ADT that allow control to be returned immediately to the
application program. The SELECT service subsequently can be called to
determine if the request was satisfied. This allows for server or client application
designs that handle more than one port per CICS transaction.

Unicenter SOLVE:CPT API Services 2–9

UDP Data Transfer and Endpoint Creation

SENDTO

The SENDTO service is used by a user-written application to send a datagram to
a remote UDP endpoint. The SENDTO service requires that an ADT be
initialized by the application. It must include a buffer address, buffer length, and
remote endpoint address identification. If an existing token is not passed, new
token, send, and receive buffer queues are created. The size and number of
Unicenter SOLVE:CPT SENDTO and RCVFROM buffers for the endpoint can be
set in the ADT along with optional trace and statistics flags.

RCVFROM

The RCVFROM service is used by a user-written application to receive
datagrams from remote UDP endpoints. The RCVFROM service requires that an
ADT be initialized by the application. It must include a buffer address and buffer
length. If an existing token is not passed, new token, send, and receive buffer
queues are created. When a new token is to be created, the local well-known
UDP port must also be passed in the ADT. The size and number of Unicenter
SOLVE:CPT SEND and RECEIVE buffers for the endpoint can be set in the ADT
along with optional trace and statistics flags.

2–10 C Programmers Guide

Connection and Endpoint Release

Connection and Endpoint Release
Connection and endpoint release is accomplished using the CLOSE service.
This service is responsible for the release of the connection and all internal
Unicenter SOLVE:CPT associated resources. Connection release requires that
either a listen or data transfer connection be established.

A connection or endpoint release is scheduled explicitly by issuing the CLOSE
service request, or implicitly by the TRUE management routines during task
termination. If an explicit CLOSE service is issued and no connections or
endpoints are owned by the task, the implicit close scheduled by the TRUE
management routines is not issued.

TRUE management routines are responsible for managing connections and
associated resources. The releasing of resources is one facility provided by the
task-related user task management routines and is controlled by an ownership
mechanism. During task termination, the TRUE management routines
automatically (implicitly) schedule a connection or endpoint release (CLOSE)
request for owned resources. CLOSE, issued by the TRUE management routines
for active connections, is abortive.

You can use the facility management services to manipulate connections,
endpoints, and associated resources owned by a task to avoiding implicit
termination.

CLOSE

A user-written application uses the CLOSE service to release the connection or
endpoint. The CLOSE service requires that an ACL be initialized by the
application and requires a call to be issued to the CLOSE service. The ACL
contains a token and termination options. The termination options include
orderly (graceful) and abortive connection release.

The notion of an orderly close in BSD sockets is simply to wait a specified
amount of time, so that the other end of the connection can finish receiving data
before closing down the connection. This wait or linger time can be specified
globally through the configuration macro, T09MCICS, or in the ACL when
calling the CLOSE service.

On completion, a return code field in the ACL indicates success or failure of the
request. When a connection or endpoint is successfully released, the token is no
longer valid.

Unicenter SOLVE:CPT API Services 2–11

Data Translation

Optionally, you can use the CLOSE service to implement the BSD Shutdown
socket function. This set of options is included in the CLOSE service to
accommodate existing applications that depend on this TCP half close
mechanism as an application level protocol indicating the closing of a TCP
connection.

The available options are:

ACLSHUT0—Disallow RECVS on for this token

ACLSHUT1—Disallow SENDS on for this token

ACLSHUT2—Disable SENDS and RECVS for this token

Calling the CLOSE service with a shutdown option does not close the endpoint
or release any associated Unicenter SOLVE:CPT resources.

Data Translation
The TRANSLATE service provides support for single-byte character set
translation. This implies that any character set of 256 (or less) data
representations is supported. Translation service requires an established
connection and a user application buffer.

Applications with special translation requirements are able to select an alternate
translation table. Alternate translation tables must be customized to the
Unicenter SOLVE:CPT system by applying an SMP/E USERMOD. See the
Administrator Guide for a detailed description of translation table customization.

TRANSLATE

The TRANSLATE service uses a user-written application to translate EBCDIC
and ASCII data within a user buffer. The TRANSLATE service requires an
Argument for Translation (AXL) to be initialized by the application and requires
a call to be issued to the TRANSLATE service. The AXL contains a token, data
buffer address and length, and translation options. Translation options indicate
EBCDIC to ASCII or ASCII to EBCDIC translation. Optionally, a user application
can override the site default translation table.

On completion, a return code field in the AXL indicates success or failure of the
request.

2–12 C Programmers Guide

Facility Management

Facility Management
The GIVE and TAKE services provide facility management. These optional
services provide enhanced connection management support for multitasked
applications. Facility management services require an established connection. A
Unicenter SOLVE:CPT connection that is used by several CICS tasks can define a
multitask application. For example, the LISTEN and RECEIVE tools used in
conjunction create a multitask application.

A multithreaded server application is an example of a multitasked application
where the Unicenter SOLVE:CPT connection is established by a listening task
and then a data processing transaction is initiated to handle data transfer. Any
application that is designed to have multiple tasks processed by a single
Unicenter SOLVE:CPT connection can benefit from facility management services.

Note: A client or single-threaded server application that establishes a connection,
transfers data, and releases the connection all within the same task, does not
need to use the facility management services.

 Unicenter SOLVE:CPT connection management services (LISTEN and
CONNECT) create connections. By default, the task that issues a connection
management service gets ownership of the connection and its associated
resources. Unicenter SOLVE:CPT TRUE management routines are responsible
for managing connections and their associated resources. Releasing resources is
one facility provided by the TRUE management routines and is controlled by an
ownership mechanism. During task termination, the TRUE management routines
automatically (implicitly) schedule a connection release (CLOSE) request for
owned resources.

The release of a connection and its associated resources is performed through the
explicit connection release request, or the implicit task termination release
facility. The GIVE and TAKE services affect the implicit task termination release
facility by disabling (GIVE) and enabling (TAKE) ownership of a connection.

There is no restriction on the number of times a multitasked application can issue
a GIVE or TAKE facility management service. The mechanism used to pass
information related to a Unicenter SOLVE:CPT connection between tasks is
application-dependent.

The IBM IUCV Socket (IBM TCP/IP) interface requires that only one socket
function per IUCV path be executed at a time. This adds the requirement of the
GIVE and TAKE services to not only manipulate the associations of tokens with
CICS transactions, but also with IUCV paths.

Unicenter SOLVE:CPT API Services 2–13

Facility Management

The default action for a GIVE service call is to disassociate the token from the
caller's CICS task and IUCV path. The default action for the TAKE service is to
associate the token with the caller’s CICS task and IUCV path. When an
application calls the GIVE service with the default action implied, the application
subsequently must call the SELECT service to wait for another CICS transaction
to successfully TAKE the token that was just given (see the SELECT service).

Note: Applications that want to maintain a TCP connection for a long period,
but do not want to use up CICS resources by having the transaction running the
entire time, should use the dequeue/enqueue options of the GIVE and TAKE
services. These options only disassociate and associate the token from and to a
CICS transaction, while maintaining the same IUCV path.

Some applications may benefit by use of the SELECT tool. See the SELECT Tool
topic in the chapter “Unicenter SOLVE:CPT Tools” for details.

GIVE

A user-written application uses the GIVE service to disable ownership of internal
Unicenter SOLVE:CPT resources associated with a connection. This facility
prohibits Unicenter SOLVE:CPT task-related user task management routines
from releasing a connection and associated resources during task termination.
The GIVE service requires an Argument for Facility Management (AFM) to be
initialized by the application and requires a call to be issued to the GIVE service.
The version number and token are the only arguments required.

The GIVE service provides a mechanism to disable the TRUE task termination
routine from releasing the connection and associated resources, thereby allowing
a connection and its associated resources to remain available after task
termination. This facility enhances multitasked application design.

Connections, and their associated resources, that have been given must be taken
by other tasks or explicitly released. Otherwise, the connections and resources
persist indefinitely. Resources that are not taken can lead to hung connections,
storage shortages within the CICS region or the transport provider, or
unpredictable results.

A connection can be closed by the CLOSE service after it has been given. The
GIVE service only affects implicit release management services provided by the
Unicenter SOLVE:CPT task-related user task management routines. In addition,
a connection that can be taken is not required to be given. There is no restriction
that a connection and its associated resources must be given before they can be
taken.

On completion, a return code field in the AFM indicates success or failure of the
request.

2–14 C Programmers Guide

Facility Management

TAKE

A user-written application uses the TAKE service to get ownership of internal
Unicenter SOLVE:CPT resources associated with a connection. This facility
enables Unicenter SOLVE:CPT TRUE management routines to release a
connection and its associated resources during task termination. The TAKE
service requires that an AFM be initialized by the application and requires that a
call be issued to the TAKE service. The version number and token are the only
arguments required.

A connection that will be taken is not required to be given. There is no restriction
that a connection and its associated resources is given before it can be taken. This
provides a mechanism for ensuring proper connection and resource termination,
while still allowing a connection to be used by several tasks.

The TAKE service is implemented implicitly within the SEND, RECEIVE, and
TRANSLATE services. This implies that the connection is automatically
associated with the last task that issued a SEND, RECEIVE, or TRANSLATE
service request. Therefore, if a connection was previously given by the current
task, an additional GIVE service request is required to release ownership of the
connection.

The implicit TAKE service within the SEND, RECEIVE, and TRANSLATE
services allow facility management to be handled by the Unicenter SOLVE:CPT
TRUE management routines. Hence, the TAKE and, to some extent, GIVE facility
management services are optional.

On completion, a return code field in the AFM indicates success or failure of the
request.

Refer to the “Subroutine Calls” chapter for detailed information about the
subroutine calls for each language.

Unicenter SOLVE:CPT API Services 2–15

Unicenter SOLVE:CPT FTP Client Service

Unicenter SOLVE:CPT FTP Client Service
The Unicenter SOLVE:CPT FTP Client Service enables you to transfer files from
CICS to remote systems using the Internet standard File Transfer Protocol (FTP).

Unicenter SOLVE:CPT Client FTP offers the following advantages:

■ Server FTP support

■ Shortened CICS application development time

■ Multi-platform availability of a server

■ Reliability of a standard application protocol

■ Mechanism to simplify FTP client operations

The Client FTP Service provides additional built-in functions that are not
available to the other Unicenter SOLVE:CPT tools. While the SEND and
RECEIVE tools are easy to use, they still require remote system application
development. Unicenter SOLVE:CPT Client FTP applications can take advantage
of the FTP server, which is typically a component of an internet-connected host.

Just as for other Unicenter SOLVE:CPT services, client/server architecture,
protocols and error recovery are managed by CPT. Application programmers
provide minimal information and rely on Unicenter SOLVE:CPT to handle
technical issues.

Unicenter SOLVE:CPT Client FTP programs must provide:

■ Remote host name or address

■ Remote user id and password

■ Location of data

■ Operation

Depending on the programming language used, information is provided to
Unicenter SOLVE:CPT through a common data area, a copybook, or a data
structure. A call is issued within the transaction to start the data transfer. Once
the transfer is completed, control is returned to the user transaction along with
status information about the transfer.

Unicenter SOLVE:CPT Client FTP uses two CICS tasks to accomplish the
transfer. One task manages the FTP control connection. The control connection is
used to transfer commands that describe the functions to be performed, and to
handle the replies to these commands.

2–16 C Programmers Guide

Unicenter SOLVE:CPT FTP Client Service

These FTP commands:

■ Authorize a user

■ Specify the parameters for the data connection—transfer mode,
representation type, and structure

■ Specify file system operations—store, append, rename

The second task manages the data connection that does the actual data transfer.
You can use standard defaults for transfers or you can use optional parameters to
specify data representation, directory, site commands, mode, and structure. Your
application specifies this data within an argument list and calls Unicenter
SOLVE:CPT Client FTP to execute the operation using the EXEC CICS LINK
command.

Note: Only one file can be transferred with each call, but there is no limit to the
number of requests a single transaction can perform.

Unicenter SOLVE:CPT FTP Client Service Overview

The Unicenter SOLVE:CPT FTP Client Service enables Unicenter SOLVE:CPT
user applications to use the standard File Transfer Protocol (FTP) to transfer data
files from a CICS region to a remote host. The Unicenter SOLVE:CPT FTP Client
Service is invoked from CICS programs as a callable service. It requires no end-
user interface.

Using parameters passed from the calling application, the Unicenter SOLVE:CPT
FTP Client Service:

■ Establishes a control connection with the remote host on well-known port 21

■ Completes the Telnet remote logon protocol

■ Processes any file transfer attributes to the remote server

■ Establishes a data connection with the remote server

■ Transmits the specified files to the remote server

When the Unicenter SOLVE:CPT FTP Client Service completes this sequence of
tasks, the service returns status information to the calling user application in the
argument for file transfer (AFT).

Unicenter SOLVE:CPT API Services 2–17

Unicenter SOLVE:CPT FTP Client Service

The following diagram shows the functional architecture of the Unicenter
SOLVE:CPT FTP Client Service, and the interaction between the Unicenter
SOLVE:CPT FTP Client Service and the user applications within the CICS
environment.

Unicenter SOLVE:CPT FTP Client Service Architecture

User
Application

Data
Manager

Response
Manager

Control
Manager

MVS

CICS

Data Connection

Control Connection

T
C
P

C
P
T

Start

FTP
Server

Local Host Remote Host

To invoke the Unicenter SOLVE:CPT FTP Client Service, a user application must:

■ Create the files to be transferred in a transient-data or temporary-storage
queue

■ Build an AFT

■ Perform an EXEC CICS LINK to the service

The AFT contains information that enables the Unicenter SOLVE:CPT FTP Client
Service to locate the files to transferred and uses standard FTP commands to
initiate the file transfer.

2–18 C Programmers Guide

Security Program

Security Program
Unicenter SOLVE:CPT provides security through a security program for user
evaluation of requests using IP address or User ID/Password for the services of
local listeners/servers. If a security program is implemented, the user program is
invoked for each connection request. The user program can be specified for each
listener if desired. The appropriate server transaction is initiated if authorized by
the user security program. Otherwise, the client is notified that the connection is
terminated.

To implement the security program, the SCTYEXIT=program-name must be coded
in the T09MCICS macro or the T09MLSTN macro of the T09CONFG
Configuration Table. This user program is CICS LINKed during the connection
process and must conform to CICS coding standards since you must use it as a
Processing Program Table (PPT) entry.

■ If no SCTYEXIT parameter is coded in the Configuration table, all connection
requests are authorized and the user ID is the same as the Listener
transaction

■ If SCTYEXIT is coded but the program is missing or is disabled, no
connections is permitted

Note: Invoking the Administrator Interface panel for the Configuration Table
can check the second condition. However, the security program is displayed only
if it is disabled or if it is not in the PPT.

Each Listen tool or user-written listener can specify its own security program. If
the Listen tool or the user-written listener does not specify a security program
and the SCTYEXIT parameter is coded on the T09MCICS configuration macro,
then that program is used as the security program.

Typically, a security program is called only when either the ACMTRNID is
specified or a user-written listener sets the ACMLTRAN option. However, by
coding SCTYTYPE=MANDTORY and SCTYEXIT=program-name on the
T09MCICS configuration macro, the security program will be executed before
returning control to the user-written listener.

Normally a security program is invoked only when a server transaction is
automatically started within the Unicenter SOLVE:CPT Listen service as a result
of one of the following:

■ The transaction was specified in ACMTRNID

■ The transaction was dynamically obtained from Client Data (ACMOPTNS =
ACMLTRAN and ACMTIMEO >0)

■ A T09MLSTN macro for the Listen tool specified either a TRANID
parameter or a CLNTIME parameter

Unicenter SOLVE:CPT API Services 2–19

Security Program

In other client/server designs, the application receives control when the
connection is made and should make any desired security checks before
beginning server activity. However, by coding SCTYTYPE=MANDTORY and
SCTYEXIT=program-name on the T09MCICS configuration macro, the security
program is executed before returning control to the application.

Security Program

The user security program is responsible not only for making the determination
of whether a connection is authorized, but also for any desired logging or other
capture of unauthorized requests. Because the program is driven for each
connection on a listener, performance implications should be considered in
designing security programs.

When security is specified in the configuration table, a new transaction is started
(the program is T09TLST2 with a transaction ID IPT2). This transaction then
CICS links to the specified security program. The program is passed the Security
Communications Block (SCB). It contains fields used to determine the validity of
the connection. One of the fields in the SCB is the token of the connection. The
token can be used to initiate SEND and RECEIVE calls in order to communicate
with the remote client to determine a user ID, password, or any other identifying
characteristics. Any of the other fields in the SCB may be used as well.

On return from the security program, four fields are used from the SCB:

■ The authorization switch authorizes the connection by setting a character 1 in
the field

■ The terminal facility specifies a CICS term ID to associate with the new
transaction to be STARTed

■ If the user ID field is specified, the new transaction is STARTed with that
user ID

■ The transaction to start can also be modified by the security program and
then the specified transaction is STARTed

Note: When term ID and user ID are specified, any CICS security for the term ID
and user ID are in effect.

The security program can perform additional SEND and RECEIVE calls to
request and retrieve data. This data might be some form of user ID or password.
The program could then verify the user ID and password with the EXEC CICS
VERIFY command. If the user ID is returned in the SCB, the new transaction is
started with EXEC CICS START USERID (user ID).

2–20 C Programmers Guide

Security Program

The Security Communications Block

The connection process transaction and the user security program communicate
through the Security Communications Block (SCB). Unicenter SOLVE:CPT
provides information about the request and its origin. The user security program
determines whether the request is authorized and, optionally the name of a
terminal facility or user ID to associate with a STARTed server transaction. A
DSECT of the SCB for assembler programs may be generated with the
T09DSCTY macro.

This is what the T09DSCTY DSECT control block looks like in Assembler
language:
Name Operation Operands Description

SECPARM DSECT
SECTRAN DS CL4 SERVER TRANSACTION REQUESTED
SECDATA DS XL40 REQUESTOR DATA
SECSTRT DS CL2 HOW TASK IS TO BE STARTED
SECICTM DS XL6 INTERVAL CONTROL TIME
SECADRS DS 0CL8 REQUESTOR ADDRESS
SECAFAM DS H DOMAIN
SECRPRT DS H PORT
SECRHST DS F HOST IP ADDRESS
SECACTN DS CL1 PERMIT/PROHIBIT SWITCH
SECPRMT EQU C’1’ ..OKAY, INITIATE TASK
 DS X RESERVED
SECTMID DS CL4 ANY ASSOCIATED CICS TERMINAL
SECLPRT DS H LOCAL SERVER PORT
SECUSER DS CL8 USER ID
 DS CL512 RESERVED
SECTOKN DS F TOKEN - ENDPOINT
SECLHST DS F LOCAL HOST
*
SECLEN EQU *-&LABEL LENGTH OF SECURITY DATA AREA

Unicenter SOLVE:CPT API Services 2–21

Security Program

Security Communications Block

Field Format Description

SECTRAN 4-byte character Requested server transaction, maybe modified by
the program.

SECDATA 40-byte
character

Client data, if available.

SECSTRT 2-byte character Method of server initiation: KC, TC, or IC.

SECICTM 6-byte character IC Hours, Minutes, Seconds.

SECAFAM 2-byte binary Address family: Inet domain=2.

SECRPRT 2-byte binary Client remote port number.

SECRHST 4-byte binary Client remote host IP address.

SECACTN 1-byte character Authorization switch:

■ 1=accept

■ 0=fail

SECTMID 4-byte character Associated terminal facility.

SECLPRT 2-byte binary Requested server local port.

SECUSER 8-byte binary Returned user ID

SECTOKN 4-byte binary Token that represents the TCP connection.

SECLHST 4-byte binary Local host IP address.

2–22 C Programmers Guide

Sample Unicenter SOLVE:CPT API Pseudo Code

Sample Unicenter SOLVE:CPT API Pseudo Code
This section provides examples of pseudo code for client and server applications.

Client Application Example

A CICS program is required to:

■ Send and receive data to a server application residing on a workstation. The
CICS application reads and writes to temporary storage.

■ Initiate the connection and send the first packet.

The workstation or server’s IP host name is SATURN and the well-known port
address on that machine is 1234. The server’s data representation is ASCII.
The server application expects data from the client and responds with data.

The CICS client application attempts to establish a connection with the server
before processing any data. The client application reads temporary storage; then
translates the data into ASCII before sending it to the server. The client
application is then required to receive a response from the server. The data
received must be translated into EBCDIC before it can be written to temporary
storage. The application loops until all data is processed, then closes the
connection gracefully. Any unexpected error causes the connection to terminate
abnormally.
.

. Working Storage

.
Define Storage for Connection Management Argument
Define Storage for Data Transfer Argument
Define Storage for Data Translation Argument
Define Storage for Connection Release Argument
.
. Initialize Connection Management Argument and issue CONNECT service.
.
Set transport protocol to connection-mode (TCP).
Set server well-known port to 1234.
Set server IP host name to 'SATURN'.
Call CONNECT service with Connection Management Argument.
Check CONNECT service Return Code.
If Return Code not zero, then log error and GOTO RETURN.
.
. Retrieve connection Token.
.
Copy TOKEN from Connection Management Argument.
.
. Read Temporary Storage Queue and check for end of queue.
.
READ_NEXT_TS label:
EXEC CICS READQ TS QUEUE(tsqname1) SET() LENGTH()
If Handle Condition is QEMPTY, then GOTO CLOSE_ORDERLY.
If Handle Condition error, then GOTO CLOSE_ABORTIVE.

Unicenter SOLVE:CPT API Services 2–23

Sample Unicenter SOLVE:CPT API Pseudo Code

.

. Initialize Data Translation Argument and issue TRANSLATE service.

.
Set connection TOKEN.
Set translation from EBCDIC to ASCII.
Set address of translation data buffer.
Set length of translation data buffer.
Call TRANSLATE service with Data Translation Argument.
Check TRANSLATE service Return Code.
If Return Code error, then GOTO CLOSE_ABORTIVE.
.
. Initialize Send Data Transfer Argument and issue SEND service.
.
Set connection TOKEN.
Set address of send data buffer.
Set length of send data buffer.
Call SEND service with Data Transfer Argument.
Check SEND service Return Code.
If Return Code error, then GOTO CLOSE_ABORTIVE.
.
. Initialize Receive Data Transfer Argument and issue RECEIVE service.
.
Set connection TOKEN.
Set address of receive data buffer.
Set length of received data buffer.
Call RECEIVE service with Data Transfer Argument.
Check RECEIVE service Return Code.
If Return Code error, then GOTO CLOSE_ABORTIVE.
.
. Retrieve length of network data RECEIVE service processed.
.
Copy RECEIVE service data length from Data Transfer Argument.
.
. Initialize Data Translation Argument and issue TRANSLATE service.
.
Set connection TOKEN.
Set translation from ASCII to EBCDIC.
Set address of translation data buffer.
Set length of translation data buffer.
Call TRANSLATE service with Data Translation Argument.
Check TRANSLATE service Return Code.
If Return Code error, then GOTO CLOSE_ABORTIVE.
.
. Write Data to Temporary Storage Queue.
.
EXEC CICS WRITEQ TS QUEUE(tsqname2) SET() LENGTH()
If Handle Condition error, then GOTO CLOSE_ABORTIVE.
.
. Loop application for more temporary storage data.
.
GOTO READ_NEXT_TS.
.
. Initialize Connection Release Argument and issue CLOSE service.
.
CLOSE_ORDERLY label:
Set connection TOKEN.
Set orderly release option.
Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.
If Return Code error, then log error.
GOTO RETURN.

2–24 C Programmers Guide

Sample Unicenter SOLVE:CPT API Pseudo Code

.

. Initialize Connection Release Argument and issue CLOSE service.

.
CLOSE_ABORTIVE label:
Set connection TOKEN.
Set abortive release option.
Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.
If Return Code error, then log error.
.
. Terminate Task
.
RETURN label:
EXEC CICS RETURN

Server Application Example 1
A CICS program is required to receive and send data from a client application.
The CICS server application listens for connection indications and then echoes
any received data back to the client. Termination of the server application is
determined by a CICS or API (transport provider) shutdown condition.

The CICS server application listens for connection indications on well-known
port 2000. This server application handles data transfer in-stream and does not
initiate additional client connections until the current connection is terminated.
Therefore, this is a single-threaded server application. The application loops
within the Unicenter SOLVE:CPT receive/send logic until a Unicenter
SOLVE:CPT release indication is determined and then closes the connection
gracefully.

Note: Any unexpected error while receiving and sending data causes the
connection to terminate abnormally.

The LISTEN service request returns two tokens:

■ One token represents the data transfer connection—used with send and
receive processing

■ The other token represents the server connection—the listen token can only
be used during task termination

.

. Working Storage

.
Define Storage for Connection Management Argument
Define Storage for Data Transfer Argument
Define Storage for Connection Release Argument
.
. Initialize Connection Management Argument and issue LISTEN service.
.
Set transport protocol to connection-mode (TCP).
Set server well-known port to 2000.
LISTEN_LOOP label:
Call LISTEN service with Connection Management Argument.
Check LISTEN service Return Code.
If Return Code equal CICS shutdown, then GOTO CLOSE_LISTEN.
If Return Code equal API shutdown, then GOTO CLOSE_LISTEN.
If Return Code unknown, then log error and GOTO CLOSE_LISTEN.

Unicenter SOLVE:CPT API Services 2–25

Sample Unicenter SOLVE:CPT API Pseudo Code

.

. Retrieve Data Transfer Connection and Listen Tokens.

.
Copy DT_TOKEN from Connection Management Argument.
Copy LISTEN_TOKEN from Connection Management Argument.
.
. Initialize Receive Data Transfer Argument and issue RECEIVE service.
.
ECHO_LOOP label:
Set connection DT_TOKEN.
Set address of receive data buffer.
Set length of received data buffer.
Call RECEIVE service with Data Transfer Argument.
Check RECEIVE service Return Code.
If Return Code equal RELEASE, then GOTO CLOSE_ORDERLY.
If Return Code error, then GOTO CLOSE_ABORTIVE.
.
. Retrieve length of network data RECEIVE service processed.
.
Copy RECEIVE service data length from Data Transfer Argument.
.
. Initialize Send Data Transfer Argument and issue SEND service.
.
Set connection DT_TOKEN.
Set address of send data buffer.
Set length of send data buffer.
Call SEND service with Data Transfer Argument.
If Return Code error, then GOTO CLOSE_ABORTIVE.
.
. Loop application for more client data.
.
GOTO ECHO_LOOP.
.
. Initialize Connection Release Argument and issue CLOSE service.
.
CLOSE_ORDERLY label:
Set connection DT_TOKEN.
Set orderly release option.
Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.
If Return Code error, then log error.
GOTO SERVER_LOOP.
.
. Initialize Connection Release Argument and issue CLOSE service.
.
CLOSE_ABORTIVE label:
Set connection DT_TOKEN.
Set abortive release option.
Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.
If Return Code error, then log error.
GOTO SERVER_LOOP.
.
. Initialize Connection Release Argument and issue CLOSE service.
.
CLOSE_LISTEN label:
Check for LISTEN_TOKEN.
If no LISTEN_TOKEN, then GOTO RETURN.
Set connection LISTEN_TOKEN.
Set orderly release option.
Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.
 If Return Code error, then log error.

2–26 C Programmers Guide

Sample Unicenter SOLVE:CPT API Pseudo Code

.

. Terminate Task

.
RETURN label:
EXEC CICS RETURN

Server Application Example 2

This example shows a multithreaded CICS server application where the CICS
server application listens for connection indications and starts a data processing
transaction. Termination of the server application is determined by a CICS or
API (transport provider) shutdown condition.

The CICS server application listens for connection indications on well-known
port 3000. Once a connection is established, the connection management GIVE
service is issued to release ownership of the connection. A CICS START
command is then issued for a data processing transaction.

Note: Any unexpected error causes the data transfer connection to terminate
abnormally.

The LISTEN service request returns two tokens, one token represents the data
transfer connection and the other represents the server connection. The data
transfer token is passed to the data processing transaction, while the listen token
can only be used during task termination.
.

. Working Storage

.
Define Storage for Connection Management Argument
Define Storage for Facility Management Argument
Define Storage for Connection Release Argument
.
. Initialize Connection Management Argument and issue LISTEN service.
.
Clear Server Listen Token DT_TOKEN
Set transport protocol to connection-mode (TCP).
Set server well-known port to 3000.
LISTEN_LOOP label:
Call LISTEN service with Connection Management Argument.
Check LISTEN service Return Code.
If Return Code equal CICS shutdown, then GOTO CLOSE_LISTEN.
If Return Code equal API shutdown, then GOTO CLOSE_LISTEN.
If Return Code unknown, then log error and GOTO CLOSE_LISTEN.
.
. Retrieve Data Transfer Connection and Listen Tokens.
.
Copy DT_TOKEN from Connection Management Argument.
Copy LISTEN_TOKEN from Connection Management Argument.
.
. Initialize Facility Management Argument and issue GIVE service.
.
Set connection DT_TOKEN.
Call GIVE service with Facility Management Argument.
Check GIVE service Return Code.
If Return Code error, then log error GOTO CLOSE_ABORTIVE.

Unicenter SOLVE:CPT API Services 2–27

Sample Unicenter SOLVE:CPT API Pseudo Code

.

. Start Data Transfer Transaction.

.
 EXEC CICS START TRANSID(transid) FROM(DT_TOKEN) LENGTH(4)
If Handle Condition error, then GOTO CLOSE_ABORTIVE.
.
. Loop for additional connection indications.
.
GOTO LISTEN_LOOP.
.
. Initialize Connection Release Argument and issue CLOSE service.
.
CLOSE_ABORTIVE label:
Set connection DT_TOKEN.
Set abortive release option.
Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.
If Return Code error, then log error.
GOTO LISTEN_LOOP.
.
. Initialize Connection Release Argument and issue CLOSE service.
.
CLOSE_LISTEN label:
Check for LISTEN_TOKEN.
If no LISTEN_TOKEN, then GOTO RETURN.
Set connection LISTEN_TOKEN.
Set orderly release option.
Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.
If Return Code error, then log error.
.
. Terminate Task
.
RETURN label:
EXEC CICS RETURN

2–28 C Programmers Guide

Sample Unicenter SOLVE:CPT API Pseudo Code

Server Application Example 3

This example shows a data processing program associated with a multithreaded
server application. A server program initiates the transaction after a client
connection is established. The program is responsible for processing data
associated with a connection.

The TAKE service is an optional facility and is provided implicitly through the
SEND, RECEIVE, and TRANSLATE services.

The application loops within the Unicenter SOLVE:CPT receive/send logic until
a Unicenter SOLVE:CPT release indication is determined, then closes the
connection gracefully. Any unexpected error while receiving and sending data
causes the connection to terminate abnormally.
.
. Working Storage
.
Define Storage for Facility Management Argument
Define Storage for Data Transfer Argument
Define Storage for Data Translation Argument
Define Storage for Connection Release Argument
.
. Obtain Data Transfer Token for Server Transaction.
.
EXEC CICS RETRIEVE FROM(TOKEN) LENGTH(4)
If Handle Condition error, then GOTO CLOSE_ABORTIVE.
.
. Initialize Facility Management Argument and issue TAKE service.
.
Set connection TOKEN.
Call TAKE service with Facility Management Argument.
Check TAKE service Return Code.
If Return Code error, then log error GOTO CLOSE_ABORTIVE.
.
. Initialize Receive Data Transfer Argument and issue RECEIVE service.
.
RECV_LOOP label:
Set connection TOKEN.
Set address of receive data buffer.
Set length of received data buffer.
Call RECEIVE service with Data Transfer Argument.
Check RECEIVE service Return Code.
If Return Code equal RELEASE, then GOTO CLOSE_ORDERLY.
If Return Code error, then GOTO CLOSE_ABORTIVE.
.
. Retrieve length of network data RECEIVE service processed.
.
Copy RECEIVE service data length from Data Transfer Argument.
.
. Initialize Data Translation Argument and issue TRANSLATE service.
.
Set connection TOKEN.
Set translation from ASCII to EBCDIC.
Set address of translation data buffer.
Set length of translation data buffer.
Call TRANSLATE service with Data Translation Argument.
Check TRANSLATE service Return Code.
If Return Code error, then GOTO CLOSE_ABORTIVE.

Unicenter SOLVE:CPT API Services 2–29

Sample Unicenter SOLVE:CPT API Pseudo Code

.

. Application to process input and determine output.

.

.

. Initialize Data Translation Argument and issue TRANSLATE service.

.
Set connection TOKEN.
Set translation from EBCDIC to ASCII.
Set address of translation data buffer.
Set length of translation data buffer.
Call TRANSLATE service with Data Translation Argument.
Check TRANSLATE service Return Code.
If Return Code error, then GOTO CLOSE_ABORTIVE.
.
. Initialize Send Data Transfer Argument and issue SEND service.
.
Set connection TOKEN.
Set address of send data buffer.
Set length of send data buffer.
Call SEND service with Data Transfer Argument.
Check SEND service Return Code.
If Return Code error, then GOTO CLOSE_ABORTIVE.
.
. Loop application for more client data.
.
GOTO RECV_LOOP.
.
. Initialize Connection Release Argument and issue CLOSE service.
.
CLOSE_ORDERLY label:
Set connection TOKEN.
Set orderly release option.
Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.
If Return Code error, then log error.
GOTO RETURN.
.
. Initialize Connection Release Argument and issue CLOSE service.
.
CLOSE_ABORTIVE label:
Set connection TOKEN.
Set abortive release option.
Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.
If Return Code error, then log error.
.
. Terminate Task
.
RETURN label:
EXEC CICS RETURN

2–30 C Programmers Guide

Sample Unicenter SOLVE:CPT API Pseudo Code

Server Application Example 4

This example is a variation of the multithreaded CICS server application shown
in Server Application 2. The CICS server application listens for connection
indications and then causes the LISTEN service to initiate a data transfer
transaction. The initiated data transfer transaction could be Server Application 3.
Termination of the server application is determined by a CICS or API (transport
provider) shutdown condition.

The CICS server application listens for connection indications on well-known
port 4000. A transaction ID is specified for the data transfer program. Once a
connection is established, the connection management GIVE service and the
CICS START command are issued from within the LISTEN service.

Return from the LISTEN service request does not occur until an error occurs. The
error could be either Unicenter SOLVE:CPT and CICS termination, or some
unexpected error. Unicenter SOLVE:CPT or CICS termination is considered
graceful termination, while anything else produces an error.
.
. Working Storage
.
Define Storage for Connection Management Argument
Define Storage for Connection Release Argument
.
. Initialize Connection Management Argument and issue LISTEN service.
.
Set transport protocol to connection-mode (TCP).
Set server well-known port to 4000.
Set Data Transactions ID.
Call LISTEN service with Connection Management Argument.
Check LISTEN service Return Code.
If Return Code equal CICS shutdown, then GOTO CLOSE_LISTEN.
If Return Code equal API shutdown, then GOTO CLOSE_LISTEN.
.
. Log LISTEN Service Unknown error
.
Log Connection Management Return Code.
.
. Initialize Connection Release Argument and issue CLOSE service.
.
CLOSE_LISTEN label:
Copy DT_TOKEN from Connection Management Argument.
Check for LISTEN_TOKEN.
If no LISTEN_TOKEN, then GOTO RETURN.
Set connection LISTEN_TOKEN.
Set orderly release option.
Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.
If Return Code error, then log error.
.
. Terminate Task
.
RETURN label:
EXEC CICS RETURN

Unicenter SOLVE:CPT API Services 2–31

Unicenter SOLVE:CPT API Sample Programs

Unicenter SOLVE:CPT API Sample Programs
These sample programs are in the T09SAMP data set that was unloaded when
Unicenter SOLVE:CPT was installed. Descriptions of each program are provided
below.

This table shows the sample program name and its corresponding language:

T09SAMP
Member Name

Language Type

T09PACL1 Assembler TCP Client 1 program. Client Application sends
typed in data to the server waiting for the
information to be echoed back from the server.

T09PACL2 Assembler TCP Client 2 program. Client Application to
send an internal message using either the
FULL, SEP or LL to be echoed back by the
server.

T09PAFTP Assembler FTP Client Application.

T09PCFT3 Assembler FTP Client that uses transient data queues.

T09PASV1 Assembler TCP Server 1 program is a single-threaded
server using a Listen API call.

T09PASV2 Assembler TCP Server 2 program is a multithreaded server
using the Listen tool.

T09PASV3 Assembler TCP Server 3 program is multi-threaded server
using a Listen API call with an independent
EXEC CICS START tran.

T09PASV4 Assembler TCP Server 4 program is a multi-threaded
server using a Listen API call that has CPT
internally issuing the EXEC CICS START tran.

T09PASV5 Assembler TCP Server 5 program is a multithreaded server
using both the Listen and SELECT tools.

T09PACLU Assembler UDP Client program.

T09PASVU Assembler UDP Server program.

T09PCCL1 COBOL TCP Client 1 program. Client Application sends
typed in data to the server waiting for the
information to be echoed back from the server.

T09PCCL2 COBOL TCP Client 2 program. Client Application to
send an internal message using either the
FULL, SEP or LL to be echoed back by the

2–32 C Programmers Guide

Unicenter SOLVE:CPT API Sample Programs

T09SAMP Language Type
Member Name

server.

T09PCFTP COBOL FTP Client Application.

T09PCSV1 COBOL TCP Server 1 program is a single-threaded
server using a Listen API call.

T09PCSV2 COBOL TCP Server 2 program is a multithreaded server
using the Listen tool.

T09PCSV3 COBOL TCP Server 3 program is multi-threaded server
using a Listen API call with an independent
EXEC CICS START tran.

T09PCSV4 COBOL TCP Server 4 program is a multi-threaded
server using a Listen API call that has CPT
internally issuing the EXEC CICS START tran.

T09PCSV5 COBOL TCP Server 5 program is a multithreaded server
using both the Listen and SELECT tools.

T09PCCLU COBOL UDP Client program.

T09PCSVU COBOL UDP Server program.

T09PPCL1 PL/I TCP Client 1 program. Client Application sends
typed in data to the server waiting for the
information to be echoed back from the server.

T09PPCL2 PL/1 TCP Client 2 program. Client Application to
send an internal message using either the
FULL, SEP or LL to be echoed back by the
server.

T09PPFTP PL/I FTP Client Application

T09PPSV1 PL/I TCP Server 1 program is a single-threaded
server using a Listen API call.

T09PPSV2 PL/I TCP Server 2 program is a multithreaded server
using the Listen tool.

T09PPSV3 PL/I TCP Server 3 program is multi-threaded server
using a Listen API call with an independent
EXEC CICS START tran.

T09PPSV4 PL/I TCP Server 4 program is a multi-threaded
server using a Listen API call that has CPT
internally issuing the EXEC CICS START tran.

T09PPCLU PL/1 UDP Client program.

T09PPSVU PL/1 UDP Server program.

Unicenter SOLVE:CPT API Services 2–33

Unicenter SOLVE:CPT API Sample Programs

T09SAMP Language Type
Member Name

T09PSCL1 C TCP Client 1 program. Client Application sends
typed in data to the server waiting for the
information to be echoed back from the server.

T09PSCL2 C TCP Client 2 program. Client Application to
send an internal message using either the
FULL, SEP or LL to be echoed back by the
server.

T09PSFTP C FTP Client Application

T09PSSV1 C TCP Server 1 program is a single-threaded
server using a Listen API call.

T09PSSV2 C TCP Server 2 program is a multithreaded server
using the Listen tool.

T09PSSV3 C TCP Server 3 program is multi-threaded server
using a Listen API call with an independent
EXEC CICS START tran.

T09PSSV4 C TCP Server 4 program is a multithreaded server
using a Listen API call that has CPT internally
issuing the EXEC CICS START tran.

T09PSCLU C UDP Client program.

T09PSSVU C UDP Server program.

Client 1 Sample Program

Note: The x in the fifth character in the program name denotes the programming
language from the table shown above.

T09PxCL1 is an example of a client program that sends a message, (input at a
terminal) to a server program. It uses an LL (length) convention to indicate when
all data is sent. It sends the length first followed by the message. The server s
echoes back the LL and data. When the message is fully received, the client
requests an orderly close of the connection.

This program is initiated at a terminal by entering:

■ The transaction ID

■ A server transaction ID

■ A text variable

2–34 C Programmers Guide

Unicenter SOLVE:CPT API Sample Programs

If a server transaction ID omitted, the echo port is requested. If a text variable is
omitted, a dummy message is substituted.

TCP Client 2 Sample Program

T09PxCL2 is an example of a client program that sends a message to a server
program and then receives it back. The Client 2 sample uses special processing
options that cause Unicenter SOLVE:CPT to format the stream data into logical
records. These SEND and RECEIVE options make logical record programming
much easier from the Unicenter SOLVE:CPT application standpoint.

These are the logical record options:

■ Logical record based on separator characters

■ Logical record based on length set in the first two data bytes

■ The receiver defines what a full record length is and waits until it receives
that amount

This program is initiated at a terminal by typing in the transaction ID followed
by an option: FULL (default), LL, or SEP. T09PxCL2 sends the data to the TCP
Echo server.

TCP Server 1 Sample Program

T09PxSV1 is an example of a server program that can be initiated either during
CICS startup or dynamically using a supplied transaction ID. The server issues a
listen on a specific port and then remains active in CICS as a long-running task.
When a client program designates the same port for a connect, Unicenter
SOLVE:CPT initiates this server for receive-and-send handshaking.

In this example, the server echoes back messages received from the client. After
the client requests an orderly release from the connection, the server goes back to
passive listening on the port. This server is single-threaded. Any subsequent
requests for its services wait until preceding clients have completed and closed
connections.

Unicenter SOLVE:CPT API Services 2–35

Unicenter SOLVE:CPT API Sample Programs

TCP Server 2 Sample Program

T09PxSV2 is an example of a server program that does not issue a listen, but
takes the connection from the original listener. Unicenter SOLVE:CPT initiates it
when a listening task detects a client request for the port number assigned to this
server.

CPTPxSV2 can be initiated directly by:

■ Another transaction that is a listening server

■ By Unicenter SOLVE:CPT from a listening transaction’s specification of
ACMTRNID in its connection management argument

■ A listener specified in a T09MLSTN statement in the Unicenter SOLVE:CPT
tool configuration table.

In this example, the server receives one or more messages from the client; then
echoes it back. When the client requests a release, or when an error occurs, the
server disconnects and goes away.

A fresh copy of the server is activated as needed.

Server 3 Sample Program

T09PxSV3 is an example of a server program that can be initiated during CICS
startup or dynamically using a supplied transaction ID. The server issues a listen
on a specific port and continues to remain active in the system as a long- running
task. When a client transaction requests the service associated with its port,
T09PxSV3 is activated to connect with that client.

In this example, when the server is awakened to service a client, it spawns
another task to do the complex work requested by the client. This frees the long-
running server up to initiate a new listen and to respond to additional clients in a
timely manner.

This server task terminates when Unicenter SOLVE:CPT is stopped.

Server 4 Sample Program

T09PxSV4 is an example of a server program that can be initiated during CICS
startup or dynamically using a supplied transaction ID. The server issues a listen
for a specific service, but also provides Unicenter SOLVE:CPT with a transaction
name for an independent task to be started when a client requests a connection to
the service. That task does any complex work associated with the service, while
the server continues as a long-running task that listens for additional requests for
the service.

This server task terminates when Unicenter SOLVE:CPT is stopped.

2–36 C Programmers Guide

Unicenter SOLVE:CPT API Sample Programs

Server 5 Sample Program

T09PASV5 is an example receive program that uses the SELECT tool.

UDP Client Sample Program

T09PxCLU is an example of a UDP client program that calls the SENDTO service
to send a datagram, input at a terminal, to a server program that echoes the
datagram back. The default server is the UDP echo server with T09PxSVU being
the other possible destination by specifying the associated transaction ID. When
the datagram is received back from the RCVFROM service, the sample client
closes the endpoint.

UDP Server Sample Program

T09PxSVU is an example of a UDP server program that hangs a RCVFROM on a
well-known port and waits for incoming datagrams. When RCVFROM
completes, the server calls the SENDTO service to send the datagram back to its
originator.

This program should be initiated as a started transaction.

Unicenter SOLVE:CPT API Services 2–37

Using CA-InterTest with Unicenter SOLVE:CPT Applications

Using CA-InterTest with Unicenter SOLVE:CPT Applications
In order to use CA-InterTest® on application modules using Unicenter
SOLVE:CPT stub calls, the InterTest module, IN25UEXI, must be reassembled
with entries to exclude calls to the Unicenter SOLVE:CPT stubs.

The following sample JCL can be modified to meet your system requirements.
See the CA-InterTest MVS Installation and Customization Guide for a discussion on
the IN25UEXI exit.
//IN25UEXI JOB ...

//ASM EXEC PGM-IEV90,REGION=102K,
// PARM=’DECK,LIST,XREF(SHORT),ALIGN’
//SYSPRINT DD SYSOUT=A
//SYSPUNCH DD DSN=&&LOADSET,DISP=(NEW,PASS),UNIT=SYSDA,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=400,SPACE=(400,(100,100,1))
//SYSLIB DD DSN=CAI,SAMPLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(5,1))
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(5,1))
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(5,1))
//SYSIN DD *
 IN25UEX CALL=T09FCLOS
 IN25UEX CALL=T09FXLAT
 IN25UEX CALL=T09FCONN
 IN25UEX CALL=T09FGIVE
 IN25UEX CALL=T09FLSTN
 IN25UEX CALL=T09FRCFR
 IN25UEX CALL=T09FRECV
 IN25UEX CALL=T09FSEND
 IN25UEX CALL=T09FSLCT
 IN25UEX CALL=T09FNTO
 IN25UEX CALL=T09FTAKE
*
* INSERT YOUR IN25UEX STATEMENTS FOR SPECIAL CALLS HERE
*
 IN25UEX TYPE=FINAL
 T09FCLOS DC XL16’90ECD00C183F4510300E0180000058F0’
 T09FCONN DC XL16’90ECD00C183F4510300E0180000058F0’
 T09FGIVE DC XL16’90ECD00C183F4510300E0180000058F0’
 T09FLSTN DC XL16’90ECD00C183F4510300E0180000058F0’
 T09FRCFR DC XL16’90ECD00C183F4510300E0180000058F0’
 T09FRECV DC XL16’90ECD00C183F4510300E0180000058F0’
 T09FSEND DC XL16’90ECD00C183F4510300E0180000058F0’
 T09FSLCT DC XL16’90ECD00C183F4510300E0180000058F0’
 T09FSNTO DC XL16’90ECD00C183F4510300E0180000058F0’
 T09FTAKE DC XL16’90ECD00C183F4510300E0180000058F0’
 T09FXLAT DC XL16’90ECD00C183F4510300E0180000058F0’

2–38 C Programmers Guide

Compiling and Linking a CPT API Application

*
* INSERT ANY USER WRITTEN ROUTINE HERE
*
 END TERMINATEST THE ASSEMBLY OF IN25UEXI
/*
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(5,1))
//LKED EXEC PGM=IEWL,REGION=512K,PARM=(XREF,LIST,MAP)
*
* INSERT ANY //SYSLIB STATEMENT FOR SPECIAL LOADERS HERE
*
//SYSLMOD DD DSN=CAI,CACIGSxx,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,DCB=BLKSIZE=1024,SPACE=(1024,(200,200))
//SYSPRINT DD SYSOUT=A
//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)
// DD *
 ENTRY IN25UEXI
 NAME IN25UEXI(R)
//

Note: For the SYSLMOD DD statement, replace xx with the CICS release
number. For example, 41 for CICS 4.1.

Compiling and Linking a CPT API Application
There are two simple updates to your existing CICS application compilation and
linking JCL that are needed to support CPT/API applications:

1. In your compile step add the following DD:
cpthlq.T09MAC

The T09MAC library contains all the Assembler macros, Assembler DSECTs,
COBOL copybooks, C and PL/I structures needed when compiling your
CPT/API application

2. In your link step add the following DD:
cpthlq.T09LOAD

The T09LOAD library contains all the T09Fxxxx CICS TRUE stubs that are
called by your CPT/API application in order to use CPT service calls.

Note: The T09LOAD library also needs to be in your CICS startup JCL as
part of the DFHRPL concatenation.

Unicenter SOLVE:CPT API Services 2–39

Chapter

3 CLOSE Service

Closes an established connection. Both orderly (graceful) and abortive
termination options are supported. CLOSE performs all associated functions
required for Unicenter SOLVE:CPT resource clean up.

To invoke the CLOSE service, a user application must first build an Argument
for Close (ACL) and then issue a call to the CLOSE routine. Valid arguments
include the ACL version number, connection token, and termination options. On
completion, a return code is set to indicate success or failure of the request.

This chapter discusses the following topics:

■ Call Syntax—Shows sample syntax for the CLOSE service call

■ Recommended ACL Parameters—Lists the parameters normally used and
recommended for the CLOSE service call

■ Usage Example—A sample shell of a program using the CLOSE service call

■ Parameter Values Returned in the ACL—List the fields that are updated in
the ACL control block upon return from the CLOSE service call

■ C Structures—Provides a list and information about the distributed sample C
structure that are used by the CLOSE service call

■ Sample Programs—Lists and describes the distributed sample C programs
that are use the CLOSE service call along with other service calls.

■ Completion Information—Describes the expected results at completion of the
CLOSE service call

■ Return Codes—Provides a list of return codes that can apply to the CLOSE
service call

■ Usage Notes—Contains miscellaneous notes about usage of the CLOSE
service call

■ Complete Parameter List—Provides a complete list of all the parameters and
options of those parameters for the CLOSE service call

CLOSE Service 3–1

Call Syntax

Call Syntax

 t09fclos (&cpt_acl);

Recommended ACL Parameters
The following list contains the recommended parameters to use with the CLOSE
service. These parameters are set within the ACL control block. See C Structures
for sample information.

For a complete list of optional parameters, see Complete Parameter List.

Field name Description

acl_optns Set to ACLOPT_ORDER indicating a graceful termination
and implements orderly release of the TCP/IP connection.

acl_token Connection or endpoint token.

acl_vers Version number set to two (2).

Usage Examples
In the following examples, a subset of the actual statements required is shown to
emphasize the use of a CLOSE call. It is always recommended that you use the
graceful approach unless a network error makes it a requirement to abort the
connection.

Graceful Close Both ends of a session follow the FIN, ACK-FIN shutdown
process to terminate a session.

Abortive Close A reset is generated terminating the session.

 When errors show that a connection may be corrupt, an
abortive close always works.

Important! Data may be lost when an abortive close is used.

For a more complete sample, see Sample Programs.

3–2 C Programmer Guide

Usage Examples

Graceful Close

This example establishes a connection, processes data, and closes the connection.
The token is loaded from the Argument for Connection Management (ACM) and
used by all of the following Unicenter SOLVE:CPT service requests. The token is
set before issuing the CLOSE call. No termination option is specified, so orderly
release is selected as the default.

The acl_rtncd field is checked (on return from the CLOSE service) and, if
successful, no error is logged.

Note: The statements related to the example are in bold.

#include <t09ksacl.h>
#include <t09ksadt.h>
#include <t09ksacm.h>
#include <t09ksrcs.h>
void main()
{
 struct acl_stru
 cpt_acl = {2, 0, 0, NULL, NULL, 0, 0, 0, 0};
 /*
 * CPT Connection Management service request
 */
 cpt_adt.adt_token = cpt_acm.acm_token;
 /*
 * Data Processing Routine
 */
 while (data)
 {
 /*
 * Application and CPT Data Transfer (SEND/RECEIVE) processing
 */
 }
 /*
 * Orderly Release connection
 */
 Close:
 cpt_acl.acl_token = cpt_acm.acm_token;
 t09fclos (&cpt_acl);
 if (cpt_acl.acl_rtncd != 0)
 {
 /* process and log error */
 }
 /*
 * Terminate Transaction
 */
 End:
 EXEC CICS RETURN;
}

CLOSE Service 3–3

Usage Examples

Abortive Close

This example establishes a connection, receives an error while processing data
and aborts the connection. The ACL version and token are specified. The ACL
abort option ACLABORT is selected to indicate the type of connection
termination required.

The acl_rtncd field is checked (on return from the CLOSE service) and, if
successful, no error is logged.

Note: The statements related to the example are in bold.
#include <t09ksacl.h>
#include <t09ksacm.h>
#include <t09ksadt.h>
#include <t09ksrcs.h>
void main()
{
 struct acl_stru
 cpt_acl = {2, 0, 0, NULL, NULL, 0, 0, 0, 0};
 /*
 * CPT Connection Management service request
 */
 cpt_adt.adt_token = cpt_acm.acm_token;
 /*
 * Data Processing Routine
 */
 while (data)
 {
 /*
 * Application and CPT Data Transfer (SEND/RECEIVE) processing
 */
 if (cpt_adt.adt_rtncd != 0);
 break;
 }
 /*
 * Abortive Release connection
 */
 Abort:
 cpt_acl.acl_token = cpt_acm.acm_token;
 cpt_acl.acl_optns = ACLOPT_ABORT;
 t09fclos (&cpt_acl);
 if (cpt_acl.acl_rtncd != 0)
 {
 /* process and log error */
 }
 /*
 * Terminate Transaction
 */
 End:
 EXEC CICS RETURN;
}

3–4 C Programmer Guide

Parameter Values Returned in the ACL

Parameter Values Returned in the ACL
After the CLOSE service call returns control to your application program, the
following fields are propagated with connection termination information. These
updated values are passed back to the application in the ACL control block.

Field Name Description

acl_dgncd Return code.

acl_rtncd Diagnostic code.

C Structures
Sample C structures are provided in the distributed software and are available to
you in cpthlq.T09MAC. Variable field names contained in the distributed
samples and the examples in this guide refer to these sample structures.

T09KSACL C structure include name for the ACL. For detailed
information and a sample copy of the C structure include
source, see the ACL: Argument for CLOSE Used by the
CLOSE Service section in appendix “Control Block
Layouts.”

All C constants that apply to ACL calls are imbedded in the ACL structure
sample.

CLOSE Service 3–5

Sample Programs

Sample Programs
Sample C source code is provided for your use. You should be able to find a
sample that matches your programming requirement. For more complete details
on which functions a sample program provides, read the program descriptions in
the “Unicenter SOLVE:CPT API Services” chapter and the comments at the
beginning of the sample members listed below. These sample program members
are available in the distributed software in the cpthlq.T09SAMP library.

Name Description

T09PSCL1 TCP Client 1 program.

T09PSCL2 TCP Client 2 program.

T09PSSV1 TCP Server 1 program is a single-threaded server using a Listen
API call.

T09PSSV2 TCP Server 2 program is a multi-threaded server using the Listen
tool.

T09PSSV3 TCP Server 3 program is multithreaded server using a Listen API
call with an independent EXEC CICS START tran.

T09PSSV4 TCP Server 4 program is a multithreaded server using a Listen API
call that has CPT internally issuing the EXEC CICS START tran.

Completion Information
The CLOSE service completes normally when the connection is terminated and
associated resources are released.

Graceful termination waits for all pending transport provider SEND and
RECEIVE requests to complete and then waits for both ends of the full-duplex
connection to close. This waiting can last up to the number of seconds specified
in the acl_timeo field linger value.

Abortive termination closes the transport provider connection without regard to
pending transport provider requests.

WARNING! An abortive termination may cause data loss and should be used only
when data integrity is not required.

On normal return to the application program, the general return code in the
acl_rtncd field is set to zero (CPTIRCOK). The diagnostic code in register zero
(acl_dgncd) is always zero.

3–6 C Programmer Guide

Return Codes

If the CLOSE service completes abnormally, some user data may be lost.
The general return code (acl_rtncd) in register 15, and the diagnostic code
(acl_dgncd) in register zero, indicate the nature of the failure. The diagnostic
code may contain a specific code identifying a particular transport provider
error. The diagnostic code is normally referred as the error number or just
ERRNO, and can be referenced as any EZASOKET call ERRNO.

Return Codes
The CLOSE service returns a code in registers R15 and R0 indicating the results
of the execution. These values are in the acl_rtncd (R15) and acl_dgncd (R0)
described in the appendix “Return Codes.” The diagnostic code may be an
ERRNO, CICS abend code or other value depending on the return code.

This sample structure is available in the distributed software in cpthlq.T09MAC
in member T09KSRCS. For a sample copy of the T09KSRCS structure see the
appendix “Return Codes.” This structure contains a description of the problem
causing the associated return code.

The following is a list of return codes that can apply to the CLOSE call.

Decimal Hex Diagnostic
Code

Variable Description

0 0 No CPTIRCOK Request completed successfully.

17 11 No CPTEVERS Control block version number
not supported.

20 14 No CPTETOKN Specified data transfer token is
invalid.

24 18 No CPTECOPT Invalid Close mode
specification.

31 1F No CPTEFRMT Other Socket Call Parameter List
format or specification error.

34 22 No CPTENAPI API not fully available; retry.

40 28 Yes CPTETERM Environment is being
terminated.

47 2F Yes CPTEENVR Other TPL environmental
condition.

65 41 Yes CPTERLSE Orderly release of remote
connection request.

CLOSE Service 3–7

Usage Notes

Decimal Hex Diagnostic Variable Description
Code

68 44 Yes CPTEDISC Remote connection not available
or aborted.

 Yes CPTEINTG Transport provider API integrity
error.

72 48 Yes CPTEPRGE Remote connection environment
terminating.

143 8F Yes CPTEPROC Procedural error.

254 FE Is abend
code

CPTABEND Abnormal termination.

Note: The diagnostic code is the
abnormal termination code,
which is normally a CICS abend
code, but can also be in the
“Abend Codes” chapter of the
Message Guide.

255 FF No CPTEOTHR Other error.

Usage Notes
The CLOSE service terminates an established transport provider endpoint and
releases associated resources. Established transport provider connections can be
half of a TCP connection, a TCP listening endpoint, or a UDP endpoint, and are
represented by a token.

The CLOSE service uses the ACL. The CLOSE service requires the application to
set the ACL version number and token fields. Optional control information
related to termination processing can be specified.

The version number, field acl_vers, indicates the Unicenter SOLVE:CPT release
level in which this user application program is written. This required field must
be set to two (2) and is validated by the CLOSE service before it processes the
request.

3–8 C Programmer Guide

Usage Notes

The function code, field acl_func, indicates the Unicenter SOLVE:CPT callable
service ID. The field is not initialized by a user application program and has little
value to the application except for dump analysis. The function code can identify
and map an argument list with the error or trace log and dump analysis.

The token, field acl_token, indicates the connection and internal resources that
will be released. This is a required field and is validated by the CLOSE service
before processing the request.

The acl_optns field specifies CLOSE processing control options and provides a
mechanism for event notification on return to the application program.
Currently, only two options (ACLOPT_ORDER and ACLOPT_ABORT) are
supported; no facility exists for CLOSE event notification, except by way of
return code values.

The notion of an orderly close in BSD sockets is to wait a specified amount of
time, so that the other end of the connection can finish receiving data before
closing down the connection. This is what the acl_timeo field value is used for by
the CLOSE service when the ACLOPT_ORDER option is specified.

If the option code ACLOPT_ORDER is selected, the CLOSE service performs a
graceful termination. A graceful termination waits for all pending transport
provider SEND and RECEIVE requests to complete and then waits for both ends
of the full-duplex connection to close. This waiting lasts for the linger value
before closing the connection. The linger value is defined by the value in the
ACLTIMEO field. This may require the CLOSE service to block the application.
This option then performs an orderly release of the TCP/IP connection.

Graceful termination using the ACLOPT_ORDER option is the preferred
mechanism for connection termination.

If the option code ACLOPT_ABORT is selected, the CLOSE service terminates
the connection and no attempt is made to preserve data in transit. The remote
user receives a disconnect indication.

WARNING! An abortive termination may cause data loss and should be used only when
data integrity is not required.

CLOSE Service 3–9

Complete Parameter List

Complete Parameter List
Note: For a recommended list of parameters, see Recommended ACL
Parameters earlier in this chapter.

acl_func Function code. Indicates the function or callable service ID requested by the
application program. This field is not set by the application, but is initialized by
the Task-Related User Exit (TRUE) interface stub program.

Default: None.

acl_dgncd Diagnostic code. Indicates the diagnostic code set by the service request. This
value generally indicates a transport provider return code.

Default: None.

acl_optns Specifies CLOSE processing control options.

Supported options:

ACLOPT_ABORT Indicates abortive termination and option implements a
disconnect or reset of the TCP/IP connection. Typically,
used after an unrecoverable application error occurs.

 WARNING! An abortive termination may cause data loss and
should be used only when data integrity is not required.

ACLOPT_ORDER Indicates a graceful termination and implements orderly
release of the TCP/IP connection.

 Note: This is the preferred option for terminating a
connection.

ACLOPT_SHUT0 Not currently supported. Shutdown the socket for
RECEIVES. If ACMSTATS is set to ACMSTATS_TERM, a
message is generated.

ACLOPT_SHUT1 Not currently supported. Shuts down the socket for
SENDS. If ACMSTATS is set to ACMSTATS_TERM, a
message is generated.

ACLOPT_SHUT2 Not currently supported. Shuts down the socket for
RECEIVES and SENDS. If ACMSTATS is set to
ACMSTATS_TERM, a message is generated.

3–10 C Programmer Guide

Complete Parameter List

Note: The notion of orderly or abortive CLOSE for a UDP endpoint is
meaningless and the options specified when calling CLOSE for a UDP token are
not important. Unicenter SOLVE:CPT knows if the token is UDP and closes it
properly.

Default: ACLOPT_ORDER.

acl_rtncd Return code. Indicates the return code set by the CLOSE service. This value is
also returned in register 15 and indicates the success or failure of the service.

Default: None.

acl_timeo Specifies the time to wait (linger) on an orderly (ACLOPT_ORDER) CLOSE
request. This orderly close is also known as a graceful termination. If this value is
not specified on an orderly CLOSE request, the value specified with the
LINGER= keyword on the T09MCICS configuration macro within the Solve
configuration table is used. For more information about setting the linger value,
see the “Configuration Reference” chapter of the Administrator Guide.

Default: One (1).

acl_token Required. Connection or endpoint token. Specifies a token that represents a TCP
connection, a TCP listening end point, or a UDP end point. A token is created by
the TCP connection initiation routines or by the UDP data transfer and endpoint
creation routines.

Default: None.

acl_vers Required. Version number. Indicates the Unicenter SOLVE:CPT version number
of the argument list used by the calling program.

Note: Must be set to a binary two for this release of Unicenter SOLVE:CPT.

Default: None.

CLOSE Service 3–11

Chapter

4 CONNECT Service

This service provides a client facility for use by an application program.
The CONNECT service establishes a session with the local transport provider;
then actively connects to a server. When connection is established with a server,
the CONNECT service returns control to the calling program. Information
related to the connection is updated and returned within the argument for
connect management (ACM).

To invoke the CONNECT service, a user application is required to first build an
ACM and then issue a call to the CONNECT routine. The minimum information
required by this service is server host address, and well-known server port.
Optional information related to data transfer buffering, statistics and subtask
initialization can be specified.

This chapter discusses these topics:

■ Call Syntax—Shows sample syntax for the CONNECT service call

■ Recommended ACM Parameters—Lists the parameters typically used and
recommended for the CONNECT service call

■ Usage Example—Provides a sample shell of a program using the CONNECT
service call

■ Parameter Values Returned in the ACM—Lists the fields that are updated in
the ACM control block upon return from the CONNECT service call

■ C Structures—Provides a list and information about the distributed sample C
structures used by the CONNECT service call

■ Sample Programs—Lists and describes the distributed sample C programs
that use the CONNECT service call along with other service calls

■ Completion Information—Describes the expected results at completion of the
CONNECT service call

■ Return Codes—Lists the return codes that can apply to the CONNECT
service call

■ Usage Notes—Provides miscellaneous notes about the CONNECT service
call usage

■ Complete Parameter List—Provides a complete list of the parameters and
their options for the CONNECT service call parameters and their options

CONNECT Service 4–1

Call Syntax

Call Syntax

 t09fconn (&cpt_acm);

Recommended ACM Parameters
The following list contains the recommended parameters to use with the
CONNECT service. These parameters are set within the ACM control block; see
the C Structures for sample information.

For a complete list of optional parameters, see Complete Parameter List.

Field Name Description

acm_optn1 Connection Initialization Options—Set to ACMOPTN1_NODNR.

acm_raddr Remote IP Host Address in hexadecimal.

acm_rport Remote Well-Known Service Port.

 acm_vers Version number should be set to 2.

A character text dot format IP address such as 123.234.123.234 can be set in the
acm_rname field rather than using the acm_raddr field.

Usage Example
In the following example, a subset of the actual statements required is shown to
emphasize the use of a CONNECT call. A simple client ACM is built and the
CONNECT request is performed. The version number of 2 is moved in.
The application program sets the remote server port number to 1234. The remote
IP address to which you will connect is placed in the acm_rname field. Control is
returned from the CONNECT service on establishment of a connection or by
some error.

The acl_rtncd field is tested to determine the success of the request. If
the acl_rtncd field is non-zero, an error occurred and the diagnostic code
indicates the reason for failure. If the acl_rtncd field is zero, then the CONNECT
service completed successfully and a token representing the data transfer
connection is returned. The token acm_token is used for all Unicenter
SOLVE:CPT requests related to the connection.

4–2 C Programmer Guide

Usage Example

Note: The statements related to the example are in bold.

#include <t09ksacm.h>
#include <t09ksrcs.h>
void main()
{
 struct acm_stru
 cpt_acm = {2, 0, 0, NULL, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 /*
 * CPT Connection Management Service request
 */
 cpt_acm.acm_vers = 2;
 cpt_acm.acm_rport = 1234;
 memcpy(cpt_acm.acm_rname,"123.234.123.234",15);
 cpt_acm.acm_optn1 = ACMOPTN1_NODNR;
 t09fconn (&cpt_acm);
 if (cpt_acm.acm_rtncd != 0)
 {
 /* process CPT CONNECT service error and terminate transaction */
 }
 cpt_adt.adt_token = cpt_acm.acm_token;
 while (data)
 {
 /* Application and CPT data transfer (SEND/RECEIVE) processing */
 }
 /*
 * CPT Connection Release
 */
 /*
 * Terminate Transaction
 */
 End:
 EXEC CICS RETURN;

}

CONNECT Service 4–3

Parameter Values Returned in the ACM

Parameter Values Returned in the ACM
After the CONNECT service call returns control to your application program, the
following fields are propagated with valid, established connection information.
These updated values are passed back to the application in the ACM control
block.

Field Name Description

acm_dgncd Diagnostic Code.

acm_laddr Local IP Host Address.

acm_lname Local IP Host Name.

acm_lport Client Application Port.

acm_mrecv API receive buffer size.

acm_msend API send buffer size.

acm_qrecv API receive queue size, set to one.

acm_qsend API send queue size, set to one.

acm_raddr Remote IP Host Address.

acm_rtncd Return Code.

acm_token Token—Connection or endpoint.

C Structures
Sample C structures are provided in the distributed software and are available to
you in cpthlq.T09MAC. Variable field names contained in the distributed
samples and the examples in this guide refer to these structures.

T09KSACM C structure include name for the ACM. For detailed
information and a sample copy of the C structure, see the
ACM: Argument for Connection Management Used by
CONNECT and LISTEN Calls section in the appendix
“Control Block Layouts.”

All C constants that apply to ACM calls are imbedded in the ACM structure
sample.

4–4 C Programmer Guide

Sample Programs

Sample Programs
Sample C source code is provided for your use. You should be able to find a
sample that matches your programming requirement. For more complete details
on which functions a sample program provides, see the program descriptions in
the “Unicenter SOLVE:CPT API Services” chapter and the comments at the
beginning of the sample members listed below. These sample program members
are available in the distributed software in the cpthlq.T09SAMP library.

Name Description

T09PSCL1 Client application sends typed in data to the server
waiting for the information to be echoed back from the
server.

T09PSCL2 Client application to send an internal message using
either the FULL, SEP or LL to be echoed back by the
server.

Completion Information
The CONNECT service completes normally when a connection with a remote
server is established. The CONNECT service initializes the client environment
with the transport provider (API) and actively contacts a remote server and then
updates connection information within the ACM control block.

When a connection is successfully established the ACM control block is updated
with information related to the connection. The local and remote port,
IP address, and host names are resolved and available in the ACM. The ACM
return code acm_rtncd should be checked to determine the success or failure of
the CONNECT service. A zero (0) return code indicates a successful connection.
When Unicenter SOLVE:CPT successfully establishes a client connection a non-
zero token will be returned in the acm_token field. This token can be passed in
subsequent Unicenter SOLVE:CPT calls (SEND, RECEIVE, GIVE, etc) in the
token field.

The return and diagnostic codes should be interpreted by the application to
determine the reason for failure. Errors indicating CPT, the transport provider
(API), or CICS termination are minor. Errors should be interrogated for level of
severity.

CONNECT Service 4–5

Return Codes

Return Codes
The CONNECT service returns a code in the acm_rtncd(R15) and acm_dgncd
(R0) described in the appendix "Return Codes.” The diagnostic code typically
indicates the transport provider return code, better known as Error Number or
ERRNO.

A sample C structure is provided in cpthlq.T09MAC, member T09KSRCS. It
details the variable field names contained in the distributed samples and the
examples in this guide. See the appendix “Return Codes” for a sample copy of
the T09KSRCS structure. A description of the problem causing the associated
return code is contained in this structure.

The following is a list of return codes that can apply to the CONNECT call.

Decimal Hex Diagnostic
Code

Variable Description

0 0 No CPTIRCOK Request completed successfully.

4 4 No CPTWNEGO System limits applied to buffer
or Queue sizes.

17 11 No CPTEVRSN Control block version number
not supported.

18 12 No CPTECONN Required Parameter not passed.

For example, host, port, …

20 14 No CPTETOKN Specified data transfer token is
invalid.

31 1F No CPTEFRMT Other Socket Call Parameter List
format or specification error.

34 22 No CPTENAPI API not fully available; retry.

36 24 No CPTEDRAN TCP/IP environment is
terminating.

40 28 Yes CPTETERM Environment is being
terminated.

47 2F Yes CPTEENVR Other transport layer
environmental condition.

65 41 Yes CPTERLSE Orderly release of remote
connection request.

68 44 Yes CPTEDISC Remote connection not available
or aborted.

4–6 C Programmer Guide

Return Codes

Decimal Hex Diagnostic Variable Description
Code

72 48 Yes CPTEPRGE Remote connection environment
terminating.

79 4F Yes CPTEINTG Other transport layer
connection/data integrity error.

143 8F Yes CPTEPROC Procedural error.

254 FE Is abend
code

CPTABEND Abnormal termination.

The diagnostic code is the
abnormal termination code that
is normally a CICS abend code,
but can also be in the “Abend
Codes” chapter of the Message
Guide.

255 FF No CPTEOTHR Other error.

CONNECT Service 4–7

Usage Notes

Usage Notes
The CONNECT service lets user-written application programs implement
TCP/IP client facilities. The CONNECT service’s generalized parameter list
(ACM) describes the application’s communications requirements and
information related to established connections. On completion, the ACM control
block contains fields initialized by both a user application and by the results of
the call to the CONNECT service.

There are required and optional fields initialized by a user or calling application.
The calling program must identify the server. You specify the server by selecting
the remote IP address field name acm_raddr (or DNS name acm_rname) with the
remote port acm_rport. The remote port selection defines the server’s well-
known port address. Optional fields control data transfer buffering, statistics,
and subtask initialization.

When the CONNECT service completes, the ACM control block contains
information related to the established connection. A token in field acm_token
identifying the connection is returned in the ACM, and must be used in all
subsequent requests that refer to the connection. The user application program
should make no assumptions regarding the format of a token, other than that it is
an unsigned, full word value.

WARNING! Manipulating the token in any way can cause unpredictable results.

Information related to the negotiated buffer values, host names, host addresses,
and transport provider addresses are returned in the ACM.

The version number in field acm_vers indicates the CPT release level in which
this user application program is written. This required field must be set to a
binary two and is validated by the CONNECT service before processing the
request.

The function code acm_func indicates the CPT callable service ID. The field is
initialized by the CONNECT service stub program and has little value to the
application except for dump analysis. The function code can identify and map an
argument with the error or trace logs, and dump analysis.

The remote IP address in field acm_raddr or remote host name in field
acm_rname is required. These fields identify the host to which the CONNECT
service initiates a connection request. The IP address has precedence over host
name. This implies that the host name field is only used if an IP address is not
specified. Specifying a remote host name in field acm_rname makes the code
more flexible because the host IP address could change and the program would
not need to be modified. However, there is extra overhead required to resolve a
host name to an IP address with a DNR call.

4–8 C Programmer Guide

Usage Notes

The remote port number acm_rport is a required field. This field identifies the
well-known port to which the CONNECT service initiates a connection request.

It is recommended that programmers set the ACMOPT_NODNR field to prevent
the extra overhead of making DNR calls to resolve the remote IP address
whenever possible.

User application programs have the ability to control Unicenter SOLVE:CPT and
transport provider data transfer buffering. The fields, acm_msend and
acm_mrecv, specify the size of buffers allocated. The SEND and RECEIVE
buffers are allocated on initial entry into either the SEND or RECEIVE service.
The corresponding values used by the SEND and RECEIVE services are
independent of each other. The product of the queue and buffer values cannot
exceed 32KB. CPT requires some additional storage to manage these buffers. This
extra storage is not included in the allocation.

The SEND service uses the acm_msend value. The RECEIVE service uses the
acm_mrecv value. These values indicate the maximum number of user data bytes
that can be transferred by the application in a single SEND or RECEIVE request
to the transport provider. The user application is not limited to these values
within the data transfer services. However, it is important to note that multiple
transport provider or API requests are issued to complete the caller’s request.
Information on queue and buffer size can be found in the SEND and RECEIVE
service description section in this chapter.

Initially, the tuning of data transfer storage may not be a concern. However, the
ability to control storage allocation can prove beneficial to the application or
CICS region. Consider enabling the statistics option to gather CPT statistical
information, which can be used to set the SEND or RECEIVE buffer size values.

The CONNECT service can modify data transfer buffer allocation values.
These values are negotiated with the transport provider and, depending on the
site configuration, can be reduced. Any application dependent on these values
should check them on return. These values are not typically modified when
giving reasonable numbers. However, it is advisable to check with the site
administrator for maximum values for the API transport services.

A number of arguments are not set by the calling application, but are returned to
the caller. These values represent information related to the client connection and
can be used by the application. The local port, host name, and IP address are
returned, as well as the client’s corresponding values.

CONNECT Service 4–9

Complete Parameter List

Complete Parameter List
acm_bcklg Maximum size of the LISTEN backlog queue. Not used by the CONNECT

service.

acm_cdtbl Not used by the CONNECT service.

acm_clntl Not used by the CONNECT service.

acm_dgncd Indicates the diagnostic code received by the CONNECT service for a transport
provider request. The acm_dgncd depends on the error event recorded in the
acm_rtncd field. The acm_dgncd could be CICS abend code ERRNO, or other
value depending on the acm_rtncd failure.

When a Unicenter Solve:CPT API call fails, the product prefers to return the
acm_rtncd and acm_dgncd pair from the first error event that occurred during
the Solve:CPT API call.

An API system error return code (ERRNO) can be mapped back into a Unicenter
SOLVE:CPT return code (acm_rtncd) when an EZASOKET (or EZACICAL) error
occurs during processing of a Unicenter SOLVE:CPT API call. If the first error on
a Unicenter SOLVE:CPT API call is an EZASOKET (or EZACICAL) error, then
the acm_dgncd contains the TCP API system Error return code (ERRNO). To
determine the meaning of the ERRNO number, see IBM’s Communication Server
IP API Guide or IBM’s Communication Server IP CICS Sockets Guide or equivalent.

acm_func Indicates the function or callable service ID requested by the application
program. This field should not be set by the application, but rather is initialized
by the TRUE interface stub program.

Default: None, generated by service stub.

acm_laddr Local IP host address. Indicates the local host internet address. The local host
internet address is updated when a server connection is established, and is
returned to the caller.

This field is an unsigned four-byte integer value.

Default: None.

acm_lname Local IP host name. Indicates the local host internet name. The local host internet
name is updated when a client connection is established, and is returned to the
caller.

This field is a 255-byte character string that is padded with blanks.

Default: None.

4–10 C Programmer Guide

Complete Parameter List

acm_lport Client application port. The value returned in this field represents the TCP port
on the local host that was assigned to the client application by TCP, if it is not
specified by the caller of the CONNECT service.

 It is a standard practice to not specify a value for this parameter on the
CONNECT service call. Not specifying a value allows the transport provider to
assign this local port for you. If the caller of the CONNECT service does specify a
local port, the call could fail if the port is already used by TCP.

This field is an unsigned positive integer with a maximum value of 65,534.

Default: None.

acm_mrecv API receive buffer size. Specifies the maximum number of user data bytes that
can be transferred by the application, in a single RECEIVE request to the
transport provider (API).

This value lets applications control input processing and can affect throughput
rates. The value is negotiated with and can be modified by the transport
provider.

Total allocation cannot exceed 32 KB.

Default: 1024.

acm_mroas Not used by the CONNECT service.

acm_mroep Not used by the CONNECT service.

acm_msend API send buffer size. Specifies the maximum number of user data bytes that can
be transferred by the application in a single SEND request to the transport
provider (API).

This value lets applications control output processing and can affect throughput
rates. The value is negotiated with and can be modified by the transport
provider.

Total allocation cannot exceed 32 KB.

Default: 1024.

acm_msock Maximum sockets per allowed for your transaction

This field overrides the MSOCK= value from the T09MCICS configuration
macro.

Default: 50.

CONNECT Service 4–11

Complete Parameter List

acm_optns Specifies TCP connection initialization options.

ACMOPTN1_CTRAN Not used by the CONNECT service.

ACMOPTN1_LTRAN Client-Data Listener option. This option is for the
LISTEN service and is not validated or modified by the
CONNECT service.

ACMOPTN1_NODNR DNR Suppression option. Skip internal DNR calls to
resolve the requested DNS host name into a remote IP
address in the acm_raddr field.

 Default: DNR is used for host name resolution.

ACMOPTN2_CLEN Not used by the CONNECT service.

ACMOPTN2_MRO Not used by the CONNECT service.

ACMOPTN2_SCTY Not used by the CONNECT service.

ACMOPTN1_OTRAN Not used by the CONNECT service.

ACMOPTN2_USRID Not used by the CONNECT service.

ACMOPTN1_SYNC Listen Syncport option. This option is for the LISTEN
service and is not validated or modified by the CONNECT
service.

Default: None.

acm_qrecv API receive queue size. You should only specify one. Adding extra buffers
wastes storage and does not improve performance.

Default: One.

acm_qsend API send queue size. You should only specify one. Adding extra buffers wastes
storage and does not improve performance.

Default: One.

4–12 C Programmer Guide

Complete Parameter List

acm_raddr Remote IP host address. Indicates the remote host internet address.

Either this field or the remote host name (acm_rname) field must be specified.

The remote host internet address is updated when a server connection is
established, and is returned to the caller.

This field is an unsigned four-byte integer value.

Default: None.

acm_rname Remote IP host name.

This field indicates the remote host internet name.

Either this value or the remote IP address (acm_raddr) field must be specified.

This is a 255-byte character string that is padded with blanks. It can also be used
to resolve a dotted decimal name such as “123.234.123.234.” The remote host
internet name is updated when a server connection is established, and is
returned to the caller.

Default: None.

acm_rport Required. Remote well-known service port. This value represents the TCP port
on the remote host to which the client application is trying to connect.

This field is an unsigned positive integer with a maximum value of 65,534.

Default: None.

acm_rtncd Indicates the return code set by the CONNECT service. This value is also
returned in register 15 and indicates the success or failure of the service. For
expected values, see Return Codes. See the acm_dgncd parameter above.

acm_seclm Not used by the CONNECT service.

acm_srvce This field remains only for downward compatibility purposes and is ignored.
This field is no longer supported in version 6 of CPT.

CONNECT Service 4–13

Complete Parameter List

acm_stats Specifies statistics logging options for the application program. The facility can
be used for debugging and tuning during development.

ACMSTATS_CONN Specifies that messages be generated on establishing either
a listen service or a data transfer connection. These
messages are generated by the LISTEN and CONNECT
services.

ACMSTATS_TERM Specifies that messages be generated on terminating an
established connection. These messages are generated by
the CONNECT service.

Default: No statistics logging.

acm_timeo Optional. This field is used by the CONNECT service to specify the amount of
time in seconds to wait for a TCP connection to complete.

Default: 30.

acm_tlstn Listen service token. This field is not used by the CONNECT service. The value
in this field is not validated nor is it modified.

acm_token Specifies the token created and returned by the CONNECT service. This token is
used for all subsequent service calls for the client connection. Applications
should initialize this field to zero.

acm_trace Please note that the tracing functionality has moved in version 6 of Unicenter
SOLVE:CPT. A greatly enhanced tracing capability is now available via the
TCPEEP tracing command. These tracing fields remain only for downward
compatibility purposes and are ignored. See the Administrator Guide for more
detail.

ACMTRAC1_NTRY ACMTRAC1_TERM ACMTRAC2_TPL

ACMTRAC1_ARGS ACMTRAC1_PASS ACMTRAC2_RLSE

ACMTRAC1_RECV ACMTRAC1_CLSE ACMTRAC2_STOR

ACMTRAC1_SEND ACMTRAC1_TERR ACMTRAC2_CLTD

acm_trnid Listen start transaction ID. This field is not used by the CONNECT service. The
value in this field is not validated nor is it modified.

Default: None.

acm_ucntx One word of user context. Specifies one arbitrary word of user context to
associate with the connection. The information provided is not interpreted by
Unicenter SOLVE:CPT, and is saved with other connection information.

Default: Zero, no user context.

4–14 C Programmer Guide

Complete Parameter List

acm_usrid Not used by the CONNECT service.

acm_vers Required. Indicates the version number of the Unicenter SOLVE:CPT argument
used by the calling program.

Must be set to a binary two for this release of Unicenter SOLVE:CPT.

Default: None.

CONNECT Service 4–15

Chapter

5 FTP Client Service

Allows the transfer of files from CICS to remote systems using the Internet
standard File Transfer Protocol (FTP). These files are either CICS Transient Data
Queues or CICS Temporary Storage.

This chapter discusses the following topics:

■ Call Syntax—Sample syntax for the FTP Client Service call

■ Recommended AFT Parameters—Lists the parameters normally used and
recommended for the FTP Client Service call

■ Usage Example—Provides a sample shell of a program using the FTP Client
Service call

■ Parameter Values Returned in the AFT—Lists the fields that are updated in
the AFT control block upon return from the FTP Client Service call

■ C Structures—Provides a list and information about the distributed sample C
structures that are used by the FTP Client Service call

■ Sample Programs—Lists and describes the distributed sample C programs
that use the FTP Client Service call along with other service calls

■ Completion Information—Describes the expected results at completion of the
FTP Client Service call

■ Return Codes—Lists the return codes that can apply to the FTP Client
Service call

■ Module Descriptions—General descriptions of the Unicenter SOLVE:CPT
FTP Client Service modules.

■ Usage Notes — Miscellaneous notes on usage of the FTP client

■ Complete Parameter List—Provides a complete list of the parameters and
their options for the FTP Client Service call

FTP Client Service 5–1

Call Syntax

Call Syntax
EXEC CICS LINK
PROGRAM (’T09TCFCM’)
COMMAREA (&cpt_aft)
LENGTH (AFTLEN)
END-EXEC

Recommended AFT Parameters
The following list contains the recommended parameters to use with the FTP
Client Service. These parameters are set within the AFT control block; see C
Structures for sample information.

For a complete list and detailed description of optional parameters, see the
Complete Parameter List.

Parameter Description

aft_fnama Address of remote file name.

aft_fnaml Length of remote file name.

aft_ftptl Length of FTP reply.

aft_func File transfer type:

AFTFUNC_APPE for appending to a file.

AFTFUNC_RENM for renaming a file.

AFTFUNC_RETR to retrieve a file.

AFTFUNC_STOR for storing a file.

AFTFUNC_STOU for storing a unique file name.

aft_nbrx Number of files to transfer.

aft_pass Password for remote logon.

aft_qname Queue name.

aft_qtype Queue type:

AFTQTYPE_TD for transient data queue.

AFTQTYPE_TS for temporary storage queue.

aft_rnama Address of remote host name.

aft_rnaml Length of remote host name.

aft_rtnta Address of return text.

5–2 C Programmer Guide

Usage Example

Parameter Description

aft_rtntl Length of return text.

aft_ftpta Address of FTP reply.

aft_type Transfer Type:

AFTTYPE_ASCII for ASCII translation.

AFTTYPE_EBCDC for EBCDIC translation.

AFTTYPE_IMAGE for binary (no translation).

AFTTYPE_LOCAL for local translation.

aft_user User ID for remote logon.

aft_vers Version number set to AFT_VERSN(2).

Usage Example
A sample program, T09PSFTP, is provided in the hlq.T09SAMP library. The
following is based on that sample.

This example contains the minimum amount of information that must be passed
to the FTP Client Service for it to function.

The required fields are:

■ Remote host name and length, or IP address. If the host name is used, it must
be resolvable by your DNR pointed to by Unicenter SOLVE:CPT

■ Valid user ID and password on the remote system

■ Name and length of the file to be acted upon

■ Name and type of queue for data retrieval—required for all functions except
rename

■ FTP and Unicenter SOLVE:CPT returned text fields and field length

All other fields can be left at the FTP defaults on the system to which the data is
being transferred.

Important! All fields must be specified in the format and case that the remote system
requires. The FTP Client Service does no checking before attempting the remote host
connection.

FTP Client Service 5–3

Usage Example

#include <t09ksaft.h>
void main ()
{
aft_stru cpt_aft = {AFT_VERSN, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0};
char *iptarea;
char filedata = {"CPT FTP CALLABLE CLIENT SAMPLE",'\0'};
char how_started = 2;
short wrklen = 0;
short iptlen = 0;
char hostname 255 = {"remote-host-name",'\0'};
char userid 64 = {"anonymous",'\0'};
char password 64 = {"ftp",'\0'};
char directory = {"/home/host/incoming",'\0'};
char filename = {"ftp.file",'\0'};
struct { char ftp 80;
char cpt 80;
} return_text = {" ", " "};
/*---*/
/* Build a single test record in the TSQ to send to remote */
/*---*/
EXEC CICS ENQ
 RESOURCE("SAMPLFTP")
 LENGTH (8);
EXEC CICS DELETEQ TS
 QUEUE ("SAMPLFTP")
 NOHANDLE;
wrklen = sizeof(filedata)
EXEC CICS WRITEQ TS
 QUEUE ("SAMPLFTP")
 FROM (filedata)
 LENGTH (wrklen);
/*--*/
/* BUILD LOGON VALUES */
/*--*/
cpt_aft.aft_rnama = &hostname;
cpt_aft.aft_rnaml = wrklen;
memcpy(cpt_aft.aft_user,userid,sizeof(userid));
memcpy(cpt_aft.aft_pass,password,sizeof(password));
/*--*/
/* BUILD INPUT FILE VALUES */
/*--*/
memcpy(cpt_aft.aft_qtype,"TS",2);
memcpy(cpt_aft.aft_qname,"SAMPLFTP",8);
/*--*/
/* BUILD OUTPUT FILE VALUES */
/*--*/
cpt_aft.aft_wdira = &directory;
cpt_aft.aft_wdirl = sizeof(directory);
cpt_aft.aft_fnama = &filename;
cpt_aft.aft_fnaml = sizeof(filename);
cpt_aft.aft_nbrx = 1;
memcpy(cpt_aft.aft_func,"STOR",4);
/*--*/
/* POINT TO RETURN TEXT FIELDS */
/*--*/
cpt_aft.aft_ftpta = &return_text.ftp;
cpt_aft.aft_ftptl = sizeof(return_text.ftp);
cpt_aft.aft_rtnta = &return_text.cpt;
cpt_aft.aft_rtntl = sizeof(return_text.cpt);

5–4 C Programmer Guide

Usage Example

/*--*/

/* CALL CFCC SERVICE */

/*--*/

wrklen = sizeof(cpt_aft);
EXEC CICS LINK
 PROGRAM ("T09TCFCM")
 COMMAREA (&cpt_aft)
 LENGTH (wrklen);
/*--*/
/* DISPLAY RETURN STATUS */
/*--*/
wrklen = sizeof(return_text);
EXEC CICS SEND
 FROM (&return_text)
 LENGTH (wrklen)
 ERASE NOHANDLE;
 EXEC CICS RETURN;
}

Parameter Values Returned in the AFT

After the FTP client call returns control to your application program, the
following fields are propagated with valid completion FTP client information.
These updated values are passed back to the application in the AFT control
block.

Field Name Description

aft_dgncd Diagnostic code.

aft_ftptl Actual length of FTP reply.

aft_nbrxt Number of files transferred.

aft_rtncd Return code.

aft_rtntl Actual length of returned text.

aft_ftpcd FTP return code.

FTP Client Service 5–5

C Structures

C Structures
Sample C structures are provided in the distributed software and are available to
you in cpthlq.T09MAC.

Variable field names used in the samples and examples in this guide refer to
these structures.

T09KSAFT C structure name for the AFT. For detailed information and
a sample copy of this structure, see AFT Control Block
Used by FTP Client Call in the “Control Block Layouts”
appendix.

Sample Programs
Sample C source code is available in the distributed software in the
cpthlq.T09SAMP library. You should be able to find a sample that matches your
programming requirement. For complete details on the function a sample
program provides, see the program descriptions in the “Unicenter SOLVE:CPT
API Services” chapter and the descriptions of the sample members listed below.

Name Description

T09PSFTP FTP Client Application.

5–6 C Programmer Guide

Completion Information

Completion Information
Completion of a request to the Unicenter SOLVE:CPT FTP Client Service
depends on the specified FTP function. For all functions, a control connection is
established to the remote host and Telnet logon once this connection is
completed. Any specified transfer attributes are also sent to the remote host.
Further processing varies depending on the type of FTP function specified.

For functions that cause a file to be transferred (STOR, STOU, and APPE), a data
connection is established to the remote host, and the specified file is transferred
using the appropriate FTP service command. For remote file management
functions (RENM), no data connection is established. The FTP rename service
commands are sent through the control connection. The caller’s argument list
(AFT) is updated to show return codes as described in Return Codes.

On completion of the requested services, control is returned to the invoking user
application, with return codes and text indicating the success or failure of the
service execution.

Return Codes
The Unicenter SOLVE:CPT FTP Client Service returns status information in
return codes and text fields indicating the results of the execution. This
information is returned to the invoking user application in five fields of the AFT
(COMMAREA). Primary service level status information is returned in aft_ftpcd.
This return code indicates overall success or failure of the Unicenter SOLVE:CPT
FTP Client Service.

This table describes the Unicenter SOLVE:CPT FTP Client Service return codes:

Return Description

0 The service has successfully executed. The specified file has been
transferred to the remote host.

4 A noncritical error was detected in one or more of the parms passed in
the AFT. No file transfer was attempted.

8 The remote FTP server returned a reply indicating that an error
occurred in the file transmission. The file was not successfully
transferred.

12 An error was detected in a Unicenter SOLVE:CPT service routine that
necessitates aborting any file transfer in progress.

16 A critical system error has occurred. File transfer is not attempted or is
aborted if already in progress.

FTP Client Service 5–7

Return Codes

aft_rtntx of the AFT A text description of the execution results is also returned in aft_rtntx of the
AFT. This text is formatted for display by the invoking user application, and
provides a description of the processing status.
See the appropriate TCP/IP FTP Message Guide for a detailed explanation of
error messages returned in this field.

aft_ftptx of the AFT An additional text description of FTP replies is returned in aft_ftptx of the AFT.
This text is formatted for display by the invoking user application and provides
the last reply from the FTP remote server. This field indicates the results of the
last FTP service command.

See the Internet standard Request For Comment (RFC) 959 for a further
explanation of FTP replies.

Any of the Unicenter SOLVE:CPT services invoked by Unicenter SOLVE:CPT
FTP Client Service return a return code and optional diagnostic code indicating
the success or failure of the service call. Detected Unicenter SOLVE:CPT errors
are returned to your application in AFT fields aft_rtncd and aft_dgncd. The
diagnostic code is optional and indicates the transport provider return code. See
the Return Codes Cross Reference Table.

The following is a list of return codes that can apply to the FTP Client call.

Decimal Hex Diagnostic
Code

Variable Description

0 0 No CPTIRCOK Request completed successfully.

18 12 Yes CPTECONN Required Parameter not passed.

For example, host, port, …

19 13 No CPTEPROT Specified protocol not
supported.

20 14 No CPTETOKN Specified data transfer token is
invalid.

21 15 No CPTEBUFF Buffer address or length invalid.

22 16 No CPTECHAR Translate character set is invalid.

23 17 No CPTEMODE Translate mode specification is
invalid.

31 1F No CPTEFRMT Other Socket Call Parameter List
format or specification error.

34 22 No CPTENAPI API not fully available; retry.

40 28 Yes CPTETERM Environment is being
terminated.

5–8 C Programmer Guide

Module Descriptions

Decimal Hex Diagnostic Variable Description
Code

47 Yes CPTEENVR Other transport layer
environmental condition.

65 41 Yes CPTERLSE Orderly release of remote
connection request.

68 44 Yes CPTEDISC Remote connection not available
or aborted.

72 48 Yes CPTEPRGE Remote connection environment
terminating.

79 4F Yes CPTEINTG Other transport layer
connection/data integrity error.

143 8F Yes CPTEPROC Procedural error.

254 FE Is abend
code

CPTABEND Abnormal termination. Note
that the diagnostic code is the
abnormal termination code,
which is normally a CICS abend
code, but can also be in the
“Abend Codes” chapter of the
Message Guide.

255 FF No CPTEOTHR Other error.

2F

Module Descriptions
This section contains a general description of the Unicenter SOLVE:CPT FTP
Client Service modules:

■ T09TCFCM

■ T09TCCFDM

■ T09TCFRM

T09TCFCM

T09TCFCM is the main entry point for requesting Unicenter SOLVE:CPT FTP
services. Your application invokes this module using an EXEC CICS LINK.

Its primary functions are to:

■ Accept and validate parameters passed from your application

■ Open a control connection to the remote FTP server

FTP Client Service 5–9

Module Descriptions

■ Process access control parameters (USER, PASS, ACCT)

■ Process data transfer parameters for each file to be transferred (PORT, TYPE,
STRU, MODE, ALLO, SITE, MKD, CWD)

■ Open a data connection port to the remote FTP server for each file to be
transferred

■ Initiate file transfer for each file to be transferred

■ Close control connection to remote FTP server and return to your application

T09TCFDM

T09TCFDM is a major subroutine of Unicenter SOLVE:CPT FTP Client Service
that is invoked by an EXEC CICS START issued by T09TCFCM. This subroutine
performs the following two primary functions, depending on a function flag set
in the invoking routine:

■ LISTEN for and accept the data connection from the remote FTP server

■ Format and SEND the file to the remote FTP server over the established data
connection

T09TCFRM

T09TCFRM is a major subroutine of Unicenter SOLVE:CPT FTP Client Service
that is invoked by an EXEC CICS START issued by T09TCFCM. This subroutine
monitors the control connection and RECEIVEs any replies from the remote FTP
server.

5–10 C Programmer Guide

Usage Notes

Usage Notes
CICS programs call FTP Client Service, passing necessary information for the
service to accomplish data transmission to a remote FTP server, then return
status information. FTP Client Service processes the parameters, negotiates logon
and file characteristics, storage and processing attributes, and transmits the
specified data to the remote server using standard FTP protocols. Once the
transmission occurs, FTP Client Service returns a return code or error text
describing the transmission status to the invoking program.

Your application invokes FTP Client Service using an EXEC CICS LINK to the
service. Information is exchanged between your application and FTP Client
Service through the CICS COMMAREA. To use this service, your application
first creates either temporary storage or a transient data file storage queue on the
local host for each file that will be transferred to the remote host. The
COMMAREA is used to identify the remote host, user access parameters and, for
each file to be transferred: the source location, destination names, transfer
parameters and storage function. On return from the FTP Client Service, your
application is responsible for queue maintenance and, if indicated by the FTP
Client Service return codes, retrying any failed transmissions.

This service calls a variety of existing Unicenter SOLVE:CPT:TRUE exits to
satisfy the file transmission requirements as follows:

T09CCONN Establishes a connection to the specified remote host.

T09CCLOS Closes the specified connection to the remote host.

T09CSEND Sends data to the remote host via the specified connection.

T09CRECV Receives data from the remote host via the specified connection.

T09CGIVE Hands off a connection endpoint to another task.

T09CTAKE Accepts a connection endpoint from another task.

T09CXLAT Translates data into the appropriate format for transmission or
storage.

T09CLFTP Listens for and accepts a data connection from the remote host.

For each of these called services, the buffering requirements that are normally
tunable by the calling user application are internally tuned by the Unicenter
SOLVE:CPT FTP Client Service to default values that are appropriate for FTP file
transfers.

FTP Client Service 5–11

Complete Parameter List

Complete Parameter List
For a recommended list of parameters, see Recommended AFT Parameters.

aft_acct Optional. Account for remote logon. Indicates the account that Unicenter
SOLVE:CPT FTP Client Service uses when performing a Telnet logon to the
remote host.

Your application is responsible for ensuring that the account number is specified
for remote hosts with this type of file access requirement.

Default: None.

aft_allo Storage allocation on remote host. Indicates the number of bytes of storage on the
remote host to be allocated for the transferred file.

Note: This feature is not currently supported and the field should contain spaces
or binary zeros.

Default: Zero.

aft_dgncd Diagnostic code. Indicates the diagnostic code associated with a non-zero
Unicenter SOLVE:CPT return code. This value generally indicates a transport
provide return code.

Default: Zero.

aft_fnama Address of remote file name. Indicates the storage address where the required
remote file name is placed.

This is a contiguous segment of storage accessible to the user task. The storage
area can be aligned on any boundary convenient to the application program. This
field is a character string of up to 255 bytes. This name can be the last node of the
full directory name or the fully qualified data set name or pathname.

When used with STOR or APPE, this field contains the name under which the
transferred file will be stored/appended. When used with RENM, this field
contains the name of the Rename From file on the remote host.

Default: None.

aft_fnaml Length of remote file name. Indicates the length in bytes of the remote file name
in the storage area defined by aft_nama.

This value must be specified if aft_nama is specified.

Default: Zero.

5–12 C Programmer Guide

Complete Parameter List

aft_form Transmission format.

AFTFORM_ASACC Use ASA carriage control transmission format (future).

AFTFORM_DFLT Use the FTP service default format.

AFTFORM_NPRNT Use nn-print transmission format.

AFTFORM_TELNT Use Telnet transmission format (future).

Default: None. Use the FTP service default. Refer to the appropriate FTP manual
for more details.

aft_ftpcd FTP return code. Contains a return code set by the Unicenter SOLVE:CPT FTP
Client Service indicating the success or failure of the service request.

Default: Zero.

aft_ftpta Address of FTP reply. Indicates the storage address where the final FTP reply
text is placed.

This is a contiguous segment of storage accessible to the user task. Unicenter
SOLVE:CPT FTP Client Service returns one line of text supplied by FTP,
indicating the success or failure of the file transfer.

Allow a minimum of 80 bytes or the text may be truncated.

Default: None.

aft_ftptl Length of FTP reply. Indicates the length in bytes of the FTP reply area available
in the storage defined by aft_ftpta.

Default: Zero.

FTP Client Service 5–13

Complete Parameter List

aft_func Required. FTP service command. Indicates the four-byte character field FTP
service command that should be used for transferring this file.

AFTFUNC_APPE Append the file to the file name specified in aft_fnama. If
the file does not exist, create it.

AFTFUNC_RENM Rename the file specified in aft_fnama to the name
specified in aft_rntoa.

AFTFUNC_STOR Store the file under the name specified in aft_fnama. If the
file exists, replace it.

AFTFUNC_STOU Store the file under a unique name as specified in
aft_fnama in the default or specified working directory. If a
file with that name exists, the FTP server reports the unique
name assigned to it.

Default: None.

aft_mode Transmission mode. Indicates the FTP transmission mode to be used for transfer
of this file.

AFTMODE_BLCK Use Blocked mode (future).

AFTMODE_COMP Use Compressed mode (future).

AFTMODE_DFLT Use the FTP service default mode.

AFTMODE_STRM Use Stream mode.

Default: None. Use the FTP service default. Refer to the appropriate FTP manual
for more details.

aft_nbrx Number of files to transfer. Indicates the number of files to be transferred for this
invocation of Unicenter SOLVE:CPT FTP Client Service.

The number of files transferred for a single call is limited to one and the field is
not referenced.

Default: Zero.

aft_nbrxt Number of files transferred. Indicates the number of files that have been
transferred successfully to the remote host.

The number of files transferred for a single call is limited to one and the field is
not used.

Default: Zero.

5–14 C Programmer Guide

Complete Parameter List

aft_pass Required. Password for remote logon. Indicates the password that Unicenter
SOLVE:CPT FTP Client Service uses when performing a Telnet logon to the
remote host.

Default: None.

aft_qitem Number of Temporary Storage items. Indicates the number of items stored in the
storage queue specified in aft_qname.

This field is not currently used. All records in the named queue are processed.

Default: Zero.

aft_qname Required. Queue name. Indicates the name of the storage queue that contains the
file to transfer to the remote host.

■ If aft_qtype is Transient Data (AFTQTYPE_TD), this field must contain a
four-byte queue name for which there is an existing DCT entry

■ For Temporary Storage (AFTQTYPE_TS), this field can contain up to eight
characters that identify a TS queue that exists.

Default: None.

aft_qtype Required. Queue type. Indicates the type of storage queue used for the file to be
transferred.

AFTQTYPE_TD Stored on a Transient Data queue.

AFTQTYPE_TS Stored on a Temporary Storage queue.

Default: None.

aft_rnama Address of remote host name. Indicates the storage address where the name of
the remote host is placed. This is a contiguous segment of storage accessible to
the user task. The storage area can be aligned on any boundary convenient to the
application program.

Either this value and its associated length (aft_rnaml) or the remote IP address
(aft_raddr) must be specified.

The remote host name is a character string of up to 255 bytes.

Default: None.

FTP Client Service 5–15

Complete Parameter List

aft_rnaml Length of remote host name. Indicates the length in bytes of the remote host
name in the storage area defined by aft_rnama.

When aft_rnama is set, then the aft_rnaml field should be between 1 and 255.

The aft_rnaml field contains an unsigned four-byte integer.

Default: Zero.

aft_rntoa Address of Rename To file name. Indicates the storage address where the name
of the Rename To file is placed.

This is a contiguous segment of storage accessible to the user task. The storage
area can be aligned on any boundary convenient to the application program.

This field contains a character string of up to 255 bytes representing the new
name for an existing file identified in aft_nama. The Rename To file can be a fully
qualified data set name, a full path name, or the last node of the new file name.

Default: None.

aft_rntol Length of Rename To file name.

Indicates the length in bytes of the Rename To file name in the storage area
defined by aft_rntoa.

This value must be specified if aft_rntoa is specified.

Default: Zero.

aft_rtncd Return code. Indicates the return code set by Unicenter SOLVE:CPT services
called during the Unicenter SOLVE:CPT FTP Client Service file transfer process.

Default: Zero.

aft_rtnta Address of return text. Indicates the storage address where text describing the
Unicenter SOLVE:CPT return code is placed.

This is a contiguous segment of storage accessible to the user task. Unicenter
SOLVE:CPT FTP Client Service returns one line of text, indicating the success or
failure of the file transfer process.

Allow at least 80 bytes or the text may be truncated.

Default: None.

5–16 C Programmer Guide

Complete Parameter List

aft_rtntl Length of return text. Indicates the length in bytes of the Unicenter SOLVE:CPT
return text area available in the storage defined by aft_rtnta.

Default: Zero.

aft_sitea Address of site parameters. Indicates the storage address where optional FTP
SITE parameters are placed.

This is a contiguous segment of storage accessible to the user task. The storage
area can be aligned on any boundary convenient to the application program.
Your application is responsible for ensuring that any SITE parameters are
supported by, and consistent with, the requirements of the remote host FTP
server.

Default: None.

aft_sitel Length of site parameters indicates the length in bytes of the FTP SITE
parameters in the storage area defined by aft_sitea.

This value must be specified if aft_sitea is specified.

Default: Zero.

aft_stru Transmission structure. Indicates the FTP transmission structure to be used for
transfer of this file.

AFTSTRU_FILE Use File transmission structure.

AFTSTRU_PAGE Use Page transmission structure (future).

AFTSTRU_RECRD Use Record transmission structure.

AFTSTRU_DFLT Use the FTP service default structure.

Default: None. Use the FTP service default. Refer to the appropriate FTP manual
for more details.

aft_trace Note that the tracing functionality was moved in Version 6 of Unicenter
Solve:CPT. A greatly enhanced tracing capability is now available using the
TCPEEP tracing command. See the Administrator Guide for more details. These
tracing fields remain only for downward compatibility and are ignored.

AFTTRACE_LVL1 AFTTRACE_LVL2

Default: Zero (no trace logging).

FTP Client Service 5–17

Complete Parameter List

aft_raddr Remote IP host address.

Indicates the remote host internet address.

Either this field or the remote host name (aft_rnama/aft_rnaml) must be specified.

aft_rlim Transmission timing. A halfword binary value that specifies the number of
retries to attempt before aborting the FTP connection.

aft_tlim Transmission timing. A fullword binary value that specifies the maximum
amount of time, in seconds, to wait for data to be received from the remote host.
If no data is received in this amount of time, the receive is retried.

aft_type Transmission type. Indicates the FTP transmission type to use for transfer of this
file.

AFTTYPE_ASCII Use ASCII transmission type.

AFTTYPE_DFLT Use the FTP service default type.

AFTTYPE_EBCDC Use Compressed mode (future).

AFTTYPE_IMAGE Use EBCDIC transmission type (future).

AFTTYPE_LOCAL Use LOCAL transmission type (future).

Default: None. Use the FTP service default. Refer to the appropriate FTP manual
for more details.

aft_user Required. User ID for remote logon. Indicates the user ID that Unicenter
SOLVE:CPT FTP Client Service uses when performing a Telnet logon to the
remote host.

Default: None.

aft_vers Required. Version number. Indicates the version number of the FTP Client
Service argument used by the calling program.

Must be set to a binary two.

AFT_VERSN—Specifies version number two.

Default: None.

5–18 C Programmer Guide

Complete Parameter List

aft_wdira Address of working directory name. Indicates the storage address where the
name of a working directory is placed.

This is a contiguous segment of storage accessible to the user task. The storage
area can be aligned on any boundary convenient to the application program.

This field contains a character string of up to 255 bytes representing the path
name of an existing directory on the remote host.

Unicenter SOLVE:CPT FTP Client Service generates a Change Working Directory
command, and creates the path if it does not exist.

Default: None.

aft_wdirl Length of working directory name. Indicates the length in bytes of the working
directory in the storage area defined by aft_wdira.

Note: This value must be specified if aft_wdira is specified.

Default: Zero.

FTP Client Service 5–19

Chapter

6 GIVE Service

This service releases ownership of a connection and associated internal Unicenter
SOLVE:CPT resources. You must use the GIVE service call to guarantee proper
passing of a connection to another transaction.

To invoke the GIVE service, a user application must first build an AFM and then
issue a call to the GIVE routine. On completion, a return code is set to indicate
the success or failure of the request.

This chapter discusses the following topics:

■ Call Syntax—Shows sample syntax for the GIVE service call

■ Recommended AFM Parameters—Lists the parameters normally used and
recommended for the GIVE service call

■ Usage Example—Provides a sample program shell using the GIVE service
call

■ Parameter Values Returned in the AFM—Lists the fields that are updated in
the AFM control block on return from the GIVE service call

■ C Structures - Lists information about the distributed C structures used by
the GIVE service call and is available in cpthlq.T09SAMP

■ Sample Programs—Sample C programs that use the GIVE service call

■ Completion Information—Describes the expected results at completion of the
GIVE service call

■ Return Codes—Lists the return codes that can apply to the GIVE service call

■ Usage Notes—Provides notes about GIVE service call usage and resource
cleanup.

■ Complete Parameter List—List all of the parameters and options of those
parameters for the GIVE service call

GIVE Service 6–1

Call Syntax

Call Syntax
t09fgive (&cpt_afm);

Recommended AFM Parameters
The following list contains the recommended parameters for use with the GIVE
service. These parameters are set within the AFM control block. For sample
information, see C Structures .

For a complete list of optional parameters, see the Complete Parameter List.

Parameter Description
afm_token Required session token specifies which session the current task

will relinquish control over.
afm_vers Version number should be set to AFM_VERSN(2).

Usage Example
In this example, a subset of actual required statements is shown to emphasize the
use of a GIVE call. The afm_token token is loaded from the acm_token field to be
used by the GIVE service. The return code is checked to determine GIVE service
completion status.

Note: The statements needed for the GIVE service appear in bold.

#include <t09ksacm.h>
#include <t09ksafm.h>
#include <t09ksrcs.h>
void main()
{
 struct afm_stru
 cpt_afm = {2, 0, 0, NULL, NULL, 0, 0, 0, 0};
 cpt_afm.afm_token = cpt_acm.acm_token;
 t09fgive (&cpt_afm);
 if (cpt_afm.afm_rtncd != 0)
 {
 /*
 * process CPT GIVE service error, release connection
 * and terminate transaction
 */
 }
 EXEC CICS START TRANSID(trans-id) FROM(cpt_acm);
 }
 EXEC CICS RETURN;
}

6–2 C Programmers Guide

Parameter Values Returned in the AFM

Parameter Values Returned in the AFM
After the GIVE call returns control to your application program, the following
fields are propagated with information. These updated values are passed back to
the application in the AFM control block.

Parameters Description

afm_dgncd Diagnostic code.

afm_rtncd Return code.

C Structures
Sample C structures are provided in the distributed software and are available to
you in cpthlq.T09MAC. Variable field names contained in the distributed
samples and the examples in this guide refer to these structures.

T09KSAFM C structure name for the AFM. For detailed information
and a sample copy of the C structure, see AFM: Argument
for Facility Management Used by the GIVE and TAKE
Services section in the appendix “Control Block Layouts.”

All C constants that apply to AFM calls are imbedded in the AFM structure
sample.

Sample Programs
Sample C source code is available in the distributed software in the
cpthlq.T09SAMP library. You should be able to find a sample that matches your
programming requirement. For complete details on the function a sample
program provides, see the program descriptions in the “Unicenter SOLVE:CPT
API Services” chapter and the descriptions of the sample members listed below.

Name Description

T09PSSV3 TCP Server 3 program is a multi-threaded server using a Listen API
call with an independent EXEC CICS START tran.

T09PSSV5 TCP Server 5 program is spawned by an inbound connection from
the T09MLSTN tool. It utilizes the Select tool to handle RECEIVE
calls when there is no available data.

GIVE Service 6–3

Completion Information

Completion Information
The GIVE service completes normally when all resources associated with this
connection are processed.

On normal return to the application program, the general return code in register
15 (afm_rtncd) is set to zero (CPTIRCOK). The diagnostic code in register zero
(afm_dgncd) is always zero.

If the GIVE service completes abnormally, some resources associated with this
connection cannot be successfully transferred from one task to another.
The general return code afm_rtncd and the diagnostic code (afm_dgncd) indicate
the nature of the failure.

Return Codes
The GIVE service returns a code afm_rtncd and afm_dgncd indicating the results
of the execution.

Structure T09KSRCS contains equates and descriptions for the possible return
codes. T09KSRCS is available in the distributed software in cpthlq.T09MAC. See
the appendix “Return Codes” for a sample copy of the T09KSRCS structure.

The following is a list of return codes that can apply to the GIVE call.

Decimal Hex Diagnostic
Code

Variable Description

0 0 No CPTIRCOK Request completed successfully.

17 11 No CPTEVERN Control block version number
not supported.

20 14 No CPTETOKN Specified data transfer token is
invalid.

34 22 No CPTENAPI API not fully available; retry.

37 25 No CPTESLCT SELECT TOOL transaction is not
running.

40 28 No CPTETERM TCPIP is terminating.

254 FE No CPTABEND Abnormal termination.

255 FF No CPTEOTHR Other error.

6–4 C Programmers Guide

Usage Notes

Usage Notes
The GIVE service releases ownership of a connection from a CICS task.
Disassociating resources from a task lets the Unicenter SOLVE:CPT properly
manage resources during task termination. This ability to GIVE and TAKE
ownership of connections offers you a range of programming options, while still
providing Unicenter SOLVE:CPT with resource management capabilities.

The GIVE service requires the application to set the AFM version number and
token fields. When a connection is established there are internal Unicenter
SOLVE:CPT resources associated with that connection. Unicenter SOLVE:CPT is
responsible for proper clean up of those resources on task or transaction
termination. These resources include storage allocated by Unicenter SOLVE:CPT,
the API, and the transport provider storage.

The GIVE is all about proper resource cleanup. For a Unicenter Solve:CPT token
(connection) to be properly passed to another transaction, it must first be GIVEn
to release ownership. The receiving transaction TAKEs the connection.

Important! If a transaction does not GIVE the token before it performs an EXEC CICS
RETURN then the CICS TRUE end of task exit will clean up all resources including
closing down the connections. Therefore, if you have not GIVEn your token, the next
transaction, cannot use the connection because it will be gone (already be closed); so a
TAKE will fail.

A server application is a good example of how the GIVE service benefits a user
application. A listening task issues the GIVE service and starts a new transaction
to handle data transfer. The data transfer transaction then TAKEs the connection.
This sequence would prevent a connection from being closed (implicitly by the
Unicenter SOLVE:CPT task termination exit) if the server application terminates.
However, if the data transfer transaction is terminated without issuing an
explicit close (Unicenter SOLVE:CPT CLOSE service) an implicit close is
scheduled, and resource management is handled by the Unicenter SOLVE:CPT
task termination exit.

The afm_vers version number indicates the AFM control block release level in
which this user application program is written. This required field must be set to
AFMVERSN (2) and is validated by the GIVE service before processing the
request.

The afm_func function code indicates the Unicenter SOLVE:CPT callable service
ID. The field is not initialized by a user application program and has little value
to the application except for dump analysis. The function code can identify and
maps an argument list with the error or trace log and dump analysis.

The token afm_token indicates the connection and internal resources to be
processed by the GIVE service. This is a required field and is validated by the
GIVE service before processing request.

GIVE Service 6–5

Complete Parameter List

Complete Parameter List
For a recommended list of parameters, see Recommended AFM Parameters.

aft_comma Reserved for future use.

aft_comml Reserved for future use.

aft_dgncd Diagnostic code. Indicates the diagnostic code received by the GIVE service for a
transport provider request.

aft_func Function code. Indicates the function or callable service ID requested by the
application program.

This field is set by the application, but is initialized by the TRUE interface stub
program.

Default: None.

aft_msock Unused Parameter.

aft_ntran Transaction ID.

aft_ntran contains the next transaction to be initiated by the Select tool when the
ECB is posted inside the SELECT indicating some kind of data activity on the
connection. To enable the use of this field, you must specify the AFMOPT_SEL
option.

Default: Current transaction ID.

aft_opcd1 AFMOPT_SEL Informs the GIVE service to pass this token to the SELECT tool

 AFMOPT_COM—reserved for future use.

 Default: None.

aft_rtncd Return code. Indicates the return code set by the GIVE service. This value is also
returned in register 15 and indicates the success or failure of the service.

 Default: None.

aft_token Required session token specifies which session that the current task will
relinquish control over.

aft_vers Required version number. Indicates the Unicenter SOLVE:CPT version number
of the argument list used by the calling program.

Must be set to a binary two for this release of Unicenter SOLVE:CPT.

Default: None.

6–6 C Programmers Guide

Chapter

7 LISTEN Service

Although every effort was made to make the LISTEN service API call as easy as
possible to use, it is always easier to use the Unicenter Solve:CPT Listen tool
since it requires no coding on your part. Always check first to see if the Listen
tool meets your needs before using the LISTEN service call. It is extremely rare
that the Listen tool will not meet your needs. For information on using the Listen
tool, see the “Configuration Reference” chapter of the Administrator Guide.

The LISTEN service call provides a server facility that is used by an application
program. It establishes a session with the local transport provider, passively
listens for connection requests. As new session requests come in, it accepts new
connections. When a connection with a client is established, the LISTEN service
either returns control to the calling program or starts a defined transaction.
Information related to the connection is updated and returned within the ACM.

To invoke the LISTEN service, a user application is required to first build an
ACM and then issue a call to the LISTEN routine. The minimum information
required by this service is the version number and the local transport provider
port. Optional information related to data transfer buffering, CPT statistics and
tracing, and subtask initialization can be specified. Completion of a LISTEN
service depends on options selected within the ACM.

This chapter discusses the following topics:

■ Call Syntax—Shows sample syntax for the LISTEN service call

■ Recommended ACM Parameters—Lists the parameters normally used and
recommended for the LISTEN service call

■ Usage Examples—Provides sample shells of programs using the LISTEN
service call

■ Parameter Values Returned in the ACM—Lists fields that are updated in the
ACM control block on return from the LISTEN service call

■ C Structures—Provides information about the distributed sample C
structures that are used by the LISTEN service call

■ Sample Programs—Lists and describes the distributed sample C programs
that use the LISTEN service call along with other service calls.

LISTEN Service 7–1

Call Syntax

■ Completion Information—Describes the expected results at the completion of
the LISTEN service call

■ Return Codes—Lists the return codes that can apply to the LISTEN service
call

■ Usage Notes—Provides miscellaneous notes about LISTEN service call usage

■ Network Considerations—Provides a list of consideration when using the
ACM, a common data structure, for both client and server connection
initialization

■ Complete Parameter List—Provides a complete list of the parameters and
their options for the LISTEN service call

■ Client-Data Listener Option—Describes how to implement the Client-Data
Listener Option.

Call Syntax
t09flstn (&cpt_acm);

Recommended ACM Parameters
The following list contains the recommended parameters for use with the
LISTEN service. These parameters are set within the ACM control block. See C
Structures for sample information.

For a complete list of optional parameters, see the Complete Parameter List.

Field Name Description

acm_lport Listen well-known service port.

acm_optn1 Set ACMOPTN1_NODNR to prevent the overhead of DNR
calls to resolve the accepted transactions IP addresses.

acm_trnid Listen start transaction ID to start when a new connection is
received.

acm_vers Version number should be set to 2

7–2 C Programmer Guide

Usage Examples

Usage Examples
Due to the relative flexibility of the LISTEN service call we provide a number of
examples of processes involved with the LISTEN service:

■ Recommended Server—This is the most common listener style and can be
used in most server environments.

■ Standard Multithreaded Server—A straightforward multithreaded server
passes each session to a daughter task.

■ Multithreaded Server—Special Start Transaction Needs—This listener style
should be used in cases where local work must occur between the LISTEN
and start of the daughter transaction to process the new session.

■ Single-Threaded Server—This is a rarely used server style, intentionally
limiting connections for performance reasons such as access to a critical
database.

■ Client-Data Listener Option—This listener style is rather unique. Therefore,
we refer you to another section for further detailed information.

■ Sample Daughter Task Taking Ownership of a Session—Sample of how a
daughter session takes control of a passed server session.

Recommended Server

Computer Associates recommends that most sites configure the Unicenter
SOLVE:CPT Listen tool using the T09MLSTN statement in the T09CONxx
configuration file for each server they wish to run.

Here a server can listen on port 2345 and pass each connection to transaction
SRV3 by configuring the T09MLSTN statement in the T09CONxx configuration
file as follows:
T09MLSTN PORT=2345,TRANSID=SRV3

Important! This listener style makes for the most efficient server program. The server
application responds more quickly to new connection requests because it is not involved
in the task of data transfer or connection management after the initialization connection.

The ACM control block is passed to each new SRV3 session that can use the
EXEC CICS RETRIEVE command to access the ACM related session information
fields. For an example of this, see Sample Daughter Task Taking Ownership of a
Session .

LISTEN Service 7–3

Usage Examples

Standard Multithreaded Server

This sample simply loops listening for new connections initiating the transaction
specified by the acm_trnid field to process the connection. This server style does
only one thing, listen, and hands off connections to the daughter transaction as
specified in the acm_trnid field.

Note: This is accepted as the best design for a server.

This multithreaded server example listens for connections on local port 2345. The
server starts a new CICS task SRV3 to process each new daughter session.
Control is not returned to the calling application until a failure occurs. Generally,
this failure is due to termination of CICS, CPT, or the transport provider (API).
At the point of an error, the acm_rtncd is checked to determine LISTEN service
request completion status.

Note: The statements relating to the LISTEN service appear in bold.

#include <t09ksacm.h>
#include <t09ksrcs.h>
void main()
{
 struct acm_stru
 cpt_acm = {2, 0, 0, NULL, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 NULL,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 /*
 * CPT Connection Management Service request
 */
 cpt_acm.acm_lport = 2345;
 memcpy(cpt_acm.acm_trnid, "SRV3", 4);
 acm_optn1 = ACMOPTN1_NODNR;
 t09flstn (&cpt_acm);
 if (cpt_acm.acm_rtncd != 0)
 {
 /* process CPT LISTEN service return code */
 }
 /*
 * Terminate Transaction
 */
 End:
 EXEC CICS RETURN;
}

Note: There is no need to write the above program for your server. The above
server can be replaced by configuring a T09MLSTN macro statement in the
T09CONxx configuration file as follows:
T09MLSTN PORT=2345,TRANSID=SRV3

The ACM control block is passed to each new SRV3 session that can use the
EXEC CICS RETRIEVE command to access the ACM related session information
fields. For an example of this, see the Sample Daughter Task Taking Ownership
of a Session.

7–4 C Programmer Guide

Usage Examples

Multithreaded Server—Special Start Transaction Needs
If you do not specify the acm_trnid field in the cpt_acm LISTEN parameter list,
the call to listen returns control for every new connection. There are cases where
an application needs to perform some special work between the LISTEN call and
the start of the new daughter task.

This example is a multithreaded server application. The server listens on local
port 3456. When control is returned from the LISTEN call, it can perform any
special work. The token is loaded from the acm_token. The server then uses the
GIVE service to release ownership of the session. It starts the daughter
transaction to handle the session.

Note: The statements relating to the LISTEN service appear in bold.

#include <t09ksacm.h>
#include <t09ksafm.h>
#include <t09ksrcs.h>
void main()
{
 struct acm_stru
 cpt_acm = {2, 0, 0, NULL, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 NULL,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 while (true)
 {
 /*
 * CPT Connection Management Service request
 */
 cpt_acm.acm_lport = 3456;
 acm_optn1 = ACMOPTN1_NODNR;
 t09flstn (&cpt_acm);
 if (cpt_acm.acm_rtncd != 0)
 {
 /* process CPT LISTEN service error and terminate transaction */
 }
 ...
 Perform any special work
 ...
 cpt_afm.afm_token = cpt_acm.acm_token;
 t09fgive (&cpt_afm);
 if (cpt_afm.afm_rtncd != 0)
 /* process CPT GIVE service error */
 EXEC CICS START TRANSID(SRV3) FROM(cpt_acm);
 } /* end of while loop */
 /*
 * Terminate Transaction
 */
 End:
 EXEC CICS RETURN;
}

Here the ACM control block is passed to each new SRV3 session that can use the
EXEC CICS RETRIEVE command to access the ACM related session information
fields. For an example, see Sample Daughter Task Taking Ownership of a
Session.

LISTEN Service 7–5

Usage Examples

Single-Threaded Server

This is a rarely used server style that intentionally limits connections to one-at-
a-time. This style can be used for performance reasons such as severely limiting
access to a critical database, to keep the database from consuming too many
resources.

Important! This sample program is generally not the preferred server model. This
single-threaded server model is only suitable for connections of very short time duration.

The problem is that after returning from the LISTEN service the application
blocks additional incoming connection requests. All other pending users must
wait for the current connection to finish completely before they can use the
service.

This example establishes a server connection, processes data, and closes the
connection, before finally going back to check for another connection and more
work. The server listens on well-known port 1234. The token is loaded from the
ACM and used by all of the following CPT service requests. The return code is
checked to determine LISTEN service completion status.

Note: The C statements relating to the LISTEN service appear in bold. This
enables you to see which statements relate to the LISTEN service call.

#include <t09ksacm.h>
#include <t09ksafm.h>
#include <t09ksrcs.h>
void main()
{
 struct acm_stru
 cpt_acm = {2, 0, 0, NULL, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 NULL,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 while (true)
 {
 /*
 * CPT Connection Management Service request
 */
 cpt_acm.acm_lport = 1234;
 acm_optn1 = ACMOPTN1_NODNR;
 t09flstn (&cpt_acm);
 if (cpt_acm.acm_rtncd != 0)
 {
 /* process CPT LISTEN service error and terminate transaction */
 }
 ...
 Application and CPT data transfer (SEND/RECEIVE) processing
 ...
 } /* end of while loop */
 /*
 * Terminate Transaction
 */
 End:
 EXEC CICS RETURN;
}

7–6 C Programmer Guide

Usage Examples

Sample Daughter Task Taking Ownership of a Session

A daughter task can take ownership of the session by using EXEC CICS
RETRIEVE to get a copy of the ACM control block. It receives ownership of the
task by issuing the TAKE command. Sample program T09PSSV2 is an example of
a daughter task program that could have been started by a server to process a
session request.

Here is sample code to retrieve the ACM and take ownership of the session
represented by the acm_token field. It retrieves a copy of the cpt_acm. It copies
the acm_token session ID into the afm_token. Ownership of the session occurs
after the TAKE service returns with a zero return code.

Note: The statements relating to taking ownership of the session appear in bold.
#include <t09ksafm.h>
#include <t09ksacm.h>
#include <t09ksrcs.h>
void main()
{
 struct afm_stru
 cpt_afm = {2, 0, 0, NULL, NULL, 0, 0, 0, 0};
 CICS RETRIEVE SET(cpt_acm) LENGTH(acmleng);
 cpt_afm.afm_token = cpt_acm.acm_token;
 t09ftake (&cpt_afm);
 if (cpt_afm.afm_rtncd != 0)
 {
 /*
 * process CPT TAKE service error and terminate transaction;
 */
 }
 while (data)
 {
 /*
 * Application and CPT Data Transfer (SEND/RECEIVE) processing
 */
 }
 /*
 * CPT Release Connection
 */
 /*
 * Terminate Transaction
 */
 End:
 EXEC CICS RETURN;
}

LISTEN Service 7–7

Parameter Values Returned in the ACM

Parameter Values Returned in the ACM
After the LISTEN call returns control to your application program, the following
fields are propagated with valid established connection information. These
updated values are passed back to the application in the ACM control block.

Field Name Description

acm_dgncd Diagnostic Code.

acm_laddr Local IP Host Address.

acm_lname Local IP Host Name.

acm_mrecv API receive buffer size.

acm_msend API send buffer size.

acm_qrecv API receive queue size, set to 1.

acm_qsend API send queue size, set to 1.

acm_raddr Remote IP Host Address.

acm_rport Client Application Port.

acm_token Token—Connection or endpoint.

acm_rtncd Return Code.

C Structures
Sample C structures are provided and are available to you in the distributed
software in cpthlq.T09MAC. Variable field names contained in the distributed
samples and the examples in this guide refer to these structures.

The C structure name for the ACM is T09KSACM. For detailed information and a
sample copy of the C structure, see the ACM: Argument for Connection
Management Used by the CONNECT and LISTEN Services section in the
“Control Block Layouts” appendix.

7–8 C Programmer Guide

Sample Programs

 Sample Programs
Sample C source code is available in the distributed software in the
cpthlq.T09SAMP library. You should be able to find a sample that matches your
programming requirement. For complete details on the function a sample
program provides, see the program descriptions in the “Unicenter SOLVE:CPT
API Services” chapter and the descriptions of the sample members listed below.

Name Description

T09PSSV1 TCP Server 1 program is a single-threaded server using a Listen
API call.

T09PSSV2 Sample daughter session code to process a new session passed
from a server.

T09PSSV3 TCP Server 3 program is multi-threaded server using a Listen API
call with an independent EXEC CICS START tran.

T09PSSV4 TCP Server 4 program is a multi-threaded server using a Listen
API call that has CPT internally issuing the EXEC CICS START
tran .

LISTEN Service 7–9

Completion Information

Completion Information
Completion of a request to the LISTEN service depends on the arguments passed
in the acm_trnid field in the cpt_acm parameter list.

Completion Information when the acm_trnid Field Is Set in the cpt_acm

When the LISTEN service is initiated with a transaction ID (acm_trnid contains a
CICS transaction), it operates as a CICS long running task. The LISTEN service
establishes client connections and starts a data processing transaction. The data
processing transaction receives a copy of the connection management argument.
The client connection token is derived from an acm_token field passed in the
acm_token field. The ACM control block is passed to the daughter task from the
server. After the new transaction is initiated, the LISTEN service continues
waiting for new client connections. The LISTEN service continues to listen and
start client connections until an error occurs

When a transaction ID is specified in the acm_trnid field in the cpt_acm
parameter list, the LISTEN service does not return control to the calling program
until a failure is detected. The caller’s argument list is generally not updated,
with exception to the return code information.

The return code acm_rtncd and diagnostic code acm_dgncd fields should be
interrogated to determine the reason for failure. The general return code and the
diagnostic code indicate the nature of the failure. The diagnostic code generally
contains a specific code that is generated by the transport provider.

7–10 C Programmer Guide

Completion Information

Completion Information when the acm_trnid Field Is Unspecified in the cpt_acm

When no transaction ID is specified in the acm_trnid field in the cpt_acm
parameter list, the LISTEN service returns control to the calling program when
connection with a client is established. The caller’s argument list is updated with
information related to the new connection.

The LISTEN service initializes the server environment with the transport
provider (API) and waits for a connection request. Each connection updates
connection information within the ACM control block. Establishing a listening
connection and a client connection are represented by tokens. Establishing a
client connection updates the ACM fields with information relative to the
connection. The information is returned to the user or is passed to the data
processing transaction.

The local and remote port, IP address, and host names are resolved. Negotiated
transport provider SEND and RECEIVE buffering values are returned. The ACM
return code (acm_rtncd) must be checked to determine the success or failure of
LISTEN service. A zero (0) return code in the acm_rtncd field indicates a
successful establishment of a client connection.

The ACM control block contains two tokens representing endpoints to the
transport provider. The first token (acm_token) represents the client session
connection and is used for data transfer. The other token (acm_tlstn) represents
the listening server. This listening server can only be referenced within the
Unicenter Solve:CPT CLOSE service. This provides the explicit ability to close a
server or listening connection. All other Unicenter SOLVE:CPT services
performed with the LISTEN token fail with an invalid token. Implicit cleanup of
the LISTEN token is provided by the CICS TRUE interface. Therefore, an explicit
call to the CLOSE service is not required.

The return code acm_rtncd and diagnostic code acm_dgncd fields should be
interrogated to determine the reason for failure. The general return code and the
diagnostic code indicate the nature of the failure. The diagnostic code generally
contains a specific code that is generated by the transport provider.

LISTEN Service 7–11

Return Codes

Return Codes
The LISTEN service returns a codes in the acm_rtncd(R15) and acm_dgncd(R0)
indicating the results of the execution. The diagnostic code typically indicates the
transport provider return code.

A sample C structure is provided in cpthlq.T09MAC, in member T09KSRCS. It
details the variable field names contained in the distributed samples and the
examples in this guide. See the appendix “Return Codes” for a sample copy of
the T09KSRCS structure. A description of the problem causing the associated
return code is contained in this structure.

This table describes the LISTEN service return codes.

Decimal Hex Diagnostic
Code

Variable Description

0 0 No CPTIRCOK Request completed successfully.

4 4 No CPTWNEGO System limits applied to Buffers
and/or Queue sizes.

6 6 Yes CPTWBLCK Non-blocking call to the LISTEN
service.

17 11 No CPTEVERN Control block version number
not supported.

18 12 Yes CPTECONN Required Parameter not passed.

For example, host, port, …

19 13 No CPTEPROT Specified protocol not
supported.

26 1A No CPTETRID Unable to start a new task.

31 1F No CPTEFRMT Other Socket Call Parameter List
format or specification error.

34 22 No CPTENAPI API not fully available; retry.

36 24 No CPTEDRAN TCPIP environment is no longer
accepting any new endpoints.

40 28 Yes CPTETERM Environment is being
terminated.

47 2F Yes CPTEENVR Other transport layer
environmental condition.

7–12 C Programmer Guide

Return Codes

Decimal Hex Diagnostic Variable Description
Code

65 41 Yes CPTERLSE Orderly release of remote
connection request.

68 44 Yes CPTEDISC Remote connection not available
or aborted.

72 48 Yes CPTEPRGE Remote connection environment
terminating.

79 4F Yes CPTEINTG Other transport layer
connection/data integrity error.

143 8F Yes CPTEPROC Procedural error.

254 FE Is Abend
code

CPTABEND Abnormal termination. Note
that the diagnostic code is the
abnormal termination code,
which is normally a CICS abend
code, but can also be in the
“Abend Codes” chapter of the
Message Guide.

255 FF No CPTEOTHR Other error.

LISTEN Service 7–13

Usage Notes

Usage Notes
The LISTEN service lets user-written application programs implement TCP/IP
server facilities. Server applications passively wait, then establish connections
with single- or multithread support. The LISTEN service generalized parameter
list (ACM) describes the application’s communications requirements and
information related to established connections. The ACM control block contains
fields initialized by both a user application and by the LISTEN service, on
completion.

There are required and optional fields initialized by a user or calling application.
The ACM version number, acm_versn, and the local port, acm_lport, are
required. Optional fields control data transfer buffering, statistics, tracing, and
subtask initialization.

When the LISTEN service completes or the data processing task executes, the
ACM contains information related to the established connection. A token that
identifies the connection is returned in the ACM, and must be used in all
subsequent requests that refer to the connection. The application program should
make no assumptions regarding the format of a token, other than it is an
unsigned, full word value.

Information related to the negotiated buffer values, host names, host addresses,
and transport provider addresses are returned in the cpt_acm structure.

The version number, acm_versn, indicates the CPT release level in which this
user application program is written. This required field must be set to
ACM_VERSN (2) and is validated by the LISTEN service before processing the
request.

The function code, acm_func, indicates the CPT callable service ID and is
initialized by the CPT service stub program. The function code identifies
argument lists within the error or trace logs, and dumps analysis.

The transaction ID field, acm_trnid, identifies the CICS task to process data for a
session. This is an optional field that causes the LISTEN service to execute
continuously. The LISTEN service starts a new transaction after a client
connection is established. An updated cpt_acm structure is passed to the data
processing task. Control is not returned to the calling program until an error
occurs. The return code indicates the reason for the failure. Errors indicating the
transport provider, CICS, or CPT termination are acceptable. Errors indicating
port in use, API unavailable, or program checks should be investigated.

7–14 C Programmer Guide

Usage Notes

User application programs can control CPT and transport provider data transfer
buffering. acm_msend and acm_mrecv specify the size of buffers allocated.
The SEND and RECEIVE buffers are allocated on initial entry into either the
SEND or RECEIVE service. The corresponding values used by the SEND and
RECEIVE services are independent of each other.

■ The SEND service multiplies the queue and buffer values to determine
output storage requirements

■ The RECEIVE service performs a similar function to determine input storage
requirements

The product of the queue and buffer values cannot exceed 32 KB.

The CPT SEND service uses the acm_msend value and the CPT RECEIVE service
uses the acm_mrecv value. These values indicate the maximum number of user
data bytes that can be transferred by the application in a single SEND or
RECEIVE request to the transport provider. The user application is not limited to
these values within the data transfer services.

Important! Multiple transport provider or API requests are issued to complete the
caller’s request.

Information about queue and buffer size is provided in the descriptions of
RECEIVE and SEND.

Initially, the tuning of data transfer storage may not be a concern. However, the
ability to control storage allocation can prove beneficial to the application or
CICS region. You should consider enabling the statistics option to gather CPT
statistical information. This information can set the SEND or RECEIVE buffer
size values.

The LISTEN service can modify the data transfer buffer allocation values.
These values are negotiated with the transport provider and, depending on the
site configuration, can be reduced. Any application dependent on these values
should check them on return. These values are generally not modified when
giving reasonable numbers. However, it is advisable to check with the site
administrator for the maximum values of the API transport services.

A number of arguments are not set by the calling application, but are returned to
the caller. These values represent information related to the client connection and
can be used by the application. The local port, host name, and IP address are
returned as well as the client’s corresponding values. An ACM is passed the
started transaction when a TRANSID is specified in the caller’s listen argument
list.

Note: It is recommended that programmers set the ACMOPTN1_NODNR field
to prevent the extra overhead of making DNR calls to resolve the remote IP
address whenever possible.

LISTEN Service 7–15

Network Considerations

Network Considerations
The ACM is a common data structure used for both client and server connection
initialization. There are common and unique values specified for a particular
service request.

This table describes network considerations for C API:

Name Server Conditions for Listen Client Conditions for Connect

acm_lname Local IP host name returned
to user application.

Local IP host name returned to
user application.

acm_lport Local server or listening
transport provider well-
known port selected by user
application.

Local assigned transport
provider port returned to user
application.

acm_raddr Remote IP host address
returned to user application.

Remote IP host address selected
or returned to user application.

acm_rname Remote IP host name
returned to user application.

Remote IP host name selected or
returned to user application.

acm_rport Remote client transport
provider port returned to
user application.

Remote server transport
provider well-known port
selected by user application.

acm_timeo Client-Data Listener timeout
value.

acm_tlstn Listen token returned to user
application.

acm_trnid Listen START transaction ID.

7–16 C Programmer Guide

Complete Parameter List

Complete Parameter List
Note: For a recommended list of parameters, see Recommended ACM
Parameters.

acm_bcklg Maximum size of the LISTEN backlog queue.

This field is used to set the size of the LISTEN queue for pending connection
requests and overrides the QLSTN= value from the T09MCICS configuration
macro.

acm_cdtbl Translate table. For the Client/Data Listener, specifies the name of the translate
table to use for translating the initial input stream.

Default: None.

acm_clntl Client data length. Specifies the maximum length of data the LISTEN service
tries to receive for the initial data stream. This value is useful when the amount
of client data being sent for the initial stream is different from the normal length
of 50 bytes. This speeds processing by having the LISTEN service be able to
continue processing without waiting the full acm_timeo value for the initial data.

Default: 50.

acm_dgncd Diagnostic code. Indicates the diagnostic code received by the LISTEN service for
a transport provider request. There is a detailed explanation of this value in the
transport provider’s API Programmer’s Reference Guide.

Default: None.

acm_func Function code. Indicates the function or callable service requested by the
application program.

This field is not set by the application, but is initialized by the CICS TRUE
interface stub program.

Default: None. Generated by service stub.

acm_laddr Local IP host address. Indicates the local host internet address. The local host
internet address is updated on establishment of a client connection, and is
returned to the caller.

 This field is an unsigned four-byte integer value.

Default: None.

LISTEN Service 7–17

Complete Parameter List

acm_lname Local IP host name. Indicates the local host internet name. The local host internet
name is updated on establishment of a client connection, and is returned to the
caller.

This field is a 255-byte character string that is padded with blanks.

Default: None.

acm_lport Required. Listen well-known service port. Indicates the local transport layer
address or port. This value represents the well-known port on which a server
application listens for connection requests.

This field is an unsigned positive integer with a maximum value of 65,534. The
value must be unique for each server application.

Default: None.

acm_mrecv API receive buffer size. Specifies the maximum number of user data bytes that
can be transferred by the application, in a single RECEIVE request, to the
transport provider (API). This value lets applications control input processing
and can affect throughput rates. The value is negotiated with and can be
modified by the transport provider.

Total allocation cannot exceed 32 KB.

Default: 1024.

acm_msend API send buffer size. Specifies the maximum number of user data bytes that can
be transferred by the application in a single SEND request to the transport
provider (API). This value lets applications control output processing and can
affect throughput rates. The value is negotiated with and can be modified by the
transport provider.

Total allocation cannot exceed 32 KB.

Default: 1024.

acm_msock Maximum sockets per allowed for your transaction

This field overrides the MSOCK= value from the T09MCICS configuration macro.

Default: None.

7–18 C Programmer Guide

Complete Parameter List

acm_optn1,2 TCP connection initialization options.

ACMOPTN1_CTRAN For Client-Data Listener, indicates that the input stream
is to be translated.

ACMOPTN1_LTRAN Client-Data Listener option. Specifies that the Listen call
receives the input data stream to determine the transaction
ID to start. See Client-Data Listener Option for the required
input formats and additional information on using this
listener type. This option must be used with acm_timeo,
and should not be used with acm_trnid.

ACMOPTN1_NBLKO Not used by the LISTEN service.

ACMOPTN1_NODNR DNR Suppression option. Skips internal DNR calls to
resolve and return the remote IP address into an IP name in
the acm_rname field. If an application is designed such that
TCP connection establishment and release happens
frequently, this option can save processing time.

Important! It is strongly recommended that you use the NODNR option, since this can
create huge 30-second connection establishment delays if your DNS is not correctly
configured to resolve IP names into IP addresses. Most DNS servers do not support this
feature, and the call takes 30 seconds to time out. Therefore, your listening port could be
in a blocked state, allowing no new connection establishment for a period of 30 seconds
while waiting for the failed DNS call to time out.

ACMOPTN2_CLEN Indicates the acm_clntl field is present and valid.

ACMOPTN2_MRO Reserved for CPT/MRO feature.

ACMOPTN2_SCTY Indicates the acm_seclm field is present and valid.

ACMOPTN1_OTRAN For Client-Data Listener, indicates that an optional
translate table, named in acm_cdtbl, is to be used in the
translation process.

ACMOPTN2_USRID Indicates the acm_usrid field is present and valid.

ACMOPTN1_SYNC Listen Syncpoint option. Issues a CICS syncpoint before
starting any transaction from the LISTEN service.

Default: None.

acm_qrecv API receive queue size. You should only specify one. Adding extra buffers
wastes storage and does not improve performance.

Default: One.

acm_qsend API send queue size. You should only specify one. Adding extra buffers wastes
storage and does not improve performance.

Default: One.

LISTEN Service 7–19

Complete Parameter List

acm_raddr Remote IP host address. Indicates the remote host internet address. The remote
host internet address is updated on establishment of a client connection, and is
returned to the caller.

This field is an unsigned four-byte integer value.

Default: None.

acm_rname Remote IP host name. Indicates the remote host internet name. This field is a 255-
byte character string that is padded with blanks. The remote host internet name
is updated on establishment of a client connection, and is returned to the caller.

Default: None.

acm_mroas Reserved for the CPT/MRO feature.

acm_mroep Reserved for the CPT/MRO feature.

acm_rpot Remote client port. Indicates the remote transport layer address or port. This
value is returned to the caller.

This field is an unsigned positive integer with a maximum value of 65,534.

Default: None.

acm_rtncd Return code. Indicates the return code set by the LISTEN service. This value is
also returned in register 15 and indicates the success or failure of the service.

Default: None.

acm_seclm Security program. Specifies the security exit program to use when a connection
request is processed by this LISTEN service.

Note: The ACMOPTN2_SCTY option must also be specified. For more
information, see the Security Program section of the chapter “CPT API Services.”

Default: None.

acm_srvce This field remains only for downward compatibility purposes and is ignored. It
is no longer supported in version 6 of CPT.

7–20 C Programmer Guide

Complete Parameter List

acm_stats Specifies statistics logging options for the application program. The facility can
be used for debugging and tuning during development.

ACMSTATS_CONN Specifies that a message be generated on establishment of
either a listen service or a data transfer connection. These
messages are generated by the CPT LISTEN and
CONNECT services.

ACMSTATS_TERM Specifies that a message be generated on termination of an
established connection. These messages are generated by
the CPT CLOSE service.

Default: Zero. No statistics logging.

acm_timeo Client-Data Listener timeout values. Specifies the maximum number of seconds
that a Listener can wait to receive the client data stream when the
ACMOPTN1_LTRAN option is specified.

Default: 30.

acm_tlstn Listen service token statistics. Specifies the token used by the LISTEN service.
This token is not available for data transfer. The only valid function that can be
performed is a CLOSE request for long running active listeners. Generally, this
value is not used by the application unless an explicit call to the CLOSE service is
required. Read the description for acm_token (earlier in this section) for all other
services.

Default: Zero (token returned).

acm_token TCP connection token. Specifies the token created and returned by the LISTEN
service. It will be used in all subsequent calls for the client application.

Default: Zero (token returned).

acm_trace The tracing functionality was moved in Version 6 of Unicenter Solve:CPT. A
greatly enhanced tracing capability is now available using the TCPEEP tracing
command. See the Administrator Guide for more detail. These tracing fields
remain only for downward compatibility purposes and are ignored.

Default: Zero (no trace logging).

LISTEN Service 7–21

Complete Parameter List

acm_trnid Listen start transaction ID. A four-byte character string that the LISTEN service
starts on successful establishment of a new connection. If TRANSID is specified,
the LISTEN server loops for new connections and does not return to the calling
program until CICS, CPT, or transport provider (API) termination.

This field is optional and is not modified by the LISTEN service.

Note: This field should not be specified if the ACMOPTN1_LTRAN option and
acm_timeo value are specified.

Default: None.

acm_ucntx One word of user context. Specifies one arbitrary word of user context to
associate with the connection. The information provided is not interpreted by
CPT, and is saved with other connection information.

Default: Zero (no user context).

acm_usrid User ID. Specifies the user ID that this LISTEN service uses if starting daughter
transactions (acm_trnid or ACMOPTN1_LTRAN specified). This allows the
started daughter transactions to inherit the security permissions of the specified
user ID. The ACMOPTN2_USRID option must also be specified. If a security exit
is used, then the security exit may change the user ID.

Default: None.

acm_vers Required. Version. Indicates the version number of the CPT argument used by
the calling program. It must be set to a binary two for this release of CPT.

Default: None.

7–22 C Programmer Guide

Client-Data Listener Option

Client-Data Listener Option
The Unicenter SOLVE:CPT Client-Data Listener option allows one listening
TCP/IP socket port to serve as a multi-function server. This is achieved by
passing the CICS/TS transaction name in the initial TCP packet. In this way, a
single server can distribute connections to many different applications.

This server is compatible with applications written to use IBM’s CICS/TS
provided listener CSKL.

Important! This additional server flexibility does have a performance impact. By having
the listener do a receive as part of its processing, the servicing of new connections could
be delayed. For this reason, this listen server type is not recommended for high
connection volume services.

In an attempt to avoid many of the inherent performance problems, the client-
data listener tool service is broken into two transactions:

■ The first transaction handles connection establishment thus blocking the port
for a minimal amount of time

■ The second phase of the listener, waits for the client data independent of
blocking the connection establishment port

To further enhance performance:

■ Consider using the CLNTLEN parameter whenever possible

■ Start multiple client-data listeners

In this way, any high volume applications can be on their own server port
independent of low volume applications. There are no restrictions to the number
of client data listeners that can be started. By following these suggestions, any
possible performance issue can easily be eliminated.

The design of the Client-Data Listener mimics the format of a standard CICS/TS
3270 terminal data stream. In other words, this is very similar to what you are
use to seeing come into a standard CICS/TS terminal interaction on initialization
of a terminal transaction. The first four characters of the initial data packet is the
transaction name as if you were coming from a real 3270 CICS/TS terminal.
Another similarity is that the transaction name can be followed by optional data
(parameters) that are passed to the transaction. This is a great listener to have for
providing multiple applications with TCP connectivity within one long running
server transaction. See the previous performance notes for other considerations.

LISTEN Service 7–23

Client-Data Listener Option

The client data-listener works in the following manner:

When a connection is received, the phase two listener is started to free up
(unblock) the original server listening port.

The phase two listener:

■ Does a TCP receive from the network

■ Expects one of the following client data formats to be received:
TRAN
TRAN,UUUUUUUUUUUU
TRAN,UUUUUUUUUUUU,IC,HHMMSS
TDQN,UUUUUUUUUUUU,TD
TRAN,,IC,HHMMSS
TDQN,,TD

Depending on the format of data, the listener determines how the actual
spawned application daughter is started. Continue reading for further details on
how this works.

Coding a value in the CLNTTIME field greater than zero turns on the client-data
listener. There are also options for translating the client data string and changing
the translation table if that is desired.

Default: No translation.

TRAN|TDQN A one- to four-character field followed by an optional
comma implying more parameters. The field can contain
one of the following:

 ■ The transaction ID to start

■ A transient data queue (TDQ) name to which the 1 to 35-
bytes of optional user data is written—if provided

UUUUUUUUUUUU 1- to 35-bytes of user data passed to the started transaction
or written to the transient data queue in the field
CLNTDATA.

IC Specifies that transaction TRAN be started in HHMMSS.

 Note: If left blank, startup is immediate.

HHMMSS Hours, minutes, and seconds for the IC option.

TD Indicates that the optional client data field
CLNTDATA(UUUUUUUUU above) will be written into
the transient data queue, TDQN.

7–24 C Programmer Guide

Client-Data Listener Option

Client-Data Option Data Structure

The data structure passed to the invoked program has the following format. This
structure is accessed by through a EXEC CICS RETREIVE command in the
invoked (spawned daughter) transaction. A sample C structure with member
name of T09KSCSK is provided and is available to you with the distributed
software in the cpthlq.T09MAC library. For greater details, see the Client Data
Listener Transaction Start section in the appendix “Control Block Layouts.”.

struct TCPSOCKET_PARM{
 int give_take_socket; /* socket number given by listener */
 char lstn_name[8]; /* listener name */
 char lstn_subname[8]; /* listener subname */
 char client_in_data[36]; /* client passed data */
 struct sockaddr_in
 sockaddr_in_parm; /* Internet socket address */

Examples

Client/Data Listener
with Translation

To invoke the Client/Data Listen tool and automatically translate the input
stream from ASCII to EBCDIC, you must specify the following options in the
T09MLSTN parameter:
T09MLSTN PORT=2002,CLNTIME=5,CLNTRNS=YES,CLNTTBL=MYTABLE,SOCKCOMP=N

In this example, the Listen tool:

■ Listens for connections on port 2002

■ Waits for up to five seconds for the input stream after establishing a
connection

■ Translates the input stream using the translation table MYTABLE

Important! When one specifies SOCKCOMP=N on the T09MLSTN macro, it creates
a CPT session. The daughter session will have a CPT token passed in the
give_take_socket field of the retrieved TCPSOCKET_PARM control block.

When one specifies SOCKCOMP=Y on the T09MLSTN macro, it creates an
EZASOKET API session. The daughter session will have an EZASOKET socket number
passed in the give_take_socket field of the retrieved TCPSOCKET_PARM control block.

LISTEN Service 7–25

Client-Data Listener Option

Invoking the Listener with Translation from a C CPT

The option, ACMOPTN1_LTRAN, is used in conjunction with acm_timeo. It is
mutually exclusive of the use of the acm_trnid field. ACMOPTN1_LTRAN
indicates to the LISTEN service that the connecting client application will specify
what server functions to execute. When the LISTEN service receives a
CONNECT request and ACMOPTN1_LTRAN is specified, it uses a partial
record timed RECEIVE (see RECEIVE service options) to get the client’s data.

To invoke the Client-Data Listener from a C CPT API program, you must specify
these options in the ACM:

This Option... Performs this Function...

acm_timeo=nnnn Specifies the maximum time the Listen
Service will wait for the data stream.
(Required).

acm_optn1=ACMOPTN1_LTRAN Triggers the Client/Data Listener option.
(Required).

acm_optn1=ACMOPTN1_CTRAN Indicates that the input stream is to be
translated. (Optional).

acm_optn1=ACMOPTN1_OTRAN Indicates that an optional translation table,
named in acm_cdtbl, is to be used in the
translation process. (Optional).

acm_cdtbl=table_name Specifies the name of the translation table
to use for translating the initial input
stream. (Optional).

acm_optn2=ACMOPTN2_CLEN Indicates the acm_clntl data length field is
specified. (Optional).

acm_clntl=nnn Specifies the maximum length of data the
LISTEN service will try to receive for the
initial data stream. This value is useful
when the amount of client data being sent
for the initial stream is different from the
normal length of 50 bytes. This speeds
processing by having the LISTEN service
be able to continue processing without
waiting the full acm_timeo value for the
initial data. (Optional).

7–26 C Programmer Guide

Example of a C Program, Client-Data Listener
■ Listens for connections on port 1984.

■ Uses automatic translation of the input stream.

■ Set the client data field acm_clntl to be four (just for the length of the CICS
transaction name) in the input stream. This speeds up connection
establishment.

■ Set the timeout to five seconds for the amount of time to wait for the client
data to arrive on the connection.

■ Disable resolving IP addresses into DNS hostnames

Note: The statements relating to the LISTEN service appear in bold.

#include <t09ksacm.h>
#include <t09ksrcs.h>
void main()
{
 struct acm_stru
 cpt_acm = {2, 0, 0, NULL, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 NULL,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 /*
 * CPT Connection Management Service request
 */
 cpt_acm.acm_lport = 1984;
 cpt_acm.acm_mro.acm_clntl = 4; /* CD length */
 cpt_acm.acm_optn1 = ACMOPTN1_NODNR + /* no DNS */
 ACMOPTN1_LTRAN + /* Client Data type */
 ACMOPTN1_CTRAN; /* Translate C.Data */
 cpt_acm.acm_optn2 = ACMOPTN2_CLEN; /* CD Length given */
 t09flstn (&cpt_acm);
 if (cpt_acm.acm_rtncd != 0)
 {
 /* process CPT LISTEN service return code */
 }
 /*
 * Terminate Transaction
 */
 End:
 EXEC CICS RETURN;
}

LISTEN Service 7–27

Client-Data Listener Option

LISTEN Service 7–27

Example of a C Program, Client-Data Listener
■ Listens for connections on port 1984.

■ Uses automatic translation of the input stream.

■ Set the client data field acm_clntl to be four (just for the length of the CICS
transaction name) in the input stream. This speeds up connection
establishment.

■ Set the timeout to five seconds for the amount of time to wait for the client
data to arrive on the connection.

■ Disable resolving IP addresses into DNS hostnames

Note: The statements relating to the LISTEN service appear in bold.

#include <t09ksacm.h>
#include <t09ksrcs.h>
void main()
{
 struct acm_stru
 cpt_acm = {2, 0, 0, NULL, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 NULL,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 /*
 * CPT Connection Management Service request
 */
 cpt_acm.acm_lport = 1984;
 cpt_acm.acm_mro.acm_clntl = 4; /* CD length */
 cpt_acm.acm_optn1 = ACMOPTN1_NODNR + /* no DNS */
 ACMOPTN1_LTRAN + /* Client Data type */
 ACMOPTN1_CTRAN; /* Translate C.Data */
 cpt_acm.acm_optn2 = ACMOPTN2_CLEN; /* CD Length given */
 t09flstn (&cpt_acm);
 if (cpt_acm.acm_rtncd != 0)
 {
 /* process CPT LISTEN service return code */
 }
 /*
 * Terminate Transaction
 */
 End:
 EXEC CICS RETURN;
}

Chapter

8 RCVFROM Service

The RCVFROM (Receive From) service enables you to develop connectionless
client and server applications.

This service call is only for UDP applications.

The RCVFROM service provides these basic functions:

■ Establishes a UDP server endpoint represented by a new token and starts
receiving datagrams on a user-specified well-known port.

Indicate this function to the RCVFROM service by passing an adt_token
equal to zero. RCVFROM then creates all the internal control blocks and the
RCVFROM buffer queue. Even though the SENDTO buffer queue is not
allocated for this endpoint (token) until the SENDTO service is called, the
SENDTO buffer size and number must be specified at this time because they
are negotiated with the transport provider and recorded in the internal
Unicenter SOLVE:CPT control blocks at endpoint creation time. On return
from the RCVFROM service, adt_token contains the value that is passed to
subsequent RCVFROM and SENDTO service calls.

■ Receives a datagram at a previously established UDP endpoint represented
by an existing token.

This functionality makes the RCVFROM service call just a data transfer call
that can be used by a client or server application. The RCVFROM buffer
queue is only allocated upon the first call to the RCVFROM service, whether
or not adt_token is equal to zero.

UDP tokens created with the RCVFROM or SENDTO services cannot be passed
to the TCP-only services, CONNECT, LISTEN, SEND, and RECEIVE. All other
Unicenter SOLVE:CPT service calls such as CLOSE, GIVE, TAKE, TRANSLATE
are available to UDP applications.

The non-blocking option of the RCVFROM service, ADTOPTN1_NBLKR, allows
applications to be developed that can poll a well-known UDP port, or send to a
remote UDP server and then make a predetermined number of RCVFROM calls
to get back a response.

RCVFROM Service 8–1

Call Syntax

Given the general unreliable nature of UDP, not blocking on a RCVFROM call
can build in some flexibility regarding the handling of lost datagrams. The other
option of course is to use a timeout value in the adt_timeo field to make sure that
control is returned to your program within a reasonable amount of time.

This chapter discusses the following topics:

■ Call Syntax—Shows sample syntax for the RCVFROM service call

■ Recommended ADT Parameters—Lists parameters normally used and
recommended for the RCVFROM service call

■ Usage Example– Provides a sample program shell for using the RCVFROM
service call

■ Parameter Values Returned in the ADT—Lists fields that are updated in the
ADT control block upon return from the RCVFROM service call

■ —Provides the distributed C structures that are used by the RCVFROM
service call

■ Sample Programs—Lists and describes the distributed sample C programs
that use the RCVFROM service call along with other service calls

■ Network Considerations—Reviews network-related issues that may
influence your environment

■ Return Codes—Lists return codes that can apply to the RCVFROM service
call

■ Complete Parameter List—Provides a complete list of the parameters and
their options for the RCVFROM service call

8–2 C Programmers Guide

Call Syntax

Call Syntax
t09frcfr (&cpt_adt);

Recommended ADT Parameters
The following list contains the recommended parameters for use with the
RCVFROM service. These parameters are set within the ADT control block.

For sample information, see .

For a complete list of optional parameters, see Complete Parameter List.

Parameters Description

adt_buffa User data address.

adt_buffl User data length.

adt_timeo RECEIVE timeout value set to a reasonable timeout for your local
network.

adt_token Data transfer token set to zero(0) for first time, or copied from
previous SENDTO or RCVFROM service call.

adt_vers Version should be set to 2.

RCVFROM Service 8–3

Usage Example

Usage Example
In this example, a subset of the actual statements required is shown to emphasize
the use of a RCVFROM call. This example receives data from a remote host. The
token is loaded from the ADT and used by all of the following Unicenter
SOLVE:CPT service requests. The return code is checked to determine
RCVFROM service completion status.

Note: The statements needed for the RCVFROM service appear in bold.

#include <t09ksadt.h>
#include <t09ksrcs.h>
void main()
{
 struct adt_stru
 cpt_adt = {ADT_VERSN, 0, 0, NULL, NULL, 0, 0, 0, 0};
 char msgarea[256];

 cpt_adt.adt_lport = 1980;
 cpt_adt.adt_timeo = 30;
 cpt_adt.adt_optn1 = ADTOPTN1_TMRCV;
 memcpy(cpt_adt.adt_rname,"123.234.105.199",15);

 while (data)
 {
 cpt_adt.adt_buffa = &msgarea;
 cpt_adt.adt_buffl = sizeof (msgarea);
 t09frcfr (&cpt_adt);
 if (cpt_adt.adt_rtncd != CPTIRCOK)
 {
 /*
 * process CPT RECEIVE service error
 */
 }
 }
 End:
 EXEC CICS RETURN;

8–4 C Programmers Guide

Parameter Values Returned in the ADT

Parameter Values Returned in the ADT
After the RCVFROM service call returns control to your application program, the
following fields are propagated with valid information. These updated values
are passed back to the application in the ADT control block.

Parameters Description

adt_buffl The number of user data bytes actually received.

adt_dgncd Diagnostic Code.

adt_laddr Local IP Host Address.

adt_lname Local IP Host Name.

adt_mrecv API receive buffer size.

adt_msend API send buffer size.

adt_qrecv API receive queue size, set to one.

adt_qsend API send queue size, set to one.

adt_raddr Remote IP Host Address.

adt_rname Remote IP Host Name.

adt_rtncd Return Code.

adt_token Token—Connection or endpoint.

C Structures
Sample C structures are provided in the distributed software and are available to
you in cpthlq.T09MAC. Variable field names contained in the distributed
samples and the examples in this guide refer to these structures.

T09KSADT C structure name for the ADT. For detailed information
and a sample copy of the C structure, see the ADT:
Argument for Data Transfer Used by RECIEVE, SEND,
RECVFROM, and SENDTO Services Service section in
appendix “Control Block Layouts.”

All C constants that apply to ADT calls are imbedded in the ADT structure
sample.

RCVFROM Service 8–5

Sample Programs

Sample Programs
Sample C source code is provided for your use. You should be able to find a
sample that matches your programming requirement. For more complete details
on what function a sample program provides, read the comments program
descriptions in the “Unicenter SOLVE:CPT API Services” chapter and the at the
beginning of the sample members listed below. These sample program members
are available in the distributed software in the cpthlq.T09SAMP library.

Name Description

T09PSCLU Sample UDP client.

T09PSSVU Sample UDP server.

Network Considerations
The ADT is a common data structure used for both client and server UDP
applications. There are common and unique values specified for a particular
service request.

Name Server Conditions for
RCVFROM

Client Conditions for
SENDTO

adt_lport Local server well-known port
selected by user application.

Local assigned transport
provider port returned to user
application.

adt_rport Remote client transport
provider port returned to
user application.

Remote server transport
provider well-known port
selected by user application.

adt_laddr Local IP host address
returned to user application.

Local IP host address
returned to user application.

adt_raddr Remote IP host address
returned to user application.

Remote IP host address
selected by or returned to
user application.
The client must specify this
field or adt_rname.

8–6 C Programmers Guide

Return Codes

Name Server Conditions for Client Conditions for
RCVFROM SENDTO

adt_lname Local IP host name returned
to user application.

Local IP host name Returned
to user application.

adt_rname Remote IP host name
returned to user application
only if ADTOPTN1_DODNR
is specified. This is not the
recommended setting.

Remote IP host name selected
by or returned to the user
application.
The client must specify this
field or adt_raddr. If
adt_raddr is used adt_rname
will only be returned if
ADTOPTN1_DODNR is
specified.

Return Codes
The RCVFROM service returns codes indicating the results of the execution.
These values are in the adt_rtncd and adt_dgncd.

Structure T09KSRCS contains equates and descriptions for the possible return
codes. T09KSRCS is available in the distributed software in cpthlq.T09MAC. See
the appendix “Return Codes” for a sample copy of the T09KSRCS structure.

The following is a list of return codes that can apply to the RCVFROM call.

Decimal Hex Diagnostic
Code

Variable Description

0k 0 No CPTIRCOK Request completed successfully.

1 1 No CPTWTIMO Timed receive call timed out.

6 6 Yes CPTWBLCK Non-blocking call to the
RCVFROM service.

17 11 No CPTEVRSN Control block version number
not supported.

18 12 Yes CPTECONN Required Parameter not passed.
E.g. host, port, …

19 13 No CPTEPROT Specified protocol not
supported.

RCVFROM Service 8–7

Return Codes

Decimal Hex Diagnostic Variable Description
Code

20 14 No CPTETOKN Specified data transfer token is
invalid.

21 15 No CPTEBUFF Buffer address or length invalid.

31 1F No CPTEFRMT Other Socket Call Parameter List
format or specification error.

34 22 No CPTENAPI API not fully available; retry.

40 28 Yes CPTETERM Environment is being
terminated.

47 2F Yes CPTEENVR Other transport layer
environmental condition.

65 41 Yes CPTERLSE Orderly release of remote
connection request.

68 44 Yes CPTEDISC Remote connection not available
or aborted.

72 48 Yes CPTEPRGE Remote connection environment
terminating.

79 4F Yes CPTEINTG Other transport layer
connection/data integrity error.

143 8F Yes CPTEPROC Procedural error.

254 FE Is abend
code

CPTABEND Abnormal termination.
The diagnostic code is the
abnormal termination code,
which is normally a CICS abend
code, but can also be in the
“Abend Codes” chapter of the
Message Guide.

255 FF No CPTEOTHR Other error.

8–8 C Programmers Guide

Complete Parameter List

Complete Parameter List
adt_buffa User data address. Indicates the storage address into which the UDP datagram is

received (RCVFROM service). This is a contiguous segment of storage accessible
to the user task. The content of all user data is application dependent, and not
interpreted by either Unicenter SOLVE:CPT or the transport provider.

The storage area can be aligned on any boundary convenient for the application
program.

Default: None.

adt_buffl Specifies the length in bytes of the adt_buffa field when the RCVFROM is issued.
After the RCVFROM call completes, adt_buffl indicates the actual length
returned in adt_buffa.

If the incoming datagram does not fit into adt_buffa for a length of adt_buffl,
then the warning, CPTWNEOM is passed back to the caller in adt_rtncd,
indicating that more RCVFROM calls are required to get the entire datagram.

It is an error to call the RCVFROM service with an adt_buffl of zero.

adt_dgncd Diagnostic code. Indicates the diagnostics code set by the RCVFROM service.
This value generally indicates a transport provider return code.

Default: None.

adt_func Function code. Indicates the function or callable service ID requested by the
application program this field should not be set by the application, but rather is
initialized by the TRUE interface stub.

Default: None.

adt_laddr Local IP host address. Represents the IP address of the local host and is filled in
on return to the client application.

Default: None.

adt_lname Local IP host name

Indicates the local host internet name. The local host internet name is returned to
the caller of the RCVFROM service.

This field is a 255-byte character string that is padded with blanks.

Default: None

RCVFROM Service 8–9

Complete Parameter List

adt_lport Local well-known service port (used when adt_token=0). Indicates the local
transport layer port on which the calling application will be receiving
(RCVFROM) datagrams.

If the SENDTO service creates the token, this port number is assigned by the
transport layer and returned to the caller. If the RCVFROM service creates the
token, this is the well-known port requested by the caller. If the RCVFROM
service is creating the token, this value must be specified.

This field is an unsigned positive integer with a maximum value of 65,534. The
value must be unique for each server application.

Default: None.

adt_mrecv API RECEIVE buffer size (used when adt_token=0). Specifies the maximum
number of user data bytes that can be transferred by the application in a single
RCVFROM request to the transport provider (API).

This value lets applications control input processing and can affect throughput
rates. The value is negotiated with the transport provider and can be modified
by the transport provider.

Total allocation cannot exceed 32 KB.

Default: 1024

adt_msend API send buffer size (used when adt_token=0). Specifies the maximum number
of user data bytes that can be transferred by the application in a single SENDTO
request to the transport provider (API).

This value lets applications control output processing and can affect throughput
rates. The value is negotiated with the transport provider and can be modified
by the transport provider.

Total allocation cannot exceed 32 KB.

Default: 1024.

adt_msock Maximum number of sockets per INITAPI. Overrides the MSOCK= value from
the T09MCICS configuration macro.

Default: 50

adt_nslct Number of entries in the select vector. Not used by the RCVFROM service.

8–10 C Programmers Guide

Complete Parameter List

adt_optn1 Specifies data transfer options. These are the ADT options that apply to UDP
data transfer requests:

ADTOPTN1_DODNR Execute internal DNR calls during UDP data transfer
service routine calls (RCVFROM and SENDTO) to resolve
remote IP addresses into IP names in the adt_RNAME
field.

Important! It is strongly recommended that you not use the ADTOPTN1_DODNR
option, since this can create huge 30 seconds delay in data reception if your DNS is not
correctly configured to resolve IP names into IP addresses. Most DNS servers do not
support this feature, and the call takes 30 seconds to time out.

ADTOPTN1_NBLKR Do not block a call to the RCVFROM service. If no
datagrams are currently available, the return code,
CPTWBLCK, is returned in adt_rtncd.

ADTOPTN1_TMRCV Allows the caller to wait up to a specified amount of time
for a datagram. It must be used with the
ADTOPTN1_NBLKR option, and adt_timeo must be
specified.

These options can be toggled on every UDP data transfer call even if the caller is
using the same token.

Default: None.

adt_qrecv API receive queue size. You should only specify one. Adding extra buffers
wastes storage and does not improve performance.

Default: One.

adt_qsend API send queue size. You should only specify one. Adding extra buffers wastes
storage and does not improve performance.

Default: One.

adt_raddr Remote IP host address. Indicates the remote host IP address of the sender of the
incoming UDP datagram. This value is returned to the caller of the RCVFROM
service and may be different for each datagram received.

This field is an unsigned four-byte integer value.

Default: None.

RCVFROM Service 8–11

Complete Parameter List

adt_rname Remote IP host name. Indicates the remote host internet name.

 It is only resolved through internal DNR calls and returned to the caller of the
UDP data transfer service routines (RCVFROM and SENDTO) if the
ADTOPTNS_DODNR is specified. This is to prevent the DNR call overhead on
every UDP data transfer call.

This field is a 255-byte character string that is padded with blanks.

Default: None.

adt_rport Remote port. Indicates the remote transport layer port on which the incoming
datagram originated. This value is returned to the caller of the RCVFROM
service and may be different for each datagram received.

This field is an unsigned positive integer with a maximum value of 65,534.

Default: None.

adt_rtncd Return code. Indicates the return code set by the RCVFROM service.

Default: None.

adt_sep# Number of separator characters for option ADTOPTN1_TYPSP. Not used in the
RCVFROM service.

Default: None

adt_sep1 First or only spaceport character for option ADTOPTN1_TYPSP. Not used in the
RCVFROM service.

Default: None.

adt_sep2 Second character or separator sequence for option ADTOPTN1_TYPSP. Not used
in the RCVFROM service.

Default: None

adt_slctd Number of tokens selected. Not used by the RCVFROM service.

adt_srvce This field is only for downward compatibility purposes and is ignored. This field
is no longer supported in Version 6 of CPT.

8–12 C Programmers Guide

Complete Parameter List

adt_stat Specifies logging options for the application program.

ADTSTATS_CONN Specifies that messages be generated on the closing of a
UDP token.

 These messages are generated by the Unicenter
SOLVE:CPT CLOSE service.

ADTSTATS_TERM Specifies that messages be generated on terminating an
established connection.

 These messages are generated by the Unicenter
SOLVE:CPT CLOSE service.

Default: None, no statistics logging.

adt_timeo RCVFROM time out value.

Default: None.

adt_token Data transfer token. Specifies a token that represents a UDP endpoint.

If the ADT is being passed in a call to either the RCVFROM or SENDTO service,
then the token can be zero, indicating to either service, to first create a token
before sending or receiving a datagram. If the token is not zero, then it must be a
token created previously by either the RCVFROM or SENDTO service.

It is not necessary or efficient to create a token every time a CICS transaction
calls the UDP data transfer services. It is an error to pass a TCP token to the UDP
data transfer service routines, RCVFROM and SENDTO. Conversely, it is an
error to pass a UDP token to the TCP data transfer routines, RECEIVE and
SEND.

Default: None.

adt_trace Note that the tracing functionality has moved in Version 6 of Unicenter
SOLVE:CPT A greatly enhanced tracing capability is now available using the
TCPEEP tracing command. See the Administrator Guide for more detail.

These tracing fields remain only for downward compatibility purposes and are
ignored:

ADTTRAC1_NTRY ADTTRAC1_TERM ADTTRAC1_TPL

ADTTRAC1_ARGS ADTTRAC1_PASS ADTTRAC1_RLSE

ADTTRAC1_RECV ADTTRAC1_CLSE ADTTRAC1_STOR

ADTTRAC1_SEND ADTTRAC1_TERR ADTTRAC1_CLTD

RCVFROM Service 8–13

Complete Parameter List

adt_ucntx One word of user context. Specifies one arbitrary word of user context to
associate with the endpoint. The information provided is not interpreted by
Unicenter SOLVE:CPT, and is saved with other endpoint information.

Default: Zero, no user context.

adt_vectr Address of the select vector. Not used by the RCVFROM service.

adt_vers Required. Version. Indicates the Unicenter SOLVE:CPT version number of the
argument used by the calling program.

Must be set to binary two for this release of Unicenter SOLVE:CPT.

Default: None.

8–14 C Programmers Guide

Chapter

9 RECEIVE Service

Receives data from a peer transport user connected to an endpoint.
The RECEIVE service receives data as input on a connection-mode (TCP)
endpoint only.

To invoke the RECEIVE service, a user application must first build an Argument
for Data Transfer (ADT) and then issue a call to the RECEIVE routine. The ADT
contains the version number, connection token, user buffer address, and length.
When the RECEIVE service completes, the buffer length field is updated to
reflect the amount of data processed by the RECEIVE service.

This chapter discusses the following topics:

■ Call Syntax—Shows sample syntax for the RECEIVE service call

■ Receive Methodology Options—Explains the various methods of architecting
your receiving of data, and which ADT options are needed to perform the
type of receive logic

■ Parameter Values Returned in the ADT—Lists the fields that are updated in
the ADT control block upon return from the RECEIVE service call

■ C Structures—Provides a list and information about the distributed sample C
structures that are used by the RECEIVE service call.

■ Sample Programs—Lists and describes the distributed sample C programs
that use the RECEIVE call along with other service calls

■ Completion Information—Describes the expected results at completion of the
RECEIVE service call

■ Return Codes—Lists the return codes that can apply to the RECEIVE service
call

■ Usage Notes—Provides miscellaneous notes about usage of the RECEIVE
service call

■ Complete Parameter List—Provides a complete list of the parameters and
their options for the RECEIVE service call

RECEIVE Service 9–1

Call Syntax

Call Syntax
t09frecv (&cpt_adt);

Receive Methodology Options
Application design drives the selection of a receive methodology. Once you
determine the type, refer to the proper receive methodology type section to find
the recommended parameters and a usage example for each type.

In TCP communications, data is passed in the form of stream data. This data
format is very similar to what the name suggests—it is a stream of data. There is
no logical or physical break in the data for records.

Since stream data format is different than the standard record processing used in
most MVS style processing, Unicenter SOLVE:CPT provides a wealth of
flexibility for easily converting stream data into MVS logical records. In order to
use this functionality, you must code options to tell Unicenter SOLVE:CPT how
to assemble the records for you.

Important! By default, none of this record formatting functionality is enabled. You
must turn it on with options. Otherwise, you will receive a stream of data as it is sent
from the remote.

9–2 C Programmers Guide

Receive Methodology Options

Terminology and Receive Concepts Used in the Definitions

The following information describes the concepts and terminology used in
RECEIVE service processing.

BLOCKING

Blocking means that the RECEIVE call can wait until the expected data is
received over the adt_timeo timeout interval.

From a CICS perspective, a blocking RECEIVE call creates a long running CICS
task. Long running CICS tasks are shunned as a poor programming practice.

NON-BLOCKING

Non-blocking does not wait on a RECEIVE call. The RECEIVE checks for data
and returns back to the caller either with the data or with a CPTWBLCK return
code stating that there is no data available at this time

The preferred non-blocking method involves integrating RECEIVE calls with the
SELECT tool.

SELECT Tool

The SELECT tool can monitor outstanding RECEIVE calls for many CICS
transactions. When the RECEIVE data is available the SELECT tool fires off a
transaction that can issue a RECEIVE call to RECEIVE data for the session.

A SELECT tool RECEIVE can be combined with LL, separator character, or timed
RECEIVE methods.

RECEIVE Service 9–3

Receive Methodology Options

LL RECEIVE Option

When a caller specifies the LL receive option type, it expects the data stream to
contain a two-byte length field (LL) followed by data bytes. A binary length
contained in the first two positions of the received data stream determines the
length of the expected data record.

LL RECEIVE Example In the following hexadecimal example of a data stream, the two-byte LL header
is in bold:

0008E3C5E2E3D9C5C3F1000AD4E8E3C5E2E3D9C5C3F2

Length Data Record 1 Length Data Record 2

0008 E3C5E2E3D9C5C3F1 000A D4E8E3C5E2E3D9C5C3F2

where:

 0008 LL header value denotes eight bytes of data to follow the
LL characters.

TESTREC1 Actual character data in the first record.

000A LL header value denotes ten bytes of data to follow the LL
characters.

MYTESTREC2 Actual character data in the second record.

9–4 C Programmers Guide

Receive Methodology Options

Separator Character RECEIVE Option

In the separator character receive option type, the end of a record is determined
by finding one or two separator characters.

Note: The data may never contain a natural occurrence of the separator
characters and is a major limitation of the separator character RECEIVE option.

Double Separator
Character Example

In the following hexadecimal example, data stream, uses two separator
characters: CRLF (carriage return) shown in bold:

8E3C5E2E3D9C5C3F10D0AD4E8E3C5E2E3D9C5C3F20D0A

Data Record 1 Separator
Characters

Data Record 2 Separator
Characters

E3C5E2E3D9C5C3F1 0D0A D4E8E3C5E2E3D9C5C3F2 0D0A

where:

TESTREC1 Data in the first record.

0D0A CRLF separates the first from the second data record.

MYTESTREC2 Data in the second record.

0D0A CRLF separates the second and any following records.

Single Separator
Character Example

In the following hexadecimal example data stream, using x'FF' as a separator
character shown in bold:

8E3C5E2E3D9C5C3F1FFD4E8E3C5E2E3D9C5C3F2FF

Data Record 1 Separator
Characters

Data Record 2 Separator
Characters

E3C5E2E3D9C5C3F1 FF D4E8E3C5E2E3D9C5C3F2 FF

where:

TESTREC1 Data in the first record.

0D0A FF separates the first from the second data record.

MYTESTREC2 Data in the second record.

FF Separates the second and any following records.

RECEIVE Service 9–5

Receive Methodology Options

Timed RECEIVE

When a CPT application uses timed RECEIVE calls, it is up to the programmer to
figure out when they have received all their data. The application may have to
issue multiple RECEIVE calls as data may be broken into multiple packets.

Once the RECEIVE call returns it is the programmer's responsibility to analyze
the return codes and ADTBUFFL data length to determine what to do next. This
may include saving any partial packet that was received into the user's data area.

In a partial time RECEIVE call, an endpoint waits until any data is received over
the timeout interval ADTTIMEO.

In a full timeout RECEIVE call, an endpoint waits over the timeout interval of
ADTTIMEO for all the data (as specified by ADTBUFFL) to arrive from the
network.

Introduction to Receive Methodology Options

The following list identifies most of the receive methodologies that can occur.
Review this list to determine which method best fits your design. Then follow
the link to the section to examine recommended ADT options and samples.

Non-Blocking Fixed
Length

The length of the expected data is known. When the RECEIVE is issued with
the no wait option, one of the following should occur under normal
circumstances:

■ The proper amount of data is available and returned to the caller.

■ No data is returned with a will block (CPTWBLCK) reason code (6) set in
the adt_rtncd field of the ADT. When the wait condition is received, the
caller gives the token over to the SELECT tool, which wakes the
application up when the requested data is available.

Non-Blocking
Variable Length
RECEIVE

The length of the expected data is unknown. The RECEIVE is issued with the
ADTOPTN2_NWAIT no wait option along with a timeout interval adt_timeo.
One of the following should occur under normal circumstances:

■ The data is available and returned to the caller

■ No data is returned with a will block (CPTWBLCK) reason code (6) set in
the adt_rtncd field of the ADT. When the wait condition is received, the
caller gives the token over to the SELECT tool, which wakes the
application up when the requested data is available.

9–6 C Programmers Guide

Receive Methodology Options

Non-Blocking LL A binary length contained in the first two characters of the received data stream
determines the length of the expected data record. When the RECEIVE call is
issued with a no wait option; one of the following should occur under normal
circumstances:
■ The proper amount of data is available and returned to the caller.
■ No data is returned with a will block (CPTWBLCK) reason code (6) set in

the adt_rtncd field of the ADT. When the wait condition is received, the
caller gives the token over to the SELECT tool, which wakes the
application up when more data is available.

Non-Blocking
Separator Character

The records are determined based on finding one or two separator characters.
See the example in the definitions section. When the RECEIVE call is issued
with a no wait option; one of the following should occur under normal
circumstances:
■ The proper separator characters delimited record is available and returned

to the caller.

■ No data is returned with a will block (CPTWBLCK) reason code (6) set in
the adt_rtncd field of the ADT. When the wait condition is received, the
caller gives the token over to the SELECT tool, which wakes the
application up when more data is available.

Blocking Fixed Length The length of the expected data is known. The receive waits for all data to be
received or until the adt_timeo timeout expires.

Blocking LL A binary length contained in the first two characters of the received data stream
determines the length of the expected data record. This length is then used to
issue a receive that waits until all data is received or an adt_timeo timeout
expires.

Blocking Separator
Character

The records are determined based on finding one or two separator characters.
The data is received until the separator characters are found or an adt_timeo
timeout expires. Then, the record is given to the RECEIVE caller.

Non-Blocking RECEIVE With this method, the application continuously issues no wait receives holding
the data and looping back to receive more data until the data is exhausted or
the application determines that it has what it needs.

Blocking RECEIVE This is the TCP sockets default of continuously issuing receives, holding the
data and looping back to receive more data until the data is exhausted or the
application determines that it has what it needs.

What makes this a blocking receive call is that the call must receive some data
(or a failure at the transport provider) or control will never be returned to the
caller. This is why in the recommendation below we suggest a timeout.

Any of the previous methodologies have valid uses and we can recommend
them. However, we do not recommend issuing a blocking receive call without a
timeout.

RECEIVE Service 9–7

Receive Methodology Options

Important! You should always set a timeout in the adt_timeo field whenever you issue a
blocking receive. Even a non-blocking receive should eventually hit a timeout.

Non-Blocking Fixed Length RECEIVE

The length of the expected data is known. The RECEIVE is issued with a no wait
option. Either the proper amount of data is available and returned to the caller;
or no data is returned with a will block (CPTWBLCK) reason code (6) being set in
the adt_rtncd field of the ADT. If a wait condition is received, the caller gives the
token over to the SELECT tool, which wakes the application up when the
requested data is available.

Recommended ADT Parameters

The following list contains the recommended parameters to use with the Non-
Blocking Fixed Length RECEIVE methodology. These parameters are set within
the ADT control block. See C Structures for sample information.

For a complete list of optional parameters, see Complete Parameter List.

Parameters Description

adt_buffa Set to address of user data area.

adt_buffl Set to expected fixed length record.

adt_optn1 Receiving method: set to ADTOPTN1_TMRCV.

adt_optn2 Receiving method: set to ADTOPTN2_NWAIT

adt_timeo RECEIVE timeout value, set to reasonable timeout for
your network environment.

Issuing RECEIVE calls with the SELECT tool does not
create a long running transaction. So, it is okay to set
the adt_timeo to a value such as one minute.

adt_token Data transfer token.

adt_vers Version number should be set to ADT_VERSN(2).

9–8 C Programmers Guide

Receive Methodology Options

Sample Program Usage

This partial program shows a method of non-blocking fixed length receiving. A
connection is made and the token is loaded from the ACM and used by all of the
following Unicenter SOLVE:CPT service requests. The length of the expected
data is known, and 345 is moved into the adt_buffl field. adt_optn2 is set to
ADTOPTN2_NWAIT and adt_optn1 is set to ADTOPTN1_TMRCV for full block
receiving without waiting. Control returns to the program immediately.

The programmer can determine when data is received by checking both the
updated length in the adt_buffl field and the adt_rtncd return code completion
status.

A return code of CPTWTIMO (1) in the adt_rtncd field indicates the RECEIVE
has timed out in the SELECT tool waiting for data.

The programmer should check the adt_rtncd for CPTWBLCK (6), which
indicates that the RECEIVE call will block. In the CPTWBLCK case, the program
hands the connect token over to the SELECT tool by:

■ Setting option AFMOPT1_SEL

■ Moving the transaction to be kicked off into field afm_ntran

■ Calling the GIVE service as shown at case (CPTWBLCK)

When transaction NXTR gets control again from the SELECT tool, the RECEIVE
call must be issued with the exact same options set, otherwise the results are
unpredictable.

Note: Relevant parameters of the example are in bold.

#include <t09ksacl.h>
#include <t09ksacm.h>
#include <t09ksadt.h>
#include <t09ksafm.h>
#include <t09ksrcs.h>
void main()
{
 /*
 * retrieve ACM and TAKE connection from server
 */
 struct afm_stru
 cpt_afm = { AFM_VERSN, 0, 0, NULL, NULL, 0, 0, 0, 0};
 CICS RETRIEVE SET(cpt_acm) LENGTH(acmleng);
 If (acmleng == 4)
 memcpy(cpt_afm.afm_token, cpt_acm, 4); /* move token */
 else cpt_afm.afm_token = cpt_acm.acm_token;
 t09ftake (&cpt_afm);
 if (cpt_afm.afm_rtncd != CPTIRCOK)
 {
 /*
 * process CPT TAKE service error and terminate transaction;
 */
 }

RECEIVE Service 9–9

Receive Methodology Options

 struct adt_stru
 cpt_adt = { ADT_VERSN, 0, 0, NULL, NULL, 0, 0, 0, 0};
 char message[345];

 cpt_adt.adt_token = cpt_acm.acm_token;
 cpt_adt.adt_optn1 = ADTOPTN1_TMRCV; /* receive timeout */
 cpt_adt.adt_optn2 = ADTOPTN2_NWAIT; /* select tool */
 cpt_adt.adt_timeo = 60; /* timeout value */
 cpt_adt.adt_buffa = &msgarea; /* address data area */
 cpt_adt.adt_buffl = 345; /* length to receive */

 t09frecv (&cpt_adt);

 switch (cpt_adt.adt_rtncd)
 {
 case (CPTIRCOK): /* Good RC = 0 */
 /*
 * Do normal (good) processing
 */
 break;
 case (CPTWTIMO): /* timeout RC = 1 */
 /*
 * Process any data you may have;
 * log timeout error; terminate connection
 */
 break;
 case (CPTWBLCK): /* will block RC = 6 */
 memcpy(cpt_afm.afm_ntran, "NXTR", 4); /* next tranID to start */
 cpt_afm.afm_opt = AFMOPT_SEL; /* give to select tool */
 t09fgive (&cpt_afm);
 if (cpt_afm.afm_rtncd != CPTIRCOK)
 {
 /*
 * process CPT GIVE service error and terminate transaction;
 */
 }
 break;
 case (CPTERLSE): /* release indication received: TCP FINish bit */
 /*
 * log error if shutdown not expected
 */
 cpt_acl.acl_token = cpt_adt.adt_token;
 cpt_afm.afm_opt = ACLOPT_ORDER; /* set orderly close */
 t09fclos (&cpt_acl);
 break;
 case (CPTEDISC): /* reset indication received: TCP RST bit */
 /*
 * log reset error
 */
 break;
 default:
 /*
 * log return and diagnostice codes
 */
 break;
 } /* end of switch
 End:
 EXEC CICS RETURN;

9–10 C Programmers Guide

Receive Methodology Options

Non-Blocking Variable Length RECEIVE

The length of the expected data is unknown. The RECEIVE is issued with the
ADTOPTN2_NWAIT no wait option along with a timeout interval adt_timeo.
One of the following should occur under normal circumstances:

■ The data is available and returned to the caller.

■ No data is returned with a will block (CPTWBLCK) reason code (6) set in the
adt_rtncd field of the ADT. When the wait condition is received, the caller
gives the token over to the SELECT tool, which wakes the application up
when the requested data is available.

Recommended ADT Parameters

The following list contains the recommended parameters for use by the Non-
Blocking Variable Length RECEIVE methodology. These parameters are set
within the ADT control block; see C Structures for sample information.

For a complete list of optional parameters, see Complete Parameter List.

Parameter Description

adt_buffa Set to address of user data area.

adt_buffl Set to maximum buffer size in the adt_buffa field.

adt_optn1 Receiving method: set to ADTOPTN1_TMPRT.

adt_optn2 Receiving method: set to ADTOPTN2_NWAIT.

adt_timeo RECEIVE timeout value, set to reasonable timeout for your
network environment.

Issuing RECEIVE calls with the SELECT tool will not create a
long running transaction. So, it is okay to set the adt_timeo to a
value such as one minute.

adt_token Data transfer token.

adt_vers Version number should be set to ADT_VERSN(2). The
T09MCALL macro automatically sets the correct version number
in the ADT parameter list.

RECEIVE Service 9–11

Receive Methodology Options

Sample Program Usage

This partial program shows a method of non-blocking variable length receiving.
A connection is made and the token is loaded from the CPT-ACM and used by
all of the following Unicenter SOLVE:CPT service requests. The length of the
expected data is unknown, and the length of the message buffer is moved into
the adt_buffl field. adt_optn1 is set to ADTOPTN1_TMPRT. adt_optn2 is set to
ADTOPTN2_NWAIT for partial block receiving without waiting. Control returns
to the program immediately.

The programmer determines if data was received by checking:

■ The updated length in the adt_buffl field

■ The return code is to determine RECEIVE service completion status

A return code of CPTWTIMO (1) in the adt_rtncd field indicates the RECEIVE
has timed out in the SELECT tool waiting for data.

The programmer should check the adt_rtncd for CPTWBLCK (6), which
indicates that the RECEIVE call will block. In the CPTWBLCK case, the program
hands the connect token over to the SELECT tool by:

■ Setting option AFMOPT1_SEL

■ Moving the transaction to kick off into field afm_ntran

■ Calling the GIVE service as shown at case (CPTWBLCK)

When transaction NXTR gets control again from the SELECT tool, the RECEIVE call
must be issued with the exact same options set, otherwise the results are unpredictable.

Note: Relevant parameters of the example are in bold.

#include <t09ksacl.h>
#include <t09ksacm.h>
#include <t09ksadt.h>
#include <t09ksafm.h>
#include <t09ksrcs.h>
void main()
{
 /*
 * retrieve ACM and TAKE connection from server
 */
 struct afm_stru
 cpt_afm = { AFM_VERSN, 0, 0, NULL, NULL, 0, 0, 0, 0};
 CICS RETRIEVE SET(cpt_acm) LENGTH(acmleng);
 If (acmleng == 4)
 memcpy(cpt_afm.afm_token, cpt_acm, 4); /* move token */
 else cpt_afm.afm_token = cpt_acm.acm_token;
 t09ftake (&cpt_afm);
 if (cpt_afm.afm_rtncd != CPTIRCOK)
 {
 /*
 * process CPT TAKE service error and terminate transaction;
 */
 }

9–12 C Programmers Guide

Receive Methodology Options

 struct adt_stru
 cpt_adt = { ADT_VERSN, 0, 0, NULL, NULL, 0, 0, 0, 0};
 char message[1024];

 cpt_adt.adt_token = cpt_acm.acm_token;
 cpt_adt.adt_optn1 = ADTOPTN1_TMPRT; /* partial timeout */
 cpt_adt.adt_optn2 = ADTOPTN2_NWAIT; /* select tool */
 cpt_adt.adt_timeo = 60; /* timeout value */
 cpt_adt.adt_buffa = &msgarea; /* address data area */
 cpt_adt.adt_buffl = 1024; /* length to receive */

 t09frecv (&cpt_adt);

 switch (cpt_adt.adt_rtncd)
 {
 case (CPTIRCOK): /* Good RC = 0 */
 /*
 * Do normal (good) processing
 */
 break;
 case (CPTWTIMO): /* timeout RC = 1 */
 /*
 * Process any data you may have;
 * log timeout error; terminate connection
 */
 break;
 case (CPTWBLCK): /* will block RC = 6 */
 memcpy(cpt_afm.afm_ntran, "NXTR", 4); /* next tranID to start */
 cpt_afm.afm_opt = AFMOPT_SEL; /* give to select tool */
 t09fgive (&cpt_afm);
 if (cpt_afm.afm_rtncd != CPTIRCOK)
 {
 /*
 * process CPT GIVE service error and terminate transaction;
 */
 }
 break;
 case (CPTERLSE): /* release indication received: TCP FINish bit */
 /*
 * log error if shutdown not expected
 */
 cpt_acl.acl_token = cpt_adt.adt_token;
 cpt_afm.afm_opt = ACLOPT_ORDER; /* set orderly close */
 t09fclos (&cpt_acl);
 break;
 case (CPTEDISC): /* reset indication received: TCP RST bit */
 /*
 * log reset error
 */
 break;
 default:
 /*
 * log return and diagnostice codes
 */
 break;
 } /* end of switch
 End:
 EXEC CICS RETURN;

RECEIVE Service 9–13

Receive Methodology Options

Non-Blocking LL RECEIVE

A binary length contained in the first two characters of the received data stream
determines the length of the expected data record. See the example in LL
RECEIVE Option. When the RECEIVE call is issued with a no wait option, one of
the following should occur under normal circumstances:

■ The proper amount of data is available and returned to the caller.

■ No data is returned with a will block (CPTWBLCK) reason code (6) set in the
adt_rtncd field of the ADT. When the wait condition is received, the caller
gives the token over to the SELECT tool, which wakes the application up
when more data is available.

Recommended ADT Parameters

The following list contains the recommended parameters for use by the Non-
Blocking LL RECEIVE methodology. These parameters are set within the ADT
control block; see C Structures for sample information.

For a complete list of optional parameters, see Complete Parameter List.

Parameter Description

adt_buffa Set to address of user data area.

adt_buffl Set to the maximum expected length of any record.

adt_optn1 Receiving method: set to ADTOPTN1_TYPLL.

adt_optn2 Receiving method: set to ADTOPTN2_NWAIT.

adt_timeo RECEIVE timeout value, set to reasonable timeout for
your network environment.

Issuing RECEIVE calls with the SELECT tool does not
create a long running transaction. So, it is okay to set
the adt_timeo to a value such as one minute.

adt_token Data transfer token.

adt_vers Version number should be set to ADT_VERSN(2).

9–14 C Programmers Guide

Receive Methodology Options

Sample Program Usage

This partial program shows a method of receiving records based on the first two
bytes containing the length of the record.

A connection is made and the token is loaded from the CPT-ACM and used by
all of the following Unicenter SOLVE:CPT service requests. The maximum length
of the expected data record of 1024 is moved into the adt_buffl field. adt_optn2 is
set to ADTOPTN2_NWAIT and adt_optn1 is set to ADTOPTN1_TYPLL for
imbedded length separator type receiving without waiting. Control is return to
the program immediately.

The programmer determines if data was received by checking:

■ The updated length in the adt_buffl field

■ The return code is to determine RECEIVE service completion status

A return code of CPTWTIMO (1) in the adt_rtncd field indicates the RECEIVE
timed out in the SELECT tool waiting for data.

The programmer should check the adt_rtncd for CPTWBLCK (6), which
indicates that the RECEIVE call will block. In the CPTWBLCK case, the program
hands the connect token over to the SELECT tool by:

■ Setting option AFMOPT1_SEL

■ Moving the transaction to be kicked off into field afm_ntran

■ Calling the GIVE service as shown at case (CPTWBLCK)

When transaction NXTR gets control again from the SELECT tool, the RECEIVE call
must be issued with the exact same options set, otherwise the results are unpredictable.

Note: Relevant parameters of the example are in bold.

#include <t09ksacl.h>
#include <t09ksacm.h>
#include <t09ksadt.h>
#include <t09ksafm.h>
#include <t09ksrcs.h>
void main()
{
 /*
 * retrieve ACM and TAKE connection from server
 */
 struct afm_stru
 cpt_afm = { AFM_VERSN, 0, 0, NULL, NULL, 0, 0, 0, 0};
 CICS RETRIEVE SET(cpt_acm) LENGTH(acmleng);
 If (acmleng == 4)
 memcpy(cpt_afm.afm_token, cpt_acm, 4); /* move token */
 else cpt_afm.afm_token = cpt_acm.acm_token;
 t09ftake (&cpt_afm);
 if (cpt_afm.afm_rtncd != CPTIRCOK)
 {
 /*
 * process CPT TAKE service error and terminate transaction;

RECEIVE Service 9–15

Receive Methodology Options

 */
 }
 struct adt_stru
 cpt_adt = { ADT_VERSN, 0, 0, NULL, NULL, 0, 0, 0, 0};
 char message[1024];

 cpt_adt.adt_token = cpt_acm.acm_token;
 cpt_adt.adt_optn1 = ADTOPTN1_TYPLL; /* LL length separator */
 cpt_adt.adt_optn2 = ADTOPTN2_NWAIT; /* select tool */
 cpt_adt.adt_timeo = 60; /* timeout value */
 cpt_adt.adt_buffa = &msgarea; /* address data area */
 cpt_adt.adt_buffl = 1024; /* length to receive */

 t09frecv (&cpt_adt);

 switch (cpt_adt.adt_rtncd)
 {
 case (CPTIRCOK): /* Good RC = 0 */
 /*
 * Do normal (good) processing
 */
 break;
 case (CPTWTIMO): /* timeout RC = 1 */
 /*
 * Process any data you may have;
 * log timeout error; terminate connection
 */
 break;
 case (CPTWBLCK): /* will block RC = 6 */
 memcpy(cpt_afm.afm_ntran, "NXTR", 4); /* next tranID to start */
 cpt_afm.afm_opt = AFMOPT_SEL; /* give to select tool */
 t09fgive (&cpt_afm);
 if (cpt_afm.afm_rtncd != CPTIRCOK)
 {
 /*
 * process CPT GIVE service error and terminate transaction;
 */
 }
 break;
 case (CPTERLSE): /* release indication received: TCP FINish bit */
 /*
 * log error if shutdown not expected
 */
 cpt_acl.acl_token = cpt_adt.adt_token;
 cpt_afm.afm_opt = ACLOPT_ORDER; /* set orderly close */
 t09fclos (&cpt_acl);
 break;
 case (CPTEDISC): /* reset indication received: TCP RST bit */
 /*
 * log reset error
 */
 break;
 default:
 /*
 * log return and diagnostice codes
 */
 break;
 } /* end of switch
 End:
 EXEC CICS RETURN;

9–16 C Programmers Guide

Receive Methodology Options

Non-Blocking Separator Character RECEIVE

The records are determined based on finding one or two separator characters.
See the example in the Separator Character RECEIVE Option section. When the
RECEIVE call is issued with a no wait option, one of the following should occur
under normal circumstances:

■ The proper separator characters delimited record is available and returned to
the caller.

■ No data is returned with a will block (CPTWBLCK) reason code (6) set in the
adt_rtncd field of the ADT. When the wait condition is received, the caller
gives the token over to the SELECT tool, which wakes the application up
when more data is available.

Recommended ADT Parameters

The following list contains the recommended parameters for use by the Non-
Blocking Separator Character RECEIVE methodology. These parameters are set
within the ADT control block; see C Structures for sample information.

For a complete list of optional parameters, see Complete Parameter List.

Parameter Description

adt_buffa Set to address of user data area.

adt_buffl Set to the maximum expected length of any record.

adt_optn1 Receiving method: set to ADTOPTN1_TYPSP.

adt_optn2 Receiving method: set to ADTOPTN2_NWAIT.

adt_sepc Set to 1 or 2 for the number of separator characters.

adt_sep1 First or only separator character.

adt_sep2 Second separator character in a sequence of two.

adt_timeo RECEIVE timeout value, set to reasonable timeout for
your network environment.

Issuing RECEIVE calls with the SELECT tool does not
create a long running transaction. So, it is okay to set
the adt_timeo to a value such as one minute.

adt_token Data transfer token.

adt_vers Version number should be set to ADT_VERSN(2)

RECEIVE Service 9–17

Receive Methodology Options

Sample Program Usage

This partial program shows a method of non-blocking separator character
delineated receive. The records are determined based on finding one or two
separator characters.

A connection is made and the token is loaded from the ACM and used by all of
the following Unicenter SOLVE:CPT service requests. The maximum length of
the expected data of 1024 is moved into the adt_buffl field. adt_optn2 is set to
ADTOPTN2_NWAIT and adt_optn1 is set to ADTOPTN1_TYPSP for separator
character delimiters with no waiting. Control returns to the program
immediately.

The programmer will:

■ Determine if data was received by checking the updated length in the
adt_buffl field

■ Check that the return code is to determine RECEIVE service completion
status

A return code of CPTWTIMO (1) in the adt_rtncd field indicates the RECEIVE
timed out in the SELECT tool waiting for data.

The programmer should check the adt_rtncd for CPTWBLCK (6), which
indicates that the RECEIVE call will block. In the CPTWBLCK case, the program
hands the connect token over to the SELECT tool by:

■ Setting option AFMOPT1_SEL

■ Moving the transaction to be kicked off into field afm_ntran

■ Calling the GIVE service as shown at case (CPTWBLCK)

When transaction NXTR gets control again from the SELECT tool, the RECEIVE call
must be issued with the exact same options set, otherwise the results are unpredictable.

Note: Relevant parameters of the example are in bold.
#include <t09ksacl.h>
#include <t09ksacm.h>
#include <t09ksadt.h>
#include <t09ksafm.h>
#include <t09ksrcs.h>
void main()
{
 /*
 * retrieve ACM and TAKE connection from server
 */
 struct afm_stru
 cpt_afm = { AFM_VERSN, 0, 0, NULL, NULL, 0, 0, 0, 0};
 CICS RETRIEVE SET(cpt_acm) LENGTH(acmleng);
 If (acmleng == 4)
 memcpy(cpt_afm.afm_token, cpt_acm, 4); /* move token */
 else cpt_afm.afm_token = cpt_acm.acm_token;
 t09ftake (&cpt_afm);
 if (cpt_afm.afm_rtncd != CPTIRCOK)

9–18 C Programmers Guide

Receive Methodology Options

 {
 /*
 * process CPT TAKE service error and terminate transaction;
 */
 }
 struct adt_stru
 cpt_adt = { ADT_VERSN, 0, 0, NULL, NULL, 0, 0, 0, 0};
 char message[1024];

 cpt_adt.adt_token = cpt_acm.acm_token;
 cpt_adt.adt_optn1 = ADTOPTN1_TYPSP; /* set to SEPerator character*/
 cpt_adt.adt_sepc = 2; /* number of SEP characters */
 cpt_adt.adt_sep1 = 0x0d; /* 1st SEP = carriage return */
 cpt_adt.adt_sep2 = 0x0a; /* 2nd SEP = line feed */
 cpt_adt.adt_optn2 = ADTOPTN2_NWAIT; /* select tool */
 cpt_adt.adt_timeo = 60; /* timeout value */
 cpt_adt.adt_buffa = &msgarea; /* address data area */
 cpt_adt.adt_buffl = 1024; /* length to receive */

 t09frecv (&cpt_adt);

 switch (cpt_adt.adt_rtncd)
 {
 case (CPTIRCOK): /* Good RC = 0 */
 /*
 * Do normal (good) processing
 */
 break;
 case (CPTWTIMO): /* timeout RC = 1 */
 /*
 * Process any data you may have;
 * log timeout error; terminate connection
 */
 break;
 case (CPTWBLCK): /* will block RC = 6 */
 memcpy(cpt_afm.afm_ntran, "NXTR", 4); /* next tranID to start */
 cpt_afm.afm_opt = AFMOPT_SEL; /* give to select tool */
 t09fgive (&cpt_afm);
 if (cpt_afm.afm_rtncd != CPTIRCOK)
 {
 /*
 * process CPT GIVE service error and terminate transaction;
 */
 }
 break;
 case (CPTERLSE): /* release indication received: TCP FINish bit */
 /*
 * log error if shutdown not expected
 */
 cpt_acl.acl_token = cpt_adt.adt_token;
 cpt_afm.afm_opt = ACLOPT_ORDER; /* set orderly close */
 t09fclos (&cpt_acl);
 break;
 case (CPTEDISC): /* reset indication received: TCP RST bit */
 /*
 * log reset error
 */
 break;
 default:
 /*
 * log return and diagnostice codes
 */
 break;
 } /* end of switch
 End:
 EXEC CICS RETURN;

RECEIVE Service 9–19

Receive Methodology Options

Blocking Fixed Length RECEIVE
The length of the expected data is known and the receive waits until all data is
received or the adt_timeo timeout expires.

Recommended ADT Parameters

The following list contains the recommended parameters for use by the Blocking
Fixed Length RECEIVE methodology. These parameters are set within the ADT
control block ; see C Structures for sample information.

For a complete list of optional parameters, see Complete Parameter List.

Parameter Description

adt_buffa Set to address of user data area.

adt_buffl Set to expected fixed length record.

adt_optn1 Receiving method: set to ADTOPTN1_TMRCV.

adt_timeo RECEIVE timeout value, set to reasonable timeout for your
network environment.

adt_token Data transfer token.

adt_vers Version number should be set to ADT_VERSN(2).

Sample Program Usage

This partial program shows a method of receiving fixed length records while
blocking the connection. A connection is made and the token is loaded from the
ACM and used by all of the following Unicenter SOLVE:CPT service requests.
The length of the expected data is known, and 345 is moved into the adt_buffl
field. adt_optn1 is set to ADTOPTN1_TMRCV for full block receiving.

The receive waits until all data is received or the adt_timeo timeout expires. The
adt_rtncd return code is checked to determine RECEIVE service completion
status.

9–20 C Programmers Guide

Receive Methodology Options

Note: Relevant parameters of the example are in bold.

#include <t09ksadt.h>
#include <t09ksrcs.h>
void main()
{
 struct adt_stru
 cpt_adt = { ADT_VERSN, 0, 0, NULL, NULL, 0, 0, 0, 0};
 char message[345];

 cpt_adt.adt_token = cpt_acm.acm_token;
 cpt_adt.adt_optn1 = ADTOPTN1_TMRCV; /* timed receive */
 cpt_adt.adt_timeo = 5; /* timeout value */
 cpt_adt.adt_buffa = &msgarea; /* address data area */
 cpt_adt.adt_buffl = 345; /* length to receive */

 t09frecv (&cpt_adt);

 switch (cpt_adt.adt_rtncd)
 {
 case (CPTIRCOK): /* Good RC = 0 */
 /*
 * Do normal (good) processing
 */
 break;
 case (CPTWTIMO): /* timeout RC = 1 */
 /*
 * Process any data you may have;
 * log timeout error; terminate connection
 */
 break;
 case (CPTERLSE): /* release indication received: TCP FINish bit */
 /*
 * log error if shutdown not expected
 */
 cpt_acl.acl_token = cpt_adt.adt_token;
 cpt_afm.afm_opt = ACLOPT_ORDER; /* set orderly close */
 t09fclos (&cpt_acl);
 break;
 case (CPTEDISC): /* reset indication received: TCP RST bit */
 /*
 * log reset error
 */
 break;
 default:
 /*
 * log return and diagnostice codes
 */
 break;
 } /* end of switch
 End:
 EXEC CICS RETURN;

RECEIVE Service 9–21

Receive Methodology Options

Blocking LL RECEIVE

A binary length, LL, contained in the first two characters of the received data
stream determines the length of the expected data record. See example in LL
RECEIVE Option. The LL length is used on a RECEIVE call which waits until all
data has been received or the adt_timeo timeout expires.

Recommended ADT Parameters

The following list contains the recommended parameters for use by the Blocking
LL RECEIVE methodology. These parameters are set within the ADT control
block ; see C Structures for sample information.

For a complete list of optional parameters see Complete Parameter List.

Parameter Description

adt_buffa Set to address of user data area.

adt_buffl Set to maximum expected length of any record.

adt_optn1 Receiving method: set to ADTOPTN1_TYPLL.

adt_timeo RECEIVE timeout value, set to reasonable timeout for your
network environment.

adt_token Data transfer token.

adt_vers Version number should be set to ADT_VERSN(2).

Sample Program Usage

This partial program shows a method of receiving records based on the first two
bytes containing the length of the record. A connection is made and the token is
loaded from the ACM and used by all of the following Unicenter SOLVE:CPT
service requests. The maximum length of the expected data record of 1024 is
moved into the adt_buffl field. adt_optn1 is set to ADTOPTN1_TYPLL for
imbedded length separator type receiving. The binary length contained in the
first two characters of the received data stream determines the length of the
expected data.

The receive waits until all data is received or a adt_timeo timeout expires. The
return code is checked to determine RECEIVE service completion status.

9–22 C Programmers Guide

Receive Methodology Options

Note: Relevant parameters of the example are in bold.

#include <t09ksadt.h>
#include <t09ksrcs.h>
void main()
{
 struct adt_stru
 cpt_adt = { ADT_VERSN, 0, 0, NULL, NULL, 0, 0, 0, 0};
 char message[1024];

 cpt_adt.adt_token = cpt_acm.acm_token;
 cpt_adt.adt_optn1 = ADTOPTN1_TYPLL; /* length as seperator */
 cpt_adt.adt_timeo = 5; /* timeout value */
 cpt_adt.adt_buffa = &msgarea; /* address data area */
 cpt_adt.adt_buffl = 1024; /* max length to receive */

 t09frecv (&cpt_adt);

 switch (cpt_adt.adt_rtncd)
 {
 case (CPTIRCOK): /* Good RC = 0 */
 /*
 * Do normal (good) processing
 */
 break;
 case (CPTWTIMO): /* timeout RC = 1 */
 /*
 * Process any data you may have;
 * log timeout error; terminate connection
 */
 break;
 case (CPTERLSE): /* release indication received: TCP FINish bit */
 /*
 * log error if shutdown not expected
 */
 cpt_acl.acl_token = cpt_adt.adt_token;
 cpt_afm.afm_opt = ACLOPT_ORDER; /* set orderly close */
 t09fclos (&cpt_acl);
 break;
 case (CPTEDISC): /* reset indication received: TCP RST bit */
 /*
 * log reset error
 */
 break;
 default:
 /*
 * log return and diagnostice codes
 */
 break;
 } /* end of switch
 End:
 EXEC CICS RETURN;

RECEIVE Service 9–23

Receive Methodology Options

Blocking Separator Character RECEIVE

The records are determined based on finding one or two separator characters.
See the example in Separator Character RECEIVE Optionsection. The data is
received until the separator characters are found, and then the record is given to
the RECEIVE caller or the adt_timeo timeout expires.

Recommended ADT Parameters

The following list contains the recommended parameters for use by the Blocking
Separator Character RECEIVE methodology. These parameters are set within the
ADT control block; see C Structures for sample information.

For a complete list of optional parameters, see Complete Parameter List.

Parameter Description

adt_buffa Set to address of user data area.

adt_buffl Set to the maximum expected length of any record.

adt_optn1 Receiving method: set to ADTOPTN1_TYPSP.

adt_sep1 First or only separator character.

adt_sep2 Second separator character in a sequence of two.

adt_sepc Set to 1 or 2 for the number of separator characters.

adt_timeo RECEIVE timeout value, set to reasonable timeout for your
network environment.

adt_token Data transfer token.

adt_vers Version number should be set to ADT_VERSN(2).

9–24 C Programmers Guide

Receive Methodology Options

Sample Program Usage

This partial program shows a method of implementing the Blocked Separator
Character RECEIVE. The records are determined based on finding one or two
separator characters.

A connection is made and the token is loaded from the ACM and used by all of
the following Unicenter SOLVE:CPT service requests. The maximum length of
the expected data of 1024 is moved into the adt_buffl field. adt_optn1 is set to
ADTOPTN1_TYPSP for separator character delimiters.

The Blocked Separator Character RECEIVE waits up to the adt_timeo expiration
for all the data to be received. The adt_rtncd return code is checked to determine
RECEIVE service completion status.

Note: Relevant parameters of the example are in bold.

#include <t09ksadt.h>
#include <t09ksrcs.h>
void main()
{
 struct adt_stru
 cpt_adt = { ADT_VERSN, 0, 0, NULL, NULL, 0, 0, 0, 0};
 char message[1024];

 cpt_adt.adt_token = cpt_acm.acm_token;
 cpt_adt.adt_optn1 = ADTOPTN1_TYPSP; /* set to SEPerator character*/
 cpt_adt.adt_sepc = 2; /* number of SEP characters */
 cpt_adt.adt_sep1 = 0x0d; /* 1st SEP = carriage return */
 cpt_adt.adt_sep2 = 0x0a; /* 2nd SEP = line feed */
 cpt_adt.adt_timeo = 5; /* timeout value */
 cpt_adt.adt_buffa = &msgarea; /* address data area */
 cpt_adt.adt_buffl = 1024; /* length to receive */

 t09frecv (&cpt_adt);

 switch (cpt_adt.adt_rtncd)
 {
 case (CPTIRCOK): /* Good RC = 0 */
 /*
 * Do normal (good) processing
 */
 break;
 case (CPTWTIMO): /* timeout RC = 1 */
 /*
 * Process any data you may have;
 * log timeout error; terminate connection
 */
 break;
 case (CPTERLSE): /* release indication received: TCP FINish bit */
 /*
 * log error if shutdown not expected
 */
 cpt_acl.acl_token = cpt_adt.adt_token;
 cpt_afm.afm_opt = ACLOPT_ORDER; /* set orderly close */
 t09fclos (&cpt_acl);
 break;
 case (CPTEDISC): /* reset indication received: TCP RST bit */
 /*
 * log reset error

RECEIVE Service 9–25

Receive Methodology Options

 */
 break;
 default:
 /*
 * log return and diagnostice codes
 */
 break;
 } /* end of switch
 End:
 EXEC CICS RETURN;

Non-Blocking RECEIVE

In this method, the application continuously issues no wait RECEIVE calls
holding the data and looping back to receive more data until the data is
exhausted or the application determines that it has what it needs.

Recommended ADT Parameters

The following list contains the recommended parameters for use by the Non-
Blocking Receive Loop methodology. These parameters are set within the ADT
control block; see C Structures for sample information.

For a complete list of optional parameters see Complete Parameter List.

Parameter Description

adt_buffa Set to address of user data area.

adt_buffl Set to expected maximum length of record.

adt_optn1 Receiving method: set to ADTOPTN1_NBLKR.

adt_token Data transfer token.

adt_vers Version number should be set to ADT_VERSN(2).

9–26 C Programmers Guide

Receive Methodology Options

Sample Program Usage

This partial program shows an older non-blocking receive method. This is a
polling method to check to see if any data is at the endpoint.

 A connection is made and the token is loaded from the CPT-ACM and used by
all of the following Unicenter SOLVE:CPT service requests. The maximum length
of the expected data of 1024 is moved into the adt_buffl field. adt_optn1 is set to
ADTOPTN1_NBLKR for standard sockets in a non-blocking receive mode.

The RECEIVE service always returns control back to the caller. If no data is
available, then return code CPTWBLCK (6) is returned in the adt_rtncd field of
the ADT. The return code is checked to determine RECEIVE service completion
status. At this point, it is the programmer’s responsibility to check the adt_buffl
to determine if any data was received and how to process it

Note: Relevant parameters of the example are in bold.

#include <t09ksadt.h>
#include <t09ksrcs.h>
void main()
{
 struct adt_stru
 cpt_adt = { ADT_VERSN, 0, 0, NULL, NULL, 0, 0, 0, 0};
 char message[1024];

 cpt_adt.adt_token = cpt_acm.acm_token;

 while(data)
 {
 cpt_adt.adt_optn1 = ADTOPTN1_NBLKR; /* Do not block */
 cpt_adt.adt_buffa = &msgarea; /* address data area */
 cpt_adt.adt_buffl = 1024; /* length to receive */

 t09frecv (&cpt_adt);

 switch (cpt_adt.adt_rtncd)
 {
 case (CPTIRCOK): /* Good RC = 0 */
 /*
 * Process partial packet
 */
 break;
 case (CPTWTIMO): /* timeout RC = 1 */
 /*
 * Process any data you may already have;
 * log timeout error?; terminate connection?
 */
 break;
 case (CPTWBLCK): /* will block RC = 6 */
 /*
 * Process any data you may already have;
 * determine if you have all the data, and
 * loop or log error?
 */
 break;
 case (CPTERLSE): /* release indication received: TCP FINish bit */
 /*
 * log error if shutdown not expected

RECEIVE Service 9–27

Receive Methodology Options

 */
 cpt_acl.acl_token = cpt_adt.adt_token;
 cpt_afm.afm_opt = ACLOPT_ORDER; /* set orderly close */
 t09fclos (&cpt_acl);
 break;
 case (CPTEDISC): /* reset indication received: TCP RST bit */
 /*
 * log reset error
 */
 break;
 default:
 /*
 * log return and diagnostice codes
 */
 break;
 } /* end of switch
 } /* end of while
 End:
 EXEC CICS RETURN;

Blocking RECEIVE

RECEIVE is called for data. The RECEIVE call can become a long running task
waiting for network data to arrive.

What makes this a blocking receive call is that the call must receive some data (or
a failure at the transport provider) or control is never return to the caller. That is
why in the recommendation below we suggest a timeout.

Recommended ADT Parameters

The following list contains the recommended parameters for use by the Blocking
Receive Loop methodology. These parameters are set within the ADT control
block; for sample information see C Structures.

For a complete list of optional parameters, see Complete Parameter List.

Parameter Description

adt_buffa Set to address of user data area.

adt_buffl Set to maximum expected length of record.

adt_optn1 Receiving method: set to ADTOPTN1_TMPRT.

adt_timeo RECEIVE timeout value, set to reasonable timeout for your
network environment.

adt_token Data transfer token.

adt_vers Version number should be set to ADT_VERSN(2).

9–28 C Programmers Guide

Receive Methodology Options

Sample Program Usage

This partial program shows a blocking receive. A connection is made and
the token is loaded from the ACM and used by all of the following Unicenter
SOLVE:CPT service requests. The maximum length of the expected data of 1024
is moved into the adt_buffl field. adt_optn1 is set to ADTOPTN1_TMPRT.

The RECEIVE service returns control back to the caller

■ Any time data is available

■ The transport provider detects an error

■ An adt_timeo timeout expires

The return code is checked to determine RECEIVE service completion status. At
this point, it is the programmer’s responsibility to check the adt_buffl to
determine if any data was received and how to process it.

Note: Relevant parameters of the example are in bold.

#include <t09ksadt.h>
#include <t09ksrcs.h>
void main()
{
 struct adt_stru
 cpt_adt = { ADT_VERSN, 0, 0, NULL, NULL, 0, 0, 0, 0};
 char message[1024];

 cpt_adt.adt_token = cpt_acm.acm_token;
 cpt_adt.adt_timeo = 5; /* timeout value */

 while(data)
 {
 cpt_adt.adt_optn1 = ADTOPTN1_TMPRT; /* Timed partial */
 cpt_adt.adt_buffa = &msgarea; /* address data area */
 cpt_adt.adt_buffl = 1024; /* length to receive */

 t09frecv (&cpt_adt);

 switch (cpt_adt.adt_rtncd)
 {
 case (CPTIRCOK): /* Good RC = 0 */
 /*
 * Process partial packet
 */
 break;
 case (CPTWTIMO): /* timeout RC = 1 */
 /*
 * Process any data you may already have;
 * log timeout error?; terminate connection?
 */
 break;
 case (CPTERLSE): /* release indication received: TCP FINish bit */
 /*
 * log error if shutdown not expected
 */
 cpt_acl.acl_token = cpt_adt.adt_token;
 cpt_afm.afm_opt = ACLOPT_ORDER; /* set orderly close */
 t09fclos (&cpt_acl);
 break;

RECEIVE Service 9–29

Parameter Values Returned in the ADT

 case (CPTEDISC): /* reset indication received: TCP RST bit */
 /*
 * log reset error
 */
 break;
 default:
 /*
 * log return and diagnostice codes
 */
 break;
 } /* end of switch
 } /* end of while
 End:
 EXEC CICS RETURN;

Parameter Values Returned in the ADT
After the RECEIVE call returns control to your application program, the
following fields are propagated with valid information. These updated values
are passed back to the application in the ADT control block.

Parameter Description

adt_buffa Data buffer filled with data from the network.

adt_buffl Length of the data received.

adt_dgncd Diagnostic code.

adt_rtncd Return code.

C Structures
Sample C structures are provided in the distributed software and are available to
you in cpthlq.T09MAC. Variable field names contained in the distributed
samples and the examples in this guide refer to these structures.

T09KSADT C structure name for the ADT. For detailed information
and a sample copy of the C structure, see the ADT:
Argument for Data Transfer Used by RECIEVE, SEND,
RECVFROM, and SENDTO Services Service section in
appendix “Control Block Layouts.”

All C constants that apply to ADT calls are imbedded in the ADT structure
sample.

9–30 C Programmers Guide

Sample Programs

Sample Programs
Sample C source code is available in the distributed software in the
cpthlq.T09SAMP library. You should be able to find a sample that matches your
programming requirement. For complete details on the function a sample
program provides, see the program descriptions in the “Unicenter SOLVE:CPT
API Services” chapter and the descriptions of the sample members listed below.

Name Description

T09PSCL1 Client Application sends typed in data to the server waiting for the
information to be echoed back from the server.

T09PSCL2 Client Application to send an internal message using either the
FULL, SEP or LL to be echoed back by the server.

T09PSSV1 TCP Server 1 program is a single-threaded server using a Listen
API call.

T09PSSV2 TCP Server 2 program is a multithreaded server using the Listen
tool.

Completion Information
The RECEIVE service completes normally when the data is moved from the
transport provider buffer to the application program’s storage area. A length is
returned to the application program, which is set to the amount of data actually
processed.

Normal completion of the RECEIVE service implies that data has been moved to
the user buffer. This does not necessarily indicate the application request was
completely satisfied, but that some amount of data was processed. The user
application is required to load the adt_buffl field to determine the actual data
received. The RECEIVE service returns control to the calling application on
receipt of a full buffer, a partial buffer, or an error indication, unless overridden
with selected ADT options. Control is returned to the user application with a
partial buffer to avoid a WAIT command within the RECEIVE service.
Additional requests to the RECEIVE service may be required to completely
satisfy the user application’s requirement, unless overridden with selected ADT
options.

In the case of specifying a LL or separator type RECEIVE, completion will not
occur until all the data of length LL (for LL receive), the separators have been
found (for separator receive), or a timeout occurs. This may cause the transaction
to wait within the RECEIVE service unless the ADTOPTN2_NOWAIT option is
used.

RECEIVE Service 9–31

Return Codes

The presence of exceptions or error conditions does not always indicate serious
errors. A user application should check the return code to determine proper flow
control. The release indication return code is an example of a condition that is not
necessarily a serious error. This exception specifies that the remote host closed its
half of the full-duplex data connection and will not send any additional data.
This return code is acceptable, and generally indicates that graceful termination
of the connection should begin.

On normal return to the application program, the general return code in
adt_rtncd is set to zero (CPTIRCOK). The diagnostic code in adt_dgncd is always
zero. The length field (adt_buffl) indicates the amount of data processed.

If the RECEIVE service completes abnormally, some or no user data may have
been sent to the peer transport user. The general return code and the diagnostic
code indicate the nature of the failure. The diagnostic code generally contains a
specific code that is generated by the transport provider.

Return Codes
The RECEIVE service returns codes indicating the results of the execution. These
values are in the adt_rtncd (R15) and adt_dgncd (R0).

Sample C structure T09KSRCS is provided in data set cpthlq.T09MAC. It details
the variable field names contained in the distributed samples and the examples
in this guide. For a sample copy of the T09KSRCS structure, see the appendix
“Return Codes.” A description of the problem causing the associated return code
is contained in this structure.

The following table lists return codes that can apply to the RECEIVE call.

Decimal Hex Diagnostic
Code

Variable Description

0 0 No CPTIRCOK Request completed
successfully.

1 1 No CPTWTIMO Timed receive call timed
out.

6 6 Yes CPTWBLCK Non-blocking call to the
service detected a wait
condition.

17 11 No CPTEVRSN Control block version
number not supported.

9–32 C Programmers Guide

Return Codes

Decimal Hex Diagnostic Variable Description
Code

20 14 No CPTETOKN Specified data transfer
token is invalid.

21 15 No CPTEBUFF Buffer address or length
invalid.

27 1B No CPTETIME Receive timeout value not
specified.

31 1F No CPTEFRMT Other Socket Call
Parameter List format or
specification error.

34 22 No CPTENAPI API not fully available;
retry.

40 28 Yes CPTETERM TCPIP is terminating.

7 2F Yes CPTEENVR Other transport layer
environmental condition.

65 41 Yes CPTERLSE Orderly release of remote
connection request.

68 44 Yes CPTEDISC Remote connection not
available or aborted.

79 4F Yes CPTEINTG Other transport layer
connection/data
integrity error.

143 8F Yes CPTEPROC Procedural error.

254 FE Is abend
code

CPTABEND Abnormal termination.
The diagnostic code is
the abnormal
termination code, which
is normally a CICS abend
code, but can also be in
the “Abend Codes”
chapter of the Message
Guide.

255 FF No CPTEOTHR Other error.

RECEIVE Service 9–33

Usage Notes

Usage Notes
The RECEIVE service receives normal data inputs through a Unicenter
SOLVE:CPT connection. The data may be part of a byte stream being received
over a connection (TCP).

If the transport service type or protocol selected is a connection-mode byte
stream (TCP), data is moved from the transport provider’s storage area to the
user application’s storage area. Stream data may not be received with the same
logical boundaries with which it was sent. However, the data arrives in the
precise order in which it was sent. Possible fragmentation is a characteristic of
stream data.

A user application may be required to issue multiple RECEIVE service requests
to obtain all of the desired data. The data may arrive in particle segments.
An application should be designed to handle such a situation. Additionally,
users who write applications to process multiple record oriented data should
consider including a mechanism to delimit the data. Design options can include a
logical length field at the beginning of a record, or a special field, or fields, at the
end. This lets the application determine record boundaries.

The adt_optn1 field specifies RECEIVE processing control options. These options
provide the application more flexibility and make it easier to deal with stream
data than through the default blocking RECEIVE option. ADTNOWAIT allows
for polling of a connection for data or for use with the SELECT service.
ADTOPTN1_TMRCV and ADTOPTN1_TMPRT provide logical request
capabilities to the RECEIVE service. The options ADTOPTN1_TYPSP and
ADTOPTN1_TYPLL allow for built-in record delimiters. For more details on
options, see the Receive Methodology Options section.

The queue and buffer size values are specified during connection initialization
and can be modified by either the LISTEN or CONNECT services. An application
that is dependent on these values should validate the requested values,
compared with those values returned within the ACM. The values are modified
if the transport provider site administrator has configured limits and the
application request exceeds those values. If the requested values are modified,
verify site definition statements for API transport services.

The adt_vers version number indicates the Unicenter SOLVE:CPT release level in
which this user application program is written. This required field must be set to
ADT_VERSN(2) and is validated by the RECEIVE service before processing the
request.

The adt_func function code indicates the Unicenter SOLVE:CPT callable service
ID. The field is not initialized by a user application program and has little value
to the application except for dump analysis. The function code identifies and
maps an argument list with the error or trace log and dump analysis.

9–34 C Programmers Guide

Usage Notes

The token, adt_token, specifies the connection that is to receive data. This is a
required field and is validated by the RECEIVE service before processing the
request.

The data buffer address field, adt_buffa, is a full word. The application program
assures that the residency mode of data areas it manages (for example, argument
lists) is compatible with the addressing mode. The transport provider performs
consistency checks on the addressing mode whenever a service request is issued.
However, unpredictable results can occur before the transport provider can
perform this check.

The adt_buffl field indicates the data buffer length. This is a full word unsigned
integer. The data buffer length field should be less than or equal to the maximum
receive buffer values. However, if the data buffer length is greater than the
maximum receive buffer, the RECEIVE service attempts to satisfy the user’s
request with multiple transport provider requests. On return from the RECEIVE
service, the adt_buffl is updated with a value that indicates the number of bytes
processed.

RECEIVE Service 9–35

Complete Parameter List

Complete Parameter List
adt_buffa Required. User data address. Indicates the storage address into which network

data is placed. This is a contiguous segment of storage accessible to the user task.
The storage area can be aligned on any boundary convenient for the application
program.

Default: None.

adt_buffl Required. User data length. Indicates the length (in bytes) of user data in the
storage area as identified by the adt_buffa operand. The length is updated when
the request is completed to reflect the actual length of user data received.

This field must be interpreted on completion to determine the amount of data
actually received. If a RECEIVE request is issued with a zero length, an error is
detected and the request fails.

Default: None.

adt_dgncd Diagnostic code. Indicates the diagnostic code set by the service request. This
value generally indicates a transport provider return code.

Default: None.

adt_func Function code. Indicates the function or callable service ID requested by the
application program. This field should not be set by the application, but is
initialized by the TRUE interface stub program.

Default: None

adt_laddr Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

adt_lname Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

adt_lport Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

adt_mrecv Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

9–36 C Programmers Guide

Complete Parameter List

adt_msend Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

adt_msock Has no meaning for TCP connections, since the maximum number of sockets is
set at connection establishment time through the acm_msock field.

adt_nslct Number of entries in the selected vector. Not used by the RECEIVE service.

adt_opcd1 Specifies byte one(1) of data transfer options.

It is an error to just combine any of these RECEIVE service options:

ADTOPTN1_NBLKR ADTOPTN1_TYPLL ADTOPTN1_TYPSP

ADTOPTN1_TMRCV ADTOPTN1_TMPRT

An invalid combination will result in CPTEOPTN being returned in adt_rtncd.

ADTOPTN1_BLCKS This option was disabled with the CPT 6.1 API conversion.
This option is ignored.

ADTOPTN1_FDNR Do DNR name resolution (not used by the SEND service).

ADTOPTN1_NBLKR Do not block on a call to the RECEIVE service. If no data is
currently available on the connection, CPTWBLCK is
returned in adt_rtncd.

 This token can subsequently be passed to the SELECT tool .
See SELECT tool.

ADTOPTN1_TMPRT Timed partial record RECEIVE.

 These fields (along with other required ADT fields) are
used to request a timed partial record RECEIVE:

 adt_buffl set to maximum length expected.

 ADTOPTN1_TMPRT

 adt_timeo > zero

 If the time limit expires before receiving data, CPTWTIMO
is returned in adt_rtncd. If the time limit expires and any
data is received, the data, along with a zero adt_rtncd, is
returned to the caller.

RECEIVE Service 9–37

Complete Parameter List

ADTOPTN1_TMRCV Timed full record RECEIVE. These fields (along with
other required ADT fields) are used to request a timed full
record RECEIVE:

 adt_buffl set to the length expected

 ADTOPTN1_TMRCV

 adt_timeo > zero

 If the time limit expires before receiving any or all of the
data specified by adt_buffl, CPTWTIMO is returned in
adt_rtncd along with any data that was received.

ADTOPTN1_TYPLL LL type RECEIVE, see example in section: LL RECEIVE
Option

 These fields (along with other required ADT fields) are
used to request a SEP type RECEIVE call:

 ADTOPTN1_TYPLL

 adt_timeo > zero

 If the time limit expires before receiving any or all of the
data specified by the LL (first two bytes of the data stream),
CPTWTIMO are returned in adt_rtncd along with any data
that was received.

ADTOPTN1_TYPSP SEP type RECEIVE, see example in section: Separator
Character RECEIVE Option

 These fields (along with other required ADT fields) are
used to request a SEP type RECEIVE call:

 ADTOPTN1_TYPSP

 adt_sepc = 1 or 2

 adt_sep1 = character

 adt_sep2 = character if adt_sepc = 2

 adt_timeo > zero

9–38 C Programmers Guide

Complete Parameter List

 If the time limit expires and data is received, but no SEP
characters are found, the data, along with an adt_rtncd of
CPTWNSEP is returned to the caller.

Default: None.

adt_opcd2 Specifies byte two(2) of data transfer options.

These are the ADT options that apply to TCP data transfer requests:

An invalid combination will result in CPTEOPTN being returned in adt_rtncd.

ADTOPTN2_FVLST Currently for internal use only.

ADTOPTN2_NOQUE Do not QUEUE API RECEIVES.

ADTOPTN2_NOSTP Do not strip record delimiter sequence.

 This can be used with ADTOPTN1_TYPSP or
ADTOPTN1_TYPLL to return the actual separator
sequence or LL field in the buffer pointed to by
adt_buffa.

ADTOPTN2_NWAIT Do not wait on a call to the RECEIVE service. If no data
is currently available on the connection, CPTWBLCK is
returned in adt_rtncd.

 The token can subsequently be passed to the SELECT
tool. See the SELECT Tool in the chapter “Unicenter
SOLVE:CPT Tools.”

 This differs from ADTOPTNS-NBLKR since
ADTOPTN2_NWAIT can be used for all types of
receives (timed, separator, LL) whereas ADTOPTNS-
NBLKR is a normal non-blocking stream receive.

ADTOPTN2_RT100 The ADTTIMEO value is expressed in 1/100 of a
second.

When flag ADTOPTN2_RT100 is not set in the
adt_optn2 field then field adt_timeo specifies the amount
of time in seconds to wait for data to be received.

When flag ADTOPTN2_RT100 is set in the adt_optn2 field then field adt_timeo
specifies the amount of time in 1/100 seconds to wait for data to be received.

adt_qrecv Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

RECEIVE Service 9–39

Complete Parameter List

adt_qsend Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

adt_raddr Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

adt_rname Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

adt_rport Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

adt_rtncd Return code. Indicates the return code set by the RECEIVE service. This value is
also returned in register 15 and indicates the success or failure of the service.

Default: None.

adt_sepc Number of separator characters for option ADTOPTN1_TYPSP. When option
ADTOPTN1_TYPSP is set then the adt_sepc must be either one or two or
CPTESEP# will be returned in the adt_rtncd field.

Default: None.

adt_sep1 First or only separator character for option ADTOPTN1_TYPSP.

Default: None.

adt_sep2 Second separator character in a sequence of two for option ADTOPTN1_TYPSP.

Default: None.

adt_slctd Number of tokens selected. Not used by the RECEIVE service.

adt_srvce Used only by the UDP calls: RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

9–40 C Programmers Guide

Complete Parameter List

adt_stat Specifies statistics logging options for the application program.

ADTSTAT_CONN Specifies that messages be generated on the initial
connection of a session.

ADTSTAT_TERM Specifies that messages be generated on terminating an
established connection.

Default: None, no statistics logging.

adt_timeo RECEIVE timeout value.

Must be specified with these options:

■ ADTOPTN1_TMPRT

■ ADTOPTN1_TMRCV

■ ADTOPTN1_TYPLL

■ ADTOPTN1_TYPSP

Specifying any of the above options on a RECEIVE call with an adt_timeo set to
zero (0) results in CPTETIME being returned in adt_rtncd.

When flag ADTOPTN2_RT100 is not set in the adt_optn2 field then field
adt_timeo specifies the amount of time in seconds to wait for data to be received.

When flag ADTOPTN2_RT100 is set in the adt_optn2 field then field adt_timeo
specifies the amount of time in 1/100 seconds to wait for data to be received.

A CPTWTIMO error occurs when the data is not received by the adt_timeo
timeout.

Default: None.

adt_token Required. Data transfer token. adt_token specifies a token that represents a TCP
connection.

If the ADT is being passed in a call to either the RECEIVE or SEND service, then
it must be a token representing a previously established TCP connection, using
the CONNECT or LISTEN service.

It is an error to pass a zero adt_token to either the RECEIVE or SEND service. It
is an error to pass a TCP token to the UDP data transfer service routines:
RCVFROM and SENDTO. Conversely, it is an error to pass a UDP token to the
TCP data transfer routines: RECEIVE and SEND.

Default: None.

RECEIVE Service 9–41

Complete Parameter List

adt_trace Tracing functionality was moved in vVersion 6 of Unicenter Solve:CPT. A greatly
enhanced tracing capability is now available using the TCPEEP tracing
command. See the Administrator Guide for more details.

These tracing fields remain only for downward compatibility purposes and are
ignored.

ACMTRAC1_NTRY ACMTRAC1_TERM ACMTRAC2_TPL

ACMTRAC1_ARGS ACMTRAC1_PASS ACMTRAC2_RLSE

ACMTRAC1_RECV ACMTRAC1_CLSE ACMTRAC2_STOR

ACMTRAC1_SEND ACMTRAC1_TERR ACMTRAC1_CLTD

adt_ucntx Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

adt_vectr Address of the selected vector. Not used by the RECEIVE service.

adt_vers Required version number. Indicates the Unicenter SOLVE:CPT version number
of the argument used by the calling program.

Must be set to a binary two for this release of Unicenter SOLVE:CPT.

Default: None.

9–42 C Programmers Guide

Chapter

10 SEND Service

The SEND service sends data to a peer transport user connected to an endpoint;
it also sends data as output on a connection-mode (TCP) endpoint only.

To invoke the SEND service, a user application is required to first build an ADT
(Argument for Data Transfer) and then to issue a call to the SEND routine. The
ADT contains the version number, connection token, user buffer address, and
length. When the SEND service completes, the buffer length field is updated to
reflect the amount of data processed.

This chapter discusses the following topics:

■ Call Syntax—Shows sample syntax for the SEND service call

■ Recommended ADT Parameters—Lists the parameters normally used and
recommended for the SEND service call

■ Usage Examples—Provides a sample program shell for using the SEND
service call

■ Parameter Values Returned in the ADT—List fields that are updated in the
ADT control block upon return from the SEND service call

■ C Structures— Lists information about the distributed sample C structures
that are used by the SEND service call

■ Sample Programs—Sample C programs that use the SEND service.

■ Completion Information—Describes the expected results at completion of
the SEND service call

■ Return Codes—Lists the return codes that can apply to the SEND service call

■ Usage Notes—Contains miscellaneous notes about usage of the SEND
service call

■ Complete Parameter List—Provides a complete list of the parameters and
their options for the SEND service call

SEND Service 10–1

Call Syntax

Call Syntax
t09fsend (&cpt_adt);

Recommended ADT Parameters
The following table lists the recommend parameters to use with the SEND
service. These parameters are set within the ADT control block.

For a complete list of optional parameters, see Complete Parameter List

Field Name Description

adt_buffa Set to address of user data area.

adt_buffl Set to the length of the record in the adt_buffa field.

adt_token Data transfer token, which identifies the session.

adt_vers Version should be set to ADT_VERSN(2).

To use the LL SEND Option method you must move ADTOPTN1-TYPLL to the
adt_optn1 field in addition to setting the recommended fields above.

The following table lists the recommended optional parameters needed to use
the Separator Character SEND Option method in addition to setting the
recommended fields above.

Field Name Description

adt_optn1 Receiving method: set to ADTOPTN1-TYPSP.

adt_sepc Set to 1 or 2 for the number of separator characters.

adt_sep1 First or only separator character.

adt_sep2 Second separator character in a sequence of two.

When a caller specifies the Separator option type using setting ADTOPTN1-
TYPSP, the Unicenter SOLVE:CPT SEND service appends the specified separator
characters after the data packet before sending it to the remote.

10–2 C Programmers Guide

Recommended ADT Parameters

LL SEND

LL SEND Option

In the LL SEND option, records are prefixed by a two-byte hexadecimal length
field indicating the number of bytes to follow.

LL Example The following is a hexadecimal example of a data stream where a two-byte LL
length field containing x'000A' precedes the network data.

The following is a hexadecimal example of a data stream that is passed to the
SEND service as addressed by the adt_buffa field.
D4E8E3C5E2E3D9C5C3F2

The SEND service creates the following hexadecimal string before sending the
packet to the remote. The LL header is in bold.
000AD4E8E3C5E2E3D9C5C3F2

where:

000A Length of the data record.

MYTESTREC2 The character data in the record.

Separator Character SEND

Separator
Character SEND
Option

In the separator character SEND option type, the records are delimited by
appending one or two separator characters after the data.

Note: The major limitation with the separator character SEND option is that the
data may never contain a natural occurrence of the separator characters.

Double Separator
Character Example

The following is a hexadecimal example of a data stream using x'0D0A' as a
separator character, which is in bold.

The following is a hexadecimal example of a data stream that is passed to the
SEND service as addressed by the adt_buffa field.
E3C5E2E3D9C5C3F1

The SEND service creates the following hexadecimal string before sending the
packet to the remote. Two separator characters CRLF (carriage return) are
appended to the end, this is shown in bold:
E3C5E2E3D9C5C3F10D0A

where:

TESTREC1 The data record to send.

0D0A CRLF terminates the data stream sent to the remote.

SEND Service 10–3

Recommended ADT Parameters

Single Separator
Character Example

The following is a hexadecimal example of a data stream using x'FF' as a
separator character which is in bold.

Also, in the following hexadecimal example, a data stream is passed to the SEND
service as addressed by the adt_buffa field.
D4E8E3C5E2E3D9C5C3F2

The SEND service creates the following hexadecimal string before sending the
packet to the remote. The single separator character x'FF' is appended to the end,
this is shown in bold.

D4E8E3C5E2E3D9C5C3F2FF

where:

MYTESTREC2 The character data record to send.

FF Terminates the data stream that is sent to the remote.

10–4 C Programmers Guide

Usage Examples

Usage Examples
There are three types of SEND calls that an application can choose to use:

■ Data SEND Example—Sends data without any changes or record indicators

■ LL SEND Example—Data is prefixed with an LL length

■ Separator Character SEND Example—Data is terminated by separator
characters

Data SEND Example

In this example, the data is placed out in the network exactly as it was placed
into the adt_buffa buffer.

It is up to the remote application to determine when it has received all the data
of a particular record.

The token is loaded into the adt_token field from the ACM. The adt_buffa field
contains the data buffer address. The adt_buffl contains the length of data to
send across the network.

The application checks the adt_rtncd return code field to determine the SEND
service completion status.

Note: The statements related to the SEND service appear in bold.

#include <t09ksadt.h>
#include <t09ksacm.h>
#include <t09ksrcs.h>
void main()
{
 struct adt_stru
 cpt_adt = {ADT_VERSN, 0, 0, NULL, NULL, 0, 0, 0, 0};
 char message[256];
 cpt_adt.adt_token = cpt_acm.acm_token;
 while (data)
 {
 cpt_adt.adt_buffa = &msgarea;
 cpt_adt.adt_buffl = msglen;
 t09fsend (&cpt_adt);
 if (cpt_adt.adt_rtncd != 0)
 {
 /*
 * process CPT SEND service error and terminate transaction;
 */
 }
 }
 End:
 EXEC CICS RETURN;
}

SEND Service 10–5

Usage Examples

LL SEND Example

In this example, the data is sent out on to the network prefixed by a two-byte
length field followed by the data from the adt_buffa buffer of size adt_buffl.

The remote application knows how many bytes it has to read after it examines
the first two bytes of LL length sent in the data packet.

The token is loaded into the adt_token field from the ACM. The adt_buffa field
contains the data buffer address. The adt_buffl contains the caller’s length of
data to send across the network. The ADTOPTN1-TYPLL flag directs the SEND
process to convert the adt_buffl value to a two-byte field and place it out on the
network before the data in the adt_buffa buffer.

The application checks the adt_rtncd return code field to determine the SEND
service completion status.

Note: The statements related to the SEND service appear in bold.

#include <t09ksadt.h>
#include <t09ksacm.h>
#include <t09ksrcs.h>
void main()
{
 struct adt_stru
 cpt_adt = {ADT_VERSN, 0, 0, NULL, NULL, 0, 0, 0, 0};
 char message[256];
 cpt_adt.adt_token = cpt_acm.acm_token;
 cpt_adt.adt_optn1 = ADTOPTN1_TYPLL; /* set to LL */
 while (data)
 {
 cpt_adt.adt_buffa = &msgarea;
 cpt_adt.adt_buffl = msglen;
 t09fsend (&cpt_adt);
 if (cpt_adt.adt_rtncd != 0)
 {
 /*
 * process CPT SEND service error and terminate transaction;
 */
 }
 }
 End:
 EXEC CICS RETURN;
}

10–6 C Programmers Guide

Usage Examples

Separator Character SEND Example
In this example, the adt_buffa data is sent out on the network post fixed by two
bytes containing carriage return (x'0D') and line feed (x'0A').

The remote application will know it has to read all the bytes in a record when it
finds two bytes in the data stream that match the adt_sep1 and adt_sep2 fields.

The token is loaded into the adt_token field from the ACM. The adt_buffa field
contains the data buffer address. The adt_buffl contains the caller’s length of
data to send across the network. The ADTOPTN1-TYPSP flag along with the
value two set in the adt_sepc field directs the SEND process to send the
adt_buffa buffer data followed by the adt_sep1 and adt_sep2 character values.

The application checks the adt_rtncd return code field to determine the SEND
service completion status.

Note: The statements related to the SEND service appear in bold.

#include <t09ksadt.h>
#include <t09ksacm.h>
#include <t09ksrcs.h>
void main()
{
 struct adt_stru
 cpt_adt = {ADT_VERSN, 0, 0, NULL, NULL, 0, 0, 0, 0};
 char message[256];
 cpt_adt.adt_token = cpt_acm.acm_token;
 cpt_adt.adt_optn1 = ADTOPTN1_TYPSP; /* set to SEPerator character*/
 cpt_adt.adt_sepc = 2; /* number of SEP characters */
 cpt_adt.adt_sep1 = 0x0d; /* 1st SEP = carriage return */
 cpt_adt.adt_sep2 = 0x0a; /* 2nd SEP = line feed */
 while (data)
 {
 cpt_adt.adt_buffa = &msgarea;
 cpt_adt.adt_buffl = msglen;
 t09fsend (&cpt_adt);
 if (cpt_adt.adt_rtncd != 0)
 {
 /*
 * process CPT SEND service error and terminate transaction;
 */
 }
 }
 End:
 EXEC CICS RETURN;
}

SEND Service 10–7

Parameter Values Returned in the ADT

Parameter Values Returned in the ADT
After the SEND call returns control to your application program, the following
fields are propagated with the results of the SEND service call. These updated
values are passed back to the application in the ADT control block.

Parameters Description

adt_buffl The number of user data bytes actually sent.

adt_dgncd Diagnostic code.

adt_rtncd Return code.

C Structures
Sample C structures are provided in the distributed software and are available to
you in cpthlq.T09MAC. Variable field names contained in the distributed
samples and the examples in this guide refer to these structures.

T09KSADT C structure name for the ADT. For detailed information
and a sample copy of the C structure, see the ADT:
Argument for Data Transfer Used by RECIEVE, SEND,
RECVFROM, and SENDTO Services Service section in
appendix “Control Block Layouts.”

All C constants that apply to ADT calls are imbedded in the ADT structure
sample.

10–8 C Programmers Guide

Sample Programs

Sample Programs
Sample C source code is available in the distributed software in the
cpthlq.T09SAMP library. You should be able to find a sample that matches your
programming requirement. For complete details on the function a sample
program provides, see the program descriptions in the “Unicenter SOLVE:CPT
API Services” chapter and the descriptions of the sample members listed below.

Name Description

T09PSCL1 Client Application: Sends typed in data to the server waiting for
the information to be echoed back from the server.

T09PSCL2 Client Application: Sends an internal message using the FULL,
SEP or LL to be echoed back by the server.

T09PSSV1 TCP Server 1 program: A single-threaded server using a Listen
API call.

T09PSSV2 TCP Server 2 program: A multithreaded server using the Listen
tool.

T09PSSV5 TCP Server 5 program: Like SV2 and uses the Select tool.

Completion Information
The SEND service sends normal data as output through a Unicenter SOLVE:CPT
connection. The data may be part of a byte stream being sent over a connection
(TCP).

Data is moved from the application program’s storage area to storage areas
maintained by the transport provider. The data is packetized and sent to the
remote connection transport user. Logical boundaries are not preserved in the
data stream. The data is delivered to the peer transport user in the precise order
in which it was sent. However, this data may be fragmented.

Data is not necessarily packetized and sent by the transport provider each time a
SEND service call is issued, nor is it sent when a buffer boundary is indicated.
The transport provider may intentionally delay sending data as the result of
performance optimization or congestion avoidance algorithms. Typically, data
generated by the application is forwarded when it is sent in a continuous flow.

The SEND service completes after it copies data out of the adt_buffa buffer into
the internal TCP/IP data buffers for data transfer across the network.

SEND Service 10–9

Completion Information

The buffer size represents the maximum number of user data bytes that can be
transferred by the application in a single SEND request to the transport provider.
This value is application dependent. A small value causes the SEND service to
issue multiple SEND requests. Multiple SEND requests do not present a
problem. A large buffer value can waste application storage.

The buffer size value is specified during connection initialization and can be
modified on return. An application that is dependent on the buffer size value
should validate the requested values, compared with values returned within the
ACM. The values are modified if the transport provider site administrator has
configured limits and the application request exceeds those values. If the
requested values are modified, verify site definition statements for API transport
services.

The adt_vers version number indicates the Unicenter SOLVE:CPT release level in
which this user application program is written. This required field must be set to
ADT_VERSN and is validated by the SEND service before processing the
request.

The adt_func function code indicates the Unicenter SOLVE:CPT callable service
ID. The field is not initialized by a user application program and has little value
to the application except for dump analysis. The function code identifies and
maps an argument list with the error or trace log and dump analysis.

The token, adt_token, indicates the connection that is to transmit data.
This required field is validated by the SEND service before processing the
request.

The data buffer address field adt_buffa is a full word. The application program
assures that the residency mode of data areas it manages (for example, argument
lists) is compatible with the addressing mode. The transport provider performs
consistency checks on the addressing mode whenever a service request is issued.
However, unpredictable results may occur before the transport provider can
perform this check.

The adt_buffl field specifies the data buffer. This is a full word, positive integer.
The data buffer length field should be less than or equal to the maximum send
buffer values. However, if the data buffer length is greater than the maximum
send buffer, the SEND service fragments the user data into multiple transport
provider requests. The adt_buffl is updated on return from the SEND service
with a value that indicates the number of bytes processed.

10–10 C Programmers Guide

Return Codes

Return Codes
The SEND service return codes indicate the results of the execution. These values
are in the adt_rtncd (R15) and adt_dgncd (R0).

structure T09KSRCS contains equates and descriptions for the possible return
codes. T09KSRCS is available in the distributed software in cpthlq.T09MAC. See
the appendix “Return Codes” for a sample copy of the T09KSRCS structure.

This table describes the SEND service return codes.

Decimal Hex Diagnostic

Code
Variable Description

0 0 No CPTIRCOK Request completed successfully.

17 11 No CPTEVERS Control block version number
not supported.

20 14 No CPTETOKN Specified data transfer token is
invalid.

21 15 No CPTEBUFF Buffer address and/or length
invalid.

28 1C No CPTESEP# Bad value in adt_sepc field

29 1D No CPTEOPTN Caller has requested both
ADTOPTN1-TYPSP and
ADTOPTN1-TYPLL.

31 1F No CPTEFRMT Other Socket Call Parameter List
format or specification error.

34 22 No CPTENAPI API not fully available; retry.

40 28 Yes CPTETERM Environment is being
terminated.

47 2F Yes CPTEENVR Other transport layer
environmental condition.

65 41 Yes CPTERLSE Orderly release of remote
connection request.

68 44 Yes CPTEDISC Remote connection not available
or aborted.

72 48 Yes CPTEPRGE Remote connection environment
terminating.

79 4F Yes CPTEINTG Other transport layer
connection/data integrity error.

SEND Service 10–11

Usage Notes

Decimal Hex Diagnostic Variable Description
Code

143 8F Yes CPTEPROC Procedural error.
254 FE Is abend

code
CPTABEND Abnormal termination.

Note: The diagnostic code is the
abnormal termination code,
which is normally a CICS abend
code, but can also be in the
“Abend Codes” chapter of the
Message Guide.

255 FF No CPTEOTHR Other error.

Usage Notes
The SEND service sends normal data as output through a Unicenter SOLVE:CPT
connection. The data may be part of a byte stream being sent over a connection
(TCP).

Data is moved from the application program’s storage area to storage areas
maintained by the transport provider. The data is packetized and sent to the
connection transport user. Logical boundaries are not preserved in the data
stream. The data is delivered to the peer transport user in the precise order in
which it was sent. However, this data may be fragmented.

Data is not necessarily packetized and sent by the transport provider each time a
SEND service is not issued, nor is it sent when a buffer boundary is indicated.
The transport provider may intentionally delay sending data as the result of
performance optimization or congestion avoidance algorithms. Normally, data
generated by the application is forwarded when it is sent in a continuous flow.

The queue and buffer size values are specified during connection initialization
and can be modified on return. An application that is dependent on these values
should validate the requested values, compared with values returned within the
ACM. The values are modified if the transport provider site administrator has
configured limits and the application request exceeds those values. If the
requested values are modified, verify site definition statements for API transport
services.

The adt_vers version number indicates the Unicenter SOLVE:CPT release level in
which this user application program is written. This required field must be set to
ADT_VERSN and is validated by the SEND service before processing the
request.

10–12 C Programmers Guide

Usage Notes

The adt_func function code indicates the Unicenter SOLVE:CPT callable service
ID. The field is not initialized by a user application program and has little value
to the application except for dump analysis. The function code identifies and
maps an argument list with the error or trace log and dump analysis.

The adt_token token indicates the connection that is to transmit data.
This required field is validated by the SEND service before processing the
request.

The data buffer address field adt_buffa is a full word. The application program
assures that the residency mode of data areas it manages (for example, argument
lists) is compatible with the addressing mode. The transport provider performs
consistency checks on the addressing mode whenever a service request is issued.
However, unpredictable results may occur before the transport provider can
perform this check.

The data buffer length is indicated by the adt_buffl field. This is a full word,
positive integer. The data buffer length field should be less than or equal to the
maximum send buffer values. However, if the data buffer length is greater than
the maximum send buffer, the SEND service fragments the user data into
multiple transport provider requests. The adt_buffl is updated on return from
the SEND service with a value that indicates the number of bytes processed.

The adt_optn1 field specifies SEND processing control options and provides a
mechanism for event notification on return to the application program.

SEND Service 10–13

Complete Parameter List

Complete Parameter List
adt_buffa User data address. adt_buffa indicates the address of user data to send to the

connected, or associated, transport user. This is a contiguous segment of storage
accessible to the user task. The content of all user data is application-dependent,
and is not interpreted by either Unicenter SOLVE:CPT or the transport provider.
The storage area can be aligned on any boundary convenient for the application
program.

Default: None.

adt_buffl User data length. adt_buffl indicates the length, in bytes, of user data in the
storage area identified by the adt_buffa operand. The length is updated when
the request is completed to reflect the actual length of user data sent. Generally,
the length returned is equal to the length requested.

If a SEND request is issued with a zero length, an error is detected and the
request fails.

Default: None.

adt_dgncd Diagnostic code. Indicates the diagnostic code set by the service request. This
value generally indicates a transport provider return code.

Default: None.

adt_func Function code. Indicates the function or callable service ID requested by the
application program. This field should not be set by the application, but rather is
initialized by the TRUE interface stub program.

Default: None.

adt_laddr Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

adt_lname Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

adt_lport Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

adt_mrecv Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

10–14 C Programmers Guide

Complete Parameter List

adt_msend Used only by the UDP calls RCVFROM and SENDTO. For TCP connections,
this parameter is set in the equivalent ACM field.

adt_msock Has no meaning for TCP connections, since the maximum number of sockets is
set at connetion establishment time through the acm_msock field.

adt_nslct Number of entries in the SELECT vector. Not used by the SEND service.

ADT options Specifies data transfer options.

These are the ADT options that apply to TCP data transfer requests:

adt_opnt2 Options for byte two.

ADTOPTN2_FVLST Currently for internal use only.

ADTOPTN2_NOSTP Do not strip record delimiter sequence. Not used by the
SEND service.

ADTOPTN2_NWAIT Do not wait for completion. Not used by the SEND service.

ADTOPTN2_NOQUE Do not QUEUE API RECEIVES. Not used by the SEND
service.

adt_optn1 Options for byte 1.

ADTOPTN1_BLCKS This option was disabled with the CPT 6.1 API conversion.
This option is ignored.

ADTOPTN1_DODNR. Do DNR name resolution (not used by the SEND service).

ADTOPTN1_NBLKR Do not block on a call to the RECEIVE service. Not used by
the SEND service.

ADTOPTN1_TMPRT Timed partial record RECEIVE. Not used by the SEND
service.

ADTOPTN1_TMRCV Timed full record RECEIVE. Not used by the SEND
service.

ADTOPTN1_TYPLL LL type SEND. For explanation and example see LL SEND.
These fields (along with other required ADT fields) are
used to request a LL type SEND call:

 adt_optn1 = ADTOPTN1_TYPLL

SEND Service 10–15

Complete Parameter List

ADTOPTN1_TYPSP SEP type SEND. For explanation and example, see
Separator Character SEND. These files (along with other
required ADT fields) are used to request a SEP type SEND
call:

 adt_optn1 = ADTOPTN1_TYPSP

 adt_sepc = 1 OR 2

 adt_sep1 = character

 adt_sep2 = character, if adt_sepc = 2

It is an error to combine these SEND service options:

ADTOPTN1_TYPLL
ADTOPTN1_TYPSP

Note: An invalid combination will result in CPTEOPTN being returned in
adt_rtncd.

Default: None.

adt_qrecv Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field. The only
valid value is one.

adt_qsend Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field. The only
valid value is one.

adt_raddr Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

adt_rname Used only by the UDP calls RCVFROM and SENDTO.

adt_rport Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

adt_rtncd Return code. Indicates the return code set by the SEND service. This value is also
returned in register 15 and indicates the success or failure of the service.

Default: None.

10–16 C Programmers Guide

Complete Parameter List

adt_sepc# Number of separator characters for option ADTOPTN1-TYPSP
(0 < adt_sepc < 3). If adt_sepc is not equal to 1 or 2, CPTESEP# is returned in
adt_rtncd.

Default: None.

adt_sep1 First or only separator character for option ADTOPTN1-TYPSP.

Default: None.

adt_sep2 Second separator character in a sequence of two for option ADTOPTN1-TYPSP.

Default: None.

adt_stat Specifies statistics logging options for the application program.

ADTSTAT_CONN Specifies that messages be generated on the initial
connection of a session.

ADTSTAT_TERM Specifies that messages be generated on terminating an
established connection.

Default: Zero, no statistics logging.

adt_timeo RECEIVE timeout value. Not used by the SEND service.

Default: None.

adt_token It specifies the token, which represents a TCP connection.

If the ADT is passed in a call to either the RECEIVE or SEND service, it must be a
token representing a previously established TCP connection, using the
CONNECT or LISTEN service.

It is an error to pass a zero adt_token to either the RECEIVE or SEND service. It
is an error to pass a TCP token to the UDP data transfer service routines,
RCVFROM and SENDTO. Conversely, it is an error to pass a UDP token to the
TCP data transfer routines, RECEIVE and SEND.

Default: None.

SEND Service 10–17

Complete Parameter List

adt_trace Please note that the tracing functionality has moved in version 6 of Unicenter
SOLVE:CPT . A greatly enhanced tracing capability is now available via the
TCPEEP tracing command. See the Administrator Guide for more detail. These
tracing fields remain only for downward compatibility purposes and are
ignored.

ACMTTRAC1_NTRY ACMTTRAC1_TERM ACMTTRAC2_TPL

ACMTTRAC1_ARGS ACMTTRAC1_PASS ACMTTRAC2_RLSE

ACMTTRAC1_RECV ACMTTRAC1_CLSE ACMTTRAC2_STOR

ACMTTRAC1_SEND ACMTTRAC1_TERR ACMTTRAC1_CLTD

adt_ucntx Used only by the UDP calls RCVFROM and SENDTO.

For TCP connections, this parameter is set in the equivalent ACM field.

adt_vectr Address of the SELECT vector. Not used by the SEND service.

adt_vers Version. Indicates the Unicenter SOLVE:CPT version number of the argument
used by the calling program.

Must be set to a binary two for this release of Unicenter SOLVE:CPT.

Default: None.

10–18 C Programmers Guide

Chapter

11 SENDTO Service

This service is provided to allow connectionless client and server applications to
be developed. This service is UDP only.

The SENDTO service provides two basic functions:

■ Establishes a UDP client endpoint represented by a new token and sends a
datagram to a remote UDP server.

This function is indicated to the SENDTO service by passing an adt_token
equal to zero. SENDTO then creates all the internal control blocks and the
SENDTO buffer queue. Even though the RCVFROM buffer queue is not
allocated for this endpoint (token) until the RCVFROM service is called, the
RCVFROM buffer size and number must be specified at this time because
they are negotiated with the transport provider and recorded in the internal
Unicenter SOLVE:CPT control blocks at endpoint creation time. On return
from the SENDTO service, adt_token contains the token value to pass to
subsequent SENDTO and RCVFROM service calls.

■ Sends a datagram at a previously established UDP endpoint represented by
an existing token.

This functionality makes the SENDTO service call just a data transfer call
that can be used by a client or server application. The SENDTO buffer queue
is only allocated upon the first call to the SENDTO service whether
adt_token is equal to zero or not.

UDP tokens created with the RCVFROM or SENDTO services cannot be passed
to the TCP only services, CONNECT, LISTEN, SEND, and RECEIVE. The other
Unicenter SOLVE:CPT service calls GIVE, TAKE, and TRANSLATE are available
to UDP applications.

SENDTO Service 11–1

Call Syntax

This chapter discusses these topics:

■ Call Syntax—Shows sample syntax for the SENDTO service call

■ Recommended ADT Parameters—Lists the parameters normally used and
recommended for the SENDTO service call

■ Usage Example—Provides a sample program shell for using the SENDTO
service call

■ Parameter Values Returned in the ADT—List the fields that are updated in
the ADT control block upon return from the SENDTO service call

■ C Structures—Provides a list and information about the distributed C
structures that are used by the SENDTO service call

■ Sample Programs—Lists and describes the distributed sample C programs
that use the SENDTO service call

■ Network Considerations—Reviews network-related issues that may
influence your environment

■ Return Codes—Lists the return codes that can apply to the SENDTO service
call

■ Complete Parameter List—Provides a complete list of the parameters and
their options for the SENDTO service call

11–2 C Programmers Guide

Call Syntax

Call Syntax
t09fsnto (&cpt_adt);

Recommended ADT Parameters
The following list contains the recommended parameters for use with the
SENDTO service. These parameters are set within the ADT control block.

See C for sample information.

For a complete list of optional parameters, see Complete Parameter List.

Parameter Description

adt_buffa Set to address of user data area.

adt_buffl Set to the maximum expected length of any record.

adt_raddr If adt_rname, is not used, Remote IP Host Address in
hexadecimal.

adt_rport Remote Well-Known Service Port.

adt_rname Remote IP host name, mutually exclusive with adt_raddr.

adt_token Data transfer token, set to zero (0) if initial call.

adt_vers Version number should be set to ADT_VERSN(2).

SENDTO Service 11–3

Usage Example

Usage Example
In this example, a subset of the actual statements required is shown to emphasize
the use of a SENDTO call. In the example, a message is sent to a remote host. The
adt_rtncd return code is checked to determine SENDTO service completion
status.

Note: The statements needed for the SENDTO service appear in bold.

#include <t09ksadt.h>
#include <t09ksrcs.h>
void main()
{
 struct adt_stru
 cpt_adt = {ADT_VERSN, 0, 0, NULL, NULL, 0, 0, 0, 0};
 char message[] = "Sample CPT C program message";
 /*
 * Identify Service
 */
 cpt_adt.adt_rport = 1980;
 memcpy (cpt_adt.adt_rname, "123.234.105.199",15);
 /*
 * Data Processing Routine
 */
 while (data)
 {
 cpt_adt.adt_buffa = &message;
 cpt_adt.adt_buffl = sizeof(message);
 t09fsnto (&cpt_adt);
 if (cpt_adt.adt_rtncd != CPTIRCOK)
 {
 /*
 * process CPT SEND service error and terminate transaction;
 */
 }
 }
 End:
 EXEC CICS RETURN;
}

11–4 C Programmers Guide

Parameter Values Returned in the ADT

Parameter Values Returned in the ADT
After the SENDTO call returns control to your application program, the
following fields are propagated with valid established connection information.
These updated values are passed back to the application in the ADT control
block.

Parameters Description

adt_laddr Local IP Host Address.

adt_buffl The number of user data bytes actually sent.

adt_dgncd Diagnostic Code.

adt_lname Local IP Host Name.

adt_lport Client Application Port.

adt_mrecv API receive buffer size.

adt_msend API send buffer size.

adt_qrecv API receive queue size, set to one.

adt_qsend API send queue size, set to one.

adt_raddr Remote IP Host Address.

adt_rtncd Return Code.

adt_token Token—Connection or endpoint.

C Structures
Sample C structures are provided in the distributed software and are available to
you in cpthlq.T09MAC. Variable field names contained in the distributed
samples and the examples in this guide refer to these structures.

T09KSADT C structure name for the ADT. For detailed information
and a sample copy of the C structure, see the ADT:
Argument for Data Transfer Used by RECIEVE, SEND,
RECVFROM, and SENDTO Services Service section in
appendix “Control Block Layouts”.

All C constants that apply to ADT calls are imbedded in the ADT structure
sample.

SENDTO Service 11–5

Sample Programs

Sample Programs
Sample C source code is provided for your use. You should be able to find a
sample that matches your programming requirement. For more complete details
on what function a sample program provides, see the program descriptions in
the “Unicenter SOLVE:CPT API Services” chapter and the comments at the
beginning of the sample members listed below. These sample program members
are available in the distributed software in the cpthlq.T09SAMP library.

Name Description

T09PSCLU Sample UDP client.

T09PSSVU Sample UDP server.

Network Considerations
The ADT is a common data structure used for both client and server UDP
applications. There are common and unique values specified for a particular
service request.

Name Server Conditions for RCVFROM Client Conditions for SENDTO

adt_lport Local server well-known port
selected by user application.

Local assigned transport provider port
returned to user application.

adt_rport Remote client transport provider port
returned to user-by-user application.

Remote server transport provider well-known
port selected by user application.

adt_raddr Remote IP host address returned to
user application.

Remote IP host address selected by or returned
to user application.
The client must specify this field or adt_rname.

adt_lname Local IP host name returned to user
application.

Local IP host name returned to user
application.

adt_rname Remote IP host name returned to
user application only if
ADTOPTN1_DODNR is specified in
adt_optn1.

Remote IP host name selected by or returned to
the user application.
The client must specify this field or adt_raddr.
If adt_raddr is used, adt_rname is only
returned if ADTOPTN1_DODNR is specified in
adt_optn1.

11–6 C Programmers Guide

Return Codes

Return Codes
The SENDTO service returns codes indicating the results of the execution. These
values are in the adt_rtncd (R15) and adt_dgncd (R0).

Structure T09KSRCS contains equates and descriptions for the possible return
codes. T09KSRCS is available in the distributed software in cpthlq.T09MAC. See
the appendix “Return Codes” for a sample copy of the T09KSRCS structure.

The following table lists return codes that can apply to the SENDTO call.

Decimal Hex Diagnostic
Code

Variable Description

0 0 No CPTIRCOK Request completed successfully.

6 6 Yes CPTWBLCK Non-blocking call to the
RCVFROM service.

17 11 No CPTEVERS Control block version number
not supported.

18 12 Yes CPTECONN Required Parameter not passed.
E.g. host, port, …

19 13 No CPTEPROT Specified protocol not
supported.

20 14 No CPTETOKN Specified data transfer token is
invalid.

21 15 No CPTEBUFF Buffer address and/or length
invalid.

31 1F No CPTEFRMT Other Socket Call Parameter List
format or specification error.

34 22 No CPTENAPI API not fully available; retry.

40 28 Yes CPTETERM Environment is being
terminated.

47 2F Yes CPTEENVR Other transport layer
environmental condition.

65 41 Yes CPTERLSE Orderly release of remote
connection request.

68 44 Yes CPTEDISC Remote connection not available
or aborted.

SENDTO Service 11–7

Return Codes

Decimal Hex Diagnostic Variable Description
Code

72 48 Yes CPTEPRGE Remote connection environment
terminating.

79 4F Yes CPTEINTG Other transport layer
connection/data integrity error.

143 8F Yes CPTEPROC Procedural error.

254 FE Is abend
code

CPTABEND Abnormal termination. Note
that the diagnostic code is the
abnormal termination code,
which is normally a CICS abend
code, but can also be in the
“Abend Codes” chapter of the
Message Guide.

255 FF No CPTEOTHR Other error.

11–8 C Programmers Guide

Complete Parameter List

Complete Parameter List
adt_buffa User data address. Indicates the storage address from which the UDP datagram

is sent (SENDTO service). This is a contiguous segment of storage accessible to
the user task. The content of all user data is application dependent, and not
interpreted by either Unicenter SOLVE:CPT or the transport provider. The
storage area can be aligned on any boundary convenient for the application
program.

Default None.

adt_buffl Specifies the length in bytes of the adt_buffa field.

On return to the caller, adt_buffl reflects the number of bytes actually sent
(generally the number requested).

It is an error to call the SENDTO service with an adt_buffl of zero.

Default: None.

adt_func Function code. Indicates the function or callable service ID requested by the
application program. This field should not be set by the application, but rather is
initialized by the true interface stub.

Default: None.

adt_dgncd Diagnostic code. Indicates the diagnostics code set by the SENDTO service. This
value generally indicates a transport provider return code.

Default: None.

adt_laddr Local IP host address. Indicates the local host internet address. The local host
internet address is returned to the caller of the SENDTO service.

This field is an unsigned four-byte integer value.

Default: None.

adt_lname Local IP host name. Indicates the local host internet name. The local host internet
name is returned to the caller of the SENDTO service.

This field is a 255-byte character string that is padded with blanks.

Default: None.

SENDTO Service 11–9

Complete Parameter List

adt_lport Local well-known service port. Indicates the local transport layer port from
which the calling application will be sending (SENDTO) UDP datagrams. If the
SENDTO service creates the token, this port number is assigned by the transport
layer and returned to the caller. If the RCVFROM service creates the token, this is
the well-known port requested by the caller.

This field is an unsigned, positive integer with a maximum value of 65,534. The
value must be unique for each server application.

Default: None.

adt_mrecv API RECEIVE buffer size (used when adt_token=0). Specifies the maximum
number of user data bytes that can be transferred by the application in a single
RCVFROM request to the transport provider (API).

This value lets applications control input processing and can affect throughput
rates. The value is negotiated with the transport provider and can be modified
by the transport provider.

adt_msend API send buffer size (used when adt_token=0). Specifies the maximum number
of user data bytes that can be transferred by the application in a single SENDTO
request to the transport provider (API).

This value lets applications control output processing and can affect throughput
rates. The value is negotiated with the transport provider and can be modified
by the transport provider.

Default: 1024.

adt_nslct Number of entries in the SELECT vector.

Not used by the SENDTO service.

11–10 C Programmers Guide

Complete Parameter List

adt_optn1 Specifies data transfer options. These are the ADT options that apply to UDP
data transfer requests:

ADTOPTN1_NODNR Execute internal DNR calls during UDP data transfer
service routine calls (RCVFROM and SENDTO) to resolve
remote IP addresses into IP names in the adt_rname field.

ADTOPTN1_NBLKR Do not block on a call to the RCVFROM service. Not used
by the SENDTO service.

ADTOPTN1_TMRCV This option allows the caller to wait up to specified
amount of time for a datagram.

 It must be used with the ADTOPTN1_NBLKR option, and
adt_timeo must be specified. This option is not used by the
SENDTO service.

These options can be toggled on every UDP data transfer call even if the caller is
using the same token.

Default: None.

adt_qrecv API receive queue size (used when adt_token=0). You should only specify one.
Adding extra buffers wastes storage and does not improve performance.

Default: One.

adt_qsend API send queue size (used when adt_token=0). You should only specify one.
Adding extra buffers wastes storage and does not improve performance.

Default: One.

adt_raddr Remote IP host address. Specifies the remote host internet address destination
for the datagram being processed by the SENDTO service.

This field is an unsigned four-byte integer value.

Default: None

SENDTO Service 11–11

Complete Parameter List

adt_rname Remote IP host name. Indicates the remote host internet name. It is only resolved
through internal DNR calls and returned to the caller of the UDP data transfer
service routines (RCVFROM and SENDTO) if the adt_optn1 flag,
ADTOPTN1_NODNR, is specified. This is to prevent the DNR call overhead on
every UDP data transfer call.

This field is a 255-byte character string that is padded with blanks.

Default: None.

adt_rport Remote port. Indicates the remote port destination for the datagram being
processed by the SENDTO service.

This field is an unsigned positive integer with a maximum value of 65,534.

Default: None.

adt_rtncd Return code. Indicates the return code set by the SENDTO service. This value is
also returned in register 15 and indicates the success or failure of the service.

Default: None.

adt_sep# Number of separator characters for option ADTOPTN1_TYPSP. Not used in the
SENDTO service.

Default: None.

adt_sep1 First or only separator character for option ADTOPTN1_TYPSP. Not used in the
SENDTO service.

Default: None.

adt_sep2 Second character or separator sequence for option ADTOPTN1_TYPSP. Not used
in the SENDTO service.

Default: None.

adt_slctd Number of tokens selected. Not used by the SENDTO service.

adt_srvce This field remains only for downward compatibility purposes and is ignored.
This field is no longer supported in Version 6 of CPT.

11–12 C Programmers Guide

Complete Parameter List

adt_ Specifies statistics logging options for the application program.

ADTSTAT_CONN Specifies that messages be generated on the closing of a
UDP token.

 These messages are generated by the Unicenter
SOLVE:CPT CLOSE service.

ADTSTAT_TERM Specifies that messages be generated on terminating an
established connection.

 These messages are generated by the Unicenter
SOLVE:CPT CLOSE service.

Default: None, no statistics logging.

adt_timeo RECEIVE timeout value. Not used by the SENDTO service

Default: None.

adt_token Data transfer token. Specifies a token that represents a UDP endpoint. If the ADT
is being passed in a call to either the RCVFROM or SENDTO service, the token
can be zero, indicating to either service, to first create a token before sending or
receiving a datagram. If the token is not zero, it must be a token created
previously by either the RCVFROM or SENDTO service.

It is not necessary or efficient to create a token every time a CICS transaction
calls the UDP data transfer services. It is an error to pass a TCP token to the UDP
data transfer service routines, RCVFROM and SENDTO. Conversely, it is an
error to pass a UDP token to the TCP data transfer routines, RECEIVE and
SEND.

Default: None.

adt_trace Please note that the tracing functionality has moved in Version 6 of Unicenter
SOLVE:CPT. A greatly enhanced tracing capability is now available via the
TCPEEP tracing command. Please see the Administrator Guide for more detail.
These tracing fields remain only for downward compatibility purposes and are
ignored.

ADTTRAC1_NTRY ADTTRAC1_TERM ADTTRAC2_TPL

ADTTRAC1_ARGS ADTTRAC1_PASS ADTTRAC2_RLSE

ADTTRAC1_RECV ADTTRAC1_CLSE ADTTRAC2_STOR

ADTTRAC1_SEND ADTTRAC1_TERR ADTTRAC1_CLTD

SENDTO Service 11–13

Complete Parameter List

adt_ucntx One word of user context. Specifies one arbitrary word of user context to
associate with the endpoint. The information provided is not interpreted by
Unicenter SOLVE:CPT, and is saved with other endpoint information.

Default: None, No user context.

adt_vectr Address of the SELECT vector. Not used by the SENDTO service.

adt_vers Required. Version. Indicates the Unicenter SOLVE:CPT Version number of the
argument used by the calling program.

Must be set to binary two for this release of Unicenter SOLVE:CPT.

Default: None.

11–14 C Programmers Guide

Chapter

12 TAKE Service

Acquires ownership of a connection and associated internal Unicenter
SOLVE:CPT resources. You must use the TAKE service call to guarantee proper
passing of a connection from another transaction.

To invoke the TAKE service, a user application must first build an AFM
(Argument for Facility Management) and then issue a call to the TAKE routine.
The only valid and required arguments are the AFM version number and the
connection token. On completion, a return code is set that indicates the success or
failure of the request.

This chapter discusses the following topics:

■ Call Syntax—Sample syntax for the TAKE service call

■ Recommended AFM Parameters—Lists the parameters normally used and
recommended for the TAKE service call

■ Usage Example—Provides a sample program shell using the TAKE service
call

■ Parameter Values Returned in the AFM—Lists fields that are updated in the
AFM control block upon return from the TAKE service call

■ C Structures—Lists information about the distributed sample C structures
used by the TAKE service call

■ Sample Programs—Lists sample C programs that use the TAKE service call

■ Completion Information—Describes the expected results at completion of a
TAKE service call.

■ Return Codes—Gives a list of return codes that can apply to the TAKE
service call

■ Usage Notes—Provides miscellaneous notes about TAKE service call

■ Complete Parameter List—Gives a complete list of all the parameters and
their options for the TAKE service call

TAKE Service 12–1

Call Syntax

Call Syntax

t09ftake (&cpt_afm);

Recommended AFM Parameters
The following list contains the recommend parameters for use with the TAKE
service. These parameters are set within the argument list of the AFM control
block. For more information, see C Structures.

For a complete list of optional parameters, see the Complete Parameter List.

Parameters Description

afm_token Required session token specifies which session that the current
task wishes to take control over.

afm_vers Version number should be set to AFM_VERSN(2).

Usage Example
In this example, a subset of the actual statements required is shown to emphasize
the use of a TAKE call. In the example, a data processing transaction retrieves the
ACM, copies acm_token to the afm_token field, issues the TAKE service to take
control of the session represented in the acm_token field. The return code is
checked to determine TAKE service completion status.

Note: The statements needed for the TAKE service appear in bold.

#include <t09ksafm.h>
#include <t09ksacm.h>
#include <t09ksrcs.h>
void main()
{
 struct afm_stru
 cpt_afm = {2, 0, 0, NULL, NULL, 0, 0, 0, 0};
 CICS RETRIEVE SET(cpt_acm) LENGTH(acmleng);
 cpt_afm.afm_token = cpt_acm.acm_token;
 t09ftake (&cpt_afm);
 if (cpt_afm.afm_rtncd != 0)
 {
 /*
 * process CPT TAKE service error and terminate transaction;
 */
 }
 while (data)
 {

12–2 C Programmers Guide

Parameter Values Returned in the AFM

 /*
 * Application and CPT Data Transfer (SEND/RECEIVE) processing
 */
 }
 /*
 * CPT Release Connection
 */
 EXEC CICS RETURN;
}

Parameter Values Returned in the AFM
After the TAKE call returns control to your application program, the following
fields are propagated with the call’s resultant information. These updated values
are passed back to the application in the AFM control block.

Parameters Description
afm_dgncd Diagnostic code.

afm_rtncd Return code.

C Structures
Sample C structures are provided in the distributed software and are available to
you in cpthlq.T09MAC. Variable field names contained in the distributed
samples and the examples in this guide refer to these structures.

T09KSAFM C structure name for the AFM. For detailed information
and a sample copy of the C structure, see AFM: Argument
for Facility Management Used by the GIVE and TAKE
Services Service section in the “Control Block Layouts”
appendix.

All C constants that apply to AFM calls are imbedded in the AFM structure
sample.

TAKE Service 12–3

Sample Programs

Sample Programs
Sample C source code is available in the distributed software in the
cpthlq.T09SAMP library. You should be able to find a sample that matches your
programming requirement. For complete details on the function a sample
program provides, see the program descriptions in the “Unicenter SOLVE:CPT
API Services” chapter and the descriptions of the sample members listed in the
following table.

Name Description

T09PSSV2 TCP Server 2 program is a multithreaded server using the Listen
tool.

T09PSSV5 TCP Server 5 program is spawned by an inbound connection from
the T09MLSTN tool. It uses the SELECT tool to handle RECEIVE
calls when there is no available data.

Completion Information
The TAKE service completes normally when the task takes control of the session
associated with the token passed from the afm_token field.

On normal return to the application program, the general return code in
afm_rtncd is set to zero (CPTIRCOK).

If the TAKE service completes abnormally, then some resources associated with
this connection cannot be successfully transferred from one task to another. The
general return code (afm_rtncd) in register 15 and the diagnostic code
(afm_dgncd) in register zero indicate the nature of the failure

12–4 C Programmers Guide

Return Codes

Return Codes
The TAKE service returns a code indicating the results of the execution, these
values are in the afm_rtncd and afm_dgncd.

Structure T09KSRCS contains equates and descriptions for the possible return
codes. T09KSRCS is available in the distributed software in cpthlq.T09MAC. For
a sample copy of the T09KSRCS structure, see the “Return Codes” appendix.

The following table lists the return codes that can apply to the TAKE call.

Decimal Hex Diagnostic
Code

Variable Description

0 0 No CPTIRCOK Request completed
successfully.

17 11 No CPTEVRSN Control block version number
not supported.

20 14 No CPTETOKN Specified data transfer token is
invalid.

34 22 No CPTENAPI API not fully available; retry.

40 28 No CPTETERM TCPIP is terminating.

254 FE Is abend
code

CPTABEND Abnormal termination.

Note: The diagnostic code is
the abnormal termination code,
which is normally a CICS
abend code, but can also be in
the “Abend Codes” chapter of
the Message Guide.

255 FF No CPTEOTHR Other error.

TAKE Service 12–5

Usage Notes

Usage Notes
The TAKE service acquires ownership of a connection from one task to another.
This service is non-blocking and does not affect any pending transport provider
data transfer requests. The association established by the TAKE service lets the
Unicenter SOLVE:CPT properly manage resources during task termination. This
ability to GIVE and TAKE ownership of connections offers a range of
programming options, while still providing Unicenter SOLVE:CPT with resource
management capabilities.

The TAKE service requires the application to set the AFM version number
afm_vers and afm_token token fields. No other AFM fields are referenced.

When a connection is established there are internal Unicenter SOLVE:CPT
resources associated with that connection. Unicenter SOLVE:CPT is responsible
for proper clean up of these resources on task or transaction termination.
These resources include storage allocated by Unicenter SOLVE:CPT, the API, and
the transport provider storage.

The GIVE and TAKE services are all about proper resource cleanup. For a
Unicenter Solve:CPT token (connection) to be properly passed to another
transaction, it must first be GIVEn to release ownership. The receiving
transaction must then TAKE the connection before using the connection.

Important! As noted in the GIVE service, if a transaction does not GIVE the token
before it performs an EXEC CICS RETURN then the CICS TRUE end of task exit will
cleanup all resources including closing down the connection. Therefore, if you have not
GIVEn your token, the next transaction will not be able to use the connection because it
will be gone; already be closed. So, a TAKE will fail. As with the GIVE, as the next user
of the connection you must use a TAKE to establish yourself as the owner. By doing the
TAKE, you avoid possibilities of your connection being accidentally cleaned up.

A server application is a good example of how the TAKE service benefits a user
application. A listening task issues the GIVE service and starts a new transaction
to handle data transfer. The data transfer transaction then takes the connection.
This sequence prevents a connection from being closed (implicitly by the
Unicenter SOLVE:CPT task termination exit) if the server application terminates.
However, if the data transfer transaction terminates without issuing an explicit
close (Unicenter SOLVE:CPT CLOSE service) an implicit close is scheduled and
resource management is handled by the Unicenter SOLVE:CPT task termination
exit.

Additionally, an implicit TAKE facility is implemented with the SEND,
RECEIVE, and TRANSLATE services. Any task that issues a SEND, RECEIVE, or
TRANSLATE service gets control of the connection and associated resources. We
recommend that you issue TAKE to avoid having a GIVE connection not
associated with any transactions. Ownership of a connection and resources
provide for cleanup processing during abnormal termination.

12–6 C Programmers Guide

Usage Notes

The afm_vers version number indicates the Unicenter SOLVE:CPT release level
in which this user application program is written. This required field must be set
to AFMVERSN (2) and is validated by the TAKE service before processing the
request.

The afm_func function code indicates the Unicenter SOLVE:CPT callable service
ID. The field is not initialized by a user application program and has little value
to the application except for dump analysis. The function code identifies and
maps an argument list with the error or trace log and dump analysis.

The token afm_token indicates the connection and internal resources to be
processed by the TAKE service. This is a required field and is validated by the
TAKE service.

The afm_opcd1 field specifies TAKE service processing control options, and
provides a mechanism for event notification on return to the application
program. Currently, this field is not used by application programs.

TAKE Service 12–7

Complete Parameter List

Complete Parameter List
afm_comma Reserved for future use.

afm_comml Reserved for future use.

afm_dgncd Diagnostic code. Indicates the diagnostic code received by the TAKE service for a
transport provider request and is not set by the TAKE service.

Default: None.

afm_func Function code. Indicates the function or callable service ID requested by the
application program. This field should not be set by the application, but rather is
initialized by the TRUE interface stub program.

Default: None.

afm_opcd1 Option byte.

AFMOPT_SEL Informs the GIVE service to pass this token to the SELECT tool

 AFMOPT_COM Reserved for future use.

Default: None.

afm_msock Unused parameter.

afm_ntran Transaction ID. Not used by the TAKE service

afm_rtncd Return code. Indicates the return code set by the TAKE service. This value is also
returned in register 15 and indicates the success or failure of the service.

afm_token Required session token specifies which session that the current task wishes to
take control over.

Default: None.

afm_vers Required version number. Indicates the Unicenter SOLVE:CPT version number
of the argument list used by the calling program.

Must be set to a binary two for this release of Unicenter SOLVE:CPT.

Default: None.

12–8 C Programmers Guide

Chapter

13 TRANSLATE Service

The TRANSLATE service translates data between EBCDIC and ASCII character
sets. Unicenter SOLVE:CPT is customized with a default translation table;
however, applications can override the default. The TRANSLATE service does
not affect an active connection nor issue any transport provider requests.

To invoke the TRANSLATE service, a user application is required to first build
an Argument for Data Translation (AXL) and then to issue a call to the
TRANSLATE routine. The AXL is required to contain the version number,
connection token, user buffer address and length, and type or direction of
translation requested. Additional arguments for application specific translation
tables are supported. When the TRANSLATE service completes, the buffer
contents are converted into the corresponding characters and a return code is
generated indicating the status of the request.

This chapter discusses the following topics:

■ Call Syntax—Shows syntax of the TRANSLATE call

■ Recommended AXL Parameters—Lists the parameters normally used and
recommended for the TRANSLATE service call

■ Usage Example—Provides a sample program shell using the TRANSLATE
service call

■ Custom Translation Table Usage Notes—Provides information on how to
configure and use a custom translation table for your environment

■ Parameter Values Returned in the AXL—Lists the fields that are updated in
the AXL control block upon return from the TRANSLATE service call

■ C Structures—Lists information about the distributed sample C structures
used by the TRANSLATE service call and is available in cpthlq.T09MAC

■ Sample Programs—Lists and describes the distributed sample C programs
that use the TRANSLATE service call along with other service calls

■ Complete Parameter List—Lists all of the parameters and options of those
parameters for the TRANSLATE service call

■ Return Codes—Lists the return codes that can apply to the TRANSLATE
service call

■ Usage Notes—Provides miscellaneous notes about the TRANSLATE service
call

TRANSLATE Service 13–1

Call Syntax

■ Complete Parameter List—Lists all of the parameters and options of those
parameters for the TRANSLATE service call

Call Syntax
t09fxlat (&cpt_axl);

Recommended AXL Parameters
The following list contains the recommended parameters for use with the
TRANSLATE service. These parameters are set within the AXL control block. For
sample information, see C Structures.

For a complete list of optional parameters, see the Complete Parameter List.

Parameter Description

axl_xtype Specify translation type or direction, set to:

AXLXTYPE_ATOE - Indicates ASCII to EBCDIC translation.

AXLXTYPE_ETOA - Indicates EBCDIC to ASCII translation.

axl_saddr Set to buffer address of data to be translated.

axl_sleng Set to length of data to be translated.

axl_table Optionally change translation table by setting this field to the
address of user translation table.

axl_token Connection or endpoint token.

axl_vers The version should be set to two (2).

Usage Example
In these examples, subsets of the actual statements required is shown to
emphasize the use of a TRANSLATE call. For a reference to a more complete
sample, see Sample Programs.

Two typical examples are shown:

■ Inbound Translation Example—Translation from ASCII to EBCDIC

■ Outbound Translation Example—Translation from EBCDIC to ASCII

13–2 C Programmers Guide

Usage Example

Inbound Translation Example

In this example, the application has received data from a remote ASCII host. It
sets flag AXLXTYPE_ATOE to translate the network data from ASCII to
EBCDIC. The token axl_token, data buffer address axl_saddr, and length to
translate, axl_sleng are set in the AXL. The default translation mode of SBCS is
selected.

The application checks the axl_rtncd return code to determine the TRANSLATE
service completion status.

Note: Relevant parameters in the example are in bold:

#include <t09ksacm.h>
#include <t09ksaxl.h>
#include <t09ksrcs.h>
void main()
{
 strut axl_stru
 cpt_axl = {2, 0, 0, NULL, NULL, 0, 0, 0, 0};
 char message[256];
 while (data)
 {
 cpt_adt.adt_buffa = &msgarea;
 cpt_adt.adt_buffl = msglen;
 t09frecv (&cpt_adt);
 cpt_axl.axl_saddr = &message;
 cpt_axl.axl_sleng = msglen;
 cpt_axl.axl_xtype = AXLXTYPE_ATOE;
 t09fxlat (&cpt_axl);
 if (cpt_axl.axl_rtncd != 0)
 {
 /*
 * process CPT TRANSLATE service error and terminate transaction;
 */
 }
 }
 End:
 EXEC CICS RETURN;
}

TRANSLATE Service 13–3

Usage Example

Outbound Translation Example

In this example, the application needs to send data to a remote ASCII host. It
translates data from EBCDIC to ASCII by setting the AXLXTYPE_ETOA flag. The
token axl_token, data buffer address axl_saddr, and length to translate, axl_sleng
are set in the AXL. The default translation mode of SBCS is selected.

The application checks the axl_rtncd return code to determine the TRANSLATE
service completion status.

Note: Relevant parameters in the example are in bold:
#include <t09ksacm.h>
#include <t09ksaxl.h>
#include <t09ksrcs.h>
void main()
{
 strut axl_stru
 cpt_axl = {2, 0, 0, NULL, NULL, 0, 0, 0, 0};
 char message[256];
 while (data)
 {
 cpt_axl.axl_saddr = &message;
 cpt_axl.axl_sleng = msglen;
 cpt_axl.axl_xtype = AXLXTYPE_ETOA;
 t09fxlat (&cpt_axl);
 if (cpt_axl.axl_rtncd != 0)
 {
 /*
 * process CPT TRANSLATE service error and terminate transaction;
 */
 }
 cpt_adt.adt_buffa = &msgarea;
 cpt_adt.adt_buffl = msglen;
 t09fsend (&cpt_adt);
 }
 End:
 EXEC CICS RETURN;
}

13–4 C Programmers Guide

Custom Translation Table Usage Notes

Custom Translation Table Usage Notes
Unicenter SOLVE:CPT fully supports customizing translation tables to fit your
environment. For information and customization instructions, see the
“Translation Tables” chapter in the Administrator Guide.

Once you have customized a translation table for your environment, you still
need to tell Unicenter SOLVE:CPT that you want to use it.

Set the Default
Translation Table

Configure the most heavily used the translation table to be the default
Unicenter SOLVE:CPT’s translation table.

To do this, your Unicenter SOLVE:CPT administrator needs to change the
TRANSTBL parameter on the T09MCICS macro in the configuration table
T09CONxx to the name of your customized translation table.

For information on changing the default name, see the T09MCICS macro section
of the “Configuration Reference” chapter in the Administrator Guide.

The new translation table must be in CICS’ DFHRPL concatenation in order to be
loaded by Unicenter SOLVE:CPT.

Overriding the
Default Translation
Table

This method uses a translation table other than your Unicenter SOLVE:CPT
system-wide default.

To override the default translation table:

1. See the “Translation Tables” chapter of the Administrator Guide. Customize a
translation table.

2. Move the table from Step 1 into a library in the CICS DFHRPL concatenation.

3. Issue the following command in your program to load the table:
EXEC CICS LOAD
 PROGRAM(mytable)
 SET(ptr-ref)
 NOHANDLE

4. Copy the address ptr-ref to the axl_table parameter.

5. Call the Unicenter Solve:CPT TRANSLATE service.

6. Issue the following command in your program to release the storage for the
table.
EXEC CICS RELEASE
 PROGRAM(mytable)
 NOHANDLE

TRANSLATE Service 13–5

Parameter Values Returned in the AXL

For performance or efficiency reasons, if you use the table for multiple
transactions, you should consider using the HOLD keyword on the EXEC CICS
LOAD command. You will need to store the address of the table for others to
use. You have to manage the EXEC CICS RELEASE carefully so that storage
cleanup is eventually done.

Parameter Values Returned in the AXL
After the TRANSLATE call returns control to your application program, the
following fields are propagated with valid completion information. These
updated values are passed back to the application in the AXL control block.

Field Name Description

axl_dgncd Diagnostic code.

axl_rtncd Return code.

C Structures
Sample C structures are provided in the distributed software and are available to
you in cpthlq.T09MAC. Variable field names contained in the distributed
samples and the examples in this guide refer to these structures.

T09KSAXL C structure name for the AXL. For detailed information
and a sample copy of the C structure, see the
AXL:Argument for TRANSLATE Used by the
TRANSLATE Service section in the appendix “Control
Block Layouts” appendix.

All C constants that apply to AXL calls are imbedded in the AXL structure
sample.

13–6 C Programmers Guide

Sample Programs

Sample Programs
Sample C source code is available in the distributed software in the
cpthlq.T09SAMP library. You should be able to find a sample that matches your
programming requirement. For complete details on the function a sample
program provides, see the program descriptions in the “Unicenter SOLVE:CPT
API Services” chapter and the descriptions of the sample members listed in the
following table.

Name Description

T09PSCLU UDP client program

T09PSCL1 Client Application sends typed in data to the server
waiting for the information to be echoed back from the
server.

T09PSCL2 Client Application to send an internal message using
either the FULL, SEP or LL to be echoed back by the
server.

T09PSSC1 Sample Security exit

Completion Information
The TRANSLATE service completes normally when the data is translated into
the corresponding character set representation.

On normal return to the application program, the general return code in
axl_rtncd is set to zero (CPTIRCOK). The diagnostic code in axl_dgncd is set to
zero.

If the TRANSLATE service completes abnormally, an error associated with
translation occurred. The general return code (axl_rtncd) and the diagnostic
code (axl_dgncd) indicate the nature of the failure.

Return Codes
The TRANSLATE service returns codes indicating the results of the execution.
These values are in the axl_rtncd and axl_dgncd .

Structure T09KSRCS contains equates and descriptions for the possible return
codes. T09KSRCS is available in the distributed software in cpthlq.T09MAC. See
the appendix “Return Codes” for a sample copy of the T09KSRCS structure.

TRANSLATE Service 13–7

Return Codes

The following table lists the return codes that can apply to the TRANSLATE call.

Decimal Hex Diagnostic
Code

Variable Description

0 0 No CPTIRCOK Request completed successfully.

17 11 No CPTEVRSN Control block version number not
supported.

20 14 No CPTETOKN Specified data transfer token is
invalid.

21 15 No CPTEBUFF Buffer address or length invalid.

22 16 No CPTECHAR Translate character set is invalid.

23 17 No CPTEMODE Translate mode specification is
invalid.

25 19 No CPTETABL Specified table is not correct.

31 1F No CPTEFRMT Other Socket Call Parameter List
format or specification error.

34 22 No CPTENAPI API not fully available; retry.

40 28 Yes CPTETERM Environment is being terminated.

254 FE Is Abend
Code

CPTABEND Abnormal termination.

Note: The diagnostic code is the
abnormal termination code that is
normally a CICS abend code, but
can also be in the “Abend Codes”
chapter of the Message Guide.

255 FF No CPTEOTHR Other error.

13–8 C Programmers Guide

Usage Notes

Usage Notes
The TRANSLATE service translates data between EBCDIC and ASCII.
The requirement for translation is application dependent.

The version number, axl_vers, indicates the Unicenter SOLVE:CPT release level
in which this user application program is written. This required field must be set
to AXL_VERSN(2) and is validated by the TRANSLATE service before
processing the request.

The function code, axl_func, indicates the Unicenter SOLVE:CPT callable service
ID. The field is not initialized by a user application program and has little value
to the application except for dump analysis. The function code can identify and
map an argument list with the error or trace log and dump analysis.

The token, axl_token, indicates the connection associated with this translation
request. This field is required; however, no transport provider requests are
issued. The token is used for internal logging support requirements. This
required field is validated by the TRANSLATE service before processing the
request.

The axl_xmode field specifies the character set mode. It sets single, double or
mixed character set translation. Currently, only single-byte character set
translation, which is the default, is supported.

The axl_xtype field specifies the translation direction. This required field
indicates EBCDIC to ASCII, or ASCII to EBCDIC. Additionally, characters can be
transacted into the corresponding uppercase values.

TRANSLATE Service 13–9

Complete Parameter List

Complete Parameter List
axl_dgncd Diagnostic code. Indicates the diagnostic code set by the service request. This

value specifies a unique number associated with the return code and identifies
the translation error.

Default: None.

axl_func Function code. Indicates the function or callable service ID requested by the
application program. This field should not be set by the application, but is
initialized by the TRUE interface stub.

Default: None.

axl_xtype Specifies TRANSLATE service translation type or direction.

AXLXTYPE_ATOE Indicates ASCII to EBCDIC translation.

AXLXTYPE_AUPC Indicates ASCII to uppercase ASCII translation.

AXLXTYPE_ETOA Indicates EBCDIC to ASCII translation.

AXLXTYPE_EUPC Indicates EBCDIC to uppercase EBCDIC translation.

Default: None.

axl_rtncd Return code. Indicates the return code set by the TRANSLATE service. This
value is also returned in register 15 and indicates the success or failure of the
service.

Default: None.

axl_saddr Required. Source text buffer address. Indicates the address of the user data to
translate. It is a contiguous segment of storage accessible to the user task. The
storage area can be aligned on any boundary convenient to the application
program.

Default: None.

axl_sleng Required. Source text buffer length. Indicates the length, in bytes of user data in
the storage area, as identified by the axl_saddr field.

Note: A zero value causes the request to fail.

Default: None.

13–10 C Programmers Guide

Complete Parameter List

TRANSLATE Service 13–11

axl_table Address of user translation table. See Custom Translation Table Usage Notes for
notes on usage of a customized table.

Default: None.

axl_token Connection token. Specifies the token which represents either a TCP or UDP
connection or UDP.

Default: None.

axl_vers Required. Version number indicates the Unicenter SOLVE:CPT version number
of the argument used by the calling program.

Note: Must be set to a binary two for this release of Unicenter SOLVE:CPT.

Default: None.

axl_xmode Specifies TRANSLATE service translation mode or character set.

AXLXMODE_DBCS Indicates double-byte character set translation.

 Note: This option is currently not supported.

AXLXMODE_MIXD Indicates mixed mode character set translation. This mode
specifies single- and double-byte translation.

 Note: This option is currently not supported.

AXLXMODE_NUMS Indicates numeric set translation.

 Note: This option is currently not supported.

AXLXMODE_SBCS Indicates single-byte character set translation.

Default: AXLXMODE_SBCS.

Appendix

A Return Codes

This appendix provides you with information about the Unicenter SOLVE:CPT
return codes.

The Return Code table below provides you with:

■ A description of the meaning of the return code

■ The decimal and hexadecimal values of the return code

■ A variable field name from the C structure

Immediately following the RC table is the T09KSRCS C structure. It contains
convenient variable names for you to use in your application program. This
structure is used by all the provided application programming samples. You will
find the T09KSRCS structure in the cpthlq.T09MAC distributed library.

Return Codes

Decimal Hex Diagnostic
Code

Variable Description

0 0 No CPTIRCOK Request completed successfully.

1 1 No CPTWTIMEO Timed receive call timed out.

4 4 No CPTWNEGO System limits applied to buffer
or Queue sizes.

6 6 Yes CPTWBLCK A non-blocking call to a service
detected a wait condition.

10 A No CPTWNSEP Separator type receive found no
separator characters.

15 0F Yes CPTWEXCP Other warning.

17 11 No CPTEVRSN Control block version number
not supported.

Return Codes A–1

Return Codes

Decimal Hex Diagnostic Variable Description
Code

18 12 Yes CPTECONN Required Parameter not passed.

E.g. host, port, …

19 13 No CPTEPROT Specified protocol not
supported.

20 14 No CPTETOKN Specified data transfer token is
invalid.

21 15 No CPTEBUFF Buffer address and/or length
invalid.

22 16 No CPTECHAR Translate character set is invalid.

23 17 No CPTEMODE Translate mode specification is
invalid.

24 18 Yes CPTECOPT Close mode specification is
invalid.

25 19 Yes CPTETABL Specified translate table not
correct.

26 1A Yes CPTETRID Designated transaction ID
cannot start.

27 1B No CPTETIME Receive timeout value not
specified.

28 1C No CPTESEP# Receive type separator number
of separator characters equal to 1
or 2.

29 1D No CPTEOPTN Receive options selected is a
combination which is invalid.

30 1E No CPTEOPRL Receive option not supported by
transport carrier.

31 1F No CPTEFRMT Other Socket Call Parameter List
format or specification error.

33 21 Yes CPTEPBSY Selected port is busy with active
server.

34 22 No CPTENAPI API not fully available; retry.

35 23 Yes CPTENAVL Requested facility is not
available.

36 24 Yes CPTEDRAN TCP/IP environment is
terminating.

A–2 C Programmers Guide

Return Codes

Decimal Hex Diagnostic Variable Description
Code

37 25 No CPTESLCT Select tool transaction is not
running.

38 26 No CPTERCVT Receive tool not defined in the
T09CONxx CPT configuration
table.

40 28 Yes CPTETERM Environment is being
terminated.

47 2F Yes CPTEENVR Other transport layer
environmental condition.

65 41 Yes CPTERLSE Orderly release of remote
connection request.

68 44 Yes CPTEDISC Remote connection not available
or aborted.

72 48 Yes CPTEPRGE Remote connection environment
terminating.

79 4F Yes CPTEINTG Other transport layer
connection/data integrity error.

138 8A No CPTEWECB ECB already being waited on

143 8F Yes CPTEPROC Procedural error.

254 FE Is abend
code

CPTABEND Abnormal termination.

The diagnostic code is the
abnormal termination code,
which is normally a CICS abend
code, but can also be in the
“Abend Codes” chapter of the
Message Guide.

255 FF No CPTEOTHR Other error.

Return Codes A–3

C Structure T09KSRCS

Diagnostic Code Field

The diagnostic code field depends on the error event recorded in the Unicenter
SOLVE:CPT return code field. The diagnostic code field could be CICS abend
code, ERRNO, or other value depending on the Unicenter SOLVE:CPT return
code failure.

When a Unicenter SOLVE:CPT API call fails, the product prefers to return the
return code and diagnostic code field pair from the first error event that occurred
during the Unicenter SOLVE:CPT API call.

An API system Error return code (ERRNO) can be mapped back into a Solve:CPT
return code when an EZASOKET (or EZACICAL) error occurs during processing
of a Unicenter SOLVE:CPT API call. If the first error on a Unicenter SOLVE:CPT
API call is an EZASOKET (or EZACICAL) error then the Unicenter SOLVE:CPT
return code contains the TCP API system Error return code (ERRNO). To
determine the meaning of the ERRNO number, please refer to IBM's
Communication Server IP API Guide or IBM’s Communication Server IP CICS Sockets
Guide or equivalent.

C Structure T09KSRCS

/***/
/* Exception Codes Posted in Return Code Argument Fields */
/***/
#define CPTIRCOK 0 /* REQUEST COMPLETED SUCCESSFULLY */
/***/
/* WARNINGS */
/***/
#define CPTWTIMO 1 /* TIMED RECEIVE SERVICE CALL TIMED OUT */
#define CPTWNEGO 4 /* BUFFER, QUEUE SIZES RESET TO SYSTEM LIMITS */
#define CPTWBLCK 6 /* RECEIVE WOULD BLOCK _ NO DATA AVAIALABLE */
#define CPTWNEOM 8 /* INCOMPLETE DATAGRAM */
#define CPTWNSEP 10 /* NO SEPARATOR CHARACTERS FOUND */
#define CPTWEXCP 15 /* OTHER WARNING */
/***/
/* CONTROL BLOCK ARGUMENT ERRORS */
/***/
#define CPTEVRSN 17 /* CONTROL BLOCK INCOMPATBLE WITH RELEASE */
#define CPTECONN 18 /* REQ HOST/SERVICE/PORT CONNECTION NOT FOUND */
#define CPTEPROT 19 /* SPECIFIED PROTOCOL NOT SUPPORTED */
#define CPTETOKN 20 /* SPECIFIED DATA TRANSFER TOKEN IS INVALID */
#define CPTEBUFF 21 /* BUFFER ADDRESS AND/OR LENGTH INVALID */
#define CPTECHAR 22 /* TRANSLATE CHARACTER SET IS INVALID */
#define CPTEMODE 23 /* TRANSLATE MODE SPECIFICATION IS INVALID */
#define CPTECOPT 24 /* CLOSE MODE SPECIFICATION IS INVALID */
#define CPTETABL 25 /* SPECIFIED TRANSLATE TABLE NOT CORRECT */
#define CPTETRID 26 /* DESIGNATED TRANSACTION ID CANNOT START */
#define CPTETIME 27 /* RECEIVE TIMEOUT VALUE NOT SPECIFIED T */
#define CPTESEPC 28 /* NUMBER OF SEPARATOR CHARACTERS NOT SPECIFD */
#define CPTEOPTN 29 /* RECEIVE OPTIONS IN CONFLICT */
#define CPTEOPRL 30 /* RECEIVE OPTION NOT AVAILABLE (TCP RELEASE) */
#define CPTEFRMT 31 /* OTHER TPL FORMAT OR SPECIFICATION ERROR */

A–4 C Programmers Guide

C Structure T09KSRCS

/***/
/* LOCAL ENVIRONMENT ERRORS */
/***/
#define CPTEPBSY 33 /* SELECTED PORT IS BUSY WITH ACTIVE SERVER */
#define CPTENAPI 34 /* CPT INTERFACE NOT AVAILABLE, RETRY */
#define CPTENAVL 35 /* REQUESTED FACILITY IS NOT AVAILABLE */
#define CPTEDRAN 36 /* ENVIRONMENT IS BEING DRAINED */
#define CPTESLCT 37 /* SELECT TOOL TRANSACTION NOT RUNNING */
#define CPTERCVT 37 /* RECEIVE TOOL IS UNDEFINED */
#define CPTETERM 40 /* ENVIRONMENT IS BEING TERMINATED */
#define CPTEENVR 47 /* OTHER TPL ENVIRONMENTAL CONDITION */
/***/
/* CONNECTION EXCEPTIONS */
/***/
#define CPTERLSE 65 /* ORDERLY RELEASE REQUESTED BY REMOTE */
#define CPTEDISC 68 /* REMOTE CONNECTION NOT AVAILABLE OR ABORTED */
#define CPTEPRGE 72 /* LOCAL ENDPOINT PURGED */
#define CPTEINTG 79 /* OTHER TPL CONNECTION/DATA INTEGRITY ERROR */
/***/
/* OTHER EXCEPTIONS */
/***/
#define CPTEPROC 143 /* PROCEDURAL ERROR/WRONG STATE */
#define CPTABEND 254 /* ABNORMAL TERMINATION */
#define CPTEOTHR 255 /* OTHER ERROR */

Return Codes A–5

Appendix

B Control Block Layouts

This appendix describes these Unicenter SOLVE:CPT control blocks.

The following topics are discussed in this appendix:

■ ACL: Argument for CLose Used by the CLOSE API Service

■ ACM: Argument for Connection Management Used by the CONNECT and
LISTEN API Services

■ ADT: Argument for Data Transfer Used by RECEIVE, SEND, RECVFROM,
and SENDTO Services

■ AFM: Argument for Facility Management Used by the GIVE and TAKE
Services

■ AFT: Argument for File Transfer Used by the FTP Client Service Call

■ AXL: Argument for Data Translation Used by the Translate API Service

■ Client Data Listener Transaction Start—Describes the passed control block
from the Client Data Listener tool

■ Connection Time Security Program Control Block

■ Parameter List Passed to T09MTRAN Initiated Transactions

■ LCA0000 and CFG0000 Control Blocks

Control Block Layouts B–1

ACL: Argument for CLose Used by the CLOSE API Service

ACL: Argument for CLose Used by the CLOSE API Service
This section describes the Unicenter SOLVE:CPT Argument for CLose, the ACL.
The ACL is used by the CLOSE service to terminate TCP connections.

 It provides the following information:

■ An offset table of the ACL fields

■ An alphabetical list of ACL fields

■ A sample copy of the T09KSACL structure

Note: The ACL control block is 28 bytes in length, which is x'1C' in hexadecimal.
The space for this control block must be created by the application and mapped
to by the sample T09KSACL structure.

Offset Table

This table provides information from the T09KSACL structure member with
field descriptions.

Decimal Hex Type Length Name Description

0 (0) acl_struct Transport endpoint
exit parameters.

0 (0) HALF
WORD

4 acl_vers Version number.

2 (2) HALF
WORD

4 acl_func Function code.

4 (4) ADDRESS 4 acl_token Token (CEP).

8 (8) ADDRESS 4 Reserved.

12 (C) FULL
WORD

4 Reserved.

16 (10) FULL
WORD

4 acl_rtncd Return code.

20 (14) FULL
WORD

4 acl_dgncd Diagnostic code.

24 (18) FULL
WORD

4 acl_opcds Termination Option
Codes.

B–2 C Programmers Guide

ACL: Argument for CLose Used by the CLOSE API Service

Decimal Hex Type Length Name Description

24 (18) BYTE 1 acl_opcd4 Termination Option
Code 4.

25 (19) BYTE 1 acl_opcd3 Termination Option
Code 3.

26 (1A) BYTE 1 acl_opcd2 Termination Option
Code 2.

27 (1B) BYTE 1 acl_opcd1 Termination Option
Code 1.

 ACLOPT_O
RDER

- Orderly release.

 1 ACLOPT_A
BORT

- Abortive release.

 ...1 ACLOPT_FC
LSE

- Abortive/fast
termination.

 ..1. ACLOPT_FF
REE

- DEQ/FREEMAIN
termination.

Alphabetized Field Name Cross-Reference Table

This table is an alphabetized list of field names mapped to the offset within the
ACL control block.

Name Hex Offset Hex Value

ACLOPT_ABORT 1B 01

acl_dgncd 14

ACLOPT_FCLSE 1B 10

ACLOPT_FFREE 1B 20

acl_func 2

acl_opcds 18

acl_opcd1 1B

acl_opcd2 1A

acl_opcd3 19

acl_opcd4 18

ACLOPT_ORDER 1B 00

Control Block Layouts B–3

ACL: Argument for CLose Used by the CLOSE API Service

Name Hex Offset Hex Value

acl_token 4

acl_vers 0

Sample Structure Member T09KSACL

The following is a sample of structure member T09KSACL located in the
cpthlq.T09MAC distributed library.

■ It contains the layout and field names for your use in your application
program

■ It is used by all the provided application programming samples

This is what the structure control block looks like in C language:

typedef struct
 {
 short acl_vers ; /* acl block version number */
 short acl_func ; /* Request function type */
 unsigned long acl_token; /* Data transfer token */
 void *acl_rsvd1 ; /* reserved (in use) */
 int acl_rsvd2 ; /* reserved (in use) */
 int acl_rtncd ; /* Return code */
 int acl_dgncd ; /* Diagnostic code */
 char acl_oprsv [3] ; /* Reserved options */
 char acl_optns ; /* Termination options */
 short acl_timeo ; /* Linger time on close */
 } acl_stru;

#define ACL_VERSN 2

 #define ACLOPT_ORDER 0x00 /* ORDERLY RELEASE */
 #define ACLOPT_ABORT 0x01 /* ABORTIVE STOP */
 #define ACLOPT_SHUT0 0X02 /* SOCKET SHUTDOWN, RECV */
 #define ACLOPT_SHUT1 0X04 /* SOCKET SHUTDOWN, SEND */
 #define ACLOPT_SHUT2 0X08 /* SHUTDOWN, SEND AND RECV */

B–4 C Programmers Guide

ACM: Argument for Connection Management Used by the
CONNECT and LISTEN API Services

This section describes the Unicenter SOLVE:CPT Argument for Connection
Management, the ACM. The ACM is used by the CONNECT and LISTEN
services to establish TCP connections.

 It provides the following information:

■ An offset table of the ACM fields

■ An alphabetical list of ACM fields

■ A sample copy of the T09KSACM structure

Note: The ACM control block is 628 bytes in length, which is x'274' in
hexadecimal. The space for this control block must be created by the application
and mapped to by the sample T09KSACM structure.

Offsets

This table provides information from the T09KSACM structure member with
field descriptions.

Decimal Hex Type Length Name Description

0 (0) acm_struct Transport endpoint
exit parameters.

0 (0) HALF WORD 2 acm_vers Version number.

2 (2) HALF WORD 2 acm_func Function code.

4 (4) ADDRESS 4 acm_token Token (CEP).

8 (8) ADDRESS 4 (Reserved).

12 (C) FULL WORD 4 (Reserved).

16 (10) FULL WORD 4 acm_rtncd Return code.

20 (14) FULL WORD 4 acm_dgncd Diagnostic code.

24 (18) FULL WORD 4 Statistic flags.

24 (18) BYTE 3 acm_sfill Statistic flag 2,3,4.

Control Block Layouts B–5

ACM: Argument for Connection Management Used by the CONNECT and LISTEN API Services

Decimal Hex Type Length Name Description

27 (1B) BYTE 1 acm_stats Statistic flag 1.

 1 ACMSTATS_
CONN

- Connection
statistics.

 1. ACMSTATS_
TERM

- Termination
statistics.

28 (1C) FULL WORD 4 Trace flags.

32 (20) FULL WORD 4 acm_qsend TSEND queue size.

36 (24) FULL WORD 4 acm_msend Maximum TSEND
TPL buffer size.

40 (28) FULL WORD 4 acm_qrecv TRECV queue size.

44 (2C) FULL WORD 4 acm_mrecv Maximum TRECV
.TPL buffer size.

48 (30) FULL WORD 4 acm_tlstn Listen Token.

52 (34) FULL WORD 4 acm_ucntx User context field.

56 (38) CHARACTER 4 acm_trnid Transaction ID.

60 (3C) BYTE 1 Reserved for C
String.

61 (3D) 3 Unused.

64 (40) HALF WORD 2 acm_lport Local Port.

66 (42) HALF WORD 2 acm_rport Remote Port.

68 (44) CHARACTER 36 acm_srve Transport Service
.Name.

104 (68) BYTE 1 Reserved for C
String.

105 (69) BYTE 3 Unused.

108 (6C) ADDRESS 4 acm_laddr Local IP Address.

112 (70) ADDRESS 4 acm_raddr Remote IP Address.

116 (74) CHARACTER 255 acm_lname Local IP Host Name.

371 (173) BYTE 1 Reserved for C
String.

372 (174) CHARACTER 255 acm_rname Remote IP Host
Name.

B–6 C Programmers Guide

ACM: Argument for Connection Management Used by the CONNECT and LISTEN API Services

Decimal Hex Type Length Name Description

627 (273) BYTE 1 Reserved for 'C'
String.

628 (274) Length of ACM.

Alphabetized Field Name Cross-Reference Table

This table provides an alphabetized list of field names mapped to the offset
within the ACM control block.

Name Hex Offset Hex Value

acm_dgncd 14

acm_func 2

acm_laddr 6C

acm_lname 74

acm_lport 40

acm_mrecv 2C

acm_msend 24

acm_qrecv 28

acm_qsend 2

acm_raddr 70

acm_rname 174

acm_rport 42

acm_rtncd 10

acm_sfill 18

acm_srvce 44

acm_stats 1B

ACMSTAT_CONN 1B 01

ACMSTAT_TERM 1B 02

Acm_tfill 1C

acm_token 4

acm_trac1 1F

Control Block Layouts B–7

ACM: Argument for Connection Management Used by the CONNECT and LISTEN API Services

Name Hex Offset Hex Value

acm_ trac2 1E

acm_trnid 38

acm_ucntx 34

acm_vers 0

B–8 C Programmers Guide

ACM: Argument for Connection Management Used by the CONNECT and LISTEN API Services

Sample Structure Member T09KSACM

The following is a sample of structure member T09KSACM located in the
cpthlq.T09MAC distributed library.

■ It contains the layout and field names for your use in your application
program

■ It is used by all the provided application programming samples

This is what the structure control block looks like in C language:
typedef struct
 {
 short acm_vers ; /* ACM block version number */
 short acm_func ; /* Request function type */
 unsigned long acm_token; /* Data transfer token */
 char acm_cdtbl [8] ; /* Opt. xlate table for c/d */
 int acm_rtncd ; /* Return code */
 int acm_dgncd ; /* Diagnostic code */
 char acm_sfill [3] ; /* Reserved statistics bytes */
 char acm_stats ; /* Statistics options */
 char acm_tfill [2] ; /* Reserved trace bytes2 */
 char acm_trac2 ; /* Trace options byte 2 */
 char acm_trac1 ; /* Trace options byte 1 */
 int acm_qsend ; /* Send queue size */
 int acm_msend ; /* Send buffer size */
 int acm_qrecv ; /* Receive queue size */
 int acm_mrecv ; /* Receive buffer size */
 int *acm_tlstn ; /* Listen token */
 int acm_rsvd3 ; /* reserved (in use) */
 char acm_trnid [5] ; /* Transaction id */
 char acm_rsvd4 ; /* reserved */
 short acm_rsvd5 ; /* reserved */
 short acm_lport ; /* Transport local port no. */
 short acm_rport ; /* Transport remote port no. */
 char acm_srvce[37] ; /* Transport service name */
 char acm_rsvd6 ; /* reserved */
 char acm_optn2 ; /* Special options - byte 2 */
 char acm_optn1 ; /* Special options - byte 1 */
 int acm_laddr ; /* IP local host address */
 int acm_raddr ; /* IP remote host address */
 union {
 char acm_lname[256]; /* IP local host name */
 struct {
 char acm_seclm[8]; /* security exit program*/
 char acm_usrid[8]; /* user id */
 char acm_parm[8]; /* Receive Parm */
 int acm_clntl; /* client data length */
 unsigned long acm_mroep; /* CPT/MRO endpoint */
 unsigned long acm_mroas; /* CPT/MRO endpoint */
 char acm_clnt[40]; /* Getclientid structure*/
 char acm_ident[16]; /* Takesocket IDENT name*/
 char acm_tsubt[8]; /* Takesocket subtask */
 short acm_tepid; /* Takesocket EPID */
 short acm_imsoc; /* maximum # of sockets */
 } acm_mro;
 };
 char acm_rname[256]; /* IP remote host name */
 short acm_msock ; /* Maximum sockets */
 short acm_bcklg ; /* Maximum backlog */
 int acm_timeo ; /* Timeout */
 int acm_rsvd7 ; /* reserved */
 } acm_stru;

Control Block Layouts B–9

 #define ACM_VERSN 2

 #define ACMSTATS_CONN 0x01 /* CONNECTION STATISTICS */
 #define ACMSTATS_TERM 0x02 /* TERMINATION STATISTICS*/

 /*--*/
 /* ACM OPTIONS */
 /*--*/
 #define ACMOPTN1_SYNC 0x01 /* listen syncpoint */
 #define ACMOPTN1_LTRAN 0x02 /* dynamic transaction */
 #define ACMOPTN1_NODNR 0x04 /* no dnr service calls */
 #define ACMOPTN1_NBLKO 0x08 /* non-blocking listen */
 #define ACMOPTN1_OTRAN 0x40 /* opt. xlate table c/d */
 #define ACMOPTN1_CTRAN 0x80 /* xlate client data */

 #define ACMOPTN2_CLEN 0x01 /* client data len */
 #define ACMOPTN2_USRID 0x02 /* user id present */
 #define ACMOPTN2_SCTY 0x04 /* security present */
 #define ACMOPTN2_MRO 0x08 /* CPT/MRO listen */
 #define ACMOPTN2_PARM 0x10 /* Receive Parm */

ADT: Argument for Data Transfer Used by RECEIVE, SEND,
RECVFROM, and SENDTO Services

This section describes the Unicenter SOLVE:CPT ADT. The ADT is used by the
RECEIVE, SEND, RECVFROM, and SENDTO services to transfer data and
provides the following information:

■ An alphabetical list of ADT fields

■ A sample copy of the T09KSADT structure

■ An offset table of the ADT fields

Note: The ADT control block is 644 bytes in length, which is x’284’ in
hexadecimal. The space for this control block must be created by the application
and mapped to by the sample T09KSADT structure.

Sample Structure Member T09KSADT

The following is a sample of structure member T09KSACM located in the
cpthlq.T09MAC distributed library.

It provides the following information:

■ It contains the layout and field names for your use in your application
program

■ It is used by all the provided application programming samples

B–10 C Programmers Guide

ADT: Argument for Data Transfer Used by RECEIVE, SEND, RECVFROM, and SENDTO Services

This is what the structure control block looks like in C language:

typedef struct
 {
 short adt_vers ; /* adt block version number */
 short adt_func ; /* Request function type */
 unsigned long adt_token; /* Data transfer token */
 void *adt_buffa ; /* Data buffer address */
 int adt_buffl ; /* Buffer size/data length */
 int adt_rtncd ; /* Return code */
 int adt_dgncd ; /* Diagnostic code */
 int adt_stats ; /* Statistics options */
 char adt_tfill [2] ; /* Reserved trace bytes2 */
 char adt_trac2 ; /* Trace options byte 2 */
 char adt_trac1 ; /* Trace options byte 1 */
 int adt_qsend ; /* Queue size - send */
 int adt_msend ; /* Buffer size - send */
 int adt_qrecv ; /* Queue size - recv */
 int adt_mrecv ; /* Buffer size - recv */
 int adt_timeo ; /* Select wait seconds */
 int adt_rsvd1 ; /* reserved (in use) */
 void *adt_vectr ; /* Select vector address */
 int adt_nslct ; /* # of vector entries */
 int adt_slctd ; /* # of sockets selected */
 short adt_lport ; /* Local port */
 short adt_rport ; /* Remote port */
 short adt_msock ; /* Maximum sockets */
 char adt_srvce [36]; /* Service name */
 short adt_sepc ; /* # of sep characters */
 char adt_sep1 ; /* 1st/only sep character */
 char adt_sep2 ; /* 2nd sep character */
 short adt_rsvd3 ; /* reserved */
 int adt_laddr ; /* Local host ip address */
 int adt_raddr ; /* Remote host ip address */
 char adt_lname[256]; /* Local host name */
 char adt_rname[256]; /* Remote host name */
 int adt_ucntx ; /* User context field */
 char adt_optn4 ; /* Special options - unused */
 char adt_optn3 ; /* Special options - unused */
 char adt_optn2 ; /* Special options - byte 2 */
 char adt_optn1 ; /* Special options - byte 1 */
 } adt_stru;

 #define ADT_VERSN 2

 #define NO_MORE_DATA 65 /* Remote Requests Orderly Release */

 #define ADTSTATS_CONN 0x01 /* CONNECTION STATISTICS */
 #define ADTSTATS_TERM 0x02 /* TERMINATION STATISTICS*/

Control Block Layouts B–11

 /*--*/
 /* SPECIAL OPTIONS */
 /*--*/
 #define ADTOPTN1_TYPSP 0x01 /* record by separators */
 #define ADTOPTN1_TYPLL 0x02 /* record by ll prefix */
 #define ADTOPTN1_BLCKS 0x04 /* ICS blocking send */
 #define ADTOPTN1_TMPRT 0x08 /* timed partial receive*/
 #define ADTOPTN1_TMRCV 0x10 /* timed full receive */
 #define ADTOPTN1_NBLKS 0x20 /* non-blocking send */
 #define ADTOPTN1_NBLKR 0x40 /* non-blocking receive */
 #define ADTOPTN1_DODNR 0x80 /* do DNR calls for UDP */
 #define ADTOPTN2_RT100 0x08 /* Recv timeout in 1/100 second */
 #define ADTOPTN2_NQUE 0x10 /* no queueing of recvs */
 #define ADTOPTN2_NWAIT 0x20 /* no wait - select tool*/
 #define ADTOPTN2_NOSTP 0x40 /* no stripping ll/sep */
 #define ADTOPTN2_VLIST 0x80 /* vector list */

AFM: Argument for Facility Management Used by the GIVE
and TAKE Services

This section describes the Unicenter SOLVE:CPT AFM. The AFM is used by the
GIVE and TAKE calls to transfer ownership of a TCP connection between two
CICS transactions. The following information is provided:

■ An offset table of the AFM fields

■ An alphabetical list of AFM fields

■ A sample copy of the T09KSAFM structure

Note: The AFM control block is 40 bytes in length, which is x’28’ in hexadecimal.
The space for this control block must be created by the application and mapped
to by the sample T09KSAFM structure.

Offsets

This table provides information from the T09KSAFM structure member with
field descriptions.

Decimal Hex Type Length Name Description

0 (0) afm_ Data transfer
parameters.

0 (0) HALF WORD 2 afm_vers Version number.

2 (2) HALF WORD 2 afm_func Function code.

4 (4) ADDRESS 4 afm_token Token (CEP).

8 (8) ADDRESS 4 Reserved.

B–12 C Programmers Guide

AFM: Argument for Facility Management Used by the GIVE and TAKE Services

Decimal Hex Type Length Name Description

12 (C) FULL WORD 4 Reserved.

16 (10) FULL WORD 4 afm_rtncd Return code.

20 (14) FULL WORD 4 afm_dgncd Diagnostic code.

24 (18) FULL WORD 4 afm_optns Options (reserved).

24 (18) BYTE 1 afm_opcd4 Option 4.

25 (19) BYTE 1 afm_opcd3 Option 3.

26 (1A) BYTE 1 afm_opcd2 Option 2.

27 (1B) BYTE 1 afm_opcd1 Option 1.

28 (1C) Length of AFM.

Alphabetized Cross-Reference Table

This table provides an alphabetized list of field names mapped to the offset
within the AFM control block.

Name Hex Offset Hex Value

afm_dgncd 14

afm_func 2

afm_opcd1 1B

afm_opcd2 1A

afm_opcd3 19

afm_opcd4 18

afm_optns 18

afm_rtncd 10

afm_token 4

afm_vers 0

Control Block Layouts B–13

AFM: Argument for Facility Management Used by the GIVE and TAKE Services

Sample Structure Member T09KSAFM

The following is a sample of structure member T09KSAFM located in the
cpthlq.T09MAC distributed library.

It:

■ Contains the layout and field names for your use in your application
program

■ Is used by all the provided application programming samples

This is what the structure control block looks like in C language:

typedef struct
 {
 short afm_vers ; /* AFM block version number */
 short afm_func ; /* Request function type */
 unsigned long afm_token; /* Data transfer token */
 char afm_ntran [5] ; /* Transaction id to start */
 char afm_rsvd1 ; /* reserved */
 short afm_rsvd2 ; /* reserved */
 int afm_rtncd ; /* Return code */
 int afm_dgncd ; /* Diagnostic code */
 char afm_oprsv [3] ; /* Reserved options */
 char afm_opcd1 ; /* Give and Take options */
 short afm_msock ; /* Maximum sockets */
 } afm_stru;

 #define AFM_VERSN 2

 /*--*/
 /* GIVE AND TAKE OPTIONS */
 /*--*/
 #define AFMOPT_DEQ 0X80 /* DEQUEUE TOKEN ONLY */
 #define AFMOPT_ENQ 0X40 /* ENQUEUE TOKEN ONLY */
 #define AFMOPT_SEL 0X20 /* PASS TOKEN TO SELECT TOOL*/

B–14 C Programmers Guide

AFT: Argument for File Transfer Used by the FTP Client Service Call

AFT: Argument for File Transfer Used by the FTP Client Service
Call

This section describes the Unicenter SOLVE:CPT Argument for File Transfer, the
aft_. The AFT is used by the FTP client service call to define the arguments used
to make a FTP client call to a remote FTP server. The following information is
provided:

■ An offset table of the AFT fields

■ An alphabetical list of AFT fields

■ A sample copy of the T09KSAFT structure

Note: The AFT control block is 320 bytes in length, which is x’140’ in
hexadecimal. The space for this control block must be created by the application
and mapped to by the sample T09KSAFT structure.

Offsets

This table provides information from the T09KSAFT structure member with field
descriptions.

Decimal Hex Type Length Name Description

0 (0) File Transfer
parameters

Alphabetized Cross-Reference Table

This table provides an alphabetized list of field names mapped to the offset
within the AFT control block.

Name Hex Offset Hex Value

aft_dgncd 14

Control Block Layouts B–15

AFT: Argument for File Transfer Used by the FTP Client Service Call

Sample Structure Member T09KSAFT

The following is a sample of structure member T09KSAFT located in the
cpthlq.T09MAC distributed library.

It:

■ Contains the layout and field names for your use in your application
program

■ Is used by all the provided application programming samples

This is what the structure control block looks like in C language:

typedef struct
 {
 short aft_vers ; /* AFT block version number */
 char aft_optn2 ; /* option byte 2 */
 char aft_optn1 ; /* option byte 1 */
 int *aft_rnama ; /* Remote host name */
 int aft_rnaml ; /* Remote host name length */
 int aft_raddr ; /* Remote host IP address */
 char aft_user [64] ; /* User ID on remote host */
 char aft_pass [64] ; /* User password on remote */
 char aft_acct [64] ; /* User account on remote */
 char aft_trsvd [3] ; /* Reserved trace options */
 char aft_trace ; /* Trace option */
 int aft_nbrx ; /* Number of files */
 int aft_nbrxt ; /* Files transferred */
 int aft_rtncd ; /* CPT return code */
 int aft_dgncd ; /* CPT diagnostic code */
 int *aft_rtnta ; /* CPT return text */
 int aft_rtntl ; /* CPT return text length */
 char aft_qtype [2] ; /* File input medium */
 char aft_qname [8] ; /* Input queue name */
 char aft_rsvd [2] ; /* Reserved filler */
 int aft_qitem ; /* Number of items in queue */
 char aft_xmode ; /* Transmission mode */
 char aft_xtype ; /* Transmission type */
 char aft_xform ; /* Transmission format */
 char aft_rsvd1 [8] ; /* reserved */
 char aft_xstru ; /* Transmission structure */
 char aft_allo [8] ; /* reserved */
 int *aft_sitea ; /* Site parameters */
 int aft_sitel ; /* Site parameters length */
 int *aft_rntoa ; /* File rename-to name */
 int aft_rntol ; /* Rename-to name length */
 int *aft_wdira ; /* Working directory name */
 int aft_wdirl ; /* Directory name length */
 int *aft_fnama ; /* Remote file name */
 int aft_fnaml ; /* Remote file name length */
 char aft_func [4] ; /* FTP command */
 int aft_ftpcd ; /* FTP return code */
 int *aft_ftpta ; /* FTP return text */
 int aft_ftptl ; /* FTP return text length */
 } aft_stru;

 #define AFT_VERSN 2

 #define AFTOPTN1_NODNR 0x04 /* no dnr service calls */

B–16 C Programmers Guide

AFT: Argument for File Transfer Used by the FTP Client Service Call

 /*--*/
 /* FILE INPUT MEDIUM */
 /*--*/
 #define AFTQTYPE_TS 'TS' /* TEMPORARY STORAGE */
 #define AFTQTYPE_TD 'TD' /* TRANSIENT DATA */

 /*--*/
 /* TRANSMISSION MODE */
 /*--*/
 #define AFTMODE_DFLT ' ' /* DEFAULT */
 #define AFTMODE_STRM 'S' /* STREAM */
 #define AFTMODE_BLCK 'B' /* BLOCK */
 #define AFTMODE_COMP 'C' /* COMPRESSED */

 /*--*/
 /* TRANSMISSION TYPE */
 /*--*/
 #define AFTTYPE_DFLT ' ' /* DEFAULT */
 #define AFTTYPE_ASCII 'A' /* ASCII */
 #define AFTTYPE_IMAGE 'I' /* IMAGE */
 #define AFTTYPE_EBCDC 'E' /* EBCDIC */
 #define AFTTYPE_LOCAL 'L' /* LOCAL */

 /*--*/
 /* TRANSMISSION FORMAT */
 /*--*/
 #define AFTFORM_DFLT ' ' /* DEFAULT */
 #define AFTFORM_NPRNT 'N' /* NON-PRINT */
 #define AFTFORM_TELNT 'T' /* TELNET */
 #define AFTFORM_ASACC 'A' /* ASA CARRIAGE CONTROL */

 /*--*/
 /* TRANSMISSION STRUCTURE */
 /*--*/
 #define AFTSTRU_DFLT ' ' /* DEFAULT */
 #define AFTSTRU_FILE 'F' /* FILE */
 #define AFTSTRU_RECRD 'R' /* RECORD */
 #define AFTSTRU_PAGE 'P' /* PAGE */

 /*--*/
 /* FTP COMMAND */
 /*--*/
 #define AFTFUNC_STOR 'STOR' /* STORE, REPLACE */
 #define AFTFUNC_STOU 'STOU' /* STORE UNIQUE */
 #define AFTFUNC_APPE 'APPE' /* APPEND */
 #define AFTFUNC_RENM 'RENM' /* RENAME */

_

Control Block Layouts B–17

AXL: Argument for Data Translation Used by the Translate API Service

AXL: Argument for Data Translation Used by the Translate API
Service

This section describes the Unicenter SOLVE:CPT Argument for data translation,
the AXL. The AXL is used by the TRANSLATE service to define the arguments
to translate.

The following information is provided:

■ An offset table of the AXL fields

■ An alphabetical list of AXL fields

■ A sample copy of the T09KSAXL structure

Note: The AXL control block is 32 bytes in length, which is x’20’ in hexadecimal.
The space for this control block must be created by the application and mapped
to by the sample T09KSAXL structure.

Offsets

This table provides information from the T09KSAXL structure member with field
descriptions.

Decimal Hex Type Length Name Description

0 (0) axl_struct Translate parameters.

0 (0) HALF
WORD

2 axl_vers Version number.

2 (2) HALF
WORD

2 axl_func Function code.

4 (4) ADDRESS 4 axl_token Token (CEP).

8 (8) ADDRESS 4 axl_saddr Source text address.

12 (C) FULL
WORD

4 axl_sleng Source text length.

16 (10) FULL
WORD

4 axl_rtncd Return code.

20 (14) FULL
WORD

4 axl_dgncd Diagnostic code.

24 (18) HALF
WORD

2 axl_xmode Character set mode.

24 (18) BYTE 1 axl_xmod2 Mode 2.

B–18 C Programmers Guide

AXL: Argument for Data Translation Used by the Translate API Service

Decimal Hex Type Length Name Description

25 (19) BYTE axl_xmod1 Mode 1.

 AXLXMODE_
SBCS

- Single-byte
character set.

 1 AXLXMODE_
DBCS

- Double-byte
character set.

 1. AXLXMODE_
MIXD

- Mixed SBCS/DBCS
character set.

 1.. AXLXMODE_
NUMS

- Numeric character
set.

26 (1A) HALF
WORD

2 axl_ltype Translation type
request.

26 (1A) BYTE 1 axl_ltyp2 Type 2.

27 (1B) BYTE 1 axl_ltyp1 Type 1.

 1 AXLXTYPE_A
TOE

- Translate ASCII to
EBCDIC.

 1. AXLXTYPE_E
TOA

- Translate EBCDIC
to ASCII.

 1.. AXLXTYPE_A
UPC

- Translate ASCII to
uppercase.

 1... AXLXTYPE_E
UPC

- Translate EBCDIC
to uppercase.

28 (1C) ADDRESS 4 axl_tabl Address of user
translation table.

32 (20) Length of AXL.

Control Block Layouts B–19

AXL: Argument for Data Translation Used by the Translate API Service

Alphabetized Cross-Reference Table

This table provides an alphabetized list of field names mapped to the offset
within the AXL control block.

Name Hex Offset Hex Value

axl_dgncd 14

axl_func 2

axl_ltype 1A

axl_ltyp1 1B

axl_ltyp2 1A

AXLXMODE_DBCS 19 01

AXLXMODE_MIXD 19 02

AXLXMODE_NUMS 19 04

AXLXMODE_SBCS 19 00

axl_rtncd 10

axl_saddr 8

axl_sleng C

axl_table 1C

AXLXTYPE_ATOE 1B 01

AXLXTYPE_AUPC 1B 04

AXLXTYPE_ETOA 1B 02

AXLXTYPE_EUPC 1B 08

axl_token 4

axl_vers 00

axl_xmod1 18

axl_xmode 18

B–20 C Programmers Guide

AXL: Argument for Data Translation Used by the Translate API Service

Sample Structure Member T09KSAXL

The following is a sample of structure member T09KSAXL located in the
cpthlq.T09MAC distributed library.

It:

■ Contains the layout and field names for your use in your application
program

■ Is used by all the provided application programming samples

This is what the structure control block looks like in C language:
 typedef struct
 {
 short axl_vers ; /* axl block version number */
 short axl_func ; /* Request function type */
 unsigned long axl_token; /* Data transfer token */
 void *axl_saddr ; /* Text buffer address */
 int axl_sleng ; /* Text data length */
 int axl_rtncd ; /* Return code */
 int axl_dgncd ; /* Diagnostic code */
 char axl_mfill ; /* Reserved translation mode */
 char axl_xmode ; /* Translation mode */
 char axl_tfill ; /* Reserved translation type */
 char axl_xtype ; /* Translation type options */
 void *axl_table ; /* User translation table */
 } axl_stru;

#define AXL_VERSN 2

 /*--*/
 /* CHARACTER SET MODE */
 /*--*/
#define AXLXMODE_SBCS 0x00 /* SINGLE BYTE C.S. */
#define AXLXMODE_DBCS 0x01 /* DOUBLE BYTE C.S. */
#define AXLXMODE_MIXD 0x02 /* MIXED SBCS/DBCS */
#define AXLXMODE_NUMS 0x04 /* NUMBER SET */

 /*--*/
 /* TRANSLATION TYPE REQUEST */
 /*--*/
#define AXLXTYPE_ATOE 0x01 /* ASCII-TO-EBCDIC */
#define AXLXTYPE_ETOA 0x02 /* EBCDIC-TO-ASCII */
#define AXLXTYPE_AUPC 0x04 /* ASCII-TO-UPPER CASE */
#define AXLXTYPE_EUPC 0x08 /* EBCDIC-TO-UPPER CASE */

Control Block Layouts B–21

Client Data Listener Transaction Start

Client Data Listener Transaction Start
The transaction that is initiated by the Client Data Listener tool is passed this
control block. This structure is accessed by through an EXEC CICS RETREIVE
command in the invoked (spawned child) transaction.

For further information refer to Client/Data Listener Option contained in the
section: T09MLSTN Macro in the “Configuration Reference” chapter of the
Administrator Guide.

The following information is provided:

■ An offset table of the Client Data Listener fields

■ An alphabetical list of Client Data Listener fields

■ A sample copy of the T09KSCSKL structure

Note: The Client Data Listener control block is 72 bytes in length, which is x’48’
in hexadecimal. The storage for this control block will be allocated by CICS when
the EXEC CICS RETREIVE command is issued. The storage should then be
mapped to by the sample T09KSCSKL structure.

Offsets

This table provides information from the T09KSCSKL structure member with
field descriptions.

Decimal Hex Type Length Name Description

0 (0)

Alphabetized Cross-Reference Table

This table provides an alphabetized list of field names mapped to the offset
within the Client Data control block.

Name Hex Offset Hex Value

B–22 C Programmers Guide

Connection Time Security Program Control Block

Sample Structure Member T09KSCSKL

The following is a sample of structure member T09KSCSKL located in the
cpthlq.T09MAC distributed library.

It:

■ Contains the layout and field names for your use in your application
program

■ Is used by all the provided application programming samples

This is what the structure control block looks like in C language:

struct TCPSOCKET_PARM{
 int give_take_socket; /* socket number given by listener */
 char lstn_name[8]; /* listener name */
 char lstn_subname[8]; /* listener subname */
 char client_in_data[36]; /* client passed data */
 struct sockaddr_in
 sockaddr_in_parm; /* Internet socket address */
};

Connection Time Security Program Control Block
When security is turned on in the T09MCICS or T09MLSTN macros in the
configuration file, control is passed to the specified security program. The
security program is passed this control block. This structure is accessed by
through an EXEC CICS RETREIVE command in the invoked (spawned child)
transaction.

The following information is provided:

■ An offset table of the security program fields

■ An alphabetical list of security program fields

■ A sample copy of the T09KSSEC structure

Note: The security program control block is 596 bytes in length, which is x’254’
in hexadecimal. The storage for this control block will be allocated by CICS when
the EXEC CICS RETREIVE command is issued. The sample T09KSSEC structure
should then be mapped to the storage.

For further information, see About the Optional Security Program in the
“Security” appendix of the Administrator Guide.

Control Block Layouts B–23

Connection Time Security Program Control Block

Offsets

This table provides information from the T09KSSEC structure member with field
descriptions.

Decimal Hex Format Field Description

0 (0) 4-byte character sec_tran Requested server transaction,
maybe modified by the
program.

4 (4) 40-byte
character

sec_data Client data, if available.

44 (2C) 2-byte character sec_strt Method of server initiation:
KC, TC, or IC.

46 (2E) 6-byte character sec_ictm IC Hours, Minutes, Seconds.

52 (34) 2-byte binary sec_afan Address family: Inet
domain=2.

54 (36) 2-byte binary sec_rprt Client remote port number.

56 (38) 4-byte binary sec_rhst Client remote host IP address.

60 (3C) 1-byte character sec_actn Authorization switch:
■ 1=accept
■ 0=fail

61 (3D) 4-byte character sec_tmid Associated terminal facility.

65 (41) 2-byte binary sec_lprt Requested server local port.

67 (43) 8-byte binary sec_user Returned user ID

75 (4B) 4-byte binary sec_tokn Token that represents the TCP
connection.

79 (4F) 4-byte binary sec_lhst Local host IP address.

B–24 C Programmers Guide

Connection Time Security Program Control Block

Alphabetized Cross-Reference Table

This table provides an easy-to-use alphabetized list of field names mapped to the
offset within the security program control block.

Name Hex Offset Hex Value

Sample Structure Member T09KSSEC

The following is a sample of structure member T09KSSEC located in the
cpthlq.T09MAC distributed library. It:

■ Contains the layout and field names for your use in your application
program

■ Is used by all the provided application programming samples

This is what the structure control block looks like in C language:

typedef struct
 {
 char sec_tran[4] ; /* Server transaction requested */
 char sec_data[40]; /* Requestor data */
 char sec_strt[2] ; /* How task is to be started */
 char sec_ictm[6] ; /* Interval control time */
 struct {
 short sec_afam ; /* Domain */
 short sec_rprt ; /* Port */
 int sec_rhst ; /* Host ip address */
 } sec_adrs; /* Requestor address */
 char sec_actn ; /* Permit/prohibit switch */
 char sec_rs1 ; /* Reserved */
 char sec_tmid[4] ; /* Any associated cics terminal */
 short sec_lprt ; /* Local server port */
 char sec_user[8] ; /* User id */
 char sec_rs2[512]; /* Reserved */
 unsigned long sec_tokn; /* token */
 int sec_lhst ; /* Local host */
 } sec_stru;

 /*--*/
 /* Permit Access flag */
 /*--*/
 #define SECPRMT 1

Control Block Layouts B–25

Parameter List Passed to T09MTRAN Initiated Transactions

Parameter List Passed to T09MTRAN Initiated Transactions
Important! There are two formats for the parameter list that is passed to the transaction
initiated by Unicenter Solve:CPT when configured via the T09MTRAN. The simple
format is when the transaction is passed the string of data that is contained within quotes
of the PARMDATA parameter of the T09MTRAN macro.

For complete details and samples on how to have Unicenter Solve:CPT initiate
your CICS transaction for you, see the “T09MTRAN Programming Notes”
appendix in this guide.

The T09MTRAN macro is part of the configuration table that is fully
documented in the Administration Guide.

The second format of is the list parameter (LSTP) layout. The LSTP format is
used whenever any of the CFG0000 fields (fields other than USERID, TERMID,
TRANSID and PARMDATA) are configured from the T09MTRAN macro. This
layout consists of 64 bytes passed to the application as shown below.

T09DLST DSECT Sample

The following is a sample of DSECT member T09DLST located in the
cpthlq.T09MAC distributed library.
LSTID DS CL4’LSTP’ ID for Control block
LSTLEN DS H Total length of LSTPARMS DSECT
LSTVERS DS XL2 Version number
LSTOPTDA DS A Pointer to the optional Data
LSTOPTLN DS F Length of the optional Data
LSTCFGDA DS A pointer to the CFG0000 field
LSTCFGLN DS F Length of the CFG0000 field
LSTLCADA DS A Pointer to the current LCA
LSTLCALN DS F Length of the current LCA
LSTRESVD DS XL32 Reserved for future use

A program can specify the LSTP DSECT by adding the following line to an
assembler program:
T09DLST MF=DSECT

B–26 C Programmers Guide

LCA0000 and CFG0000 Control Blocks

Field Descriptions

LSTID Tag identification of ‘LSTP’

LSTLEN Length field of the LSTP DSECT.

LSTVERS Current version number of the DSECT.

LSTOPTDA Pointer to a copy of the data specified on the PARM field in the T09MTRAN
entry in the T09CONxx configuration file.

LSTOPTLN Length of the LSTOPTDA field.

LSTCFGDA Pointer to a copy of the data specified on the CFG0000 fields in the T09MTRAN
entry in the T09CONxx configuration file.

LSTCFGLN Length of the LSTCFGDA field.

LSTLCADA A pointer to the LCA entry for this transaction.

LSTLCALN Length of the LSTLCADA field.

LCA0000 and CFG0000 Control Blocks
To be runtime compatible with IBM’s CICS sockets some of the control block
architecture is provided so that programs written to run in the IBM CICS sockets
environment execute transparently in a Unicenter Solve:CPT environment.

Two control block structures LCA0000 and CFG0000 that are created as part of
IBM’s EZACONFIG configuration file are also created for Unicenter Solve:CPT.
See IBM’s Communications Server IP CICS Sockets Guide for full details on how to
use these features.

 The LCA0000 control block can be expanded in an assembler program by the
following macro expansion:
EZACICA AREA=LCA,TYPE=DSECT

The CFG0000 control block can be expanded in an assembler program by the
following macro expansion:
EZACICA AREA=CONFIG,TYPE=DSECT

The following assembler listings are provided for your convenience and are not
intended to replace the IBM documentation in this area.

Control Block Layouts B–27

LCA0000 and CFG0000 Control Blocks

LCA0000 Control Block Listing

 EZACICA AREA=LCA,TYPE=DSECT
+*
+* DSECT FOR LISTENER CONTROL AREA
+*
+LCA0000 DSECT
+*
+LCATECB DS F Termination ECB
+LCATRAN DS CL4 Name of Listener transaction
+LCASTAT DS X Status of this listener
+LCASTAT0 EQU B'00000000' Listener not in operation
+LCASTATI EQU B'00000001' Listener in initialization
+LCASTATS EQU B'00000010' Listener in SELECT
+LCASTATP EQU B'00000100' Listener processing
+LCASTATE EQU B'00001000' Listener had initialization error
+LCASTATC EQU B'00010000' Immediate termination in progress
+LCASTATD EQU B'00100000' Deferred termination in progress
+LCAPHASE DS X Execution phase for IBM listener
+LCAEND DS 0F Alignment
+LCALEN EQU LCAEND-LCA0000 Length of Listener Control Area
+LCACHAIN DS A Address of next LCA on chain
+LCAEND2 DS 0F Alignment
+LCALEN2 EQU LCAEND2-LCA0000 Length of chained LCA

CFG0000 Control Block Listing

,, EZACICA AREA=CONFIG,TYPE=DSECT
+*
+* DSECT FOR CICS/SOCKETS CONFIGURATION FILE
+*
+CFG0000 DSECT
+CFHAPPL DS CL8 APPLID of CICS
+*
+CFHRTYPE DS CL1 Record Type
+CFHRTYPC EQU C'C' CICS Record
+CFHRTYPL EQU C'L' Listener Record
+*
+ DS XL3 Reserved
+*
+* Record Layout for CICS Record
+*
+CFCTRAN DS XL4 Binary Zeros
+CFCTCPIP DS CL8 Address Space Name for TCP/IP
+CFCNOTSK DS H Number of Reusable tasks
+CFCSTIME DS H Cache Minimum Refresh Time
+CFCLTIME DS H Cache Maximum Refresh Time
+CFCNORES DS H Cache Number of Concurrent Resolver
+CFCDPRTY DS H Limit Priority of Subtask
+CFCENAME DS CL4 Name of TD Error Queue
+CFCOPT DS X CICS Options @L
+CFCOPTSS EQU B'00000001' Suppress task started messages @L

B–28 C Programmers Guide

LCA0000 and CFG0000 Control Blocks

+*
+* Record Layout for Listener Record
+*
+ ORG CFCTRAN Reset Location Counter
+CFLTRAN DS CL4 Listener Transaction Name
+CFLPORT DS H Port Number for Listener
+CFLBKLOG DS H Backlog value for Listener
+CFLNSOCK DS H Number of Sockets Used by Listener
+CFLNMIN DS H Minimum Length of Input Message
+CFLLTIME DS H Timeout value in seconds for accept
+CFLRTIME DS H Timeout value in seconds for read
+CFLGTIME DS H Timeout value in seconds for
+ givesocket
+CFLOPT DS X Listener Options
+*
+CFLOPTIS EQU B'00000001' Immediate Startup
+CFLOPTTE EQU B'00000110' Translate entire message
+CFLOPTTR EQU B'00000010' Translate Transaction Code Only
+CFLOPTUD EQU B'00000100' Translate User Data Only
+* B'00001000' Reserved for compatibility
+CFLOPTPD EQU B'00010000' Peek at data only
+CFLOPTEB EQU B'00100000' Outbound messages are in EBCDIC
+CFLOPTEL EQU B'01000000' This is an ENHANCED listener
+*
+CFLSECXT DS CL8 Name of security exit
+CFLWLMN1 DS CL12 WLM group name 1 @A1
+CFLWLMN2 DS CL12 WLM group name 2 @A1
+CFLWLMN3 DS CL12 WLM group name 3 @A1
+CFLCSTRN DS CL4 Child server tranid
+CFLCSSTT DS CL2 Child server startup type
+CFLCSDLY DS CL6 Child server delay interval
+CFLMSGLN DS H Length of inbound message
+ ORG CFG0000+150 Leave some reserved area
+*
+CFGLEN EQU *-CFG0000 Length of record

Control Block Layouts B–29

Appendix

C T09MTRAN Programming Notes

This chapter provides additional information on programming concerns when
using the T09MTRAN Unicenter SOLVE:CPT configuration table statement.

The T09MTRAN macro defines a CICS transaction that can be started by
Unicenter SOLVE:CPT. It is an excellent mechanism to start non-T09MLSTN
servers after Unicenter Solve: CPT is properly initialized. There is no
requirement that the transaction be a server, any transaction start that relates to
Unicenter SOLVE:CPT can be managed by the T09MTRAN configuration macro.

For full details on configuration of the T09MTRAN macro, see the chapter
“Configuration Reference” in the Administration Guide.

Operationally you can use the T09MTRAN macro startup two ways:

■ Using the default parameter of IMMED=YES, the transaction is automatically
started immediately after Unicenter SOLVE:CPT completes proper startup
initialization

■ If you code IMMED=NO, the you can manually start the transaction anytime
after Unicenter SOLVE:CPT initialization completes

For information and sample use of the IPUL transaction to start an IMMED=NO
defined transaction, see the chapter “Operations” in the Administration Guide.

This appendix discusses the following topics:

■ Parameter List Passed to T09MTRAN Initiated Transactions

■ LCA0000 and CFG0000 Control Block Programming Notes

T09MTRAN Programming Notes C–1

Parameter List Passed to T09MTRAN Initiated Transactions

Parameter List Passed to T09MTRAN Initiated Transactions
There are two possible layouts of data passed to the customer’s transaction:

■ Basic layout where the data string is simply passed from the PARM field of
the T09MTRAN configuration table macro. This is the recommended default.

■ EZACONFG layout The LSTP DSECT with a length of 64 bytes.

Regardless of the parameter list the application issues a one of the following
CICS retrieve call to access the data:
EXEC CICS RETRIEVE INTO() LENGTH()

or
EXEC CICS RETRIEVE SET() LENGTH()

Basic Layout: Data
Passed from the
PARM Field

When using the basic layout, data placed on the PARM field is passed to the
T09MTRAN transaction. The transaction can retrieve the PARM data by issuing
the "EXEC CICS RETRIEVE ..." command.

This layout applies anytime that a user listener application has not configured
any of the CFG0000 fields in the T09MTRAN macro.

In this case the only fields that can be coded in the T09MTRAN macro are:

■ APPLID

■ ID

■ PARM

■ TERMID

■ TRANSID

■ USERID

C–2 Assembler Programmers Guide

Parameter List Passed to T09MTRAN Initiated Transactions

Basic Layout Usage Examples

Using the sample examples as described in the “Operations” chapter of the
Administration Guide:

T09MTRAN TRANSID=SRV1,PARM=1344
T09MTRAN TRANSID=SRV2
T09MTRAN TRANSID=SRV3,PARM='1346,IP=138.141.222.17',ID=ID1346
T09MTRAN TRANSID=SRV3,PARM=1347,ID=ID1347

The following start scenarios occur at CPT initialization:

■ Start of transaction SRV1 starts with ‘1344’ passed as character data.

Note: A very common need is to pass the PORT parameter, as shown in this
example of passing the server port number of 1344. For programmers that
prefer to avoid using pointers, this method of passing the port may be easier
than using the EZACONFG layout which requires pointer use.

■ Start of transaction SRV2 where no data is passed to the application

■ Start of transaction SRV3 with a character string of '1346,IP=138.141.222.17'
being passed in the common area

■ Start of transaction SRV3 will start with ‘1347’ passed as character data

EZACONFG Layout:
LSTP DSECT (64 Byte
Length)

The LSTP parameter structure is passed as PARM data whenever any CFG0000
related parameters are specified on the T09MTRAN macro. The transaction can
retrieve the LSTP data by issuing the "EXEC CICS RETRIEVE ..." command.

The CFG0000 parameters that cause a LSTP parmlist to be passed to the
T09MTRAN transaction are listed below.

■ PORT (see note below)

■ BACKLOG

■ ACCTIME

■ REATIME

■ GIVTIME

■ NUMSOCK

■ MINMSGL

■ TRANTRN

■ TRANUSR

■ SECEXIT

■ WLMGN1

■ WLMGN2

■ WLMGN3

T09MTRAN Programming Notes C–3

Parameter List Passed to T09MTRAN Initiated Transactions

LSTP DSECT layout is used whenever any of the CFG0000 fields (fields other
than USERID, TERMID, TRANSID and PARMDATA) are configured from the
T09MTRAN macro.

A program can specify the LSTP DSECT by adding the following line to an
assembler program:
T09DLSTP MF=DSECT

For full details on the LSTP DSECT, the LCA0000, and CFG0000 fields and
layouts please refer to the appendix “Control Block Layouts.”

EZACONFG Layout Usage Example
T09MTRAN TRANSID=SRV4,PORT=4444,BACKLOG=15,WLMGN1=CPTGRP

Any parameter from the list above will create the EZACONFG format of
parameter list.

The transaction SRV4 is started and the LSTP DSECT is passed parameter format.

C–4 Assembler Programmers Guide

LCA0000 and CFG0000 Control Block Programming Notes

T09MTRAN Programming Notes C–5

LCA0000 and CFG0000 Control Block Programming Notes
To be runtime compatible with IBM’s CICS sockets, some of the control block
architecture is provided so that program’s written to run in the IBM CICS sockets
environment will execute transparently in a Unicenter SOLVE:CPT environment.

Two control block structures LCA0000 and CFG0000 are created as part of IBM’s
EZACONFG configuration file are also created for Unicenter SOLVE:CPT. See
IBM’s Communications Server IP CICS Sockets Guide for full details on how to use
these features.

Each T09MTRAN entry must be unique by the TRANSID parameter when it
wants to participate in the LCA array field. There is no ID field available inside
the LCA DSECT. There is no way to uniquely identify two or more transactions
using the same transaction ID parameter TRANSID. This is not a severe
limitation within CICS. Multiple transactions can point to the same program. So,
a site needs to uniquely identify each server transaction name in the TRANSID
parameter for each T09MTRAN entry in the T09CONxx configuration file. The ID
field will always be unique among all T09MTRAN entries.

For full details on the LSTP DSECT, the LCA0000, and CFG0000 fields and
layouts please refer to the appendix “Control Block Layouts” in the guide.

The LCA0000 control block can be expanded in an assembler program by the
following macro expansion:
EZACICA AREA=LCA,TYPE=DSECT

An application can use the EXTRACT EXIT command for program EZACIC01 to
find the global work area pointer:

EXEC CICS EXTRACT EXIT
PROGRAM(EZACIC01)
GASET(ptr)GALEN(len)

At offset zero of the global work area (GWA), is the literal “ACDC."

At offset x’170 of the GWA will be a pointer to an array of 12 byte LCA entries.
An application can walk through the array until it finds a LCA entry where the
LCATRAN transaction ID matches its own server transaction ID.

The CFG0000 control block can be expanded in an assembler program by the
following macro expansion:
EZACICA AREA=CONFIG,TYPE=DSECT

A program can specify the LSTP DSECT by adding the following line to an
assembler program:
T09DLSTP MF=DSECT

Appendix

D
Linking EZASOKET and EZACICAL
Applications

EZASOKET or EZACICAL CICS applications utilize stub programs to provide
API support. Applications must pull in these API stubs by the end of the linked
step to provide support for the API calls.

Do not confuse EZASOKET and EZACICAL socket applications with CPT
applications. Stubs for the following applications are as follows:

■ EZASOKET socket applications must link in stub named EZASOKET

■ EZACICAL socket applications must link in stub named EZACICAL

■ CPT applications must link in stubs starting with T09F*

The following topics are discussed in this appendix:

■ Linking EZASOKET

■ Linking EZACICAL

■ IBM C LE Socket Call Support

■ SAS/C Socket Call Support

Linking EZASOKET Applications
The EZASOKET API stub is required when linking EZASOKET CICS API
applications.

EZASOKET is an alias of T09ESOKT in the cpthlq.T09LOAD library.

EZASOKET must be included from either the Unicenter SOLVE:CPT 6.1
distribution library (cpthlq.T09LOAD) or the IBM CS IP load library
(tcpiphlq.SEZATCP).

Linking EZASOKET and EZACICAL Applications D–1

Linking EZACICAL Applications

Linking EZACICAL Applications
The EZACICAL API was delivered with IBM TCP V2.2.1, this API was replaced
with the EZASOKET API that was delivered with IBM TCP V3.1.

Note: This API is supported for downward compatibility only and the
EZASOKET API is recommended when building new applications.

The EZACICAL API stub is required when linking EZACICAL CICS API
applications.

EZACICAL is an alias of T09ESOKT in the cpthlq.T09LOAD library.

EZACICAL must be included from the Unicenter SOLVE:CPT 6.1 distribution
library (cpthlq.T09LOAD) or the IBM CS IP load library (tcpiphlq.SEZATCP).

IBM C LE Socket Call Support
EZACIC07 is the stub for nonreentrant IBM C LE socket programs.

EZACIC17 is the stub for reentrant IBM C LE socket programs.

Support for IBM C LE sockets is implemented in Unicenter SOLVE:CPT 6.1. This
feature maps IBM C LE socket calls into EZASOKET equivalents to allow IBM C
LE programs to run under CICS.

To achieve this, two new modules were developed:

T09ESOK7 Replaces IBM module EZACIC07

T09ESO17 Replaces IBM module EZACIC17

These modules replace the above-mentioned IBM modules, which are the IBM
CICS API stubs that perform IBM C LE EZASOKET mapping services.

See IBM publication Communications Server: IP CICS Sockets Guide or equivalent
for more information about EZACIC07 and EZACIC17.

IBM C LE programs that run under CICS must be link edited with one of these
stubs, which are distributed with the IBM Communications Server IP® product.

Replacement modules T09ESOK7 and T09ESO17:

■ Contain all the entry points for IBM C LE socket calls

■ Perform the same EZASOKET mapping services as provided by their IBM
counterparts

D–2 C Programmers Guide

IBM C LE Socket Call Support

T09ESOK7 is link edited with an alias of EZACIC07, and T09ESO17 is link edited
with an alias of EZACIC17 so they are compatible with any IBM C LE CICS
sockets application program.

The sections provide guidelines for compiling and linking IBM C LE CICS
applications.

Reentrant IBM C LE CICS Applications

You must compile and link your reentrant IBM C LE applications into a data set
that is part of the DFHRPL concatenation in your CICS startup JCL.

For reentrant applications, you must:

■ Specify the RENT parameter option in both the compile and final link steps

■ Include a SYSLIB DD statement in the prelink step pointing to the data set
containing required reentrant support modules (tcphlq.SEZARNT1)

■ Include the following header files in your IBM C LE source program:

— #include <cmanifes.h>

— #include <errno.h>

■ Include the Unicenter SOLVE:CPT 6.1 reentrant IBM C LE CICS API stub
replacement module, EZACIC17, in the final link step

Linking EZASOKET and EZACICAL Applications D–3

IBM C LE Socket Call Support

Sample JCL for Reentrant C

This is an example for compiling reentrant IBM C LE program T09QLTSR to run
under CICS. Bolded items are values you should update in your existing JCL:

//jobname JOB ...
//DFHYITDL PROC SUFFIX=1$, Suffix for translator module
// CICS='CTS220.CICS', CICS qualifier(s)
// CPTHLQ='CPT610', CPT 6.1 distribution qualifier(s)
// USERHLQ='myuserid.CPT610', User qualifier(s)
// TCPIPHLQ=TCPIP, TCPIP qualifier(s)
// MEMBER=progname, Member name required
// COMPILER=CBCDRVR, C/C++ Compiler OS/390 2.6
// LE370HLQ='CEE', Qualifier(s) for LE/370 libraries
// WRKSPC='(3200,(30,30))', Work SPACE parameter values
// DCB80='(RECFM=FB,LRECL=80,BLKSIZE=3200)',
//* DCB for LRECL=80 datasets
// DCB3200='(RECFM=FB,LRECL=3200,BLKSIZE=12800)',
//* DCB for LRECL=3200 datasets
// CPARM='RENT,DEF(MVS),LIS,SO,SHOW,EXP,LO,AGG,OPTFILE',
// COMPHLQ='CBC', Qualifier(s) for C Libs
// PPARM=, Prelink parameters
// LNKPARM='RENT,LIST,MAP,LET,XREF',
//* Link edit parameters
// WORK=SYSDA, Unit for work datasets
// SCBCCMP=SCBCCMP Compiler Library
//*
//* This procedure contains 5 steps
//* 1. Exec the C translator (using the supplied suffix 1$)
//* 2. Exec the C compiler
//* 3. Reblock SDFHC370(DFHEILID) for use by the linkedit step
//* 4. Exec the C pre-linkedit
//* 5. Linkedit the output to dataset &USERHLQ.LOAD
//*
//* The following JCL may be used to execute this procedure:
//*
//* //APPLPROG EXEC DFHYITDL,MEMBER=applsrc
//* //LKED.SYSIN DD *
//* NAME applmod(R)
//* /*
//*
//TRN EXEC PGM=DFHEDP&SUFFIX,
// REGION=4M
//STEPLIB DD DSN=&CICS..SDFHLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=X
//SYSPUNCH DD DSN=&&SYSCIN,
// DISP=(,PASS),UNIT=&WORK,
// DCB=BLKSIZE=400,
// SPACE=(400,(400,100))
//SYSIN DD DISP=SHR,DSN=&USERHLQ..SRC(&MEMBER)
//*
//C EXEC PGM=&COMPILER,
// REGION=4M,
// COND=(7,LT,TRN),
// PARM=('&CPARM')
//STEPLIB DD DSN=&COMPHLQ..&SCBCCMP,DISP=SHR
// DD DSN=&LE370HLQ..SCEERUN,DISP=SHR
//SYSLIB DD DISP=SHR,DSN=&TCPIPHLQ..SEZACMAC
// DD DSN=&CICS..SDFHC370,DISP=SHR
// DD DSN=&CICS..SDFHMAC,DISP=SHR
// DD DSN=&CICS..SDFHSAMP,DISP=SHR
// DD DSN=&LE370HLQ..SCEEH.H,DISP=SHR
//SYSLIN DD DSN=&&LOAD,DISP=(,PASS),
// UNIT=&WORK,SPACE=&WRKSPC,DCB=&DCB80
//SYSPRINT DD SYSOUT=X

D–4 C Programmers Guide

IBM C LE Socket Call Support

//SYSCPRT DD SYSOUT=X
//SYSTERM DD DUMMY
//SYSUT1 DD DSN=&&SYSUT1,DISP=(,PASS),
// UNIT=&WORK,SPACE=&WRKSPC,DCB=&DCB80
//SYSUT2 DD DSN=&&SYSUT2,DISP=(,PASS),
// UNIT=&WORK,SPACE=&WRKSPC,DCB=&DCB80
//SYSUT3 DD DSN=&&SYSUT3,DISP=(,PASS),
// UNIT=&WORK,SPACE=&WRKSPC,DCB=&DCB80
//SYSUT4 DD DSN=&&SYSUT4,DISP=(,PASS),
// UNIT=&WORK,SPACE=&WRKSPC,DCB=&DCB80
//SYSUT5 DD DSN=&&SYSUT5,DISP=(,PASS),
// UNIT=&WORK,SPACE=&WRKSPC,DCB=&DCB80
//SYSUT6 DD DSN=&&SYSUT6,DISP=(,PASS),
// UNIT=&WORK,SPACE=&WRKSPC,DCB=&DCB3200
//SYSUT7 DD DSN=&&SYSUT7,DISP=(,PASS),
// UNIT=&WORK,SPACE=&WRKSPC,DCB=&DCB3200
//SYSUT8 DD DSN=&&SYSUT8,DISP=(,PASS),
// UNIT=&WORK,SPACE=&WRKSPC,DCB=&DCB3200
//SYSUT9 DD DSN=&&SYSUT9,DISP=(,PASS),UNIT=&WORK,
// SPACE=&WRKSPC,DCB=(RECFM=VB,LRECL=137,BLKSIZE=882)
//SYSUT10 DD DUMMY
//SYSUT14 DD DSN=&&SYSUT14,DISP=(,PASS),UNIT=&WORK,
// SPACE=&WRKSPC,DCB=&DCB3200
//SYSIN DD DSN=*.TRN.SYSPUNCH,DISP=(OLD,DELETE)
//*
//COPYLINK EXEC PGM=IEBGENER,COND=((7,LT,C),(7,LT,TRN))
//SYSUT1 DD DSN=&CICS..SDFHC370(DFHEILID),DISP=SHR
//SYSUT2 DD DSN=&©LINK,DISP=(,PASS),
// DCB=&DCB80,
// UNIT=&WORK,SPACE=(400,(20,20))
//SYSPRINT DD SYSOUT=X
//SYSIN DD DUMMY
//*
//PLKED EXEC PGM=EDCPRLK,COND=((7,LT,C),(7,LT,TRN)),
// REGION=4M,PARM='&PPARM'
//STEPLIB DD DSN=&LE370HLQ..SCEERUN,DISP=SHR
// DD DSN=&COMPHLQ..&SCBCCMP,DISP=SHR
//SYSMSGS DD DSN=&LE370HLQ..SCEEMSGP(EDCPMSGE),DISP=SHR
//SYSLIB DD DISP=SHR,DSN=&TCPIPHLQ..SEZARNT1
//SYSIN DD DSN=*.C.SYSLIN,DISP=(OLD,DELETE)
//SYSMOD DD DSN=&&PLNK,DISP=(,PASS),
// UNIT=&WORK,SPACE=&WRKSPC,DCB=&DCB80
//SYSOUT DD SYSOUT=X
//SYSPRINT DD SYSOUT=X
//*
//LKED EXEC PGM=IEWL,REGION=4M,
// PARM='&LNKPARM',
// COND=((7,LT,C),(7,LT,PLKED),(7,LT,TRN))
//SYSLIB DD DISP=SHR,DSN=&CPTHLQ..T09LOAD /* T09ESO17 */
// DD DSN=&CICS..SDFHLOAD,DISP=SHR
// DD DSN=&LE370HLQ..SCEELKED,DISP=SHR
// DD DISP=SHR,DSN=&TCPIPHLQ..SEZATCP
// DD DISP=SHR,DSN=&TCPIPHLQ..SEZACMTX
//SYSLIN DD DSN=*.COPYLINK.SYSUT2,DISP=(OLD,DELETE)
// DD DSN=*.PLKED.SYSMOD,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//SYSLMOD DD DISP=SHR,DSN=&USERHLQ..LOAD
//SYSUT1 DD DSN=&&SYSUT1L,DISP=(,PASS),
// UNIT=&WORK,SPACE=&WRKSPC,DCB=&DCB80
//SYSPRINT DD SYSOUT=X
// PEND
//T09QLTSR EXEC DFHYITDL,MEMBER=T09QLTSR

Linking EZASOKET and EZACICAL Applications D–5

IBM C LE Socket Call Support

//*
//C.SYSOPTF DD *
LANGLVL(COMMONC)
MARGINS(1,72)
NOSEARCH
TARGET(OSV2R4)
ARCH(0)
/*
//LKED.SYSIN DD *
 INCLUDE SYSLIB(EZACIC17) /* Alias of T09ESO17 */
 NAME T09QLTSR(R)
//

Note:
■ EZACIC17 is the name of the CICS API stub that is included to provide IBM

C LE socket support

■ EZACIC17 is an alias of T09ESO17 in the cpthlq.T09LOAD library

■ EZACIC17 must be included from the Unicenter SOLVE:CPT 6.1 distribution
library (cpthlq.T09LOAD) or the IBM CS IP load library (tcpiphlq.SEZATCP)

■ A return code 4 is expected in the PLKED step, but the return codes for all
other steps should be zero

Nonreentrant IBM C LE CICS Applications

You must compile and link the your nonreentrant IBM C LE applications into a
dataset that is part of the DFHRPL concatenation in your CICS startup JCL.

For nonreentrant applications, you must:

■ Omit the RENT parameter option in both the compile and final link steps

■ Include the tcpiphlq.SEZAINST data set in the SYSLIB concatenation for the
compile step

■ Include the following header files in your IBM C LE source program:

— #include <manifest.h>

— #include <ezacichd.h>

■ Include the Unicenter SOLVE:CPT 6.1 nonreentrant IBM C LE CICS API stub
replacement module, EZACIC07, in the final link step

D–6 C Programmers Guide

IBM C LE Socket Call Support

Sample JCL for Nonreentrant C

Here is an example for compiling nonreentrant IBM C LE program T09QLTSN
to run under CICS. Items in bold are values you should update in your existing
JCL:
//jobname JOB ... 00001000
//DFHYITDL PROC SUFFIX=1$, Suffix for translator module 00003000
// CICS='CTS220.CICS', CICS qualifier(s) 00004000
// CPTHLQ='CPT610', CPT 6.1 distribution qualifier(s) 00005000
// USERHLQ='myuserid.CPT610', User qualifier(s) 00005100
// TCPIPHLQ=TCPIP, TCPIP qualifier(s) 00005200
// MEMBER=JCLERROR, Member name required 00005300
// COMPILER=CBCDRVR, C/LE Compiler 00005400
// LE370HLQ='CEE', Qualifier for LE/370 libraries 00005500
// WRKSPC='(3200,(30,30))', Work SPACE parameter values 00005600
// DCB80='(RECFM=FB,LRECL=80,BLKSIZE=3200)', 00005700
//* DCB for LRECL=80 datasets 00005800
// DCB3200='(RECFM=FB,LRECL=3200,BLKSIZE=12800)', 00005900
//* DCB for LRECL=3200 datasets 00006000
// CPARM='DEF(MVS),LIS,SO,SHOW,EXP,LO,AGG,OPTFILE', 00006100
// COMPHLQ='CBC', Qualifier(s) for C Libs 00007000
// PPARM=, Prelink parameters 00008000
// LNKPARM='LIST,MAP,LET,XREF', 00009000
//* Link edit parameters 00010000
// WORK=SYSDA, Unit for work datasets 00020000
// SCBCCMP=SCBCCMP Compiler Library 00021000
//* 00022000
//* This procedure contains 5 steps 00023000
//* 1. Exec the C translator (using the supplied suffix 1$) 00024000
//* 2. Exec the C compiler 00025000
//* 3. Reblock SDFHC370(DFHEILID) for use by the linkedit step 00026000
//* 4. Exec the C pre-linkedit 00027000
//* 5. Linkedit the output to dataset &USERHLQ.LOAD 00028000
//* 00029000
//* The following JCL may be used to execute this procedure: 00030000
//* 00040000
//* //APPLPROG EXEC DFHYITDL,MEMBER=applsrc 00050000
//* //LKED.SYSIN DD * 00060000
//* NAME applmod(R) 00070000
//* /* 00080000
//* 00090000
//TRN EXEC PGM=DFHEDP&SUFFIX, 00100000
// REGION=4M 00110000
//STEPLIB DD DSN=&CICS..SDFHLOAD,DISP=SHR 00120000
//SYSPRINT DD SYSOUT=X 00130000
//SYSPUNCH DD DSN=&&SYSCIN, 00140000
// DISP=(,PASS),UNIT=&WORK, 00150000
// DCB=BLKSIZE=400, 00160000
// SPACE=(400,(400,100)) 00170000
//SYSIN DD DISP=SHR,DSN=&USERHLQ..SRC(&MEMBER) 00180000
//* 00190000
//C EXEC PGM=&COMPILER, 00200000
// REGION=4M, 00210000
// COND=(7,LT,TRN), 00220000
// PARM=('&CPARM') 00230000
//STEPLIB DD DSN=&COMPHLQ..&SCBCCMP,DISP=SHR 00240000
// DD DSN=&LE370HLQ..SCEERUN,DISP=SHR 00250000
//SYSLIB DD DISP=SHR,DSN=&TCPIPHLQ..SEZACMAC 00270000
// DD DISP=SHR,DSN=&TCPIPHLQ..SEZAINST 00280000
// DD DSN=&CICS..SDFHC370,DISP=SHR 00290000
// DD DSN=&CICS..SDFHMAC,DISP=SHR 00300000
// DD DSN=&CICS..SDFHSAMP,DISP=SHR 00310000
// DD DSN=&LE370HLQ..SCEEH.H,DISP=SHR 00320000

Linking EZASOKET and EZACICAL Applications D–7

IBM C LE Socket Call Support

//SYSLIN DD DSN=&&LOAD,DISP=(,PASS), 00330000
// UNIT=&WORK,SPACE=&WRKSPC,DCB=&DCB80 00340000
//SYSPRINT DD SYSOUT=X 00350000
//SYSCPRT DD SYSOUT=X 00360000
//SYSTERM DD DUMMY 00370000
//SYSUT1 DD DSN=&&SYSUT1,DISP=(,PASS), 00380000
// UNIT=&WORK,SPACE=&WRKSPC,DCB=&DCB80 00390000
//SYSUT2 DD DSN=&&SYSUT2,DISP=(,PASS), 00400000
// UNIT=&WORK,SPACE=&WRKSPC,DCB=&DCB80 00410000
//SYSUT3 DD DSN=&&SYSUT3,DISP=(,PASS), 00420000
// UNIT=&WORK,SPACE=&WRKSPC,DCB=&DCB80 00430000
//SYSUT4 DD DSN=&&SYSUT4,DISP=(,PASS), 00440000
// UNIT=&WORK,SPACE=&WRKSPC,DCB=&DCB80 00450000
//SYSUT5 DD DSN=&&SYSUT5,DISP=(,PASS), 00460000
// UNIT=&WORK,SPACE=&WRKSPC,DCB=&DCB80 00470000
//SYSUT6 DD DSN=&&SYSUT6,DISP=(,PASS), 00480000
// UNIT=&WORK,SPACE=&WRKSPC,DCB=&DCB3200 00490000
//SYSUT7 DD DSN=&&SYSUT7,DISP=(,PASS), 00500000
// UNIT=&WORK,SPACE=&WRKSPC,DCB=&DCB3200 00510000
//SYSUT8 DD DSN=&&SYSUT8,DISP=(,PASS), 00520000
// UNIT=&WORK,SPACE=&WRKSPC,DCB=&DCB3200 00530000
//SYSUT9 DD DSN=&&SYSUT9,DISP=(,PASS),UNIT=&WORK, 00540000
// SPACE=&WRKSPC,DCB=(RECFM=VB,LRECL=137,BLKSIZE=882) 00550000
//SYSUT10 DD DUMMY 00560000
//SYSUT14 DD DSN=&&SYSUT14,DISP=(,PASS),UNIT=&WORK, 00570000
// SPACE=&WRKSPC,DCB=&DCB3200 00580000
//SYSIN DD DSN=*.TRN.SYSPUNCH,DISP=(OLD,DELETE) 00590000
//* 00600000
//COPYLINK EXEC PGM=IEBGENER,COND=((7,LT,C),(7,LT,TRN)) 00610000
//SYSUT1 DD DSN=&CICS..SDFHC370(DFHEILID),DISP=SHR 00620000
//SYSUT2 DD DSN=&©LINK,DISP=(,PASS), 00630000
// DCB=&DCB80, 00640000
// UNIT=&WORK,SPACE=(400,(20,20)) 00650000
//SYSPRINT DD SYSOUT=X 00660000
//SYSIN DD DUMMY 00670000
//* 00680000
//PLKED EXEC PGM=EDCPRLK,COND=((7,LT,C),(7,LT,TRN)), 00690000
// REGION=4M,PARM='&PPARM' 00700000
//STEPLIB DD DSN=&LE370HLQ..SCEERUN,DISP=SHR 00710000
// DD DSN=&COMPHLQ..&SCBCCMP,DISP=SHR 00720000
//SYSMSGS DD DSN=&LE370HLQ..SCEEMSGP(EDCPMSGE),DISP=SHR 00730000
//SYSIN DD DSN=*.C.SYSLIN,DISP=(OLD,DELETE) 00740000
//SYSMOD DD DSN=&&PLNK,DISP=(,PASS), 00750000
// UNIT=&WORK,SPACE=&WRKSPC,DCB=&DCB80 00760000
//SYSOUT DD SYSOUT=X 00770000
//SYSPRINT DD SYSOUT=X 00780000
//* 00790000
//LKED EXEC PGM=IEWL,REGION=4M, 00800000
// PARM='&LNKPARM', 00810000
// COND=((7,LT,C),(7,LT,PLKED),(7,LT,TRN)) 00820000
//SYSLIB DD DISP=SHR,DSN=&CPTHLQ..T09LOAD /* T09ESOK7 */ 00870000
// DD DSN=&CICS..SDFHLOAD,DISP=SHR 00830000
// DD DSN=&LE370HLQ..SCEELKED,DISP=SHR 00840000
// DD DISP=SHR,DSN=&TCPIPHLQ..SEZATCP 00850000
// DD DISP=SHR,DSN=&TCPIPHLQ..SEZACMTX 00860000
//SYSLIN DD DSN=*.COPYLINK.SYSUT2,DISP=(OLD,DELETE) 00880000
// DD DSN=*.PLKED.SYSMOD,DISP=(OLD,DELETE) 00890000
// DD DDNAME=SYSIN 00900000
//SYSLMOD DD DISP=SHR,DSN=&USERHLQ..LOAD 00910000
//SYSUT1 DD DSN=&&SYSUT1L,DISP=(,PASS), 00920000
// UNIT=&WORK,SPACE=&WRKSPC,DCB=&DCB80 00930000
//SYSPRINT DD SYSOUT=X 00940000
// PEND 00950000
//T09QLTSN EXEC DFHYITDL,MEMBER=T09QLTSN 00960000

D–8 C Programmers Guide

SAS/C Socket Call Support

Linking EZASOKET and EZACICAL Applications D–9

//* 00970000
//C.SYSOPTF DD * 00980000
LANGLVL(COMMONC) 00990000
MARGINS(1,72) 01000000
NOSEARCH 01010000
TARGET(OSV2R4) 01020000
ARCH(0) 01030000
/* 01040000
//LKED.SYSIN DD * 01050000
 INCLUDE SYSLIB(EZACIC07) /* Alias of T09ESOK7 */ 01060000
 NAME T09QLTSN(R) 01070000
/* 01080000

Note:

■ EZACIC07 is the name of the CICS API stub included to provide IBM C LE
socket support

■ EZACIC07 is an alias of T09ESOK7 in the cpthlq.T09LOAD library.

■ EZACIC07 can be included from either the Unicenter SOLVE:CPT 6.1
distribution library (cpthlq.T09LOAD) or the IBM CS IP load library
(tcpiphlq.SEZATCP)

A return code 4 is expected in the PLKED step, but the return codes for all other
steps should be zero.

SAS/C Socket Call Support
In SAS/C® CICS User's Guide, Release 7.00 the section titled “TCP/IP Socket
Library Support for the CICS and Environment” this section describes the CICS
TCP/IP socket interface used by SAS/C.

See:

http://support.sas.com/documentation/onlinedoc/sasc/doc700/index.htm

The level of SAS C that your site runs determines which STUB, EZASOKET or
EZACICAL, is required to build SAS C CICS TCPIP applications. Your SAS/C
JCL must pull in either EZASOKET or EZACICAL stubs from the either the
Unicenter SOLVE:CPT cpthlq.T09LOAD or the IBM CS IP load library,
tcpiphlq.SEZATCP, by the end of the link-edit step.

A site can pull in T09ESOKT from the Unicenter SOLVE:CPT cpthlq.T09LOAD
library since this member will work for both EZACICAL and EZASOKET
applications.

See the SAS/C documentation for the latest copy of their suggested compile and
link JCL.

 Index

arguments for
CLose, B-2

A CLOSE (ACL) service, 2-11
connection management (ACM), 2-5, B-5
data transfer (ADT), 2-8, B-10

abortive close example, 3-4 facility management (AFM), 2-14, B-12
translation (AXL), 2-12 ACL control block

alphabetized field name cross reference table, B-3 ASCII data, translating within a user buffer, 2-12
offsets, B-2

automated Unicenter SOLVE:CPT transaction
processing options, 1-3

sample C structure T09KDACL, B-4

ACM control block
AXL control block alphabetized field name cross reference table, B-7

alphabetized cross reference table, B-20, B-22 offsets, B-5
offsets, B-18, B-22 parameters recommended for CONNECT

service, 4-2 sample DSECT member T09KDAXL, B-21
sample C structure member T09KDACM, B-9 AXLTOKEN, TRANSLATE service token, 13-9

ADT control bock AXLVERS version number, TRANSLATE service
sample C structure member T09KCADT, B-10

AFM control block
B alphabetized field name cross reference table,

B-13
offsets, B-12
sample DSECT member T09DRTCD, B-16 blocking
sample DSECT member T09KDAFM, B-14 LL RECEIVE, 9-22

RECEIVE loop, 9-28 AFT control block separator character RECEIVE, 9-24 alphabetized cross reference table, B-15 RECEIVE service, 9-3 offsets, B-15
recommended for FTP Client service, 5-2

API services, 1-2 C
applications

linking
C structures EZACICAL, D-2

CLOSE service, 3-5 EZASOKET, D-1
CONNECT service, 4-4 non- reentrant IBM C LE, D-6
FTP Client service, 5-6 reentrant IBM C LE CICS, D-3
GIVE service, 6-3
LISTEN service, 7-8
RECVFROM service, 8-5
RECEIVE service, 9-30

 Index-1

code examples SEND service, 10-8
client/server applications, 2-23 SENDTO service, 11-5
server application, 2-25 TAKE service, 12-3

multithreaded CICS, 2-27, 2-31 TRANSLATE service, 13-6
multithreaded data processing, 2-29 CA-InterTest, using with Unicenter SOLVE:CPT

aplications, 2-38 compiling and linking
EZACICAL applications, D-2 call syntax EZASOKET applications, D-1 CLOSE service, 3-2 IBM CICS sockets applications, D-1 CONNECT service, 4-2

complete parameter lists FTP Client service, 5-2
CLOSE service, 3-10, 3-11 GIVE service, 6-2
CONNECT service, 4-10, 4-15 CICS FTP Client service, 5-12 API services, 3-1 GIVE service, 6-6 Unicenter SOLVE:CPT LISTEN service, 7-17, 7-22 code tools, 1-3 RCVFROM service, 8-9, 8-14
RECEIVE service, 9-42 client callable service, 1-2
SELECT service, 10-18

client condensed pseudo code, 2-4 SEND service, 10-14
SENDTO service, 11-14 client/data listener with translation, 7-25
TAKE service, 12-8

client/server TRANSLATE service, 13-10, 13-11
applications code examples, 2-23

completion information mechanisms for TCP data transfer, 2-7
CLOSE service, 3-6

client-data listener option. See also Listener CONNECT service, 4-5
FTP Client service, 5-7 client-data option data atructure, 7-25
GIVE service, 6-4

CLOSE service LISTEN service, 7-10
arguments for CLOSE (ACL), 2-11 RECEIVE service, 9-31
C structures, 3-5 SEND service, 10-9
complete parameter list, 3-10, 3-11 TAKE service, 12-4
completion of, 2-11 TRANSLATE service, 13-7
connection and endpoint release, 2-11 when the ACMTRNID field is not specified in the

CPT-ACM, 7-11 defined, 3-1
examples

CONNECT service, 2-6 abortive close, 3-4
C structures, 4-4 graceful close, 3-3
complete parameter list, 4-10, 4-15 invoking, 3-1
completion information, 4-5 parameter values returned in the ACL, 3-5
creating connections, 2-13 processing control options
data transfer buffering, 4-9 ACLABORT, 3-9
established connection information, 4-8 ACLORDER, 3-9
example, 4-2 recommended ACM parameters, 3-2
implementing TCP/IP facilities, 4-8 sample programs, 3-6
invoking, 4-1 syntax, 3-2
overview, 4-1 termination, 3-8
parameter values returned in the ACM, 4-4 abortive, 3-6
recommended ACM parameters, 4-2 graceful, 3-6
remote token (ACLTOKEN), 3-9

host name (ACMRNAME), 4-8 usage notes, 3-8
IP address (ACMRADDR), 4-8 using the ACL, 3-8

required and optional fields, 4-8 version number (ACLVERS), 3-8

Index-2 C Programmers Guide

CPT API return codes, 3-7, 4-6
CICS installation program sample, 2-35 sample programs, 4-5
external subroutine calls, 2-2 service name (ACMSRVCE), 4-9
installation program sample, 2-34 syntax, 4-2
internal subroutine calls, 2-2 transport provider port number (ACMPORT), 4-9
task-related user exit (TRUE) interface, 2-3 updating the ACM, 4-5

usage notes, 4-8 custom translation table version number (ACMVERS), 4-8 method 1, 13-5
method 2, 13-5 connection management

establishing connections, 2-5 customizing
RECEIVE tool, 1-6 connection release, 2-13
SEND tool, 1-8 CLOSE service, 2-11
Unicenter SOLVE:CPT tools, overview, 1-3 TRUE management routines, 2-11

connection time security program control block, B-23

connections, creating D
CONNECT service, 2-13
LISTEN service, 2-13

data processing errors control block layouts, B-1
RECEIVE tool, 1-7

control blocks SEND tool, 1-10
ACL, B-2

data SEND example, 10-5 cross reference, B-3
offsets, B-2 data transfer, TCP programming options, 2-7

ACM
data translation alphabetized field name

TRANSLATE service, 2-12 argument for ACM, B-5
translating ASCII data, 2-12 cross reference, B-7
translating EBCDIC data, 2-12 offsets, B-5

ADT daughter task taking ownership of a session, 7-7
argument for ADT, B-10

destination control table (DCT), 1-5 offsets, B-12
AFM, alphabetized field name AFM cross
reference, B-13

diagnostic code field, A-4

diagnostics
LISTEN tool, 1-5 AFT
RECEIVE tool, 1-7 alphabetized AFT cross reference, B-15
SEND tool, 1-10 offsets, B-15

connection time security program, B-23
sample C structure

E DSCTY, B-25
T09DCSKL, B-23

AXL, B-18 EBCDIC data

alphabetized cross reference, B-20, B-22 translating within a user buffer, 2-12
offsets, B-18, B-22

endpoint release, using LCA0000, B-28
CLOSE service, 2-11 LCFG0000, B-28
TRUE management routines, 2-11

control blocks, LCA0000 and CFG0000 programming
notes, B-27, C-5 examples

C program, Client-Data Listener, 7-27
client/data listener with translation, 7-25

 Index-3

G CLOSE service
abortive close, 3-4
graceful close, 3-3

CONNECT service, 4-2 GIVE service
FTP Client service, 5-3 arguments for facility management (AFM), 2-14
GIVE service, 6-2 C structures, 6-3
LISTEN service call, 7-3 call syntax, 6-2
LL SEND, 10-6 complete parameter list, 6-6
RCVFROM service, 8-4 completion information, 6-4
RECEIVE service completion of, 2-14

double separator character example, 9-5 connection ownership, 6-5
LL RECEIVE example, 9-4 defined, 6-1

sample daughter task taking ownership of a
session, 7-7

example, 6-2
facility management, 2-14

SEND service, separator character, 10-7 invoking, 6-1
SENDTO service, 11-4 parameter values returned in the AFM, 6-3
TAKE service, 12-2 recommended AFM parameters, 6-2
TRANSLATE service, 13-2, 13-4 return codes, 6-4

inbound translation, 13-3 sample programs, 6-3
outbound translation, 13-4 token (AFMTOKEN), 6-5

usage, 6-5 EZACICAL applications, linking, D-2
version number (AFMVERS), 6-5

EZACONFG layout, LSTP DSECT, C-3
graceful close, 3-3

EZASOKET applications, linking, D-1

I
F

IBM C/LE socket call support, D-2
facility management

inbound translation example, 13-3 GIVE service, 2-13, 2-14
multi-tasked applications, 2-13 initialization SEND tool transaction and data transfer,

1-8 TAKE service, 2-13, 2-15

file boundaries in TCP data transfer, 2-7

FTP Client service J C structures, 5-6
complete parameter list, 5-12
completion information, 5-7 JCL, D-1
parameter values returned in the AFT, 5-5 for nonreentrant C, D-7
recommended AFT parameters, 5-2 for reentrant C, D-4
return codes, 5-7
sample programs, 5-6
syntax, 5-2
usage example, 5-3
usage notes, 5-11

Index-4 C Programmers Guide

L LL RECEIVE
example, 9-4
option, 9-4

LCA0000 and CFG0000 control blocks, programming
notes, B-27, C-5

LL SEND
example, 10-6
option, 10-3 LCA0000 control block listing, B-28

LSTP DSECT, EZACONFG layout, C-3 linking
CPT/API application. See the "Unicenter
SOLVE:CPT API Services chapter."
EZACICAL applications, D-2 M
EZASOKET applications, D-1
JCL, D-1

macros LISTEN service, 2-6
defining T09MSEND for customizing SEND tool,
1-8

C structures, 7-8
call tokens, 7-11

T09MLSTN instructions, 1-6 complete parameter list, 7-17, 7-22
T09MRECV instructions, 1-6 completion information, 7-10
T09MTRAN, C-1 completion of, 2-6

creating connections, 2-13 managing connections
data transfer buffering, 7-15 TRUE management routines, 2-13
establishing listening and client connections, 7-11

multi-tasked applications examples, 7-3
facility management, 2-13 implementing TCP/IP server facilities, 7-14

initiation with a transaction ID, 7-11 multithreaded server
invoking, 7-1 special start transaction needs, 7-5
multithreaded server standard, 7-4

special start transaction needs, 7-5
standard, 7-4

network considerations, 7-16 N parameter values returned in the ACM, 7-8
recommended ACM parameters, 7-2
recommended server, 7-3 network considerations required and optional fields, 7-14 LISTEN service, 7-16 return codes, 7-12 RCVFROM service, 8-6 sample daughter task taking ownership of a
session, 7-7 SENDTO service, 11-6

sample programs, 7-9 non-blocking, 9-3
single-threaded server, 7-6 fixed length RECEIVE, 9-8
token information, 7-14 LL RECEIVE, 9-14
transaction ID field (ACMTRNID), 7-14 RECEIVE loop, 9-26
usage notes, 7-14 separator character RECEIVE, 9-17
version number (ACMVERS), 7-14

nonreentrant C, JCL, D-7
LISTEN tool

nonreentrent IBM C LE CICS applications, D-6 defining, 1-4
diagnostics, 1-5
initiating, 1-4
invoking, 7-25

Listener
invoking, 7-25
invoking with translation, 7-26

 Index-5

O CPT API server, 2-35, 2-36
Unicenter SOLVE:CPT API server, 2-35

pseudo code
offsets client condensed, 2-4

ACL control block, B-2, B-5 server condensed, 2-4
AFM control block, B-12
AXL control block, B-18
connection time security program control block,
B-24 R

outbound translation example, 13-4
RCVFROM service overriding the default translation table

arguments, 8-1 custom, 13-5
complete parameter list, 8-9, 8-14
creating UDP data transfer and endpoints, 2-10
defined, 8-1

P network considerations, 8-6
parameter values returned in the ADT, 8-5
recommended ADT parameters, 8-3

parameter list passed to initiated transactions, C-2 return codes, 8-7
sample programs, 8-6 parameter values returned in the ACL

CLOSE service, 3-5 RECEIVE service
return codes, 9-32 parameter values returned in the ACM
RECEIVE CONNECT service, 4-4

LISTEN service, 7-8 RECEIVE service
C structures, 9-30 parameter values returned in the ADT
complete parameter list, 9-36, 9-42 RCVFROM service, 8-5
completion information, 9-31 RECEIVE service, 9-30
data SEND service, 10-8

buffer length, 9-35 SENDTO service, 11-5
transfer buffering, 9-31

parameter values returned in the AFM double separator character example, 9-5
GIVE service, 6-3 invoking, 9-1
TAKE service, 12-3 LL RECEIVE example, 9-4

methodology options, 9-2, 9-6 parameter values returned in the AFT
non-blocking fixed length RECEIVE, 9-8 FTP Client service, 5-5
recommended ACM parameters

parameter values returned in the AXL blocking fixed length RECEIVE, 9-20
TRANSLATE service, 13-6 recommended ADT parameters, 9-8

blocking LL RECEIVE, 9-22 parsing requirements
blocking RECEIVE loop, 9-28 RECEIVE tool, 1-6
blocking separator character RECEIVE, 9-24 writing data to the transient data queue, 1-6
non-blocking RECEIVE loop, 9-26

processing errors non-blocking variable length RECEIVE, 9-11
RECEIVE tool, 1-7 recommended ADT parameters:, 9-14
SEND tool, 1-9 recommended ADTparameters
SEND tool transport provider, 1-10 non-blocking separator character RECEIVE,

9-17 program samples
sample program usage API UDP client, 2-37

blocking fixed length RECEIVE, 9-20 API UDP server, 2-37
blocking LL RECEIVE, 9-22 CICS installation, 2-34
blocking RECEIVE loop, 9-29 CPT API installation, 2-32
blocking separator character RECEIVE, 9-25

Index-6 C Programmers Guide

RECVFROM service non-blocking fixed length RECEIVE, 9-9
C structures, 8-5 non-blocking LL RECEIVE, 9-15
sample usage, 8-4 non-blocking RECEIVE loop, 9-27

non-blocking separator character RECEIVE,
9-18 reentrant IBM C LE CICS applications, D-3

non-blocking variable length RECEIVE, 9-12 releasing connections, 2-13
sample programs, 9-31

reliability factors terminology and RECEIVE concepts
RECEIVE tool, 1-6 blocking, 9-3
SEND tool, 1-9 token (ADTTOKEN), 9-35

usage notes, 9-34 return codes, A-1
version number (ADTVERS), 9-34 CONNECT service, 3-7, 4-6

diagnostic code field, A-4 RECEIVE tool
FTP Client service, 5-7 customizing, 1-6
GIVE service, 6-4 data processing errors, 1-7
LISTEN service, 7-12 diagnostics, 1-7
RCVFROM service, 8-7 overview, 1-5
RECEIVE service, 9-32 parsing requirements, 1-6
SEND service, 10-11 processing errors, 1-7
SENDTO service, 11-7 reliability factors, 1-6
TAKE service, 12-5 transport provider processing errors, 1-7
TRANSLATE service, 13-7

recommended ACM parameters
CLOSE service, 3-2
CONNECT service, 4-2 S LISTEN service, 7-2
TAKE service, 12-2

sample C structure member recommended ADT parameters
DSCTY, B-25 RCVFROM service, 8-3
T09DCSKL, B-23 RECEIVE service, 9-8
T09KDACL, B-4 blocking fixed length RECEIVE, 9-20
T09KDACM, B-9 blocking LL RECEIVE, 9-22
T09KDAFM, B-14, B-16 blocking RECEIVE loop, 9-28
T09KDAXL, B-21 blocking separator character RECEIVE, 9-24
T09KDDADT, B-10 non-blocking LL RECEIVE, 9-14

non-blocking RECEIVE loop, 9-26 sample program usage
non-blocking separator character RECEIVE,
9-17

RECEIVE service
blocking fixed length RECEIVE, 9-20

non-blocking variable length RECEIVE, 9-11 blocking LL RECEIVE, 9-22
SEND service, 10-2 blocking RECEIVE loop, 9-29
SENDTO service, 11-3 blocking separator character RECEIVE, 9-25

non-blocking fixed length RECEIVE, 9-9 recommended AFM parameters
non-blocking LL RECEIVE, 9-15 GIVE service, 6-2
non-blocking RECEIVE loop, 9-27

recommended AFT parameters, FTP Client service,
5-2

non-blocking separator character RECEIVE,
9-18
non-blocking variable length RECEIVE, 9-12 recommended AXL parameters, TRANSLATE

service, 13-2 sample programs
API UDP server, 2-37 recommended server, LISTEN service, 7-3
C program, Client-Data Listener, 7-27
CLOSE service, 3-6
CONNECT service, 4-5

 Index-7

SEND tool, 1-8 FTP Client service, 5-6
control information, 1-9 GIVE service, 6-3
customizing, 1-8 LISTEN service, 7-9
data processing error, 1-10 RCVFROM service, 8-6
diagnostics, 1-10 RECEIVE service, 9-31
initialization SEND service, 10-9

automated transaction and transfer data, 1-8 SENDTO service, 11-6
processing errors, 1-9 TAKE service, 12-4
reliability factors, 1-9 TRANSLATE service, 13-7
transport provider processing error, 1-9 sample usage, RECVFROM service, 8-4

SENDTO service samples C structures, 11-5 T09DLST C structure, B-26, B-27 complete parameter list, 11-9, 11-14 T09PCFTP, 5-3 creating UDP data transfer and endpoints, 2-10
defined, 11-1 SAS/C socket call support, D-9
examples, 11-4

security communications block, 2-21, 2-22 network considerations, 11-6
parameter values returned in the ADT, 11-5 security program, 2-20
recommended ADT parameters, 11-3

security program control block, connection time, B-23 return codes, 11-7
sample programs, 11-6 SELECT service

complete parameter list, 10-18 separator character RECEIVE option, 9-5
tool

separator characters overview, 1-11
SEND example, 10-7 RECEIVE service, 9-3
SEND service, 10-3

SEND service
server application code examples, 2-25 arguments for ADT, 2-8

multithreaded CICS, 2-27, 2-31 C structures, 10-8
multithreaded data processing, 2-29 complete parameter list, 10-14

completion information, 10-9 server condensed pseudo code, 2-4
completion of, 2-8

setting the default translation table, 13-5 data
buffer length, 10-10, 10-13 single-threaded server, 7-6 SEND example, 10-5

standard multithreaded server, 7-4, 7-5 storage, 10-9, 10-12
defined, 10-1 subroutine calls invoking, 10-1 CPT external, 2-2 LL SEND CPT internal, 2-2 example, 10-6

option, 10-3
optional ADT parameters, 10-2

T parameter values returned in the ADT, 10-8
queue and buffer sizes, 10-10, 10-12
recommended ADT parameters, 10-2

T09DLST C structure sample, B-26, B-27 return codes, 10-11
sample programs, 10-9 T09DRTCD macro, A-4
separator character example, 10-7

T09DSCTY C structure, B-24 separator character option, 10-3
TCP data transfer, 2-8 T09KSACL, C structure, 3-5
token (ADTTOKEN), 10-10, 10-13

T09KSACM C structure include name, 4-4 usage notes, 10-12
version number (ADTVERS), 10-10, 10-12 T09KSAFM, C structure, 6-3

Index-8 C Programmers Guide

terminology and RECEIVE concepts T09KSAFT, C structure for AFT, 5-6
blocking, 9-3 T09MLSTN macro, C-1 LL RECEIVE option, 9-4
non-blocking, 9-3 T09MLSTN macro instructions, 1-6
SELECT tool, 9-3

T09MRECV macro instructions, 1-6 separator RECEIVE option, 9-5
T09MSEND macro, defining for customizing SEND
tool, 1-8

token connection, 2-5
CONNECT service, 2-6
LISTEN service, 2-6 T09MTRAN

basic, recommended layout for data passed from
PARM field, C-2

token UDP endpoints, 2-9

TRANSLATE service EZACONFG layout, C-3
arguments for translation (AXL), 2-12 programming notes, C-1
C structures, 13-6 initiated transactions parameter list passed, C-2
complete parameter list, 13-10, 13-11

T09PCFTP sample program, 5-3 completion information, 13-7
completion of, 2-12 T09TCFCM FTP Client service module, 5-10
defined, 13-1

T09TCFDM FTP Client service module, 5-10 inbound translation example, 13-3
invoking, 13-1 T09TCFRM FTP Clientservice module, 5-10
outbound translation example, 13-4

TAKE service overriding the default translation table
C structures, 12-3 custom, 13-5
complete parameter list, 12-8 parameter values returned in the AXL, 13-6
completion information, 12-4 recommended AXL parameters, 13-2
completion of, 2-15 return codes, 13-7
data transfer, 12-6 sample programs, 13-7
defined, 12-1 setting the default translation table, 13-5
examples, 12-2 token (AXLTOKEN), 13-9
facility management, 2-15 usage notes, 13-9
implementing, 2-15 version number (AXLVERS), 13-9
overview, 12-1

translation table custom method 2, 13-5 parameter values returned in the AFM, 12-3
recommended ACM parameters, 12-2 transport provider errors
return codes, 12-5 RECEIVE tool, 1-7
sample programs, 12-4 SEND tool, 1-9
token (AFMTOKEN), 12-7

TRUE interface, 2-3 usage notes, 12-6
version number (AFMVERS), 12-7 TRUE management routines

connection and endpoint release, 2-11 task-related user exit (TRUE) interface, 2-3
managing connections, 2-13

TCP
connection management, 2-5

argument for connection management, 2-5
token connection, 2-5

data transfer, 2-7
client/server mechanisms, 2-7
file boundaries, 2-7
programming options, 2-7
RECEIVE service, 2-8
SEND service, 2-8

 Index-9

U

UDP data transfer and endpoints
creating

RCVFROM service, 2-9
SENDTO service, 2-9

Unicenter SOLVE:CPT
Administrative Interface, overview, 1-2
API

application programming concepts, 2-3
CICS installation program sample, 2-32
invoking listener tool, 7-25
server program samples, 2-36
services, 1-2
to invoke the Listener with translation, 7-26
UDP client programs sample, 2-37
UDP server programs sample, 2-37
well-known transport provider port, 2-3

FTP Client service
callable service, 1-2
diagram, 2-18
introduction, 2-16
module descriptions, 5-10
modules

T09TCFCM, 5-10
T09TCFDM, 5-10
T09TCFRM, 5-10

overview, 2-17
interface, 2-2
tools

CICS code, 1-3
customizing, 1-3
LISTEN, 1-4

RECEIVE, 1-5, 1-6
SEND, 1-8

TRUE exits, 5-11

Unicenter TCPaccess
connection management

CONNECT service, 2-6
LISTEN service, 2-6

usage notes
CLOSE service, 3-8
CONNECT service, 4-8
FTP Client service, 5-11
GIVE service, 6-5
LISTEN service, 7-14
RECEIVE service, 9-34
SEND service, 10-12
TAKE service, 12-6
TRANSLATE service, 13-9

W

well-known port, 2-3

X

xTRANSLATE service:, 13-2

Index-10 C Programmers Guide

	C Programmers Guide
	Contents
	Chapter 1: Unicenter SOLVE:CPT Tools
	The Unicenter SOLVE:CPT Administrative Interface
	Unicenter SOLVE:CPT API Services
	The Unicenter SOLVE:CPT FTP Client Callable Service

	Automated Transactions
	Tools Customization

	The LISTEN Tool
	Diagnostics
	MRO Feature

	The RECEIVE Tool
	Customization
	Reliability Factors
	Data Processing Errors
	Diagnostics

	The SEND Tool
	Customization
	Reliability Factors
	Data Processing Error
	Diagnostics

	The SELECT Tool

	Chapter 2: Unicenter SOLVE:CPT API Services
	The Unicenter SOLVE:CPT Interface
	Unicenter SOLVE:CPT Task-Related User Exit Interface (TRUE)
	Application Programming Concepts
	Client Condensed Pseudo Code
	Server Condensed PseudoCode

	TCP Connection Management
	LISTEN
	CONNECT

	TCP Data Transfer
	SEND
	RECEIVE

	UDP Data Transfer and Endpoint Creation
	SENDTO
	RCVFROM

	Connection and Endpoint Release
	CLOSE

	Data Translation
	TRANSLATE

	Facility Management
	GIVE
	TAKE

	Unicenter SOLVE:CPT FTP Client Service
	Unicenter SOLVE:CPT FTP Client Service Overview

	Security Program
	Security Program
	The Security Communications Block
	Security Communications Block

	Sample Unicenter SOLVE:CPT API Pseudo Code
	Client Application Example
	Server Application Example 1
	Server Application Example 2
	Server Application Example 3
	Server Application Example 4

	Unicenter SOLVE:CPT API Sample Programs
	Client 1 Sample Program
	TCP Client 2 Sample Program
	TCP Server 1 Sample Program
	TCP Server 2 Sample Program
	Server 3 Sample Program
	Server 4 Sample Program
	Server 5 Sample Program
	UDP Client Sample Program
	UDP Server Sample Program

	Using CA-InterTest with Unicenter SOLVE:CPT Applications
	Compiling and Linking a CPT API Application

	Chapter 3: CLOSE Service
	Call Syntax
	Recommended ACL Parameters
	Usage Examples
	Graceful Close
	Abortive Close

	Parameter Values Returned in the ACL
	C structures
	Sample Programs
	Completion Information
	Return Codes
	Usage Notes
	Complete Parameter List

	Chapter 4: CONNECT Service
	Call Syntax
	Recommended ACM Parameters
	Usage Example
	Parameter Values Returned in the ACM
	C Structures
	Sample Programs
	Completion Information
	Return Codes
	Usage Notes
	Complete Parameter List

	Chapter 5: FTP Client Service
	Call Syntax
	Recommended AFT Parameters
	Usage Example
	Parameter Values Returned in the AFT

	C Structures
	Sample Programs
	Completion Information
	Return Codes
	Module Descriptions
	T09TCFCM
	T09TCFDM
	T09TCFRM

	Usage Notes
	Complete Parameter List

	Chapter 6: GIVE Service
	Call Syntax
	Recommended AFM Parameters
	Usage Example
	Parameter Values Returned in the AFM
	C structures
	Sample Programs
	Completion Information
	Return Codes
	Usage Notes
	Complete Parameter List

	Chapter 7: LISTEN Service
	Call Syntax
	Recommended ACM Parameters
	Usage Examples
	Recommended Server
	Standard Multithreaded Server
	Multithreaded Server—Special Start Transaction Ne
	Single-Threaded Server
	Sample Daughter Task Taking Ownership of a Session

	Parameter Values Returned in the ACM
	C Structures
	Sample Programs
	Completion Information
	Completion Information when the acm_trnid Field Is Set in the cpt_acm
	Completion Information when the acm_trnid Field Is Unspecified in the cpt_acm

	Return Codes
	Usage Notes
	Network Considerations
	Complete Parameter List
	Client-Data Listener Option
	Client-Data Option Data Structure
	Examples
	Invoking the Listener with Translation from a C CPT
	Example of a C Program, Client-Data Listener

	Chapter 8: RCVFROM Service
	Call Syntax
	Recommended ADT Parameters
	Usage Example
	Parameter Values Returned in the ADT
	C Structures
	Sample Programs
	Network Considerations
	Return Codes
	Complete Parameter List

	Chapter 9: RECEIVE Service
	Call Syntax
	Receive Methodology Options
	Terminology and Receive Concepts Used in the Definitions
	BLOCKING
	NON-BLOCKING
	SELECT Tool
	LL RECEIVE Option
	Separator Character RECEIVE Option
	Timed RECEIVE

	Introduction to Receive Methodology Options
	Non-Blocking Fixed Length RECEIVE
	Recommended ADT Parameters
	Sample Program Usage

	Non-Blocking Variable Length RECEIVE
	Recommended ADT Parameters
	Sample Program Usage

	Non-Blocking LL RECEIVE
	Recommended ADT Parameters
	Sample Program Usage

	Non-Blocking Separator Character RECEIVE
	Recommended ADT Parameters
	Sample Program Usage

	Blocking Fixed Length RECEIVE
	Recommended ADT Parameters
	Sample Program Usage

	Blocking LL RECEIVE
	Recommended ADT Parameters
	Sample Program Usage

	Blocking Separator Character RECEIVE
	Recommended ADT Parameters
	Sample Program Usage

	Non-Blocking RECEIVE
	Recommended ADT Parameters
	Sample Program Usage

	Blocking RECEIVE
	Recommended ADT Parameters
	Sample Program Usage

	Parameter Values Returned in the ADT
	C Structures
	Sample Programs
	Completion Information
	Return Codes
	Usage Notes
	Complete Parameter List

	Chapter 10: SEND Service
	Call Syntax
	Recommended ADT Parameters
	LL SEND
	LL SEND Option

	Separator Character SEND
	Separator Character SEND Option

	Usage Examples
	Data SEND Example
	LL SEND Example
	Separator Character SEND Example

	Parameter Values Returned in the ADT
	C Structures
	Sample Programs
	Completion Information
	Return Codes
	Usage Notes
	Complete Parameter List

	Chapter 11: SENDTO Service
	Call Syntax
	Recommended ADT Parameters
	Usage Example
	Parameter Values Returned in the ADT
	C Structures
	Sample Programs
	Network Considerations
	Return Codes
	Complete Parameter List

	Chapter 12: TAKE Service
	Call Syntax
	Recommended AFM Parameters
	Usage Example
	Parameter Values Returned in the AFM
	C Structures
	Sample Programs
	Completion Information
	Return Codes
	Usage Notes
	Complete Parameter List

	Chapter 13: TRANSLATE Service
	Call Syntax
	Recommended AXL Parameters
	Usage Example
	Inbound Translation Example
	Outbound Translation Example

	Custom Translation Table Usage Notes
	Parameter Values Returned in the AXL
	C Structures
	Sample Programs
	Completion Information
	Return Codes
	Usage Notes
	Complete Parameter List

	Appendix A: Return Codes
	Return Codes
	Diagnostic Code Field

	C Structure T09KSRCS

	Appendix B: Control Block Layouts
	ACL: Argument for CLose Used by the CLOSE API Service
	Offset Table
	Alphabetized Field Name Cross-Reference Table
	Sample Structure Member T09KSACL

	ACM: Argument for Connection Management Used by the CONNECT and LISTEN API Services
	Offsets
	Alphabetized Field Name Cross-Reference Table
	Sample Structure Member T09KSACM

	ADT: Argument for Data Transfer Used by RECEIVE,
	Sample Structure Member T09KSADT

	AFM: Argument for Facility Management Used by the
	Offsets
	Alphabetized Cross-Reference Table
	Sample Structure Member T09KSAFM

	AFT: Argument for File Transfer Used by the FTP Client Service Call
	Offsets
	Alphabetized Cross-Reference Table
	Sample Structure Member T09KSAFT

	AXL: Argument for Data Translation Used by the Translate API Service
	Offsets
	Alphabetized Cross-Reference Table
	Sample Structure Member T09KSAXL

	Client Data Listener Transaction Start
	Offsets
	Alphabetized Cross-Reference Table
	Sample Structure Member T09KSCSKL

	Connection Time Security Program Control Block
	Offsets
	Alphabetized Cross-Reference Table
	Sample Structure Member T09KSSEC

	Parameter List Passed to T09MTRAN Initiated Transactions
	T09DLST DSECT Sample
	Field Descriptions

	LCA0000 and CFG0000 Control Blocks
	LCA0000 Control Block Listing
	CFG0000 Control Block Listing

	Appendix C: T09MTRAN Programming Notes
	Parameter List Passed to T09MTRAN Initiated Transactions
	Basic Layout Usage Examples
	EZACONFG Layout Usage Example

	LCA0000 and CFG0000 Control Block Programming Notes

	Appendix D: Linking EZASOKET and EZACICAL Applications
	Linking EZASOKET Applications
	Linking EZACICAL Applications
	IBM C LE Socket Call Support
	Reentrant IBM C LE CICS Applications
	Sample JCL for Reentrant C

	Nonreentrant IBM C LE CICS Applications
	Sample JCL for Nonreentrant C

	SAS/C Socket Call Support

	Index

