

Unicenter

TCPaccess Communications Server
C/Socket Programmer Reference

Version 6.0

The Software That Manages eBusiness

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is for
the end user’s informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part, without
the prior written consent of CA. This documentation is proprietary information of CA and protected by the copyright
laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy. Only
authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of the
license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and
effect. Should the license terminate for any reason, it shall be the user’s responsibility to return to CA the reproduced
copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct or
indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user’s
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or
DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

 2002 Computer Associates International, Inc. (CA)

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

 Contents

Chapter 1: C Library Functions
The C Application Program Interface.. 1–2
Manipulating TPL .. 1–5
C Library Functions ... 1–6
apclose()... 1–7
apopen()... 1–8
tcheck()... 1–9
tclose() .. 1–10
terror().. 1–11
texec() ... 1–12
tferror()... 1–14
topen().. 1–15
tstate() .. 1–16
twto().. 1–17
Writing Exit Functions... 1–18
tpl_completion_exit() ... 1–19
protocol_event_exit() ... 1–20
transport_provider_end_exit() ... 1–21
api_end_exit() ... 1–21
synad_error_exit() .. 1–22
lerad_error_exit().. 1–23
Function Prototypes... 1–24

Contents iii

Chapter 2: C Language Structures
Introduction to C Language Data Structures ... 2–1
Correspondence Between dsects and C Language Structures... 2–1
C Language Structures .. 2–2
apcb .. 2–2
apcbxl... 2–4
tem.. 2–5
tib.. 2–6
tpa... 2–7
tpl ... 2–7
tpo .. 2–14
tsw .. 2–15
tub .. 2–16
txl.. 2–17
txp... 2–18

Chapter 3: Socket Library Functions
The Socket Library ... 3–2
BSD Sockets... 3–3

Communication Domains and Socket Types .. 3–3
Constants... 3–4

Creating Sockets and Binding Names.. 3–6
Communications Domain and Socket Type... 3–6
Socket Descriptor ... 3–6
Communications Domain Name... 3–7

Accepting and Initiating Connections.. 3–8
Operating in Server Mode .. 3–8
Operating in Client Mode... 3–9
Once Connection is Established... 3–9

Sending and Receiving Data ... 3–9
Sending Messages from Unconnected Sockets .. 3–9
Sending Messages from Connected Sockets .. 3–10
Receiving Messages from Unconnected Sockets ... 3–10
Receiving Messages from Connected Sockets ... 3–10
Sending and Receiving Messages from Noncontiguous Buffers .. 3–11

Using File I/O Functions ... 3–12
The read and write Functions .. 3–12
The readv and writev Functions.. 3–12

Shutting Down Connections ... 3–13

iv C/Socket Programmer Reference

Socket and Protocol Options.. 3–13
Non-blocking I/O ... 3–14
MVS vs. UNIX ... 3–14
General Socket Differences .. 3–16

Supported Sockets.. 3–16
Endpoints .. 3–17
Binding a Name to a Socket.. 3–17
Urgent Data... 3–17
Error Codes ... 3–18
Extra Functions... 3–18
ANSI-C Compatible Function Prototypes .. 3–19
Socket Header Files.. 3–19
Options .. 3–20
Error Codes ... 3–20

UNIX File I/O Functions... 3–21
Using UNIX Routines in MVS... 3–21
Integrating API Socket Functions with UNIX File I/O.. 3–22

Socket Library Functions... 3–22
Component Functional Description... 3–23
accept()... 3–24
bind().. 3–26
close() ... 3–27
closelog().. 3–28
closepass().. 3–29
connect() .. 3–30
fcntl() .. 3–32
gethostbyaddr() .. 3–34
gethostbyname() ... 3–35
gethostname() ... 3–37
getnetbyaddr() .. 3–38
getnetbyname() ... 3–40
getopts.. 3–41
getpeername() ... 3–42
getprotobyname()... 3–43
getprotobynumber()... 3–44
getservbyname() ... 3–45
getservbyport() ... 3–47
getsockname() ... 3–48
getsockopt()... 3–49
getstablesize().. 3–55
gettimeofday()... 3–55

Contents v

htonl() .. 3–56
htons() .. 3–57
inet() ... 3–58
inet_aton() ... 3–60
inet_ntoa() ... 3–61
ioctl() .. 3–62
listen() .. 3–64
mvsselect()... 3–66
openold() ... 3–69
ntohl() .. 3–71
ntohs() .. 3–72
openlog() ... 3–73
read().. 3–75
readv().. 3–77
perror()... 3–79
recv() .. 3–80
recvfrom().. 3–82
recvmsg()... 3–85
select() .. 3–88
send() ... 3–90
sendmsg() .. 3–93
sendto().. 3–96
setlogmask().. 3–98
setsockopt() ... 3–99
shutdown().. 3–104
socket()... 3–105
sstat().. 3–108
strerror() .. 3–109
syslog()... 3–109
vsyslog() .. 3–110
write() .. 3–111
writev() .. 3–113

vi C/Socket Programmer Reference

Chapter 4: Socket Library Include Files
Include File Summary.. 4–1

Chapter 5: DNR Directory Services
The dirsrv() Function ... 5–1
Directory Services Parameter List (DPL) .. 5–2

Assembler Language Definition.. 5–2
C Language Definition ... 5–4

Chapter 6: Configuration
Socket and C Library Installation... 6–2

Library Data Sets ... 6–2
Header File Library.. 6–3
Load Library ... 6–5
Object Library ... 6–5

Sample JCL... 6–6
Socket Configuration ... 6–7

Configuration File ... 6–7
sockcfg Configuration Structure ... 6–7
Socket Life .. 6–13
Socket Buffering Limits .. 6–13
Compiling the Configuration File... 6–14

Sample JCL for Compiling Socket Programs.. 6–15
IBM sockcfg Configuration Changes.. 6–15
SAS/C sockcfg Configuration Changes... 6–17

Using Socket Libraries ... 6–18
Compile/Link IBM C/370 C Non-reentrant Program... 6–18
Compile/Link IBM C/370 C Reentrant Program... 6–19
Compile/Link SAS/C Non-reentrant Program.. 6–20
Compile/Link SAS/C Reentrant Program.. 6–21

Customizing Socket Programs ... 6–22

Contents vii

Chapter 7: UNIX System Services MVS Integrated Sockets
References ... 7–2
Installation Considerations... 7–3
Configuration Information ... 7–3
Additional Socket Files.. 7–3
Additional Socket Call Parameters.. 7–4

ioctl() Parameters .. 7–4
getsockopt() Parameters... 7–5

Socket-Level Options... 7–5
TCP-Level Options .. 7–5
UDP-Level Options ... 7–6
IP-Level Options .. 7–6

setsockopt() Parameters ... 7–6
Socket-Level Options... 7–7
TCP-Level Options .. 7–7
UDP-Level Options ... 7–7
IP-Level Options .. 7–8

recvmsg().. 7–8
Resolving Names and Addresses .. 7–8

Using /etc Files with UNIX System Services for Domain Name Resolution ... 7–9
Data Sets for Host Resolution.. 7–10
Search Procedures... 7–11
Configuration .. 7–12

TSO Commands ... 7–13
CONVXL8 Command .. 7–13
LOADXL8 Command... 7–14
ILATCH command ... 7–14

Debugging Information... 7–15
Initialization... 7–15
Application Issues... 7–16
TCP SNAP ALL Command ... 7–16

Stopping and Starting Sockets.. 7–17
Limitations .. 7–17
Release Information ... 7–17
Common INET Support .. 7–18

Benefits of INET Support ... 7–18
Problems of INET Support .. 7–18
Problems of Multiple Physical File Systems.. 7–19

viii C/Socket Programmer Reference

Appendix A: SAS/C Socket Library Interface (LSCNCOM)
SAS/C Socket Interface ..A–1

Vendor notes on SAS/C TCP/IP socket programming:...A–3
Restrictions..A–3
Requirements ..A–4
Certification...A–5
Usage..A–5

Using the Unicenter TCPaccess Variables ...A–5
Environment Variables..A–6
Setup for SAS Socket /etc Files ..A–7

Index

Contents ix

Chapter

1 C Library Functions

This chapter describes the C Application Program Interface (API) to transport
services provided by Unicenter TCPaccess and other transport providers. This
chapter includes the following sections:

■ The C Application Program Interface—Introduces the C Application
Program Interface (API) to transport services provided by TCPaccess and
other transport provider

■ Manipulating TPL—Describes how to build a Transport Service Parameter
List, to initiate a request, and how Unicenter TCPaccess processes the
request

■ C Library Functions—Provides detailed coding information for the API C
library functions.

■ Writing Exit Functions—Describes how to write exits for processing
asynchronous events, both as normal C functions for use with the SAS/C
compiler, and in assembler language for use with the IBM C/370 compiler

■ Function Prototypes—Lists the function prototypes for all functions of the C
library

C Library Functions 1–1

The C Application Program Interface

The C Application Program Interface
The C API provides the same capability to a C language program that is
available to an assembly language program that uses the API macro instructions.
The description of the C interface to directory services provided by Network
Directory Services (NDS) can be found in the chapter titled DNR Directory
Services.

The C API consists of a library of C functions that use the appropriate linkage
conventions to convert from the calling sequence of the compiler to the
assembler language calling conventions of the API. Support is provided for both
the SAS/C and IBM C/370 compilers. The library also lets asynchronous exits be
written in C. This feature is supported for use only with the SAS/C compiler.

This library provides a raw interface from an application program written in C to
the assembler language macro instructions. The data structures used by the
application program are the same as those used by an assembly language
programmer. The C library saves no context and makes no attempt to check the
validity of user parameters, or to filter errors occurring within the API. It does
not generate any of its own error codes, or issue any messages. In all but a few
minor cases, the C library is just a transparent pipe through which the C
programmer can request service from the API, and receive the results of those
requests. Thus, the user of the C library should be familiar with the API macro
instructions and data structures, the request format, the types of requests, the
method of returning errors, and the overall functionality of the API. Refer to
Unicenter TCPaccess Communications Server Assembler API Concepts and Unicenter
TCPaccess Communications Server Assembler API Macro Reference for more
information.

Files Provided The C library provides the C programmer with two C include header files, and a
library of object modules to be concatenated with the SYSLIB DD statement
when linking the application program.

Header Files Each API data structure defined by an assembler language DSECT has a
corresponding C data structure. These data structures are defined in the api.h
header file. You should include this file with your compilation by coding this
statement in your application program source module:
#include <api.h>

This tells both the IBM C/370 compiler and the SAS/C compiler to include the
Partitioned Data Set (PDS) member API from the SYSLIB data set. Therefore, the
partitioned data set containing this header file must be included in the SYSLIB
DD concatenation defined during compilation. See Unicenter TCPaccess Assembler
API Concepts for a list of standard data set names.

The api.h header file also defines manifest constants useful to application
programs for making service requests and interpreting results.

1–2 C/Socket Programmer Reference

The C Application Program Interface

ANSI C function prototype statements are provided to allow for better error
checking of function calls to the C library. The prototype statements can be
overridden by defining the manifest constant NOSLIBCK.

To override the ANSI C prototype statements, include this statement in the
application program:
#define NOSLIBCK

The C library lets you write your API exit routines in C when using the SAS/C
compiler. The header file includes function prototype statements for the various
types of exit routines that demonstrate the calling conventions used. These
prototype statements are commented out in the header files, since application
programmers using exits provide their own function definitions with the desired
function names.

Object Modules The functions supported by the C library are provided in object module form.
The library in which these modules are installed should be included in the
SYSLIB concatenation that exits when the application program is link edited.
The C library contains these functions:

Function Description

apopen() Interfaces with the AOPEN macro instruction to open an
Application Program Control Block (APCB) and establish a session
with the API subsystem. (Note: A naming conflict requires the use
of apopen instead of aopen as the name of this function.)

apclose() Interfaces with the ACLOSE macro instruction to close an APCB
and release a session with the API subsystem. (Note: a naming
conflict requires the use of apclose instead of aclose as the name of
this function.)

tcheck() Interfaces with the TCHECK macro instruction to check for the
completion of a previous request.

tclose() Interfaces with the TCLOSE macro instruction to close an existing
endpoint, or alternatively, to pass control of the endpoint to another
task or address space.

terror() Interfaces with the TERROR macro instruction to analyze the
abnormal completion of a previous request, and to generate an
error message that is compatible with the WTO or WTP system
macro instruction.

texec() Interfaces to the TEXEC macro instruction to execute any arbitrary
TPL-based request. Should be used to generate transport service
requests that correspond to the other TPL-based macro instructions.

C Library Functions 1–3

The C Application Program Interface

Function Description

tferror() A special library function that can be used to free the storage area
allocated and returned by the terror() function (i.e., the TERROR
macro instruction).

topen() Interfaces with the TOPEN macro instruction to create a new
endpoint, or to acquire control of an endpoint from another task or
address space.

tstate() Interfaces with the TSTATE macro instruction to obtain the current
state of the endpoint.

twto() A special library function that can be used to issue a system WTO
for the error message generated by the terror() function (that is, the
TERROR macro instruction).

Library functions that can be used to obtain directory services from NDS are
documented in the chapter “DNR Directory Services.”

1–4 C/Socket Programmer Reference

Manipulating TPL

Manipulating TPL
Information is exchanged between the application program and the API in the
same way that an assembler language program exchanges information. The
application program builds a Transport Service Parameter List (TPL), initializes
the appropriate fields, and initiates the request. The API reads the TPL, processes
the request, updates the parameter list with information to be returned to the
application program, and posts the TPL complete.

The format of a TPL as used by an application program written in C is exactly
the same as the TPL used by an application program written in assembler
language. The C structure tpl defined in the api.h header file defines the TPL for
use with the C library functions. The names of fields within the TPL are the
lower case equivalent of the upper case names used by the TPL DSECT.

Example The endpoint ID, which is stored at TPLEPID in the assembler language
DSECT, is stored at tplepid in the TPL C structure.

Assembler and C
Language Interface
Differences

The most significant difference between the assembler and C language
interfaces is that the C application programmer must manipulate the TPL
directly. When assembler language macro instructions are expanded at
assembly time, instructions are generated to store operands in their proper
locations. Generally, there is no need for an assembler language programmer to
manipulate the TPL directly. Also, the keyword facility of macro instructions
provides a convenient mechanism for indicating which parameters are to be
manipulated.

The macro facility supported by the C language preprocessor is not nearly as
robust, and is not appropriate for providing a similar interface. Also, argument
passing in C is positional, and becomes unwieldy when functions may have
several arguments. Therefore, the choice was made to keep the number of
function arguments small and require the programmer to manipulate the TPL
using the standard facilities of the language. However, C makes this relatively
painless by providing a powerful grammar for dealing with data structures.

C Library Functions 1–5

C Library Functions

C Library Functions
This section provides detailed coding information for the API C library
functions. Following a brief introductory statement summarizing its use, each
function is described using the documentation style of UNIX.

C Function
Components

The C library functions are presented in alphabetical order, and each function
has its own section. Each page that pertains to a particular function has the
name of the function in the upper outside corner.

The basic components of each function description follow:

Synopsis A synopsis of the function is given in C language format. The function
prototype statement is listed showing all function arguments, followed by
declaration statements defining the format of each argument. If the function
returns a value other than the normal success or failure indication, the function
prototype is shown as an assignment statement.

Description A description of the function is given, including any special rules for specifying
arguments, alternative uses of the function, and any results returned.

Return Value The function’s return value, if any, is defined.

See Also References to related functions are given.

1–6 C/Socket Programmer Reference

apclose()

apclose()
Terminates session with the API subsystem.

Synopsis
#include <api.h>

int apclose (apcbp)
struct apcb *apcbp;

Description Terminates a session between the application program and the API and closes
the APCB (Application Program Control Block) that was opened by the
apopen() function.

The apclose() function issues an ACLOSE macro instruction using the APCB
supplied by the caller. The APCB provided as an argument of this function
should be the same one provided with an earlier apopen() function call.

Return Value On successful completion, apclose() returns a 0. Otherwise, apclose() returns
the general return code returned by the ACLOSE macro instruction. The user
should refer to the description of the ACLOSE macro instruction in the
Assembler API Macro Reference for more information on the error codes that may
be returned.

See Also apopen()

C Library Functions 1–7

apopen()

apopen()
Establishes a session with the API subsystem.

Synopsis
#include <api.h>

int apopen (apcbp)
struct apcb *apcbp;

Description Issues an AOPEN macro instruction using the APCB supplied by the calling
program. The user program is responsible for initializing the appropriate fields
in the APCB.

If you use the SAS/C compiler, set the apcbenvr variable to APCBSASC.

If you use the IBM C/370 compiler, set the apcbenvr variable to APCBASM.

Also, the apcbectx field of the APCB is reserved for use by the C library, and is
overwritten by the apopen() function when called.

The APCB referenced by this function must be kept in storage during the life of
the session, and must not be changed once the apopen() function has completed
successfully. An apclose() macro instruction can be used to terminate the session,
and to return the APCB to its original state.

Return Value On successful completion, apopen() returns a zero. Otherwise, it returns the
general return code returned by the AOPEN macro instruction. Refer to the
description of the AOPEN macro in the Unicenter TCPaccess Communications
Server Assembler API Macro Reference for more information on error codes.

See Also apclose()

1–8 C/Socket Programmer Reference

tcheck()

 tcheck()
Checks transport function status.

Synopsis
#include <api.h>

int tcheck (tplp, ccodep)
struct tpl *tplp;
unsigned long *ccodep;

Description Checks the completion status of an active TPL by issuing the TCHECK macro
instruction.

The tcheck() function issues a TCHECK macro instruction of the form
MF=(E,tplp) using the TPL pointer supplied as a function argument. If the
request associated with the TPL is not complete, a system WAIT macro
instruction is executed. When the TPL is posted complete, the return codes are
analyzed and, if appropriate, the SYNAD or LERAD exit routine is entered. The
TPL is set to inactive state.

The TPL supplied by the caller must be in an active state. A TPL becomes active
when it is used as the argument of a topen(), texec(), or tclose() function executed
in asynchronous mode. If a tcheck() function is executed using an inactive TPL,
an error is returned.

Return Value On successful completion, tcheck() returns a zero as the function return value,
error. Otherwise, it returns the value returned in register 15 by the TCHECK
macro instruction. Normally, this is the general return code as defined for TPL-
based macro instructions. The unsigned long pointed to by ccodep is set to the
value returned by the TCHECK macro instruction in register zero. This is a
conditional completion code if the TPL completed normally, or a recovery
action code otherwise. The contents of register zero may also be stored in the
TPL. If ccodep is the null pointer, only the function return value is returned.

If a SYNAD or LERAD exit routine was invoked by the TCHECK macro
instruction, the function return value and completion code are the values
returned by the exit routine. Refer to the chapters “Socket Library Functions”
and “Socket Library Include Files” for a description of information returned by
the API macro instructions.

See Also tclose(), texec(), topen()

C Library Functions 1–9

tclose()

tclose()
Closes a transport endpoint.

Synopsis
#include <api.h>

int tclose (tplp)
struct tpl *tplp;

Description Closes an endpoint, or alternatively, to pass control of the endpoint to another
task or address space.

The tclose() function issues a TCLOSE macro instruction of the form MF=(E,tplp)
using the TPL pointer supplied as a function argument. Depending on the value
of the TPL option code field (tplopcd3 in the union tploptcd), either the endpoint
is closed and all resources allocated to the endpoint are released, or the endpoint
is maintained and control is passed to the designated task or address space.

Return Value On successful completion, tclose() returns a zero as the function return value,
error. Otherwise, the value returned is the general return code returned by the
TCLOSE macro instruction. Return codes are also stored in the TPL to provide
additional information about the success or failure of the TCLOSE macro
instruction.

If asynchronous execution of the request was specified, final completion
information is not returned until a tcheck() function is executed using the same
TPL.

See Also tcheck(), texec(), topen()

1–10 C/Socket Programmer Reference

terror()

terror()
Analyzes error and generate error message.

Synopsis
#include <api.h>

int terror (tplp, temp, flag)
struct tpl *tplp;
struct tem **temp;
int flag;

Description Analyzes an error associated with a previous TPL-based function, and to
generate an informative message describing the error that is suitable for
displaying to the system operator or local user.

The terror() function issues a TERROR macro instruction of the form
MF=(E,tplp) using the TPL pointer supplied as a function argument.

If flag is zero, a verbatim error message is generated. If flag is non-zero, a
summary error message is generated.

Information stored in the TPL by a previous request that completed abnormally
is analyzed, and an error message is formatted that provides a descriptive
explanation of the error. The message is suitable for displaying to a system
operator or application program user, and can be output using the twto()
function.

Return Value On successful completion, terror() returns a zero as the function return value,
error. The variable pointed to by temp is also updated with the address of a
storage area containing the message generated by the TERROR macro
instruction. This storage area is defined by the structure tem. The pointer to this
structure should be supplied as an argument of twto() to output the message,
or as an argument of tferror() to release the storage area. The storage area is
allocated from subpool zero.

If terror() fails, the function value returned is the general return code returned by
the TERROR macro instruction. The TPL is not modified, and contains whatever
information was returned by the previous request.

See Also tferror(), twto()

C Library Functions 1–11

texec()

texec()
Executes a transport service parameter list.

Synopsis
#include <api.h>

int texec (tplp, fnccd)
struct tpl *tplp;
int fnccd;

Description A Transport Service Parameter List (TPL) initialized by the application
program, or has been used to make a previous request, can be executed or re-
executed using the texec() function. The texec() function is the library function
used for making arbitrary TPL-based service requests.

The texec() function issues a TEXEC macro instruction of the form MF=(E,tplp)
using the TPL pointer supplied as a function argument. If fnccd is nonzero, it
must be one of the manifest constants defined in api.h corresponding to an API
function code. Otherwise, the value should be zero, and the function code should
have already been stored in the TPL (tplfnccd). A valid endpoint ID of an opened
endpoint must also be stored in the TPL (tplepid) before the texec() function is
executed.

The texec() function is used to execute all TPL-based service requests for which a
C library function does not explicitly exist.

Example To bind a protocol address to an opened endpoint, the TPL structure should be
initialized with the appropriate information, and then executed using this
statement:
texec(tplp,TFBIND)

This is equivalent to executing the TBIND macro instruction the following way:
TBIND MF=(E,tplp)

Which is also equivalent to this:
TEXEC FNCCD=TBIND,MF=(E,tplp)

By using the function code defined for TCLOSE, the texec() function can also be
used to invoke the TCLOSE macro instruction, and this method is functionally
equivalent to using tclose(). However, a special calling sequence is used to open
an endpoint, therefore texec() cannot be used in place of topen(). For this reason,
as well as for improved readability, it is advised that topen() and tclose() always
be used to open and close endpoints.

1–12 C/Socket Programmer Reference

texec()

Return Value On successful completion, texec() returns a zero as the function return value,
error. Depending on the actual request executed, additional information may
be returned in the TPL, or in storage areas pointed to by the TPL. The
application programmer should refer to the description of the corresponding
TPL-based macro instruction to determine what information is returned for a
particular value of fnccd.

When a TPL is executed in asynchronous mode, a return value of zero indicates
that the service request was accepted, and the application program must wait
until signaled that the request is complete. The methods used to signal the
application program are the same as those defined for the API macro
instructions. A tcheck() function must be executed to synchronize with
completion of the request, schedule error recovery routines, and set the TPL
inactive.

If the texec() function fails, the function value returned is the general return code
returned by the TEXEC macro instruction. Normally, a specific error code and a
diagnostic code, which provide additional information about the error, are
returned in the TPL. The return codes that may apply to a particular function
code are also listed with the description of each macro instruction. The terror()
function may be called to generate an informative error message.

See Also tcheck(), tclose(), terror(), topen(), tstate()

C Library Functions 1–13

tferror()

tferror()
Releases transport endpoint error message.

Synopsis
#include <api.h>

int tferror (temp)
struct tem *temp;

Description Releases the storage allocated by the terror() function for returning the
transport endpoint error message (tem) structure.

The tferror() function issues a system FREEMAIN macro instruction to release
storage containing a transport endpoint error message (tem). The pointer to the
tem structure (temp) must have been returned by a terror() function, and should
be supplied as a argument to tferror(). This storage must be released using
tferror(), and not the generic C function, free(). Since each instance of terror()
allocates a new storage area, it is advisable to execute a tferror() function after
each successful instance of terror().

Return Value On successful completion, tferror() returns a zero as the function return value,
error. If the function fails, the return value is set to the return code from the
FREEMAIN macro instruction. Once the storage area has been released, the
pointer should be discarded and never again referenced.

See Also terror(), twto()

1–14 C/Socket Programmer Reference

topen()

topen()
Opens a transport endpoint.

Synopsis
#include <api.h>

int topen (tplp)
struct tpl *tplp;

Description Creates an endpoint within a given communication domain and to designate
the type of transport service required for the endpoint. Optionally, topen() may
be used to transfer control of an endpoint to another task or address space.

The topen() function issues a TOPEN macro instruction of the form MF=(E,tplp)
using the TPL pointer supplied as a function argument. The information
contained in the TPL is used to select a transport provider, and to create an
endpoint within the requested communications domain. A pointer to the APCB
opened by apopen() must be stored in the TPL (tplapcbp) before executing the
topen() function.

Return Value On successful completion, topen() returns a zero as the function return value,
error. A token used to identify the endpoint in all future requests is also
returned in the TPL (tplepid). If another TPL is used for future requests, the
endpoint ID should be moved into the TPL before issuing such requests. The
endpoint ID is used for addressability to the API interface routines, and must
always be present.

If topen() failed, the function value returned is the general return code returned
by the TOPEN macro instruction. Additional information may be stored in the
TPL to identify the particular cause of the failure.

The topen() function can be executed in synchronous or asynchronous mode. In
synchronous mode, the function value indicates the final success or failure of the
request. If executed in asynchronous mode, the function value indicates whether
or not the request was accepted. If so, a tcheck() function must be executed to
synchronize with completion of the request, to schedule the SYNAD or LERAD
exit routine, and to set the TPL inactive.

See Also tcheck(), tclose(), texec()

C Library Functions 1–15

tstate()

tstate()
Test TPL and return endpoint state.

Synopsis
#include <api.h>

int tstate (tplp, statep)
struct tpl *tplp;
struct tsw *statep;

Description Acquires the current state of an endpoint, and secondarily, to test if a TPL is
active or incomplete.

The tstate() function issues a TSTATE macro instruction of the form MF=(E,tplp)
using the TPL pointer supplied as a function argument. If the request associated
with the TPL is complete, and the TPL is inactive, the current state of the
endpoint is returned in the state variable pointed to by statep. The description of
the TSTATE macro instruction defines the valid states for an endpoint.

Return Value On successful completion, tstate() returns a zero as the function return value,
error. The location identified by statep contains endpoint state information
formatted in accordance with the structure tsw.

If the TPL is active, the tstate() function fails and the function value is set to the
general return code returned by the TSTATE macro instruction. Unlike the
macro instruction, which distinguishes between a complete and incomplete
request, the tstate() function is only able to indicate an active TPL. No
information is stored in the TPL.

See Also tcheck(), tclose(), texec(), topen()

1–16 C/Socket Programmer Reference

twto()

twto()
Output error message via WTO macro instruction.

Synopsis
#include <api.h>

int twto (temp, routecd, descrpcd)
struct tem *temp;
short routecd;
short descrpcd;

Description Issues a WTO for the message generated by the terror() function. The caller can
specify routing and descriptor codes to be used when issuing the WTO.

The twto() function issues a system WTO macro instruction to output an error
message formatted by the terror() function. The storage area containing the
message is identified by the temp function argument, and the default routing
and descriptor codes can be modified by supplying their values with the routecd
and descrpcd arguments. If either of these values is zero, the corresponding
default codes are not changed. After the error message has been displayed, the
storage area should be released by tferror().

Return Value On successful completion, twto() returns a zero as the function return value,
error. If the function fails, the function value is the return code returned by the
WTO macro instruction.

See Also terror(), tferror()

C Library Functions 1–17

Writing Exit Functions

Writing Exit Functions
With the C library, you can write exits for processing asynchronous events.
When using the SAS/C compiler, you can write these exits as normal C
functions. When using the IBM C/370 compiler, you must write the exits in
assembler language.

This section describes the calling sequence for each type of exit function, and the
function return values assumed by the API exit interface. If exits are required by
the application program, the corresponding functions described in this section
must be provided by the user of the C library. Exit routines for assembler
language programs are discussed inPlanning and Operations Guide.

Using the SAS/C
Compiler

When the SAS/C compiler is used, the APCB should be opened with the
language environment specified as SAS/C. This is done by setting the apcbenvr
variable to APCBSASC before executing the apopen() function. This instructs
the API to use a language-dependent interface when scheduling exit routines.

The exit interface installs a SAS/C runtime environment in which the C-based
exit function can operate properly. The environment is constructed to run
without the runtime library. Consequently, many of the I/O functions of the
SAS/C library cannot be used in the exit routines. The exit routines should be
coded to use functions that can exist without the presence of the runtime library.
If a function that requires the SAS/C runtime library is called by an exit routine,
the results are unpredictable.

Using the IBM C/370
Compiler

When the IBM C/370 compiler is used, exit routines must be written in
assembler language. Therefore, the APCB should be opened with the language
environment specified as assembler (apcbenvr set to APCBASM). If the exit
routine attempts to call a C function, it is the responsibility of the exit routine to
provide the proper runtime environment. Since IBM has not exposed or
documented the runtime environment used by their compiler, the API
presently does not provide a built-in exit interface.

Exit Function
Descriptions

The following pages present each of the exit calls available in the Basic C
Library.

1–18 C/Socket Programmer Reference

tpl_completion_exit()

tpl_completion_exit()
TPL completion exit.

Synopsis
#include <api.h>

void tpl_completion_exit (tplp)

struct tpl *tplp;

Description Completes a TPL request that was issued in asynchronous mode, and specified
that an exit was to be driven when the function is posted complete.

The tpl_completion_exit() function is driven when a TPL request is posted
complete and the associated TPL contains the address of an exit routine. The
request must have been executed in asynchronous mode, and TPLFEXIT must
have been set in tplflags.

The address of the TPL that initiated the request is provided as a function
argument (tplp). All information that is to be returned to the application
program is stored before the exit routine is entered. A tcheck() function should
be executed to set the TPL inactive, and to schedule error recovery processing, if
that is appropriate.

Return Value When this exit function is complete, it should return a void value to the exit
interface. Control is returned to the next sequential instruction in the C
mainline program.

See Also tcheck(), tclose(), texec(), topen()

C Library Functions 1–19

protocol_event_exit()

protocol_event_exit()
Protocol event exit.

Synopsis
#include <api.h>

void protocol_event_exit (txpp)

struct txp *txpp;

Description Signals a particular protocol event occurring at the local endpoint.

The protocol_event_exit() function is driven when a particular protocol event
occurs at an endpoint, and the corresponding exit routine has been defined in the
APCB or endpoint exit list. These protocol events are defined:

■ Connect request indication

■ Connect confirm indication

■ Disconnect indication

■ Orderly release indication

■ Normal data indication

■ Expedited data indication

■ Datagram error indication

Each of these indications has a corresponding entry in the exit list, and can have
no exit routine, a unique exit routine, or an exit routine shared by other
indications. All information passed to the exit routine is stored in a parameter
list defined by the txp structure. A pointer to this structure (txpp) is passed as the
function argument.

Return Value When this exit function is complete, it should return a void value to the exit
interface. Control is returned to the next sequential instruction in the C
mainline program.

1–20 C/Socket Programmer Reference

transport_provider_end_exit()

transport_provider_end_exit()
Transport provider termination exit.

Synopsis
#include <api.h>

void transport_provider_end_exit (txpp)

struct txp *txpp;

Description Informs the application program that the transport provider is about to end
service.

The transport_provider_end_exit() function is driven when the transport
provider is being stopped or terminated. All information passed to the exit
routine is stored in a parameter list defined by the txp structure. A pointer to this
structure (txpp) is passed as the function argument.

Return Value When this exit function is complete, it should return a void value to the exit
interface. Control is returned to the next sequential instruction in the C
mainline program.

See Also api_end_exit()

api_end_exit()
API subsystem termination exit.

Synopsis
#include <api.h>
void api_end_exit (txpp)
struct txp *txpp;

Description Informs the application program that the API subsystem is about to terminate.

The api_end_exit() function is driven when the API subsystem is being stopped
or terminated. All information passed to the exit routine is stored in a parameter
list defined by the txp structure. A pointer to this structure (txpp) is passed as the
function argument.

Return Value When this exit function is complete, it should return a void value to the exit
interface. Control is returned to the next sequential instruction in the C
mainline program.

See Also transport_provider_end_exit()

C Library Functions 1–21

synad_error_exit()

synad_error_exit()
SYNAD synchronous error exit.

Synospsis
#include <api.h>

int synad_error_exit (tplp, errp)
struct tpl *tplp;
unsigned long *errp;

Description Signals the occurrence of an error with a TPL-based request.

The synad_error_exit() function is driven when a TPL-based request is
completed with an error. This exit occurs synchronously with the execution of
the user program. The TPL on which the error occurred is passed via pointer to
this exit, tplp. When this routine processes the error, it can save a user error code
in the area of storage pointed to by errp and also return another user-defined
error as the routine’s return value. The values are returned to the mainline code
when a tcheck() function is called or as part of the synchronous completion of the
TPL. The values returned by the user-supplied routine should adhere to the error
number conventions of the API. Error codes are assigned to the user and these
should be used by this function.

Return Value When this exit function is complete, it returns a completion code as the function
return value and also another error code in the storage pointed to by errp.

See Also tcheck(), tclose(), texec(), topen()

1–22 C/Socket Programmer Reference

lerad_error_exit()

lerad_error_exit()
LERAD synchronous error exit.

Synopsis
#include <api.h>

int lerad_error_exit (tplp, errp)
struct tpl *tplp;
unsigned long *errp;

Description Signals a logic error occurring with a TPL-based request. This routine is
identical to the synad_error_exit() except for the reasons this exit is driven.

The lerad_error_exit() function is driven when a TPL-based request is completed
with an error. This exit occurs synchronously with the execution of the user
program. The TPL on which the error occurred is passed via pointer to this exit,
tplp. When this routine processes the error, it can save a user error code in the
area of storage pointed to by errp and also return another user-defined error as
the routine’s return value. The values are returned to the mainline code when a
tcheck() function is called or as part of the synchronous completion of the TPL.
The values returned by the user-supplied routine should adhere to the error
number conventions of the API. There are error codes assigned to the user and
these should be used by this function.

Return Value When this exit function is complete, it should return a completion code as the
function return value and also another error code in the storage pointed to by
errp.

See Also tcheck(), tclose(), texec(), topen()

C Library Functions 1–23

Function Prototypes

Function Prototypes
This list shows the prototypes for all functions of the C library. The function
prototypes for exit function types (TPL completion exit, Protocol event exit,
Transport provider end exit, Synchronous error exit, and Logic error exit) are
commented out, because these are functions the C library programmer must
supply if using exits.

Prototype List These prototypes are for purposes of documentation only and show the proper
calling sequence of the exit functions.
#if defined (NOSLIBCK) | | defined (unix)

extern int topen();
extern int tclose();
extern int tcheck();
extern int terror();
extern int tferror();
extern int twto();
extern int tstate();
extern int texec();
extern int apopen();
extern int apclose();
extern int dirsrv();
#else
extern int topen (struct tpl *);
extern int tclose (struct tpl *);
extern int tcheck (struct tpl *, unsigned long *);
extern int terror (struct tpl *, struct tem **, int);
extern int tferror (struct tem *);
extern int twto (struct tem *, short, short);
extern int tstate (struct tpl *, struct tsw *);
extern int texec (struct tpl *, int);
extern int apopen (struct apcb *);
extern int apclose (struct apcb *);
extern int dirsrv (struct dpl *);
#endif
/* The following commented-out function headers are provided as
/* information on the user
/* routines to handle exits. These headers describe the types
/* of exit functions called and
/* the arguments passed.
/*
/* extern void tplexit (struct tpl *);*//* TPL completion exits*/
/* extern void protocolexit (struct txp *);*//* All protocol exits*/
/* extern void tpendexit (struct txp *);*//* TPEND exit routine*/
/* extern void apendexit (struct txp *);*//* APEND exit routine*/
/* extern int synadexit (struct tpl *, unsigned long *);*//* SYNAD exit*/
/* extern int leradexit (struct tpl *, unsigned long *);*//* LERAD exit*

1–24 C/Socket Programmer Reference

Chapter

2 C Language Structures

This chapter provides C language definitions of TCPaccess data structures for
use with the basic C library. It includes these sections:

■ Introduction to C Language Data Structures—Provides a brief description of
the C library data structures and shows their correspondence to C language
structures

■ C Language Structures—Includes the C language definition for all C
language structs (structures) provided with Unicenter TCPaccess

Introduction to C Language Data Structures
Data structures that are provided by the application program as arguments of
the API transport service functions are defined in this chapter and in the chapter
“Socket Library Include Files.” This chapter defines these data structures as used
by application programs written in C language using the basic C library.

Correspondence Between dsects and C Language Structures

There is a one-to-one correspondence between the API assembler language
dsects and C language structures.

This table shows the correspondence between dsect names and structure names:

API Data Structure DSECT Name Structure Name

Application Program Control Block APCB apcb

APCB Exit List APCBXL apcbxl

Transport Endpoint Error Message TEM tem

Transport Service Information Block TIB tib

Transport Protocol Address TPA tpa

Transport Service Parameter List TPL tpl

C Language Structures 2–1

C Language Structures

API Data Structure DSECT Name Structure Name

Transport Protocol Options TPO tpo

Transport Endpoint State Word TSW tsw

Transport Endpoint User Block TUB tub

Transport Endpoint Exit List TXL txl

Transport Endpoint Exit Parameters TXP txp

Data structures are listed in detail in the following sections.

C Language Structures
The definitions and declarations in this section are written to ANSI C
specifications, and can be used to compile programs with the IBM C/370 and
SAS/C compilers. They are contained in the include file api.h.

Include files are installed on the local system as members of a partitioned data
set. This data set should be included in the SYSLIB DD concatenation when the
application program is compiled. The data set name is determined during
installation unless changed by the local system programmer. The API member in
this data set corresponds to the api.h include file.

Each page that pertains to a particular include file has the name of the file in the
upper outside corner.

apcb
apcb (Application Program Control Block):

C Language Definition
/*

* defines for length of variables used in apcb
*/
#define APCBTALN 4 /* length of control block id*/
#define APCBDGLN 2 /* length of diagnostic code */
#define APCBAMLN 4 /* length of subsys id */
#define APCBAPLN 8 /* length of application id*/
#define APCBPSLN 8 /* length of password */
/*
* definition of the application program control block used at
 * AOPEN time
*/
struct apcb
{

2–2 C/Socket Programmer Reference

apcb

 char apcbtag [APCBTALN]; /* control block id */
 unsigned long apcbsl; /* control block length */
 unsigned char apcbam; /* access method & vers */
 unsigned char apcbflag; /* flag byte */
 unsigned char apcboptc; /* option code */
 unsigned char apcbrsv1; /* reserved */
 unsigned char apcbenvr; /* language envir. code*/
 unsigned char apcberrc; /* error code */
 unsigned char apcbdgnc [APCBDGLN]; /* diagnostic code */
 char *apcbamcb; /* acc. mthd control blk */
 char *apcbamcv; /* acc. mthd cvt addr. */
 char *apcbamtv; /* AM TUAS xfer vector */
 char apcbamid [APCBAMLN]; /* acc. mthd subsys id*/
 char *apcbrsv2; /* reserved */
 struct txl *apcbexls; /* appl lvl exit list addr */
 unsigned long apcbactx; /* appl lvl context var */
 unsigned long apcbectx; /* envir lvl context var */
 char apcbappl [APCBAPLN]; /* application id */
 char apcbpswd [APCBPSLN]; /* appl password */
};
/*
* apcbtag must contain this string
*/
#define APCBIDENT "APCB"
/*
* access method and version (apcbam)
*/
#define APCBAMSK 0xF0 /* access method id */
#define APCBATLI 0x10 /* transport layer interface */
#define APCBAMAX APCBATLI /* maximum access method */
#define APCBAVER 0x0F /* access method version */
/*
* flag byte (apcbflag)
*/
#define APCBFSTP 0x80 /* applid is stpnam frm tiot */
#define APCBF31B 0x40 /* AMODE=31 */
#define APCBFANY 0x20 /* RMODE=ANY */
#define APCBFOPN 0x10 /* apcb is open */
#define APCBFERR 0x08 /* permanent error flag */
#define APCBFTRM 0x04 /* task termina. in progress */
#define APCBFBSY 0x01 /* open/close in progress */
/*
* option code (apcboptc)
*/
#define APCBOTRC 0x80 /* optcd=notrace | trace */
#define APCBOGTF 0x40 /* optcd=nogtf|gtf
/*
* language environment code (apcbenvr)
*/
#define APCBASM 0 /* assembler language */
#define APCBIBMC 1 /* ibm c */
#define APCBSASC 2 /* sas c */
#define APCBPLI 3 /* pli */
#define APCBCOBL 4 /* cobol */
#define APCBFORT 5 /* fortran */
#define APCBEMAX APCBFORT /* maximum environment code */
/*
* error code (apcberrc)
*/
#define APCBECFG 1 /* subsystem not configured */
#define APCBEACT 2 /* subsystem not active */
#define APCBERDY 3 /* subsystem not initialized */
#define APCBESTP 4 /* subsystem is stopping */
#define APCBEDRA 5 /* subsystem is draining */
#define APCBEVCK 6 /* apcb validity check error */
#define APCBELER 7 /* internal logic error */

C Language Structures 2–3

apcbxl

#define APCBEPRB 8 /* not issued from PRB */
#define APCBEOPN 9 /* apcb already opened */
#define APCBECLS 10 /* apcb already closed */
#define APCBEBSY 11 /* apcb busy w/aopen/aclose */
#define APCBEPER 12 /* apcb has permanent error */
#define APCBECVT 13 /* access mthd cvt not avail */
#define APCBEMEM 14 /* insuff. memory avail */
#define APCBEENV 15 /* cannot initialize envir */
#define APCBEBEG 16 /* cannot estab api session */
#define APCBEVER 17 /* invalid access mthd vers */
#define APCBEOPT 18 /* invalid/unsupported opt */
#define APCBEDUP 19 /* dup session for this am */
#define APCBEAMD 20 /* AMODE inconsist w/AOPEN */
#define APCBETRV 21 /* AMTV validity check error */
#define APCBEEND 22 /* Cannot release API sess */
#define APCBERMX APCBEEND /* max apcb error code */
#define APCBLEN sizeof(apcb) /* length of apcb */

apcbxl
apcbxl (Application Program Control Block Exit List):

C Language Definition
/*

* definition of the application program control block exit list
*/
struct apcbxl
{
 unsigned long apcbxlen; /* total len of exit list */
 struct txl *apcbxlst; /* exit rtn entry pts list */
};

2–4 C/Socket Programmer Reference

tem

tem
tem (Transport Endpoint Error Message):

C Language Definition
#define TEMSGTAGLEN 4 /* length of control block */

#define TEMSGIDLEN 8 /* length of message ID */
#define TEMSGBDYLEN 26 /* length of message body */
#define TEMSGLEN 34 /* length of message */
/*
* terror generated message
*/
union temmsg
{
 char temmsgtxt [TEMSGLEN]; /* msg txt len (1st)*/
 struct
 {
 char temsgid [TEMSGIDLEN]; /* message id */
 char temsgbdy [TEMSGBDYLEN]; /* message body */
 } temsgparts;
};
/*
* terror generated message parameter list return value
*
* a pointer to this structure is returned when a terror()
* function completes successfully.
*/
struct tem
{
 char temtag[TEMSGTAGLEN]; /* cntrl block tag */
 unsigned long temsl; /* subpool and length*/
 char temsglen [2]; /* msg length + 4 (1st line) */
 char temmcsf1; /* mcs flag byte #1 */
 char temmcsf2; /* mcs flag byte #2 */
 union temmsg temmsg; /* first line */
 unsigned short temdesc; /* descriptor codes */
 unsigned short temrout; /* routing codes */
 char temsgtyp [2]; /* mlwto line typ (1st line) */
 char temarea; /* mlwto area id */
 char temnline; /* mlwto number of lines */
 short temmllen; /* mlwto line length + 4 */
 short temmltyp; /* mlwto line type */
 char temmltxt; /* mlwto line text */
 /* element size is variable */
};
#define TEMLEN sizeof (struct tem)

C Language Structures 2–5

tib

tib
tib (Transport Service Information Block):

C Language Definition
#define TIBSYSIDLEN 4 /* max length of subsystem name */

#define TIBSVCIDLEN 8 /* max length of service name */
#define TIBHOSTNAMELEN 64 /*max length of local host name */
/*
* structure returned by tinfo()function
*/
struct tib
{
 unsigned char tibtsdom; /* transport service domain */
 unsigned char tibtstyp; /* transport service type */
 unsigned char tibtschr; /* transport service char. */
 unsigned char tibtsopt; /* transport service options */
 char tibsysid [TIBSYSIDLEN]; /* TP subsys name */
 char tibsvcid [TIBSVCIDLEN]; /* TP service name */
 int tibproto; /* transport protocol number */
 int tibqlstn; /* max size of listen queue */
 int tibqsend; /* max size of send queue */
 int tibqrecv; /* max size of receive queue */
 int tibltsnd; /* max size of send TIDU */
 int tibltrcv; /* max size of receive TIDU */
 int tiblsend; /* max size of send buffer*/
 int tiblrecv; /* max size of recv buffer */
 int tibladdr; /* max size of protocol address */
 int tibloptn; /* max size of protocol options */
 int tibltsdu; /* max size of TSDU */
 int tiblxpdt; /* max size of ETSDU */
 int tiblconn; /* max size of connect data */
 int tibldisc; /* max size of disconnect data */
 int tiblinfo; /* max size of information unit */
};
/*
* defines for transport service domain
*/
#define TIBDINET 2 /* Internet domain */
#define TIBDACP 4 /* ACP inet domain */
/*
* transport service type
*/
#define TIBTCOTS 1 /* connection-mode service */
#define TIBTCLTS 2 /* connectionless-mode service */
/*
* transport service characteristics
*/
#define TIBCTSDU 0x10 /* message boundaries preserved*/
#define TIBCXPDT 0x08 /* expedited data supported */
#define TIBCOPTN 0x04 /* user-settable options supported */
#define TIBCCOND 0x02 /* connect with user data */
#define TIBCDISD 0x01 /* disconnect with user data */
/*

2–6 C/Socket Programmer Reference

tpa

* transport service options
*/
#define TIBOASSO 0x80 /* datagram associations supported */
#define TIBOSCND 0x40 /* secondary information available */
#define TIBOSTAT 0x20 /* statistical info available */
#define TIBCRLSE 0x10 /* orderly release supported */
/*
* length of the TIB
*/
#define TIBLEN sizeof (struct tib)

tpa
tpa (Transport Protocol Address):

C Language Definition
/*

* transport protocol address in the internet domain
*/
struct tpainet
{
 unsigned short tpainetd; /* internet domain */
 unsigned short tpainett; /* TCP port number */
 unsigned long tpainetn; /* IP host address */
 };
/*
* length of transport protocol address
*/
#defintpl e TPALEN sizeof (struct tpainet)
tpl (Transport Service Parameter List):
C Language Definition
#define TPLSVCIDLEN 8
/*
* internal ECB, external ECB address, exit routine address union
*/
union tplecbexit
{
 union
 {
 unsigned long tpliecb; /* internal ECB */
 unsigned long *tplxecb; /* external ECB address */
 } tplecb;
 void (*tplexit)(); /* exit routine address */
} ;
/*
* TPL option code structure
*/
union tploptcd
{
 unsigned long tploptcdl; /* option codes */
 struct
 {
 unsigned char tplopcd1; /* option code #1 */
 unsigned char tplopcd2; /* option code #2 */
 unsigned char tplopcd3; /* option code #2 */
 unsigned char tplopcd4; /* option code #2 */
 } tploptcds;
} ;

C Language Structures 2–7

tpl

/*
* TPL return code structure
*/
union tplrtncd
{
 unsigned long tplrtncdl; /* return codes */
 struct
 {
 unsigned char tplactcd; /* recovery action code*/
 unsigned char tplerrcd; /* specific error code */
 unsigned short tpldgncd; /* diag & sense codes */
 } tplrtncds;
} ;
/*
* TPL fixed-length parameters structure
*/
struct tplparm
{
 union
 {
 int tplqlstn; /* listen queue length */
 int tplseqno; /* sequence number */
 unsigned char *tpltcb; /* tcb address */
 } tplparm1;
 union
 {
 unsigned long tplnewep; /* new endpoint */
 unsigned char *tplascb; /* ascb address */
 int tplcount; /* transfer byte count */
 } tplparm2;
 union
 {
 unsigned char *tpluser; /* tub or acee address */
 unsigned long tpldiscd; /* disconnect reason code */
 unsigned long tpldgerr; /* datagram error code */
 unsigned long tplstate; /* old endpoint state */
 unsigned long tplxcnt; /* xdata residual count */
 } tplparm3;
} ;
/*
* TPL variable-length protocol address parameter
*/
struct tpladdr
{
 unsigned char *tpladbuf; /* parameter address */
 int tpladlen; /* parameter length */
} ;
/*
* TPL variable-length user data parameter
*/
struct tpldata
{
 unsigned char *tpldabuf; /* parameter address */
 int tpldalen; /* parameter length */
} ;
/*
* TPL variable-length protocol options parameter
*/
struct tploptn
{
 unsigned char *tplopbuf; /* parameter address */
 int tploplen; /* parameter length */
} ;
/*
* TPL variable-length parameters structure
*/

2–8 C/Socket Programmer Reference

tpl

struct tplbufp
{
 struct tpladdr tpladdr; /* protocol address */
 struct tpldata tpldata; /* user data */
 struct tploptn tploptn; /* protocol options */
} ;
/*
* TPL structure specific to TOPEN
*/
struct tplopen
{
 unsigned char tpldom; /* communication domain */
 unsigned char tploflag; /* open flags */
 union
 {
 unsigned short tpltype; /* transport serv type */
 unsigned short tplproto; /* transport proto num */
 } tplservc;
 struct apcb *tplapcbp; /* address of APCB */
 char tplsvcid [TPLSVCIDLEN];/* TP service name */
 struct txlh *tplexlst; /* address of exit list */
 unsigned long tplucntx; /* word of user context */
} ;
/*
* Transport Service Parameter List (TPL) structure
*/
struct tpl
{
 unsigned char tplident; /* control block identifier */
 unsigned char tplfnccd; /* function code */
 unsigned char tplactiv; /* active semaphore */
 unsigned char tplflags; /* flags used by AP */
 union
 {
 unsigned long tplepid; /* endpoint id */
 unsigned long tpltcep; /* TCEP address */
 } tplep;
 union tplecbexit tplecbexit; /* ECB or exit routine addr */
 union tploptcd tploptcd; /* option codes */
 union tplrtncd tplrtncd; /* return codes */
 struct tplparm tplparm; /* fixed-length parameters */
 union
 {
 struct tplbufp tplbufp /* variable-length parms */
 struct tplopen tplopen; /* tpl open parameters */
 } tplopbfp;
};
/*
* control block ID values (tplident)
*/
#define TPLIDSTD 0xEA /* standard long format */
#define TPLIDSHT 0xEB /* short format */
/*
* defines for tpl function codes (tplfnccd)
*/
#define TFORG1 0 /* origin for std functions */
#define TFACCEPT 1 /* accept connection request */
#define TFADDR 2 /* get address information */
#define TFBIND 3 /* bind protocol address */
#define TFCLEAR 4 /* confirm disconnect*/
#define TFCLOSE 5 /* close endpoint */
#define TFCONFRM 6 /* confirm connection req */
#define TFCONNCT 7 /* initiate connection req */
#define TFDISCON 8 /* initiate disconnect */
#define TFINFO 9 /* get transport service info*/
#define TFLISTEN 10 /* listen for connection req */

C Language Structures 2–9

tpl

#define TFOPEN 11 /* open an endpoint */
#define TFOPTION 12 /* negotiate options */
#define TFRECV 13 /* receive data */
#define TFRECVER 14 /* receive datagram error */
#define TFRECVFR 15 /* receive datagram */
#define TFREJECT 16 /* reject connection request */
#define TFRELACK 17 /* confirm orderly release */
#define TFRELESE 18 /* initiate orderly release */
#define TFRETRCT 19 /* retract a listen request */
#define TFSEND 20 /* send data*/
#define TFSENDTO 21 /* send datagram */
#define TFUNBIND 22 /* unbind protocol address */
#define TFUSER 23 /* associate user id */
#define TFMAX1 TFUSER
#define TFORG2 128 /* origin for ctl functions */
#define TFCHECK 129 /* check tpl for completion */
#define TFERROR 130 /* format error message */
#define TFSTATE 131 /* get endpoint state */
#define TFMAX2 TFSTATE
/*
* flag byte of tpl defines (tplflags)
*/
#define TPLFCMPL 0x80 /* tpl completed */
#define TPLFCERR 0x40 /* tpl completed with error */
#define TPLFXECB 0x20 /* external ecb being used */
#define TPLFEXIT 0x10 /* exit being used */
#define TPLF31B 0x08 /* tpl issued in 31 bit mode */
#define TPLFACPT 0x04 /* accepting on this endpoint */
/*
* option code #1 defines (tplopcd1)
*/
#define TOASYNC 0x80 /* OPTCD=SYNC | ASYNC */
#define TOSHORT 0x40 /* OPTCD=LONG | SHORT */
#define TOTRUNC 0x20 /* OPTCD=NOTRUNC | TRUNC */
#define TONEGOT 0x10 /* OPTCD=NONEGOT | NEGOT */
#define TONOBLOK 0x04 /* OPTCD=BLOCK | NOBLOCK */
/*
* option code #2 defines (tplopcd2)
*/
#define TOMORE 0x80 /* OPTCD=NOMORE | MORE */
#define TOEXPDTE 0x40 /* OPTCD=NORMAL | EXPEDITE */
#define TONOTEOM 0x20 /* OPTCD=EOM | NOEOM */
#define TOABORT 0x10 /* OPTCD=CLEAR | ABORT */
#define TOINDIR 0x08 /* OPTCD=DIRECT | INDIR */
#define TODLOCAL 0x04 /*OPTCD=DNOTLOCAL | DLOCAL */
#define TOLOCATE 0x02 /*OPTCD=NOLOCATE | LOCATE */
/*
* option code #3 defines (tplopcd3)
*/
#define TOACEE 0x80 /* OPTCD=TUB | ACEE */
#define TOCIPHER 0x40 /* OPTCD=PLAIN | CIPHER */
#define TOOLD 0x20 /* OPTCD=NEW | OLD */
#define TOASSIGN 0x10 /* OPTCD=USE | ASSIGN */
#define TOREMOTE 0x08 /* OPTCD=LOCAL | REMOTE */
#define TOPASS 0x04 /* OPTCD=DELETE | PASS */
/*
* option code #4 defines (tplopcd4)
*/
#define TOINFO 0xC0 /* tinfo option codes */
#define TOPRIMRY 0x00 /* OPTCD=PRIMARY*/
#define TOSCNDRY 0x80 /* OPTCD=SECNDRY */
#define TOSTATS 0x40 /* OPTCD=STATS */
#define TOOPTION 0x30 /* toption option codes */
#define TODECLAR 0x00 /* OPTCD=DECLARE */
#define TOVERIFY 0x10 /* OPTCD=VERIFY */
#define TOQUERY 0x20 /* OPTCD=QUERY */

2–10 C/Socket Programmer Reference

tpl

#define TODFAULT 0x30 /* OPTCD=DFAULT */
#define TOAPI 0x08 /* OPTCD=TP | API*/
/*
* recovery action codes (tplactcd)
*/
#define TAOKAY 0 /* successful completion*/
#define TAEXCPTN 4 /* exceptional condition */
#define TAINTEG 8 /* connection/data integrity error */
#define TAENVIRO 12 /* environmental condition */
#define TAFORMAT 16 /* format or specification error */
#define TAPROCED 20 /* sequence or procedure error */
#define TATPLERR 24 /* logic errors with no tpl rtncd */
#define TAUSER 28 /* user-defined action codes */
/*
* conditional completion code (tplerrcd)
*/
#define TCOKAY 0x00 /* 00: no conditionals */
#define TCVERIFY 0x80 /* 00: options did not verify */
#define TCNEGOT 0x40 /* 00: options negotiated */
#define TCTRUNC 0x20 /* 00: buffer truncated */
#define TCSTOP 0x08 /* 00: subsystem is stopping */
/*
* specific error code (tplerrcd)
*/
/* TENOEP was made obsolete and replaced by TEDRAIN */
/* #define TENOEP 1 04: no new endpoints allowed */
#define TENONEGO 6 /* 04: no negotiation allowed */
#define TENOBLOK 9 /* 04: no blocking allowed */
#define TENOLSTN 10 /* 04: no listen pending */
#define TEPROTO 1 /* 08: protocol error */
#define TEOVRFLO 2 /* 08: buffer overflow */
#define TEDISCON 3 /* 08: disconnect received */
#define TERELESE 4 /* 08: orderly release received */
#define TEOVLAY 5 /* 08: control block overlaid */
#define TEFLOW 9 /* 08: temporary flow control */
#define TERETRCT 10 /* 08: listen retracted */
#define TEPURGED 11 /* 08: request purged for TCLOSE */
#define TESYSERR 1 /* 12: system error */
#define TESUBSYS 2 /* 12: subsystem error */
#define TENOTCNF 3 /* 12: subsys not config in o/s */
#define TENOTACT 4 /* 12: subsys not started */
#define TENOTRDY 5 /* 12: subsys not initialized */
#define TEDRAIN 6 /* 12: subsys drained by operator */
#define TESTOP 7 /* 12: subsystem stopped by open. */
#define TETERM 8 /* 12: subsys abnormally termin */
#define TEUNSUPO 9 /* 12: unsupported option/facility */
#define TEUNSUPF 10 /* 12: unsupported function/serv */
#define TEUNAVBL 11 /* 12: unavailable service/facil */
#define TEUNAUTH 12 /* 12: user unauthorized */
#define TERSOURC 13 /* 12: insufficient resources */
#define TEINUSE 14 /* 12: TPA in use */
#define TEBDOPCD 1 /* 16: invalid option code */
#define TEBDEPID 2 /* 16: invalid endpoint */
#define TEBDXECB 3 /* 16: invalid exit/ecb address */
#define TEBDDOM 4 /* 16: invalid communication dom */
#define TEBDPROT 5 /* 16: invalid transport protocol*/
#define TEBDTYPE 6 /* 16: invalid transport serv type */
#define TEBDXLST 7 /* 16: invalid exit list */
#define TEBDUSER 8 /* 16: invalid user parm*/
#define TEBDACEE 9 /* 16: invalid accessor element */
#define TEBDSQNO 10 /* 16: invalid sequence number */
#define TEBDQLEN 11 /* 16: invalid queue length */
#define TEBDTCB 12 /* 16: invalid tcb address */
#define TEBDASCB 13 /* 16: invalid ascb address */
#define TEBDADDR 14 /* 16: invalid protocol address */
#define TEBDOPTN 15 /* 16: invalid options */

C Language Structures 2–11

tpl

#define TEBDDATA 16 /* 16: invalid data buffer */
#define TEBDTSID 18 /* 16: invalid transport serv id */
#define TESTATE 1 /* 20: invalid state for function */
#define TEINEXIT 2 /* 20: invalid function w/in exit */
#define TEINACTV 3 /* 20: check issued to inact tpl */
#define TEINCMPL 4 /* 20: endpoint has incomplete fnc */
#define TEINDICA 5 /* 20: pending connect indication */
#define TEBUFOVR 6 /* 20: send / recv buffer overrun */
#define TEREQOVR 7 /* 20: send / recv request overrun */
#define TENOCONN 8 /* 20: no connection */
#define TENODISC 9 /* 20: no disconnect indication */
#define TEOUTSEQ 10 /* 20: request is out of sequence */
#define TENOERR 11 /* 20: no error indication */
#define TEAMODE 13 /* 20: AMODE conflicts with APCB */
#define TEOWNER 14 /* 20: not opened by this task */
#define TELISTEN 15 /* 20: listen q full */
#define TEACCEPT 16 /* 20: accepting on this endpoint */
#define TEB4EXIT 1 /* 24: TPL check before exit */
#define TEACTIVE 2 /* 24: TPL is still active */
#define TEMAXCODE 20 /* MAX error code defined */
/*
* disconnect reasons codes
*/
#define TDTRANTO 1 /* Transmission timeout */
#define TDHOSTUN 2 /* Host unreachable */
#define TDPORTUN 3 /* Port unreachable */
#define TDRABORT 4 /* Remote aborted connection */
#define TDLNIOWN 5 /* Local net I/F down */
#define TDPROTUN 6 /* Protocol unreachable */
#define TDACPRR 7 /* ACP connection error */
#define TDAPIRR 8 /* API connection error */
/*
* minimum TPL length
*/
#define TPLMIN (sizeof (unsigned char) + sizeof (unsigned char) + \
 sizeof (unsigned char) + sizeof (unsigned char) + \
 sizeof (unsigned long) + sizeof (struct tplecbexit) + \
 sizeof (struct tploptcd)+ sizeof (struct tplrtncd))
/*
* length of short form TPL (function-specific)
*/
#define TLRELACK TPLMIN
#define TLRELESE TPLMIN
#define TLUNBIND TPLMIN
#define TLRETRCT TPLMIN
#define TLACCEPT (TPLMIN + sizeof (struct tplparm))
#define TLCLEAR (TPLMIN + sizeof (struct tplparm))
#define TLCLOSE (TPLMIN + sizeof (struct tplparm))
#define TLDISCON (TPLMIN + sizeof (struct tplparm))
#define TLREJECT (TPLMIN + sizeof (struct tplparm))
#define TLUSER (TPLMIN + sizeof (struct tplparm))
#define TLADDR (TPLMIN + sizeof (struct tplparm) + \
 sizeof (struct tpladdr))
#define TLBIND (TPLMIN + sizeof (struct tplparm) + \
 sizeof (struct tpladdr))
#define TLCONFRM (TPLMIN + sizeof (struct tplparm) + \
 sizeof (struct tpladdr))
#define TLCONNCT (TPLMIN + sizeof (struct tplparm) + \
 sizeof (struct tpladdr))
#define TLLISTEN (TPLMIN + sizeof (struct tplparm) + \
 sizeof (struct tpladdr))
#define TLRECVER (TPLMIN + sizeof (struct tplparm) + \
 sizeof (struct tpladdr))
#define TLINFO (TPLMIN + sizeof (struct tplparm) + \
 sizeof (struct tpladdr) + \
 sizeof (struct tpldata))

2–12 C/Socket Programmer Reference

tpl

#define TLRECV (TPLMIN + sizeof (struct tplparm) + \
 sizeof (struct tpladdr) + \
 sizeof (struct tpldata))
#define TLRECVFR (TPLMIN + sizeof (struct tplparm) + \
 sizeof (struct tpladdr) + \
 sizeof (struct tpldata))
#define TLSEND (TPLMIN + sizeof (struct tplparm) + \
 sizeof (struct tpladdr) + \
 sizeof (struct tpldata))
#define TLSENDTO (TPLMIN + sizeof (struct tplparm) + \
 sizeof (struct tpladdr) + \
 sizeof (struct tpldata))
#define TLOPTION (TPLMIN + sizeof (struct tplparm) + \
 sizeof (struct tpladdr) + \
 sizeof (struct tpldata) + \
 sizeof (struct tploptn))
/*
* length of standard (long) form TPL
*/
#define TPLLEN (sizeof (struct tpl) + \
 sizeof (struct tplbufp) - \
 sizeof (struct tplopen))
#define TLOPEN sizeof (struct tpl)
#define TPLMAX sizeof (struct tpl)
/*
* general return codes (returned in R15)
*/
#define TROKAY 0 /* successful cmpl, accepted */
#define TRFAILED 4 /* unsuccessful cmpl, not accepted */
#define TRFATLFC 8 /* invalid function code */
#define TRFATLPL 12 /* fatal tpl error */
#define TRFATLAM 16 /* fatal access method error */
#define TRFATLAP 20 /* apcb is closed */
#define TRUSER 24 /* first user return code */
/*
* topen communication domains
*/
#define TDINET 2 /* Internet domain */
#define TDACP 4 /* ACP internet domain */
#define TDMAX TDSNA /* max value for domain */
/*
* topen open flags
*/
#define TPLOFPRO 0x80 /* protocol number specified */
#define TPLOFORD 0x40 /* COTS orderly release required */
#define TPLOFASO 0x20 /* CLTS association required */
/*
* topen transport service types
*/
#define TTCOTS 1 /* connection-mode service */
#define TTCLTS 2 /* connectionless-mode service */
#define TTMAX TTCLTS /* max value for service type */
/*
* tpopen transport protocol number
*/
#define TPINTTCP 6 /* darpa internet tcp */
#define TPINTUDP 17 /* darpa internet udp */
#define TISOTP4 0 /*iso transport class 4 */
#define TLOPEN sizeof (struct tpl)
 /* length of short tpl: topen */
#define TPLMAX sizeof (struct tpl)
 /* maximum tpl length: topen */

C Language Structures 2–13

tpo

tpo
tpo (Transport Protocol Options):

C Language Definition
/***/

/* This structure defines the format of an option when */
/* issuing a TOPTION request */
/***/
#define TPOMAXLEN 320 /* for ifconfg */
struct tpo
{
 short tpoptlen /* option length */
 short tpoption; /* option name */
 unsigned char tpovalue [TPOMAXLEN]; /* option value */
};
/*
* API defined option names
*/
#define TPOAQSND 0 /* max # of sends */
#define TPOAQRCV 1 /* max # of recvs */
#define TPOALSND 2 /* length of send buffer */
#define TPOALRCV 3 /* length of receive buf */
/*
 * ACP defined option names
 */
#define TPOPRWND 1 /* TCP receive window */
#define TPOPKTIM 2 /* TCP Keepalive time */
#define TPOPKEEP 3 /* TCP Keepalive options */
#define TPOPDNAG 4 /* Defeat Nagle algorithm */
#define TPOPRTIM 5 /* Full Receive Timeout */
#define TPOIPOPT 6 /* IP Option Text */
#define TPOSIOAR 7 /* Add Route */
#define TPOSIODR 8 /* Delete Route */
#define TPOSIFCF 9 /* Interface Config. */
#define TPOSIFLG 10 /* Interface Flags */
#define TPOSIFMT 11 /* Interface MTU */
#define TPOSIFME 12 /* Interface Metric */
#define TPOSIFNM 13 /* Interface Network Mask */
#define TPOSIFBA 14 /* Ifc. Broadcast Address */
#define TPOSIFAD 15 /* Interface Address */
#define TPOSIFEN 16 /* Ifc. Ethernet Address */
#define TPOSIFNO 17 /* Number of Interfaces */
#define TPOSIFDA 18 /* Ifc. Destination Addr. */
#define TPOIPTTL 19 /* IP Time To Live */
#define TPOIPTOS 20 /* IP Type Of Service */
/*
*
*/
#define TPOLEN sizeof(struct tpo)

2–14 C/Socket Programmer Reference

tsw

tsw
tsw (Transport Endpoint State Word):

C Language Definition
struct tsw

{
 unsigned char tswflags;
 unsigned char tswpfunc;
 unsigned short tswstate;
};
/*
* tswflags defines
*/
#define TSWFCHNG 0x80 /* state is changing */
#define TSWFACPT 0x40 /* accepting to this endpoint */
/*
* tswpfunc defines (pending functions)
*/
#define TSWPFCLS 0x80 /* TCLOSE */
#define TSWPFDIS 0x40 /* TDISCONN, TCLEAR, TRETRACT */
#define TSWPFREL 0x20 /* TRELEASE */
#define TSWPFACK 0x10 /* TRELACK */
#define TSWPFCON 0x08 /* connection establishment */
#define TSWPFLCL 0x04 /* local endpoint management */
#define TSWPFOPN 0x01 /* TOPEN */
#define TSWPFRCV 0x00 /* TRECV */
#define TSWPFSND 0x00 /* TSEND */
#define TSWPFDGM 0x00 /* TSENDTO, TRECVFRM, TRECVERR */
/*
* defines for tswstate
*/
#define TSCLOSED 0 /* closed non-existent */
#define TSOPENED 1 /* opened but not bound */
#define TSDSABLD 2 /* bound and disabled */
#define TSENABLD 3 /* bound and enabled */
#define TSINCONN 4 /* connect indication pending */
#define TSOUCONN 5 /* connection in progress */
#define TSCONNCT 6 /* connected or associated */
#define TSINRLSE 7 /* release indication pending */
#define TSOURLSE 8 /* release in progress*/
#define TSMAX TSOURLSE /* max value for tswstate */
/*
* length of the TSW
*/
#define TSWLEN sizeof (struct tsw)

C Language Structures 2–15

tub

tub
tub (Transport Endpoint User Block):

C Language Definition
#define TUBUIDLEN 9

#define TUBGRPLEN 9
#define TUBPWDLEN 9
struct tubuids
{
 unsigned char tubuidl; /* len of user id */
 char tubuidc [TUBUIDLEN-1]; /* user id string */
} ;
struct tubgrps
{
 unsigned char tubgrpl; /* len of group id */
 char tubgrpc [TUBGRPLEN-1]; /* group id string*/
} ;
struct tubpwds
{
 unsigned char tubpwdl; /* len of password */
 char tubpwdc [TUBPWDLEN-1]; /* user password */
} ;
/*
* definition of the TUB
*/
#if 0
#define TUBSTRUCT 1 /* allow less convenient tub */
#endif
#ifndef TUBSTRUCT
struct tub
{
 union
 {
 unsigned char tubuid [TUBUIDLEN];
 struct tubuids tubuids;
 } tubuidu;
 union
 {
 unsigned char tubgrp [TUBGRPLEN];
 struct tubgrps tubgrps;
 } tubgrpu;
 union
 {
 unsigned char tubpwd [TUBPWDLEN];
 struct tubpwds tubpwds;
 } tubpwdu;
};
#else
/*
* length of the TUB
*/
#define TUBLEN sizeof (struct tub)

2–16 C/Socket Programmer Reference

txl

txl
txl (Exit List Structure): C Language Definition
/*

* Common header for txls used with AOPEN and TOPEN
*/
struct txlh
{
 int txllenxl; /* length of exit list */
 void (*txlconn)(); /* connect indication */
 void (*txlconf)(); /* confirm indication */
 void (*txldata)(); /* data indication */
 void (*txlxdata)(); /* expedited data indication */
 void (*txldgerr)(); /* datagram error indication */
 void (*txldisc)(); /* disconnect indication */
 void (*txlrelse)(); /* orderly release indication*/
 void (*txlresvd1)(); /* reserved for future use */
 void (*txlresvd2)(); /* reserved for future use */
 void (*txlresvd3)(); /* reserved for future use */
 void (*txltpend)(); /* transport provider end */
 void (*txlresvd4)(); /* reserved for future use */
 void (*txlresvd5)(); /* reserved for future use */
 void (*txlresvd6)(); /* reserved for future use */
};
/*
* length of TXLH
*/
#define TXLHLEN sizeof (struct txlh)
/*
* definition of the exit list structure used by the TEXLST macro
*/
struct txl
{
 struct txlh txlh; /* protocol exit list */
 struct
 {
 int (*txlsynad)(); /* physical errors */
 int (*txllerad)(); /* logic errors */
 } txlerror;
 void (*txlapend)(); /* API subsys end */
 void (*txlrsvd7)(); /* reserved for future */
 void (*txlrsvd8)(); /* reserved for future */
};
/*
* length of the TXL
*/
#define TXLLEN sizeof (struct txl)

C Language Structures 2–17

txp

txp
txp (Transport Exit Parameter List):

C Language Definition
struct txp

{
 unsigned short txptype; /* exit type */
 unsigned short txprsvd; /* resrvd future use */
 union
 {
 unsigned long txpapcb; /* APCB pointer */
 unsigned long txpepid; /* end point id */
 unsigned long txptcep; /* TCEP address */
 } txpep;
 void (*txpexit)(); /* exit routine entry point */
 union
 {
 unsigned long txpreasn; /* TPEND reason code */
 unsigned long txpevent; /* protocl event code */
 struct tpl *txptpl; /* TPL pointer */
 } txpparm;
 unsigned long txpacntx; /* application context */
 unsigned long txpucntx; /* user context */
 unsigned long txpecntx; /* environment context */
};
/*
* exit types
*/
#define TXPTPROT 1 /* protocol event exit */
#define TXPTCMPL 2 /* endpoint completion exit */
#define TXPTPEND 3 /* TP end exit */
#define TXPTSYNC 4 /* synchronous error exit */
#define TXPAPEND 5 /* API subsystem end */
/*
* protocol event code defines
*/
#define TXPECONN 0 /* connect indication */
#define TXPECONF 4 /* confirm indication */
#define TXPEDATA 8 /* normal data received */
#define TXPEXPDT 12 /* expedited data received */
#define TXPEDISC 20 /* disconnect indication */
#define TXPERLSE 24 /* orderly release indication */
/*
* TPEND reason codes
*/
#define TXPRDRAN 0 /* operator drained subsystem */
#define TXPRSTOP 4 /* operator stopped subsystem */
#define TXPRTERM 8 /* subsystem terminated */
/*
* length of TXP
*/
#define TXPLEN sizeof (struct txp

2–18 C/Socket Programmer Reference

Chapter

3 Socket Library Functions

This chapter describes the BSD Socket Library provided with the Unicenter
TCPaccess API. This library supports the communication requirements of
application programs written in the C language.

This chapter includes the following sections:

■ Introduction to the Socket Library—Describes the basic terminology and
purpose of the socket Application Program Interface (API).

■ Overview of BSD Sockets—Describes communication domains and socket
types, creating sockets and binding names, accepting and initiating
connections, sending and receiving data, using file I/O functions, shutting
down connections, socket and protocol options, non-blocking options, and
differences between BSD UNIX and Unicenter TCPaccess sockets.

■ UNIX File I/O Functions—Describes how to use UNIX system calls to read
and write sockets as they can read and write disk files.

■ Socket Library Functions—Provides detailed coding information for the API
socket functions. Also included in this section are the UNIX file I/O
functions that are supported by Unicenter TCPaccess.

Socket Library Functions 3–1

The Socket Library

The Socket Library
The Unicenter TCPaccess API provides a socket library to support the
communication requirements of application programs written in the C language.
Generally, these applications are developed in a UNIX environment and ported
to operate in an MVS environment. Providing a socket library greatly reduces
the necessary changes that must be made to the application program.

Sockets

The term sockets refers to the Application Program Interface (API) implemented
for the Berkeley Software Distribution (BSD) of UNIX. The socket interface is
used by processes executing under control of the UNIX operating system to
access network services in a generalized manner. Sockets support process-to-
process communications using a variety of transport mechanisms, including
UNIX pipes and Internet and XNS protocols. Socket support is being extended to
include ISO protocols.

The socket interface was developed by the University of California at Berkeley
and was included with releases 4.1, 4.2, and 4.3 of the BSD UNIX system.
Because BSD UNIX has been ported to run on many machine architectures
ranging from desktop workstations to large mainframes, many applications use
BSD sockets to interface to the communications network. With a variety of C
compilers now available for IBM systems, more and more of these applications
are being ported to run under the MVS operating system. A library of BSD
socket functions can simplify the porting effort by providing the communication
services required by these applications, and much of the original C code can be
retained.

This chapter describes the BSD Socket Library as provided with the API. The
description includes a brief overview of BSD sockets, an explanation of some of
the differences between the two implementations, and descriptions of the socket
functions included in the library. Familiarity with BSD sockets is assumed. The
intent of this chapter is to highlight any differences between the Unicenter
TCPaccess API and BSD implementation of sockets and not to provide detailed
instruction on the use of socket functions.

3–2 C/Socket Programmer Reference

BSD Sockets

BSD Sockets
The brief overview of BSD sockets given in this section is not intended to
substitute for existing documentation on this subject. In particular, any user of
the API socket library is encouraged to obtain and read these documents for a
more thorough discussion of sockets and how they are used in the UNIX
environment:

■ An Introductory 4.3BSD Interprocess Communication Tutorial

■ An Advanced 4.3BSD Interprocess Communication Tutorial

These documents are provided with the 4.3 BSD release of UNIX and are
available from:

Computer Systems Research Group
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720

Communication Domains and Socket Types

A socket is the UNIX abstraction of a communications endpoint. As such, it must
exist within a communications domain identified when the socket is created. A
communications domain is represented by the standard set of services provided
to the communications endpoints, standardized rules of addressing and
protocols used to communicate between endpoints, and the physical
communications media. A constant defined in the include file <socket.h> is used
to identify the communications domain. The communications domain of interest
to the API implementation of sockets is the AF_INET Internet domain.

Support for ISO-based domains will be added in future releases of the Unicenter
TCPaccess API as BSD sockets are extended to accommodate them.

A socket is associated with an abstract type that describes the semantics of
communications using the socket. Properties such as reliability, ordering, and
prevention of duplication of messages are determined by the socket type.

Socket Library Functions 3–3

BSD Sockets

Constants

The set of socket types are indicated by these constants defined in <socket.h>:

Socket Type Description
SOCK_DGRAM Models the semantics of unreliable datagrams in

connectionless-mode communication. Messages
may be lost or duplicated and may arrive out of
order. A socket of type SOCK_DGRAM requires
no connection setup before communication can
begin and can communicate with multiple peers.

SOCK_RDM Models the semantics of reliable datagrams in
connectionless-mode communication. Messages
arrive unduplicated and in order, and the sender
is notified if messages are lost. A socket of type
SOCK_RDM requires no connection setup before
communication can begin, and can communicate
with multiple peers.

SOCK_STREAM Models connection-based virtual circuits without
record boundaries and provides reliable two-way
transfer of ordered byte streams without
duplication of data and without preservation of
boundaries. A socket of type SOCK_STREAM
communicates with a single peer and requires
connection setup before communication can
begin.

SOCK_SEQPACKET Models connection-based virtual circuits with
record boundaries and provides reliable two-way
transfer of ordered byte streams without
duplication of data, while preserving boundaries
within the data stream. A socket of type
SOCK_SEQPACKET communicates with a single
peer and requires connection setup before
communication may begin.

3–4 C/Socket Programmer Reference

BSD Sockets

Socket Type Description
SOCK_RAW Models connectionless-mode and is normally

used with the sendto() and recvfrom() socket calls.
The connect() call may be used to fix the
destination for future datagrams. If the connect()
call is used, the read() or recv() and write() or
send() calls may be used. The application must
provide a complete IP header when sending.
Otherwise, IPPROTO_RAW will be set in
outgoing datagrams and used to filter incoming
datagrams and an IP header will be generated and
prepended to each outgoing datagram. In either
case, received datagrams are returned with the IP
header and options intact.

SOCK_ASSOC Models the semantics of unreliable datagrams in
connectionless-mode communication with
associations. Messages may be lost or duplicated
and may arrive out of order. Formerly
SOCK_DGRAM in previous versions of Unicenter
TCPaccess sockets.

SOCK_CONNLESS No longer used, but is included for backwards
compatibility.
Note: SOCK_DGRAM replaces
SOCK_CONNLESS.

Sockets of type SOCK_DGRAM and SOCK_RDM
are generally more efficient and are most useful in
transaction-based applications where repetitive
connection setup and breakdown should be
avoided. Sockets of type SOCK_STREAM and
SOCK_SEQPACKET support an out-of-band
transmission facility that can be used to send
expedited data.

Note: SOCK_RDM and SOCK_SEQPACKET are not supported by Unicenter
TCPaccess sockets.

Each socket can have a specific protocol associated with it. This protocol is used
within the domain to provide the semantics required by the socket type. Not all
socket types are supported by each domain; support depends on the existence
and the implementation of a suitable protocol within the domain. For example,
within the Internet domain, the SOCK_DGRAM type may be implemented with
Transmission Control Protocol (TCP). No standard protocols exist in the Internet
domain to implement the SOCK_RDM and SOCK_SEQPACKET socket types.

Socket Library Functions 3–5

BSD Sockets

Creating Sockets and Binding Names

A socket is created with the socket function:
s = socket (domain, type, protocol);

int s, domain, type, protocol;

Communications Domain and Socket Type

The communications domain and socket type are specified using the constants
defined in <socket.h>. The protocol may be specified as zero, indicating any
suitable protocol for the given domain and type.

One of several possible protocols can be specified by indicating its protocol
number obtained by this library function:
getprotobyname().

Socket Descriptor

A socket descriptor, s, is returned by the socket function and should be used in
all subsequent functions that reference the socket. The socket is initially
unconnected, and if it was created with a connectionless type, datagrams can be
sent and received immediately without establishing a connection. Otherwise, the
socket is connection-oriented and must become connected before sending and
receiving data.

An unconnected socket becomes connected in one of two ways:

■ By actively connecting to another socket

■ By becoming bound to a name in the communications domain and accepting
a connection from another socket

3–6 C/Socket Programmer Reference

BSD Sockets

Communications Domain Name

A name is currently limited to 16 bytes and has this structure:
struct sockaddr

{
 u_short sa_family;
 char sa_data [14];
};

The address family, sa_family, identifies the domain within which the name
exists and is selected from a set of constants similar to those used to specify the
domain when a socket is created.

The format and content of a name is domain-dependent. Generally the name
consists of network, host, and protocol addresses. For the Internet domain,
AF_INET, a name has this structure (defined in <inet.h>):
struct sockaddr_in

{
 u_short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero [8];
};

Note: For 3.1 and higher, AF_INET has been redefined to be 2 so as to be
compatible with most UNIX programs. For backwards compatibility, sockets will
accept either 1 (the previous value) or 2 for AF_INET.

For historical reasons, the Internet address sin_addr is defined as the structure
in_addr:
struct in_addr

{
 u_long s_addr;
};

To accept connections or receive datagrams, a socket must be bound to a name
(or address) within the communications domain. To initiate a connection or send
datagrams, the application program may bind the name or let the system bind a
default name.

A name is bound using the bind function:
bind (s, name, namelen);

int s;
struct sockaddr *name;
int namelen;

Socket Library Functions 3–7

BSD Sockets

Whether the name was specified by the application program or assigned by the
system (that is, the API), any name bound to a socket can be retrieved with the
getsockname function:
getsockname (s, name, namelen);

int s;
struct sockaddr *name;
int namelen;

The name of the connected peer can be retrieved with the getpeername function:
getpeername (s, name, namelen);

int s;
struct sockaddr *name;
int namelen;

Accepting and Initiating Connections

After a name is bound to a connection-oriented socket, a connection must be
established before the application program can send or receive data. The method
used to establish a connection depends on the operating mode of the program.

Operating in Server Mode

Programs operating in server mode generally are passive and listen for
connection requests using the listen function:
listen (s, backlog);

int s, backlog;

The backlog argument specifies the maximum number of connection requests
that can be queued simultaneously awaiting acceptance.

A connection request is accepted by executing an accept function:
ns = accept (s, name, namelen);

int ns, s;
struct sockaddr *name;
int namelen;

The accepted connection is established to a new socket that has the same
characteristics (that is, domain, type, and protocol) as the listening socket. The
socket descriptor of the new socket, ns, is used in subsequent send and recv
functions to exchange data with the connected peer, and the old socket
descriptor, s, can be reused to listen for another connection request.

3–8 C/Socket Programmer Reference

BSD Sockets

Operating in Client Mode

Programs operating in client mode generally are active and initiate a connection
to a peer process by specifying the name of the peer with a connect function:
connect (s, name, namelen);

int s;
struct sockaddr *name;
int namelen;

Once Connection is Established

The server and client modes of operation affect only how connections are
established. Once a socket is connected, send and receive operations are executed
without regard to how the connection was established. The mode of connection
used by each peer process is agreed to in advance.

Although sockets of the connectionless datagram type do not establish real
connections, the connect function can be used with such sockets to create an
association with a particular peer. The name provided with the connect function
is recorded for use in future send functions, which then need not supply the
destination name. Only datagrams arriving at the socket from the associated
peer are queued for receiving with subsequent recv functions.

Sending and Receiving Data

Messages can be sent and received from both connected and unconnected
sockets.

Sending Messages from Unconnected Sockets

Messages can be sent from unconnected sockets using the sendto function:
cc = sendto (s, buf, len, flags, to, tolen);

int cc, s;
char *buf;
int len, flags;
struct sockaddr *to;
int tolen;

When sending on unconnected sockets, to and tolen indicate the destination of
the message. The number of bytes sent is returned.

Socket Library Functions 3–9

BSD Sockets

Sending Messages from Connected Sockets

Messages can be sent from connected sockets using the send function:
cc = send (s, buf, len, flags);

int cc, s;
char *buf;
int len, flags;

The message to be sent is identified by the buf and len arguments, and the flags
argument is used to indicate normal or out-of-band data.

Receiving Messages from Unconnected Sockets

Messages can be received from unconnected sockets using the recvfrom function:
cc = recvfrom (s, buf, len, flags, from, fromlen);

int cc, s;
char *buf;
int len, flags;
struct sockaddr *from;
int fromlen;

The receive buffer is identified by the buf and len arguments, and flags indicate
whether the buffer is to be used for receiving normal or out-of-band data. When
receiving on unconnected sockets, from and fromlen identify a buffer for
returning the source of the message. The function return value is the length of
the message received.

Receiving Messages from Connected Sockets

Messages can be received from connected sockets using the recv function:
cc = recv (s, buf, len, flags);

int cc, s;
char *buf;
int len, flags;

The receive buffer is identified by the buf and len arguments, and flags indicate
whether the buffer is to be used for receiving normal or out-of-band data.

3–10 C/Socket Programmer Reference

BSD Sockets

Sending and Receiving Messages from Noncontiguous Buffers

The functions previously described provide for the sending and receiving of
messages whose contents are stored in contiguous memory buffers. You can also
send and receive messages gathered from or scattered into noncontiguous
buffers using the sendmsg and recvmsg functions:
cc = sendmsg (s, msg, flags);

int cc, s;
struct msghdr *msg;
int flags;
cc = recvmsg (s, msg, flags);
int cc, s;
struct msghdr *msg;
int flags;

The structure msghdr is used to pass several parameters to sendmsg and
recvmsg that reduce the number of direct function arguments:
struct msghdr

{
 char *msg_name;
 int msg_namelen;
 struct iovec *msg_iov;
 int msg_iovlen;
 char *msg_accrights;
 int msg_accrightslen;
};

The list of noncontiguous buffer segments is defined by an array of iovec
structures:
struct iovec

{
 char *iov_base;
 int iov_len;
};

The sendmsg and recvmsg functions can be used with connected or unconnected
sockets. If the socket is unconnected, msg_name and msg_namelen specify the
destination or source of the message. Otherwise, these arguments should be null.
msg_iov specifies an array of noncontiguous buffer segments, and msg_iovlen is
the length of the array. The msg_accrights and msg_accrightslen arguments are
used to specify access rights for sockets in the UNIX domain (AF_UNIX) and
should be null for the Internet (AF_INET) domain.

Socket Library Functions 3–11

BSD Sockets

Using File I/O Functions

Standard UNIX file I/O functions can be used to read and write sockets as if
they were UNIX files. The socket descriptor is used in place of a file descriptor.

The read and write Functions

The read and write functions are used to receive and send contiguous data:
cc = read (s, buf, len);

int cc, s;
char *buf;
int len;
cc = write (s, buf, len);
int cc, s;
char *buf;
int len;

The readv and writev Functions

The readv and writev functions are used to receive and send noncontiguous
data:
cc = readv (s, iov, iovcnt);

int cc, s;
struct iovec *iov;
int iovcnt;
cc = writev (s, iov, iovcnt);
int cc, s;
struct iovec *iov;
int iovcnt;

The array specified by iov contains iovcnt structures, each of which defines the
beginning address and length of a buffer segment:
struct iovec

{
 char *iov_base;
 int iov_len;
};

By using the read, readv, write, and writev functions, the application program
can read from and write to sockets, terminals, and files without distinguishing
the descriptor type.

3–12 C/Socket Programmer Reference

BSD Sockets

Shutting Down Connections

An application program that no longer needs a connected socket can gracefully
shut the connection down using the shutdown function:
shutdown (s, direction);

int s, direction;

To discontinue receiving, set direction to zero.

To discontinue sending, set direction to one.

To shut the connection down in both directions, set direction to two.

If the underlying protocol supports unidirectional or bidirectional shutdown,
this indication is passed to the peer.

Note: A socket will not terminate until a close() has been issued for the socket.

A connection can also be gracefully closed and the socket eliminated from the
system by using the close function:
close (s);

int s;

Socket and Protocol Options

Sockets, and the underlying protocols, can support options. These options
control implementation or protocol-specific facilities. The getsockopt and
setsockopt functions are used to manipulate these options:
getsockopt (s, level, optname, optval, optlen)

int s, level, optname;
char *optval;
int *optlen;
setsockopt (s, level, optname, optval, optlen)
int s, level, optname;
char *optval;
int optlen;

The option optname is interpreted at the indicated protocol level for sockets. If a
value is specified with optval and optlen, it is interpreted by the software
operating at the specified level. The level SOL_SOCKET is reserved to indicate
options maintained by the socket facilities. Other level values indicate a
particular protocol that is to act on the option request; these values normally are
interpreted as a protocol number obtained with getprotobyname.

Socket Library Functions 3–13

BSD Sockets

Non-blocking I/O

Socket functions that cannot complete immediately because of flow control or
synchronization requirements block the application program until the operation
can be completed. This causes the task that issued the function to be suspended.

 If blocking is not desired, the non-blocking mode can be selected for a socket
using the ioctl function:
ioctl (s, request, argp);

int s;
unsigned long request;
char *argp;

If request is set to the constant FIONBIO, defined in <socket.h>, and the boolean
argument specified by argp is true (that is, non-zero), the socket is enabled for
non-blocking I/O. When operating in this mode, functions that would otherwise
block are completed with an error code indicating the blocking condition. The
application can then reissue the function at a later time when it can complete
without blocking.

MVS vs. UNIX

Many subtle differences exist between the Unicenter TCPaccess the BSD UNIX
socket implementations. For most users, these differences go unnoticed, but for
the more sophisticated application these differences should be noted and
accounted for. Another area that could cause the BSD UNIX socket programmer
some problems is realizing where sockets end and the UNIX operating system
begins. The programmer must understand the functioning of the MVS operating
system as opposed to the UNIX environment.

Here are some of the OS environment differences that must be realized before
porting a UNIX socket application to the MVS environment:

■ UNIX sockets are part of the kernel and run in supervisor mode. Unicenter
TCPaccess sockets are simply functions that the user program links to and
therefore run in user mode. Unicenter TCPaccess sockets do make calls to the
Unicenter TCPaccess subsystem via PC calls that run in a semi-privilege
mode. The main item to note is that Unicenter TCPaccess sockets do not have
the privilege or protection of BSD sockets because they run in user mode.
Thus it is impossible for them to check for access violations when passed
pointers to structures and buffers. Some of these types of errors can be
caught by the API, while others cause the user program to ABEND. UNIX
sockets are able to verify the validity of pointers and return an error
(EFAULT) if the pointer would allow access to a privileged or nonexistent
area of memory.

3–14 C/Socket Programmer Reference

BSD Sockets

■ The UNIX operating system lets a process fork a child process that is an
exact copy of the parent. This lets a parent open a socket or file and fork a
child that then has total access to this open socket or file. The MVS OS does
not provide this feature. In MVS a task can ATTACH another task, but the
two tasks must then coordinate access to any variables that the two may
share. Therefore it is impossible with sockets under MVS to pass a socket
from one task to another transparently. For programs that require multiple
tasks using multiple endpoints, the designer should consider an architecture
where one task is placed in charge of controlling the network activity; some
form of inter-task communication could be used where other tasks can
inform the task in charge about when to open and close endpoints, the
location of data buffers for input and output, and other control information
for the endpoints, or using the augmented socket library routines provided
to transfer ownership of the socket from one task to another. Sockets cannot
be passed across address spaces.

■ When a process terminates abnormally or does not close the sockets or files it
created during execution, the UNIX OS closes these gracefully on
termination of the process. With Unicenter TCPaccess sockets, the
termination routine is called via an atexit() entry point, and the open sockets
are closed abruptly. This may be viewed by the remote endpoint as an
abortive disconnect. To alleviate this problem as much as possible, socket
library programmers should explicitly close all sockets their programs create
before exiting. If the program terminates abnormally, users should be aware
of the consequences.

Socket Library Functions 3–15

BSD Sockets

General Socket Differences

This subsection covers most of the general differences between BSD UNIX
sockets and Unicenter TCPaccess sockets. In the later discussion of each function,
differences between Unicenter TCPaccess and BSD socket functions are listed.

Supported Sockets

Unicenter TCPaccess sockets are supported only in the Internet domain
(AF_INET).

The five types of sockets supported are listed in the following table:

Socket Type Description

SOCK_STREAM Use TCP for transport and provide a reliable byte
stream service.

SOCK_DGRAM Use UDP for transport and provide an unreliable
message service in connectionless mode only.
Formerly SOCK_CONNLESS in previous releases.

SOCK_CONNLESS Use UDP for transport and provide an unreliable
message service in connectionless mode only. No
longer actively supported, but provided for
backward compatibility - use SOCK_DGRAM

SOCK_ASSOC Use UDP for transport and provide an unreliable
message service with associations only. Formerly
SOCK_DGRAM

SOCK_RAW Use with UDP for transport and provide an
unreliable message service.

SOCK_DGRAM provides the same functionality as SOCK_DGRAM sockets in
the UNIX world. As an added feature, it is possible for sockets of the type
SOCK_ASSOC to simulate a connection-based server. A user can issue a listen()
function and when a datagram is received on this endpoint, the socket library
simulates a pending connection request that the user can acknowledge with the
accept() function call. This facility is not provided with UNIX implementation of
sockets.

3–16 C/Socket Programmer Reference

BSD Sockets

Note: The usage of SOCK_DGRAM and SOCK_CONNLESS has changed for
release 3.1 and higher of Unicenter TCPaccess and Unicenter TCPaccess sockets.
Existing programs using SOCK_CONNLESS should be re-compiled and relinked
substituting SOCK_DGRAM, although for backwards compatibility,
SOCK_CONNLESS has been mapped to SOCK_DGRAM. Socket programs using
associations previously used SOCK_DGRAM. These programs should be re-
compiled and re-linked to use SOCK_ASSOC.

Endpoints

Unicenter TCPaccess defines endpoints below 4096 as server endpoints only. On
a socket bind() the user can request an endpoint below 4096 only. This endpoint
can act only as a server. If no endpoint is requested, an endpoint with port
number 4096 or above is assigned. This endpoint can act only as a client.

Binding a Name to a Socket

When binding a name to a socket, only a port number is allowed. The Internet
address must be set to INADDR_ANY(0). Unicenter TCPaccess assigns the
proper address to the endpoint when it can determine which of the possible
network interfaces to use.

Urgent Data

The UNIX concept of urgent data—Out-of-Band (OOB)—is not supported in the
same fashion in the Unicenter TCPaccess socket implementation. UNIX
interprets OOB data to be a single byte of data within the stream. The UNIX
socket programmer can specify that this byte of data be read in-band or out-of-
band. The Unicenter TCPaccess subsystem does not allow for the urgent data
being read out-of-band. Therefore, you cannot specify the type of data to read
with any of the receive request functions (for example, MSG_OOB is not
supported, nor is SO_OOBINLINE option). Requests specifying either of these
parameters do not cause an error, but do not have any effect on the operation of
the socket library. In effect, the Unicenter TCPaccess socket implementation
operates as if the SO_OOBINLINE socket option has been set.

For SAS/C compiler users, these methods are available to determine if urgent
data has been received:

■ SIGURG signal

 This signal is generated by the socket library when urgent data is received.

■ select() on exceptional conditions

 If a select() call completes noting read availability and a pending exceptional
condition, then urgent data is available to be read.

Socket Library Functions 3–17

BSD Sockets

For IBM compiler users, only the select() on exceptional conditions method is
available for determining if urgent data has been received.

The ioctl() request SIOCATMARK can be used to determine specifically whether
the socket read pointer points to the last type of urgent data (the read pointer
points to the data to be read by the next socket read-oriented operation).

Error Codes

The error codes set in the global variable, errno, are all defined with the prefix E
to indicate “error”. Error codes are mapped to the corresponding error code for
the compiler that you are using, either SAS/C or IBM/C370.

Note: Versions of Unicenter TCPaccess sockets prior to release 3.1 had error
codes prefixed with ES and added a base error code. The current release of
Unicenter TCPaccess uses only E as the prefix to be more compatible with UNIX
sockets and maps the error code according to the compiler you are using, either
SAS/C or IBM/C370. For backward compatibility, the ES prefix will be accepted.

The value for errno may now be checked directly. A macro, GET_ERRNO had
been provided in earlier releases for querying the value of errno. This macro is
still available
if ((s = socket (AF_INET, SOCK_STREAM, 0)) < 0)

{
 if (GET_ERRNO == ESFAULT)
 {
 /* do something special for this type of error */
 }
}

Extra Functions

These extra functions have been added to the socket library to assist in the
development of applications using the socket library:

■ mvsselect()

 Provides the same features as select(), plus it allows selecting on an optional
generic ECB list.

■ closepass() and openold()

 When used together, lets a socket be passed to another task.

3–18 C/Socket Programmer Reference

BSD Sockets

ANSI-C Compatible Function Prototypes

The socket library functions all have ANSI-compatible function prototypes
associated with them. These prototypes provide for better error checking by the
C compiler. However, to the pre-ANSI programmer, these may be more of an
annoyance than a benefit. If you want to ignore these function prototypes, you
can define the term NOSLIBCK at compile time and the ANSI function
prototypes are ignored and the more common function definitions are used.

Socket Header Files

Socket Header File Description

acs.h This header file is no longer required but is included for backward compatibility.
It simply includes socket.h.

icssckt.h This header file is for use with Unicenter TCPaccess UNIX System Services
sockets. See the chapter titled “UNIX System Services MVS Integrated System
Sockets” for more information.

inet.h This header file takes the place of both in.h and inet.h (for those familiar with the
UNIX header file organization). It defines values common to the Internet. This
header file takes the place of both <netinet/in.h> and <inet.h> on UNIX.

ip.h This header file defines values used by the Inter-network Protocol (IP) and details
the format of an IP header and options associated with IP. The current
implementation of the socket library does not let the socket library user access the
IP layer, and therefore, this header file is of little use for the time being. Later
versions of the socket library will provide the ability to set IP options and at that
time this library will be required. This file is the same as <netinet/ip.h> on UNIX.

netdb.h This header file defines the structures used by the “get” services. It also provides
the function prototypes for this family of functions. This file has the same
functionality as <netdb.h> on UNIX.

errno.h This header file defines the errors that can be returned by the socket library when
requests are made to it. The value of errno can be determined directly, or, as in
previous releases, the macro GET_ERRNO provides for the proper access to the
errno variable of the socket library. This file has the same functionality as
<errno.h> on UNIX.

sockcfg.h This header file describes the socket configuration structure. This file has no
equivalent on UNIX.

socket.h This header file defines most of the variables and structures required to interface
properly to the socket library. It also provides the function prototypes in ANSI
form for those functions that are truly socket functions. This file takes the place of
<sys/types.h>, <sys/socket.h>, <sys/time.h>, <sys/param.h>, <sys/stat.h>,
<sys/ioctl.h>, and <sys/fcntl.h> on UNIX.

Socket Library Functions 3–19

BSD Sockets

Socket Header File Description

sockvar.h This header file is needed when compiling the socket configuration file (sockcfg.c)
and also is used internally by the socket library. It is not needed to interface to the
socket library. This file has the same functionality as <sys/socketvar.h> on UNIX.

tcp.h This header file describes those options that may be set for a socket of type
SOCK_STREAM. This file has the same functionality as <netinet/tcp.h> on UNIX.

uio.h This header file describes the structures necessary to use vectored buffering of the
socket library. Due to ANSI checking, this header file must be included in any
header file that includes socket.h. This file has the same functionality as
<sys/uio.h> on UNIX.

user.h This header file is needed when compiling the socket configuration file (sockcfg.c)
and is used internally by the socket library. It is not needed to interface to the
socket library. There is no equivalent for this file on UNIX.

Options

This implementation of sockets does not support all of the option facilities of the
BSD UNIX version. No options are supported at the IP or UDP levels. In
addition, no options can be set at the interface or driver levels. At the socket level
(SOL_SOCKET), some additional options have been added. For further
explanation of those options supported by this implementation, see getsockopt()
and setsockopt() .

Error Codes

Various error codes that are stored in the external variable errno have been
added. Those that are particular to a function call are detailed in the section
describing the function. These error codes can occur with any function call:

■ ECONFIG

 This error can occur when the application first opens a socket. It indicates
that an error was detected with the socket configuration or when initializing
a user session with the API. This type of error occurs only on a call to the
socket() function. To further isolate this type of error, users should configure
their socket configurations to allow extended error messages (That is, set
EXTERRNOMSGS and CONFIGDEBUG on in sockcfg.flags) and
configuration debug. Once an error occurs, user programs should issue a call
to perror() to view the error message generated. Details and troubleshooting
action for this type of problem are covered in the Messages and Codes.

3–20 C/Socket Programmer Reference

UNIX File I/O Functions

■ ESYS

 This error can occur when the underlying API malfunctions. If, during
normal operation, the API returns an error code that should not occur during
the function execution, this error is returned. The user should ensure the
proper operation of the API or Unicenter TCPaccess before trying to isolate
this problem further.

■ ETPEND

 This error code is set when the API is stopped or terminates abnormally. The
user program should close all endpoints at this time. At some interval the
user program can attempt to reopen sockets to see if the API has been
restarted. When ETPEND is no longer returned, the API has restarted and
the user program can continue to use the network facilities.

UNIX File I/O Functions
BSD UNIX integrates socket and file I/O facilities in such a way that UNIX
system calls that normally are used to read and write disk files can also be used
to read and write sockets. This is particularly convenient when a process inherits
a socket or file descriptor from another process. The inheriting process can
process the input or output stream without knowing whether it is associated
with a socket or file.

Example A filtering process that receives its input from STDIN and writes its output to
STDOUT need not distinguish socket descriptors from file descriptors.

Using UNIX Routines in MVS

In a standard UNIX environment, if a file I/O function is issued using a socket
descriptor in place of the normal file descriptor, the file I/O routine can route the
request to the appropriate socket I/O routine because both execute in the UNIX
kernel. However, in an MVS environment where UNIX file I/O routines are
being simulated, restrictions might exist.

UNIX file I/O operations are simulated by library routines that translate I/O
requests into operations compatible with MVS access methods. Generally, these
library routines are provided by the vendor of the C compiler used to compile
the application program. Therefore, the socket library functions provided with
the API must be integrated with these routines if the application program
intends to use UNIX file I/O functions to manipulate sockets and files at the
same time.

Socket Library Functions 3–21

Socket Library Functions

Integrating API Socket Functions with UNIX File I/O

One of these techniques can be used to integrate the Unicenter TCPaccess socket
functions with UNIX file I/O:

■ The file I/O function provided with the C compiler runtime library can be
modified to call the appropriate socket function if the descriptor is associated
with a socket. This presumes that the compiler vendor provides source code
for the runtime library.

■ If source code is not available, the technique is to front-end the UNIX file
I/O function with a similarly-named function and to rename the original
member in the library. Intercepted requests can then be routed to the
appropriate function.

Descriptions are provided for those UNIX file I/O functions that also operate on
sockets and are supported by the Unicenter TCPaccess API. Since source code is
furnished for these library functions, they can serve as the basis for front-ending
existing functions that simulate UNIX file I/O. The descriptions provided apply
only when the associated function is used to operate on a socket.

Socket Library Functions
This section provides detailed coding information for the Unicenter TCPaccess
socket functions.

The socket library functions are presented in alphabetical order. Each page that
pertains to a particular function has the name of the function in the upper
outside corner.

Because of the different operating system environment within which the API
sockets must operate, a few additional functions have been included in the
socket library. These functions simplify integration of the socket library into the
IBM MVS environment.

Note: These functions are closepass(), mvsselect(), and openold(), and are
detailed in the socket functions section.

3–22 C/Socket Programmer Reference

Socket Library Functions

Component Functional Description

Following a brief introductory statement summarizing its use, each function is
described using the documentation style of UNIX. This table lists the basic
components of each function description:

Synopsis

A synopsis of the function is given in C language format. The function prototype
statement is listed showing all function arguments, followed by declaration
statements defining the format of each argument. If the function returns a value
other than the normal success/failure indication, the function prototype is
shown as an assignment statement.

Description

A description of the function is given, including any special rules for specifying
arguments, alternative uses of the function, and any results returned.

Return Value

The function’s return value, if any, is defined.

Error Codes

Error codes that are returned when the function completes abnormally are
defined. Generally, these are error codes defined as constants in <errno.h> and
are returned in the global integer errno.

Implementation Notes

Any difference between the Unicenter TCPaccess API and BSD implementation
of a function is noted here. Side effects that are a consequence of the operating
system environment are also noted. If no implementation notes are listed, the
Unicenter TCPaccess API and BSD implementations are functionally equivalent.

See Also References to related functions are given.

Socket Library Functions 3–23

accept()

accept()
Accept a connection on a socket.

Synopsis
#include <socket.h>
#include <uio.h>
int accept (s , name, namelen)
int s;
struct sockaddr *name;
int *namelen;

Description Parameters:
s A socket created with socket(), bound to a name with bind(), and

listening for connections after a listen().

name A result parameter that is filled in with the name of the connecting
entity, as known to the communications layer. The exact format of the
name parameter is determined by the domain in which the
communication is occurring.

namelen A value-result parameter and should initially contain the amount of
space pointed to by name; on return it contains the actual length (in
bytes) of the name returned. This function is used with connection-
based or association-based socket types, currently with
SOCK_STREAM and SOCK_ASSOC, respectively.

The accept() function is used to accept a pending connection request queued for
a socket that is listening for connections. A new socket is created for the
connection, and the old socket continues to be used to queue connection
requests.

The accept() function extracts the first connection on the queue of pending
connections, creates a new socket with the same properties of s, and allocates a
new file descriptor for the socket. If no pending connections are present on the
queue, and the socket is not marked as non-blocking, accept() blocks the caller
until a connection is present. If the socket is marked non-blocking and no
pending connections are present on the queue, accept() returns an error. The
accepted socket, ns, cannot be used to accept more connections. The original
socket s remains open.

It is possible to select() a socket for the purposes of doing an accept() by selecting
it for read.

Return Value If the accept() function succeeds—returns a non-negative integer that is a
descriptor for the accepted socket. Otherwise, the value -1 is returned, and the
error code stored in the global integer errno indicates the nature of the error.

3–24 C/Socket Programmer Reference

accept()

Error Codes The accept() function returns the following error codes (from <errno.h>) in the
global integer errno:
EBADF The descriptor is invalid.

ECONNABORTED The incoming connection request was aborted by
the remote endpoint.

ECONNREFUSED The remote endpoint refused to complete the
connection sequence.

ECONNRESET The remote endpoint reset the connection
request.

EDESTUNREACH Remote destination is now unreachable.

EFAULT The name pointer, name, or the name length
pointer, namelen, points to inaccessible storage.

EHOSTUNREACH Remote host is now unreachable.

EINVAL The socket is not listening for connections.

EMFILE The socket descriptor table is full. There is no
room to save the new socket descriptor that
accept() normally returns.

ENFILE New socket cannot be opened due to API
resource shortage or user endpoint allocation
limits.

ENETDOWN Local network interface is down.

ENOMEM No memory is available to allocate space for the
new socket.

EOPNOTSUPP The referenced socket is not of type
SOCK_STREAM or SOCK_ASSOC.

ETIMEDOUT The connection request by the remote endpoint
timed out.

ETIMEDOUT Remote endpoint timed out connection.

EWOULDBLOCK The socket is marked non-blocking and no
connections are present to be accepted.

Implementation
Notes

Unlike UNIX sockets, this implementation does let SOCK_ASSOC (UDP
sockets using association-oriented operation) listen for and accept connections.

See Also bind(), connect(), listen(), select(), socket(), closepass(), openold()

Socket Library Functions 3–25

bind()

bind()
Bind a name to a socket.

Synopsis #include <socket.h>
#include <uio.h>
int bind (s, name, namelen)
int s;
struct sockaddr *name;
int namelen;

Description Assigns a name to an unnamed socket that represents the address of the local
communications endpoint. For sockets of type SOCK_STREAM, the name of
the remote endpoint is assigned when a connect() or accept() function is
executed.

When a socket is created with socket(), it exists in a name space (address family),
but has no name assigned. bind() requests that name be assigned to the socket.
The rules used in name binding vary between communication domains.

Return Value If bind() is successful, a value of zero is returned. A return value of -1 indicates
an error, and the error code stored in the global integer errno indicates the
nature of the error.

Error Codes The bind() function returns these error codes (from <errno.h>) in the global
integer errno:
EACCES The requested address is protected, and the current

user has inadequate permission to access it.

EADDRINUSE The specified address is already in use.

EADDRNOTAVAIL The specified address is not available. This can
occur if the address portion of the name is not equal
to INADDR_ANY or the port is greater than or
equal to IPPORT_RESERVED.

EAFNOSUPPORT The address family requested in the name does not
equal AF_INET.

EBADF The argument s is not a valid descriptor.

EFAULT The pointer, name, points to inaccessible memory.

EINVAL The socket is already bound to an address.

EINVAL The length of the name, namelen, does not equal the
size of a sockaddr_in structure.

3–26 C/Socket Programmer Reference

close()

Implementation
Notes

Currently, only names from the Internet domain, AF_INET, may be bound to a
socket. The address portion of the name must equal INADDR_ANY, else
EINVAL is returned. Server and client ports are reserved differently with this
implementation than with UNIX. Ports 0 to 4095 are reserved for server ports,
and 4096 and up are for client ports. The user should only assign a port when
acting as a server and should specify a port of zero when doing a bind() for a
client port.

See Also connect(), listen(), socket(), getsockname()

close()
Delete a socket.

Synopsis
#include <socket.h>
#include <uio.h>
int close (s)
int s;

Description Deletes a socket descriptor created by the socket() function. On completion, the
endpoint no longer exists in the communications domain.

close() deletes the socket descriptor, s, from the internal descriptor table
maintained for the application program and terminates the existence of the
communications endpoint. If the socket was connected, the connection is
terminated. The connection is released as much as possible, in an orderly
fashion. Data that has yet to be delivered to the remote endpoint remains
queued, because the endpoint tries to deliver it before a timeout causes the local
endpoint to be destroyed and removed from the system.

Sockets use MVS STIMERM services. Socket applications may use up to fifteen
STIMERM calls per task control block (TCB). STIMER CANCEL ID=ALL must
not be used by socket applications.

Socket Library Functions 3–27

closelog()

Return Value If close() is successful, a value of zero is returned. A return value of -1 indicates
an error, and the error code stored in the global integer errno indicates the
nature of the error.
EBADF The s argument is not an active descriptor.

ECONNABORTED The connection was aborted by the remote
endpoint.

ECONNREFUSED The remote endpoint refused to continue the
connection.

ECONNRESET The remote endpoint reset the connection
request.

EDESTUNREACH Remote destination is now unreachable.

EHOSTUNREACH Remote host is now unreachable.

ENETDOWN Local network interface is down.

ETIMEDOUT The connection timed out.

See Also accept(), bind(), connect(), shutdown(), socket(), closepass(),

closelog()
Close log file.

Synopsis
#include <syslog.h>
void closelog ();

Description Closes the log file opened with openlog().

See Also openlog(), syslog(), vsyslog()

3–28 C/Socket Programmer Reference

closepass()

closepass()
Prepare to pass a socket to another task

Synopsis
#include <so
cket.h>
#include <uio.h>
unsigned long closepass (fd)
int fd;

Description Retrieves a special token about a socket. This token is used later by openold() to
open the socket by another task.

The closepass() function is used by the owning task of a socket to prepare the
socket to be passed to another task within the same address space. fd is the
socket descriptor of the socket to be passed. A token is returned at successful
completion of the call to closepass.

The token must be passed by the owning task to the receiving task via
application-specific interprocess communication. Once the token has been
passed to the receiving task, the owning task should use the close() function to
close the socket. At approximately the same time, the receiving task should call
openold() to actually receive ownership of the socket. The call to close() blocks
until the receiving task completes its openold() request.

This is a sample of events that must occur in time-ordered sequence. Assume
that the main task has opened a socket, using socket() or accept():

Main Task Subtask

1) Call closepass(fd).

2) Send IPC to subtask passing token returned
by closepass.

3) Call close(fd). On return from close, main
task can no longer reference this fd.

 4) Receive token from main task via application-
dependent IPC.

 5) Call openold(token).

6) Upon return from close, main task may no
longer reference fd.

 7) Subtask may now use fd returned by openold to
access network.

 8) Subtask is through with socket.

 9) Call close(fd) to remove socket.

Socket Library Functions 3–29

connect()

Return Value If successful, closepass() returns a token that relates to the socket. Otherwise,
the value -1 is returned, and the error code stored in the global integer errno
indicates the nature of the error.

Error Codes The closepass() function returns these error codes (from <errno.h>) in the
global integer errno:

EBADF

The fd specifies an invalid descriptor.

Implementation
Notes

The implementation of this function is provided to ease the development of
server-oriented socket applications using the socket library.

See Also accept(), close(), openold(), socket()

connect()
Initiate a connection on a socket.

Synopsis
#include <socket.h>
##include <uio.h>
int connect (s, name, namelen)
int s;
struct sockaddr *name;
int namelen;

Description Assigns the name of the peer communications endpoint. If the socket is of type
SOCK_STREAM, a connection is established between the endpoints. If the
socket is of type SOCK_ASSOC, a permanent association is maintained
between the endpoints until changed with another connect() function.

Parameters:
 s A socket of type:

SOCK_ASSOC - Specifies the peer with which the socket is to
be associated; this address is where datagrams are to be sent
and is the only address from which datagrams are to be
received.
SOCK_STREAM - Attempts to make a connection to another
socket.

name Specifies the other socket, which is an address in the
communications domain of the socket. Each communications
domain interprets the name parameter in its own way.

namelen Specifies the size of the name array.

3–30 C/Socket Programmer Reference

connect()

Generally, stream sockets can successfully connect() only once; datagram sockets
can use connect() multiple times to change their association. Datagram sockets
can dissolve the association by connecting to an invalid address, such as a null
address.

Return Value If the connection or association succeeds, a value of zero is returned. Otherwise,
the value -1 is returned, and the error code stored in the global integer errno
indicates the nature of the error.

Error Codes The connect() function returns these error codes (from <errno.h>) in the global
integer errno:
EADDRINUSE The address is already in use.

EADDRNOTAVAIL The specified address is not available. This is
caused by the name specifying a remote port of
zero or a remote address of INADDR_ANY (0).

EAFNOSUPPORT Addresses in the specified address family cannot
be used with this socket.

EALREADY The socket is non-blocking and a previous
connection attempt has not yet been completed.

EBADF The argument s is not a valid descriptor.

ECONNABORTED The incoming connection request was aborted by
the remote endpoint.

ECONNREFUSED The attempt to connect was forcefully rejected.

ECONNRESET The remote endpoint reset the connection
request.

EDESTUNREACH Remote destination is now unreachable.

EFAULT The pointer name points to inaccessible memory.

EHOSTUNREACH Remote host is now unreachable.

EINPROGRESS The socket is non-blocking and the connection
cannot be completed immediately. It is possible
to select() for completion by selecting the socket
for writing.

EINVAL The length of the endpoint name, namelen, does
not equal the size of a sockaddr_in structure.

EISCONN The socket is already connected and does not
allow multiple connects with the same socket.

ENETDOWN Local network interface is down.

ENETUNREACH The network is not reachable from this host.

Socket Library Functions 3–31

fcntl()

EOPNOTSUPP The socket is listening for incoming connection
requests and therefore cannot also be used for
outgoing connection requests.

EOPNOTSUPP The socket does not support the connecting or
associating of two endpoints. It operates only in
connectionless mode.

ETIMEDOUT Connection establishment timed out without
establishing a connection.

Implementation
Notes

Unlike UNIX sockets, this implementation does allow SOCK_ASSOC (UDP
sockets using association oriented operation) to listen for and accept
connections.

See Also accept(), select(), socket(), getsockname()

fcntl()
File control.

Synopsis #include <socket.h>
#include <uio.h>
int fcntl (s, cmd, arg)
int s;
int cmd;
int arg;

Description Provides control over file descriptors. Asynchronous notification and non-
blocking I/O can be turned on and off using this function call.

fcntl() performs a variety of control functions on a socket, indicated by s. An fcntl
cmd has encoded in it whether the argument, argp, is an input parameter
supplied by the caller or an output parameter returned by the fcntl() function.

Permissible values for cmd are defined in <socket.h>. The current
implementation of fcntl() supports these requests:

F_GETFD Used to get the file descriptor flags.

F_SETFD Used to set the file descriptor flags.

F_GETFL Used to get the socket status flags.

F_SETFL Used to set the socket status r flags.

3–32 C/Socket Programmer Reference

fcntl()

The flags for F_GETFL and F_SETFL are:

FNDELAY Select non-blocking I/O; if no data is available to a read

system call or if a write operation would block, the call
returns a -1 with the error EWOULDBLOCK.

FASYNC Enable the SIGIO, SIGURG, and SIGPIPE signals to be sent
to the process when the triggering events occur.

Return Value If fcntl() is successful, a value of zero is returned. A return value of -1 indicates
an error, and the error code stored in the global integer errno indicates the
nature of the error.

Error Codes The fcntl() function returns these error codes (from <errno.h>) in the global
integer errno:

EBADF The s argument is not a valid descriptor.

EINVAL cmd or arg is invalid or not supported by this
implementation of fcntl().

Implementation
Notes

When setting the socket descriptor flags with the command of F_SETFL, the
request is destructive to the variable that saves the flags. To set both the
FNDELAY and FASYNC flags, a single request must be made specifying both
options.

See Also accept(), connect(), recv(), recvfrom(), recvmsg(), send(), sendmsg(), sendto(),
write()

Socket Library Functions 3–33

gethostbyaddr()

gethostbyaddr()
Get host information by address.

Synopsis
#include <netdb.h>
struct hostent *gethostbyaddr (addr, len, type)
char *addr;
int len, type;

Description Obtains the official name of a host when its network address is known. A name
server is used to resolve the address if one is available; otherwise, the name is
obtained (if possible) from a database maintained on the local system.

gethostbyaddr() returns a pointer to an object with the structure hostent. This
structure contains either the information obtained from the local name server or
extracted from an internal host database whose function is similar to /etc/hosts
on a UNIX-based system. If the local name server is not running,
gethostbyaddr() looks up the information in the internal host database.
struct hostent

{
 char *h_name;
 char **h_aliases;
 int h_addrtype;
 int h_length;
 char **h_addr_list;
};
#define h_addr h_addr_list [0]

Parameters:
h_name Official name of the host.

h_aliases A zero terminated array of alternate names for the host.

h_addrtype The type of address being returned; currently always
AF_INET.

h_length The length, in bytes, of the address.

h_addr_list A zero-terminated array of network addresses for the
host.

h_addr The first address in h_addr_list; this is for backward
compatibility.

All information is contained in a static area so it must be copied if it is to be
saved. Only the Internet address format is currently supported.

Return Value The gethostbyaddr() function returns a pointer to the hostent structure, if
successful. If unsuccessful, a null pointer is returned, and the external integer
h_errno is set to indicate the nature of the error.

3–34 C/Socket Programmer Reference

gethostbyname()

Error Codes The gethostbyaddr() function can return these error codes in the external
integer h_errno:
HOST_NOT_FOUND No such host is known.

NO_ADDRESS The requested name is valid, but does not have an
address in the Internet domain.

NO_RECOVERY This is a nonrecoverable error.

TRY_AGAIN This is usually a temporary error and means that
the local server did not receive a response from an
authoritative server. A retry at some later time
might succeed.

See Also gethostbyname()

gethostbyname()
Get host information by name.

Synopsis #include <netdb.h>
struct hostent *gethostbyname (name)
char *name;

Description Obtains the network address (or list of addresses) of a host when its official
name (or alias) is known. A name server is used to resolve the name if one is
available; otherwise, the address is obtained (if possible) from a database
maintained on the local system.

The gethostbyname() function returns a pointer to an object with the following
structure. This structure contains either the information obtained from the local
name server or extracted from an internal host database whose function is
similar to /etc/hosts on a UNIX-based system. If the local name server is not
running, gethostbyname() looks up the information in the internal host database.
struct hostent

{
 char *h_name;
 char **h_aliases;
 int h_addrtype;
 int h_length;
 char **h_addr_list;
};
#define h_addr h_addr_list [0]

Socket Library Functions 3–35

gethostbyname()

Parameters:
h_name Official name of the host

h_aliases A zero-terminated array of alternate names for the host

h_addrtype The type of address being returned; currently always
AF_INET

h_length The length, in bytes, of the address

h_addr_list A zero-terminated array of network addresses for the host

h_addr The first address in h_addr_list (this is for backward
compatibility)

All information is contained in a static area so it must be copied if it is to be
saved. Only the Internet address format is currently understood.

Return Value The gethostbyname() function returns a pointer to the hostent structure, if
successful. If unsuccessful, a null pointer is returned, and the external integer
h_errno is set to indicate the nature of the error.

Error Codes The gethostbyname() function can return these error codes in the external
integer h_errno:
HOST_NOT_FOUND No such host is known.

NO_ADDRESS The requested name is valid, but does not have an
address in the Internet domain.

NO_RECOVERY This is a nonrecoverable error.

TRY_AGAIN This is usually a temporary error and means that
the local server did not receive a response from an
authoritative server. A retry at some later time
might succeed.

See Also gethostbyaddr()

3–36 C/Socket Programmer Reference

gethostname()

gethostname()
Get name of local host.

Synopsis
#include <socket.h>
#include <uio.h>
int gethostname (name, namelen)
char *name;
int namelen;

Description Obtains the name of the local host. This is the official name by which other
hosts in the communications domain reference it. Generally, a host belonging to
multiple communication domains, or connected to multiple networks within a
single domain, has one official name by which it is known.

The gethostname() function returns the standard host name for the local system.
The parameter namelen specifies the size of the name array. The returned name
is null-terminated unless insufficient space is provided. Host names are limited
to MAXHOSTNAMELEN (from <socket.h>) characters, which is currently 64.

Return Value If gethostname() is successful, a value of zero is returned. A return value of -1
indicates an error. See Implementation Notes in this section for more information.

Error Codes The gethostname() function returns these error codes (from <errno.h>) in the
global integer errno. If the call is successful, zero is returned to the user and the
name of the local host is placed in the user-provided buffer. If unsuccessful, a
minus one (-1) is returned, and the external integer h_errno is set to indicate the
nature of the error.

The gethostname() function can return, in the external integer h_errno, the error
code HOST_NOT_FOUND, which indicates that the host name is not found or
the namelen parameter is less than or equal to zero.

Implementation
Notes

On a UNIX system this request is a system call. It obeys all of the standards for
system calls to include setting errno when an error is detected. This
implementation, however, treats this function as a network database call and
uses the external variable h_errno to describe errors to the user.

Note: This function does not set errno.

Socket Library Functions 3–37

getnetbyaddr()

getnetbyaddr()
Get network information by address.

Synopsis
#include <netdb.h>
struct netent *getnetbyaddr (net, type)
long net;
int type;

Description Obtains the official name of a network when the network address (or network
number) is known. This information is acquired from a network database
maintained by the local system.

The getnetbyaddr() function returns a pointer to an object with this structure
containing information extracted from an internal network database. This
database is similar in function to the /etc/networks file on UNIX-based systems:
struct netent

{
 char *n_name;
 char **n_aliases;
 int n_addrtype;
 u_long n_net;
};

Parameters:
n_name The official name of the network.

n_aliases A zero-terminated list of alternate names for the network.

n_addrtype The type of the network number returned; currently only
AF_INET.

n_net The network number in machine byte order.

All information is contained in a static area and must be copied if it is to be
saved. The getnetbyaddr() function sequentially searches from the beginning of
the network database until a matching network address and type is found, or
until the end of the database is reached. Only the Internet address format is
currently supported.

Return Value The getnetbyaddr() function returns a pointer to the netent structure, if
successful. If unsuccessful, a null pointer is returned.

3–38 C/Socket Programmer Reference

getnetbyaddr()

Error Codes The getnetbyaddr() function may return these error codes in the external
integer h_errno:
NET_NOT_FOUND No such network is known.

NO_ADDRESS The requested name is valid, but does not have an
address in the Internet domain.

NO_RECOVERY This is a nonrecoverable error.

TRY_AGAIN This is usually a temporary error and means that
the local server did not receive a response from an
authoritative server. A retry at some later time
might succeed.

Implementation
Notes

The external variable h_errno is not set by UNIX implementations of this
function.

See Also getnetbyname()

Socket Library Functions 3–39

getnetbyname()

getnetbyname()
Get network information by name.

Synopsis
#include <netdb.h>
struct netent *getnetbyname (name)
char *name;

Description Obtains the network number (or list of network numbers) of a network when
the official name of the network is known. This information is acquired from a
network database maintained by the local system.

getnetbyname() returns a pointer to an object with this structure containing
information extracted from an internal network database. This database is
similar in function to the /etc/networks file on UNIX-based systems:
struct netent

{
 char *n_name;
 char **n_aliases;
 int n_addrtype;
 u_long n_net;
};

Parameters:
n_name The official name of the network.

n_aliases A zero-terminated list of alternate names for the network.

n_addrtype The type of network number returned; currently always
AF_INET.

n_net The network number in machine byte order.

All information is contained in a static area and must be copied if it is to be
saved. The getnetbyname() function sequentially searches from the beginning of
the network database until a matching network name is found, or until the end
of the database is reached. Only the Internet address format is currently
understood.

Return Value The getnetbyname() function returns a pointer to the netent structure, if
successful. If unsuccessful, a null pointer is returned.

3–40 C/Socket Programmer Reference

getopts

Error Codes The getnetbyname() function may return these error codes in the external
integer h_errno:
NET_NOT_FOUND No such network is known.

NO_ADDRESS The requested name is valid, but does not have an
address in the Internet domain.

NO_RECOVERY This is a nonrecoverable error.

TRY_AGAIN This is usually a temporary error and means that the
local server did not receive a response from an
authoritative server. A retry at some later time may
succeed.

Implementation
Notes

The external variable h_errno is not set by UNIX implementations of this
function.

See Also getnetbyaddr()

getopts
Parse command options.

Synopsis
getopts optstring name [argument...]
/usr/lib/getoptcvt [-b] filename
/usr/lib/getoptcvt

Description Parses positional parameters and to check for valid options.

optstring must contain the option letters the command using getopts will
recognize; if a letter is followed by a colon, the option is expected to have an
argument, or group of arguments, which must be separated from it by white
space.

Socket Library Functions 3–41

getpeername()

getpeername()
Get name of connected peer.

Synopsis
#include <socket.h>
#include <uio.h>
int getpeername (s, name, namelen)
int s;
struct sockaddr *name;
int *namelen;

Description Gets the name of a connected peer. The name was assigned when a connect() or
accept() function was successfully completed.

getpeername() returns the name of the peer connected to socket s. The namelen
parameter should be initialized to indicate the amount of space pointed to by
name. On return it contains the actual size of the name returned (in bytes). The
name is truncated if the buffer provided is too small.

Return Value If getpeername() is successful, a value of zero is returned. A return value of -1
indicates an error, and the error code stored in the global integer errno
indicates the nature of the error.

Error Codes The getpeername() function returns these error codes (from <errno.h>) in the
global integer errno:
EBADF The argument s is not a valid descriptor.

EFAULT Either the name pointer or name length pointer points
to inaccessible memory.

EINVAL The name length passed by the user is less than or
equal to zero.

ENOTCONN The socket is not connected.

See Also accept(), bind(), socket(), getsockname()

3–42 C/Socket Programmer Reference

getprotobyname()

getprotobyname()
Get protocol information by name.

Synopsis
#include <netdb.h>
struct protoent *getprotobyname (name)
char *name;

Description Gets the protocol number when the official protocol name is known. This
information is acquired from a protocol database maintained by the local
system.

getprotobyname() returns a pointer to an object with this structure containing
information extracted from an internal network protocol database. This database
is similar in function to the /etc/protocols file on UNIX-based systems:
struct protoent

{
 char *p_name;
 char **p_aliases;
 int p_proto;
};

p_name The official name of the protocol

p_aliases A zero-terminated list of alternate names for the protocol

p_proto The protocol number

All information is contained in a static area and must be copied if it is to be
saved. The getprotobyname() function sequentially searches from the beginning
of the network protocol database until a matching protocol name is found, or
until the end of the database is reached.

Return Value The getprotobyname() function returns a pointer to the protoent structure, if
successful. If unsuccessful, a null pointer is returned.

Error Codes The getprotobyname() function may return these error codes in the external
integer h_errno:
NO_ADDRESS The requested name is valid, but does not

have an address in the Internet domain.

NO_RECOVERY This is a nonrecoverable error.

PROTO_NOT_FOUND No such protocol is known.

TRY_AGAIN This is usually a temporary error and means
that the local server did not receive a
response from an authoritative server. A
retry at some later time might succeed.

Socket Library Functions 3–43

getprotobynumber()

Implementation
Notes

The external variable h_errno is not set by UNIX implementations of this
function.

See Also getprotobynumber()

getprotobynumber()
Get protocol information by number.

Synopsis
#include <netdb.h>
struct protoent *getprotobynumber (proto)
int proto;

Description Obtains the official name of a protocol when the protocol number is known.
This information is acquired from a network database maintained by the local
system.

getprotobynumber() returns a pointer to an object with this structure containing
information extracted from an internal network protocol database. This database
is similar in function to the /etc/protocols file on UNIX-based systems:
struct protoent

{
 char *p_name;
 char **p_aliases;
 int p_proto;
};

Parameters:
p_name The official name of the protocol

p_aliases A zero-terminated list of alternate names for the
protocol

p_proto The protocol number

All information is contained in a static area and must be copied if it is to be
saved. The getprotobynumber() function sequentially searches from the
beginning of the network protocol database until a matching protocol number is
found, or until the end of the database is reached.

Return Value If successful, the getprotobynumber() function returns a pointer to the protoent
structure. If unsuccessful, a null pointer is returned.

3–44 C/Socket Programmer Reference

getservbyname()

Error Codes The getprotobynumber() function may return these error codes in the external
integer h_errno:
NO_ADDRESS The requested name is valid, but does not

have an address in the Internet domain.

NO_RECOVERY This is a nonrecoverable error.

PROTO_NOT_FOUND No such protocol is known.

TRY_AGAIN This is usually a temporary error and means
that the local server did not receive a response
from an authoritative server. A retry at some
later time might succeed.

Implementation
Notes

The external variable h_errno is not set by UNIX implementations of this
function.

See Also getprotobyname()

getservbyname()
Get service information by name.

Synopsis
#include <netdb.h>
struct servent *getservbyname (name, proto)
char *name, *proto;

Description Obtain sthe port number associated with a service when its official name is
known. This information is acquired from a service database maintained by the
local system.

getservbyname() returns a pointer to an object with this structure containing
information extracted from an internal network service database. This database
is similar in function to the /etc/services file on UNIX-based systems:
struct servent

{
 char *s_name;
 char **s_aliases;
 int s_port;
 char *s_proto;
};

Socket Library Functions 3–45

getservbyname()

s_name The official name of the service.

s_aliases A zero-terminated list of alternate names for the
service.

s_port The port number at which the service resides.

s_proto The name of the protocol to use when contacting the
service.

All information is contained in a static area and must be copied if it is to be
saved. The getservbyname() function sequentially searches from the beginning
of the network service database until a matching service name is found, or until
the end of the database is reached. If a protocol name is also supplied (not null),
searches must also match the protocol.

Return Value The getservbyname() function returns a pointer to the servent structure, if
successful. If unsuccessful, a null pointer is returned.

Error Codes The getservbyname() function may return these error codes in the external
integer h_errno:
NO_ADDRESS The requested name is valid, but does not have an

address in the Internet domain.

NO_RECOVERY This is a nonrecoverable error.

SERV_NOT_FOUND No such service is known.

TRY_AGAIN This is usually a temporary error and means that
the local server did not receive a response from an
authoritative server. A retry at some later time
might succeed.

Implementation
Notes

The external variable h_errno is not set by UNIX implementations of this
function.

See Also getservbyport(), getprotobyname()

3–46 C/Socket Programmer Reference

getservbyport()

getservbyport()
Get service information by port.

Synopsis
#include <netdb.h>
struct servent *getservbyport (port, proto)
int port;
char *proto;

Description Obtains the official name of a service when the port number associated with the
service is known. This information is acquired from a service database
maintained by the local system.

getservbyport() returns a pointer to an object with this structure containing
information extracted from an internal network service database. This database
is similar in function to the /etc/services file on UNIX-based systems:
struct servent

{
 char *s_name;
 char **s_aliases;
 int s_port;
 char *s_proto;
};

Parameters:

s_name The official name of the service.

s_aliases A zero-terminated list of alternate names for the service.

s_port The port number at which the service resides.

s_proto The name of the protocol to use when contacting the service.

All information is contained in a static area and must be copied if it is to be
saved. The getservbyport() function sequentially searches from the beginning of
the network service database until a matching port number is found, or until the
end of the database is reached. If a protocol name is also supplied (not null),
searches must also match the protocol.

Return Value The getservbyport() function returns a pointer to the servent structure, if
successful. If unsuccessful, a null pointer is returned.

Socket Library Functions 3–47

getsockname()

Error Codes The getservbyport() function can return these error codes in the external integer
h_errno:
NO_ADDRESS The requested name is valid, but does not have

an address in the Internet domain.

NO_RECOVERY This is a nonrecoverable error.

SERV_NOT_FOUND No such service is known.

TRY_AGAIN This is usually a temporary error and means that
the local server did not receive a response from
an authoritative server. A retry at some later
time may succeed.

Implementation
Notes

The external variable h_errno is not set by UNIX implementations of this
function.

See Also getservbyname(), getprotobyname()

getsockname()
Get socket name.

Synopsis
#include <socket.h>
#include <uio.h>
int getsockname (s, name, namelen)
int s;
struct sockaddr *name;
int *namelen;

Description Obtains the name assigned to a socket, which is the address of the local
endpoint and was assigned with a bind() function.

getsockname() returns the current name for the specified socket. The namelen
parameter should be initialized to indicate the amount of space pointed to by
name. On return, it contains the actual size of the name returned (in bytes).

Return Value If getsockname() is successful, a value of zero is returned. A return value of -1
indicates an error, and the error code stored in the global integer errno
indicates the nature of the error.

3–48 C/Socket Programmer Reference

getsockopt()

Error Codes The getsockname() function returns these error codes (from <errno.h>) in the
global integer errno:
EBADF The argument s is not a valid descriptor.

EFAULT Either the name pointer or name length pointer points to
inaccessible memory.

EINVAL The name length passed by the user is less than or equal to zero.

See Also bind(), socket()

getsockopt()
Get options on a socket.

Synopsis
#include <socket.h>
#include <uio.h>
int getsockopt (s, level, optname, optval, optlen)
int s, level, optname;
char *optval;
int *optlen;

Description Retrieves options currently associated with a socket. Options always exist at the
socket level and can also exist at layers within the underlying protocols.
Options are set with the setsockopt() function. Options can exist at multiple
protocol levels; they are always present at the uppermost socket level.

When retrieving socket options, the level at which the option resides and the
name of the option must be specified. To retrieve options at the socket level, level
is specified as SOL_SOCKET. To retrieve options at any other level, the protocol
number of the appropriate protocol controlling the option is supplied. For
example, to indicate that an option is to be returned by the TCP protocol, level
should be set to the protocol number of TCP. Read getprotobyname() for
additional information.

The parameters optval and optlen identify a buffer in which the value for the
requested option is to be returned. The optlen parameter is a value-result
parameter, initially containing the size of the buffer pointed to by optval and
modified on return to indicate the actual size of the value returned. If no option
value is to be returned, optval can be supplied as zero.

The optname parameter is passed uninterpreted to the appropriate protocol
module for interpretation. The include file <socket.h> contains definitions for
socket level options, described in the following table. Options at other protocol
levels vary in format and name; consult the appropriate appendix for additional
information.

Socket Library Functions 3–49

getsockopt()

Most socket-level options return an int parameter for optval. For boolean
options, a non-zero value indicates the option is enabled, and a zero value
indicates the option is disabled. SO_LINGER uses a struct linger parameter,
defined in <socket.h>, which specifies the desired state of the option and the
linger interval.

The following table lists options that are recognized at the socket level. Except as
noted, each can be examined with getsockopt() and set with setsockopt():

Socket Option Description

SO_BROADCAST Requests permission to send broadcast datagrams on the socket.

SO_DEBUG Enables debugging in the socket modules. This option is implemented slightly
differently than UNIX, in that, on UNIX it allows for debugging at the
underlying protocol modules.

SO_DONTROUTE Indicates that outgoing messages should bypass the standard routing
facilities. Instead, messages are directed to the appropriate network interface
according to the network portion of the destination address.

SO_ERROR Returns any pending error on the socket and clears the error status. This
option can be used to check for asynchronous errors on connected datagram
sockets or for other asynchronous errors.

SO_KEEPALIVE The keepalive option enables the periodic probing of the remote connection.
This option specifies the type of keepalive to use. It also turns off the keepalive
option. Should the connected peer fail to respond to the probe, the connection
is considered broken and the process using the socket is notified via errno
ETIMEDOUT. These int values are supported:
0 - Turn off keepalive
1 - Use keepalive with no data, and do not abort the session if no response
2 - Use keepalive with no data, and abort the session if no response
3 - Use keepalive with data.
See the notes following this section for a discussion of keepalive. Their use is
discouraged and is provided only for those applications that are incapable of
detecting idle sessions.

SO_LINGER Controls the action taken when unsent messages are queued on socket and a
close() is performed. If the socket promises reliable delivery of data and
SO_LINGER is set to a value other than zero, the system blocks the process on
the close() attempt until it is able to transmit the data or until the number of
seconds specified by the SO_LINGER option expire or until the connection has
timed out. If SO_LINGER is set and the interval is zero, the socket is closed
once the system has scheduled that an orderly release be performed.

SO_MAXRCVBYTCNT Returns the maximum allowable setting for the number of bytes of buffering
allowed for the receive simplex of the socket. The SO_RCVBYTCNT option
cannot be set to a value larger than that returned by this option.

3–50 C/Socket Programmer Reference

getsockopt()

Socket Option Description

SO_MAXRCVREQCNT Returns the maximum allowable setting for the number of outstanding receive
requests. The SO_RCVREQCNT option cannot be set to a value larger than
that returned by this option.

SO_MAXSNDBYTCNT Returns the maximum allowable setting for the number of bytes of buffering
allowed for the transmit simplex of the socket. The SO_SNDBYTCNT option
cannot be set to a value larger than that returned by this option.

SO_MAXSNDREQCNT Returns the maximum allowable setting for the number of outstanding
transmit requests. The SO_SNDSEQCNT option cannot be set to a value larger
than that returned by this option.

SOO_OBINLINE This option is not currently supported by this release of the socket library. It is
implemented on UNIX, and its purpose is to request that out-of-band data be
placed in the normal data input queue as received by protocols that support
out-of-band data; it is then be accessible with recv() or read() functions
without the MSG_OOB flag.

SO_OPTIONS Returns the current setting of all socket level options as contained in the
socket’s control block. This option is specific to this implementation and is not
portable to other socket libraries. This option was designed for debugging and
is not an option to be used by the average user. The socket options are defined
in the header file sockvar.h.

SO_RCVBUF Adjusts the normal buffer size allocated for input. The buffer size can be
increased for high-volume connections to improve throughput or can be
decreased to limit the possible backlog of incoming data. The system places an
absolute limit on this value. This implementation of sockets provides for this
option for backward compatibility, but also allows for buffer options that are
more specific to the underlying API and therefore provide a better method of
controlling a socket’s buffering characteristics. These options are
SO_RCVBYTCNT and SO_RCVREQCNT. All buffering options can be set
only once by the socket user and must be done before any data is sent or
received on the socket.

SO_RCVBYTCNT Adjusts the number of bytes allocated to the receive circular buffer for a
socket. This option is specific to this implementation of sockets and therefore
is not portable to other socket libraries. This option can be set only once
successfully, and if the receive byte count of the circular buffer is changed, it
must be done prior to sending or receiving any data on the socket.

SO_RCVREQCNT Adjusts the number of receive requests that can be active within the socket
library at a given time. This option is specific to this implementation of sockets
and therefore is not portable to other socket libraries. This option can be set
only once successfully, and if the receive request count is changed, it must be
done prior to sending or receiving any data on the socket.

Socket Library Functions 3–51

getsockopt()

Socket Option Description

SO_READFRAG This option lets a user of a datagram type socket that preserves message
boundaries read a datagram a piece at a time. Traditionally with UNIX
sockets, if a user issues a read request for 100 bytes and the datagram being
read consists of 120 bytes, the socket returns the first 100 bytes to the caller
and then flushes the remaining 20 bytes. This default method of operation by
this implementation of sockets can be overridden with this option. This option
does not allow parsing of pieces of a single datagram into a single user buffer.
When this option is used, the user must determine the boundaries of
datagrams. This option is specific to this implementation and is not portable to
other socket implementations.

SO_REUSEADDR This option indicates that the rules used in validating addresses supplied in a
bind() function should allow reuse of local addresses.

SO_SENDALL This option guarantees that any form of send request (send(), sendto(),
sendmsg(), write(), or writev()) that is done in a blocking mode transmits all
the data specified by the user. Traditionally BSD sockets would send as many
bytes as the current buffering allocation allowed and then return to the user
with a count of the actual number of bytes transmitted. If the user requested
that a write of 200 bytes be done, but there currently was only buffering space
for 150 bytes, the socket would queue 150 bytes for transmission and return a
count of 150 to the caller to indicate that 50 bytes could not be transmitted due
to lack of buffer space. This implementation of sockets acts identically to a
UNIX socket under the same scenario under the default setting of the socket
options. However, if this option is turned ON in Unicenter TCPaccess sockets,
the socket blocks the user until all of the data has been queued for
transmission or some type of error occurs. This option is specific to this
implementation

SO_SNDBUF Adjusts the normal buffer size allocated for output. The buffer size can be
increased for high-volume connections to improve throughput or can be
decreased to limit the possible backlog of outgoing data. The system places an
absolute limit on this value. This implementation of sockets provides this
option for backward compatibility. It also allows for buffer options that are
more specific to the underlying API and therefore provides a better method of
controlling a socket’s buffering characteristics. These options are
SO_SNDBYTCNT and SO_SNDREQCNT. All buffering options can be set
only once by the socket user and must be done before any data is sent or
received on the socket.

SO_SNDBYTCNT Adjusts the number of bytes allocated to the send circular buffer for a socket.
This option is specific to this implementation of sockets and is not portable to
other socket libraries. This option can be set only once successfully, and if the
send byte count of the circular buffer is changed, it must be done prior to
sending or receiving any data on the socket.

3–52 C/Socket Programmer Reference

getsockopt()

Socket Option Description

SO_SNDREQCNT Adjusts the number of send requests that can be active within the socket
library at a given time. This option is specific to this implementation of sockets
and is not portable to other socket libraries. This option can be set only once
successfully, and if the send request count is changed, it must be done prior to
sending or receiving any data on the socket.

SO_STATE Returns the current socket state as contained in the socket’s control block. This
option is specific to this implementation and is not portable to other socket
libraries. This option was designed for debugging and is not an option the
average user should use. The socket states are defined in the header file
sockvar.h.

SO_SUBSTATE Returns the current setting of the socket’s substate as contained in the socket’s
control block. This option is specific to this implementation and is not portable
to other socket libraries. This option is for debugging and is not for use by the
average user. The socket substates are defined in the header file sockvar.h.

SO_TYPE Returns the type of the socket, such as SOCK_STREAM; it is useful for servers
that inherit sockets on startup.

SO_USELOOPBACK Requests that the loopback interface is used rather than a real physical
interface.
These options are recognized at the TCP level (IPPROTO_TCP):

TCP_MAXSEG This option is not supported by this implementation of sockets at the present
release. On UNIX this option lets the user of a SOCK_STREAM socket declare
the value of the maximum segment size for TCP to use when negotiating this
value with its remote endpoint.

TCP_NODELAY Ensures that TCP type sockets (SOCK_STREAM) send data as soon as possible
and do not wait for more data or a given amount of time to enhance the
packetizing algorithm. This option is similar to the BSD UNIX socket option.

Return Value If getsockopt() is successful, a value of zero is returned. A return value of -1
indicates an error, and the error code stored in the global integer errno
indicates the nature of the error.

Socket Library Functions 3–53

getsockopt()

Socket Option Description

Error Codes The getsockopt() function returns these error codes (from <errno.h>) in the
global integer errno:
EBADF The s argument is not a valid descriptor.

EFAULT The pointer to the value buffer points to inaccessible
memory.

EFAULT The pointer to the value buffer length points to inaccessible
memory.

EINVAL The size of the value buffer does not equal the size of the
option. Most options require an integer length buffer or, in
the case of SO_LINGER, the buffer must be the size of the
linger structure.

EINVAL The option buffer size is greater than the maximum
allowed by the API.

EINVAL The option is not supported at the level requested.

EINVAL No options can be read from the protocol layers.

Implementation
Notes

These options are recognized at the socket level on BSD UNIX systems, but are
not supported by the API. If any of these options are referenced, an error is
generated:
SO_SNDLOWAT Sets the send low water buffering mark.

SO_RCVLOWAT Sets the receive low water buffering mark.

SO_SNDTIMEO Sets the send timeout value. This option is not
currently implemented in UNIX.

SO_RCVTIMEO Sets the receive timeout value. This option is not
currently implemented in UNIX.

See Also ioctl(), setsockopt(), socket(), fcntl()

3–54 C/Socket Programmer Reference

getstablesize()

getstablesize()
Get socket table size.

Synopsis
#include <socket.h>
#include <uio.h>
int getstablesize()

Description Provides a method by which the socket library user can determine the
maximum number of sockets that can be used at any given time.

The getstablesize() function performs the same function as the gettablesize
function call on UNIX. It varies somewhat in that it only returns the maximum
number of sockets that can be used at a given time and not the combined total of
socket and file descriptors.

Implementation
Notes

See the function description for the differences.

gettimeofday()
Get the date and time.

Synopsis
#include <systime.h>
int gettimeofday (tp)
struct time_t *tp;

Description Gets the system's notion of the current time. The current time is expressed in
elapsed seconds and microseconds since a particular time. The time chosen
depends on #define USESASCTIME. If this is defined, time_t will be returned
as a double and is relative to 00:00 January 1, 1900. If the above define is not
used, time_t is returned as an int relative to 00:00 January 1, 1970.

Implementation
Notes

Consult the SAS/C documentation for more information on the time_t
structure.

Socket Library Functions 3–55

htonl()

htonl()
Convert long values from host to network byte order.

Synopsis
#include <inet.h>
unsigned long htonl (hostlong);
unsigned long hostlong;

 Description Maintains compatibility with application programs ported from other systems
that byte-swap memory. These systems store 32-bit quantities in right-to-left
byte order instead of the usual left-to-right byte order assumed by network
protocols.

htonl() converts 32-bit quantities from host byte order to network byte order.
This function was originally provided for UNIX systems running on VAX
processors that byte-swap memory. On machines such as IBM mainframes
where network and host byte order are the same, this function is defined as a
null macro in the include file <inet.h>.

This function is most often used in conjunction with Internet addresses and port
numbers as returned by gethostbyname() and getservbyname().

Implementation
Notes

The htonl() function is implemented as a null macro and performs no operation
on the function argument.

See Also gethostbyname(), getservbyname()

3–56 C/Socket Programmer Reference

htons()

htons()
Convert short values from host to network byte order.

Synopsis
#include <inet.h>
unsigned short htons (hostshort);
unsigned short hostshort;

Description Maintains compatibility with application programs ported from other systems
that byte-swap memory. These systems store 16-bit quantities in right-to-left
byte order instead of the usual left-to-right byte order assumed by network
protocols.

htons() converts 16-bit quantities from host byte order to network byte order.
This function was originally provided for UNIX systems running on VAX
processors that byte-swap memory. On machines such as IBM mainframes,
where network and host byte order are the same, this function is defined as a
null macro in the include file <inet.h>.

This function is most often used in conjunction with Internet addresses and port
numbers as returned by gethostbyname() and getservbyname().

Implementation
Notes

The htons() function is implemented as a null macro and performs no operation
on the function argument.

See Also gethostbyname(), getservbyname()

Socket Library Functions 3–57

inet()

inet()
Internet address manipulation routines.

Synopsis
#include <socket.h>
#include <uio.h>
#include <inet.h>
unsigned long inet_addr (cp)
char *cp;
unsigned long inet_network (cp)
char *cp;
char *inet_ntoa (in)
struct in_addr in;
unsigned long inet_makeaddr (net, lna)
int net, lna;
int inet_lnaof (in)
struct in_addr in;
int inet_netof (in)
struct in_addr in;

Description A set of routines that construct Internet addresses or break Internet addresses
down into their component parts. Routines that convert between the binary and
ASCII (“dot” notation) form of Internet addresses are included.

The functions inet_addr() and inet_network() each interpret character strings
representing numbers expressed in the Internet standard dot (“.”) notation,
returning numbers suitable for use as Internet addresses and network numbers,
respectively. The function inet_ntoa() takes an Internet address and returns an
ASCII string representing the address in dot notation. The function
inet_makeaddr() takes an Internet network number and a local network address
(host number) and constructs an Internet address from it. The functions
inet_netof() and inet_lnaof() break apart Internet host addresses, returning the
network number and local network address part, respectively.

All Internet addresses are returned in network byte order. All network numbers
and local address parts are returned as integer values in host byte order. On
machines such as IBM mainframes, network and host byte order are the same.

3–58 C/Socket Programmer Reference

inet()

Values specified using the Internet standard dot notation take one of these
forms:

a.b.c.d

a.b.c

a.b

■ When four parts are specified, each is interpreted as a byte of data and
assigned, from left to right, to the four bytes of an Internet address.

■ When a three-part address is specified, the last part is interpreted as a 16-bit
quantity and placed in the right-most two bytes of the network address. This
makes the three-part address format convenient for specifying Class B
network addresses as 128.net.host.

■ When a two-part address is supplied, the last part is interpreted as a 24-bit
quantity and placed in the right-most three bytes of the network address.
This makes the two-part address format convenient for specifying Class A
network addresses as net.host.

■ When only one part is given, the value is stored directly in the network
address without any byte rearrangement.

All numbers supplied as parts in a dot notation can be decimal, octal, or
hexadecimal, as specified in the C language (that is, a leading 0x or 0X implies
hexadecimal; otherwise, a leading zero implies octal; if there is no leading zero,
the number is interpreted as decimal).

Return Value The inet_addr() function returns an Internet address if successful, or a value of -
1 if the request was unsuccessful.

The inet_network() function returns a network number if successful, or a value
of -1 if the request was malformed.

The inet_ntoa() function returns a pointer to an ASCII string giving an Internet
address in dot notation, inet_makeaddr() returns an Internet address, and
inet_netof() and inet_lnaof() each return an integer value.

Implementation
Notes

The function inet_makeaddr() returns a structure of type in_addr with the
UNIX function. In this implementation, it returns a value of type unsigned
long.

See Also gethostbyname(), getnetbyname()

Socket Library Functions 3–59

inet_aton()

 inet_aton()
Convert ASCII string to network address.

Synopsis
#include <types.h>
#include <socket.h>
#include <in.h>
#include <inet.h>
int inet_aton(cp , in)
const char *cp;
struct in_addr *in;

Description Converts an ASCII representation of an Internet Address to its Network
Internet Address.

inet_aton() interprets a character string representing numbers expressed in the
Internet standard ‘.’ notation, returning a number suitable for use as an Internet
address.

Implementation
Notes

Values specified using the ‘.’ (dot) notation take one of the following forms:

a.b.c.d

a.b.c

a.b

a

When four parts are specified, each is interpreted as a byte of data and assigned,
from left to right, to the four bytes of an Internet address When a three part
address is specified, the last part is interpreted as a 16-bit quantity and placed in
the right-most two bytes of the network address. This makes the three part
address format convenient for specifying Class B net-work addresses as
“128.net.host”. When a two part address is supplied, the last part is interpreted
as a 24-bit quantity and placed in the right- most three bytes of the network
address. This makes the two part address format convenient for specifying Class
A network addresses as “net.host”. When only one part is given, the value is
stored directly in the network address without any byte rearrangement. All
numbers supplied as “parts” in a ‘.’ notation may be decimal, octal, or
hexadecimal, as specified in the C language (that is, a leading 0x or 0X implies
hexadecimal; a leading zero implies octal; otherwise, the number is interpreted
as decimal).

See Also inet_ntoa()

3–60 C/Socket Programmer Reference

inet_ntoa()

inet_ntoa()
Convert network internet address to ASCII representation.

Synopsis
#include <types.h>
#include <socket.h>
#include <in.h>
#include <inet.h>
char *inet_ntoa (in)
const struct in_addr in;

Description Converts an Internet network address to its ASCII “d.d.d.d” representation.

inet_ntoa() returns a pointer to a string in the base 256 notation "d.d.d.d".
Internet addresses are returned in network order (bytes ordered from left to
right).

Implementation
Notes

inet_ntoa() points to a buffer which is overwritten on each call.

See Also inet_aton()

Socket Library Functions 3–61

ioctl()

ioctl()
Control I/O.

Synopsis
#include <socket.h>
#include <uio.h>
int ioctl (s, request, argp)
int s;
unsigned long request;
char *argp;

Description Manipulates I/O controls associated with a socket. In particular, the sensing of
out-of-band data marks and the enabling of non-blocking I/O can be
controlled.

The ioctl() function performs a variety of control functions on a socket, indicated
by s. An ioctl request has encoded in it whether the argument pointed to by argp
is an input parameter supplied by the caller or an output parameter returned by
the ioctl() function. request also encodes in bytes the length of the argument.

Permissible values for request are defined in <socket.h>. The following table lists
the requests supported by the current implementation of ioctl():

Request Definition

FIOASYNC Used to enable the usage of the user-added signals of the socket library.
Asynchronous events happening at the local endpoint initiate the triggering of a
signal. SIGIO, SIGURG and SIGPIPE are all supported by the implementation.

FIONBIO Used to set and clear non-blocking I/O mode. When a socket is in non-blocking
I/O mode, any function that would otherwise block for flow control or
synchronization completes immediately with an error. A return value of -1
indicates the error, and the error code EWOULDBLOCK stored in the external
integer errno indicates the blocking condition. The function should be reissued
later.

FIONREAD Returns the status of the received data flag. Unlike UNIX, which actually returns
the number of data bytes in the receive buffer, a return value of 1 indicates that
there is data to be read. A value of zero indicates an absence of data to be read.

SIOCADDRT Add a single routing table entry
Note: Not allowed for user application programs.

SIOCATMARK Indicates whether or not the current read pointer points to the location at which
out-of-band data was received. Whenever out-of-band data is received, the
location in the input stream is marked. The boolean value returned by this
request indicates when the read pointer has reached the mark.

SIOCDELRT Delete a single routing table entry.
Note: Not allowed for user application programs.

3–62 C/Socket Programmer Reference

ioctl()

Request Definition

SIOCGIFADDR Get interface address. The argument for this type of request is defined by ifreq,
which is found in if.h.

SIOCGIFBRDADDR Get broadcast address. The argument for this type of request is defined by ifreq,
which is found in if.h.

SIOCGIFCONF Get interface configuration list. This request takes an ifconf structure as a value-
result parameter. The ifc_len field should be initially set to the size of the buffer
pointed to by ifc_buf. On return, it will contain the length, in bytes of the
configuration list. The argument for this type of request is defined by ifreq,
which is found in if.h.

SIOCGIFDSTADDR Get point-to-point address for the interface. The argument for this type of request
is defined by ifreq, which is found in if.h.

SIOCGIFFLAGS Get the interface flags. The argument for this type of request is defined by ifreq,
which is found in if.h.

SIOCGIFHWADDR Get the hardware address. The argument for this type of request is defined by
ifreq, which is found in if.h.

SIOCGIFMETRIC Get the metric associated with the interface. The argument for this type of
request is defined by ifreq, which is found in if.h.

SIOCGIFMTU Get the maximum transmission unit size for interface. The argument for this type
of request is defined by ifreq, which is found in if.h.

SIOCGIFNETMASK Get the network address mask. The argument for this type of request is defined
by ifreq, which is found in if.h.

SIOCGIFNUM Get the number of interfaces. This request returns an integer which is the number
of interface descriptions (struct ifreq, found in if.h) that will be returned by the
SIOCGIFCONF ioctl; that is, it gives an indication of how large ifc_len has to be.

SIOCSIFMETRIC Sets the network interface routing metric. The argument for this type of request is
defined by ifreq, which is found in if.h.

Return Value If ioctl() is successful, a value of zero is returned. A return value of -1 indicates
an error, and the error code stored in the global integer errno indicates the
nature of the error.

Error Codes The ioctl() function returns these error codes (from <errno.h>) in the global
integer errno:

EBADF The s argument is not a valid descriptor.

EFAULT The pointer argp is invalid.

EINVAL Request or argp is invalid or not supported by this
implementation of ioctl().

Socket Library Functions 3–63

listen()

Request Definition

Implementation
Notes

The ioctl() function as implemented on UNIX-based systems is used to
manipulate controls that tend to be specific to a given implementation of a
protocol and often do not translate directly to other environments. As such,
most of the request values defined for UNIX have no meaning in the MVS
environment or are not readily portable.

Note the difference of FIONREAD as previously described.

See Also accept(), connect(), recv(), recvfrom(), recvmsg(), send(), sendmsg(), sendto(),
write()

listen()
Listen for connections on a socket.

Synopsis
#include <socket.h>

#include <uio.h>
int listen (s, backlog)
int s, backlog;

Description Indicates the application program is ready to accept connection requests
arriving at a socket of type SOCK_STREAM. The connection request is queued
(if possible) until accepted with an accept() function.

To accept connections, a socket is first created with socket(), a readiness to accept
incoming connections, and a queue limit for incoming connections, which are
specified with listen(), and then the connections are accepted with accept(). The
listen() function applies only to sockets of type SOCK_STREAM or
SOCK_ASSOC.

The backlog parameter defines the maximum number of pending connections
that may be queued. If a connection request arrives with the queue full, the client
can receive an error with an indication of ECONNREFUSED, or, if the
underlying protocol supports retransmission, the request can be ignored so that
retries can succeed.

Return Value If listen() is successful, a value of zero is returned. A return value of -1 indicates
an error, and the error code stored in the global integer errno indicates the
nature of the error.

3–64 C/Socket Programmer Reference

listen()

Error Codes The listen() function returns these error codes (from <errno.h>) in the global
integer errno:

EADDRINUSE The specified address is not available. Another socket is
currently using this endpoint to listen.

EALREADY The socket is currently listening.

EBADF The argument s is not a valid descriptor.

EINVAL The backlog variable passed by the user is less than or
equal to zero.

EINVAL The socket is not in the bound state.

EOPNOTSUPP The socket is not of a type that supports the operation
listen().

Implementation
Notes

The backlog can be limited to a value smaller than the current maximum of five
supported by most BSD UNIX implementations. If the underlying protocol
cannot support the value specified, a smaller value is substituted. backlog only
limits the number of connection requests that can be queued simultaneously
and not the total number of connections that can be accepted. A listen count of
less than or equal to zero is invalid (EINVAL).

This implementation lets the user program listen on SOCK_ASSOC sockets and
accept the incoming connection requests.

See Also accept(), connect(), socket()

Socket Library Functions 3–65

mvsselect()

mvsselect()
Synchronous I/O multiplexing with optional ECB list.

Synopsis
#include <socket.h>
#include <uio.h>
int mvsselect (nfds, readfds, writefds, exceptfds, timeout, ecbcount, ecblistp)
int nfds;
fd_set *readfds, *writefds, *exceptfds;
struct timeval *timeout;
int ecbcount;
unsigned long **ecblistp;
FD_SET (fd, &fdset)
FD_CLR (fd, &fdset)
FD_ISSET (fd, &fdset)
FD_ZERO (&fdset)
int fd;
fd_set fdset;

Description Synchronizes processing of several sockets operating in non-blocking mode
and other system events related to an optional ECB list. Sockets that are ready
for reading or writing, or that have a pending exceptional condition can be
selected, as well as the posting of any ECBs in the ECB list. If no sockets are
ready for processing or no ECBs are posted, the mvsselect() function can block
indefinitely or wait for a specified period of time (which may be zero) and then
return.

mvsselect() examines the I/O descriptor sets whose addresses are passed in
readfds, writefds, and exceptfds to see if some of their descriptors are ready for
reading, are ready for writing, or have an exceptional condition pending,
respectively. The first nfds descriptors are checked in each set (the descriptors
from 0 through nfds-1 in the descriptor sets are examined). Also, the ECB list is
checked to see which have been posted. Only ecbcount number of ECBs are
checked. On return, mvsselect() replaces the given descriptor sets with subsets
consisting of those descriptors that are ready for the requested operation. The
total number of ready descriptors in all the sets and ECBs posted are returned.

Sockets use MVS STIMERM services. Socket applications may use up to fifteen
STIMERM calls per task control block (TCB). STIMER CANCEL ID=ALL must
not be used by socket applications.

Note: If you invoke mvsselect() before any sockets are opened, an error code of
EBADF will be returned because the internal user work area has not been
initialized. A workaround for this would be to open a throwaway socket prior to
calling mvsselect().

3–66 C/Socket Programmer Reference

mvsselect()

The descriptor sets are stored as bit fields in arrays of integers. These macros are
provided for manipulating such descriptor sets:

FD_ZERO(&fdset) Initializes a descriptor set fdset to the null set.
FD_SET(fd, &fdset) Includes a particular descriptor fd in fdset.

FD_CLR(fd, &fdset) Removes fd from fdset.

FD_ISSET(fd, &fdset) Is non-zero if fd is a member of fdset, zero
otherwise.

The behavior of these macros is undefined if a descriptor value is less than zero
or greater than or equal to FD_SETSIZE, which normally is at least equal to the
maximum number of descriptors supported by the system.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the
selection to complete. If timeout is a zero pointer, mvsselect blocks indefinitely.
To affect a poll, the timeout argument should be non-zero, pointing to a zero-
valued timeval structure. The mvsselect function uses the OS timer. If this is
undesirable, the timeout variable should be a zero pointer and one of the ECBs in
the list should be posted by the application-specific timeout routine.

Any of readfds, writefds, and exceptfds can be given as zero pointers if no
descriptors are of interest.

Note: For release 3.1 and higher, note that the select() and mvsselect() functions
have changed slightly for SAS/C users. SAS/C allows signals to be raised.
select() may complete if the signal is raised without the conditions on the select()
parameters having been met. This new feature allows you to use signal
functionality, issue a blocking receive, and do a send from a signal handler.

Return Value If successful, mvsselect() returns the sum of the number of ready descriptors
that are contained in the descriptor sets and the posted ECBs, or zero if the time
limit expires. Otherwise, the value -1 is returned, and the error code stored in
the global integer errno indicates the nature of the error. If mvsselect() returns
with an error, including one due to an interrupted call, the descriptor sets is
unmodified.

Socket Library Functions 3–67

mvsselect()

Error Codes The mvsselect() function returns these error codes (from <errno.h>) in the
global integer errno:
EBADF One of the descriptor sets specified an invalid descriptor.
EINVAL The specified time limit is invalid. One of its components is

negative or too large.
EINVAL The count of socket descriptors to check is less than or equal to

zero.
EINVAL No valid socket descriptors were referenced by the three sets of

masks passed by the caller.
ENOMEM Could not allocate space to build ECB list.

Implementation
Notes

The implementation of mvsselect() provided with the API supports only MVS
ECBs and descriptors associated with sockets.

See Also accept(), connect(), read(), write(), recv(), send(), recvfrom(), sendto(), recvmsg(),
sendmsg(), select()

3–68 C/Socket Programmer Reference

openold()

openold()
Open a socket passed from another task.

Synopsis
#include <socket.h>
#include <uio.h>
int openold(token)
unsigned long token;

Description Receives the ownership of a socket from another task within the same address
space.

openold() creates a new socket descriptor using a token passed from another task
within the same address space. Initially, the other task had created a socket using
either socket() or accept(). The other task then called closepass() and passed the
token returned by closepass() via application-dependent IPC to the receiving
task or subtask.

The other task then calls close() and the receiving task calls openold(). When
openold() completes, the receiving task now owns the socket and the other task
can no longer reference it.

The sequence of events is shown next:

Main Task Subtask

1. Call closepass(fd).

2. Send IPC to subtask passing token returned by
closepass

3. Call close(fd). On return from close, main task
can no longer reference this fd.

 4. Receive token from main task via application-
dependent IPC.

 5. Call openold(token).

 6. Subtask may now use fd returned by openold to
access network.

 7. Subtask is through with socket.

 8. Call close(fd) to remove socket.

Return Value On successful completion, openold() returns a new socket descriptor.
Otherwise, the value -1 is returned, and the error code stored in the global
integer errno indicates the nature of the error.

Socket Library Functions 3–69

openold()

Error Codes The openold() function returns these error codes (from <errno.h>) in the global
integer errno:
EACCESS Permission to create a socket of the specified

type and/or protocol is denied.

ECONFIG Socket configuration has an error, or a user
session with the underlying API cannot be
opened.

EINVAL Token is invalid.

EMFILE The system file table is full.

EMFILE A new socket cannot be opened due to an API
resource shortage or user endpoint allocation
limit.

ENOBUFS Insufficient buffer space is available. The
socket cannot be created until sufficient
resources are freed.

EPROTONOSUPPORT The specified protocol is not supported within
this domain.

Implementation
Notes

The implementation of this function is provided to ease the development of
server-oriented socket applications using the socket library.

See Also accept(), close(), closepass(), socket()

3–70 C/Socket Programmer Reference

ntohl()

ntohl()
Convert long values from network to host byte order.

Synopsis
#include <inet.h>
unsigned long ntohl (netlong);
unsigned long netlong;

Description Maintains compatibility with application programs ported from other systems
that byte-swap memory. These systems store 32-bit quantities in right-to-left
byte order instead of the usual left-to-right byte order assumed by network
protocols.

ntohl() converts 32-bit quantities from network byte order to host byte order.
This function was originally provided for UNIX systems running on VAX
processors that byte-swap memory. On machines such as IBM mainframes
where network and host byte order are the same, this function is defined as a
null macro in the include file <inet.h>.

This function is most often used in conjunction with Internet addresses and port
numbers as returned by gethostbyname() and getservbyname().

Implementation
Notes

The ntohl() function is implemented as a null macro and performs no operation
on the function argument.

See Also gethostbyname(), getservbyname()

Socket Library Functions 3–71

ntohs()

ntohs()
Convert short values from network to host byte order.

Synopsis
#include <inet.h>
unsigned short ntohs (netshort);
unsigned short netshort;

Description Maintains compatibility with application programs ported from other systems
that byte-swap memory. These systems store 16-bit quantities in right-to-left
byte order instead of the usual left-to-right byte order assumed by network
protocols.

ntohs() converts 16-bit quantities from network byte order to host byte order.
This function was originally provided for UNIX systems running on VAX
processors that byte-swap memory. On machines such as IBM mainframes
where network and host byte order are the same, this function is defined as a
null macro in the include file <inet.h>.

This function is most often used in conjunction with Internet addresses and port
numbers as returned by gethostbyname() and getservbyname().

Implementation
Notes

The ntohs() function is implemented as a null macro and performs no operation
on the function argument.

See Also gethostbyname(), getservbyname()

3–72 C/Socket Programmer Reference

openlog()

openlog()
Initialize the log file

Synopsis
#include <syslog.h>
#include <socket.h>
#include <inet.h>
void openlog (ident, logopt, facility)
char *ident;
int logopt;
int facility;

Description Initializes the log file.

If special processing is needed, the openlog() function initializes the log file. The
parameter ident is a string that is prepended to every message. logopt is a bit
field indicating logging options.

The following table lists the values for logopt:

logopt Values Definition

LOG_PID Log the process ID with each message. This is useful for identify in specific
processes.

LOG_CONS Write messages to the system console if they cannot be sent to syslog.

LOG_NDELAY Open the connection to syslog() immediately. Normally the open is delayed
until the first message is logged. This is useful for programs that need to
manage the order in which file descriptors are allocated.

LOG_NOWAIT Do not wait for processes that have been forked to log messages onto the
console. This option should be used by processes that enable notification of child
termination using SIGCHILD since syslog() may otherwise block waiting for a
process whose exit status has already been collected.
The facility parameter encodes a default facility to be assigned to all messages
that do not have an explicit facility already encoded:

LOG_KERN Messages generated by the kernel. These cannot be generated by any user
processes.

LOG_USER Messages generated by random user processes. This is the default facility
identifier if none is specified.

LOG_MAIL The mail system.

LOG_DAEMON System daemons, such as ftpd(1M).

LOG_AUTH The authorization system: login(1), su(1M), getty(1M), etc.

LOG_LPR The line printer spooling system: lpr(1B), lpc(1B), etc.

LOG_NEWS Reserved for the USENET network news system.

Socket Library Functions 3–73

openlog()

logopt Values Definition

LOG_UUCP Reserved for the UUCP system; it does not currently use syslog.

LOG_CRON The cron/at facility; crontab(1), at(1), cron(1M), etc.

LOG_LOCAL0 Reserved for local use.

LOG_LOCAL1 Reserved for local use.

LOG_LOCAL2 Reserved for local use.

LOG_LOCAL3 Reserved for local use.

LOG_LOCAL4 Reserved for local use.

LOG_LOCAL5 Reserved for local use.

LOG_LOCAL6 Reserved for local use.

LOG_LOCAL7 Reserved for local use.

See Also syslog(), closelog(), vsyslog()

3–74 C/Socket Programmer Reference

read()

read()
Read input.

Synopsis
#include <socket.h>
#include <uio.h>
int read (s, buf, nbytes)
int s;
char *buf;
int nbytes;

Description Inputs data from a socket. It operates in the same manner as reading data from
a file. In a normal UNIX environment, where socket and file I/O are integrated,
the read() function can be called with either a socket or file descriptor.

read() attempts to read nbytes of data from the socket referenced by the
descriptor s into the buffer pointed to by buf. On successful completion, read()
returns the number of bytes actually read and placed in the buffer.

Return Value If successful, read() returns the number of bytes read. A value of zero is
returned if an end-of-file condition exists, indicating no more read() functions
should be issued to this socket. Otherwise, the value -1 is returned, and the
error code stored in the global integer errno indicates the nature of the error.

Error Codes The read() function returns these error codes (from <errno.h>) in the global
integer errno:
EBADF An invalid descriptor was specified.

ECONNABORTED The incoming connection request was aborted by
the remote endpoint.

ECONNREFUSED The remote endpoint refused to continue the
connection.

ECONNRESET The remote endpoint reset the connection request.

EDESTUNREACH Remote destination is now unreachable.

EFAULT The buffer passed by the user points to
inaccessible memory.

EFAULT The pointer to the storage where the socket library
is to place the name of the remote endpoint passed
by the user points to inaccessible memory.

EFAULT The pointer to the length of the name buffer points
to inaccessible storage.

EHOSTUNREACH Remote host is now unreachable.

EINVAL The number of bytes in the receive buffer is less
than zero.

Socket Library Functions 3–75

read()

EINVAL The number of bytes requested on the receive
request is greater than the current maximum
buffer space allocated or greater than the
maximum receive request allowed to this type of
endpoint.

EINVAL A connectionless socket does not yet have a name
bound to it.

EINVAL A connectionless socket is being used and the
length of the name passed by the user is zero.

ENETDOWN Local network interface is down.

ENOBUFS The system was unable to allocate an internal
buffer. The operation might succeed when buffers
become available.

ENOBUFS The socket library cannot allocate the necessary
buffer space within the API.

ENOTCONN The socket being used requires a connection
before data can be transferred, and no such
connection currently exists.

ETIMEDOUT The connection request by the remote endpoint
timed out.

EWOULDBLOCK The socket is marked non-blocking and the
requested operation would block.

See Also recv(), recvfrom(), recvmsg(), select(), socket(), write()

3–76 C/Socket Programmer Reference

readv()

readv()
Read vectored input.

Synopsis
#include <socket.h>
#include <uio.h>
int readv (s, iov, iovcn t)
int s;
struct iovec *iov;
int iovcnt;

Description Inputs data from a socket in scatter mode when the input is to be
noncontiguous. It operates in the same manner as reading data from a file. In a
normal UNIX environment, where socket and file I/O are integrated, the
readv() function can be called with either a socket or file descriptor.

The readv() function performs the same action as read(), but scatters the input
data into the iovcnt buffers specified by the members of the iov array:
iov[0], iov[1], ..., iov[iovcnt-1]

The iovec structure is defined in this way:
struct iovec

{
 caddr_t iov_base;
 int iov_len;
};

Each iovec entry specifies the base address and length of an area in memory
where data should be placed. The readv() function always fills an area
completely before proceeding to the next iov entry. On successful completion,
readv() returns the total number of bytes read.

Return Value If successful, readv() returns the total number of bytes read. A value of zero is
returned if an end-of-file condition exits, indicating no more readv() functions
should be issued to this socket. Otherwise, the value -1 is returned, and the
error code stored in the global integer errno indicates the nature of the error.

Socket Library Functions 3–77

readv()

Error Codes The readv() function returns these error codes (from <errno.h>) in the global
integer errno:
EBADF An invalid descriptor was specified.

ECONNABORTED The incoming connection request was aborted by
the remote endpoint.

ECONNREFUSED The remote endpoint refused to continue the
connection.

ECONNRESET The remote endpoint reset the connection
request.

EDESTUNREACH The remote destination is now unreachable.

EFAULT The buffer passed by the user points to
inaccessible memory.

EFAULT The pointer to the storage where the socket
library is to place the name of the remote
endpoint passed by the user points to
inaccessible memory.

EFAULT The pointer to the length of the name buffer
points to inaccessible storage.

EFAULT The pointer to the iovec structure points to
inaccessible memory.

EHOSTUNREACH Remote host is now unreachable.

EINVAL The number of bytes in the receive buffer is less
than zero.

EINVAL The number of bytes requested on the receive
request is greater than the current maximum
buffer space allocated or greater than the
maximum receive request allowed to this type of
endpoint.

EINVAL A connectionless socket does not yet have a
name bound to it.

EINVAL A connectionless socket is being used and the
length of the name passed by the user is zero.

EINVAL The count of iovec elements in the array is
greater than 16 or less than or equal to zero.

ENETDOWN Local network interface is down.

ENOBUFS The system was unable to allocate an internal
buffer. The operation might succeed when
buffers become available.

3–78 C/Socket Programmer Reference

perror()

ENOBUFS The socket library cannot allocate the necessary
buffer space within the API.

ENOTCONN The socket being used requires a connection
before data can be transferred, and no such
connection currently exists.

ETIMEDOUT The connection request by the remote endpoint
timed out.

EWOULDBLOCK The socket is marked non-blocking and the
requested operation would block.

Implementation Notes The maximum number of vectored I/O structures (struct iovec) in an array per
call is sixteen (MSG_IOVLEN).

See Also recv(), recvfrom(), recvmsg(), select(), socket(), writev()

perror()
System error messages.

Synopsis
#include <socket.h>
#include <uio.h>
perror (s)
char *s;

Description Produces a short error message on the standard error file describing the last
error encountered during a call to the socket library for a C program.

perror() prints a system-specific error message generated as a result of a failed
call to the socket library. The argument string s is printed, followed by a colon,
the system error message, and a new line. Most usefully, the argument string is
the name of the program that incurred the error. The errno is taken from the
external variable errno that is set when errors occur but not cleared when non-
erroneous calls are made.

To simplify variant formatting of messages, the vector of message strings,
sock_errlist is provided; errno is used as an index in this table to get the message
string without the new line.

Implementation
Notes

This implementation of perror() function front ends the C library perror()
function. The list of socket errors is stored in an array of character pointers in
the variable sock_errlist. Instead of using sys_nerr variable, the maximum
number of error codes defined by the constant ESMAX is used.

Socket Library Functions 3–79

recv()

recv()
Receive a message on a socket.

Synopsis
#include <socket.h>
#include <uio.h>
int recv (s, buf, len, flags)
int s;
char *buf;
int len, flags;

Description Receives incoming data that has been queued for a socket. This function is
normally used to receive a reliable, ordered stream of data bytes on a socket of
type SOCK_STREAM, but can also be used to receive datagrams on a socket of
type SOCK_ASSOC if an association was formed with a connect() function.

The recv() function is normally used only on a connected socket (see connect()
for more information), while recvfrom() and recvmsg() can be used to receive
data on a socket whether it is in a connected state or not.

The address of the buffer into which the message is to be received is given by
buf, and its size is given by len. The length of the message is returned. If a
message is too long to fit in the supplied buffer, excess bytes may be discarded
depending on the type of socket the message is received from (see socket() for
more information).

If no messages are available at the socket, recv() waits for a message to arrive,
unless the socket is non-blocking (read ioctl() for more information) in which
case a value of -1 is returned with the external variable errno set to
EWOULDBLOCK. The select() function can be used to determine when more
data arrives.

The flags argument to recv() can be set to MSG_OOB (from <socket.h>) to
receive out-of-band data, but only if out-of-band data is supported by the
underlying protocol. Otherwise, flags should be set to zero.

Return Value The recv() function returns the number of bytes received if successful. A value
of zero is returned if an end-of-file condition exits, indicating no more recv()
functions should be issued to this socket. Otherwise, the value -1 is returned,
and the error code stored in the global integer errno indicates the nature of the
error.

3–80 C/Socket Programmer Reference

recv()

Error Codes The recv() function returns these error codes (from <errno.h>) in the global
integer errno:
EBADF An invalid descriptor was specified.

ECONNABORTED The incoming connection request was aborted
by the remote endpoint.

ECONNREFUSED The remote endpoint refused to continue the
connection.

ECONNRESET The remote endpoint reset the connection
request.

EDESTUNREACH The remote destination is now unreachable.

EFAULT The buffer passed by the user points to
inaccessible memory.

EFAULT The pointer to the storage where the socket
library is to place the name of the remote
endpoint passed by the user points to
inaccessible memory.

EFAULT The pointer to the length of the name buffer
points to inaccessible storage.

EHOSTUNREACH The remote host is now unreachable.

EINVAL The number of bytes in the receive buffer is less
than zero.

EINVAL The number of bytes requested on the receive
request is greater than the current maximum
buffer space allocated or greater than the
maximum receive request allowed to this type
of endpoint.

EINVAL A connectionless socket does not yet have a
name bound to it.

EINVAL A connectionless socket is being used and the
length of the name passed by the user is zero.

ENETDOWN The local network interface is down.

ENOBUFS The system was unable to allocate an internal
buffer. The operation may succeed when
buffers become available.

ENOBUFS The socket library cannot allocate the necessary
buffer space within the API.

ENOTCONN The socket being used requires a connection
before data can be transferred, and no such
connection currently exists.

Socket Library Functions 3–81

recvfrom()

ETIMEDOUT The connection request by the remote endpoint
timed out.

EWOULDBLOCK The socket is marked non-blocking and the
requested operation would block.

Implementation Notes The peek option is not supported for recv(), and if flags is set to MSG_PEEK, an
error (EFAULT) is generated. The option to receive out-of-band data
(MSG_OOB) is not supported. The maximum number of vectored I/O
structures (struct iovec) in an array per call is 16 (MSG_IOVLEN).

See Also recvfrom(), recvmsg(), read(), send(), select(), getsockopt(), socket()

recvfrom()
Receive a datagram on a socket

Synopsis
#include <socket.h>
#include <uio.h>
int recvfrom (s, buf, len, flags, from, fromlen)
int s;
char *buf;
int len, flags;
struct sockaddr *from;
int *fromlen;

Description Receives incoming data that has been queued for a socket. This function
normally is used to receive datagrams on a socket of type SOCK_ASSOC, but
can also be used to receive a reliable, ordered stream of data bytes on a
connected socket of type SOCK_STREAM.

The recvfrom() function normally is used to receive datagrams from a socket,
indicated by s. If from is non-zero, the source address of the datagram is filled in.
The fromlen parameter is a value-result parameter, initialized to the size of the
buffer associated with from and modified on return to indicate the actual size of
the address stored there.

The address of a buffer into which the datagram is to be received is given by buf,
and its size is given by len. The length of the datagram is returned. If a datagram
is too long to fit in the supplied buffer, excess bytes might be discarded
depending on the type of socket the datagram is received from (see socket() for
more information).

If no datagrams are available at the socket, recvfrom() waits for a datagram to
arrive, unless the socket is non-blocking (see ioctl() for more information), in
which case a value of 1 is returned with the external variable errno set to
EWOULDBLOCK. The select() function can be used to determine when more
data arrives.

3–82 C/Socket Programmer Reference

recvfrom()

The flags argument to recvfrom() can be set to MSG_OOB (from <socket.h>) to
receive out-of-band data, but only if out-of-band data is supported by the
underlying protocol. Otherwise, flags should be set to zero.

Return Value The recvfrom() function returns the number of bytes received if successful. A
value of zero is returned if an end-of-file condition exists, indicating no more
recvfrom() functions should be issued to this socket. Otherwise, the value -1 is
returned, and the error code stored in the global integer errno indicates the
nature of the error.

Error Codes The recvfrom() function returns these error codes (from <errno.h>) in the global
integer errno:
EBADF An invalid descriptor was specified.

ECONNABORTED The incoming connection request was aborted
by the remote endpoint.

ECONNREFUSED The remote endpoint refused to continue the
connection.

ECONNRESET The remote endpoint reset the connection
request.

EDESTUNREACH The remote destination is now unreachable.

EFAULT The buffer passed by the user points to
inaccessible memory.

EFAULT The pointer to the storage where the socket
library is to place the name of the remote
endpoint passed by the user points to
inaccessible memory.

EFAULT The pointer to the length of the name buffer
points to inaccessible storage.

EHOSTUNREACH The remote host is now unreachable.

EINVAL The number of bytes in the receive buffer is less
than zero.

EINVAL The number of bytes requested on the receive
request is greater than the current maximum
buffer space allocated or greater than the
maximum receive request allowed to this type
of endpoint.

EINVAL A connectionless socket does not yet have a
name bound to it.

EINVAL A connectionless socket is being used and the
length of the name passed by the user is zero.

ENETDOWN The local network interface is down.

Socket Library Functions 3–83

recvfrom()

ENOBUFS The system was unable to allocate an internal
buffer. The operation might succeed when
buffers become available.

ENOBUFS The socket library cannot allocate the necessary
buffer space within the API.

ENOTCONN The socket being used requires a connection
before data may be transferred, and no such
connection currently exists.

ETIMEDOUT The connection request by the remote endpoint
timed out.

EWOULDBLOCK The socket is marked non-blocking and the
requested operation would block.

Implementation Notes The peek option is not supported for recvfrom(), and if flags is set to
MSG_PEEK, it is ignored. The option to receive out-of-band data (MSG_OOB)
is not supported and is also ignored. The maximum number of vectored I/O
structures (struct iovec) in an array per call is 16(MSG_IOVLEN).

See Also recv(), recvmsg(), read(), send(), select(), getsockopt(), socket()

3–84 C/Socket Programmer Reference

recvmsg()

recvmsg()
Receive a message on a socket

Synopsis
#include <socket.h>
#include <uio.h>
int recvmsg (s, msg, flags)
int s;
struct msghdr msg [];
int flags;

Description Receives incoming data that has been queued for a connected or unconnected
socket s. Data is received in scatter mode and placed into noncontiguous
buffers.

The argument msg is the pointer of a structure, msghdr, used to minimize the
number of directly supplied parameters. This structure has this form, as defined
in <socket.h>:
struct msghdr

{
 caddr_t msg_name;
 int msg_namelen;
 struct iovec *msg_iov;
 int msg_iovlen;
 caddr_t msg_accrights;
 int msg_accrightslen;
};

Here msg_name and msg_namelen specify the source address if the socket is
unconnected; msg_name can be given as a null pointer if the source address is
not desired or required. The msg_iov and msg_iovlen describe the “scatter”
locations, as described in read() . A buffer to receive any access rights sent along
with the message is specified in msg_accrights, which has length
msg_accrightslen. Access rights are currently limited to file descriptors, with
each occupying the size of an int.

The length of the message is returned. If a message is too long to fit in the
supplied buffer, excess bytes might be discarded depending on the type of socket
the message is received from (see socket() for more information).

If no messages are available at the socket, recvmsg() waits for a message to
arrive, unless the socket is non-blocking (see ioctl() for more information), in
which case a value of 1 is returned with the external variable errno set to
EWOULDBLOCK. The select() function can be used to determine when more
data arrives.

The flags argument to recvmsg() can be set to MSG_OOB (from <socket.h>) to
receive out-of-band data, but only if out-of-band data is supported by the
underlying protocol. Otherwise, flags should be set to zero.

Socket Library Functions 3–85

recvmsg()

Return Value The recvmsg() function returns the number of bytes received if successful. A
value of zero is returned if an end-of-file condition exits, indicating no more
recvmsg() functions should be issued to this socket. Otherwise, the value -1 is
returned, and the error code stored in the global integer errno indicates the
nature of the error.

Error Codes The recvmsg() function returns these error codes (from <errno.h>) in the global
integer errno:
EBADF An invalid descriptor was specified.

ECONNABORTED The incoming connection request was aborted by
the remote endpoint.

ECONNREFUSED The remote endpoint refused to continue the
connection.

ECONNRESET The remote endpoint reset the connection request.

EDESTUNREACH Remote destination is now unreachable.

EFAULT The buffer passed by the user points to
inaccessible memory.

EFAULT The pointer to the storage where the socket library
is to place the name of the remote endpoint passed
by the user points to inaccessible memory.

EFAULT The pointer to the length of the name buffer points
to inaccessible storage.

EFAULT The msghdr pointer points to inaccessible
memory.

EFAULT The iovec structure pointer within the msghdr
structure points to inaccessible memory.

EHOSTUNREACH Remote host is now unreachable.

EINVAL The number of bytes in the receive buffer is less
than zero.

EINVAL The number of bytes requested on the receive
request is greater than the current maximum
buffer space allocated or greater than the
maximum receive request allowed to this type of
endpoint.

EINVAL A connectionless socket does not yet have a name
bound to it.

EINVAL A connectionless socket is being used and the
length of the name passed by the user is zero.

3–86 C/Socket Programmer Reference

recvmsg()

EINVAL The number of iovec structures specified by the
msghdr is less than or equal to zero.

EMSGSIZE The number of iovec structures specified by the
msghdr structure is greater than 16.

ENETDOWN Local network interface is down.

ENOBUFS The system was unable to allocate an internal
buffer. The operation might succeed when buffers
become available.

ENOBUFS The socket library cannot allocate the necessary
buffer space within the API.

ENOTCONN The socket being used requires a connection
before data can be transferred, and no such
connection currently exists.

ETIMEDOUT The connection request by the remote endpoint
timed out.

EWOULDBLOCK The socket is marked non-blocking and the
requested operation would block.

Implementation Notes The peek option is not supported for recvmsg(), and if flags is set to
MSG_PEEK, it is ignored. The option to receive out-of-band data (MSG_OOB)
is not supported and is ignored. The maximum number of vectored I/O
structures (struct iovec) in an array per call is 16 (MSG_IOVLEN).

See Also recv(), recvfrom(), read(), send(), select(), getsockopt(), socket()

Socket Library Functions 3–87

select()

select()
Synchronous I/O multiplexing.

Synopsis
#include <socket.h>

#include <uio.h>
int select (nfds, readfds, writefds, exceptfds, timeout)
int nfds;
fd_set *readfds, *writefds, *exceptfds;
struct timeval *timeout;
FD_SET (fd, &fdset)
FD_CLR (fd, &fdset)
FD_ISSET (fd, &fdset)
FD_ZERO (&fdset)
int fd;
fd_set fdset;

Description Synchronizes processing of several sockets operating in non-blocking mode.
Sockets that are ready for reading, ready for writing, or have a pending
exceptional condition can be selected. If no sockets are ready for processing, the
select() function can block indefinitely or wait for a specified period of time
(which may be zero) and then return.

select() examines the I/O descriptor sets whose addresses are passed in readfds,
writefds, and exceptfds to see if some of their descriptors are ready for reading,
are ready for writing, or have an exceptional condition pending, respectively.
The first nfds descriptors are checked in each set (that is, the descriptors from
zerothrough nfds-1 in the descriptor sets are examined). On return, select()
replaces the given descriptor sets with subsets consisting of those descriptors
that are ready for the requested operation. The total number of ready descriptors
in all the sets is returned.

The descriptor sets are stored as bit fields in arrays of integers. These macros are
provided for manipulating such descriptor sets:

FD_ZERO (&fdset) Initializes a descriptor set fdset to the null set.

FD_SET (fd, &fdset) Includes a particular descriptor fd in fdset.

FD_CLR (fd, &fdset) Removes fd from fdset.

FD_ISSET (fd, &fdset) Is non-zero if fd is a member of fdset, zero
otherwise.

The behavior of these macros is undefined if a descriptor value is less than zero
or greater than or equal to FD_SETSIZE, which normally is at least equal to the
maximum number of descriptors supported by the system.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the
selection to complete. If timeout is a zero pointer, the select blocks indefinitely.
To affect a poll, the timeout argument should be non-zero, pointing to a zero-
valued timeval structure.

3–88 C/Socket Programmer Reference

select()

Any of readfds, writefds, and exceptfds can be given as zero pointers if no
descriptors are of interest.

Sockets use MVS STIMERM services. Socket applications may use up to fifteen
STIMERM calls per task control block (TCB). STIMER CANCEL ID=ALL must
not be used by socket applications.

Note: For release 3.1 and higher, note that the select() and mvsselect() functions
have changed slightly for SAS/C users. SAS/C allows signals to be raised.
select() may complete if the signal is raised without the conditions on the select()
parameters having been met. This new feature allows you to use signal
functionality, issue a blocking receive, and do a send from a signal handler.

Return Value If successful, select() returns the number of ready descriptors that are contained
in the descriptor sets, or zero if the time limit expires. Otherwise, the value -1 is
returned, and the error code stored in the global integer errno indicates the
nature of the error. If select() returns with an error, including one due to an
interrupted call, the descriptor sets are unmodified.

Error Codes The select() function returns these error codes (from <errno.h>) in the global
integer errno:
EBADF One of the descriptor sets specified an invalid descriptor.

EINVAL The specified time limit is invalid. One of its components is
negative or too large.

EINVAL The count of socket descriptors to check is less than or equal to
zero.

EINVAL No valid socket descriptors were referenced by the three sets of
masks passed by the caller.

Implementation
Notes

The implementation of select() provided with the API supports only descriptors
associated with sockets.

See Also accept(), connect(), read(), write(), recv(), send(), recvfrom(), sendto(),
recvmsg(), sendmsg(), mvsselect()

Socket Library Functions 3–89

send()

send()
Send a message on a socket.

Synopsis
#include <socket.h>
#include <uio.h>
int send (s, msg, len, flags)
int s;
char *msg;
int len, flags;

Description Sends outgoing data on a connected socket s. This function is normally used to
send a reliable, ordered stream of data bytes on a socket of type
SOCK_STREAM, but can also be used to send datagrams on a socket of type
SOCK_ASSOC, if an association has been formed with a connect() function.

The send() function normally is used only on a connected socket (see connect()
for more information), while sendto() and sendmsg() can be used to send data on
a socket whether it is connected or not.

The location of the message is given by msg, and its size is given by len. The
number of bytes sent is returned. If the message is too long to pass automatically
through the underlying protocol, the error EMSGSIZE is returned, and the
message is not transmitted.

If no buffer space is available at the socket to hold the message to be transmitted,
send() normally blocks. However, if the socket has been placed in non-blocking
I/O mode (see ioctl() for more information), a value of -1 is returned with the
external variable errno set to EMSGSIZE, and the message is not transmitted.
The select() function can be used to determine when it is possible to send more
data.

The flags argument to send() may be set to MSG_OOB (from <socket.h>) to send
out-of-band data, if the underlying protocol supports this notion. Otherwise,
flags should be set to zero.

Return Value If successful, send() returns the number of bytes sent. Otherwise, the value -1 is
returned, and the error code stored in the global integer errno indicates the
nature of the error.

3–90 C/Socket Programmer Reference

send()

Error Codes The send() function returns these error codes (from <errno.h>) in the global
integer errno:
EADDRNOTAVAIL A connectionless socket had a send request issued

to it, but the user passed a name of the remote
endpoint that was invalid. Either the remote port
is zero or the remote address is INADDR_ANY.

EAFNOSUPPORT The name of the remote endpoint to send the data
to specified a domain other than AF_INET.

EBADF An invalid descriptor was specified.

ECONNABORTED The incoming connection request was aborted by
the remote endpoint.

ECONNREFUSED The remote endpoint refused to continue the
connection.

ECONNRESET The remote endpoint reset the connection request.

EDESTADDRREQ A connectionless socket is being used and no
name of the remote endpoint has been passed by
the user.

EDESTUNREACH Remote destination is now unreachable.

EFAULT The buffer passed by the user points to
inaccessible memory.

EFAULT The pointer to the name of the remote endpoint
passed by the user points to inaccessible memory.

EHOSTUNREACH Remote host is now unreachable.

EINVAL The number of bytes to transmit is less than or
equal to zero.

EINVAL A connectionless socket does not yet have a name
bound to it.

EINVAL A connectionless socket is being used and the
length of the name passed by the user is zero.

EINVAL A send request was issued to a socket that is
operating in connectionless mode, but the user did
not pass a name of the remote endpoint to which
to send the data.

EISCONN A socket associated with a remote endpoint has
been issued a send request in which the user
specified a remote endpoint name.

EMSGSIZE The socket requires that the message be sent
automatically, and the size of the message to be
sent made this impossible.

Socket Library Functions 3–91

send()

ENETDOWN Local network interface is down.

ENOBUFS The system was unable to allocate an internal
buffer. The operation might succeed when buffers
become available.

ENOBUFS The output queue for a network interface was full.
This generally indicates that the interface has
stopped sending, but it can be caused by transient
congestion.

ENOTCONN The socket being used requires a connection
before data can be transferred, and no such
connection currently exists.

EOPNOTSUPP The user tried to send urgent data (MSG_OOB) on
a socket that does not support this concept.

EPIPE An attempt was made to send to a socket that is
not connected to or associated with a peer socket.

ETIMEDOUT The connection request by the remote endpoint
timed out.

EWOULDBLOCK The socket is marked non-blocking and the
requested operation would block.

Implementation Notes The send() function does not support the MSG_DONTROUTE option and
should not be set in flags. The option MSG_MORE lets the user program inform
sockets of the fact that more data is about to be written to the socket. This may
be used by the transport provider to influence its packetizing algorithm. The
maximum number of vectored I/O structures (struct iovec) in an array per call
is 16 (MSG_IOVLEN).

See Also recv(), sendto(), sendmsg(), select(), getsockopt(), socket(), write()

3–92 C/Socket Programmer Reference

sendmsg()

sendmsg()
Send a message on a socket.

Synopsis
#include <socket.h>
#include <uio.h>
int sendmsg (s, msg, flags)
int s;
struct msghdr msg [];
int flags;

Description Sends outgoing data on a connected or unconnected socket s. Data is sent in
gather mode from a list of noncontiguous buffers.

The argument msg is a pointer to a structure, msghdr, used to minimize the
number of directly supplied parameters. This structure has this form, as defined
in <socket.h>:
struct msghdr

{
 caddr_t msg_name;
 int msg_namelen;
 struct iovec *msg_iov;
 int msg_iovlen;
 caddr_t msg_accrights;
 int msg_accrightslen;
};

Here msg_name and msg_namelen specify the destination address if the socket
is unconnected. msg_name can be given as a null pointer if the destination
address is not required. The msg_iov and msg_iovlen describe the gather
locations, as described in writev() . A buffer containing any access rights to send
with the message is specified in msg_accrights, which has length
msg_accrightslen. Access rights are currently limited to file descriptors, each
occupying the size of an int.

The number of bytes sent is returned. If the message is too long to pass
automatically through the underlying protocol, the error EMSGSIZE is returned,
and the message is not transmitted.

If no message space is available at the socket to hold the message to be
transmitted, sendmsg() normally blocks. However, if the socket has been placed
in non-blocking I/O mode (see ioctl() for more information), a value of -1 is
returned with the external variable errno set to EMSGSIZE, and the message is
not transmitted. The select() function can be used to determine when it is
possible to send more data.

The flags argument to sendmsg() can be set to MSG_OOB (from <socket.h>) to
send out-of-band data if the underlying protocol supports this notion.
Otherwise, flags should be set to zero.

Socket Library Functions 3–93

sendmsg()

Return Value If successful, sendmsg() returns the number of bytes sent. Otherwise, the value
-1 is returned, and the error code stored in the global integer errno indicates the
nature of the error.

Error Codes The sendmsg() function returns these error codes (from <errno.h>) in the global
integer errno:
EADDRNOTAVAIL A connectionless socket had a send request issued

to it, but the user passed a name of the remote
endpoint that was invalid. Either the remote port
is zero or the remote address is INADDR_ANY.

EAFNOSUPPORT The name of the remote endpoint to send the data
to specified a domain other than AF_INET.

EBADF An invalid descriptor was specified.

ECONNABORTED The incoming connection request was aborted by
the remote endpoint.

ECONNREFUSED The remote endpoint refused to continue the
connection.

ECONNRESET The remote endpoint reset the connection request.

EDESTADDRREQ A connectionless socket is being used and no
name of the remote endpoint has been passed by
the user.

EDESTUNREACH Remote destination is now unreachable.

EFAULT The buffer passed by the user points to
inaccessible memory.

EFAULT The pointer to the name of the remote endpoint
passed by the user points to inaccessible memory.

EFAULT The pointer to the msghdr structure points to
inaccessible memory.

EFAULT The msghdr has an iovec pointer that points to
inaccessible memory.

EHOSTUNREACH Remote host is now unreachable.

EINVAL The number of bytes to transmit is less than or
equal to zero.

EINVAL A connectionless socket does not yet have a name
bound to it.

EINVAL A connectionless socket is being used and the
length of the name passed by the user is zero.

3–94 C/Socket Programmer Reference

sendmsg()

EINVAL A send request was issued to a socket that is
operating in connectionless mode, but the user did
not pass a name of the remote endpoint to which
to send the data.

EINVAL The msghdr structure specifies an array of less
than or equal to zero iovec elements.

EISCONN A socket that is associated with a remote endpoint
has been issued a send request in which the user
specified a remote endpoint name.

EMSGSIZE The socket requires that the message be sent
automatically, and the size of the message to be
sent made this impossible.

EMSGSIZE The msghdr structure specifies an array of iovec
elements of less than or equal to zero.

ENETDOWN Local network interface is down.

ENOBUFS The system was unable to allocate an internal
buffer. The operation might succeed when buffers
become available.

ENOBUFS The output queue for a network interface was full.
This generally indicates that the interface has
stopped sending, but can be caused by transient
congestion.

ENOTCONN The socket being used requires a connection
before data can be transferred, and no such
connection currently exists.

EOPNOTSUPP The user tried to send urgent data (MSG_OOB) on
a socket that does not support this concept.

EPIPE An attempt was made to send to a socket that is
not connected to or associated with a peer socket.

ETIMEDOUT The connection request by the remote endpoint
timed out.

EWOULDBLOCK The socket is marked non-blocking and the
requested operation would block.

Implementation
Notes

The sendmsg() function does not support the MSG_DONTROUTE option and
should not be set in flags. The option MSG_MORE lets the user program inform
sockets of the fact that there is more data about to be written to the socket. This
can be used by the transport provider to influence its packetizing algorithm.
The maximum number of vectored I/O structures (struct iovec) in an array per
call is 16 (MSG_IOVLEN).

See Also recv(), sendto(), sendmsg(), select(), getsockopt(), socket(), write()

Socket Library Functions 3–95

sendto()

sendto()
Send a datagram on a socket.

Synopsis
#include <socket.h>
#include <uio.h>
int sendto (s, msg, len, flags, to, tolen)
int s;
char *msg;
int len, flags;
struct sockaddr *to;
int tolen;

Description Sends outgoing data on a connected or unconnected socket. This function
normally is used to send datagrams on a socket of type SOCK_DGRAM, but
can also be used to send a reliable, ordered stream of data bytes on a connected
socket of type SOCK_STREAM.

The sendto() function normally is used to transmit a datagram from a socket that
is unconnected. The socket is indicated by s. The destination address is given by
to, and its length is given by tolen. If the socket is connected or associated with a
destination (see connect() for more information), to and tolen can be set to zero.

The location of the datagram is given by msg, and its size is given by len. The
number of bytes sent is returned. If the datagram is too long to pass
automatically through the underlying protocol, the error EMSGSIZE is returned,
and the datagram is not transmitted.

If no buffer space is available at the socket to hold the datagram to be
transmitted, sendto() normally blocks. However, if the socket has been placed in
non-blocking I/O mode (see ioctl() for more information), a value of -1 is
returned with the external variable errno set to EMSGSIZE, and the datagram is
not transmitted. The select() function can be used to determine when it is
possible to send more data.

The flags argument to sendto() can be set to MSG_OOB (from <socket.h>) to
send out-of-band data, if the underlying protocol supports this notion.
Otherwise, flags should be set to zero.

Return Value If successful, sendto() returns the number of bytes sent. Otherwise, the value -1
is returned, and the error code stored in the global integer errno indicates the
nature of the error.

3–96 C/Socket Programmer Reference

sendto()

Error Codes The sendto() function returns these error codes (from <errno.h>) in the global
integer errno:
EADDRNOTAVAIL A connectionless socket had a send request issued to it,

but the user passed a name of the remote endpoint that
was invalid. Either the remote port is zero or the remote
address is INADDR_ANY.

EAFNOSUPPORT The name of the remote endpoint to send the data to
specified a domain other than AF_INET.

EBADF An invalid descriptor was specified.

ECONNABORTED The incoming connection request was aborted by the
remote endpoint.

ECONNREFUSED The remote endpoint refused to continue the
connection.

ECONNRESET The remote endpoint reset the connection request.

EDESTADDRREQ A connectionless socket is being used and no name of
the remote endpoint has been passed by the user.

EDESTUNREACH The remote destination is now unreachable.

EFAULT The buffer passed by the user points to inaccessible
memory.

EFAULT The pointer to the name of the remote endpoint passed
by the user points to inaccessible memory.

EHOSTUNREACH The remote host is not unreachable.

EINVAL The number of bytes to transmit is less than or equal to
zero.

EINVAL A connectionless socket does not yet have a name
bound to it.

EINVAL A connectionless socket is being used and the length of
the name passed by the user is zero.

EINVAL A send request was issued to a socket that is operating
in connectionless mode, but the user did not pass a
name of the remote endpoint to which to send the data.

EISCONN A socket that is associated with a remote endpoint has
been issued a send request in which the user specified a
remote endpoint name.

EMSGSIZE The socket requires that the message be sent
automatically, and the size of the message to be sent
made this impossible.

ENETDOWN The local network interface is down.

Socket Library Functions 3–97

setlogmask()

ENOBUFS The system was unable to allocate an internal buffer.
The operation might succeed when buffers become
available.

ENOBUFS The output queue for a network interface was full. This
generally indicates that the interface has stopped
sending, but can be caused by transient congestion.

ENOTCONN The socket being used requires a connection before data
can be transferred, and no such connection currently
exists.

EOPNOTSUPP The user tried to send urgent data (MSG_OOB) on a
socket that does not support this concept.

EPIPE An attempt was made to send to a socket that is not
connected to or associated with a peer socket.

ETIMEDOUT The connection request by the remote endpoint timed
out.

EWOULDBLOCK The socket is marked non-blocking and the requested
operation would block.

Implementation
Notes

The sendto() function does not support the MSG_DONTROUTE option and
should not be set in flags. The option MSG_MORE lets the user program inform
sockets of the fact that there is more data about to be written to the socket. This
can be used by the transport provider to influence its packetizing algorithm.
The maximum number of vectored I/O structures (struct iovec) in an array per
call is 16 (MSG_IOVLEN).

See Also recv(), send(), sendmsg(), select(), getsockopt(), socket(), write()

setlogmask()
Set log priority mask

Synopsis
#include <syslog.h>
int setlogmask (maskpri)
int maskpri;

Description The setlogmask() function sets the log priority mask to maskpri and returns the
previous mask. Calls to syslog() with a priority not set in maskpri are rejected.
The mask for an individual priority pri is calculated by the macro
LOG_MASK (pri); the mask for all priorities up to and including toppri is
given by the macro LOG_UPTO (toppri). The default allows all priorities to be
logged.

See Also closelog(), openlog(), syslog(), vsyslog()

3–98 C/Socket Programmer Reference

setsockopt()

setsockopt()
Set options on a socket.

Synopsis
#include <socket.h>
#include <uio.h>
#include <inet.h>
#include <tcp.h>
int setsockopt (s, level, optname, optval, optlen)
int s, level, optname;
char *optval;
int optlen;

Description Manipulates options associated with a socket. Options always exist at the
socket level and can also exist at layers within the underlying protocols.
Options are retrieved with the getsockopt() function. Options can exist at
multiple protocol levels; they are always present at the uppermost socket level.

When manipulating socket options, the level at which the option resides and the
name of the option must be specified. To manipulate options at the socket level,
level is specified as SOL_SOCKET. To manipulate options at any other level the
protocol number of the appropriate protocol controlling the option is supplied.

Example To indicate that a TCP protocol option is to be changed, level should be set to
the protocol number of TCP. Read getprotobyname() for more information.

 The parameters optval and optlen identify a buffer that contains the option
value. The optlen parameter is the length of the option value in bytes.

The optname parameter and any specified options are passed uninterpreted to
the appropriate protocol module for interpretation. The include file <socket.h>
contains definitions for socket level options. Options at other protocol levels vary
in format and name; consult the appropriate appendix for additional
information.

Most socket-level options require an int parameter for optval. For boolean
options, a non-zero value indicates the option is to be enabled, and a zero value
indicates the option is to be disabled. SO_LINGER uses a struct linger parameter,
defined in <socket.h>, that specifies the desired state of the option and the linger
interval.

Socket Library Functions 3–99

setsockopt()

The following table lists options recognized at the socket level. Except as noted,
each can be set with setsockopt() and examined with getsockopt():

Option Definition

SO_BROADCAST Requests permission to send broadcast datagrams on the socket.

SO_DEBUG Enables debugging in the socket modules. This option is implemented slightly
differently than UNIX in that on UNIX it allows for debugging at the underlying
protocol modules.

SO_DONTROUTE Indicates that outgoing messages should bypass the standard routing facilities.
Instead, messages are directed to the appropriate network interface according to
the network portion of the destination address.

SO_KEEPALIVE Enables the periodic transmission of messages on a connected socket. Should the
connected party fail to respond to these messages, the connection is considered
broken and processes using the socket are notified via an errno ETIMEDOUT.

SO_LINGER Controls the action taken when unsent messages are queued on socket and a
close() is performed. If the socket promises reliable delivery of data and
SO_LINGER is set to a value other than zero, the system blocks the process on
the close() attempt until it is able to transmit the data or until the number of
seconds specified by the SO_LINGER option expire or until the connection has
timed out. If SO_LINGER is set and the interval is zero, the socket is closed once
the system has scheduled that an orderly release be performed.

SO_OOBINLINE This option is not currently supported by this release of the socket library. It is
implemented on UNIX, and its purpose is to request that out-of-band data be
placed in the normal data input queue as received by protocols that support out-
of-band data; it is then accessible with recv() or read() functions without the
MSG_OOB flag.

SO_RCVBUF Adjusts the normal buffer size allocated for input. The buffer size can be
increased for high-volume connections to improve throughput or can be
decreased to limit the possible backlog of incoming data. The system places an
absolute limit on this value. This implementation of sockets provides for this
option for backward compatibility, but also allows for buffer options that are
more specific to the underlying API and therefore provide a better method of
controlling a socket’s buffering characteristics. These options are
SO_RCVBYTCNT and SO_RCVREQCNT. All buffering options can be set only
once by the socket user and must be done before any data is sent or received on
the socket.

SO_RCVBYTCNT Adjusts the number of bytes allocated to the receive circular buffer for a socket.
This option is specific to this implementation of sockets and therefore is not
portable to other socket libraries. This option can be set only once successfully,
and if the receive byte count of the circular buffer is changed, it must be done
prior to sending or receiving any data on the socket.

SO_RCVLOWAT Adjusts the size of the receive low water mark.

3–100 C/Socket Programmer Reference

setsockopt()

Option Definition

SO_RCVREQCNT Adjusts the number of receive requests that can be active within the socket
library at a given time. This option is specific to this implementation of sockets
and therefore is not portable to other socket libraries. This option can be set only
once successfully, and if the receive request count is changed, it must be done
prior to sending or receiving any data on the socket.

SO_READFRAG This option lets a user of a datagram type socket that preserves message
boundaries read a datagram a piece at a time. Traditionally, with UNIX sockets,
if a user issues a read request for 100 bytes and the datagram being read consists
of 120 bytes, the socket returns the first 100 bytes to the caller and then flushes
the remaining 20 bytes. This default method of operation by this implementation
of sockets can be overridden by using this option. This option does not allow for
the parsing of pieces of a single datagram into a single user buffer. When this
option is used, the user must determine the boundaries of datagrams. This
option is specific to this implementation and is not portable to other socket
implementations.

SO_REUSEADDR Indicates that the rules used in validating addresses supplied in a bind()
function should allow reuse of local addresses.

SO_SENDALL This option guarantees that any form of send request (send(), sendto(),
sendmsg(), write(), or writev()) that is done in a blocking mode transmits all the
data specified by the user. Traditionally, BSD sockets send as many bytes as the
current buffering allocation allowed for and then return to the user with a count
of the actual number of bytes transmitted. If the user requested that a write of
200 bytes be done but there currently was only buffering space for 150 bytes, the
socket queues 150 bytes for transmission and returns a count of 150 to the caller
to indicates that 50 bytes could not be transmitted due to lack of buffer space.
This implementation of sockets acts identically to a UNIX socket under the same
scenario under the default setting of the socket options. However, if this option
is turned ON in Unicenter TCPaccess sockets, the socket blocks the user until all
of the data has been queued for transmission or some type of error occurs. This
option is specific to this implementation.

SO_SNDBUF Adjusts the normal buffer size allocated for output. The buffer size can be
increased for high-volume connections to improve throughput or can be
decreased to limit the possible backlog of outgoing data. The system places an
absolute limit on this value. This implementation of sockets provides this option
for backward compatibility. It also allows for buffer options that are more
specific to the underlying API and therefore provides a better method of
controlling a socket’s buffering characteristics. These options are
SO_SNDBYTCNT and SO_SNDREQCNT. All buffering options can be set only
once by the socket user and must be done before any data is sent or received on
the socket.

Socket Library Functions 3–101

setsockopt()

Option Definition

SO_SNDBYTCNT Adjusts the number of bytes allocated to the send circular buffer for a socket.
This option is specific to this implementation of sockets and therefore is not
portable to other socket libraries. This option can be set only once successfully,
and if the send byte count of the circular buffer is changed, it must be done prior
to sending or receiving any data on the socket.

SO_SNDLOWAT Adjusts the size of the send low water mark.

SO_SNDREQCNT Adjusts the number of send requests that can be active within the socket library
at a given time. This option is specific to this implementation of sockets and
therefore is not portable to other socket libraries. This option can be set only
once successfully, and if the send request count is changed, it must be done prior
to sending or receiving any data on the socket.

SO_USELOOPBACK Requests that the loopback interface is used rather than a real physical interface.

The following table lists TCP level options:

Option Definition

TCP_NODELAY Ensures that TCP type sockets (SOCK_STREAM) send the data as soon as
possible and do not wait for more data or a given amount of time to enhance the
packetizing algorithm. This option is similar to the BSD UNIX socket option.

TCP_MAXSEG This option is not supported by this implementation of sockets at the present
release. On UNIX, this option lets the user of a SOCK_STREAM socket declare
the value of the maximum segment size for TCP to use when negotiating this
value with its remote endpoint.

The following option is at the UDP level.

UDP_CHECKSUM Sets whether UDP checksum computation is to be

performed.

The following table lists options at the IP level

Option Definition

IP_HDRINCL Specifies that the application include the IP header in data for the SEND option.
Applicable for RAW sockets only

IP_OPTIONS Sets specific options in the IP header

IP_TOS Sets the type-of-service field in IP header of outgoing packets.

IP_TTL Sets the time-to-live field in IP header of outgoing packets.

3–102 C/Socket Programmer Reference

setsockopt()

Return Value If setsockopt() is successful, a value of zero is returned. A return value of -1
indicates an error, and the error code stored in the global integer errno
indicates the nature of the error.

Error Codes The setsockopt() function returns these error codes (from <errno.h>) in the
global integer errno:
EBADF The s argument is not a valid descriptor.

EFAULT The pointer to the value buffer points to inaccessible memory.

EFAULT The pointer to the value buffer length points to inaccessible
memory.

EINVAL The size of the value buffer does not equal the size of the
option. Most options require an integer length buffer, or in the
case of SO_LINGER the buffer must be the size of the linger
structure.

EINVAL The size of the option buffer is greater than the maximum
allowed by the API.

EINVAL The option is not supported at the level requested.

EINVAL No options can be read from the protocol layers.

Implementation
Notes

The following options are recognized at the socket level on BSD UNIX systems
and for OpenEdition Converged sockets, but are not supported by the API. If
any of these options are referenced, an error is generated:
SO_RCVLOWAT Sets the receive low water buffering mark.

SO_RCVTIMEO Sets the receive timeout value. This option is not
currently implemented in UNIX.

SO_SNDLOWAT Sets the send low water buffering mark.

SO_SNDTIM EO Sets the send timeout value. This option is not
currently implemented in UNIX.

The effect of setting the supported socket level options can differ from that
which occurs in a UNIX environment.

Example The SO_DEBUG option enables the API debugging facilities, but the output
produced by those facilities can differ from that produced on a UNIX system.

See Also getsockopt(), ioctl(), socket()

Socket Library Functions 3–103

shutdown()

shutdown()
Shut down part of a full-duplex connection

Synopsis
#include <socket.h>
#include <uio.h>
int shutdown (s, how)
int s, how;

Description Gracefully shuts down a socket. The input path can be shut down while
continuing to send data, the output path can be shut down while continuing to
receive data, or the socket can be shut down in both directions at once. Data
queued for transmission is not lost.

The shutdown() function causes all or part of a full-duplex connection on the
socket associated with s to be shut down.

If how is zero, further receives are disallowed. If how is one, further sends are
disallowed. If how is 2, further sends and receives are disallowed.

Return Value If shutdown() is successful, a value of zero is returned. A return value of -1
indicates an error, and the error code stored in the global integer errno
indicates the nature of the error.

Error Codes The shutdown() function returns these error codes (from <errno.h>) in the
global integer errno:
EBADF The s argument is not a valid descriptor.

ECONNABORTED The connection was aborted by a local action of
the API.

ECONNREFUSED The remote endpoint refused to continue the
connection.

ECONNRESET The remote endpoint reset the connection request.

ETIMEDOUT The connection timed out.

See Also connect(), socket()

3–104 C/Socket Programmer Reference

socket()

socket()
Create an endpoint for communication.

Synopsis
#include <socket.h>
#include <uio.h>
int socket (domain, type, protocol)
int domain, type, protocol;

Description Creates an endpoint in a communications domain. The endpoint is called a
socket. When the socket is created, a protocol is selected and a descriptor is
returned to represent the socket. The socket descriptor is used in all subsequent
functions referencing the socket. Only sockets in the Internet domain using TCP
or UDP protocol are supported by this implementation.

The domain argument specifies a communications domain within which
communication takes place; this selects the protocol family to use. The protocol
family generally is the same as the address family for the addresses supplied in
later operations on the socket. These families are defined in the include file
<socket.h>.

This is the only protocol family currently recognized by this implementation:
PF_INET (Internet protocols)

The socket has the indicated type, which specifies the semantics of
communication. The following are currently defined types:

SOCK_STREAM Provides sequenced, reliable, two-way

connection-based byte streams. An out-of-band
data transmission mechanism can be supported.

SOCK_DGRAM Supports datagrams (connectionless, unreliable
messages of a fixed (typically small) maximum
length).

SOCK_ASSOC Supports datagrams (associations, unreliable
messages of a fixed (typically small) maximum
length).

SOCK_RAW Supports datagrams (connectionless, unreliable
messages of a fixed maximum length) with the
complete IP header included in each datagram.

Socket Library Functions 3–105

Chapter

4 Socket Library Include Files

This chapter lists the include files used with the API socket library. These files
define structures, macros, and constants referenced by the socket library and
should be included during the compilation of any application programs that call
socket library functions.

STRUCTURE
DECLARATIONS

Include File Summary

Socket library include files are installed on the local system as members of a
partitioned data set. Include this data set in the SYSLIB DD concatenation when
application programs are compiled. The data set name is determined during
installation (default name T01TCP.H unless changed by the local system
programmer).

The following table summarizes the contents of each include file:

INCLUDE
FILE

PDS
MEMBER

MACRO DEFINITIONS OTHER DEFINITIONS

acs.h ACS

cdefs.h CDEFS _CONCAT
_PA
_STRING

ANSI C Keywords

errno.h ERRNO GET_ERRNO
SET_ERRNO

Socket errno values

if.h IF ifnet

ifconf
IF_ENQUE

ifaddr
ifreq

IF_QFULL
IF_DROP

IF_PREPEND
IF_DEQUEUE

if_arp IF#ARP arp_hdr
arpreq

Socket Library Include Files 4–1

writev()

INCLUDE
FILE

PDS
MEMBER

STRUCTURE
DECLARATIONS

MACRO DEFINITIONS OTHER DEFINITIONS

if_ether IF#ETHER ETHER_MAP_IP_MULTICAST ether_header
ether_arp

in.h IN in_addr
sockaddr_in
ip_mreq

IN_CLASSA

IN_CLASSD

IN_BADCLASS htonl

ntohs

Important IP addresses

IN_CLASSB
IN_CLASSC

IN_MULTICAST
IN_EXPERIMENTAL

htons
ntohl

Protocol defines
Well-known port
numbers
IP options

Function prototypes

 Includes in.h

IOC_OUT
IOC_IN

IOC_DIRMASK

ioctl.h IOCTL

SIOCGIFFLAGS

SIOCGIFCONF

SIOCADDRT
SIOCDELRT
OSIOCGIFADDR
SIOCGIFADDR
OSIOCGIFDSTADDR
SIOCGIFDSTADDR

OSIOCGIFBRDADDR
SIOCGIFBRDADDR

OSIOCGIFNETMASK
SIOCGIFNETMASK
SIOCGIFMETRIC
SIOCGIFNUM
SIOCGIFHWADDR
SIOCGIFMTU

inet.h INET

ioccom.h IOCCOM IOC_VOID

IOC_INOUT

4–2 C/Socket Programmer Reference

writev()

INCLUDE
FILE

PDS
MEMBER

STRUCTURE
DECLARATIONS

MACRO DEFINITIONS OTHER DEFINITIONS

ip.h IP ip Type of service values

Security values

ip_timestamp

Precedence values
IP options values

Internet
implementation values

netdb.h NETDB

servent

Error return codes hostent
netent

protoent

Function prototypes

clrbit
isset

howmany
roundup

MIN
MAX

serrno.h SERRNO includes errno.h

sockcfg.h SOCKCFG cfuncs
s0skcfg

SET_CNFG_ERR
SET_APICNFG_ERR

Configuration
parameters
Configuration error
codes

socket.h SOCKET linger
sockaddr
sockproto

sstat

bcmp Address families
msghdr
clientid

bcopy
bzero

Socket types
Socket options

Protocol families

sockio.h SOCKIO includes ioctl.h

param.h PARAM setbit

isclr

powerof2

Socket Library Include Files 4–3

writev()

INCLUDE
FILE

PDS
MEMBER

STRUCTURE
DECLARATIONS

MACRO DEFINITIONS OTHER DEFINITIONS

sockvar.h SOCKVAR
sb

errtbl

sstate

SAVE_ERR

 arb

tpi
sdebug

socket

spending

SOISREADABLE
TPLGEN

SAVE_EXIT
SAVE_CMPL_EXIT

syslog.h SYSLOG Priority values/names
Option flag values
Facility names

systime.h SYSTIME timeval
timezone
itemerval

timerisset
timercmp
timerclear

tcp.h. TCP TCP_NODELAY
TCP_MAXSEG
TCP_LINGERTIME

time.h TIME tm difftime Time values

types.h TYPES FD_SET

FD_ZERO

FD_CLR
FD_ISSET

standard C type
defines

UIO iovec

unistd.h UNISTD
STDOUT_FILENO

 STDIN_FILENO

STDERR_FILENO

uio.h
uio

4–4 C/Socket Programmer Reference

Chapter

5 DNR Directory Services

This chapter describes the C library directory services function dirsrv() and both
C and assembler language definitions for DPL/dpl, the Directory Services
Parameter List.

It includes these sections:

■ The dirsrv() Function—Describes the basic C library directory services
function dirsrv(), which is used to request a service from the Domain Name
Resolver (DNR)

■ Directory Services Parameter List (DPL)—Includes the assembler language
(DPL) and the C language (dpl) definitions for the Directory Services
Parameter List (DPL).

The dirsrv() Function

struct dpl *dplp;

The dirsrv() function is used to request a service from the Domain Name
Resolver (DNR). The DNR subsystem maintains a data base of information
locally and throughout the network. The dirsrv() function provides a general-
purpose interface to this information.

Format Description The following is the format description for this function:
#include <ds.h>

int dirsrv (dplp)

Description Performs the request specified by the format of the DPL passed to it. In the
processing of this request, the DNR subsystem is called to perform the actual
request. Any errors detected by the DNR are returned to the caller as the return
code (error) of this function. In addition to the general return code, the DPL
return code field can be set to a value to more clearly distinguish the reason for
the error. A return code of zero signifies proper completion of the request.
Along with the normal completion, the DPL return code field can provide a
conditional completion code. All completion codes are documented in the
section covering the DNR.

DNR Directory Services 5–1

Directory Services Parameter List (DPL)

Completion On successful completion, dirsrv() returns a zero. Otherwise it returns the
general completion code of the DIRSRV macro of the DNR subsystem. The user
should refer to the documentation on the DIRSRV macro for more information
on error codes it can return.

Directory Services Parameter List (DPL)
This section includes the assembler language and C language definition for the
Directory Services Parameter List (DPL).

By convention, the assembler language definition refers to the Directory Services
Parameter List as DPL; the C language definition refers to it as dpl.

DPL DSECT DIRECTORY SERVICES PARAMETER LIST

DFSRVBYV EQU 7 GET SERVICE BY VALUE

DFHSTSRV EQU 10 GET HOST SERVICES (BY NAME)

DFROUTE EQU 12 GET MAIL ROUTE

DPLFLAGS DS X FLAG BYTE

DPLFXECB EQU B’00100000’ DPLECBXR IS EXTERNAL ECB

* EQU B’00000100’ RESERVED

DPLSYSID DS CL4 MVS SUBSYSTEM ID

DPLECB DS 0F ECB PARAMETER

Assembler Language Definition

This section contains the Assembler Language Definition for DPL, the Directory
Services Parameter List.

DPLIDENT DS X CONTROL BLOCK ID
DPLIDSTD EQU 237 STANDARD FORMAT ID
DPLFNCCD DS X FUNCTION CODE
DFHSTBYN EQU 1 GET HOST BY NAME
DFHSTBYV EQU 2 GET HOST BY VALUE
DFHSTBYA EQU 3 GET HOST BY ALIAS
DFNETBYN EQU 4 GET NETWORK BY NAME
DFNETBYV EQU 5 GET NETWORK BY VALUE
DFSRVBYN EQU 6 GET SERVICE BY NAME

DFPROBYN EQU 8 GET PROTOCOL BY NAME
DFPROBYV EQU 9 GET PROTOCOL BY VALUE

DFHSTINF EQU 11 GET HOST INFORMATION (BY NAME)

DFRPCBYN EQU 13 GET RPC BY NAME
DFRPCBYV EQU 14 GET RPC BY VALUE
DFMAX EQU DFRPCBYV MAXIMUM FUNCTION CODE
DPLACTIV DS X SEMAPHORE (DPL ACTIVE)

DPLFCMPL EQU B’10000000’ DPL COMPLETED
DPLFCERR EQU B’01000000’ COMPLETED WITH ERROR

DPLFEXIT EQU B’00010000’ DPLECBXR IS EXIT ROUTINE
DPLF31B EQU B’00001000’ REQUEST ISSUED WITH AMODE=31

* EQU B’00000010’ RESERVED
* EQU B’00000001’ RESERVED

DPLECBXR DS A IECB/XECB/EXIT
 ORG *-4

DPLIECB DS 0F INTERNAL ECB
DPLXECB DS 0A EXTERNAL ECB ADDRESS

5–2 TCPacces C/Socket Programmer’s Guide

Directory Services Parameter List (DPL)

DPLEXIT DS 0A EXIT ROUTINE ADDRESS

DPLOPCD1 DS X OPTION CODE #1

DOLOCAL EQU B’00100000’ OPTCD=GLOBAL|LOCAL

* EQU B’00000100’ RESERVED

DPLOPCD2 DS X OPTION CODE #2

DPLRTNCD DS F COMPOSITE RETURN CODE

DAOKAY EQU 0 SUCCESSFUL COMPLETION

DAFORMAT EQU 12 FORMAT OR SPECIF ERRORS

DPLERRCD DS X SPECIFIC ERROR CODE

DCALIAS EQU B’01000000’ 00: NAME WAS AN ALIAS

DCLOCAL EQU B’00001000’ 00: GLOBAL USED LOCAL

DENOQNAM EQU 3 04: QUAL NAME LEN ZERO

DENOTFND EQU 6 04: REQUEST NOT FOUND

DEOVRFLO EQU 9 04: RESULT BUFFER TOO SMALL

DENAMODE EQU 12 04: 31B NABUF/AMODE 24

DESYSERR EQU 1 08: SYSTEM ERROR

DENOTACT EQU 4 08: SUBSYS NOT ACTIVE

DEUNAVBL EQU 7 08: UNAVAIL SERV/FACILITY

DETERM EQU 10 08: SUBSYS HAS TERMINATED

DEBDXECB EQU 3 12: INVALID ECB ADDRESS

DEBDVALU EQU 6 12: INVALID VALUE

 ORG *+4
 EJECT
DPLOPTCD DS F OPTION CODES
 ORG DPLOPTCD

DOASYNC EQU B’10000000’ OPTCD=SYNC|ASYNC
DONOCOPY EQU B’01000000’ OPTCD=COPY|ORIGINAL

DONOBLOK EQU B’00010000’ OPTCD=BLOCK|NOBLOCK
* EQU B’00001000’ RESERVED

* EQU B’00000010’ RESERVED
* EQU B’00000001’ RESERVED

DPLOPCD3 DS X OPTION CODE #3
DPLOPCD4 DS X OPTION CODE #4

 ORG DPLRTNCD
DPLACTCD DS X RECOVERY ACTION CODE

DAEXCPTN EQU 4 EXCEPTIONAL CONDITION
DAENVIRO EQU 8 ENVIRONMENTAL CONDITION

DAPROCED EQU 16 SEQUENCE AND PROCED ERRORS
DADPLERR EQU 20 LOGIC ERRORS W/NO DPL RTNCD

DCOKAY EQU B’00000000’ 00: NO CONDITIONALS
DCMORE EQU B’10000000’ 00: MORE OCCUR. THAN SIZE

DCOVRFLO EQU B’00100000’ 00: QNBUF TOO SMALL
DCNAMEIA EQU B’00010000’ 00: NAME WAS INT ADDRESS

DENONAME EQU 1 04: NAME BUFFER/LEN ZERO
DENOVALU EQU 2 04: VALUE BUFFER/LEN ZERO

DETIMOUT EQU 4 04: REQUEST TIMED OUT
DERFAIL EQU 5 04: RESOLVER PROCESS FAILED

DENOCDS EQU 7 04: NO CONFIG DATASET
DENAMERR EQU 8 04: NAME DOES NOT EXIST

DENOBLOK EQU 10 04: NOT READILY AVAILABLE
DENODATA EQU 11 04: SERVER HAS NO DATA

DEVAMODE EQU 13 04: 31B VABUF/AMODE 24
DEQNMODE EQU 14 04: 31B QNBUF/AMODE 24

DESUBSYS EQU 2 08: SUBSYSTEM ERROR
DENOTCNF EQU 3 08: SUBSYS NOT INSTALLED

DENOTRDY EQU 5 08: SUBSYS NOT INITIALIZED
DESTOP EQU 6 08: SUBSYS IS STOPPING

DERSOURC EQU 8 08: INSUFFICIENT RESOURCES
DENOTPRB EQU 9 08: USER RB NOT PRB

DEBDOPCD EQU 1 12: INVALID OPTION CODE
DEBDFNCD EQU 2 12: INVALID FUNCTION CODE

DEBDEXIT EQU 4 12: INVALID EXIT ADDRESS
DEBDNAME EQU 5 12: INVALID DOMAIN NAME

DEBDQNAM EQU 7 12: INVALID QUAL NAME BUFF
DEACTIVE EQU 1 16: DPL IS STILL ACTIVE
DEBDTYPE EQU 1 20: DPL STNDRD FORM NOT 237

DNR Directory Services 5–3

Directory Services Parameter List (DPL)

DEPROTCT EQU 2 20: DPL IS FETCH/STORE PROT

DPLFXPAR DS XL(12) 4X3 FIXED-LENGTH (INTERNAL) PARMS

DPLSIZE DS F SIZE LIMIT
 DS F RESERVED

DPLNAME DS XL(8) 4X2 PURPORTED NAME

DPLNALEN DS F PARAMETER LENGTH

DPLVABUF DS A PARAMETER ADDRESS

 ORG DPLQNAME

DPLLEN EQU *-DPL LENGTH OF DPL

* SYNCHRONOUS MODE, AND ACCEPTANCE OR NON-ACCEPTANCE OF A

DRFAILED EQU 4 UNSUCCESS COMPLETION/NOT ACCEPT DRFATLPL

This section contains the C language definition for dpl, the Directory Services
Parameter List.

 * exit address or event control block union
 */

 union

 unsigned char *dplxecb; /* external ECB address */

} ;

 */

 unsigned long dploptcdl; /* options as long */

 unsigned char dplopcd1; /* options as bytes */

DEPLMODE EQU 3 20: 31B DPL PTR/AMODE 24
DPLDGNCD DS H DIAGNOSTIC AND SENSE CODES

 ORG DPLFXPAR
DPLTIME DS F TIME LIMIT

DPLVAPAR DS XL(24) 8X3 VARIABLE-LENGTH (EXTERNAL) PARMS
 ORG DPLVAPAR

 ORG DPLNAME
DPLNABUF DS A PARAMETER ADDRESS

DPLVALUE DS XL(8) 4X2 VALUE PARAMETER
 ORG DPLVALUE

DPLVALEN DS F PARAMETER LENGTH
DPLQNAME DS XL(8) 4X2 FULLY QUALIFIED NAME

DPLQNBUF DS A PARAMETER ADDRESS
DPLQNLEN DS F PARAMETER LENGTH

* GENERAL RETURN CODES (RETURNED IN R15) ARE USED TO INDICATE
* SUCCESSFUL OR UNSUCCESSFUL COMPLETION OF A REQUEST IN

* REQUEST IN ASYNCHRONOUS MODE.
DROKAY EQU 0 SUCCESSFUL COMPLETION/ACCEPTED

 EQU 8 FATAL DPL ERROR

C Language Definition

#define DS_H

/*

union dplecbexit
{

 {
 unsigned long dpliecb; /* internal ECB */

 } dplecb;
 void (*dplexit)();
/* address of exit routine */

/*
 * option codes

union dploptcd
{

 struct
 {

 unsigned char dplopcd2; /* options as bytes */
 unsigned char dplopcd3; /* options as bytes */
 unsigned char dplopcd4; /* options as bytes */
 } dploptcds;

5–4 TCPacces C/Socket Programmer’s Guide

Directory Services Parameter List (DPL)

} ;
/*
 * return code field union

{

 unsigned char dplactcd; /*recovery action code */

 */

 unsigned long dpltime; /* time limit */

};

 unsigned long dplnalen; /* parameter length */

 * variable-length parameters for value parameters

 unsigned long dplvalen; /* parameter length */

 * variable-length parameters for fully qualified name

/*

struct dplvapar

};

 */

 */
union dplrtncd

 unsigned long dplrtncdl; /* return completion stat*/
 struct
 {

 unsigned char dplerrcd; /*specific error code */
 unsigned short dpldgncd; /*diagnostic sense codes */
 } dplrtncds;
} ;
/*
 * fixed-length parameters for dpl

struct dplfxpar
{

 unsigned long dplsize; /* size limit */
 unsigned long dplfxrsvd; /* reserved */

/*
 * variable-length parameters for purported name
 */
struct dplname
{
 char *dplnabuf; /* parameter address */

};
/*

 */
struct dplvalue
{
 char *dplvabuf; /* parameter address */

};
/*

 */
struct dplqname
{
 char *dplqnbuf; /* parameter address */
 unsigned long dplqnlen; /* parameter length */
};

 * variable-length parameters
 */

{
 struct dplname dplname; /* purported name */
 struct dplvalue dplvalue; /* value parameter*/
 struct dplqname dplqname; /* fully qualif. name */

/*
 * DNR request structure for calling the DIRSRV() function.

struct dpl
{
 unsigned char dplident; /* control block ID */
 unsigned char dplfnccd; /* func code of req */
 unsigned char dplactiv; /* activity semaphore */
 unsigned char dplflags; /* flags used by API */
 unsigned char dplsysid[4]; /* MVS subsystem ID */

DNR Directory Services 5–5

Directory Services Parameter List (DPL)

 union dplecbexit dplecbexit; /* ecb/exit rtn addr */
 union dploptcd dploptcd; /* option codes */
 union dplrtncd dplrtncd; /* return codes */
 struct dplfxpar dplfxpar; /* fixed length parms */
 struct dplvapar dplvapar; /* variable length parms */
};
/*
 * dplident
 */
#define DPLIDSTD 237
/*
 * dplfnccd

#define DFHSTBYV 2 /* get host by value */

/*

#define DPLFXECB 0x20 /* external ECB in use */

/*

#define DAEXCPTN 4 /* exceptional condition */

#define DAPROCED 16 /* sequence/proced error */

 */

#define DENOVALU 2 /* 04: val buffer or len = 0 */

 */
#define DFHSTBYN 1 /* get host by name */

#define DFHSTBYA 3 /* get host by alias */
#define DFNETBYN 4 /* get network by name */
#define DFNETBYV 5 /* get network by value*/
#define DFSRVBYN 6 /* get service by name */
#define DFSRVBYV 7 /* get service by value*/
#define DFPROBYN 8 /* get protocol by name*/
#define DFPROBYV 9 /* get protocol by value */
#define DFHSTSRV 10 /* get services by name*/
#define DFHSTINF 11 /* get host info by name */
#define DFROUTE 12 /* get mail route */
#define DFRPCBYN 13 /* get rpc by name */
#define DFRPCBYV 14 /* get rpc by value */
#define DFMAX DFRPCBYV /* MAXIMUM function code */

 * dplflags
 */
#define DPLFCMPL 0x80 /* DPL completed */
#define DPLFCERR 0x40 /* Completed with error*/

#define DPLFEXIT 0x10 /* exit in use */
#define DPLF31B 0x08 /* req iss in AMODE=31 */

 * dplopcd1
 */
#define DOASYNC 0x80 /* OPTCD=SYNC | ASYNC */
#define DONOCOPY 0x40 /* OPTCD=COPY | ORIGINAL */
#define DOLOCAL 0x20 /* OPTCD=GLOBAL | LOCAL*/
#define DONOBLOK 0x10 /* OPTCD=BLOCK | NOBLOCK*/
/*
 * dplrtncd.dplactcd
 */
#define DAOKAY 0 /* successful completion */

#define DAENVIRO 8 /* environmental cond */
#define DAFORMAT 12 /* format/specif error */

#define DADPLERR 20 /* logic error (no rtn code)*/
/*
 * dplrtncd.dplerrcd

#define DCOKAY 0x00 /* 00: no conditionals */
#define DCMORE 0x80 /* 00: more occr thn siz */
#define DCALIAS 0x40 /* 00: name was alias */
#define DCOVRFLO 0x20 /* 00: QNBUF too small */
#define DCNAMEIA 0x10 /* 00: name was IA */
#define DCLOCAL 0x08 /* 00: global used local */
#define DENONAME 1 /* 04: name buffer or len = 0 */

#define DENOQNAM 3 /* 04: qual name len = 0 */
#define DETIMOUT 4 /* 04: request timed out */
#define DERFAIL 5 /* 04: resolver failure*/

5–6 TCPacces C/Socket Programmer’s Guide

Directory Services Parameter List (DPL)

#define DENOTFND 6 /* 04: request not found */
#define DENOCDS 7 /* 04: no config data set */
#define DENAMERR 8 /* 04: name doesn’t exist */
#define DEOVRFLO 9 /* 04: result buff too small */
#define DENOBLOK 10 /* 04: not readily avail */
#define DENODATA 11 /* 04: server has no data */
#define DENAMODE 12 /* 04: 31B nabuf/amode 24 */

#define DESYSERR 1 /* 08: system error */

#define DENOTRDY 5 /* 08: subsys not initialized*/

#define DERSOURCE 8 /* 08: insufficient resources */

#define DEACTIVE 1 /* 16: DPL is active */

#define DEPLMOD 3 /* 20: 31B DPL/amode 24 */

 */

#define DRFATLPL 8 /* fatal DPL error */

#define DEVAMODE 13 /* 04: 31B vabuf/amode 24 */
#define DEQNMODE 14 /* 04: 31B qnbuf/amode 24 */

#define DESUBSYS 2 /* 08: subsystem error */
#define DENOTCNF 3 /* 08: susbsys not config */
#define DENOTACT 4 /* 08: subsys not active */

#define DESTOP 6 /* 08: subsys is stopping */
#define DEUNAVBL 7 /* 08: unavai service/facil */

#define DENOTPRB 9 /* 08: user RB not PRB */
#define DETERM 10 /* 08: subsystem has stopped */
#define DEBDOPCD 1 /* 12: invalid option code */
#define DEBDFNCD 2 /* 12: invalid function cd */
#define DEBDXECB 3 /* 12: invalid ecb address */
#define DEBDEXIT 4 /* 12: invalid exit address */
#define DEBDNAME 5 /* 12: invalid domain name */
#define DEBDVALU 6 /* 12: invalid value */
#define DEBDQNAM 7 /* 12: inval qualified name */

#define DEBDTPYE 1 /* 20: inval DPL identifier */
#define DEPROTCT 2 /* 20: fetch/store protect */

/*
 * general return codes

#define DROKAY 0 /* successful completion */
#define DRFAILED 4 /* unsuccess completion */

DNR Directory Services 5–7

Chapter

6 Configuration

This chapter contains information on installation, configuration, and
customization of the API and C socket libraries. It includes the following
sections:

■ Socket and C Library Installation—Describes the installation of the socket
and C libraries

■ Socket Configuration—Describes the configuration file and sockcfg
configuration structure. Explains socket life and buffering limits. Also
describes compiling the configuration file

■ Sample JCL for Compiling Socket Programs—Contains sample JCL for
compiling and linking the socket configuration file. Includes the IBM and
SAS/C sockcfg configuration changes

■ Using Socket Libraries—Includes sample JCL showing how to compile, link,
and execute non-reentrant and reentrant C socket programs using IBM
C/370 and SAS/C compilers

■ Customizing Socket Programs —Describes how to change default values
within the socket program

Configuration 6–1

Socket and C Library Installation

Socket and C Library Installation
This section describes the installation and configuration of the API, socket, and C
libraries. For additional explanation of the socket and basic C library functions
and features refer to the chapters “C Library Functions” and the “Socket Library
Functions.”

The installation of the socket and basic C libraries is accomplished during the
SMP installation of the API. The socket and C library object, load, and header
files are created by the SMP APPLY process.

Library Data Sets

The socket and C libraries are provided in a number of Partitioned Data Set
(PDS) libraries. These libraries are explained in “Header File Library.”

The following table outlines the socket and C library data sets created during
SMP APPLY processing

Data Set Name SMP Name Description

H H C include (.h) files (members).

CILIB APICIL Subroutine library in load module form for
non-reentrant IBM C/370 users.

CSLIB APICSL Subroutine library in load module form for
non-reentrant SAS/C users.

CIROBJ APICIRO Subroutine library in object form for
reentrant IBM C/370 users.

CSROBJ APICSRO Subroutine library in object form for
reentrant SAS/C users.

SAMP TCPSAMP sockcf.c source as SOCKCFG member.

CNTL CNTL Sample JCL to compile SOCKCFG and to
compile, link, and execute a socket program.

6–2 C/Socket Programmer Reference

Socket and C Library Installation

Header File Library

The header file library contains the header files you need to include to use the
socket library. You must include the correct header files in your C source code
before compiling to ensure proper compilation and execution of the socket
library. Header files that are no longer necessary are noted but included for
backwards compatibility. The following table lists and describes the header files:

Header File Definition

acs.h This header file is no longer required, but is included for backwards
compatibility.

api.h This header file is for use with the C library and when building the socket
configuration file. It is not needed to interface to the socket library. It describes
the interface to the API when using the C library.

cdefs.h This header file contains common definitions for compilation of C headers.

ds.h This header file is for use with the C library. It is not needed to interface to the
socket library. It describes the interface to the Network Directory Services (NDS)
when using the C library.

ecb.h This header file is needed when compiling the socket configuration file and is
also used internally by the socket library. It is not needed to interface to the
socket library.

errno.h This header file defines the errors that can be returned by the socket library
when making requests to it. It also defines GET_ERRNO for backwards
compatibility.

ibmc.h This header file is needed when compiling the socket configuration file and is
also used internally by the socket library. It is not needed to interface to the
socket library.

icssckt.h This header file is used for Unicenter TCPaccess UNIX System Services
(formerly OpenEdition) sockets. See the chapter ”UNIX System Services MVS
Integrated Sockets” for more information.

if.h This header file defines the interface control blocks and ioctl request formats.

if_arp.h This header file defines the ARP header.

if_ether.h This header file defines ethernet frame formats.

in.h This header file defines the constants and structures necessary to interface to a
socket in the internet domain.

inet.h This header file includes in.h and several macro definitions.

ioccom.h This header file contains ioctl encoding definitions.

ioctl.h This header file contains standard ioctl definitions for both files and sockets.

Configuration 6–3

Socket and C Library Installation

Header File Definition

ip.h This header file defines values used by the Internet Protocol (IP) and details the
format of an IP header and options associated with IP. The current
implementation of the socket library does not let the socket library user access
the IP layer; therefore this header file is of little use at this time. This header file
will be used in later versions of the socket library that will let the socket library
user set IP options.

netdb.h This header file defines the structures used by the get services. It also provides
the function prototypes for this family of functions.

param.h This header file contains various system parameters and macros.

proto.h This header file is needed when compiling the socket configuration file and is
also used internally by the socket library. It is not needed to interface to the
socket library.

sasc.h This header file is needed when compiling the socket configuration file and is
also used internally by the socket library. It is not needed to interface to the
socket library.

serrno.h This header file is no longer required and simply includes errno.h and sockcfg.h.
It is provided for backwards compatibility.

sockcfg.h This header file describes the socket configuration structure. It is covered in
more detail later in this chapter.

socket.h This header file defines most of the variables and structures required to interface
properly to the socket library. It also provides the function prototypes in ANSI
form for those functions that are truly socket functions.

sockio.h This header file defines socket ioctl values. It includes ioclt.h.

sockvar.h This header file is needed when compiling the socket configuration file and is
also used internally by the socket library. It is not needed to interface to the
socket library.

syslog.h This header file contains header and prototype information for the emulation of
a syslog daemon.

systime.h This header file contains system time structs and defines.

tcp.h This header file describes those options that can be set for a socket of type
SOCK_STREAM.

time.h This header file contains time structs and defines. A special note is included for
SAS/C users concerning the use of the define _USE_SASC_TIME.

types.h This header file contains various typedefs required for using the socket library.
This header file contains most of the BSD types.h with exceptions for items
inconsistent with the MVS environment.

6–4 C/Socket Programmer Reference

Socket and C Library Installation

Header File Definition

uio.h This header file describes the structures necessary to use vectored buffering of
the socket library. Due to ANSI checking, this header file must be included in
any header file that includes socket.h.

unistd.h This header file contains standard UNIX defines minus the standard UNIX
function prototypes.

user.h This header file is needed when compiling the socket configuration file and is
also used internally by the socket library. It is not needed to interface to the
socket library.

Load Library

The socket and C library routines are provided as a library of load modules. The
load library is for use in construction of non-reentrant applications; reentrant
program developers should use the object library discussed in the next section.
Each compiler has its own load library. When users link their code, they should
choose the proper library based on the compiler. The load library should be
specified in the SYSLIB concatenation for the link-edit step.

Object Library

To support the creation of reentrant load modules, the socket and C library
routines are also supplied as object modules. Each compiler (IBM and SAS) has
one object library. When users pre-link their reentrant code, they should choose
the proper library based on the compiler used to compile the program. The
object library should be specified in the SYSLIB concatenation for the compiler
pre-link step.

Configuration 6–5

Socket and C Library Installation

Sample JCL

Sample JCL for using the socket library is provided in the CNTL data set.

The related members are:

CLGIBMC Sample JCL to compile, link, and execute a non-reentrant

user program using the IBM C/370 C compiler.
CLGIBMCR Sample JCL to compile, link, and execute a reentrant user

program using the IBM C/370 C compiler.
CLGSASC Sample JCL to compile, link, and execute a non-reentrant

user program using the SAS/C compiler.
CLGSASCR Sample JCL to compile, link, and execute a reentrant user

program using the SAS/C compiler.
UMODCFGI Sample JCL to compile and link customized sockcf.c for IBM

C/370 C users.

UMODCFGS Sample JCL to compile and link customized sockcf.c for
SAS/C users.

Note: You should run an SMP/E APPLY CHECK against any USERMOD that
you are trying to install as there may be additional PREs on your system that are
not accounted for. Once you gather this information, add the SYSMOD list(s) to
the ++PRE(xxxxxx) statement. Then SMP/E REJECT the USERMOD to remove
the invalid entry from the SMP/E CSI. You will then be able to
RECEIVE/APPLY the USERMOD with success.

6–6 C/Socket Programmer Reference

Socket Configuration

Socket Configuration
Once the libraries are created by SMP, the socket library can be configured to
meet the needs and dependencies of the site and its users; the C library routines
need no customization. The socket library can be customized by each user or by
the site system administrator to enforce resource constraints on the users of the
socket library. The configuration is accomplished by modifying a configuration
file and then compiling it into object module and load module form. The object
module is then placed in the data set that has been designated for use as the
socket library reentrant object data set. The load module is placed in the data set
designated for use as the socket library non-reentrant data set. If you want a
custom copy of the configuration, follow the same steps but copy the object and
load modules to your private libraries. The source for sockcf.c is in the SAMP
data set and the header file (sockcfg.h) is in the H data set.

Configuration File

The configuration file is provided in C source code compilable by either the
SAS/C or IBM C compilers. The file’s name is sockcf.c and its partner header file,
sockcfg.h, describes the structure and default settings of the configuration.

sockcfg Configuration Structure

The configuration is accomplished by changing any configuration options in the
sockcf file and then recompiling it. Each variable of the configuration structure is
listed below with the allowable range within which it may be set. To change
parameters without recompiling the socket file, see t6:

Configuration Options Definition
sockcfg.name [4] An array containing the characters CNFG. This is used as an eye-catcher and

should never be changed during socket library configuration.
sockcfg.length This integer contains the length in bytes of the configuration structure. Like

the previous variable, this one should never be changed by the user during
configuration.

sockcfg.nosockets Specifies the maximum number of sockets that each user can use at any one
time. This variable can be used to restrict or limit the usage of resources of the
socket user.
The minimum is 1 and the maximum is 512. The limits placed on this variable
are checked (if CONFIGDEBUG is set in sockcfg.flags) at socket library startup
time. Other limits may be placed on this variable by setting the
sockcfg.maxsocket and sockcfg.minsocket variables. See “Socket
Configuration” for more information.
Default: 20.

Configuration 6–7

Socket Configuration

Configuration Options Definition
sockcfg.maxsocket Maximum number of sockets to let a user specify in the socket configuration.

This is only a soft limit and may be varied within the hard limits previously
discussed. Its primary use is to check the parameters configured by the user.
Default: 512.

sockcfg.minsocket Minimum number of sockets a user may specify in the socket configuration.
Its primary use is to check the parameters configured by the user.
Default: 20.

sockcfg.fdsocket Sets the base number that the socket library can use to assign file descriptors
to sockets as they are opened. This value must be greater than the maximum
file descriptor used by the native C compiler library for files. In this way, the
socket library can distinguish between a socket or a file when a function that is
supported by both the native C library and the socket library is called. Such
functions as read, write, close, and others can be performed by both files and
sockets. The current SAS/C compiler uses file descriptors below 40 and the
current IBM C compiler does not support operations on file descriptors. The
minimum is zero and the maximum can be calculated by taking the minimum
of 512 and sockcfg.maxsocket and subtracting sockcfg.nosockets. For almost
all uses the default should suffice. See “Socket Configuration” for more
information.
Default: 64.

sockcfg.maxsndbytcnt Sets the maximum transmit byte count that a user may request when setting
the send byte buffering characteristics of a socket. This limit cannot exceed the
API site default for send byte buffering. The socket library uses the smaller of
the two values as the maximum send byte count.
Default: 64000.

sockcfg.minsndbytcnt Sets the minimum transmit byte count that users may request when setting the
send byte buffering characteristics of a socket. The smallest value allowed is
128.
Default: 128.

sockcfg.defsndbytcnt Defines the default send byte buffer allocation of each socket. This value must
be between the maximum and minimum values. If USEAPIREQBYTCNTDEFS
is set in sockcfg.flags, this variable is ignored and the default value assigned
by the API is used.
Default: 32000.

sockcfg.maxsndreqcnt Sets the maximum transmit request count that users may request when setting
the send request buffering characteristic of a socket. This limit cannot exceed
the API site default for send request buffering. The socket library uses the
smaller of the two values as the maximum.
Default: Eight.

6–8 C/Socket Programmer Reference

Socket Configuration

Configuration Options Definition
sockcfg.minsndreqcnt Sets the minimum transmit request count that users may request when setting

the send request buffering characteristics of a socket.
Default: One.

sockcfg.defsndreqcnt Defines the default send request buffer allocation of each socket. This value
must be between the maximum and minimum values. If
USEAPIREQBYTCNTDEFS is set in sockcfg.flags, this variable is ignored and
the default value assigned by the API is used.
Default: Four.

sockcfg.maxrcvbytcnt Sets the maximum receive byte count that users may request when setting the
receive byte buffering characteristics of a socket. This limit cannot exceed the
API site default for receive byte buffering. The socket library uses the smaller
of the two values as the maximum.
Default: 64000.

sockcfg.minrcvbytcnt Minimum receive byte count that users may request when setting the receive
byte buffering characteristics of a socket. The smallest value allowed is 128.
Default: 128.

sockcfg.defrcvbytcnt Defines the default receive byte buffer allocation of each socket. This value
must be between the maximum and minimum values. If
USEAPIREQBYTCNTDEFS is set in sockcfg.flags, this variable is ignored and
the default value assigned by the API is used.
Default: 32000.

sockcfg.maxrcvreqcnt Sets the maximum receive request count that users may request when setting
the receive request buffering characteristics of a socket. This limit cannot
exceed the API site default for receive request buffering. The socket library
uses the smaller of the two values as the maximum.
Default: Eight.

sockcfg.minrcvreqcnt Sets the minimum receive request count that users may request when setting
the receive request buffering characteristics of a socket.
Default: One.

sockcfg.defrcvreqcnt Defines the default receive request buffer allocation of each socket. This value
must be between the maximum and minimum values. If
USEAPIREQBYTCNTDEFS is set in sockcfg.flags, this variable is ignored and
the default value assigned by the API is used.
Default: Four.

Configuration 6–9

Socket Configuration

Configuration Options Definition
sockcfg.subsysid This character string pointer should point to the four-character string that is

the Unicenter TCPaccess subsystem identifier. This variable is the most
common variable that each socket configuration must change. When
configuration is to take place, the installer should determine what the
subsystem ID is for Unicenter TCPaccess and then ensure this variable points
to this string prior to compiling this module. An improperly specified
subsystem ID is detected when the socket library attempts to open a session
with the API on behalf of the socket user. This occurs on the first call to the
socket function. See “Customizing Socket Programs ” for more information.
Default: ACSS.

sockcfg.svcid[2] This array of pointers should point to the character strings that designate the
services provided by the API. The defaults should suffice and, in most
instances, the installer need not change these.
Default: for TCP is TCP; for UDP is UDP.

sockcfg.apcbapplid This variable should point to an application ID. Currently this is not
supported and should therefore be set to point to a null string.

sockcfg.apcbpasswd This variable should point to an application password. Currently, this is not
supported and should therefore be set to point to a null string.

sockcfg.apcbflags This character is used “as is” in the APCB on the application open (AOPEN)
call to the assembler API. This value is placed in the apcbflag element of the
APCB. For more details on the use of the apcbflag byte, see apcb in the chapter
“.”
Default: Zero.

sockcfg.apcboptc Used “as is” in the APCB on the application open call to the assembler API.
This value is placed in the apcboptc element of the APCB. For more details on
the use of the apcbflag byte, see apcb in the chapter “.”
Default: Zero.

sockcfg.errnobase This integer sets the base value for the socket library to set errno errors. To
avoid confusion with the native C library errors, this element should have a
value greater than the maximum error value that the native C library would
set in errno. The current SAS/C compiler runtime library uses error codes
below 50. The current IBM C compiler library does so also.
Default: 100

sockcfg.exitfunc This variable is a pointer to the C library exit function that is used to set up the
shutdown procedure. This should never need to be changed.
Default: texit().

6–10 C/Socket Programmer Reference

Socket Configuration

Configuration Options Definition
sockcfg.flags This unsigned long variable is a mask of flag bits that control the

characteristics of the socket library. These bits are defined:
31 -SIGNALSUPP
If set to one, user-added signals for SIGIO, SIGURG, and SIGPIPE may be
used if they are also defined. This bit is only valid with the SAS/C library.
30 - USEAPIREQBYTECNTDEF
If set to one1, the socket library ignores the configuration of the data buffering
characteristics and uses the API defaults. The default and recommended
setting is to use the API defaults for buffering limits.
29 - EXTERRNOMSGS
If set to one, the perror function of the socket library prints extended error
messages when it detects a socket configuration problem or a session
initialization problem with the assembler API. When used in conjunction with
the CONFIGDEBUG option, this option lets the installer configure the socket
library and then run a test program to see if any errors are detected with the
configuration. Once the configuration is completed successfully, this flag bit
and CONFIGDEBUG bit can be turned off.
0 - CONFIGDEBUG
If set to one, user-added signals for SIGIO, SIGURG, and SIGPIPE may be
used if they are also defined. This bit is only valid with the SAS/C library.
Default: 0x80000007 for the SAS/C compiler, 0x80000006 for the IBM C
compiler.

sockcfg.closetimeout Sets the time in seconds that the socket library is to wait for an orderly release
on a SOCK_STREAM socket to occur when the user issues a close library call
in blocking mode. This timeout value is not used for closes issued in
nonblocking mode so as not to affect the user’s environment (rob the user of
the one and only timer available). The closetimeout value can be overridden
by using the SO_LINGER option of sockets.
Default: 120 seconds (two minutes).

sockcfg.envrinit This is a pointer to a function that does C library specific initialization. This
should never have to be changed by the installer as the proper routines are
included if the correct #defines are turned on at compile time. The routine for
the SAS/C library is s0scinit() and for the IBM C library is s0icinit().

sockcfg.envrterm This is a pointer to a function that does C library specific termination. This
should never have to be changed by the installer as the proper routines are
included if the correct #defines are turned on at compile time. The routine for
the SAS/C library is s0scterm() and for the IBM C library is s0icterm().

Configuration 6–11

Socket Configuration

Configuration Options Definition
sockcfg.comfuncs This structure of function pointers can be used by the installer to specify the

entry point to functions that are common to both the socket library and the
native C runtime library. For the SAS/C compiler, the only functions that have
duplicate names are read(), write(), and close(). The IBM C compiler has no
functions that have duplicate names with functions of the socket library.

sockcfg.comfuncs.read File descriptor or socket read function.

sockcfg.comfuncs.readv File descriptor or socket read function using vectored I/O buffering.

sockcfg.comfuncs.write File descriptor or socket write function.

sockcfg.comfuncs.writev File descriptor or socket write function using vectored I/O buffering.

sockcfg.comfuncs.ioctl I/O control function.

sockcfg.comfuncs.fcntl File descriptor or socket control function.

sockcfg.comfuncs.select File descriptor or socket I/O synchronous I/O multiplexing function.

sockcfg.comfuncs.close File descriptor or socket close function.

sockcfg.sigurg Signal number to use for signaling the reception of urgent (OOB) data on a
socket. This is only supported with the SAS/C library and the signal used
must be one of the user-assigned asynchronous signals.
Default: For the SAS/C compiler is SIGASY6, for the IBM C compiler (for
which this option is not supported) is zero.

sockcfg.sigio Signal number to use for signaling the occurrence of a major event on a socket.
Major events include the completion of a connection request done
asynchronously, an incoming connection request on a server socket, the
abnormal termination of a connection, the reception of an orderly release from
the remote endpoint, and the reception of regular data for a socket or any
asynchronous error that may occur during the life of a socket. This is only
supported with the SAS/C library and the signal used must be one of the
user-assigned asynchronous signals.
Default: For the SAS/C compiler is SIGASY7, for the IBM C compiler (for
which this option is not supported) is zero.

sockcfg.sigpipe Signal number to use for signaling an error when a socket that can no longer
send any more data has a write request issued to it. This is only supported
with the SAS/C library and the signal used must be one of the user-assigned
asynchronous signals.
Default: For the SAS/C compiler is SIGASY8, for the IBM C compiler (for
which this option is not supported) is zero.

6–12 C/Socket Programmer Reference

Socket Configuration

Socket Life

A socket is created by the successful completion of the socket library call. It
remains in existence until closed explicitly via the close library call or implicitly
via task or address space termination by the socket library user. For sockets of
the SOCK_STREAM type that use TCP for transport, close induces TCP to
perform an orderly release. This process involves the local endpoint sending a
FIN to the remote endpoint and then receiving an ACK for its FIN and a FIN
from the remote endpoint. This process may take a great amount of time (as
compared to computer instruction execution time).

If the user is running in nonblocking I/O, the close call returns once the local
endpoint has scheduled the transmission of the FIN. The socket can no longer be
acted on by the socket user but the context related to the socket is still counted
against the user’s quota of sockets. Not until the orderly release completes does
this socket get deallocated and allow for its reuse. If a user does not desire such a
feature, the SO_LINGER option may be set so that the socket is freed up possibly
prior to the completion of the orderly release. If this option is to be used, the
socket user must be prepared for the consequences related to the lack of a proper
release occurring at the remote endpoint.

Socket Buffering Limits

The configuration variables listed in Compiling the Configuration File define the
limits on each socket’s receive and transmit buffering abilities. Sockets do not
own any data buffers; the underlying assembler API controls these resources.
However, sockets can be used to inform the assembler API how much buffering
is desired, thus letting the assembler API allocate the appropriate amount of
resources to satisfy users’ requirements.

Instead of using the API defaults, socket users can have greater restrictions
placed on them by configuring the parameters listed in Socket Configuration
accordingly. In all cases, socket users are not able to acquire more than the API
maximums. If the defaults provided in the configuration are not enough to
satisfy the socket users, they may request more by using the setsockopt library
call.

Receive and transmit buffering are totally independent of one another. Buffering
limits consist of these elements:

■ Number of bytes for actual data to allocate

■ Number of send or receive requests that the socket library can have
internally pending at a given time

This is much like UNIX sockets, which provide a certain number of bytes for
buffering while at the same time limiting the number of mbufs a user can tie up
at a given time.

Configuration 6–13

Socket Configuration

We recommend that the USEAPIREQBYTECNTDEFS be set on in sockcfg.flags;
this provides socket users with the default site parameters for API buffering
characteristics. The only time this flag should be turned off is when resource
restrictions are to be placed on socket library users.

Compiling the Configuration File

Once the configuration file has been modified for site dependencies, it must be
properly compiled. Sample JCL is provided in the CNTL data set to accomplish
this task. The name of the member is UMODCFGI for IBM C/370 users and
UMODCFGS for SAS/C users. This JCL creates the sockcf module for both
reentrant and non-reentrant usage. The most important part of this task is to
ensure the proper PARMs are used at compilation time. The following table lists
the PARMs of importance:

PARM Comments

DEF (SASC) Must be used only with the SAS/C compiler.

DEF (IBMC) Must be used only with the IBM C compiler.

RENT Must be specified when generating the reentrant version
of the code and should not be used when generating the
non-reentrant version of the code.

The PARM field in each sample JCL is shipped with the proper configuration.
This table outlines the necessary PARMs required to build each socket
configuration module type:

Compiler Code Type DEF(SASC) DEF(IBMC) RENT

SAS/C non-reentrant X

SAS/C reentrant X X

IBM C non-reentrant X

IBM C reentrant X X

Note: When building the load module form of the configuration file, these
names are unresolved at single module link time:

For SAS/C: READ, WRITE, CLOSE, ATEXIT, S0SCINT, S0SCTRM

For IBM C: S0ICINT, S0ICTRM

These variables are resolved when the user program is linked with the socket
library.

6–14 C/Socket Programmer Reference

Sample JCL for Compiling Socket Programs

You should run an SMP/E APPLY CHECK against any USERMOD that you are
trying to install as there may be additional PREs on your system that are not
accounted for. Once you gather this information, add the SYSMOD list(s) to the
++PRE(xxxxxx) statement. Then SMP/E REJECT the USERMOD to remove the
invalid entry from the SMP/E CSI. You will then be able to RECEIVE/APPLY
the USERMOD with success.

Sample JCL for Compiling Socket Programs
This section contains sample JCL for compiling and linking the socket
configuration file. It includes examples for users of IBM C/370 and SAS/C
compilers.

Note: If you are link-editing with the BINDER (HEWLF096) under SMP/E, you
may get the error message IEW2480W. This message can be safely ignored. You
can turn this message off by setting option MSGLEVEL=4 in the PARM field of
the linkedit (binder).

IBM sockcfg Configuration Changes
//UMODCFGI JOB
//*
//* SAMPLE SMP/E JCL TO RECEIVE AND APPLY A USERMOD TO
//* INSTALL A CUSTOMIZED VERSION OF SOCKCF SOURCE
//* CONTAINING C SOCKET CONFIGURATION PARAMETERS FOR
//* IBM C/370 USERS.
//*
//* EDIT THE JOB JCL STATEMENT AND VERIFY THAT THE DATA SET
//* NAMES REFERENCED BELOW MATCH THE NAMES THAT YOU SELECTED
//* FOR THE TCP/IP TARGET DATA SETS (DSN'S TO BE VERIFIED
//* ARE MARKED BELOW WITH "<=== VERIFY ..."). THIS JOB
//* ASSUMES THAT THE STANDARD IBM 370 EDCC JCL PROCEDURES IS
//* AVAILABLE IN YOUR INSTALLATION'S PROCLIB(S).
//*
//* GLOBALLY CHANGE THE FOLLOWING STRINGS TO CORRECTLY
//* REFLECT TARGET DATASETS AND SMPE FMID.
//*
//* 'TRGINDX' < SMPE TARGET DATASETS HIGH LEVEL QUALIFIER
//* XXX < SMPE FMID IDENTIFING MVS TCP/IP FMID
//*
//* STEP 1: COMPILE THE NON-REENTRANT VERSION OF SOCKCF
//* TO CREATE OBJECT WHICH WILL BE PASSED TO THE
//* SUBSEQUENT SMP/E USERMOD RECEIVE/APPLY STEP.
//*
//CNORENT EXEC EDCC,CPARM='DEF(IBMC),SEQUENCE(73,*)',
// INFILE='TRGINDX.SAMP(SOCKCF)' <=== VERIFY DSNAME
//COMPILE.SYSLIB DD
// DD DISP=SHR,DSN=TRGINDX.H <=== VERIFY DSNAME
//COMPILE.SYSLIN DD DISP=(NEW,PASS),DSN=&&COBJ(SOCKCFI),
// UNIT=VIO,SPACE=(3200,(10,10,1)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//*
//* STEP 2: COMPILE THE REENTRANT VERSION OF SOCKCF
//* TO CREATE OBJECT WHICH WILL BE PASSED TO THE
//* SUBSEQUENT SMP/E USERMOD RECEIVE/APPLY STEP.

Configuration 6–15

Sample JCL for Compiling Socket Programs

//*
//CRENT EXEC EDCC,CPARM='DEF(IBMC),RENT,SEQUENCE(73,*)',
// INFILE='TRGINDX.SAMP(SOCKCF)' <=== VERIFY DSNAME
//COMPILE.SYSLIB DD
// DD DISP=SHR,DSN=TRGINDX.H <=== VERIFY DSNAME
//COMPILE.SYSLIN DD DISP=(OLD,PASS),DSN=&&COBJ(SOCKCFIR)
//*
//* STEP 3: EXECUTE SMP/E TO INSTALL A USERMOD TO UPDATE
//* THE REENTRANT AND NON-REENTRANT VERSIONS OF
//* SOCKCF FOR IBM C/370 USERS.
//*
//* CHANGE 'XXX' TO THE CORRECT MVS TCP/IP FMID.
//*
//SMPE EXEC PGM=GIMSMP,REGION=4096K,TIME=960,
// PARM='CSI=SMPINDX.CSI,PROCESS=WAIT'
//SMPHOLD DD DUMMY
//SMPLOG DD DSN=SMPINDX.SMPLOG,DISP=MOD
//SMPOUT DD SYSOUT=HOLDCL
//COBJ DD DISP=(OLD,DELETE),DSN=&&COBJ
//SMPPTFIN DD *
++ USERMOD (MU0CFGI) .
++ VER (Z038)
 FMID(API0XXX) /* CHANGE TO YOUR MVS TCP/IP FMID */ .
++ USER2 (SOCKCFIR) TXLIB(COBJ) DISTLIB(AAPICIRO) .
++ MOD (SOCKCFI) TXLIB(COBJ) DISTLIB(AAPICL) .
/*
//SMPCNTL DD *
 SET BDY(GLOBAL) .
 RECEIVE S(MU0CFGI) .
 SET BDY(TCPTZN) .
 APPLY S(MU0CFGI) .
/*

6–16 C/Socket Programmer Reference

Sample JCL for Compiling Socket Programs

SAS/C sockcfg Configuration Changes
//UMODCFGS JOB
//*
//* SAMPLE SMP/E JCL TO RECEIVE AND APPLY A USERMOD TO
//* INSTALL A CUSTOMIZED VERSION OF SOCKCF SOURCE
//* CONTAINING C SOCKET CONFIGURATION PARAMETERS FOR
//* SAS SAS/C USERS.
//*
//* EDIT THE JOB JCL STATEMENT AND VERIFY THAT THE DATA SET
//* NAMES REFERENCED BELOW MATCH THE NAMES THAT YOU SELECTED
//* FOR THE MVS TCP/IP TARGET DATA SETS (DSN'S TO BE
//* VERIFIED ARE MARKED BELOW WITH "<=== VERIFY ..."). THIS
//* JOB ASSUMES THAT THE STANDARD SAS/C LC370C JCL PROCEDURE
//* IS AVAILABLE IN YOUR INSTALLATION'S PROCLIB(S).
//*
//* GLOBALLY CHANGE THE FOLLOWING STRINGS TO CORRECTLY
//* REFLECT TARGET DATASETS AND SMPE FMID.
//*
//* 'TRGINDX' < SMPE TARGET DATASETS HIGH LEVEL QUALIFIER
//* XXX < SMPE FMID IDENTIFING MVS TCP/IP FMID
//*
//* STEP 1: COMPILE THE NON-REENTRANT VERSION OF SOCKCF
//* TO CREATE OBJECT WHICH WILL BE PASSED TO THE
//* SUBSEQUENT SMP/E USERMOD RECEIVE/APPLY STEP.
//*
//CNORENT EXEC LC370C,PARM.C='DEF(SASC)'
//C.SYSLIN DD DISP=(NEW,PASS),DSN=&&COBJ(SOCKCFS),
// UNIT=VIO,SPACE=(3200,(10,10,1))
//C.SYSLIB DD DISP=SHR,DSN=TRGINDX.H <=== VERIFY DSNAME
// DD DISP=SHR,DSN=SASC.MACLIBC <=== VERIFY DSNAME
//C.SYSIN DD DISP=SHR,
// DSN=TRGINDX.SAMP(SOCKCF) <=== VERIFY DSNAME
//*
//* STEP 2: COMPILE THE REENTRANT VERSION OF SOCKCF TO
//* CREATE OBJECT WHICH WILL BE PASSED TO THE
//* SUBSEQUENT SMP/E USERMOD RECEIVE/APPLY STEP.
//*
//CRENT EXEC LC370C,PARM.C='DEF(SASC),RENT'
//C.SYSLIN DD DISP=(OLD,PASS),DSN=&&COBJ(SOCKCFSR)
//C.SYSLIB DD DISP=SHR,DSN=TRGINDX.H <=== VERIFY DSNAME
// DD DISP=SHR,DSN=SASC.MACLIBC <=== VERIFY DSNAME
//C.SYSIN DD DISP=SHR,
// DSN=TRGINDX.SAMP(SOCKCF) <=== VERIFY DSNAME
//*
//* STEP 3: EXECUTE SMP/E TO INSTALL A USERMOD TO UPDATE
//* THE REENTRANT AND NON-REENTRANT VERSIONS OF
//* SOCKCFG FOR SAS/C USERS.
//*
//* CHANGE THE 'XXX' TO THE CORRECT MVS TCP/IP FMID.
//*
//SMPE EXEC PGM=GIMSMP,REGION=4096K,TIME=960,
// PARM='CSI=SMPINDX.CSI,PROCESS=WAIT'
//SMPHOLD DD DUMMY
//SMPLOG DD DSN=SMPINDX.SMPLOG,DISP=MOD
//SMPOUT DD SYSOUT=HOLDCL
//COBJ DD DISP=(OLD,DELETE),DSN=&&COBJ
//SMPPTFIN DD *
++ USERMOD (MU0CFGS) .
++ VER (Z038)
 FMID(API0XXX) /* CHANGE TO YOUR MVS TCP/IP FMID */ .
++ USER1 (SOCKCFSR) TXLIB(COBJ) DISTLIB(AAPICSRO) .
++ MOD (SOCKCFS) TXLIB(COBJ) DISTLIB(AAPICL) .
/*

Configuration 6–17

Using Socket Libraries

//SMPCNTL DD *
 SET BDY(GLOBAL) .
 RECEIVE S(MU0CFGS) .
 SET BDY(TCPTZN) .
 APPLY S(MU0CFGS) .
/*

Using Socket Libraries
After the socket library has been properly installed, it is ready for use. When
writing code to use the socket library, make sure the proper header files are
included in each source file using socket structures, defines, or function calls.
Once the code is written, concatenate the socket library header data set to their
SYSLIB concatenation for the compile step.

For non-reentrant users, concatenate the proper socket library load data set to the
SYSLIB concatenation for the link-edit step. For reentrant users, concatenate the
proper socket library object data set to the SYSLIB concatenation and include the
proper modules.

The sample JCLs show how to compile, link, and execute non-reentrant and
reentrant C socket programs using the IBM C/370 and SAS/C compilers.

Compile/Link IBM C/370 C Non-reentrant Program

This JCL is for the C/370 version of the compiler. If you are using the AD/Cycle
compiler, replace this line (shown in bold in the JCL):
 // DD DISP=SHR,DSN=&VSCCHD&CVER&EDCHDRS

with this line:
 // DD DISP=SHR,DSN=&LNGPRFX..SEDCDHDR

The AD/Cycle compiler does not use the first DD statement shown after the
LKED.SYSLIB DD in this JCL example. See sidebar comment.
//CLGIBMC JOB
//*
//* SAMPLE JCL TO COMPILE, LINK, AND EXECUTE A NONREENTRANT
//* USER PROGRAM USING THE TCP/API C SOCKET LIBRARIES
//* AND THE IBM C/370 C COMPILER.
//*
//* EDIT THE JOB JCL STATEMENT, VERIFY THE DATA SET NAME(S)
//* OF THE USER'S DATA SETS, AND VERIFY THAT THE DATA SET
//* NAMES REFERENCED BELOW MATCH THE NAMES THAT YOU SELECTED
//* FOR THE TCP/IP TARGET DATA SETS (DSN'S TO BE VERIFIED
//* ARE MARKED BELOW WITH "<=== VERIFY ..."). THIS JOB
//* ASSUMES THAT THE STANDARD IBM C/370 EDCCLG JCL PROCEDURE
//* IS AVAILABLE IN YOUR INSTALLATION'S PROCLIB(S).

6–18 C/Socket Programmer Reference

Using Socket Libraries

//*
//CLGNRENT EXEC EDCCLG,
// INFILE='USER.C(CPROG)', <=== VERIFY DSNAME
// CPARM='DEF(IBMC),NORENT',
// GPARM='PROGRAM PARAMETERS <=== VERIFY PARAMETERS
//*
//* INCLUDE THE TCP/API SOCKET INCLUDE (.H) DATA SET IN THE
//* COMPILER SYSLIB CONCATENATION.
//*
//COMPILE.SYSLIB DD DISP=SHR,DSN=TRGINDX.H <=== VERIFY DSNAME
// DD DISP=SHR,DSN=&VSCCHD&CVER&EDCHDRS
//*
//* INCLUDE THE TCP/API SOCKET SUBROUTINE LIBRARY DATA SET
//* IN THE LINKAGE EDITOR SYSLIB CONCATENATION.
//*
//LKED.SYSLIB DD
// DD
// DD DISP=SHR,DSN=TRGINDX.CILIB <=== VERIFY DSNAME
//*
//LKED.SYSIN DD DUMMY,DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120)

Compile/Link IBM C/370 C Reentrant Program

This JCL is for the C/370 version of the compiler. If you are using the Ad/Cycle
compiler, replace the following line (shown in bold in the JCL):
 // DD DISP=SHR,DSN=&VSCCHD&CVER&EDCHDRS

with this line:
 // DD DISP=SHR,DSN=&LNGPRFX..SEDCDHDR

//CLGIBMCR JOB
//*
//* SAMPLE JCL TO COMPILE, LINK, AND EXECUTE A REENTRANT
//* USER PROGRAM USING THE TCP/API C SOCKET LIBRARIES
//* AND THE IBM C/370 C COMPILER.
//*
//* EDIT THE JOB JCL STATEMENT, VERIFY THE DATA SET NAME(S)
//* OF THE USER'S DATA SETS, AND VERIFY THAT THE DATA SET
//* NAMES REFERENCED BELOW MATCH THE NAMES THAT YOU SELECTED
//* FOR THE TCP/IP TARGET DATA SETS (DSN'S TO BE VERIFIED
//* ARE MARKED BELOW WITH "<=== VERIFY ..."). THIS JOB
//* ASSUMES THE STANDARD IBM C/370 EDCCPLG JCL PROCEDURE IS
//* AVAILABLE IN YOUR INSTALLATION'S PROCLIB(S).
//
//CLGRENT EXEC EDCCPLG,
// INFILE='USER.C(CPROG)', <=== VERIFY DSNAME
// CPARM='RENT,DEF(IBMC)',
// GPARM='PROGRAM PARAMETERS' <=== VERIFY PARAMETERS
//*
//* INCLUDE THE TCP/API SOCKET INCLUDE (.H) DATA SET IN THE
//* COMPILER SYSLIB CONCATENATION.
//*
//COMPILE.SYSLI DD DISP=SHR,DSN=TRGINDX.H <=== VERIFY DSNAME
// DD DISP=SHR,DSN=&VSCCHD&CVER&EDCHDRS
//*
//* INCLUDE THE TCP/API SOCKET SUBROUTINE OBJECT LIBRARY
//* DATA SET IN THE PREPROCESSOR SYSLIB CONCATENATION.
//*
//PLKED.SYSLIB DD DISP=SHR,
// DSN=TRGINDX.CIROBJ <=== VERIFY DSNAME
//PLKED.SYSIN DD DSN=*.COMPILE.SYSLIN,DISP=(OLD,DELETE)

Configuration 6–19

Using Socket Libraries

// DD *
 INCLUDE SYSLIB(S0SKCF)
 INCLUDE SYSLIB(S0INTR)
 ENTRY CEESTART
/*
//

Compile/Link SAS/C Non-reentrant Program
//CLGSASC JOB
//*
//* SAMPLE JCL TO COMPILE, LINK, AND EXECUTE A NONREENTRANT
//* USER PROGRAM USING THE TCP/API C SOCKET LIBRARIES
//* AND THE SAS/C C COMPILER. THIS SAMPLE WILL
//* WORK WITH SAS/C 4.50, 5.00, 5.01 AND 5.50C.
//*
//* EDIT THE JOB JCL STATEMENT, VERIFY THE DATA SET NAME(S)
//* OF THE USER'S DATA SETS, AND VERIFY THAT THE DATA SET
//* NAMES REFERENCED BELOW MATCH THE NAMES THAT YOU SELECTED
//* FOR THE TCP/IP TARGET DATA SETS (DSN'S TO BE VERIFIED
//* ARE MARKED BELOW WITH "<=== VERIFY ..."). THIS JOB
//* ASSUMES THAT THE STANDARD SAS/C LC370CLG JCL PROCEDURE
//* IS AVAILABLE IN YOUR INSTALLATION'S PROCLIB(S).
//*
//CLNORENT EXEC LC370CLG,
// PARM.C='DEF(SASC),NORENT',
// PARM.GO='PROGRAM PARAMETERS' <=== VERIFY PARAMETERS
//*
//* TCP/IP INCLUDE FILE DATA SET MUST PRECEDE SAS/C
//* DATA SET.
//*
//C.SYSLIB DD DISP=SHR,DSN=TRGINDX.H <=== VERIFY DSNAME
// DD DISP=SHR,DSN=&MACLIB
//C.SYSIN DD DISP=SHR,
// DSN=USER.C(CPROG) <=== VERIFY DSNAME
//
//* TCP/IP OBJECT SYSLIB DATA SET MUST PRECEDE SAS/C
//* DATA SETS.
//*
//LKED.SYSLIB DD DISP=SHR,
// DSN=TRGINDX.CSLIB<=== VERIFY DSNAME
// DD DISP=SHR,DSN=SASC.&ENV.LIB <=== VERIFY DSNAME
// DD DISP=SHR,DSN=&SYSLIB
// DD DISP=SHR,DSN=&CALLLIB
//LKED.SYSIN DD DUMMY,DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120)

6–20 C/Socket Programmer Reference

Using Socket Libraries

Compile/Link SAS/C Reentrant Program
//CLGSASCR JOB
//*
//* SAMPLE JCL TO COMPILE, LINK, AND EXECUTE A REENTRANT C
//* PROGRAM USING THE TCP/API C SOCKET LIBRARIES AND THE
//* SAS/C C COMPILER. THIS SAMPLE WILL WORK WITH SAC/C 4.50,
//* 5.00, 5.01 AND 5.50C.
//*
//* EDIT THE JOB JCL STATEMENT, VERIFY THE DATA SET NAME(S)
//* OF THE USER'S DATA SETS, AND VERIFY THAT THE DATA SET
//* NAMES REFERENCED BELOW MATCH THE NAMES THAT YOU SELECTED
//* FOR THE TCP/IP TARGET DATA SETS (DSN'S TO BE VERIFIED
//* ARE MARKED BELOW WITH "<=== VERIFY ..."). THIS JOB
//* ASSUMES THAT THE STANDARD SAS/C LC370C AND LC370LRG JCL
//* PROCEDURES ARE AVAILABLE IN YOUR INSTALLATION'S
//* PROCLIB(S).
//*
//* STEP 1: COMPILE USER PROGRAM REENTRANTLY.
//*
//CCRENT EXEC LC370C,
// PARM.C='RENT,DEF(SASC)'
//*
//* TCP/IP INCLUDE FILE DATA SET MUST PRECEDE SAS/C
//* DATA SET.
//*
//C.SYSLIB DD DISP=SHR,DSN=TRGINDX.H <=== VERIFY DSNAME
// DD DISP=SHR,DSN=&MACLIB
//C.SYSIN DD DISP=SHR,
// DSN=USER.C(CPROG) <=== VERIFY DSNAME
//*
//* STEP 2: LINK USER PROGRAM USING SAS/C CLINK
//* PREPROCESSOR AND THEN EXECUTE.
//*
//LKRENT EXEC LC370LRG,PARM.LKED='LIST,MAP,RENT',
// PARM.GO='PROGRAM PARAMETERS' <=== VERIFY PARAMETERS
//*
//* TCP/IP OBJECT SYSLIB DATA SET MUST PRECEDE SAS/C
//* DATA SETS.
//*
//LKED.SYSLIB DD DISP=SHR,DSN=TRGINDX.CSROBJ <=== VERIFY DSNAME
// DD DDNAME=AR#&ALLRES
// DD DISP=SHR,DSN=SASC.&ENV.OBJ <=== VERIFY DSNAME
// DD DISP=SHR,DSN=&SYSLIB
// DD DISP=SHR,DSN=&CALLLIB
//LKED.SYSIN DD DISP=(OLD,DELETE),DSN=*.CCRENT.C.SYSLIN
// DD *
 INCLUDE SYSLIB(S0SKCF)
 INCLUDE SYSLIB(S0INTR)
 ENTRY MAIN
/*
//

Configuration 6–21

Customizing Socket Programs

Customizing Socket Programs
Socket programs can be easily customized without the need to change and
recompile the sockcf file. This leaves the sockcf object file untouched for use by
other socket applications, but allows individual versatility for testing and
customizing within the program itself. The fields of the sockcfg struct can be
changed by including the header file serrno.h or sockcfg.h in your source
program and setting the desired fields in the externally declared variable
s0skcfg.

Note: You must have the current version of the C compiler installed to change
the sockcfg values. If this environment is not available, contact your Customer
Support specialist to investigate other options.

Refer to Using Socket Libraries, which describes the fields of the sockcfg struct,
before changing the default values.

Changing Values

These statements demonstrate how these values can be changed within the
socket program:
#include <sockcfg.h>
 .
 . (other include files)
 .
main()
{
 s0skcfg.subsysid = "ABCD"; /* set subsysid */
 s0skcfg.apcboptc = APCBOTRC; /* set api trace on */
(rest of program)
}

6–22 C/Socket Programmer Reference

Chapter

7
UNIX System Services MVS
Integrated Sockets

This chapter contains information about Unicenter TCPaccess compatibility with
UNIX System Services (formerly OpenEdition) MVS Integrated Sockets.

It includes the following sections:

■ References—Lists reference material

■ Installation Considerations—Describes installation steps specific for UNIX
System Services socket support

■ Configuration Information—Describes configuration changes specific to
UNIX System Services socket support

■ Additional Socket Files—Describes the additional files included in the SAMP
data set

■ Additional Socket Call Parameters—Describes options for ioctl(),
getsockopt() and setsockopt()

■ Resolving Names and Addresses—Describes how to do host name and
address resolution for UNIX System Services sockets

■ TSO Commands—Describes CONVXL8, LOADXL8 commands

■ Debugging Information—Describes how to get control block information

■ Stopping and Starting Sockets—Describes how to start and stop the socket
API

■ Limitations—Describes the limitations of UNIX System Services sockets

■ Release Information —Describes support for UNIX System Services by MVS
releases

■ Common INET Support —Describes the use, advantages, and disadvantages
of Common INET support

Unicenter TCPaccess sockets support the UNIX System Services Integrated
Sockets as provided in IBM MVS/ESA. The first release of OpenEdition was part
of MVS/ESA 4.3. OpenEdition socket support was introduced with MVS/ESA
5.1 and above. Review your IBM documentation to determine UNIX System
Services support for your site.

UNIX System Services MVS Integrated Sockets 7–1

References

References
This chapter provides information on Unicenter TCPaccess socket compatibility
with UNIX System Services Integrated Sockets. It is not intended as a reference
for IBM UNIX System Services MVS Integrated Sockets.

For more information on UNIX System Services sockets, check the following
references:

AD/Cycle C/370 Library Reference: OpenEdition MVS Sockets (IBM Manual number
SC23-3024-xx (MVS/ESA 5.1 version))

IEEE POSIX Standard 1003.1g, Protocol Independent Interfaces (ISO/IEC JTC
1/SC22/WG15N, P1003.1g/Draft 6.0 (January 1995), Information Technology -
POSIX - Part xx: Protocol Independent Interfaces)

X/Open CAE Specification, Networking Services, Issue 4 (X/Open Document
Number C438)

C/C++ for MVS/ESA V3.1 C/MVS Library Reference: OpenEdition MVS Sockets (IBM
Manual number SC23-3875-xx)

MVS/ESA Application Development Reference: Assembler Callable Services for
OpenEdition MVS (IBM manual number SC23-3020-01 (MVS/ESA 5.2 version))

MVS/ESA Application Development Reference: Assembler Callable Services for
OpenEdition MVS (IBM manual number SC23-3020-02 (MVS/ESA 5.2.2 version))

MVS/ESA OpenEdition MVS File System Interface Reference (IBM manual number
SC23-3802-00 (MVS/ESA 5.1 and 5.2 versions))

MVS/ESA OpenEdition MVS File System Interface Reference (IBM manual number
SC23-3802-01 (MVS/ESA 5.2.2 version))

7–2 C/Socket Programmer Reference

Installation Considerations

Installation Considerations
The UNIX System Services Physical File System (PFS) and the Socket API are
both installed automatically.

UNIX System Services PFS Transport Driver load modules are installed in the
PFSLOAD partitioned data set. This data set must be APF authorized and must
be in the STEPLIB concatenation for UNIX System Services MVS or be part of the
system link list concatenation.

Important! The Unicenter TCPaccess address space must be defined to your security
package (such as RACF, ACF2, and so on) with a valid UNIX System Services MVS
security segment.

The UNIX System Services MVS procedure must be stopped and restarted after
Unicenter TCPaccess is installed and after the PFSLOAD data set is added to the
UNIX System Services MVS PROC or the system STEPLIB. UNIX System
Services must be configured prior to the restart.

Configuration Information
Configuration information for Unicenter TCPaccess UNIX System Services
Integrated sockets is presented in the Unicenter TCPaccess Communications Server
Customization Guide.

Additional Socket Files
Included in the SAMP data set, there are two members needed for UNIX System
Services socket support. The header include file icssckt.h includes defines for
UNIX System Services socket function specific to the TCPaccess socket
implementation. There is also an equivalent assembler macro, ICSSCKTM.

You will need to move these files to your own libraries to use them.

Important! Use of definitions in these files may make socket applications binary
incompatible with the IBM TCP/IP or IBM Any/Net socket implementations.

UNIX System Services MVS Integrated Sockets 7–3

Additional Socket Call Parameters

Additional Socket Call Parameters
In addition to the socket call parameters described in the chapter “Library
Functions,” the UNIX System Services integrated sockets support additional
parameters for several socket calls.

ioctl() Parameters

The following additional parameters for the ioctl() call are supported for UNIX
System Services integrated sockets users.

FIOGETOWN_Ref328468
229

Gets the process or process group ID specified to receive signals.
This value is type int.

FIOSETOWN
Sets the process or process group ID specified to receive signals. This value is
type int.

SIOCADDRT2
Adds a Unicenter TCPaccess format route entry.

SIOCDELRT2
Deletes a Unicenter TCPaccess format route entry.

SIOGIFHWADDR
Gets the hardware address. Uses if_req struct.

SIOCGIFNUM
Gets the number of interfaces. Uses the if_req struct.

SIOCGIFMTU
Gets the interface MTU (Maximum Transmission Unit).
Uses the if_req struct.

SIOCGPGRP
Synonym for FIOGETOWN. This value is type int.
This parameter is defined in UNIX System Services MVS 5.2.2.

SIOCSIFMETRIC
Sets the network interface routing metric. This value is type int.
Uses the if_req struct.

SIOCSPGRP
Synonym for FIOSETOWN. This value is type int.
This parameter is defined in UNIX System Services MVS 5.2.2.

Note: The SECIGET command is not supported since it is valid only in the
AF_UNIX domain.

The FIOASYNC command documented in 1003.1g is not supported. This
command enables signal-driven I/O and cannot be easily implemented until it is
supported by UNIX System Services sockets.

7–4 C/Socket Programmer Reference

Additional Socket Call Parameters

getsockopt() Parameters

The following additional parameters for the getsockopt () call are supported for
UNIX System Services integrated sockets users.

Socket-Level Options

Socket-Level options for getsockopt():

SO_ACCEPTCONN
Reports whether socket listening is enabled (that is, listen() was issued).

SO_ERROR
Reports information about error status and clears it.

SO_KEEPALIVE
Reports whether connections are to be kept open with periodic transmissions of
messages.
Use TCP_KEEPALIVE to report the current interval between packets.

SO_RCVLOWAT
Reports minimum number of bytes to process for socket input operations.

SO_RCVTIMEO
Reports timeout value for socket input operations.
Note: The timeout value is valid only for MVS 5.2.2 and above.

SO_REUSEADDR
Reports whether the rules used in validating addresses supplied to bind() should
allow reuse of local addresses.

SO_SNDLOWAT
Reports minimum number of bytes to process for socket output operations.

SO_SNDTIMEO
Reports timeout for output operations.

SO_TYPE
Reports socket type.

TCP-Level Options

TCP-Level options for getsockopt():

TCP_KEEPALIVE
Reports the current time interval (in seconds) between keepalive packets. This
parameter is given as type int. The option SO_KEEPALIVE must be enabled
first.

UNIX System Services MVS Integrated Sockets 7–5

Additional Socket Call Parameters

UDP-Level Options

UDP-Level options for getsockopt():

UDP_CHECKSUM
Reports whether UDP checksum computation is to be performed. This
parameter is given in type int.

IP-Level Options

IP-Level options for getsockopt():

IP_HDRINCL
Reports whether, for a SOCK_RAW socket, the complete IP header is included
with the data on send operations.

IP_OPTIONS
Reports whether IP options are to transmitted in the IP header of each outgoing
packet and what those options are.

IP_TOS
Reports the type-of-service field in IP header of outgoing packets.

IP_TTL
Reports the time-to-live field in IP header of outgoing packets.

setsockopt() Parameters

The following additional parameters for the setsockopt () call are supported for
UNIX System Services integrated Sockets users.

7–6 C/Socket Programmer Reference

Additional Socket Call Parameters

Socket-Level Options

Socket -Level options for UNIX System Services setsockopt():

SO_KEEPALIVE
Sets whether connections are to be kept open with periodic transmissions of
messages. Packet interval is the TIB KEEPALIVETIMER value.
Use TCP_KEEPALIVE to change the interval.

SO_RCVLOWAT
Sets minimum number of bytes to process for socket input operations.
You can set this option but it will be ignored for SOCK_DGRAM and
SOCK_RAW socket types.

SO_REUSEADDR
Sets whether the rules used in validating addresses supplied to bind() should
allow reuse of local addresses.
When enabled, local addresses already in use may be bound. The system checks
at connect time to ensure that the set <laddr, lport, raddr, rport> are not already
in use by another association. If the set is already in use, EADDRINUSE is
returned. The system checks at listen time to see if the port is already being
listened on.

SO_SNDLOWAT
Sets minimum number of bytes to process for socket output operations.
You can set this option but it will be ignored for SOCK_DGRAM and
SOCK_RAW socket types.

Note: SO_RCVBYTCNT, SO_RCVREQCNT, SO_SNDBYTCNT,
SO_SNDREQCNT, SO_SENDALL, and SO_READFRAG are not supported for
UNIX System Services sockets.

TCP-Level Options

TCP-Level options for setsockopt():

TCP_KEEPALIVE
Sets the time interval between keepalive packets in seconds.
SO_KEEPALIVE must be enabled first.

UDP-Level Options

UDP-Level options for setsockopt():

UDP_CHECKSUM
Sets whether UDP checksum computation is to be performed.
This value is given in type int. 0 = OFF, non-zero = ON.

UNIX System Services MVS Integrated Sockets 7–7

Resolving Names and Addresses

IP-Level Options

IP-Level options for setsockopt():

IP_HDRINCL
Sets whether, for a SOCK_RAW socket, the complete IP header is included with
the data on send operations.

IP_OPTIONS
Sets whether IP options are transmitted in the IP header of each outgoing packet
and what those options are.

IP_TOS
Sets the type-of-service field in IP header of outgoing packets.

IP_TTL
Sets the time-to-live field in IP header of outgoing packets.

recvmsg()

Ancillary data will not be supported in this release. Ancillary data is referenced
via the msghdr fields msg_control and msg_controllen. These fields are not yet
supported in the UNIX System Services msghdr structure.

Resolving Names and Addresses
UNIX System Services MVS version 1.2 uses the LE/370 version 1.3 or 1.4
runtime libraries to perform certain socket related functions such as
gethostbyname(), getprotobyname(), and so forth. To perform this functionality,
the LE/370 runtime library (RTL) reads specific MVS data sets to map services to
names and to obtain domain name resolution configuration information.

Note: These data sets and the utilities to build them are NOT distributed with
either UNIX System Services MVS or the LE/370 Runtime Library.

IBM distributes these data sets with the IBM TCP/IP product for MVS only.

This section describes the steps necessary to build and configure these required
data sets using sample members and utilities provided with the Unicenter
TCPaccess product.

The LE/370 version 1.5 RTL uses members in the /etc directory for the same
functionality as the MVS data sets.

7–8 C/Socket Programmer Reference

Resolving Names and Addresses

Using /etc Files with UNIX System Services for Domain Name Resolution

UNIX System Services users running MVS/ESA 5.2.1 or earlier are limited to the
MVS host files described in this chapter for resolving host name and other DNR
requests.

With MVS/ESA 5.2.2, it is possible to use HFS /etc files for DNR resolution.

To use the /etc files, the following program changes are necessary.

1. Delete the #include for <manifest.h>.

2. Replace any #include of <bsdtypes.h> with <sys/types.h>.

3. Replace any #include of <bsdtime.h> with <sys/time.h>.

4. Remove SYS1.SFOMHDRS from the -INC list for C89 or any compile
PROCLIB cataloged procedures.

5. Replace any #define _OPEN_SOCKETS (or other references to
_OPEN_SOCKETS) with _OE_SOCKETS.

6. If you are using threads, replace any extern h_errno with
#define h_errno *(__herrno()).

7. Where RPC functions are being used, add a #include for <rpc/netdb.h>.

Making these changes generates the code needed to reference the /etc files for
DNR requests. If no changes are made, the MVS files are used as described in the
rest of this chapter.

UNIX System Services MVS Integrated Sockets 7–9

Resolving Names and Addresses

Data Sets for Host Resolution

The LE/370 RTL version 1.3 and 1.4 require five data sets to correctly perform
the supporting socket functions such as gethostbyname(), getprotobyname(), and
so on.

These five data sets are:

 prefix.TCPIP.DATA Master configuration file.

 prefix.ETC.PROTO Protocol name mappings.

 prefix.ETC.RPC RPC service name mappings.

 prefix.ETC.SERVICES Service name mappings.

prefix.STANDARD.TCPXLBIN ASCII to EBCDIC translation file.

Two other data sets are used by the RTL if host name resolution is being done in
local mode. These data sets are built with the IBM MAKESITE utility. Unicenter
TCPaccess does not provide a replacement for MAKESITE because the RTL can
perform host name resolution using name servers without these other data sets,
and users without a name server can upgrade to LE/370 version 1.5 and
configure hosts in /etc/hosts as a workaround.

The two other data sets are:
prefix.SITEINFO

prefix.ADDRINFO

The prefix.TCPIP.DATA data set is the primary configuration member for the
RTL. It defines the prefix for the rest of the data sets used by the RTL and its
prefix may be different from those data sets. In addition, it provides the
configuration information for host name resolution process (for example,
148.52.128.104) and resolver settings such as protocol (UDP), port (53), timeout
(30 seconds) and retries (3).

7–10 C/Socket Programmer Reference

Resolving Names and Addresses

Search Procedures

The RTL performs a complex search sequence when it needs to locate the
prefix.TCPIP.DATA data set, since there is no generic way to define to the RTL
what the prefix actually is.

The RTL attempts to locate the data set using the following search sequence:

1. If the environment variable, RESOLVER_CONFIG is defined, it uses this
value to locate the data set. Usually this variable would be set in each user's
profile member in their home directory.
export RESOLVER_CONFIG=//"'"IOS.OMVS.TCPIP.DATA"’"

 Note: The name must have two leading forward slashes and the actual data
set name must be enclosed by a double-quote:single-quote:double-quote
sequence (" ’ ") on each end of the name.

2. It then looks for a SYSTCPDD DD statement. This is not recommended for
any application which fork(s) due to UNIX System Services MVS’s failure to
copy data set allocations across a fork.
//SYSTCPDD DD DSN=IOS.OMVS.TCPIP.DATA,DISP=SHR

3. The jobname or userid is used as the prefix.

 For user IBMUSER, the RTL searches for IBMUSER.TCPIP.DATA.

4. The RTL then looks for SYS1.TCPPARM(TCPDATA).

5. The RTL then looks for TCPIP.TCPIP.DATA.

UNIX System Services MVS Integrated Sockets 7–11

Resolving Names and Addresses

Configuration

Users migrating from IBM's TCP/IP for MVS to Unicenter TCPaccess should
note that the IBM TCP/IP installation utility EZAPPRFX does not affect the
default prefix used by the Run Time Library (for example, TCPIP).

The DATASETPREFIX must be configured in the prefix.TCPIP.DATA data set. It
must be updated to specify the prefix used by the other four data sets. The
DOMAINORIGIN keyword must be configured with the site’s domain name (for
example, hq.company.com). NSINTERADDR keyword must be configured with
the sites domain name server. You can update the other keywords if desired to
tune the resolver process.

The data sets, prefix.TCPIP.DATA, prefix.ETC.PROTO, prefix.ETC.RPC and
prefix.ETC.SERVICES, must be allocated with attributes of RECFM=FB,
LRECL=80, BLKSIZE=3120 and with an allocation of one track. You should copy
sample members TCPDATA, ETCPROTO, ETCRPC and ETCSERV, respectfully,
from the IOS390.SAMP data set to the new data sets after allocation.

The prefix.STANDARD.TCPXLBIN data set must be allocated with attributes of
RECFM=FB, LRECL=256, BLKSIZE=256 and an allocation of one track. Its
purpose is to provide ASCII-to-EBCDIC translation tables for the domain name
resolution process. It is created using either the CONVXL8 or the LOADXL8
utilities.
LOADXL8 ENGLISH ‘IOS390.OMVS.STANDARD.TCPXLBIN'

Users of the LE/370 RTL Version 1.5 and above must configure members in the
/etc directory instead of in MVS data sets. The /etc/protocols, /etc/rpc and
/etc/services can be created using the OPUT command and the Unicenter
TCPaccess sample members.
OPUT 'IOS390.SAMP(ETCPROTO)' '/etc/protocols'.

LE/370 RTL Version 1.5 and above can require the configuration of other /etc
members such as, /etc/resolv.config, /etc/hosts and /etc/networks.

A sample /etc/resolv.config member is:
domain hq.company.com

search hq.company.com ohio.company.com company.com

nameserver 148.52.32.165

nameserver 148.52.32.56

A sample /etc/hosts member is:
127.0.0.1 localhost loopback

148.52.32.165 homehost homehost.md.mycompany.com

7–12 C/Socket Programmer Reference

TSO Commands

A sample /etc/networks member is:
127 loopback

148.52 mycompany

Consult IBM C/C++ for MVS/ESA, C/MVS Library Reference: OpenEdition
MVS Sockets, Version 3 Release 1, Document Number SC23-3875-00, Program
Number 5655-121, Section: 1.3.6.1, “Understanding TCP/IP Data Set Names with
OpenEdition MVS” for more information on configuring UNIX System Services
(OpenEdition) MVS and the LE/370 RTL.

TSO Commands
This section describes the TSO commands available to Unicenter TCPaccess
UNIX System Services socket users.

CONVXL8 Command

The TSO command CONVXL8 converts a table from editable text to binary.

CONVXL8 creates a data set with three records. Each record is 256 bytes in
length.

■ The first record has “*TCP/IP translate tables” (in EBCDIC) starting in
column one, with the remainder of the record padded with EBCDIC blanks
(X’40’).

■ The second record has 256 EBCDIC values representing the ASCII-to-
EBCDIC translation.

■ The third record has 256 ASCII values representing the EBCDIC-to-ASCII
translation.

File names use TSO prefix as defined by TSO rules. A fully-qualified data set
name needs to be enclosed in quotes. A data set name without quotes can have a
user-specified prefix placed before the name. This prefix is defined by the user’s
TSO profile. Refer to TSO documentation for more information about prefixes.
CONVXL8 INPUT OUTPUT

UNIX System Services MVS Integrated Sockets 7–13

TSO Commands

INPUT
Required. Specifies the source data set to be converted.
The data set must be in standard IBM format for SBCS translation tables. If input
is a PDS member, INPUT should be specified as dsname(member).
Default: None.

Note: Translate tables in the SAMP data set are not in this format. Use the TSO
command LOADXL8 to prepare them for use with UNIX System Services. See
LOADXL8 Command for more information.

OUTPUT
Required. Specifies the output data set created by the conversion.
If output is a PDS member, OUTPUT should be specified as dsname(member).
Default: None.

CONVXL8 LIB.SOURCE(TRANS) LIB.TRANTAB

This reads USER.LIB.SOURCE(TRANS) and creates a translate table in
USER.LIB.TRANTAB.
CONVXL8 ‘SYSTEM.TCP.DATA(TRAN)’ ‘SYSTEM.BIN.TRANS’

This reads SYSTEM.TCP.DATA(TRAN) and creates a translate table in
SYSTEM.BIN.TRANS.

LOADXL8 Command

LOADXL8 has the same functionality as the CONVXL8 command, but it reads
the load module from compiled translate tables as input. Note that it does not
read the source. It loads the module from STEPLIB or TSO TASKLIB. The
module can be converted for UNIX System Services use with this command.
CALL ‘trgindx.LOAD(LOADXL8)’ ‘table-name ‘ ’indx.STANDARD.TCPXLBIN’ ’ ’

trgindx Unicenter TCPaccess high-level qualifier.

table-name Load module name of translate table to be loaded.

indx UNIX System Services high-level qualifier.

ILATCH command

An IFS command that allows you to display and free latches used to serialize
data.

For more information about the ILATCH command, see the System Management
Guide.

7–14 C/Socket Programmer Reference

Debugging Information

Debugging Information
This section describes procedures to help you debug problems with Unicenter
TCPaccess UNIX System Services support.

Initialization

If you are having problems with the initialization of UNIX System Services
sockets, check the following:

■ Examine the SMP/E job output to verify successful processing.

■ Verify the release and maintenance levels of UNIX System Services - Version
5.1, 5.2, or 5.2.2.

■ Verify the PFS configuration statements:

– FILESYSTYPE

– NETWORK

– UNIX System Services MVS PROC

■ Examine any IVP return codes or other return codes or messages from UNIX
System Services utilities.

■ Verify the logs for error messages. Also, look at the console log and any
dump data sets for abends that may have been created.

■ Verify non-UNIX System Services access to Unicenter TCPaccess. Use tools
such as ping, FTP, or Telnet to verify that the Unicenter TCPaccess transport
provider is functional.

UNIX System Services MVS Integrated Sockets 7–15

Debugging Information

Application Issues

If you are having problems with a UNIX System Services application, check the
following:

■ Before calling Customer Support, get a good description of the failure with
symptoms, return code, errno, and errno junior codes. Examine any
messages from the application. Be sure to include a brief description of the
application and known socket services.

■ Verify the release and maintenance level of UNIX System
Services/OpenEdition—Version 5.1, 5.2, or 5.2.2.

■ Examine the logs for error message. Look at the console log and any dump
data sets for abends that may have been created.

■ Isolate the problem to your application by testing the status of other UNIX
System Services applications and non-UNIX System Services application
functionality (ping, Telnet, FTP, and so on).

■ Issue a “TCP SNAP ALL” command immediately after any application
failure.

TCP SNAP ALL Command

The existing command:
/F IOS390,TCP SNAP ALL

was modified to dump the UNIX System Services PFS Transport Provider and
Socket API control blocks in the Unicenter TCPaccess address space.

7–16 C/Socket Programmer Reference

Stopping and Starting Sockets

Stopping and Starting Sockets
The socket API can be stopped and restarted by stopping and restarting the ACP
task group within Unicenter TCPaccess.

Note: The UNIX System Services MVS PFS can only be stopped and restarted by
stopping and restarting UNIX System Services MVS.

Limitations
The number of Socket API endpoints supported by the UNIX System Services
PFS and Socket API is currently limited by the following constraints:

■ The amount of virtual storage in the Unicenter TCPaccess address space.

■ The number of ports. Socket API programs generally does not share port
numbers.

The number of port numbers is limited to 65,535 for both TCP and UDP.
Client applications that reuse the same port number when connected to
different servers can help ease this limitation.

The range of ports for both TCP and UDP can be decreased by setting overriding
values on the TCP and UDP statements of TCPCFGxx. Setting these values can
decrease the number of ports and sockets.

■ UNIX System Services MVS requires that a maximum socket number be set.

■ One latch per endpoint, with a maximum of 32,767.

Release Information
Unicenter TCPaccess uses operating system facilities and architecture dependent
instructions that are only available in MVS/ESA versions 3.1.3 and above.

The UNIX System Services PFS only supports MVS/ESA version 5.1.0 and
above.

The UNIX System Services PFS Pre-Router is only supported on MVS/ESA 5.2.2
and above.

UNIX System Services MVS Integrated Sockets 7–17

Common INET Support

Common INET Support
IBM offers an UNIX System Services MVS facility within MVS/ESA Version
5.2.2 and higher that allows a socket program to be used with multiple TCP/IP
stacks simultaneously, without knowledge of the application and without coding
modifications.

Note: Although this may appear to be very beneficial, use of this feature is not
without risk and customers are strongly advised to consider alternatives before
implementing Common Inet Support.

Benefits of INET Support

The benefits of using Common Inet Support are:

■ Applications are developed as if they were using the AF_INET family with a
single TCP/IP stack

■ The system administrator adds and removes TCP/IP address spaces to the
system configuration as required without application knowledge

■ Applications, if coded properly, may choose a particular TCP/IP region by
issuing an ioctl() call after the socket is created

Problems of INET Support

The problems with using Common Inet Support are:

■ Multiple copies of TCP/IP running on the host all use the AF_INET value of
two in order to appear to be a single Physical File System. This presents the
following problems:

– Host resource consumption is higher than that single region or multiple
regions using different address family values. This is mainly the result of
the Common Inet Layer opening a socket to every Physical File System
every time a socket function is issued.

– Other socket function calls up through the time a connection is
established via a particular Physical File System must be processed by all
Physical File Systems.

– Once an outbound connection is established over a single Physical File
System, the sockets created within the other Physical File Systems are
closed by the Common Inet Layer. Listening sockets and datagram type
sockets are always open in all Physical File Systems.

■ There are no conflicting parameters to deal with such as interface name, local
host IP address, and interface addresses. Loopback connections are made via
the selected Physical File System.

7–18 C/Socket Programmer Reference

Common INET Support

Problems of Multiple Physical File Systems

The problems with using multiple Physical File Systems are:

■ If an application requires the use of more than one TCP/IP region at the
same time, the application must open a socket to each. This, however, is
beneficial if one TCP/IP region is recycled. The application can close the
socket to that region, and then reopen it when the region is restarted. There
is no bad side effect to the other sockets connected to other TCP/IP regions.
On the positive side of this, however, the application immediately knows of
a failure of one region.

■ The application will most likely need to be using non-blocking socket
functions. This is because events can occur simultaneously on multiple
Physical File Systems (for example, two inbound connects occur at the same
time, one on each TCP/IP region).

Established connections are not fault tolerant across TCP/IP regions (only within
a TCP/IP region).

UNIX System Services MVS Integrated Sockets 7–19

Appendix

A
SAS/C Socket Library Interface
(LSCNCOM)

This appendix describes the LSCNCOM interface between the SAS/C socket
library and the API.

SAS/C Socket Interface
The SAS/C socket interface, LSCNCOM, is a vendor independent socket library
that is provided as part of the SAS/C compiler. This interface allows programs
to be written that can use different vendors’ C socket interface at execution time
without having to relink in vendor dependent code.

The LSCNCOM interface relies on the SAS/C compiler and runtime library at
the version 5.50 level or higher.

SAS C TCPIP sockets has the following features:

■ Uses no H files supplied with this Unicenter TCPaccess C interface.

■ Uses no RPC support libraries supplied with this Unicenter TCPaccess C
interface.

■ C socket calls are processed by routine LSCNCOM.

The following are the advantages of having a program run over SAS C TCP/IP
sockets (LSCNCOM):

■ The C socket support routines are loaded at runtime, eliminating the need to
link C socket support routines into the application.

■ Only SAS routines are used during the compile, prelink and linkedit—
reducing the likelihood of vendor conflicts during compile, prelink, linkedit
and runtime events.

■ Updates to the C socket support routines are placed in load module
LSCNCOM. Therefore, changes to C socket support routines do not require
relinking to an application to accrue the change benefits when C support
routines are modified. Applying a PTF to C socket support routines changes
LSCNCOM and does not require the application programmer to know they
must relink their application as with TLI C sockets.

SAS/C Socket Library Interface (LSCNCOM) A–1

SAS/C Socket Interface

There are two versions of LSCNCOM that Unicenter TCPaccess can use:

■ LSCNCOM provided by CA in the SASLINK library.

■ SAS also provides a different but functionally equivalent version of
LSCNCOM that we can use though our HPNS, IUCV and OE interfaces.

SAS's LSCNCOM can talk to either Unicenter TCPaccess’ or IBM's TCP/IP
implementation using any of the OE, HPNS, and IUCV API interfaces.

To use SAS's LSCNCOM with the HPNS interface ensure that the STEPLIB
contain:

■ SAS's LSCNCOM ahead of Unicenter TCPaccess's LSCNCOM

■ Unicenter TCPaccess's EZASOH03 ahead of IBM's EZASOH03

To use SAS's LSCNCOM with the IUCV interface ensure that the STEPLIB
contain:

■ SAS's LSCNCOM ahead of Unicenter TCPaccess’ LSCNCOM

■ Unicenter TCPaccess's EZASOK03 ahead of IBM's EZASOK03

When the application has not requested a specific API interface SAS's
LSCNCOM attempts to connect using APIs in the following order:

■ OE

■ HPNS

■ IUCV

SAS's LSCNCOM decides which API interface to use when not directed by the
application. It makes this decision independently on the first SAS C TCP/IP
socket call on every TCB. The first SAS C TCP/IP C socket related call on a TCB
is processed using its internal logic even if a higher-level TCB has already
opened up an HPNS session. Now the application can direct each SAS TCB
enviroment via putenv() calls with the appropriate variables. SAS does not
propagate the EXEC parm overrides to any daughter task. One cannot set
'=TCPIP_OE=1' or '=TCPIP_HPNS=1' in the EXEC PARM statement and
propagate it across TCB levels. If the top job task is not a SAS task then the
EXEC parm overrides are not used at all for any of the SAS TCBs.

The TCPIP-MACH variable is used differently by each version of LSCNCOM:

■ The TCPIP_MACH variable when running with SAS's LSCNCOM refers to
the Unicenter TCPaccess job name

■ The TCPIP_MACH variable when running with CA's LSCNCOM refers to
the Unicenter TCPaccess subsystem name

A–2 C/Socket Programmer Reference

SAS/C Socket Interface

Use caution when using the IUCV VMCF or HPNS interface. If the SYSTCPD
DD is defaults and does not explicitly direct you to a specific TCP/IP interface
you may end up using an unexpected TCP/IP interface.

Vendor notes on SAS/C TCP/IP socket programming:

Sites running SAS C TCP/IP socket applications with multiple tasks occasionally
have instances where the givesocket()/takesocket() logic works for one TCP/IP
implementation (Unicenter TCPaccess’ or IBM's) of LSCNCOM but not the other.

To get both the IBM and Unicenter TCPaccess TCP/IP implementations to run
(without any knowledge of the TCP/IP implementation) you should place a
select() call after the givesocket() call waiting for the exception status on the
passed socket. When the daughter task issues a takesocket(), it causes the select()
on the mother task to return with the exception bit set for the passed socket. At
this point, the mother task (givesocket()) should issue a close() for the socket.

Restrictions

The following features of the interface, as documented in the SAS Technical
Report C-111 (hereafter referred to as simply C-111), are not supported by this
release of the Unicenter TCPaccess module:

■ No support is provided for raw sockets or options that deal with the basic IP
data stream. This includes the MSG_DONTROUTE option, ioctl()
SIOCGIFxxx options, and setsockopt() SO_RAW option. In addition, other
operations that refer to fields in the if.h structure may not be supported.

Note: See the SAS Usage Note 1108 for a workaround zap that lets the RPC
library function without raw support.

■ SO_KEEPALIVE is not supported.

■ Options F_GETFD and F_SETFD of fcntl() are not supported in the
LSCNCOM routine since the #define values are being used for TCPaccess
Unicenter options. This conflict will be resolved in a future release.

■ The ioctl() option FIONREAD is not documented properly. The SAS manual
states that this option returns a value of 1 if there is data to be read, and a
VALUE of 0 if there is no data. However, this function actually returns the
number of bytes waiting (if greater than zero), as the socket library (and the
BSD man page) states.

■ Writes that are flow-controlled may not be redriven.

SAS/C Socket Library Interface (LSCNCOM) A–3

SAS/C Socket Interface

■ Only the gethostbyname() and gethostbyaddr() functions are handled by the
Domain Name Resolver (DNR) when it is chosen. The database-related calls
listed below (and described in C-111) are handled by the SAS resolver even
though an equivalent file (and function) may be provided by Unicenter
TCPaccess.

Therefore, to use all functions of the interface, the IBM-style /etc files
(described in C-111) must also be defined.

getnetbyname getservbyport setprotoent getnetbyaddr

getpeerent setservent gethostbyname getnetent

endpeerent gethostbyaddr getprotoent endnetent

getprotobyname getservent endprotoent getprotobynumber

setpeerent endservent getservbyname setnetent

 See the table under Setup for SAS Socket /etc Files for equivalent DNR
parameter files.

■ Due to Unicenter TCPaccess restrictions, the functions givesocket() and
takesocket() are limited to passing sockets between tasks in the same address
space.

Requirements

SAS/CONNECT requires a PTF from SAS in order to function correctly with the
LSCNCOM routine. With this co-requisite fix, SAS validates the use of
SAS/CONNECT with Unicenter TCPaccess and LSCNCOM.

Customers can run SAS/CONNECT or SAS/SHARE with Unicenter TCPaccess.
In addition to the necessary Unicenter TCPaccess maintenance for the SAS/C
5.50 socket library, customers also need the following:

■ V6.08 of SAS (the latest SAS major release)

AND

■ Maintenance Level TS410 with the zap documented in SAS Note V6-
SYS.SYS-08338

OR

■ Maintenance level TS415 and no zap needed

A–4 C/Socket Programmer Reference

SAS/C Socket Interface

Certification

The RPC portion of the SAS/CSL product has not been certified. Certification
will be completed in a future release.

Note: SAS has a workaround zap, documented in their Usage Note 1108, that can
be used to bypass some of the unsupported ioctl() options. The standard
SUN/RPC getmyaddress function does not work with Unicenter TCPaccess
because the ioctl() function supplied does not support SIOCGIFCONF or
SIOCGIFFLAGS ioctl commands. Instead, a hard-coded loopback IP address
(127.0.0.1) must be returned. To correct the problem, apply the zap referenced by
Z1001108.

Usage

The LSCNCOM routine, and its alias L$CNCOM, should replace or be placed
before the SAS-supplied version in the link-list search order. The routine is
dynamically loaded on the first call to a SAS Socket Library function.

Using the Unicenter TCPaccess Variables

If you want to use the Unicenter TCPaccess socket variables, you must define the
Interlink symbol in your source file. It must be placed before the #include
statement.

Use the following as a guide:
.
.
.
#define _ _INTERLINK_TCPIP
.
.
.
#include <sys/socket.h>

SAS/C Socket Library Interface (LSCNCOM) A–5

SAS/C Socket Interface

Environment Variables

The environment variables below are recognized by the LSCNCOM interface:

ICS_SUBSYS The subsystem name of the Unicenter TCPaccess API task that was defined in
the ACPCONxx parameter member. For compatibility with earlier releases,
SUBSYS and TCPIP_MACH (first four bytes only) are also recognized.

Default: ONLY

Default: ACSS.

ICS_RESOLVER Defines the order in which the DNR and SAS resolver are used:

ONLY Unicenter TCPaccess resolver only, return OK or error.

FIRST Unicenter TCPaccess is called first; SAS is called if there is an error.

LAST SAS is called first; Unicenter TCPaccess is called if there is an error.

NEVER SAS resolver always, return OK or error.

These variables should be set prior to the first call to an LSCNCOM function.
Either the PUTENV TSO command or inline (execute-time) parameters can be
used to define or override the above variables.

Since it is difficult to delete permanent environment variables, the LSCNCOM
interface treats a variable that is defined but has a null value as if it were not set.
If none of the options are set, the default is used.

A–6 C/Socket Programmer Reference

SAS/C Socket Interface

Set Up for SAS Socket /etc Files

The following table shows the configuration files used by the LSCNCOM
interface, along with format documentation and equivalent parameter member
for the DNR configuration. Either the files can be created with the expected
names or environment variables can be setup to override the file names as
documented in C-111.

MAN Page SAS/C Default MVS Names UNIX File Equivalent DNR PARM Member

/etc/protocols protocols(4)

id.ETC.SERVICES /etc/services

The SAS resolver recognizes case-
sensitive names, but DNRSLCxx is
uppercase only.

services(4) Syntax differs; you must create this
from the DNRSVCxx member or copy
from the workstation.

id.ETC.HOSTS /etc/hosts hosts(4) Syntax differs; you must create this
from the DNRHSTxx member (static)
or use the ICS or SAS resolver.

id.ETC.NETWORKS /etc/networks networks(4) DNRNETxx
DNRNETxx should be unnumbered
or the SAS resolver interprets the
sequence field as an alias.

id.ETC.RESOLV.CONF /etc/resolv.conf resolv.conf(4) No equivalent; you must extract
information from DNRSVCxx
(domain name) and DNRNSCxx
(name servers) to create this file.
If no name servers are defined, static
name resolution is used. See C-111.

id.ETC.RPC /etc/rpc rpc(4) DNRRPCxx
The overrides can either be via a DD
name or via a fully qualified data set
name.

id.ETC.PROTOCOLS DNRPRTxx

SAS/C Socket Library Interface (LSCNCOM) A–7

 Index

#include files, 1-2, 2-2, 4-1

A

ABEND, 3-14

abortive disconnect, 3-15

accept(), 3-8, 3-24

ACLOSE macro instruction, 1-7

acs.h, 3-19, 4-1

address, 3-60

address families, 4-3

address spaces, 3-15

AF_INET, 3-3, 3-7, 3-16, 3-27

ANSI C prototype statements, 1-3

AOPEN macro instruction, 1-8

APCB
C struct correspondence, 2-1
closing, 1-7
compiler differences, 1-18
initializing, 1-8

apcb struct, 2-1, 2-2

APCBASM, 1-8, 1-18

apcbenvr, 1-18

APCBSASC, 1-8, 1-18

APCBXL, C struct correspondence, 2-1

apcbxl struct, 2-1, 2-4

apclose(), 1-3, 1-7, 1-8

API subsystem termination, 1-21

api.h, 1-2, 2-2

api_end_exit(), 1-21

apopen(), 1-3

apopen()C library, functions, apopen(), 1-7

Application Program Control Block (APCB), 2-2

Application Program Control Block Exit List, 2-4

ASCII, 3-60, 3-61

assembler language, 1-2, 1-5, 1-18

association, 3-9, 3-31, 3-80, 3-106

ATCB, use with topen(), 1-15

atexit(), 3-106

ATTACH, 3-15

B

Berkeley Software Distribution (BSD), 3-2

bind(), 3-7

binding a protocol address, 1-12

blocking mode, 3-14

BSD, Berkeley Software Distribution, 3-2

buffering limits, 6-13

 Index–1

C

C library
comparisons with assembler, 1-5
functions

apclose(), 1-7, 1-8
tcheck(), 1-9, 1-22
tclose(), 1-10
terror(), 1-11, 1-14, 1-17
texec(), 1-12
tferror(), 1-14
topen(), 1-15
tstate(), 1-16
twto(), 1-17

installation, 6-2

C structs, correspondence to dsects, 2-1

cdefs.h, 4-1

cfuncs struct, 4-3

CLGIBMC, 6-6, 6-18

CLGIBMCR, 6-6, 6-19

CLGSASC, 6-6, 6-20

CLGSASCR, 6-6, 6-21

close(), 3-13, 3-106, 6-13

closepass(), 3-18, 3-69

Common Inet Support, 7-18

communications domain
description of, 3-3
format of, 3-7

compilers
C runtime library, 1-18, 3-22
configuration files use with, 6-7
exits using C library, 1-2
I/O routines, 3-21
interpretation of statements, 1-2
JCL, 6-6
socket configuration file, 6-14
supported, 1-2
urgent data handling, 3-17

configuration
error codes, 4-3
parameters, 4-3
sockets, 6-6, 6-7

connect(), 3-9

connections,
accepting, 3-8, 3-24, 3-64
connect confirm indication, 1-20
connect request indication, 1-20
disconnect indication, 1-20
initiating, 3-8
listening for, 3-64
shutting down, 3-13
terminating, 3-27

constants, 1-2

CONVXL8 command, 7-13

customization
C library, 6-7
socket files, 6-22

D

DARPA Internet Domain, AF_INET, 3-3

data
buffer manipulation, 6-13
connected sockets, 3-10
contiguous, 3-12
duplicated, 3-106
expedited data indication, 1-20
input from socket, 3-75
lost, 3-106
noncontiguous, 3-12, 3-77
normal data indication, 1-20
out-of-band, 3-10, 3-17, 3-62, 3-88
receiving, 3-9, 3-82
sending, 3-9
unconnected sockets, 3-10
urgent, 3-17

datagrams
associations, 3-30, 3-31, 3-105
datagram error indication, 1-20
fragmentation, 3-52, 3-101
receiving, 3-80, 3-82
sending, 3-90, 3-106
use with connectionless sockets, 3-6, 3-9, 3-105

descriptor
file, 3-32, 3-77, 3-108
I/O, 3-66, 3-88
socket, 3-105
with select() call, 3-66, 3-88

differences, UNIX vs. MVS, 3-14

Directory Services Parameter List. See DPL., 5-2

Index–2 C/Socket Programmer Reference

DIRSRV macro, 5-2

dirsrv(), 5-1

disconnect indication, 1-20

DNR, Domain Name Resolver
definition of, 5-1
requests to, 5-1

Domain Name Resolver. SeeDNR., 5-1

dot notation, 3-58

DPL, Directory Services Parameter List, 5-1, 5-2

dpl struct, 5-4

dsects, correspondence to C structs, 2-1

E

ECB
list, 3-66
posting, 3-66

endpoint
closing of, 1-10
creation of, 1-15, 3-105
current state of, 1-16
ID, 1-15
passing, 1-10, 1-15
range, 3-17

environment variables
LSCNCOM, A-6

errno, 3-18, 3-79, 3-109

errno.h, 3-19, 4-1

error
analysis with terror(), 1-11
checking in C library, 1-3
code conversion, 3-18
codes, 3-18, 3-20, 4-3
logic, 1-23
messages using perror(), 3-79
TPL-based request, 1-22

error(), 1-14

ESCONFIG, 3-20

ESYS, 3-21

ETPEND, 3-21

exception condition, 3-66, 3-88

Exit List Structure, 2-17

exits
api_end_exit(), 1-21
asynchronous, 1-2
calling sequence, 1-18
compiler differences, 1-18
compilers for, 1-3
LERAD, 1-9
lerad_error_exit(), 1-23
protocol_event_exit(), 1-20
SYNAD, 1-9
synad_error_exit(), 1-22
tpl_completion_exit(), 1-19
transport_provider_end_exit(), 1-21

expedited data indication, 1-20

F

file descriptor, 3-32, 3-77, 3-108

FIONBIO, 3-14

fork, 3-15

FREEMAIN macro instruction, 1-14

function
format, 1-6, 3-23
prototypes, 1-24, 3-19

G

GET_ERRNO, 3-18

getpeername(), 3-8

getsockopt, UNIX System Services options, 7-5

getsockopt(), 3-13

 Index–3

H

h_errno, 3-37

header files
installation of, 2-2
introduction to, 1-2
socket library, 6-3
summary, 4-1

host
address, 3-35
name, 3-34, 3-37
UNIX, 3-35
UNIX System Services resolution, 7-8

hostent struct, 3-35, 4-3

I

I/O
blocking/non-blocking, 3-14
controls, 3-62
descriptor, 3-66, 3-88
file functions, 3-12, 3-21
non-blocking, 3-32, 3-62, 6-13
techniques for integrating with UNIX, 3-22

IF#ARP, 4-1

IF#ETHER, 4-2

if.h, 4-1

if_arp.h, 4-1

if_ether.h, 4-2

in.h, 4-2

in_addr, 3-7

in_addr struct, 4-2

include files, 4-1

INET support, 7-18

inet.h, 3-19, 4-2

installation
data sets, 6-2
load library, 6-5
socket and C libraries, 6-2

internet address, 3-58, 3-60

ioccom.h, 4-2

ioctl(), 3-14, 3-18

ioctl.h, 4-2

iovcnt struct, 3-12

iovec, 4-4

iovec struct, 3-11

ip.h, 3-19, 4-3

J

JCL, 6-6
CLGIBMC, 6-6, 6-18
CLGIBMCR, 6-6, 6-19
CLGSASC, 6-20
CLGSASCR, 6-6
CLGSASR, 6-21
UMODCFGI, 6-6, 6-14, 6-15
UMODCFGS, 6-6, 6-14, 6-17

K

keyword facility of macro instructions, 1-5

L

L$CNCOM, LSCNCOM alias, A-5

lerad_error_exit(), 1-23

linger struct, 4-3

listen(), 3-8

load library, 6-5

LOADXL8 command, 7-14

log, 3-73, 3-98, 3-109

logic error, 1-23

LSCNCOM
alias

L$CNCOM, A-5
configuration files, A-7
environment variables, A-6
requirements, A-4
restrictions, A-3
SAS/C socket interface, A-1
usage, A-5

Index–4 C/Socket Programmer Reference

M

macro instructions
ACLOSE, 1-7
AOPEN, 1-8
comparison with C API functions, 1-2, 1-5
FREEMAIN, 1-14
keyword, 1-5
TCHECK, 1-9
TCLOSE, 1-10
TERROR, 1-11
TEXEC, 1-12
TOPEN, 1-15
TSTATE, 1-16
WTO, 1-17

maximum number of sockets, 3-55

mbufs, 6-13

message interface to WTO, 1-17

MSG_OOB, 3-17

msghdr struct, 3-11, 4-3

MVS
ATTACH, 3-15
front-ending UNIX functions, 3-22
I/O operations, 3-21
porting socket programs to, 3-2

mvsselect(), 3-18

N

netdb.h, 3-19, 4-3

netent struct, 4-3

network
byte order, 3-56, 3-57, 3-71, 3-72
name, 3-38
number, 3-40

network address, 3-60

non-blocking I/O, 6-13

non-blocking mode, 3-14, 3-66, 3-88

non-reentrant applications, 6-5, 6-7, 6-14, 6-18

normal data indication, 1-20

NOSLIBCK, 3-19

O

object modules
C library functions included as, 1-3
installation of, 1-3
usage of, 6-5

OpenEdition. See UNIX System Services

openold(), 3-18, 3-29

options
IP, 3-20
socket, 3-13, 3-20, 3-49, 3-99, 3-106, 4-3
TPL, 1-10
UDP, 3-20

orderly release, 1-20, 6-13

out-of-band data, 1-20, 3-10, 3-62, 3-88

P

param.h, 4-3

Partitioned Data Sets (PDS), 6-2

passing control to another socket, 3-15, 3-18, 3-29, 3-69

PDS, Partitioned Data Sets, 6-2

peer, 3-42

perror(), 3-109

PFS
installation, 7-3
transport driver, 7-3

PFSLOAD data set, 7-3

Physical File System, installation, 7-3

preprocessor, 1-5

priority, 3-98

priority, 3-109

privilege, 3-14

 Index–5

protocol
address binding, 1-12
event exit, 1-20
events, 1-20
families, 3-108, 4-3
name, 3-44
number, 3-43
options, 3-13
selection, 3-105

protocol_event_exit(), 1-20

protoent, 4-3

prototype statements, 1-3

R

read(), 3-12

readv(), 3-12

receiving data, 3-9

recv(), 3-10

recvfrom(), 3-10

recvmsg(), 3-11

reentrant applications, 6-5, 6-7, 6-14, 6-18

Referreferences,UNIX System
Services/OpenEditionences, 7-2

S

s0skcfg, 4-3

SAS
socket setup, A-7
workaround, A-5

SAS/C socket interface, A-1

send(), 3-10

sending data, 3-9

sendmsg(), 3-11

sendto(), 3-9

serrno.h, 4-3

servent, 4-3

service, 3-45, 3-47

setlogmask(), 3-98

setsockopt(), 3-13, 6-13, 7-6

shutdown(), 3-13

sin_addr, 3-7

SO_LINGER, 6-13

SOCK_ASSOC, 3-5, 3-16

SOCK_CONNLESS, 3-5, 3-16

SOCK_DGRAM, 3-4, 3-16

SOCK_RAW, 3-5, 3-16

SOCK_RDM, 3-4

SOCK_SEQPACKET, 3-4

SOCK_STREAM, 3-4, 3-16

sockaddr struct, 4-3

sockcf.c, 6-6, 6-7, 6-14

sockcfg struct, 6-22

sockcfg.h, 3-19, 4-3

socket interface, SAS/C, A-1

socket(), 3-6, 6-13

socket.h, 3-3, 3-19, 4-3

sockets
association, 3-9
binding, 3-7, 3-17
blocking/non-blocking, 3-14
buffering limits, 6-13
changing values, 6-22
client mode, 3-9
config file sockcf, 6-6
configuration, 3-20, 6-7, 6-14
connecting, 3-6
creation, 3-6
customization, 6-22
definition of, 3-3
descriptor, 3-6, 3-8, 3-27, 3-105
differences between UNIX and MVS, 3-14
duplication of messages, 3-3
error codes, 3-18
error messages, 3-79
header files, 4-1
I/O file functions, 3-12, 3-62
installation, 6-2
introduction, 3-2
life cycle, 6-13
maximum number, 3-55

Index–6 C/Socket Programmer Reference

name, 3-8, 3-26, 3-48
non-blocking mode, 3-66, 3-88
options, 3-13, 3-20, 3-49, 3-99, 3-106, 4-3
orderly release, 6-13
passing control, 3-15, 3-18, 3-29, 3-69
privilege, 3-14
receiving data, 3-9
references, 3-3
sending data, 3-9
server mode, 3-8
shutting down connection, 3-13, 3-104
termination, 3-13, 3-15, 3-104
types, 3-4, 3-16, 3-105, 4-3
UNIX, 3-14, 3-108
user mode, 3-14
using the socket library, 6-18

sockio.h, 4-3

sockproto struct, 4-3

sockvar.h, 3-20, 4-4

sstat struct, 4-3

stopping and starting sockets, 7-17

synad_error_exit(), 1-22

SYSLIB, 1-2, 6-5

syslog.h, 4-4

system log, 3-109

systime.h, 4-4

T

TCHECK macro instruction, 1-9

tcheck(), 1-3, 1-9, 1-19, 1-22

TCLOSE macro instruction, 1-10

tclose(), 1-3, 1-10

TCP, Transmission Control Protocol, 3-5, 3-16, 3-49,
3-53, 3-99, 3-102, 3-105, 6-10, 6-13

tcp.h, 3-20, 4-4

TEM, C struct correspondence, 2-1

tem struct, 2-1, 2-5

termination
address space, 6-13
API subsystem, 1-21
C library function, 1-7

orderly release, 6-13
orderly release indication, 1-20
routine, 3-15
transport provider, 1-21

TERROR macro instruction, 1-11

terror(), 1-3, 1-11, 1-17

TEXEC macro instruction, 1-12

texec(), 1-3, 1-12

tferror(), 1-4, 1-14

TIB, C struct correspondence, 2-1

tib struct, 2-1, 2-6

time.h, 4-4

TOPEN macro instruction, 1-15

topen(), 1-4, 1-15

TPA, C struct correspondence, 2-1

tpa struct, 2-1, 2-7

TPL
activation of, 1-9, 1-16
completion exit, 1-19
completion status of, 1-9
errors, 1-22
execution of, 1-12
format of, 1-5
inactivation, 1-19
logic error, 1-23
option code field, 1-10
Transport Service Parameter List, 1-5
usage, 1-5

TPL C struct correspondence, 2-1

tpl struct, 1-5, 2-1, 2-7

tpl_completion_exit(), 1-19

tplepid, 1-12

TPLEPID, 1-5

tplfnccd, 1-12

tplopcd3, 1-10

TPO, C struct correspondence, 2-2

tpo struct, 2-2, 2-14

translate table conversion, LOADXL8 command, 7-13,
7-14

Transmission Control Protocol. See TCP., 3-5

 Index–7

Transport Endpoint Error Message, 2-5

Transport Endpoint State Word, 2-15

Transport Endpoint User Block, 2-16

Transport Exit Parameter List, 2-18

Transport Protocol Address, 2-7

Transport Protocol Options, 2-14

transport provider, 1-15, 1-21

Transport Service Information Block, 2-6

transport service paramerter list. TPL

Transport Service Parameter List. See TPL., 2-7

transport_provider_end_exit(), 1-21

TSTATE macro instruction, 1-16

tstate(), 1-4, 1-16

TSW, C struct correspondence, 2-2

tsw struct, 2-2, 2-15

TUB, C struct correspondence, 2-2

tub struct, 2-2, 2-16

twto(), 1-4, 1-17

TXL, C struct correspondence, 2-2

txl struct, 2-2, 2-17

TXP, C struct correspondence, 2-2

txp struct, 1-21, 2-2, 2-18

types of sockets, 3-105, 4-3

types.h, 4-4

U

UDP, User Datagram Protocol, 3-16, 3-20, 3-25, 3-
105, 6-10

uio struct, 4-4

uio.h, 3-20, 4-4

UMODCFGI, 6-6, 6-14, 6-15

UMODCFGS, 6-6, 6-14, 6-17

unistd.h, 4-4

UNIX
BSD, 3-2
buffering limits, 6-13
front-ending I/O functions, 3-22
hosts, 3-35
I/O routines, 3-21
sockets, 3-14, 3-108

UNIX System Services
CONVXL8 command, 7-13
getsockopt options, 7-5
host name/address resolution, 7-8
installation, 7-3
ioctl parameters, 7-4
limitations, 7-17
LOADXL8 command, 7-14
security, 7-3
setsockopt, 7-6
startup, 7-3
stopping and starting sockets, 7-17
translate table conversion, 7-13, 7-14

urgent data, 3-17

USEAPIREQBYTECNTDEFS, 6-14

user mode, 3-14

user.h, 3-20

USESASCTIME, 3-55

V

va_arg, 3-110

W

write(), 3-12

writev(), 3-12

WTO macro instruction, 1-17

Index–8 C/Socket Programmer Reference

	C/Socket Programmer Reference
	Contents
	Chapter 1: C Library Functions
	The C Application Program Interface
	Manipulating TPL
	C Library Functions
	apclose()
	apopen()
	tcheck()
	tclose()
	terror()
	texec()
	tferror()
	topen()
	tstate()
	twto()
	Writing Exit Functions
	tpl_completion_exit()
	protocol_event_exit()
	transport_provider_end_exit()
	api_end_exit()
	synad_error_exit()
	lerad_error_exit()
	Function Prototypes

	Chapter 2: C Language Structures
	Introduction to C Language Data Structures
	Correspondence Between dsects and C Language Structures

	C Language Structures
	apcb
	apcbxl
	tem
	tib
	tpa
	tpl
	tpo
	tsw
	tub
	txl
	txp

	Chapter 3: Socket Library Functions
	The Socket Library
	Sockets

	BSD Sockets
	Communication Domains and Socket Types
	Constants

	Creating Sockets and Binding Names
	Communications Domain and Socket Type
	Socket Descriptor
	Communications Domain Name

	Accepting and Initiating Connections
	Operating in Server Mode
	Operating in Client Mode
	Once Connection is Established

	Sending and Receiving Data
	Sending Messages from Unconnected Sockets
	Sending Messages from Connected Sockets
	Receiving Messages from Unconnected Sockets
	Receiving Messages from Connected Sockets
	Sending and Receiving Messages from Noncontiguous Buffers

	Using File I/O Functions
	The read and write Functions
	The readv and writev Functions

	Shutting Down Connections
	Socket and Protocol Options
	Non-blocking I/O
	MVS vs. UNIX
	General Socket Differences
	Supported Sockets
	Endpoints
	Binding a Name to a Socket
	Urgent Data
	Error Codes
	Extra Functions
	ANSI-C Compatible Function Prototypes
	Socket Header Files
	Options
	Error Codes

	UNIX File I/O Functions
	Using UNIX Routines in MVS
	Integrating API Socket Functions with UNIX File I/O

	Socket Library Functions
	Component Functional Description
	Synopsis
	Description
	Return Value
	Error Codes
	Implementation Notes

	accept()
	bind()
	close()
	closelog()
	closepass()
	connect()
	fcntl()
	gethostbyaddr()
	gethostbyname()
	gethostname()
	getnetbyaddr()
	getnetbyname()
	getopts
	getpeername()
	getprotobyname()
	getprotobynumber()
	getservbyname()
	Return Value
	Error Codes

	getservbyport()
	getsockname()
	getsockopt()
	getstablesize()
	gettimeofday()
	htonl()
	htons()
	inet()
	inet_aton()
	inet_ntoa()
	ioctl()
	listen()
	mvsselect()
	openold()
	ntohl()
	ntohs()
	openlog()
	read()
	readv()
	perror()
	recv()
	recvfrom()
	recvmsg()
	select()
	send()
	sendmsg()
	sendto()
	setlogmask()
	setsockopt()
	shutdown()
	socket()
	sstat()
	strerror()
	syslog()
	vsyslog()
	write()
	writev()

	Chapter 4: Socket Library Include Files
	
	Include File Summary

	Chapter 5: DNR Directory Services
	The dirsrv() Function
	Directory Services Parameter List (DPL)
	Assembler Language Definition
	C Language Definition

	Chapter 6: Configuration
	Socket and C Library Installation
	Library Data Sets
	Header File Library
	Load Library
	Object Library

	Sample JCL

	Socket Configuration
	Configuration File
	sockcfg Configuration Structure
	Socket Life
	Socket Buffering Limits
	Compiling the Configuration File

	Sample JCL for Compiling Socket Programs
	IBM sockcfg Configuration Changes
	SAS/C sockcfg Configuration Changes

	Using Socket Libraries
	Compile/Link IBM C/370 C Non-reentrant Program
	Compile/Link IBM C/370 C Reentrant Program
	Compile/Link SAS/C Non-reentrant Program
	Compile/Link SAS/C Reentrant Program

	Customizing Socket Programs
	Changing Values

	Chapter 7: UNIX System Services MVS Integrated Sockets
	References
	Installation Considerations
	Configuration Information
	Additional Socket Files
	Additional Socket Call Parameters
	ioctl() Parameters
	getsockopt() Parameters
	Socket-Level Options
	TCP-Level Options
	UDP-Level Options
	IP-Level Options

	setsockopt() Parameters
	Socket-Level Options
	TCP-Level Options
	UDP-Level Options
	IP-Level Options

	recvmsg()

	Resolving Names and Addresses
	Using /etc Files with UNIX System Services for Domain Name Resolution
	Data Sets for Host Resolution
	Search Procedures
	Configuration

	TSO Commands
	CONVXL8 Command
	LOADXL8 Command
	ILATCH command

	Debugging Information
	Initialization
	Application Issues
	TCP SNAP ALL Command

	Stopping and Starting Sockets
	Limitations
	Release Information
	Common INET Support
	Benefits of INET Support
	Problems of INET Support
	Problems of Multiple Physical File Systems

	Appendix A: SAS/C Socket Library Interface (LSCNCOM)
	SAS/C Socket Interface
	Vendor notes on SAS/C TCP/IP socket programming:
	Restrictions
	Requirements
	Certification
	Usage
	Using the Unicenter TCPaccess Variables

	Environment Variables
	Setup for SAS Socket /etc Files

	Index

	booklist:

