
Advantage VISION:Builder

Advantage VISION:Two

™ ®

™ ™
ASL Reference Guide
14.0
ALREF140.PDF/D92-002-014

This documentation and related computer software program (hereinafter referred to as the "Documentation") is for the end
user's informational purposes only and is subject to change or withdrawal by Computer Associates International, Inc. ("CA")
at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part, without the
prior written consent of CA. This documentation is proprietary information of CA and protected by the copyright laws of
the United States and international treaties.
Notwithstanding the foregoing, the user may print a reasonable number of copies of this documentation for its own internal
use, provided that all CA copyright notices and legends are affixed to each reproduced copy. Only authorized employees,
consultants, or agents of the user who are bound by the confidentiality provisions of the license for the software of the user
will have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and effect.
Should the license terminate for any reason, it shall be the user's responsibility to return to CA the reproduced copies or to
certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation "as is" without warranty of any kind, including
without limitation, any implied warranties of merchantability, fitness for a particular purpose or noninfringement. In no
event will CA be liable to the end user or any third party for any loss or damage, direct or indirect, from the use of this
documentation, including without limitation, lost profits, business interruption, goodwill, or lost data, even if CA is
expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user's applicable
license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with "Restricted Rights" as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS
Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

© 2002 Computer Associates International, Inc. (CA).

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Contents
Chapter 1: Introduction
Operating System and Environment Support .. 1-1
About This Book.. 1-2
Contacting Computer Associates.. 1-3

Chapter 2: Terminology, Syntax, and Processing
ASL Terminology .. 2-1

Syntax Terminology .. 2-2
Spaces.. 2-2
Continuation .. 2-3
Constants .. 2-3
Names ... 2-4
Comments .. 2-6
Arithmetic Expressions .. 2-6
Logical Expressions... 2-7

Statement Syntax .. 2-10
Page Layout.. 2-11

COMBINE Command... 2-11
The Nature of ASL .. 2-12

Implicit Loops and Set Operation .. 2-12
Controlling the Processing of Repeated Segments... 2-16
Record and Segment Processing .. 2-17
ASL Code Examples and Usage.. 2-19

Chapter 3: Run Control Command Group
ARRAY Command .. 3-3
CATALOG Command .. 3-4
CHECKPOINT Command... 3-6
COLLATE Command ... 3-8
Contents iii

CONTROL Command.. 3-10
COPY Command... 3-18
DEBUG Command.. 3-19
DOCUMENT Command.. 3-21
FILE AUDIT Command ... 3-22
FILE CORDn Command .. 3-23
FILE MASTER Command.. 3-31
FILE REJECT Command .. 3-39
FILE REPn Command... 3-40
FILE REPORT Command... 3-41
FILE SUBFn Command .. 3-42
FILE TRAN Command... 3-45
LINKAGE Command ... 3-47
LISTCNTL Command .. 3-48
LISTLIB GLOSSARY Command ... 3-50
LISTLIB NAMES Command ... 3-51
MULTILIB Command... 3-52
OVERRIDE Command ... 3-53
OWNCODE Command.. 3-54
RETRIEVE Command .. 3-55
ROUTE Command.. 3-57
TRACK Command.. 3-59
WORK Command ... 3-61

Chapter 4: Procedural Command Group
Built-In Functions.. 4-3

Value Functions and Conditional Functions ... 4-3
Specifying Functions... 4-3
Types of Built-In Functions.. 4-3
FIND Function (Conditional) ... 4-5
LOCATE Function (Conditional) ... 4-7
LOOKUP Function (Value) ... 4-8
PF Function (Value) ... 4-11
SCAN Function (Conditional)... 4-13
VALIDATE Function (Conditional) ... 4-16

CALL Command ... 4-18
CASE Command ... 4-22
COMBINE Command... 4-23
CONTINUE Command.. 4-24
DO Command.. 4-25
iv ASL Reference Guide

ELSE Command .. 4-30
END Command... 4-32
FIELD Command .. 4-33
GO TO Command ... 4-36
IF Command .. 4-38
INCLUDE Command ... 4-40
LEAVE Command... 4-42
LET Command .. 4-44
LOCATE Command.. 4-48
PROC Command... 4-50
RELEASE Command .. 4-55
REPLACE Command ... 4-57
RETURN Command ... 4-59
TRANSFER Command... 4-60

Chapter 5: Report Command Group
AVERAGE Command... 5-3
COMPUTE Command.. 5-4
COUNT Command... 5-7
CUMULATE Command... 5-8
DATA Command... 5-9
END Command... 5-12
FORMAT Command... 5-13
GROUP Command ... 5-26
ITEM Command.. 5-28
LINE Command .. 5-31
MAX Command .. 5-34
MIN Command ... 5-35
NEWPAGE Command ... 5-36
ORDER Command.. 5-37
PERCENT Command ... 5-38
PREFACE Command.. 5-40
RATIO Command ... 5-41
REPORT Command .. 5-42
SECTION Command .. 5-50
SIZE Command ... 5-51
SKIP Command ... 5-52
TITLE Command... 5-53
TOTAL Command... 5-54
Contents v

XREP Command.. 5-55
Diagnostic Messages... 5-65

Chapter 6: Subfile Output Command Group
EXTRACT FILE Command.. 6-2
EXTRACT DDNAME Command ... 6-9
EXTRACT DBDNAME Command... 6-14
EXTRACT TABLE Command.. 6-18

Chapter 7: ASL Examples

Appendix A: ASL Quick Reference
Terminology .. A-1
References.. A-2
Constants ... A-2
Names .. A-2
Qualifiers ... A-3
Comments ... A-3
Arithmetic Expressions ... A-3
Logical Expressions.. A-4
Statement Syntax .. A-4
Continuation ... A-5
Built-In Functions... A-5

Conditional Functions ... A-5
Value Functions .. A-5

Commands .. A-6

Appendix B: Relationship of ASL Statements to
Fixed-Format-Syntax Statements

Appendix C: Technical Notes
Reserved Words.. C-1
Qualifiers ... C-4
vi ASL Reference Guide

Patterns .. C-4
Validation Patterns... C-4
Edit Patterns.. C-5
Character String Data .. C-6
Numeric Data (Packed, Zoned, and Fixed Point Binary Only) ... C-6
Rules for Edit Patterns... C-7

Output Edit ... C-9
Commas... C-9
Standard Notation.. C-9
Floating/Edit Suppress ... C-9
Float (Floating-Edit-Char)... C-10
Fill (Fill-Edit-Char)... C-10
Trail (Trailing-Edit-Char)..C-11
Edlen (Edit-Length) ..C-11

Valid Field Types and Default Field Lengths ... C-12

Appendix D: Flags
ASTATUS Flag ... D-7
CHKP Flag (IMS Only).. D-9
CKPTID Flag (IMS Only) .. D-9
COLUMN Flag ... D-9
COMMAND Flag (GDBI Only).. D-10
CONDCODE Flag .. D-11
CSTATUS Flag .. D-12
DATE Flag .. D-12
DELETE Flag (VISION:Builder 4000 Model Series Only) ... D-13
ECORD Flag ... D-13
EOF Flag .. D-15
FDNAME Flag (GDBI Only)... D-16
FILE Flag (GDBI Only) .. D-16
FILEID Flag (GDBI Only).. D-16
ISDATE Flag ... D-16
JULANX Flag ... D-17
JULIAN Flag .. D-17
LILIAN Flag ... D-17
LNUMBER FLAG .. D-18
LSTART Flag .. D-18
LSTATUS Flag .. D-19
M4AUDIT Flag (VISION:Builder 4000 Model Series Only).. D-21
M4CORDn (n=1 to 9) Flags .. D-21
Contents vii

M4NEW Flag (VISION:Builder 4000 Model Series Only) ... D-21
M4OLD Flag ... D-21
M4REJECT Flag (VISION:Builder 4000 Model Series Only) ... D-22
M4SUBFn (n= 0 to 9) Flags ... D-22
M4TRAN Flag (VISION:Builder 4000 Model Series Only) .. D-22
MISSPASS Flag .. D-22
MNUMBER Flag... D-23
MODE Flag (GDBI Only) .. D-23
MSTART Flag .. D-24
MSTATUS Flag (GDBI Only) .. D-25
OWN Flag.. D-25
PAGE Flag ... D-26
PASSWORD Flag (GDBI Only) .. D-26
RESTART Flag (IMS Only).. D-26
RETURNCD Flag .. D-26
RNUMBER Flag ... D-27
ROW Flag ... D-27
RSTART Flag .. D-28
RSTATUS Flag .. D-29
SEGNAME Flag (GDBI Only) .. D-30
SQL Flag (DB2 Only) ... D-30
SSCOUNT Flag .. D-30
STRAN Flag (VISION:Builder 4000 Model Series Only) ... D-31
TIME Flag ... D-32
TODAY Flag .. D-32
TODAYX Flag .. D-32
TRAN Flag (VISION:Builder 4000 Model Series Only) ... D-33
XTRAN Flag (VISION:Builder 4000 Model Series Only) .. D-33

Appendix E: Conversion Functions
Why ASL?...E-1

Defining ASL Procedures...E-1
Tips and Techniques..E-2
ASL Syntax and Terminology..E-3

Conversion Examples ...E-4
Conversion Table...E-14

Index
viii ASL Reference Guide

Chapter
1 I
ntroduction
ASL (Advanced Syntax Language) is a free-form language used to build
applications consisting of run control, procedural, reporting, and subfile output
statements. It is designed with both the programmer and the end user in mind.
The syntax and structure of ASL statements are similar in nature to other free-form
languages such as C and COBOL. However, ASL goes beyond these languages by
providing many simple yet powerful business-oriented functions.

The power of ASL is illustrated in how simple it is to change text in a field.
For example, REPLACE STRING ’ABC’ IN NAME WITH ’XYZ’ does just what it says.
Each time ABC is found in the field NAME, ABC is replaced with XYZ.

Field NAME contents:

Because the statements that are used to build ASL procedures are structured like
sentences, the language is easy to understand, self-documenting (although
comments are optional), and easy-to-maintain.

Operating System and Environment Support
ASL is directly supported in its native free-form syntax when using
VISION:Workbench™ for DOS and VISION:Workbench for ISPF (also known as
the Definition Processor).

In OS/390 and z/OS

When using the VISION:Builder ®, VISION:Inform ®, and VISION:Two™ engines,
the functionality of ASL is directly supported in its native free-form syntax in the
OS/390® and z/OS™ environments.

Before: ’THE ABC COMPANY’

After: ’THE XYZ COMPANY’
Introduction 1–1

About This Book
In CMS and VSE
Only the Procedural, Reporting and Subfile Command group statements of ASL
are supported by the engines in the CMS and VSE environments.

For VISION:Builder and VISION:Inform users in the CMS and VSE environments,
VISION:Workbench for DOS translates your native ASL syntax coding into fixed
format coding during the export process. See the VISION:Workbench for DOS
Setup window description in the VISION:Workbench for DOS Reference Guide for
details on specifying target host support of native ASL.

About This Book
Note: Text that is specific to a host engine is indicated by a note.

This book contains information specific to the use and operation of ASL and
assumes that you are familiar with one of the host engines, VISION:Builder,
VISION:Inform, or VISION:Two.

Chapter 1, Introduction

Describes this book.

Chapter 2, Terminology, Syntax, and Processing

Starts with information about how to read the syntax of the statements
and defines some common computer terminology with respect to
ASL.

Chapter 3, Run Control Command Group

Describes the commands that specify basic run parameters and
controls, file/database parameters and controls, and catalog related
operations.

Chapter 4, Procedural Command Group

Describes the procedure statements. Again, the syntax is displayed
and defined. Examples are given to illustrate the procedure statement.

Chapter 5, Report Command Group

Describes the commands that are used to specify report output.

Chapter 6, Subfile Output Command Group

Describes how to use the EXTRACT commands.

Chapter 7, ASL Examples

Shows examples using ASL.

Appendix A, ASL Quick Reference

Contains all of the ASL commands.

Appendix B, Relationship of ASL Statements to Fixed-Format-Syntax Statements

Relates the functions and procedure statements to their host engine
counterparts.
1–2 ASL Reference Guide

Contacting Computer Associates
Contacting Computer Associates
For technical assistance with this product, contact Computer Associates Technical
Support on the Internet at esupport.ca.com. Technical support is available 24 hours
a day, 7 days a week.

Appendix C, Technical Notes

Contains technical information defining some of the operand entries.
When necessary, this appendix will be referenced in the explanation
of the operand. It also contains a reserved word list.

Appendix D, Flags

Lists all of the host engine flags.

Appendix E, Conversion Functions

Provides suggestions for converting existing VISION:Builder requests
to ASL procedures.
Introduction 1–3

Contacting Computer Associates
1–4 ASL Reference Guide

Chapter
2 T
P

erminology, Syntax, and
rocessing
This chapter defines the terms that are used to describe ASL statements, ASL
syntax, and how ASL processes.

ASL Terminology
ASL is a free-form language consisting of commands and functions. A statement
begins on a new line and consists of an optional label followed by a command. If
the statement has a label, the label must be followed immediately (without
intervening spaces) by a colon. What appears on the rest of the statement after the
command depends on the syntax of the command.

For :

LABELX: LET FIELDA = FIELDB

is an actual procedure statement where:

LABELX Specifies the statement label.

LET Specify the command.

FIELDA = FIELDB Places the contents of field B into field A.
Terminology, Syntax, and Processing 2–1

ASL Terminology
Syntax Terminology
The following terminology is used to describe the elements of an ASL statement.

Spaces
Use one or more spaces to separate the command, keywords, and operands, unless
otherwise stated (syntax rules) or unless a special character (such as an arithmetic
operator) is present.

The following is an example of an ASL command using operators as separators
between the operands on the IF command.

IF A+B=C+D THEN

To make the procedure statement easier to read, use blanks between the operands
and operators. For example:

IF A + B = C + D THEN

TERM DESCRIPTION

Label A label identifies a specific statement. The label is optional. If
used, place the label before a procedure statement and follow the
label immediately (without intervening spaces) by a colon (:).

Command A command identifies the kind of procedure statement. You can
follow a command by keywords, functions, constants, names,
expressions, and comments.

Function A function is an operation or declaration that derives a value or
condition from other data. Functions may contain elements such
as keywords, names, and constants.

Keyword A keyword identifies how the following statement elements are
interpreted. Many keywords are optional.

Keyword
operand

A keyword operand (or operands) identifies the data values
associated with a keyword. In the statement, follow a keyword
with one or more spaces and a keyword operand.

For example: keyword1 operand keyword2

Keyword
phrase

A keyword phrase is the name given to the combination of a
keyword plus its operands.
2–2 ASL Reference Guide

ASL Terminology
Continuation
You can write statements on multiple lines. Terminate each line (ignoring
comments) by an optional blank space followed by a comma. Continue the
remainder of the statement on the following lines. This is useful for clarity. For
example:

IF NAME = ’THE ABC COMPANY’ ,
AND NUMBER = ’00001’ ,
OR NUMBER = ’00002’ ,
OR NUMBER = ’00003’ ,
THEN

Commas may also be used within a statement to improve readability. For example:

FILE MASTER INPUT, NAME EMPLOYEE, ACCESS SEQUENTIAL

Constants
There are six types of constants: character, integer, decimal, floating point, time,
and pattern. Each type of constant is described in the following pages.

Character Constants
Delimit character constants with single quotation marks. For example:

Specify a single quotation mark within a constant with two consecutive single
quotation marks.

Integer Constants
Specify integer constants with only numeric digits only.

■ If the integer is negative, place a minus (-) sign before the integer constant.

■ If the integer is positive, place an optional plus sign (+) before the integer
constant. For example:

+100
 -2
 0

The Value The Character Constant Representation

A ’A’

’ ’

123 ’123’

THE X ’THE X’

CAN’T ’CAN’’T’
Terminology, Syntax, and Processing 2–3

ASL Terminology
Decimal Constants
Specify decimal constants with numeric digits, an optional sign, and a decimal
point.
If you use a plus (+) sign or a negative (-) sign, make it the first character in the
constant. For example:

-200.0
 3.99
 -.05
+123.456

Floating Point Constants
Specify floating point constants with an optional sign preceding an integer or
decimal constant followed by a power of ten expressed in exponential notation.
For example:

 1.50E10
13.75E-5
-5200E+5

Time Constants
Specify a time constant, HH:MM:SS.n...n (hours, minutes, seconds, decimal
seconds), by the letter T, followed by a beginning single quotation mark, the time
constant, and a single closing quotation mark. For example:

T’23:16:11’
T’12:01:00.125’
T’:09:10.5’

Patterns
Specify a pattern starting with the letter P, followed by a beginning single
quotation mark, the string of special symbols, and ending with the closing single
quotation mark. For example:

P’ZZZ999’
P’#(#999#)#999#–#9999’

For more information on pattern symbols, see Appendix C, Technical Notes.

Names
■ Begin field names and statement labels with an alphabetic character (A-Z).

■ Make the remaining characters either alphabetic characters (A-Z), numeric
digits (0-9), national characters ($, #, @), or underscores (_).

■ Enclose field names that do not conform to this syntax in double quotation
marks.

■ Enclose names that conflict with keywords of the statement in double quotation
marks.

■ Field names may be up to 30 characters long; statement lables may be up to 8
characters long.
2–4 ASL Reference Guide

ASL Terminology
The following are valid field names or procedure statement labels:

CUST_NUM
BAL30
CUSTNO
“AMT-DUE”

Qualifiers
You can prefix a name with a standard 1-character qualifier and a period.
A qualifier identifies a specific file or usage of a field. Qualifiers relate fields to their
origins:

The following are valid qualified field names:

T.TEMP
N.CUST_NUM
1.CORD_FLD
F.DATE

Example 1

T.TEMP

This is a reference to a temporary field named TEMP.

Example 2

1.CORDFLD

This is a reference to a field named CORDFLD from the file in the application that
has been assigned the qualifier 1.

Appendix C, Technical Notes contains a list of all valid qualifiers and their origins.

Qualifier Type of Location

Blank or N New master file.

1-9 Coordinated files 1-9.

T Temporary file.

F Flag field.

X Transaction file

O or 0 Old master file.
For VISION:Builder
and
VISION:Two.

W Working storage

V Linkage section.

A, B, E, G, H,
J, K, M, Q,
1-9

Array (must match the qualifier
that identifies the array.
Terminology, Syntax, and Processing 2–5

ASL Terminology
Names with Special Characters
Enclose names that include special characters in double quotation marks. The
following is an example of a field name with a special character (an embedded
blank):

N."DATE ONE"

Without the special notation, the blank in the field name is interpreted as two
separate fields instead of one.

Comments
Place comments anywhere following a semicolon (;), except on a continued line.
For example:

; RESETTING A TEMPORARY FIELD
;
LET T.REGION = ’ ’ ; RESET FIELD TO BLANKS

The first two lines show comments on lines by themselves. The third line is an
example of a comment on a command line. Separate the comment from the
command and its keyword phrase by a semicolon.

Arithmetic Expressions
Code arithmetic expressions using the operators +, –, *, and / for addition,
subtraction, multiplication, and division, respectively. For example:

A+B A-B B*C D/C

As in conventional algebraic notation, operations within an arithmetic expression
are executed from left to right. However, multiplication and division are
performed prior to addition and subtraction unless this order is overridden by
parentheses. For example:

A-B*C+D

In this arithmetic expression, the multiplication between field B and field C is
performed before the addition and the subtraction.

When you write the expression as (A-B)*(C+D), the addition and subtraction are
performed before the multiplication.

To evaluate the difference, assume that:

A=5
B=3
C=2
D=1
2–6 ASL Reference Guide

ASL Terminology
for the two arithmetic expressions given in the prior example. Figure 2-1 shows the
steps taken to come up with the result of the arithmetic expressions.

Logical Expressions
Use logical expressions in IF, CASE, and DO commands.

Make a logical expression from conditional functions, relational expressions, or list
expressions connected by logical operators.

Conditional Functions
A conditional function is a function that returns a true or false condition. For
example:

VALIDATE(FIELD ORDRDATE DATE)

shows the VALIDATE function. The date validation of the field ORDRDATE will
either be true or false depending on the contents of ORDRDATE being a valid date.

In the following examples, A can be a field name, and B and C can be any constant,
field name, or arithmetic expression.

Relational Expressions
A relational expression is composed of two values connected by a logical operator.
In relational expressions, you can represent logical operators as characters or as
symbols:

Examples
A EQ B (equal)
A NE B (not equal)
A LT B (less than)

 Without Parentheses With Parentheses

 A-B*C+D (A-B)*(C+D)

 5-3*2+1 (5-3)*(2+1)

 5-6+1 2 * 3

 0 6

Figure 2-1 Steps Taken to Achieve the Result of the Arithmetic Expressions

EQ or =
NE or <>
GT or >
LT or <
GE or >=
LE or <=
Terminology, Syntax, and Processing 2–7

ASL Terminology
A GT B (greater than)
A LE B (less than or equal to)
A GE B (greater than or equal to)

List Expression
A list expression lists the specific values to test. For example, NUMBER EQ 00001
00002 00003 00004 specifies that NUMBER should be compared against the four
values listed.

In a list expression, use only the EQ and NE operators. In relational or list
expressions, you can represent logical operators as characters or as symbols:

Boolean Logical Operators
There are three Boolean logical operators: AND, OR, and NOT. Use parentheses to
specify the order of evaluation.

Example 1 The OR operator.

A=B OR A=C

If either relational expression is true, the logical expression is true.

Example 2 The AND operator.

A=B AND A=C

Both relational expressions must be true for the logical expression to be true.

Example 3 The NOT operator.

NOT (A=B AND A=C)

Both relational expressions must be true for the logical expression to fail. The
whole expression is true if the expression in parentheses is false. In other words,
the NOT operator reverses the evaluation of true or false for the final outcome of
the expression.

The NOT operator is best understood when used in a conditional function such as
VALIDATE. For example, NOT VALIDATE(DUEDATE DATE) is true when the
field DUEDATE is not valid.

EQ or =
NE or <>
GT or >
LT or <
GE or >=
LE or <=
2–8 ASL Reference Guide

ASL Terminology
You can also use the NOT operator to exclude a few values that are not wanted for
processing instead of including all of the values that are wanted. For example, the
following is true for all values of NUMBER except 1 or 5:

NOT (NUMBER = 1 OR NUMBER = 5)

The following table shows numeric examples and the subsequent true or false
evaluations of logical expressions.

A=B A=C A=B OR A=C

A=1, B=2, C=2 FALSE FALSE FALSE

A=2, B=2, C=1 TRUE FALSE TRUE

A=2, B=2, C=2 TRUE TRUE TRUE

A=B A=C A=B AND A=C NOT (A=B AND A=C)

A=1, B=2, C=2 FALSE FALSE FALSE TRUE

A=2, B=2, C=1 TRUE FALSE FALSE TRUE

A=2, B=2, C=2 TRUE TRUE TRUE FALSE
Terminology, Syntax, and Processing 2–9

Statement Syntax
Statement Syntax
This section describes the conventions used to provide a precise description of the
syntax of a function or command.

Enter commands and functions in the exact order given on the syntax line.

The following syntax conventions apply to ASL statement syntax. As the examples
given with each command show, you enter your procedures using uppercase
letters.

■ Brackets [] indicate an optional keyword or parameter.

■ Braces { } indicate a choice of entry; unless a default parameter is indicated by
an underscored entry, you must choose one of the entries.

■ Required parameters do not have brackets or braces surrounding them.

■ Items separated by a vertical bar (|) represent alternative items. Select only one
of the items.

■ Items separated by a plus sign (+) represent multiple items. Select as many as
needed.

■ An ellipsis (. . .) indicates that you can use a progressive sequence of the type
immediately preceding the ellipsis. For example: name1, name2, ...

■ Bold, uppercase type indicates the characters to be entered. Enter such items
exactly as illustrated. You can use an abbreviation if it is indicated.

■ Italic, lowercase type specifies fields to be supplied by the user.

■ Underscored type indicates a default option. If you omit the parameter, the
underscored value is assumed.

■ Separate commands, keywords, and keyword phrases by blanks, commas, or
both.

■ Enter punctuation such as parentheses and colons exactly as shown.

Note: The section heading for each function and command appear at the top of a
page.
2–10 ASL Reference Guide

Page Layout
Page Layout
The following describes the format used to present each function or command.

COMBINE [FIELDS] field1 . . . STORE result-field [BLANKS {number |0 }]

COMBINE
COM The COMBINE command concatenates two or more character strings

and store the result in a specified destination field. The number of blanks
inserted between each string can also be specified.

FIELDS field1 . . .
FLDS Specifies a list of character string fields. Make the operands the names of

character string fields (fixed or variable length).

STORE result-field
Specifies the result field. Make the operand the name of a character
string field (fixed or variable length) to contain the concatenation of all
the operands of the FIELDS keyword.

BLANKS
{number | 0 }

Specifies the number of blanks to insert between strings. Make the
operand an integer constant. If you omit this keyword phrase, the
default is 0 (no blank between fields).

The section name for the function or
command appears
in the sidehead of the page.

The keywords in the statement are explained following the purpose
of the statement.

COMBINE Command

The purpose for each statement is described
below its format.

Abbreviations for statements or keywords appear
directly beneath the statement or keyword.

The syntax of the statement follows
the section name

Example COMBINE FIRSTNAM LASTNAME STORE NAME BLANKS 1
Terminology, Syntax, and Processing 2–11

The Nature of ASL
The Nature of ASL
ASL enables you, the application developer, to work with a logically related set of
data. The objective is for the application developer to focus upon the algorithms
and business considerations of the problem independently of the way the data is
physically structured or organized. Thus, for the most part, the application
developer can write ASL statements without concern for the structure of a record
and without concern as to how the data is accessed.

Underlying ASL, therefore, are several important considerations that enable the
application developer to process the data correctly and consistently.

In developing an application in ASL, the application developer merely references
fields by name. The ASL processor locates all fields that are applicable. More
importantly, the ASL processor ensures that when data is requested from several
different fields, and even from different databases, only the correctly related data
is made available. In this manner, only correct and consistent sets of data are
processed.

The application developer should be aware of the following important and
powerful capabilities built into the ASL processor and the ASL language:

■ Implicit loops or set operation.

■ Record and segment processing.

Implicit Loops and Set Operation
ASL is a set language. This means that one statement of ASL processes all
occurrences of the data (that is, the complete set of occurrences). In a structured
record, repeated segments of data represent different occurrences of the data. In
most business situations, the application developer wants to apply a business
process (or algorithm) to all occurrences of the data, or at least to specifically
selected occurrences.

The ASL processor actually applies the ASL statements to each set of data in turn.
The application developer can write the algorithm as if it applied to only one
instance of the data. In practice, all instances are selected.
2–12 ASL Reference Guide

The Nature of ASL
Consider the simple structure shown in Figure 2-2.

Figure 2-2 Employee File

This structure is typical of a department level with subordinate segments, one for
each employee. To increase the salary of everybody in the department by 5
percent, use the following ASL statement:

LET SALARY = 1.05*SALARY

While this looks like one statement, it carries with it the implied “for all
occurrences of SALARY.”

The result of this one statement is shown in Figure 2-3.

Figure 2-3 Update All Records in the Employee File

The single statement acted on all occurrences of the data.

Field Name DEPT MANAGER MGRSAL

SALES GREEN 60,000

Field Name NAME SALARY SALGRADE

SMITH 40,000 5

JONES 50,000 6

WHITE 40,000 5

BROWN 65,000 7

Level 1

Level 2

Field Name DEPT MANAGER MGRSAL

SALES GREEN 60,000

Field Name NAME SALARY SALGRADE

SMITH 42,000 5

JONES 52,500 6

WHITE 42,000 5

BROWN 68,250 7

Level 1

Level 2
Terminology, Syntax, and Processing 2–13

The Nature of ASL
If you have your original data of Figure 2-2, but you need to increase the salaries
of those people whose salary grade is less than 7, use the ASL statements shown
below.

IF SALGRADE LT 7
 LET SALARY = 1.05*SALARY
END

The result of this statement is shown in Figure 2-4.

Figure 2-4 Update Selected Records in the Employee File

The ASL processor identifies all segments of data that are relevant and executes the
statement. As the application developer, you do not have to write any complex
looping structures.

Field Name DEPT MANAGER MGRSAL

SALES GREEN 60,000

Field Name NAME SALARY SALGRADE

SMITH 42,000 5

JONES 52,500 6

WHITE 42,000 5

BROWN 65,000 7

Level 1

Level 2
2–14 ASL Reference Guide

The Nature of ASL
As another example, assume that the three level record structure shown in
Figure 2-5 exists.

Figure 2-5 Three Level Record Structure

To select every employee who earns more than their manager, use the following
ASL statements:

IF SALARY GT MGRSAL
 CALL REPORT HIGHPAID
END

These statements select the following sets of data for the report HIGHPAID:

BROWN 65,000 7

THOMAS 50,000 6

Field Name DEPT MANAGER MGRSAL

SALES GREEN 60,000

Field Name NAME SALARY SALGRADE
SMITH 40,000 5
JONES 50,000 6
WHITE 40,000 5
BROWN 65,000 7

Level 2

Level 3

Field Name DIVISION

WEST Level 1

Field Name

Field Name NAME SALARY SALGRADE
THOMAS 50,000 6
MILLS 33,000 4
NEWS 40,000 5

Level 2

Level 3

DEPT MANAGER MGRSAL

FINANCE BLACK 45,000
Terminology, Syntax, and Processing 2–15

The Nature of ASL
In processing these ASL statements, the ASL processor maintains the integrity of
the relationships of the data. Each employee is associated with the appropriate
manager. No employee is associated with somebody else's manager. The data that
is returned and processed is that which you logically would expect.

ASL, therefore, is a set language that processes all occurrences of the data that
satisfy any existing criteria. ASL does not stop with the first occurrence of the data.
Any procedural statements are processed against each occurrence of the data that
satisfies the selection criteria. When this is done, ASL searches for the next
occurrence of the data that satisfies the selection criteria. This process occurs until
all instances of the data have been processed. Some application developers may
like to think of this as the creation of an implicit loop based upon the number of
segment occurrences that exist.

In the vast majority of cases, application developers can write an algorithm or
business consideration as if there were only one occurrence of the data and be
secure in the knowledge that all appropriate occurrences will be processed.

The examples show that one or two statements can process large amounts of data.
There are no complicated data navigation commands; it was all transparent. You
can focus on the problem and leave the data to ASL.

In some instances, you must know that you are, in fact, dealing with a set of data
and not an individual occurrence. Under some circumstances, the following
specific situations can occur:

■ Stop the procedural algorithm working on the particular occurrence of the data
and move on to the next occurrence.

■ Stop all processing of any future occurrences of the data.

Sometimes these situations are relevant to the particular problem being solved,
while in other cases there are important performance considerations.

When processing large structured records, for example, you can improve
performance by bypassing processing of segments where it is known that no action
is required.

Controlling the Processing of Repeated Segments
ASL provides commands for the application developer to control the processing of
repeated segments within a structure. Two particular commands are of
importance: CONTINUE and LEAVE.

■ The CONTINUE command enables the application developer to stop the
algorithm working on the current occurrence of the data and move to the next
occurrence.

■ The LEAVE command causes the procedure to stop processing this occurrence
of the data and to bypass all other occurrences of the data within the current set
for the current procedure.
2–16 ASL Reference Guide

The Nature of ASL
Within ASL, any selection statement (such as IF, DO) limits the available segments
of data for processing by subsequent procedural statements. This applies also to
subroutine procedures, reports, or subfiles. Any object that is called from another
object inherits the same view of the data as currently defined by the parent object.
All segments beyond the scope of this view are still available for processing. Once
again, the consistency of data is maintained.

Record and Segment Processing
The set theory philosophy, as described above, says that the application developer
should not worry about how many occurrences of the data exist nor the
relationships between the various pieces of data. That is the responsibility of ASL
and the ASL processor. The ASL processor guarantees that all occurrences of the
data are available for processing with the correct relationships between the data.

This philosophy continues in ASL with the philosophy of handling records and
segments within a record. The ASL user does not have to be concerned with where
the data physically exists. ASL is structured to be able to handle records and
segments in a similar manner.

Records are normally thought of as separate physical entities; whereas, segments
are thought of as being contained within a record and being repetitions of data.

The Distinction Between Records and Segments
The distinction between records and segments is an artificial one imposed upon
the application developer by virtue of hardware constraints. Many records in a file
really constitute repeats of root segments. In effect, they are no different from
repeats of subordinate segments. Unfortunately, because of the difference in
nature of the physical arrangement of the data, it frequently calls for different
programming techniques to access the data. ASL and the ASL processor remove
these restraints from the application developer.

For the most part, you, the application developer, can write your application as if
you were dealing with an infinite space of data. All data is treated as if the fields
belong to a segment. It is the responsibility of ASL and the ASL processor to work
out whether accessing a segment is merely an act of navigating through a
structured record or whether a physical read of a new record from the file must be
made. All of this is transparent to the application developer.

Automatic Navigation
Navigation through records and segments is automatic for a majority of
applications. As described above, a reference to a field causes navigation through
a record for all suitable occurrences of segments containing that data. When all
segments have been processed, the ASL processor automatically reads the next
record and transfers control to the beginning of the processing cycle.
Terminology, Syntax, and Processing 2–17

The Nature of ASL
Application-Controlled Navigation
Under certain circumstances, an application developer might not want to have the
ASL processor perform the automatic navigation through the data. If this is the
case, the application developer can use explicit functions (for example, FIND) to
locate specific instances of segments.

When you issue a FIND command for a segment, the ASL processor locks onto the
segment that is identified or located. All subsequent procedural statements can
only access data within that segment. If you require access to all the occurrences of
the segment after a FIND command completes, you must issue a RELEASE
command.

ASL provides powerful commands for those applications where the application
developer needs to control the navigation through the data.
2–18 ASL Reference Guide

The Nature of ASL
ASL Code Examples and Usage
The following is an example of a simple VISION:Builder application written
entirely in ASL.

; ASL Run Control Group for Sample Application
; Application uses a Master File and one Coordinated File
;
CONTROL TERM, DB2 D61A INM4CALL, RPTMSGS NO
FILE REPORT
;
; Declare Master file with File Definition from SQL clause
FILE MASTER INPUT, KEYS NONE,
SQL "SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT, ",

"BIRTHDATE, HIREDATE, SALARY FROM DSN8610.EMP "

;
; Declare Coordinted file with File Definition from COMLIB
FILE CORD1 NAME TDEPT, DIRECT BY O.WORKDEPT
;
; End of ASL Run Control
;
;
; Begin ASL Procedure Group
; First procedure contains processing logic and 2 reports
; A third report outputs data in CSV format
;
PROC INFO 'Main Procedure'
NAME: FIELD V 22 ;Temporary field to hold combined name
;
; Combine Elements of Name into One Field
COMBINE LASTNAME ',', BLANKS 0, STORE T.NAME
COMBINE T.NAME FIRSTNME MIDINIT, BLANKS 1, STORE T.NAME

;
REPORT EMPNO, T.NAME, BIRTHDATE
TITLE 'Report Showing Birth Dates of all Employees'
ORDER BY EMPNO
;Use LE Picture to display Birth Date with Day of Week
ITEM BIRTHDATE PIC P'Wwwwwwwwwz, Mmm DD, YYYY'
FORMAT DATEFMT DATE, WIDTH 80

END REPORT
;
REPORT 1.DEPTNO, EMPNO, T.NAME, HIREDATE, SALARY
TITLE 'Report Showing Employees by Department'
ORDER BY 1.DEPTNO EMPNO
GROUP BY 1.DEPTNO 1.DEPTNAME, SUBTITLE
ITEM EMPNO SPACES 7
FORMAT WIDTH 80

END REPORT
;
END PROC
;
REPORT BIRTHDATE HIREDATE SALARY
FORMAT METHOD CSV, DDNAME CSVOUT1

END REPORT
;
; End of Application

The use of ASL results in easy-to-read, English-like, application code.
Terminology, Syntax, and Processing 2–19

The Nature of ASL
Combining ASL with Traditional Syntax Coding
Existing applications using fixed-syntax statements may be converted
incrementally by coding in ASL only those sections of the application that are
being revised or enhanced. To assist in this process, the ASL processor recognizes
two special directives that may be used to combine both ASL and fixed-syntax
statements in the same application. These directives are:

;;BEGASL

and

;;ENDASL

The ;;BEGASL directive may be used to indicate that the following statements are
ASL rather than fixed-syntax. The ;;ENDASL directive may be used to indicate that
the following statements are fixed-syntax rather than ASL. Both of these directives
must me begin in column 1 of a statement. These directives should only be used
at the boundaries of logical coding units such as:

■ after ASL run control and prior to fixed-syntax run control or fixed-syntax
requests

■ after fixed-syntax run control or requests and prior to an ASL procedure,
report, or subfile

The following example illustrates the use of the ;;BEGASL and ;;ENDASL
directives.

DB2RUN2 RCTEMPL S U S #T R
DB2RUN2 RPDB2 D61A INM4CALL
DB2RUN2 RPLISTCNTL N
;;BEGASL
PROC
LILDATE: FIELD D 4
FEEDBACK: FIELD C 12
WEEKDAY: FIELD C 80
NAME: FIELD V 22
;
; Combine Elements of Name into One Field
COMBINE LASTNAME, ',' STORE T.NAME
COMBINE T.NAME, FIRSTNME, MIDINIT BLANKS 1 STORE T.NAME

;
; Convert Birth Date to a Lilian Date using Picture 'YYYY-MM-DD'
CALL CEEDAYS USING BRTHDATE, 'YYYY-MM-DD',

T.LILDATE, T.FEEDBACK
;
; Convert Lilian Date to a Format Showing Day of the Week
CALL CEEDATE USING T.LILDATE, 'Wwwwwwwwwz, Mmm DD, YYYY',

T.WEEKDAY, T.FEEDBACK
;
CALL REPORT REPORT1 ;Output Report

END PROC
;;ENDASL
REPORT1 ERTODAY S
REPORT1 E1 F
REPORT1 R1 EMPNO
REPORT1 R1 TNAME
REPORT1 R1 BRTHDATE
REPORT1 R1 TLILDATE
REPORT1 R1 TWEEKDAY 0124
REPORT1 T1 Report Showing Use of LE Routines CEEDAYS and CEEDATE#
2–20 ASL Reference Guide

The Nature of ASL
Alternatively, the ASL COPY FIXED command can be used to copy in fixed-syntax
statements as appropriate. The COPY FIXED command is particularly useful
where a fixed-syntax file definition, prepared by the Workbench for ISPF and
stored in a definition library (PDS), needs to be included as an in-stream file
definition. The following example illustrates the use of the COPY FIXED
command.

CONTROL TERM, DB2 D61A INM4CALL, RPTMSGS NO
;
; Declare Master, Coordinated, and Report files
FILE MASTER INPUT, NAME TEMPL, KEYS NONE
FILE CORD1 NAME TDEPT, DIRECT BY O.WORKDEPT
FILE REPORT
;
COPY COPYLIB(TEMPL) FIXED
COPY COPYLIB(TDEPT) FIXED
;
MAIN: PROC
LILDATE: FIELD D 4
FEEDBACK: FIELD C 12
WEEKDAY: FIELD C 80
NAME: FIELD V 22
;
; Combine Elements of Name into One Field
COMBINE LASTNAME, ',' STORE T.NAME
COMBINE T.NAME, FIRSTNME, MIDINIT BLANKS 1 STORE T.NAME

;
; Convert Birth Date to a Lilian Date using Picture 'YYYY-MM-DD'
CALL CEEDAYS USING BRTHDATE, 'YYYY-MM-DD',

T.LILDATE, T.FEEDBACK
;
; Convert Lilian Date to a Format Showing Day of the Week
CALL CEEDATE USING T.LILDATE, 'Wwwwwwwwwz, Mmm DD, YYYY',

T.WEEKDAY, T.FEEDBACK
;
CALL REPORT REPORT1 ;Output Report

END PROC
;
; Copy Fixed-Syntax Request
COPY COPYLIB(REPORT1) FIXED
;
; End of Application

Use of ASL Prior to VISION:Builder 14.0
Prior to this release of VISION:Builder, ASL could only be used for procedures as
in the example below.

1. Place ASL statements after an ER statement.
2. On the next line, place two system delimiters followed by PROC, starting in

column one.

3. Enter the ASL procedure.

4. Place two system delimiters followed by PEND, starting in column one on the
line after all of the ASL statements for the procedure.
Terminology, Syntax, and Processing 2–21

The Nature of ASL
Figure 2-6 is an example of in-stream ASL procedural statements as supported
prior to this release.

You can use ASL procedures and traditional requests (PR statements) in the same
application. However, you cannot use PR statements and ASL in the same
procedure or request.

Applications coded in this manner will continue to work.

Capturing the Equivalent Fixed-Syntax Statements
The equivalent fixed-syntax statements for any ASL code may be captured by
including a DD statement with a DDNAME of M4FIXED in the job-step JCL. This
output file will contain fixed-length 80-byte records suitable for use as M4INPUT
statements if so desired.

See the VISION:Builder Environment Guide for more information regarding the use
of the M4FIXED DD statement.

procname ER
##PROC
STOCKVAL: FIELD P 5 DEC 2
IF QANONHND > 0
LET T.STOCKVAL = QANONHND * UNITCOST
CALL REPORT VALUEREP

END
##PEND

Figure 2-6 In-Stream ASL Statements
2–22 ASL Reference Guide

Chapter
3 R
un Control Command Group
The Run Control command group contains the commands that specify basic run
parameters and controls, file/database parameters and controls, and catalog
related operations.

The following table identifies each of the commands in the run control group and
their function:

Command Name Function

ARRAY Internal array parameters

CATALOG Request cataloging controls

CHECKPOINT Checkpoint parameters and controls

COLLATE Report collating parameters and controls

CONTROL Application parameters and controls

COPY Copy commands not in the primary input stream

DEBUG Debugging output controls

DOCUMENT Application documentation controls

FILE AUDIT Audit file parameters

FILE CORDn Coordinated file and external array parameters and
controls

FILE MASTER Master file parameters and controls

FILE REJECT Reject file parameters

FILE REPn Additional report file parameters

FILE REPORT Primary report file parameters

FILE SUBFn Subfile file parameters

FILE TRAN Transaction file parameters and controls
Run Control Command Group 3–1

The following rules define what statements may be used for each of the various
types of runs:

■ Dictionary maintenance runs may only use the CONTROL, COPY, LISTLIB,
and TRACK commands.

■ File processing runs may use all commands except the LISTLIB and RETRIEVE
commands.

■ Report generation runs (step 3 of a 3-step run) may only use the
CHECKPOINT, CONTROL, COPY, and FILE REPORT commands.

■ Source statement retrieval runs may only use the CONTROL and RETRIEVE
commands.

LINKAGE Linkage section parameters

LISTCNTL Program output listing controls

LISTLIB
GLOSSARY

Catalog content glossary listing controls

LISTLIB NAMES Catalog content names listing controls

MULTILIB Multiple M4LIB ordering parameters

OVERRIDE DD Name override parameters

OWNCODE Own Code parameters

RETRIEVE Catalog content retrieval controls

ROUTE Report routing parameters and controls

TRACK Catalog item tracking parameters

WORK Working storage parameters

Command Name Function
3–2 ASL Reference Guide

ARRAY Command
ARRAY Command

The ARRAY command is used to define internal arrays. Multiple ARRAY
commands may be used to identify multiple arrays in an application.

Examples
ARRAY QUAL A NAME ARRAY1

Allocate an array using the array definition ARRAY and assign it a qualifier of A.

ARRAY B NAME ARRAY2 OVERDEFINES A

Allocate an array with qualifier B that over-defines array A using array definition
ARRAY2.

ARRAY [QUALIFIER] qualifier-char,

NAME definition-name,
[OVERDEFINES qualifier-char]

QUALIFIER qualifier-char
QUAL

Specifies a unique identifier for the array.
Valid qualifier-char values are A, B, E, G, H, J,
K, M, Q, or 1-9. This array identifier also
becomes the qualifier for any field names
within the array. If a numeric qualifier is
assigned (1-9), a FILE CORDn may not be
specified that uses the same numeric
designation.

NAME definition-name Identifies the array definition that describes
the elements within the array.

OVERDEFINES qualifier-char
OVER

Identifies the target array that this array
definition over-defines. The over-defined
array may either be another array defined
with an ARRAY command or an array
defined with a FILE CORDn command. The
data-cell size times the number of columns of
this array must equal the data-cell size times
the number of columns in the over-defined
array. The size of a row must be equal in both
arrays and the number of rows in this array
must be less than or equal to the number of
rows in the target array.
Run Control Command Group 3–3

CATALOG Command
CATALOG Command

The CATALOG command is used to specify cataloging operations for requests or
request groups. Requests or request groups are inserted into the application code
using the procedural INCLUDE command. Multiple CATALOG commands may
be present in a single application.

CATALOG {SAVE [GROUP group-name] [REQUESTS request-name ...] |

 INSERT REQUEST request-name INTO group-name [AFTER request-name] |
DELETE [GROUP group-name] [REQUESTS request-name ...] |
REPLACE REQUESTS request-name … |
DUMP {ALL | ITEMS item-names … } |
LIST}

SAVE Save a request or group in the common library.
When the GROUP keyword is omitted but the
REQUEST keyword is present, the identified
requests are saved as individual requests (not
contained in any group). When the REQUEST
keyword is omitted but the GROUP keyword is
present, all requests in the run are saved as
requests within the identified group. If both the
GROUP and REQUEST keywords are present, the
identified requests are saved within the identified
group.

INSERT Insert a request into an existing group within the
common library. The REQUEST and INTO
keywords are required. If the AFTER keyword is
omitted, the request is inserted as the first request
in the group.

DELETE Delete a request or group from the common
library or delete a request from within a group. If
both the REQUEST and GROUP keywords are
present, the requests are deleted from the
designated group. If the GROUP keyword only is
present, the group is deleted. If the REQUEST
keyword only is present, the individual requests
(not contained in any group) are deleted.

REPLACE Replace a request in all groups in which it occurs
within the common library.

DUMP List the source statements contained in a request
or group within the common library. The ALL
and ITEM keywords (see below) are used to
specify the scope of the dump operation.
3–4 ASL Reference Guide

CATALOG Command
Examples
CATALOG LIST

List the names of all requests and request groups that are cataloged in the common
library.

CATALOG SAVE GROUP XYZ, REQUESTS ABC DEF

Save requests ABC and DEF into a group called XYZ.

CATALOG DUMP ITEMS XYZ ABC DEF

Display the source statements in items XYZ, ABC, and DEF in the common library.

LIST List the names of all requests and groups within
the common library. Only one list operation is
performed even when more than one CATALOG
LIST command is specified.

GROUP group-name Identifies the name of the group to which the
corresponding operation applies.

REQUESTS request-name
REQUEST

Identifies the name of one or more requests to
which the corresponding operation applies.

INTO group-name Identifies the name of a group into which a
request is inserted.

AFTER request-name Identifies the name of a request after which the
inserted request is to be placed.

ALL Indicates that the source statements of all requests
and groups within the common library are to be
listed.

ITEMS item-names
ITEM

Identifies the names of requests and/or groups
that are to be included in the source statement list
process.
Run Control Command Group 3–5

CHECKPOINT Command
CHECKPOINT Command

The CHECKPOINT command is used to specify that checkpoint operations are to
occur during the execution of the application. Only one CHECKPOINT command
may be present in an application but more than one of the available event triggers
may be specified. If the application is invoked via the IMS region controller
(program name DFSRRC00), IMS checkpoints will be taken. Otherwise, standard
operating system checkpoints (CHKPT macro) will be taken.

CHECKPOINT [COUNT number],

[FILE ddname],
[TIME number {MINUTES | SECONDS}],
[EOV ddname],
[OPERATOR],
[PREFIX id-prefix],
[COMMITONLY],
[ALTERNATING]

COUNT number Specifies a record count interval that will trigger a
checkpoint operation when the records processed count
reaches the specified number. Reads only of existing
records or insertions of new records will increment the
records processed count by 1. An update-in-place or
deletion of an existing record will increment the records
processed count by 2. The records processed count is
initialized to 0 at the beginning of application execution
and after every checkpoint event. A FILE keyword is also
required whenever this keyword is present.

FILE ddname Specifies the DD name of the logical file to which the
COUNT keyword applies. This keyword is required
whenever the COUNT keyword is present. The DD name
of M4OLD is used for the master file even when there is
no physical DD statement by that name in the JCL.
Likewise, M4CORDn is used for coordinated files in
similar circumstances.

TIME number Specifies an elapsed clock time interval that will trigger a
checkpoint operation. The MINUTES or SECONDS
keyword may be used to specify the units for the TIME
keyword. If both the MINUTES and SECONDS keywords
are omitted when the TIME keyword is present, the unit
of time will be assumed to be minutes.
3–6 ASL Reference Guide

CHECKPOINT Command
Examples
CHECKPOINT COUNT 100, FILE M4OLD

A checkpoint will be taken after the first 100 records have been read from the file
from the master file and every 100 records thereafter.

CHECKPOINT TIME 5 MINUTES, COMMITONLY

A checkpoint will be taken every 5 minutes of elapsed time and the checkpoint
function will consist only of a DB2 COMMIT operation.

MINUTES Specifies that the units of the TIME keyword are in
minutes. The TIME keyword must be present if the
MINUTES keyword is present and the MINUTES
keyword is mutually exclusive with the SECONDS
keyword.

SECONDS Specifies that the units of the TIME keyword are in
seconds. The TIME keyword must be present if the
SECONDS keyword is present and the SECONDS
keyword is mutually exclusive with the MINUTES
keyword.

EOV ddname Specifies the DD name of the logical file for which an
end-of-volume condition will trigger a checkpoint
operation. See the FILE keyword above for the rules
regarding specifying DD names.

OPERATOR Specifies that an operator control request is to be issued
and that a response by the operator will trigger a
checkpoint operation.

PREFIX id-prefix Specifies the checkpoint id prefix when the IMS
checkpoint mechanism is used.

COMMITONLY Specifies that a DB2 commit only will be performed when
a checkpoint event is to occur. No restart is possible when
this keyword is present as no log containing restart
information is written. The operating system or IMS
checkpoint functions will not be invoked.

ALTERNATING Specifies that the operating system checkpoint records are
to be written to alternating files. This keyword is not
valid when the IMS checkpoint mechanism is used.
Run Control Command Group 3–7

COLLATE Command
COLLATE Command

The COLLATE command specifies the reports that are to be collated and the length
of the collating key field. An application may contain many COLLATE commands
but any given report may only appear on one COLLATE command.

COLLATE {[REPORTS] report-name ... [KEYLENGTH length] |

 ALL KEYLENGTH length}

REPORTS report-name … Specifies one or more reports that are to be
collated and that become the members of this
collection of reports. The report-name operand is
a list of one or more request names (fixed-syntax
object) or report names (ASL object). If the request
contains more than one report, specific reports
within the request may be identified by stating the
request name, a colon and the specific report
number(s) (Rn statement sets). For example,
SALESRPT:513 indicates that only reports 1, 3,
and 5 of the request SALESRPT are to be
considered for this COLLATE command and that
report 5 will print before reports 1 and 3. No
embedded blanks are allowed in the list of report
numbers.

The order of the request names and report
numbers within requests (fixed-syntax objects),
and the report names (ASL objects) determines
the order of the final report output. The
COLLATE command may be used to re-order the
report output sequence.

ALL Specifies that all reports in the application are to
be collated according to the data values contained
in the collating key whose length is specified via
the KEYLENGTH parameter. When the ALL
keyword is specified, the KEYLENGTH
parameter is required and only one COLLATE
command is allowed in the application.
3–8 ASL Reference Guide

COLLATE Command
Example
COLLATE REPORTS REP1 REP2 KEYLENGTH 1

REP1 and REP2 will be collated according to the collating key which is one byte in
length. REP1 will print before REP2.

KEYLENGTH length
KEYLEN

Specifies the size of the collating key, beginning at
the first byte of the report key, used to control the
collation of report data. The length specified must
not exceed the length of the report key. All report
data for the reports identified with the REPORTS
keyword is grouped by the values of the collating
key.

When the KEYLENGTH keyword is not specified
in combination with the REPORTS keyword, the
effect of the COLLATE command is to print the
full reports in the order listed within the
REPORTS keyword parameters. No collation of
report subsets from the different reports will take
place.
Run Control Command Group 3–9

CONTROL Command
CONTROL Command

The CONTROL command is used to specify application-related parameters and
controls. This command must be the first command in an application. Even
though no keywords are specified, the command must still be present.

CONTROL [NAME run-name],

[DELIMITER ‘x’],
[{SCANONLY | SAMPLE | MAPDECODE}],
[{TERM | CONTINUE}],
[SORT {INTERNAL | EXTERNAL | NONE}, [SUMMARIZE]],
[{NOLIST | NOSOURCE | LISTGEN}],
[AMODE {31 | 24}],
[ABEND],
[GRANDSUM],
[CORDONLY],
[GETMAIN nnnnK],
[SORTSIZE nnnnK],
[REPTSIZE nnnnK],
[FREESIZE nnnnK],
[DB2 subsystem-id plan-name],
[SQLID authorization-id],
[EXPLAIN query-number],
[{SYSDATE mmddyy | SYSDATE4 yyyymmdd}],
[DECMSGS {YES | NO}],
[PROMSGS {YES | NO}],
[RPTMSGS {YES | NO}]

NAME run-name Specifies the name of the application. If
omitted, a default name will be used.

DELIMITER 'x' Specifies the delimiter character to be used for
this application. If omitted, the default
delimiter specified at installation time in
M4PARAMS will be used. The operand must be
a single character enclosed in single-quotes
(apostrophes). The delimiter may be any
character except an underscore (_) or tilde (~).
The delimiter character is used in various places
to delimit strings.
3–10 ASL Reference Guide

CONTROL Command
SCANONLY Specifies that this invocation of VISION:Builder
is a scan-only run. The syntactical correctness of
all source statements will be verified, any
cataloged request maintenance will be
performed (see CATALOG command), and the
cross-validation of application functions will be
completed. No file/database processing will be
done. This keyword is mutually exclusive with
the SAMPLE, MAPDECODE, TERM, and
CONTINUE keywords. Note that, if the
application references DB2 databases, a
connection to DB2 will be required in order to
fully verify the correctness of any user coded or
automatically derived SQL statements.

SAMPLE Specifies that in addition to the scan-only
functions described above, sample reports will
be generated for each valid report specification
in the application. Sample reports allow you to
check the layout and appearance of a report
without actually preparing test data. This
keyword is mutually exclusive with the
SCANONLY, TERM, and CONTINUE
keywords.

If this keyword is specified in combination with
the MAPCODE keyword, sample reports for
any mapping requests will be generated.

MAPDECODE Specifies that this invocation of VISION:Builder
is for the express purpose of validating
mapping requests and performing the related
cataloged request maintenance functions. No
file/database processing will be done. This
keyword is mutually exclusive with the
SCANONLY, TERM, and CONTINUE
keywords.

If the SAMPLE keyword is specified in
combination with this keyword, sample reports
for the mapping requests will be generated.

TERM Specifies that the application run should be
terminated before any file/database processing
operations occur if any syntax or
cross-validation errors are detected. This
keyword is mutually exclusive with the
SCANONLY, SAMPLE, MAPDECODE, and
CONTINUE keywords.
Run Control Command Group 3–11

CONTROL Command
CONTINUE Specifies that file/database processing should
be performed ignoring any requests that are
invalid and that processing should continue
after a type 4 message is issued. A type 4
message indicates some sort of file/database
condition that prevents a program function to
complete normally. One such condition would
be an attempt to insert a new record while a
record with the identical key already exists in
the database. This keyword should be used
with caution because incomplete and even
invalid results may be produced. Usually, this
keyword would be specified only when some
error condition is expected but that the user is
willing to tolerate. The program listing should
be examined carefully to determine what
functions might not have completed
successfully. This keyword is mutually
exclusive with SCANONLY, SAMPLE,
MAPDECODE, and TERM. If the SCANONLY,
SAMPLE, MAPDECODE, TERM, and
CONTINUE keywords are all omitted, any
invalid requests are ignored but the run will be
terminated whenever a type 4 error is
encountered.

SORT Specifies the sort control parameters for the
application. This keyword must be followed by
one of three keywords as follows:

■ INTERNAL -- Specifies that sorting of the
selected report data is to be performed
internally in a single-step process and the
report output produced as part of this
process.

■ EXTERNAL -- Specifies that sorting of the
selected report data will be performed in a
separate job step. Report output must be
produced in a subsequent report generation
step.

■ NONE -- Specifies that no sorting of
selected report data is required and that any
report output will be produced as part of a
single job step. This option is not valid if the
application contains specifications for two or
more reports.
3–12 ASL Reference Guide

CONTROL Command
SUMMARIZE Specifies that for SORT EXTERNAL, the sort
process is to optimize record I/O by taking
preliminary summaries for numeric fields in the
input detail records and producing only
summarized output records. This optimization
is effective for summary only reports that
request TOTAL, CUM, PERCENT, or RATIO
summaries on numeric fields. There can be no
more than 40 summary and control fields in the
report, and the length of the data record on the
report file cannot exceed 400 bytes. This
keyword is invalid if SORT EXTERNAL is not
also specified.

NOLIST Specifies that no listing of the application source
statements is to be produced. In addition, any
information-only or warning messages, the
banner page, and Program Analyzer output will
be suppressed. This keyword is mutually
exclusive with the NOSOURCE and LISTGEN
keywords.

NOSOURCE Specifies that listing of the application source
statements and the banner page is to be
suppressed. This keyword is mutually
exclusive with the NOLIST and LISTGEN
keywords.

LISTGEN Specifies that a complete listing of all source
statements is to be produced along with the
fixed-syntax equivalent statements of any ASL
statements present in the application. This
keyword may be useful for users familiar with
the fixed-syntax statements while they are
transitioning to using ASL in place of the
fixed-syntax statements. This keyword is
mutually exclusive with the NOLIST and
NOSOURCE keywords. If neither the NOLIST,
NOSOURCE, nor LISTGEN keywords are
present, all source statements (fixed-syntax or
ASL) will be listed as is along with any
information or diagnostic messages, a banner
page will be output, and Program Analyzer
output will be produced.
Run Control Command Group 3–13

CONTROL Command
AMODE Specifies the addressing mode that is to be used
during the file/database processing stage of the
application execution. Valid mode
specifications are 24 or 31. A value of 24
indicates that only processor storage below the
16-meg line will be utilized by the application.
A value of 31 indicates that processor storage
above the 16-meg line may be used for file
buffers, table-lookup tables, and miscellaneous
control blocks. If the AMODE keyword is
omitted, the default value specified at
installation time in M4PARAMS will be used.
AMODE 24 may be required if external
programs are called that can not access
processor storage above the 16-meg line.
Otherwise, AMODE 31 is the preferred
specification.

ABEND Specifies that, if the application run encounters
any error condition, the job step will be
terminated with an operating system abend
rather than just setting a non-zero job-step
condition code.

GRANDSUM Specifies that grand summaries are to be
automatically generated for each report in the
application. If this keyword is omitted, the
default value specified at installation time in
M4PARAMS will be used.

CORDONLY Specifies that the coordination follow-up pass
should be bypassed. This means that the
execution of coordinated requests will be
bypassed when the ECORD flag is equal to all
Xs regardless of whether or not coordination
has taken place.

GETMAIN nnnnK Specifies the size of working storage that
VISION:Builder will request. The value of nnnn
may be a number between 1 and 8192 and K
indicates that the value is a multiple of 1024. If
this keyword is omitted, the default value
specified at installation time in M4PARAMS
will be used.
3–14 ASL Reference Guide

CONTROL Command
SORTSIZE nnnnK Specifies the amount of storage available to the
sort program in a single-step application (see
SORT INTERNAL). The value of nnnn may be
a number between 1 and 8192 and K indicates
that the value is a multiple of 1024. If the
keyword is omitted, the default value specified
at installation time in M4PARAMS will be used.

REPTSIZE nnnnK Specifies the amount of storage available to the
report generation process in a single-step
application (see SORT INTERNAL or SORT
NONE). The value of nnnn may be a number
between 1 and 8192 and K indicates that the
value is a multiple of 1024. If the keyword is
omitted, the default value specified at
installation time in M4PARAMS will be used.

FREESIZE nnnnK Specifies the amount of storage to be reserved
for the database manager or external programs
during database operations. The value of nnnn
may be a number between 1 and 1024 and K
indicates that the value is a multiple of 1024. If
the keyword is omitted, a default value based
upon the total storage available to the
application will be reserved for database
manager functions.

DB2 subsystem-id plan-name

The presence of this keyword specifies that a
CALL ATTACH is to be used to connect to DB2
for this application. When this keyword is
present, two operands must be specified
following the keyword. The first operand of the
DB2 keyword specifies the DB2 subsystem
identifier and may be no more than 4 characters
in length. The second operand of the DB2
keyword specifies the plan name to be used to
connect to DB2 and may be up to 8 characters in
length. If this keyword is omitted, CALL
ATTACH will not be used to connect to DB2.
Either IMS or TSO attach will be used based
upon the following criteria:

1. IMS Attach will be used when the
application is running under the IMS
region controller

2. TSO Attach will be used in all other
circumstances
Run Control Command Group 3–15

CONTROL Command
SQLID authorizaton-id Specifies the DB2 authorization-id that is to be
used for this application execution. If omitted,
the authorization id will be obtained by DB2 via
the normal procedures (JCL, TSO, program
exits, etc.) This keyword may be required to
override the default authorization id in order to
allow access to restricted DB2 resources.

EXPLAIN query-number Specifies that DB2 is to insert performance
information into the
authorization-id.PLAN_TABLE for each
EXPLAINable DB2 statement within the
application using the query-number value as a
key. The query number is incremented by one
after each EXPLAINable DB2 statement. The
applicable DB2 statements may be provided by
the user via the SQL keyword on a FILE
command or derived automatically by
VISION:Builder from a relational database file
definition. If this keyword is omitted, no DB2
performance information is captured.

SYSDATE mmddyy Specifies that the mmddyy value is to be used as
the date to which the date flags will be
initialized and as the report date when
requested. The supplied value must be in the
same format specified for the TODAY flag in
M4PARAMS; e.g. if the TODAY flag format in
M4PARAMS is YYMMDD, then the SYSDATE
value must be specified in the same format.
When the year (yy) is specified as 00 through 89,
the century will be interpreted as 20. Otherwise,
the century will be interpreted as 19. If this
keyword is omitted, the current date obtained
from the operating system will be used. This
keyword is mutually exclusive with the
SYSDATE4 keyword.

SYSDATE4 yyyymmdd Specifies that the yyyymmdd value is to be used
as the date to which the date flags will be
initialized and as the report date when
requested. The supplied value must be
specified exactly as shown with a 4-digit year.
This keyword is mutually exclusive with the
SYSDATE keyword.
3–16 ASL Reference Guide

CONTROL Command
Examples
CONTROL DB2 D61A MYPLAN, ABEND, LISTGEN

Use the CALL ATTACH facility to connect to DB2, abend the job step if any errors
are detected, and list the source statements along with the fixed-syntax equivalent
statements for any ASL source statements.

CONTROL GETMAIN 6144K, SORT EXTERNAL, GRANDSUM, DECMSGS NO

Request allocation of 6144K as working storage for the application, do not invoke
the sort program internally (sorting will be performed in an external job-step),
produce grand summaries for every report containing summary specifications,
and suppress the decode-time information only and warning messages.

DECMSGS Specifies whether decode time
information-only and warning messages are to
be displayed or not. When the keyword is
followed by YES, the messages will be
displayed. When the keyword is followed by
NO, the messages will not be displayed. If the
DECMSGS keyword is omitted, the default
setting specified at installation time in
M4PARAMS will be used.

PROMSGS Specifies whether processing time
information-only and warning messages are to
be displayed or not. When the keyword is
followed by YES, the messages will be
displayed. When the keyword is followed by
NO, the messages will not be displayed. If the
PROMSGS keyword is omitted, the default
setting specified at installation time in
M4PARAMS will be used.

RPTMSGS Specifies whether report time information-only
and warning messages are to be displayed or
not. When the keyword is followed by YES, the
messages will be displayed. When the keyword
is followed by NO, the messages will not be
displayed. If the DECMSGS keyword is
omitted, the default setting specified at
installation time in M4PARAMS will be used.
Run Control Command Group 3–17

COPY Command
COPY Command

The COPY command may be included anywhere in the run control section. The
commands in the referenced file are copied into the source code input stream at the
point of the COPY command, and processed in an identical manner as if the
commands had been in-stream. If the FIXED keyword is specified on the COPY
command, the commands are assumed to be VISION:Builder fixed-syntax
statements and they are processed as such. Copied members from a COPY
without the FIXED keyword may in turn contain COPY commands. A COPY
command with the FIXED keyword prior to a PROC command or a ;;ENDASL
comment statement signals the end of the run control section of the application.
This means that no run control commands may appear following a COPY
command with the FIXED keyword. Typically, a COPY command with the FIXED
keyword would either include definitions from a Definition Library (created using
the Workbench for ISPF) or fixed-syntax statements for requests.

Examples
COPY COPYLIB(PROCXYZ)

Copy the statements in member PROCXYZ in the dataset associated with DD
name COPYLIB into the input stream as ASL statements.

COPY FILEA

Copy the statements in the dataset associated with DD name FILEA into the input
stream as ASL statements.

COPY DEFLIB(MYDEF) FIXED

Copy the statements in member MYDEF associated with DD name DEFLIB into
the input stream as fixed-syntax statements. This form of the COPY command is
an easy way to insert definitions prepared with VISION:Workbench for ISPF into
the input stream for cataloging.

COPY [DDNAME] ddname[(member-name)],

[FIXED]
3–18 ASL Reference Guide

DEBUG Command
DEBUG Command

The DEBUG command is used to specify special controls and debugging output
that may be useful for debugging complex applications.

DEBUG [CLEAR],

[DUMP],
[LONGNAMES],
[TRACE COMPCODE + IMSCALLA + MAPPING + SQLCALL]

CLEAR Specifies that any processor storage that is acquired
should be cleared (set to binary zeros) before it is used.

DUMP Specifies that if an application abend is forced by
VISION:Builder (see the CONTROL command ABEND
keyword), the dump option should be specified on the
abend control.

LONGNAMES Specifies that a cross-reference of short field names to long
field names should be output with the program listing.
This may be useful for debugging when diagnostic output
refers only to the short field name.

TRACE option … Specifies one or tracing options for the application. The
valid options are:

■ COMPCODE -- Specifies that the code compiled for
an application be included in the program listing. This
information will not be very meaningful for users but
may assist CA support personnel in problem
diagnosis.

■ IMSCALLA -- Specifies that DL/I calls for IMS
databases are to be traced. This option should only be
used in controlled debugging situations in order to
avoid large amounts of output and excessive
processing overhead.

■ MAPPING -- Specifies that calls to the Generalized
Database Interface functions are to be traced. This
option should only be used in controlled debugging
situations in order to avoid large amounts of output
and excessive processing overhead.

■ SQLCALL -- Specifies that calls related to any DB2
databases are to be traced. This option should only
used in controlled debugging situations in order to
avoid large amounts of output and excessive
processing overhead.
Run Control Command Group 3–19

DEBUG Command
Examples
DEBUG DUMP, TRACE IMSCALLA

Include the dump option on any abend and trace all DL/I calls.

DEBUG TRACE COMPCODE SQLCALL

Output a listing of the compiled code and trace all SQL statement calls.
3–20 ASL Reference Guide

DOCUMENT Command
DOCUMENT Command

The DOCUMENT command is an optional command used to generate additional
listing information to enhance program documentation and assist in debugging
your VISION:Builder programs. Refer to the VISION:Builder Reference Guide for
a complete description of the Program Analyzer (PAL) facility.

Examples
DOCUMENT CONVMSGS, EXECTRACE, MAXLINES 5000

Produce additional application documentation in the form of numeric conversion
details and an execution trace report. Limit the execution trace report to 5000 lines.

DOCUMENT [CONVMSGS],

 [XREF],
[EXECTRACE],
[MAXLINES number]

CONVMSGS Output messages detailing the numeric conversions that
are required to perform the program operations.

XREF Extract data from which cross-reference reports may be
created. The M4PAOUT file will be used to collect the
cross-reference data and the reports must be generated
in a subsequent process.

EXECTRACE Extract data for the execution trace reports. The reports
contain information on standard flag settings and GDBI
mapping request events. The M4PAOUT file will be
used to collect the cross-reference data and the reports
must be generated in a subsequent process.

MAXLINES number Specifies the maximum number of lines of execution
trace report data to produce. If the number is appended
with a K, then the number is assumed to be a multiple of
1024.
Run Control Command Group 3–21

FILE AUDIT Command
FILE AUDIT Command

The FILE AUDIT command is used to specify that an audit file (M4AUDIT) be
created containing all records deleted from the master file. When this command is
omitted, no audit file is created.

Examples
FILE AUDIT

An audit file containing all records deleted from the master file is to be created by
this application.

FILE AUDIT [DDNAME ddname]

DDNAME ddname Specifies the DD name to be used for this file. If omitted,
a DD name of M4AUDIT will be used.
3–22 ASL Reference Guide

FILE CORDn Command
FILE CORDn Command

The FILE CORDn command is used to specify that the corresponding file is used
as a coordinated file within the application or as an external array. Up to 9 FILE
CORDn commands may be specified where n is a number from 1 through 9. This
number becomes the qualifier for referencing fields within the file and is mutually
exclusive with any qualifiers designated with the ARRAY command.

Coordinated files in VISION:Builder are secondary input files that may be
accessed either sequentially, directly by key, or a combination thereof.
Sequentially accessed coordinated files are usually synchronized with the master
file but may also be synchronized with other coordinated files. A coordinated file
accessed directly by key, also referred to as an indexed coordinated file (ICF), uses
a field outside of the file to determine which records in the coordinated file to
access. Additionally, a CORDn file may be specified as a "user read" file in which
case all access is controlled procedurally by the DO FORALL command or FIND
function. See Chapter 4, Procedural Command Group.

FILE CORDn {[NAME] definition-name | SQL "sql-select-statement"},

[MOSAIC],
[CHKORDER],
[ARRAY],
[{SEGMENT segment-name WHERE "sql-where-clause" … |
SEGMENT segment-name SSA "pre-selection-ssa" … }],

[{PASSWORD password | AUTHID authorization-id}],
[IOPLUGIN module-name],
[DDNAME ddname]

Additional keywords for Indexed Direct Coordination (ICF):

[DIRECT BY q.fldname]

Additional keywords for Standard Coordination:

[STANDARD],
[{ALLRECS | MATCHONLY}],
[KEYNAME field-name ...]

Additional keywords for Chained Coordination:

[CHAIN TO qualifier],
[KEYNAME field-name ...]

Additional keywords for User Read files:

[USERREAD],
[GENERIC field-name]
Run Control Command Group 3–23

FILE CORDn Command
NAME Specifies the name of the file definition related
to this coordinated file. The file definition must
have either been previously cataloged in the
common library or included in-stream with a
COPY command. This keyword is mutually
exclusive with the SQL keyword.

SQL "sql-select-statement" Specifies a DB2 SELECT statement to be used to
access the DB2 table rows. The SELECT
statement text must be enclosed within
quotation marks (") and may consist of multiple
segments continued over a number of lines,
each enclosed with quotation marks ("). Any
valid DB2 SELECT statement may be specified.
A file definition will be automatically derived
from the SELECT statement and a glossary for
the file definition will be displayed unless
suppressed by the LISTCNTL INGLOSS NO
command. The DB2 column names become the
long field names in the file definition and these
long names should be used in other ASL
statements to reference the individual columns
(fields). This keyword is mutually exclusive
with the NAME keyword.
3–24 ASL Reference Guide

FILE CORDn Command
MOSAIC Specifies that memory optimized processing is
to be employed while accessing this file.
Memory optimized processing is only
meaningful for hierarchically structured
databases such as IMS or when a collection of
DB2 tables is defined to VISION:Builder as a
hierarchical structure. The specification means
that, at most, only one occurrence of each
segment type in the hierarchy is retained in
processor storage at any one time. When this
keyword is omitted, all occurrences of each
segment type subordinate to a given root
segment will be retrieved and retained in
processor storage for the duration of the
processing cycle for the record. When the
MOSAIC optimization is used, care should be
taken in the program logic so that the hierarchic
structure is traversed in a logical fashion.
Otherwise, a particular occurrence of a
segment may be retrieved multiple times
increasing the application processing time.
Although the purpose of this keyword is to
specify a tradeoff of database access calls in
favor of reduced memory requirements,
judicious use of this feature along with careful
coding techniques may result in optimizing
both processor storage and database access
calls. The procedural FIND FIRST and FIND
LAST functions may only be used with IMS
databases when this keyword is present.

CHKORDER Specifies that the order of incoming segments is
to be checked according to the segment key
specifications in the associated file definition.
This specification is ignored if the MOSAIC
keyword is present.

ARRAY Specifies that this file is an external array and
that the definition identified via the NAME
keyword is an Array Definition rather than a
File Definition.

SEGMENT segment-name Specifies the segment name in the file
definition to which the following WHERE or
SSA keywords are to be associated. The
SEGMENT plus WHERE or SEGMENT plus
SSA keywords must always be specified in
pairs. The SEGMENT keyword is mutually
exclusive with the SQL keyword.
Run Control Command Group 3–25

FILE CORDn Command
WHERE "sql-where-clause" Specifies additional DB2 SELECT statement
qualification that is to be appended to any
qualification that is automatically generated by
VISION:Builder based upon the file definition
and file usage controls. The qualification is
expressed as a logical expression consistent
with the DB2 WHERE clause syntax. The
expression may consist of multiple text
segments enclosed in quotation marks (") each
continued over multiple lines. A SEGMENT
keyword must precede this keyword, and the
WHERE keyword is mutually exclusive with
the SQL keyword.

Multiple SEGMENT/WHERE keyword pairs
may be specified -- one set for each segment
defined in the file definition.

SSA "pre-selection-ssa" Specifies a DL/I SSA expression that qualifies
the retrieval of segment occurrences. The
qualification is expressed as a logical
expression consistent with the rules for coding
DL/I SSA expressions. The expression may
consist of multiple text segments enclosed in
quotation marks (") each continued over
multiple lines. A SEGMENT keyword must
precede this keyword, and the SSA keyword is
mutually exclusive with the SQL keyword.

Multiple SEGMENT/SSA keyword pairs may
be specified -- one set for each segment defined
in the file definition.

PASSWORD password Specifies the password for password protected
VSAM files. If no password is required, this
keyword should be omitted.

AUTHID authorization-id Specifies the DB2 creator id/authorization id
for the table when the id is not specified in the
file definition. If the coordinated file is not a
DB2 database, this keyword should be omitted.

IOPLUGIN module-name Specifies the module name that should be
called in place of the standard VISION:Builder
module to perform the I/O functions related to
this file.
3–26 ASL Reference Guide

FILE CORDn Command
DDNAME ddname Specifies the DD name to be used for this file.
This keyword is ignored if the file is associated
with a DB2 or IMS database or the IOPLUGIN
keyword is present. If this keyword is omitted
for files that are not a DB2 or IMS database, the
DD name of M4CORDn is used where n is the
number that corresponds to n in CORDn.

Additional keywords for Indexed Direct (ICF) coordination:

DIRECT BY q.fldname Specifies the name of the field that controls
which records are accessed from the file.

■ The field can be in any other file, temporary
field, working storage field, or linkage
section field.

■ If the field properties are different from the
properties defined for the key field in this
file, the field is converted to the properties
of the defined key field.

■ An illegal conversion is treated as a "record
missing" or uncoordinated condition.

■ If the SQL keyword is used to specify the
DB2 SELECT statement, the SELECT
statement must include an appropriate
SELECT statement WHERE clause that
qualifies the selected rows from the DB2
table in accordance with the coordinating
field. Typically this would result in the use
of the coordinating field as a host variable in
the SELECT statement WHERE clause.

■ If this file is defined as a relational file
whose root segment contains a key that
spans multiple columns, this field must be a
character type field and contain sub-fields
that correspond to the individual columns
that constitute the key. A WHERE keyword
must be specified that uses host variables
that qualify the DB2 SELECT for each
column. See the VISION:Builder Reference
Guide for more information.
Run Control Command Group 3–27

FILE CORDn Command
Additional keywords for standard coordination:

STANDARD Specifies that this file is accessed sequentially
and coordinated in the standard fashion. That
is, the keys of the coordinated file are matched
against the keys of the master file and the file
movement is synchronized accordingly. The
master file must also be accessed sequentially
when this keyword is specified. Standard
coordination is the default when DIRECT,
CHAIN, or USERREAD is not specified.

ALLRECS Specifies that all records in this sequentially
coordinated file are to be made available to the
application, not just the ones whose keys
match. The ECORD flag may be used to
determine the match status of each record.

MATCHONLY Specifies that only records whose key(s) match
the master file are to be made available to the
application. This is the default if neither
ALLRECS nor MATCHONLY is specified.

KEYNAME field-name … Specifies the name(s) of the fields to be used as
key fields whose values will be matched
against the key fields of the master file to
determine the coordination state. Up to 3 fields
may be specified. If this keyword is omitted
but the NAME keyword is present, the key
fields defined in the file definition will be used
as the match fields. If this keyword is omitted
but the SQL keyword is present, the first
eligible column in the DB2 SELECT statement
will become the only key field. Columns that
are not eligible to become key fields are
VARCHAR or GRAPHIC type columns, or
CHAR type columns longer than 255
characters.

Additional keywords for chained coordination:

CHAIN TO qualifier Specifies the qualifier (M or 1 through 9) of the
file to which this file’s movements are to be
synchronized. If qualifier is M, the file
movement is synchronized with the master file
movement. If qualifier is 1-9, the file
movement is synchronized with the
corresponding CORDn file. All files in the
"chain" sequence must be accessed
sequentially. This specification may be used to
simulate a hierarchy with a group of files.
3–28 ASL Reference Guide

FILE CORDn Command
Examples
FILE CORD1 NAME DEFX

Coordinated file M4CORD1 is a standard sequentially coordinated file in this
application, and its file definition name is DEFX.

FILE CORD2 NAME DEFY DIRECT BY T.TEMP1

Coordinated file M4CORD2 is an indexed coordinated file (ICF) in this application,
field T.TEMP1 is the coordinating field, and DEFY is the file definition name.

FILE CORD3 KEYNAME WORKDEPT,
SQL "SELECT EMPNO, WORKDEPT, FIRSTNME, MIDINIT, LASTNAME, ",

"BIRTHDATE, SALARY FROM DSN8610.EMP ",
"ORDER BY WORKDEPT"

Coordinated file M4CORD3 is a DB2 database that is accessed sequentially for
standard coordination using the specified DB2 SELECT statement and whose key
field is WORKDEPT.

FILE CORD4 ARRAY NAME ARRAY9

Coordinated file M4CORD4 is an external array, and its array definition name is
ARRAY9.

KEYNAME field-name … Specifies the name(s) of the fields to be used as
coordinated file key fields whose values will be
matched against the key fields of the master file
to determine the coordination state. Up to 3
fields may be specified. If this keyword is
omitted, the key fields defined in the file
definition will be used as the match fields.

Additional keywords for "user read" files:

USERREAD Specifies that this file’s movement will be
controlled procedurally via the DO FORALL
command or FIND function. See Chapter 4,
Procedural Command Group

GENERIC field-name Specifies the name of the field that is a subset of
the full key field defined for this file. The field
must begin at the same position in the record as
the full key field does but this field's length
may be less than or equal to the full key field
length. This specification in combination with
the FIND command may be used to limit access
to a range of records whose partial keys match
a specific value.
Run Control Command Group 3–29

FILE CORDn Command
FILE CORD5 DIRECT BY WORKDEPT,
SQL "SELECT DEPTNO, DEPTNAME FROM DSN8610.DEPT ",

"WHERE DEPTNO = :WORKDEPT"

Coordinated file M4CORD5 is a DB2 table that is accessed directly, and the
coordinating field is the master file field WORKDEPT.

FILE CORD6 USER_READ, GENERIC WORKDEPT,
SQL "SELECT WORKDEPT, EMPNO, FIRSTNME, MIDINIT, LASTNAME ",

"FROM DSN8610.EMP ",
"WHERE WORKDEPT = :O.DEPTNO"

Coordinated file M4CORD6 is a user read coordinated file using a DB2 table, and
WORKDEPT is used as the generic key in the table.
3–30 ASL Reference Guide

FILE MASTER Command
FILE MASTER Command
There are three variations of the FILE MASTER command; one each for file
input/update, file output, or file in memory only.

Variation for input/update:

Variation for output:

Variation for in-memory only:

At least one FILE MASTER command must be present in every application that
performs any file processing functions. The following rules apply to the use of the
FILE MASTER command:

■ Both FILE MASTER INPUT and FILE MASTER OUTPUT may be present in the
same application.

■ FILE MASTER OUTPUT is not allowed when FILE MASTER UPDATE is
present.

■ FILE MASTER DUMMY is not allowed when any other FILE MASTER
commands are present.

■ When FILE MASTER DUMMY is present, FILE TRAN must also be present.

FILE MASTER {INPUT | UPDATE},

{[NAME] definition-name | SQL "sql-select-statement"},
[ACCESS {SEQUENTIAL | DIRECT | PHYSICAL}],
[KEYS {UNIQUE | EQUAL | NONE}],
[STARTKEY 'key-value'],
[ENDKEY 'key-value'],
[KEYNAME field-name ...],
[MOSAIC],
[CHKORDER],
[ONEBUFFER],
[{SEGMENT segment-name WHERE "sql-where-clause" … |
SEGMENT segment-name SSA "pre-selection-ssa" … }],

[{PASSWORD password | AUTHID authorization-id}],
[IOPLUGIN module-name],
[DDNAME ddname]

FILE MASTER OUTPUT,

[NAME] definition-name,
[{PASSWORD password | AUTHID authorization-id}],
[IOPLUGIN module-name],
[DDNAME ddname]

FILE MASTER DUMMY,

[NAME] definition-name
Run Control Command Group 3–31

FILE MASTER Command
INPUT Specifies that an input (old) master file is
present in this application.

UPDATE Specifies that an input master file with
update-in-place processing is present in this
application.

OUTPUT Specifies that an output (new) master file is
present in this application.

DUMMY Specifies that there is no external master file for
this application, only an in-memory buffer in
which logical records are constructed from
transaction file data.

NAME Specifies the name of the file definition related
to the master file. The file definition must have
either been previously cataloged in the
common library or included in-stream with a
COPY command. This keyword must be
omitted if the SQL keyword is present.

SQL "sql-select-statement" Specifies a DB2 SELECT statement to be used to
access the DB2 table rows. The SELECT
statement text must be enclosed within
quotation marks (") and may consist of multiple
segments continued over a number of lines,
each enclosed with quotation marks ("). Any
valid DB2 SELECT statement may be specified.
A file definition will be automatically derived
from the SELECT statement and a glossary for
the file definition will be displayed unless
suppressed by the LISTCNTL INGLOSS NO
command. The DB2 column names become the
long field names in the file definition and these
long names should be used in other ASL
statements to reference the individual columns
(fields).
3–32 ASL Reference Guide

FILE MASTER Command
ACCESS access-type Specifies how the master file will be accessed.

■ SEQUENTIAL -- Specifies that the file will
be accessed sequentially. For key
sequenced VSAM files, this means that the
file will be accessed in ascending sequence
by key. This is the default if the ACCESS
keyword is omitted.

■ DIRECT -- Specifies that the file will be
accessed directly by key.

■ PHYSICAL -- Specifies that the file will be
accessed in physical sequential order. For
key sequenced VSAM files, this mean that
the order of records received may not be in
ascending sequence by key.

KEYS key-control Specifies how the master file record keys are to
be checked.

KEYS EQUAL or KEYS UNIQUE is not
allowed when ACCESS PHYSICAL is
specified.

■ UNIQUE -- Specifies that the master file
record keys are unique and in ascending
sequence. This is the default if the KEYS
keyword is omitted and ACCESS
PHYSICAL is not specified.

■ EQUAL -- Specifies that the master file
may contain records with duplicate keys
but that otherwise the keys will be in
ascending sequence.

■ NONE -- Specifies that the master file
records do not have any verifiable sequence
and that no key sequence should be
expected or checking performed. This
specification is assumed for an IMS HDAM
file that is accessed sequentially. If this
specification is present, the FILE TRAN
command is not permitted.
Run Control Command Group 3–33

FILE MASTER Command
STARTKEY 'key-value' Specifies that access to the master file should be
limited to only those records whose key value
is equal to or greater than the specified value.
Conversely, this keyword specifies that all
records whose key value is less than the
specified value will be skipped. The key value
may not be more than 16 characters in length
and will be converted to the properties of the
defined key field. This keyword must be
omitted if KEYS NONE is specified.

ENDKEY 'key-value' Specifies that access to the master file should be
limited to only those records whose key value
is less than or equal to the specified value.
Conversely, this keyword specifies that all
records whose key value is greater than the
specified value will be skipped. The key value
may not be more than 16 characters in length
and will be converted to the properties of the
defined key field. This keyword must be
omitted if KEYS NONE is specified.

KEYNAME field-name … Specifies the name(s) of the fields to be used as
master file key fields for this application. Up to
3 field names may be specified. If this keyword
is omitted, the key fields defined in the file
definition will be used.
3–34 ASL Reference Guide

FILE MASTER Command
MOSAIC Specifies that memory optimized processing is
to be employed while accessing this file.
Memory optimized processing is only
meaningful for hierarchically structured files
and means that, at most, only one occurrence of
each segment type in the hierarchy is retained
in processor storage at any one time. When this
keyword is omitted, all occurrences of each
segment type subordinate to a given root
segment will be retrieved and retained in
processor storage for the duration of the
processing cycle for the record. When the
MOSAIC optimization is used, care should be
taken in the program logic so that the hierarchic
structure is traversed in a logical fashion.
Otherwise, a particular occurrence of a
segment may be retrieved multiple times
increasing the application processing time.
Although the purpose of this keyword is to
specify a tradeoff of database access calls in
favor of reduced memory requirements,
judicious use of this feature along with careful
coding techniques may result in optimizing
both processor storage and database access
calls.

The following rules apply to the use of this
keyword:

■ No distinction is made among the master
file qualifiers (blank, N, or O) when this
keyword is present. Only one copy of the
segment is used for both the old and new
master logical records.

■ The procedural FIND FIRST and FIND
LAST functions may only be used with
DL/I files when this keyword is present.

■ This keyword is required when FILE
MASTER UPDATE is specified and the
logical file contains more than one DB2
table.

CHKORDER Specifies that the order of incoming segments is
to be checked according to the segment key
specifications in the associated file definition.
This specification is ignored if the MOSAIC
keyword is present.
Run Control Command Group 3–35

FILE MASTER Command
ONEBUFFER Specifies that only a single buffer should be
allocated for the master file record. Ordinarily,
two buffers are allocated - one for the old
master record and one for the new master
record. This keyword is not permitted when
the FILE TRAN or FILE MASTER UPDATE
commands are present.

SEGMENT segment-name Specifies the segment name in the file
definition to which the following WHERE or
SSA keywords are to be associated. The
SEGMENT plus WHERE or SEGMENT plus
SSA keywords must always be specified in
pairs. The SEGMENT keyword is mutually
exclusive with the SQL keyword.

WHERE "sql-where-clause" Specifies additional DB2 SELECT statement
qualification that is to be appended to any
qualification that is automatically generated by
VISION:Builder based upon the file definition
and file usage controls. The qualification is
expressed as a logical expression consistent
with the DB2 WHERE clause syntax. The
expression may consist of multiple text
segments enclosed in quotation marks (") each
continued over multiple lines. A SEGMENT
keyword must precede this keyword, and the
WHERE keyword is mutually exclusive with
the SQL keyword.

Multiple SEGMENT/WHERE keyword pairs
may be specified -- one set for each segment
defined in the file definition.

SSA "pre-selection-ssa" Specifies a DL/I SSA expression that qualifies
the retrieval of segment occurrences. The
qualification is expressed as a logical
expression consistent with the rules for coding
DL/I SSA expressions. The expression may
consist of multiple text segments enclosed in
quotation marks (") each continued over
multiple lines. A SEGMENT keyword must
precede this keyword, and the SSA keyword is
mutually exclusive with the SQL keyword.

Multiple SEGMENT/SSA keyword pairs may
be specified -- one set for each segment defined
in the file definition.
3–36 ASL Reference Guide

FILE MASTER Command
Examples
FILE MASTER INPUT, NAME DEF1

The master file is a sequentially accessed master file whose file definition name is
DEF1.

FILE MASTER INPUT, KEYNAME BIRTHDATE, KEYS EQUAL,
SQL "SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, ",

"BIRTHDATE, SALARY FROM DSN8610.EMP ",
"ORDER BY BIRTHDATE"

This master file is a DB2 table, column name BIRTHDATE is to be used as the key,
and equal keys are accepted.

FILE MASTER INPUT,
SQL "SELECT X.NAME, Y.NAME, CREATOR ",
"FROM SYSIBM.SYSCOLUMNS X, SYSIBM.SYSTABLES Y ",
"WHERE X.TBNAME = Y.NAME AND CREATOR = 'REDJO04'"

This master file contains data that is the result of a join of two DB2 tables.

PASSWORD password Specifies the password for password protected
VSAM files. If no password is required, this
keyword should be omitted. PASSWORD is
mutually exclusive with AUTHID.

AUTHID authorization-id Specifies the DB2 creator id/authorization id
for the table when the id is not specified in the
file definition. If the master file is not a DB2
database, this keyword should be omitted.
AUTHID is mutually exclusive with
PASSWORD.

IOPLUGIN module-name Specifies the module name that should be
called in place of the standard VISION:Builder
module to perform the I/O functions related to
this file.

DDNAME ddname Specifies the DD name to be used for this file.
This keyword is ignored if the file is associated
with a DB2 or IMS database or the IOPLUGIN
keyword is present. If this keyword is omitted
for files that are not a DB2 or IMS database, the
DD name of M4OLD is used for FILE INPUT or
FILE UPDATE and the DD name M4NEW is
used for FILE OUTPUT.
Run Control Command Group 3–37

FILE MASTER Command
FILE MASTER INPUT,
SQL "SELECT WORKDEPT, SUM(SALARY) AS TOTAL_SALARY",

"FROM DSN8610.EMP",
"GROUP BY WORKDEPT ORDER BY WORKDEPT"

This FILE MASTER command specifies the DB2 built-in function of SUM for the
SALARY column and names the column as TOTAL_SALARY. Each row received
for this SELECT will contain a department code and the total salaries for all
employees in that department. The name TOTAL_SALARY must be used as the
name of the column when it is referenced in other ASL statements.

FILE MASTER INPUT, NAME TEMPL, KEYS NONE, SEGMENT TEMPL,
WHERE "SALARY = (SELECT MAX(SALARY) FROM DSN8610.EMP",

"WHERE WORKDEPT = X1.WORKDEPT)",
"ORDER BY SALARY DESC"

This FILE MASTER command specifies a WHERE condition for the DB2 table
whose segment name is TEMPL as defined in file definition TEMPL. The DB2 table
rows will be sorted by SALARY in descending order.

FILE MASTER INPUT, NAME EMPXFD,
SEGMENT EMPLOYEE SSA "O.EMPSTAT EQ 'A'",
SEGMENT HISTORY SSA "O.SALARY GT 30000 AND",

"O.SALARY LT 50000"

This FILE MASTER command is for an IMS database whose file definition name is
EMPXFD. Additionally, SSA qualifications are specified for segment names
EMPLOYEE and HISTORY in the IMS database.

FILE MASTER UPDATE, ACCESS DIRECT, MOSAIC, NAME EMPXFD

This FILE MASTER command specifies that the master file is to be updated in
place, accessed directly using the transaction file (only master file records whose
key matches the transaction file records will be accessed), use MOSAIC
optimization, and whose file definition name is EMPXFD.

FILE MASTER INPUT, NAME ALL80, IOPLUGIN M4PDSIN

This FILE MASTER command specifies that the I/O plugin module M4PDSIN is
to be used to read the file defined by file definition ALL80. This module M4PDSIN
in this example is shipped with VISION:Builder and reads all of the records for
each member of a partitioned data set in order by member name. See the
VISION:Builder Reference Guide for more information about this plugin module.
3–38 ASL Reference Guide

FILE REJECT Command
FILE REJECT Command

The FILE REJECT command is used to specify that a rejected transaction file
(M4REJCT) be created containing all rejected transaction records. When this
command is omitted, no rejected transaction file is created.

Examples
FILE REJECT

A file containing all reject transaction records is to be created by this application.

FILE REJECT [DDNAME ddname]

DDNAME ddname Specifies the DD name for this file. If the keyword is
omitted, a DD name of M4REJCT will be used.
Run Control Command Group 3–39

FILE REPn Command
FILE REPn Command

The FILE REPn command is used to specify that alternate report files will be
created in this application. Up to 8 FILE REPn commands may be present where
n may be a number from 2 through 9.

Examples
FILE REP2 CUSTDATA

Alternate file M4REP2 is available, and its name is CUSTDATA.

FILE REPn [NAME] report-file-name,

[DDNAME name]

NAME report-file-name Specifies a name to be assigned to this alternate
report file. The FILE keyword on the procedural
REPORT command refers to this name and
specifies that the report data is to be written to this
file. Alternate report files may be used to collect
report data that will be processed at a later time or
to reduce the size of files to be sorted had all of the
report data been collected on the primary report
file.

DDNAME ddname Specifies the DD name for this file. If omitted, the
DD name M4REPn will be used where n
corresponds to the n in REPn.
3–40 ASL Reference Guide

FILE REPORT Command
FILE REPORT Command

The FILE REPORT command is used to specify that a primary report file is present
in this application. If a FILE MASTER command is present, then the primary
report file will be created in this application and will contain all report data not
directed to an alternate report file. If a FILE MASTER command is not present in
this application, then the primary report file will be an input file containing the
report data to be processed in this report-processing step of a 3-step application.

Examples
FILE REPORT

If a FILE MASTER command is also present, this command specifies that the
primary report file is available to receive selected report data. If no FILE MASTER
command is present, this command specifies that this is a report generation run.

FILE REPORT [DDNAME ddname]

DDNAME ddname Specifies the DD name to be used for the file. If this
keyword is omitted, a DD name of M4REPO will be used
for processing runs and M4REPI will be used for report
generation runs.
Run Control Command Group 3–41

FILE SUBFn Command
FILE SUBFn Command

The FILE SUBFn command is used to specify the presence of a subfile in this
application. Subfiles are files that contain extracted data. The procedural
EXTRACT FILE command is used to output data to a subfile defined via the FILE
SUBFn command. Up to 10 subfiles may be specified, and the n in SUBFn may be
a number from 0 to 9.

FILE SUBFn [NAME] subfile-name,

[TABLE "authid.tablename" {CREATE | DELETE | INSERT | DROP}],
[TABLESPACE tablespace-name],
[DATABASE database-name],
[DELETESEGS],
[AUTODEF],
[{PASSWORD password],
[IOPLUGIN module-name],
[DDNAME ddname]

NAME subfile-name Specifies a name that is to be assigned to this
subfile. This name will correspond to the
subfile name on the EXTRACT FILE
command.

TABLE "authid.tablename" Specifies the authorization id and table name
when the subfile data is to be output as rows
in a DB2 table. If authorization id is present,
the entire string must be enclosed in quotes
(").

CREATE Specifies that a new DB2 table is to be created
and new rows inserted into this table.

DELETE Specifies that all rows in the existing DB2
table are to be deleted before any new rows
are inserted.

INSERT Specifies that new rows are to be inserted into
the existing DB2 table. Previously inserted
rows are left as is.

DROP Specifies that an existing DB2 table definition
for this table is to be dropped, a new table
created and new rows inserted into the table.
If the existing table could not be found, a new
table is still created.

TABLESPACE tablespace-name Specifies the name of the tablespace into
which the new table is to be created for the
CREATE and DROP keywords.
3–42 ASL Reference Guide

FILE SUBFn Command
DATABASE database-name Specifies the database name for the new table
created for the CREATE and DROP
commands.

DELETESEGS

DELSEGS

Specifies that before the subfile record is
written out, any segments marked for
deletion will be removed from the record.
This specification is only valid if the
corresponding EXTRACT FILE command for
this subfile includes an ENTIRE N
specification (output entire new master
record).

AUTODEF Specifies that this subfile will not be used to
contain extracted data records but will instead
be reserved to receive file definition
statements corresponding to EXTRACT
commands for which the AUTODEF keyword
is present. Only one FILE SUBFn command
may contain this keyword.

PASSWORD password Specifies the password for password
protected VSAM files. If no password is
required, this keyword should be omitted.

IOPLUGIN module-name Specifies the module name that should be
called in place of the standard
VISION:Builder module to perform the I/O
functions related to this file.

DDNAME ddname Specifies the DD name to be used for this file.
This keyword is ignored if the file is
associated with a DB2 or IMS database or the
IOPLUGIN keyword is present. If this
keyword is omitted for files that are not a DB2
or IMS database, the DD name of M4SUBFn is
used where n corresponds to the n in SUBFn.
Run Control Command Group 3–43

FILE SUBFn Command
Examples
FILE SUBF1, NAME OUT1

Subfile output file number 1 is used in this application and assigned the name of
OUT1.

FILE SUBF2, NAME TABLE1, CREATE, TABLE "MYID.MYTABLE",
TABLESPACE MYSPACE

Subfile output file number 2 is used in this application, a new DB2 table is created
to receive the output, the table name is MYID.MYTABLE, and the table resides in
tablespace MYSPACE.

FILE SUBF0, AUTODEF

Subfile output file number 0 is assigned to receive the file definition statements for
any procedural EXTRACT statements that include the AUTODEF keyword.
3–44 ASL Reference Guide

FILE TRAN Command
FILE TRAN Command

The FILE TRAN command specifies that a transaction file is present in this
application.

FILE TRAN [[NAME] definition-name],

[GROUPS group-name ...],
[CHKORDER],
[PASSWORD password],
[IOPLUGIN module-name],
[DDNAME ddname]

NAME definition-name Specifies the name of the file definition name that
defines the data field in the transaction file. This
keyword is optional and is only required when
procedural PROC TYPE TYPEn commands are
present that examine or modify fields within the
transaction record.

GROUPS group-name … Specifies one or more transaction group
definition names that are to be included in this
application. Transaction groups define the
actions to be performed against the master file for
each transaction record type. The names must
match the transaction group names specified for
the master file used in this application. If this
keyword is omitted, all transaction groups
defined for the master file will be included.

CHKORDER Specifies that the order of incoming segments is
to be checked according to the segment key
specifications in the associated file definition.

PASSWORD password Specifies the password for password protected
VSAM files. If no password is required, this
keyword should be omitted.

IOPLUGIN module-name Specifies the module name that should be called
in place of the standard VISION:Builder module
to perform the I/O functions related to this file.

DDNAME ddname Specifies the DD name to be used for this file. If
this keyword is omitted, a DD name of M4TRAN
will be used.
Run Control Command Group 3–45

FILE TRAN Command
Examples
FILE TRAN

A transaction file is used by this application, and all transaction group definitions
that have been defined for the corresponding master file will be used.

FILE TRAN, NAME TRANDEF1, GROUPS GROUPA GROUPB

A transaction file is used by this application, the file definition named TRANDEF1
defines the transaction file fields, and only transaction group definitions named
GROUPA and GROUPB for master file TRANDEF1 will be used.
3–46 ASL Reference Guide

LINKAGE Command
LINKAGE Command

The LINKAGE command is used to specify the presence and position of parameter
data passed to the application. The qualifier V is used to reference data in linkage
sections.

Examples
LINKAGE AREA 1, NAME LINKDEF1

A linkage section for parameter 1 is defined, and the file definition name for the
area is LINKDEF1.

LINKAGE AREA 4, NAME PCB4

If the IMS region controller invoked this application, this linkage section would
refer to the fourth PCB in the parameter list.

LINKAGE [AREA] number,

NAME definition-name

AREA number Specifies the position of this particular linkage
section. The area number may be a number from 1
to 99 where 1 represents the first parameter area
passed to the application, 2 the second, and so on.

NAME definition-name Specifies the name of the file definition that defines
the detail fields within the parameter area. When
multiple linkage sections are defined, the field
names within all linkage section definitions must be
unique.
Run Control Command Group 3–47

LISTCNTL Command
LISTCNTL Command

The LISTCNTL command is used to control the program listing output or direct
the default report output to M4LIST1.

LISTCNTL [ALTLIST {YES | NO}],

[FILESUM {YES | NO}],
[INDEF {YES | NO}],
[INGLOSS {YES | NO}],
[INREQ {YES | NO}],
[CATREQ {YES | NO}],
[MAPREQ {YES | NO}],
[SQLSTAT {YES | NO}],
[MOSAICSTAT {YES | NO}]

ALTLIST Specifies whether the default destination for report output is
M4LIST or M4LIST1. Program listing lines will always be
directed to M4LIST and report phase output will also be
directed to M4LIST if the LISTCNTL command is omitted
entirely or the ALTLIST keyword is omitted from the
LISTCNTL command. When ALTLIST YES is specified,
report phase output will be directed to M4LIST1 unless the
reporting FORMAT command METHOD keyword is used to
override this specification for an individual report.

FILESUM Specifies whether the file summary section of the program
listing is to be suppressed or not. The file summary section
will be output unless FILESUM NO is specified. FILESUM
YES will be ignored if the CONTROL command NOLIST
keyword is specified.

INDEF Specifies whether any in-stream file definition statements are
to be listed in the program listing or not. In-stream file
definition statements will be listed unless INDEF NO is
specified. INDEF YES will be ignored if the CONTROL
command NOLIST or NOSOURCE keywords are specified.

INGLOSS Specifies whether any glossaries for in-stream definitions are
to be listed in the program listing or not. Glossaries for
in-stream file definitions will be listed unless INGLOSS NO
is specified. INGLOSS YES will be ignored if the CONTROL
command NOLIST keyword is specified.

INREQ Specifies whether any input-stream request statements are to
be listed in the program listing or not. Input-stream request
statements will be listed unless INREQ NO is specified.
INREQ YES will be ignored if the CONTROL command
NOLIST or NOSOURCE keywords are specified.
3–48 ASL Reference Guide

LISTCNTL Command
Examples
LISTCNTL SQLSTAT NO, MOSAICSTAT, NO

The SQL statistics section and the MOSAIC statistics section of the program listing
will be suppressed.

CATREQ Specifies whether any cataloged request statements are to be
listed in the program listing or not. Cataloged request
statements will be listed unless CATREQ NO is specified.
CATREQ YES will be ignored if the CONTROL command
NOLIST or NOSOURCE keywords are specified.

MAPREQ Specifies whether any mapping request statements are to be
listed in the program listing or not. Mapping request
statements will not be listed unless MAPREQ YES is
specified. MAPREQ YES will be ignored if the CONTROL
command NOTLIST or NOSOURCE keywords are specified.

SQLSTAT Specifies whether the SQL statistics section of the program
listing is to be suppressed or not. The SQL statistics section
will be output unless SQLSTAT NO is specified. SQLSTAT
YES will be ignored if the CONTROL command NOTLIST
keyword is specified.

MOSAICSTAT Specifies whether the MOSAIC statistics section of the
program listing is to be suppressed or not. The MOSAIC
statistics section will be output unless MOSAICSTAT NO is
specified. MOSAICSTAT YES will be ignored if the
CONTROL command NOTLIST keyword is specified.
Run Control Command Group 3–49

LISTLIB GLOSSARY Command
LISTLIB GLOSSARY Command

The LISTLIB GLOSSARY command is used to list glossaries for definitions
contained in the common library. Any given LISTLIB command may only specify
one object type, but many LISTLIB commands may be present. This command
may only be specified in a definition/dictionary maintenance run.

Examples
LISTLIB GLOSSARY ARRAY ALL

List the glossaries for all array definitions in the common library.

LISTLIB GLOSSARY VIEW ITEMS VIEW1 VIEW2

List the glossaries of the logical data views named VIEW1 and VIEW2.

LISTLIB GLOSSARY INVIEW ITEM VIEWX

List the glossaries of all file definitions contained in logical data view VIEWX.

LISTLIB GLOSSARY {ARRAY | FILE | GROUP | TABLE | VIEW | INVIEW},

{ALL | [ITEMS] name …}

ARRAY Specifies that all or selected array definition glossaries are to
be listed.

FILE Specifies that all or selected file definition glossaries are to be
listed.

GROUP Specifies that all or selected transaction group definition
glossaries are to be listed.

TABLE Specifies that all or selected table definition glossaries are to
be listed.

VIEW Specifies that all or selected logical data view glossaries are to
be listed.

INVIEW Specifies that file definition glossaries within all or selected
logical data views are to be listed.

ALL Specifies that glossaries for all objects of the indicated type
are to be listed.

ITEMS name …
ITEM

Specifies the names of one or more objects of the indicated
type for which glossaries are to be listed.
3–50 ASL Reference Guide

LISTLIB NAMES Command
LISTLIB NAMES Command

The LISTLIB NAMES command is used to list the names of definitions contained
in the common library. Any given LISTLIB command may only specify one object
type, but many LISTLIB commands may be present. This command may only be
specified in definition/maintenance run.

Examples
LISTLIB NAMES ALL

The names of all items in the common library are listed.

LISTLIB NAMES FILE

The names of all file definitions in the common library are listed.

LISTLIB NAMES {ALL | ARRAY | FILE | GROUP | TABLE | VIEW}

ALL Specifies that the names of all definitions of all types in the common
library are to be listed.

ARRAY Specifies that the names of all array definitions in the common
library are to be listed.

FILE Specifies that the names of all file definitions in the common library
are to be listed.

GROUP Specifies that the names of all transaction group definitions in the
common library are to be listed.

TABLE Specifies that the names of all table definitions in the common
library are to be listed.

VIEW Specifies that the names of all logical data views in the common
library are to be listed.
Run Control Command Group 3–51

MULTILIB Command
MULTILIB Command

The MULTILIB command is used to disable the search of multiple common
libraries when DD statements for multiple libraries are present in the JCL or to
specify a specific order in which multiple common libraries are to be searched.
Common libraries are identified in the JCL by DD names of M4LIB and M4LIB1
through M4LIB9. If the MULTILIB command is omitted and DD statements for
multiple common libraries are included in the JCL, the search order will be M4LIB,
and then M4LIB1 through M4LIB9.

Examples
MULTILIB ORDER M4LIB3 M4LIB2 M4LIB1

The common libraries associated with DD names M4LIB3, M4LIB2, M4LIB1, and
M4LIB are to be searched in that order for any cataloged items.

MULTILIB OFF

Even if the JCL includes DD statements for multiple common libraries, only the
common library associated with DD name M4LIB is to be searched for any
cataloged items.

MULTILIB {OFF | ORDER ddname ...}

OFF Specifies that the search of multiple common libraries
for requested objects is to be disabled. This means that
even though the JCL includes DD statements for
common libraries, only the common library identified
by DD name M4LIB will be searched.

ORDER ddname … Specifies the order in which common libraries are to be
searched. Acceptable ddname values are M4LIB1
through M4LIB9.
3–52 ASL Reference Guide

OVERRIDE Command
OVERRIDE Command

The OVERRIDE command is used to specify an alternate DD name to be used in
place of the standard VISION:Builder DD name for a file. Each overridden DD
name must be specified with a different OVERRIDE command. Note that the use
of the DDNAME keyword on the various FILE commands performs the same
function as the OVERRIDE statement for a given file. The old ddname on the
OVERRIDE command is always identical to the default DD name on the FILE
command.

Examples
OVERRIDE M4OLD WITH DATA1

An override for the DD name of the master file (default DD name of M4OLD) is
given. The new DD name for the file is DATA1.

OVERRIDE [DDNAME] old-ddname,

WITH new-ddname

DDNAME old-ddname Specifies the standard VISION:Builder DD name
that is to be overridden. DD names M4INPUT and
M4LIST may not be overridden with the
OVERRIDE command.

WITH new-ddname Specifies the ddname that is to be used in place of
the standard VISION:Builder DD name for the file
identified with the DDNAME keyword.
Run Control Command Group 3–53

OWNCODE Command
OWNCODE Command

The OWNCODE command is used to specify program modules that are to be
invoked at certain points within the VISION:Builder processing cycle called hooks.
A specified program module may process calls from more than one hook, but any
hook number should be specified on only one OWNCODE command.

Examples
OWNCODE MODULE MYOPS, HOOKS 50 70

Program module MYOPS is to be called for own code hooks 50 and 70.

OWNCODE [MODULE] module-name,

HOOKS hook-number ...

MODULE module-name Specifies the name of the program module that
will process the hooks specified for the HOOKS
keyword.

HOOKS hook-number ...
HOOK

Specifies one or more hook numbers that the
associated program module is to process. Valid
owncode hook numbers are: 10, 11, 20, 21, 30, 50,
51, 60, 61, 62, 63, 70, 91, 92, 93. See the
VISION:Builder Environment Guide for the
available hook numbers and their functions.
3–54 ASL Reference Guide

RETRIEVE Command
RETRIEVE Command

The RETRIEVE command is used to retrieve the source code for objects in a
common library. The retrieved source statements are output in the file specified
by the DD name M4SSOUT. More than one RETRIEVE command may be
provided. A RETRIEVE command is valid only in source statement retrieval runs.

RETRIEVE {ARRAY | FILE | GROUP | REQUEST | TABLE | VIEW | EOF},

{ALL | [ITEMS] name …},
[NEWNAME name]

ARRAY Specifies that the source statements for array definitions
are to be retrieved.

FILE Specifies that the source statements for file definitions are
to be retrieved.

GROUP Specifies that the source statements for transaction group
definitions are to be retrieved.

REQUEST Specifies that the source statements for requests or
request groups are to be retrieved.

TABLE Specifies that the source statements for tables are to be
retrieved.

VIEW Specifies that the source statements for logical data views
are to be retrieved.

EOF Specifies that a /* record is to be output in the M4SSOUT
data stream.

ALL Specifies that the source statements for all items of the
specified type that are stored in the common library are to
be output.

ITEMS name …
ITEM

Specifies that the source statements for one or more items
of the specified type that are stored in the common library
are to be output.

NEWNAME name Specifies the new name that is to be assigned to an item
that is retrieved from the common library. When the
NEWNAME keyword is present, the ITEMS keyword
must also be present and must specify exactly one name.
Run Control Command Group 3–55

RETRIEVE Command
Examples
RETRIEVE GROUP ALL

Retrieve the source statements for all transaction group definitions.

RETRIEVE FILE ITEM DEFA, NEWNAME DEFX

Retrieve the source statements for file definition DEFA, but change the name in the
retrieved statements to DEFX.
3–56 ASL Reference Guide

ROUTE Command
ROUTE Command

The ROUTE command specifies the reports, selection data, and destinations to
which the reports are to be routed. An application may include many ROUTE
commands, and any report may be included in multiple ROUTE commands. A
unique ROUTE command is required for each combination of reports, selection
data, and destination. Reports that are not identified by any ROUTE command are
routed to the default destination. There are no ROUTE command dependencies
with regard to the COLLATE command or vice versa. Each of these commands
stands alone in their function.

ROUTE {[REPORTS] report-name ... | ALL},

[KEYVALUE ‘data-value’],
TO destination-names ...,
[DEFER]

REPORTS report-name …
REPORT

Specifies the reports that are to be routed to the
designated destinations. The report-name
operand is a list of one or more request names or
report names. If the request contains more that
one report and only selected reports within the
request are to be routed to the designated
destinations, the request name can optionally be
followed by a colon that is then followed by the
report numbers (Rn statement sets) that are to be
used. For example, a specification of
SALESRPT:135 indicates that only reports 1, 3,
and 5 of the request SALESRPT are to be
considered for this destination. No embedded
blanks are allowed in the list of report numbers.
When report names are used, the report number
notation does not apply.

ALL Specifies that all reports in the application are to
be routed to the designated destination(s).

KEYVALUE 'data-value'
KEYVAL

Specifies a character constant (a string value
enclosed in single quotation marks (')) indicating
that only the report data whose routing key value
matches the specified data value are to be routed
to the designated destination(s). The routing key
is a subset of the report key beginning in position
1 of the report key. The length of the KEYVALUE
keyword operand specifies the length of the
routing key and may include trailing blanks. The
length of this value may not exceed the length of
the report key.
Run Control Command Group 3–57

ROUTE Command
Examples
ROUTE REPORTS REP1 REP2 KEYVALUE 'A' TO COMMSALES

ROUTE REPORTS REP1 REP2 KEYVALUE 'B' TO GOVTSALES

ROUTE REPORTS REP1 REP2 KEYVALUE 'C' TO COMMSALES

ROUTE REPORTS REP1 REP2 KEYVALUE 'D' TO GOVTSALES

ROUTE REPORTS REP1 REP2 KEYVALUE 'A' TO BRANCH1

ROUTE REPORTS REP1 REP2 KEYVALUE 'B' TO BRANCH2

ROUTE ALL TO ARCHIVE

Reports REP1 and REP2 with a keyvalue of 'A' are routed to COMMSALES and
BRANCH1; 'B' is routed to GOVTSALES and BRANCH2; 'C' is routed to
COMMSALES only, and 'D' to GOVTSALES only. Additionally, all reports are
routed to ARCHIVE.

TO destination-names … Specifies one or more destinations to which this
report or set of reports is to be routed.
Destinations are specified as DD names that
correspond to the JCL statements that specify the
appropriate data set destination parameters.
When the notation 'ddname(member-name)' is
used, the destination is assumed to be a PDS and
the output is placed in the member identified by
member-name. The TO keyword is required with
this command. M4LIST may not be used as a
report destination.

DEFER Specifies that the open for the destination data set
is to be deferred until just before the first output is
to be written to the destination. This would then
prevent the creation of empty data sets or
unnecessary tape mounts when no data was
selected for the report. When this keyword is
omitted, the open for the destination data set will
occur during program initialization regardless of
whether any data was selected for the destination
or not. When no data is selected for the report, an
empty data set will be created.
3–58 ASL Reference Guide

TRACK Command
TRACK Command

The TRACK command is used to specify that information such as creation
date/time, expiration date/time, and other information be maintained for an item.
The TRACK command may be used during a processing run in combination with
the CATALOG command for maintaining cataloged request and request group
information. The TRACK command may also be used during a definition run for
maintaining definition information.

TRACK [NAME] item-name,

[GENERIC],
[TYPE {FILE | ARRAY | TABLE | TRAN | REQUEST | REQGROUP}],
[FILENAME file-name],
[{EXPIRE mmddyy | RETAIN days}],
[USERID userid]

NAME item-name Specifies the name of the item to which this TRACK
command applies.

GENERIC Specifies that the name associated with the NAME
keyword is a generic name and not a full name. A
generic name must be less than 8 characters long. The
use of this keyword implies that the TRACK command
parameters apply to all items whose names begin with
the generic name.

TYPE item-type Specifies the type of item designated by the NAME
keyword. The item-type is specified by one of the
following keywords:

■ FILE -- Specifies a file definition item.

■ ARRAY -- Specifies an array definition item.

■ TABLE -- Specifies a table definition item.

■ TRAN -- Specifies a transaction group definition
item.

■ REQUEST -- Specifies a request item.

■ REQGROUP -- Specifies a request group item.

FILENAME file-name Specifies the full or generic file definition name
associated with the transaction group name designated
by the NAME keyword.
Run Control Command Group 3–59

TRACK Command
Examples
TRACK CUSTDEF, TYPE FILE, EXPIRE 070110

Set the expiration date for file definition CUSTDEF to July 1, 2010.

EXPIRE mmddyy Specifies the date on which this item is to expire.
Deletion of an item is prevented until the expiration
date occurs. The century of the expiration date will be
the current century if the expiration date is greater than
or equal to the current date. Otherwise, the century of
the expiration date will be the next century. For
example, if the current date is July 1, 2001 (070101) and
the expiration date is specified as 060101, then the real
expiration date will be June 1, 2101. The EXPIRE
keyword is mutually exclusive with the RETAIN
keyword.

RETAIN days Specifies the number of days the item is to be retained.
Deletion of the item is prevented until that number of
days has elapsed. The number may not exceed 5 digits.

USERID userid Specifies the userid of the person responsible for
cataloging or updating the item in the common library.
3–60 ASL Reference Guide

WORK Command
WORK Command

The WORK command is used to specify the presence of working storage areas
allocated for this application. The qualifier W is used to reference data in the
working storage areas.

Examples
WORK 1 NAME WORKDEF1

Allocate a work area assigned as number 1 that is defined by file definition
WORKDEF1.

WORK [AREA] number,

NAME definition-name

AREA number Specifies the order in which working storage areas
are to be assigned. Working storage areas are
assigned contiguous memory space beginning with
the lowest area number and upwards. Up to 99
working storage areas may be defined with the area
numbers ranging from 1 to 99.

NAME definition-name Specifies the name of the file definition that defines
the detail fields within a working storage area.
When multiple working storage areas are defined,
the field names within all working storage
definitions must be unique.
Run Control Command Group 3–61

WORK Command
3–62 ASL Reference Guide

Chapter
4 P
rocedural Command Group
This chapter describes each command and available built-in functions in detail.
After the syntax and operands of a command are explained, several examples of
the command are given. Values for fields are given, as well as other pertinent
information and the result of the procedure statements.

The following list summarizes the ASL commands for procedure statements.
Longer command and keyword names have abbreviations that are defined below
the command or keyword name.

Command Function

CALL Calls another procedure or invokes report or subfile output.

CASE Begins a group of procedure statements within a DO CASE block
that are to be performed when the CASE condition is true.

COMBINE
COM

Concatenates two or more character strings into a 1-character
field.

CONTINUE
CONT

Continues by going to the end of the procedure.

DO Either initiates a conditional loop within a procedure or begins a
block of procedure statements containing groups of CASE
commands. Only the first CASE block within the DO CASE block
with a true condition is executed.

ELSE Begins a group of statements within an IF or DO CASE block that
are to be performed when all conditions are false.

END Terminates a DO, IF, or PROC block.

FIELD
FLD

Defines a temporary field within a procedure.

GO Jumps to a specified statement within a procedure.

IF Begins a block of procedure statements that are performed when
the condition on the IF command is true.

INCLUDE Used to include a cataloged request into the application.
Procedural Command Group 4–1

Quotation Marks
When field values are shown in coding examples, the contents of the field are
enclosed in single quotation marks. For example, the contents of the field CUSTNO
are enclosed in single quotation marks, but the quotation marks are not part of the
field.

The quotation marks delimit the beginning and end of the field.

For the rules and explanations of notational conventions and page layout, see
Chapter 2, Terminology, Syntax, and Processing.

LEAVE Provides a way to exit a DO loop immediately.

LET Sets the value of a field equal to the value of a field, constant, or
arithmetic expression.

LOCATE
LOC

Locates a cell, row, or column of an array.

Note: LOCATE is available in VISION:Builder and VISION:Two,
but not VISION:Inform.

PROC Begins a new procedure block.

RELEASE
REL

Releases a segment or an array occurrence.

REPLACE
REP

Replaces defined characters within a character field with other
defined characters.

RETURN
RET

Returns control to the calling procedure.

TRANSFER Causes control to be transferred to a specific point within the
processing cycle.

Field: CUSTNO

Contents: ’00001’

Command Function
4–2 ASL Reference Guide

Built-In Functions
Built-In Functions
This section describes the built-in functions that are available with the procedural
commands. After the syntax and operands of a function are explained, several
examples of the function are given. Values for the fields are given, as well as other
pertinent information and the result of the procedure statements.

A function is a subprocedure or subprocess that derives a value or condition from
other data. The function value is created when reference is made to it. You use the
function as if it is a field. You write a function differently than a field, but basically
you use a function wherever you use a field name.

Value Functions and Conditional Functions
Functions return either “value” (that is, they represent a field value) or
“conditional” (that is, they represent a true or false condition). When needed, you
use functions in procedure statements.

■ You can use value functions anywhere a field name can be used.

■ You can use conditional functions anywhere a conditional operand is needed.

Specifying Functions
There are five built-in functions available in ASL. You specify functions by
entering a function name followed immediately (with no intervening spaces) by a
left parenthesis, one or more keyword phrases, and terminating with a right
parenthesis.

Longer function and keyword names have abbreviations that are defined directly
beneath the function or keyword in the following descriptions.

Types of Built-In Functions
There are two types of built-in functions: conditional and value.

Conditional Functions
All conditional functions are evaluated and return a true or false condition, but
some functions also perform other actions. The conditional functions are as
follows:

FIND Find a segment function.

This function returns a true condition when a segment or record
exists. If the segment or record does not exist, the function returns
a false condition.

If the segment or record exists, the function locates the segment or
reads the record so that subsequent field values can be obtained
from the segment.
Procedural Command Group 4–3

Built-In Functions
Value Functions
Value functions return an actual value, either a result value from a table or a part
of an existing field. The value functions are as follows:

LOCATE Locate a cell, row, or column in an array.

This function returns a true condition when the row and/or
column specifications are within the bounds of the array.
Otherwise, the function returns a false condition.

If the function returns a true condition, the specified cell, row, or
column is available for subsequent processing.

Note: LOCATE is available in VISION:Builder and VISION:Two,
but not VISION:Inform.

SCAN String scan function.

This function searches a field for a character or set of characters.

■ If the characters being searched for are found, the function
returns a true condition.

■ If the characters are not found, the function returns a false
condition.

The location where the characters are found is kept in flag fields
when the function is true. When the function is false, the flag fields
are not set.

VALIDATE
VAL

Field validation function.

This function validates the contents of a field for either a valid
calendar date or for a predefined pattern of characters.

■ If the date is valid or the pattern is found, the function returns
a true condition.

■ If the content is not a valid date or the pattern is not satisfied,
the function returns a false condition.

LOOKUP
LU

Table lookup function.

This function processes external tables by searching an argument list
and returning back a result value.

PF Partial field function.

This function isolates part of a character field.
4–4 ASL Reference Guide

Built-In Functions
FIND Function (Conditional)

Use FIND as a conditional function in a logical expression to establish the existence
of an occurrence of a segment or record.

■ If an occurrence of the segment or a record exists, the FIND function returns a
true condition and that segment or record is used for processing in the current
procedure.

■ If an occurrence of the segment or a record cannot be found, the FIND returns
a false condition and reference should not be made to fields on the missing
segment or record.

There are five keywords:

FIND([SEGMENT]segment-name
[FIRST|LAST|NEXT|WHERE selection-expression])

SEGMENT segment-name
SEG

Specifies the name of the segment to locate.

■ If the segment-name is a root segment, a record is
read from the file.

■ If the segment-name is a lower level segment, a
particular occurrence of the segment is located.

If the WHERE phrase is not present, the following
rules apply:

■ The first FIND function for a segment in the
procedure locates the first occurrence of the
segment.

■ Subsequent FIND functions for the same segment
in the same procedure locate segments in the
order that they are in the record. A subsequent
FIND function for a record reads the next record
on the file. When the subsequent FIND function is
processed, the segment previously found is no
longer available. In other words, only one
occurrence is processed at any given time.

■ For some databases (for example, DB2®), the
concept of “first” and “order” might have no
meaning. In these cases, the FIND function will
locate an occurrence of a segment/record.
Subsequent FIND functions will locate a different
occurrence of the segment/record.
Procedural Command Group 4–5

Built-In Functions
Example
The FIND function is a conditional function you can use anywhere in a logical
expression. The examples show the FIND function on an IF command. For more
information on the IF command, see Chapter 4, Procedural Command Group.
IF FIND(1.SEGX)
LET T.TEMP1 = 1.FIELD1

ELSE
LET T.TEMP1 = 0

END

The FIND function reads a record from file 1. If such an occurrence is found, the
FIND function is true and the next statement is executed; if no occurrence is found,
the FIND function is false and the ELSE clause is executed.

IF FIND(SEGMENT ORDER WHERE ORDERNUM = ’12345’)
CALL PROC CHKORD

END

FIRST Causes the first occurrence of a lower level segment
to be located for processing. This keyword is not
permitted for memory optimized (MOSAIC)
processing of relational or Generalized Data Base
Interface (GDBI) files.

LAST Causes the last occurrence of a lower level segment
to be located for processing. This keyword is not
permitted for memory optimized (MOSAIC)
processing of relational or GDBI files.

NEXT Causes the next available occurrence of a lower level
segment to be located for processing. The first FIND
NEXT function of a procedure locates the first
occurrence of a segment.

WHERE selection-name Specifies the value of the segment or record key to
locate. Use a logical expression as the WHERE
operand. Use a primary key field name for the
segment or record as one of the field names in the
logical expression.

For a lower level segment, the WHERE phrase causes
only one segment to be located: the segment whose
primary key is equal to the value specified in the
operand.

For a root segment, the WHERE phrase causes only
one record to be read and is only allowed for a
direct-read file. You can use two types of reads: the
key of the record equal to the value specified in the
operand, or the key of the record whose value is
greater than or equal to the value specified in the
operand.
4–6 ASL Reference Guide

Built-In Functions
The FIND function searches for an ORDER segment with the key value of 12345.
ORDER is a lower level segment in the file.

■ If the function finds a segment, the PROC CHKORD is called.

■ If the function does not locate the segment, processing continues with the
statement after the END command.

LOCATE Function (Conditional)
Note: LOCATE is available in VISION:Builder and VISION:Two, but not
VISION:Inform.

Use LOCATE as a conditional function in a logical expression to locate a cell, row,
or column in an array. It operates exactly like the LOCATE command, except that
the function returns a true or false condition. You use this condition in evaluating
the logical expression.

Use the function in place of the command where the row and/or column
parameters might cause the LOCATE command to fail. Use the LOCATE function
to perform an array location operation and test for its success or failure in one
operation.

For a discussion of the LOCATE function keywords, see the section LOCATE
Command.

Examples
IF LOCATE(ARRAY A ROW T.Y COLUMN T.X)
 ; process cell
ELSE
 ; Handle error situation – check ASTATUS flag field
END

LOCATE([ARRAY] array-identifier
{[Row row-number] [COLUMN column-number]})
Procedural Command Group 4–7

Built-In Functions
LOOKUP Function (Value)

Note: If you do not choose any of the following keywords, the arguments in the
table are searched for a value equal to the value in lookup-argument.

LOOKUP([TABLE] table-name [ARGUMENT] lookup-argument
[NEAREST |SMALLER |LARGER |INTERPOLATE])

LOOKUP
LU

Is a value function that takes the given
argument value, searches the argument list in
the table to locate a specific argument, and
returns the corresponding result value.

Because LOOKUP is a value function, you can
use it anywhere you use a field name or
constant. There are six keywords.

TABLE table-name
TAB

Specifies the name of a table. Specify the
operand to be the name of a table definition
defined to the VISION:Inform library.

ARGUMENT lookup-argument
ARG

Specifies the field containing the argument
value. Use a field name as the operand.

NEAREST
NRST

Causes the arguments in the binary table to be
searched for a value equal to or nearest the
value in lookup-argument. This keyword has
no operands.

SMALLER
SMLR

Causes the arguments in the binary table to be
searched for a value equal to or smaller than
the value in lookup-argument. This keyword
has no operands.

LARGER
LRGE

Causes the arguments in the binary table to be
searched for a value equal to or larger than
the value in lookup-argument. This keyword
has no operands.

INTERPOLATE
INT

Performs linear interpolation on the
argument list in the binary search table to
determine the argument/result to be selected.
This keyword has no operands.
4–8 ASL Reference Guide

Built-In Functions
As the LOOKUP function represents a value, you can use the function anywhere
you would use a field name or a constant. In the examples, the LOOKUP function
is used on a LET command. For more information on the LET command, see
Chapter 4, Procedural Command Group.

Example 1

Table Name: MONTHS

MM is a field in a file whose contents is 11.

LET T.MONTH = LOOKUP(MONTHS, ARGUMENT MM)

After the LOOKUP function, T.MONTH contains NOVEMBER.

Argument list Result list

 01 JANUARY

 02 FEBRUARY

 03 MARCH

 04 APRIL

 05 MAY

 06 JUNE

 07 JULY

 08 AUGUST

 09 SEPTEMBER

 10 OCTOBER

 11 NOVEMBER

 12 DECEMBER
Procedural Command Group 4–9

Built-In Functions
Example 2

Table Name: GRADES

SCORE is a field in the file whose content is 3.8.

LET T.EVALUATE = LOOKUP(GRADES ARGUMENT SCORE NRST)

After the LOOKUP function, T.EVALUATE contains PERFECT.

Argument list Result list

 1.0 FAILING

 1.5 BELOW AVERAGE, NEEDS IMPROVEMENT

 2.0 BELOW AVERAGE

 2.5 AVERAGE

 3.0 GOOD

 3.5 EXCELLENT

 4.0 PERFECT
4–10 ASL Reference Guide

Built-In Functions
PF Function (Value)

Example 1

Assume these values for the following fields:

CHARS = ’ABCDEFGHIJKL’
T.NUMBER = ’3’
LS = ’2’
LN = ’10’

PF([FIELD] field-name [START] start-position [LENGTH partial-length])

PF Is a value function that defines the value as a part of
the character field against which the function is used.
You can use the PF function on a character field and in
any replacement or logical expression. There are three
keywords:

FIELD field-name
FLD

Specifies the name of a character field (fixed or
variable length). The PF function returns a value that
is only part of the field specified in this operand.

START start-position Is a required entry that specifies the starting character
position of the value within the previously named
field, where byte 1 is the beginning of the field. This
operand can be an integer or one of the flag field
names LS, LN, MS, MN, RS, or RN, which are
explained in the section SCAN Function (Conditional).

LENGTH partial-length
LEN

Is required for a fixed length field, but is an optional
entry for a variable length field. The result of the PF
function is a partial value from the field named in the
first operand. The partial-length specifies how many
characters the partial value is to contain. This operand
can be an integer or one of the flag field names LS, LN,
MS, MN, RS, or RN, which are explained in the section
SCAN Function (Conditional).

You can omit the keyword LENGTH and its operand
for variable length fields, in which case, the remaining
length of the field from the start position is assumed.

Function Partial Field Value

PF(CHARS START 1 LENGTH 7) ’ABCDEFG’

PF(CHARS 3 6) ’CDEFGH’

PF(CHARS LS 4) ’BCDE’
Procedural Command Group 4–11

Built-In Functions
The PF function on the CHARS field causes the value of the field to be a subset of
the original contents of the field.

Example 2

IF PF(CUSTNO START 1 LENGTH 1) = ’1’ THEN
CALL REPORT CUSTOMER

END

The PF function on CUSTNO causes the first position to be isolated for testing on
the IF command.

This example shows the partial field function being used where a field name or
constant could be used as a part of a logical expression. The PF function represents
a value to be tested against another value. In the case shown, the condition will be
true.

Example 3

The field VARIABLE is a variable length field.

The value of the partial field is the part of field VARIABLE defined by a starting
position and a length parameter. For variable length fields, you can omit the length
parameter to signify the remainder of the field.

Field: CUSTNO PF(CUSTNO START 1 LENGTH 1)

Field contents: ’1000’ ’1’

Field: VARIABLE PF(VARIABLE,3) PF(VARIABLE,2,4)

Field contents: ’ABCDEFGHIJ’ ’CDEFGHIJ’ ’BCDE’
4–12 ASL Reference Guide

Built-In Functions
SCAN Function (Conditional)

SCAN is a conditional function. This function checks a field to see if a specified
field contains a specific character string or pattern of characters. If a match is
found, a true condition for the function is established. If no match is found, the
condition is false.

When the function finds the character string or pattern, the location of the
search-value/pattern within the field being scanned is stored in the following flag
fields:

The scanned field can be considered as having the following parts:

■ Search-value/pattern.

■ Part of the field to the left of the search-value/pattern.

■ Part of the field to the right of the search-value/pattern.

SCAN([FIELD] field-name [FOR] search-value/pattern
{FROM LEFT | FROM RIGHT} [NOTEQUAL])

Field Flag Name Long Form Field Flag Name Description

LS LSTART Left part Start

LN LNUMBER Left part Number of
characters

MS MSTART Middle part Start

MN MNUMBER Middle part Number of
characters

RS RSTART Right part Start

RN RNUMBER Right part Number of
characters
Procedural Command Group 4–13

Built-In Functions
The flag fields identify the starting location and length of these three parts of the
field being scanned.

■ LS contains the starting location of the part of the field being scanned that is to
the left of the search-value/pattern.

■ LN contains the length of this left portion of the field.

■ MS contains the location of the beginning of the search-value/pattern within
the field being scanned.

■ MN contains the length of the search-value/pattern.

■ RS contains the starting location of the part of the field being scanned that is to
the right of the search-value/pattern.

■ RN contains the length of this right portion of the field.

There are four keywords:

Example 1

Assume these values for the following fields:

FIELD field-name
FLD

Specifies the field to scan. Specify a name or PF
function as the operand.

FOR search-value/pattern Specifies the value or pattern for which to scan.
Specify a name, character constant, or validation
pattern as the operand. For valid pattern
symbols, see Appendix C, Technical Notes.

FROM LEFT |FROM RIGHT Specifies the direction of the scan. If you omit this
keyword phrase, LEFT is assumed.

NOTEQUAL
NE

If you add the NOTEQUAL keyword to the
SCAN function, the function returns a true
condition when the search-value/pattern is not
found.

If you do not enter the NOTEQUAL keyword, the
SCAN function returns a true condition when the
search-value/pattern is found. This keyword has
no operands.

ALPHA = ’ABCCCAB123ABEEE’
Initial
Values: LS = ’0’ LN = ’0’

MS = ’0’ MN = ’0’
RS = ’0 RN = ’0’
4–14 ASL Reference Guide

Built-In Functions
The first occurrence of the search value/pattern located in the field causes the
SCAN function to be true, and the flag fields are set to that location.

The next two examples of the SCAN function show it being used in the IF
command where a logical expression is necessary. You can use the SCAN function
in a logical expression, because it sets a true or false condition. For more
information on the IF command, see Chapter 4, Procedural Command Group.

Example 2

IF SCAN(T.MSG FOR ’XYZ’)
LET T.LEFTPART = PF(T.MSG LS LN)

END

If the field T.MSG contains THE XYZ COMPANY, the SCAN function is evaluated
as true, because the letters XYZ were found in T.MSG. As a result of the expression,
T.LEFTPART contains the value THE b/. Because the FROM phrase is omitted,
FROM LEFT is assumed.

Example 3

IF SCAN(CUSTNO FOR P’99999’)
CALL REPORT VALID

ELSE
CALL REPORT INVALID

END

The field CUSTNO is a 5-byte character field. The pattern P’99999’ checks for
numeric characters. If the field CUSTNO contains any non-numeric characters, the
SCAN function is evaluated as false.

RESULTS

Function Condition LS LN MS MN RS RN

SCAN(ALPHA FOR ’AB’
FROM LEFT)

TRUE 01 00 01 02 03 13

SCAN(ALPHA FOR ’AB’
FROM RIGHT)

TRUE 01 10 11 02 13 03

SCAN(ALPHA FOR ’DE’
FROM LEFT)

FALSE 01 15 16 00 16 00

SCAN(ALPHA FOR P’999’
FROM LEFT)

TRUE 01 07 08 03 11 05

SCAN(ALPHA FOR P’999’
NE)

FALSE 00 15 16 00 00 00
Procedural Command Group 4–15

Built-In Functions
VALIDATE Function (Conditional)

VALIDATE([FIELD] field-name {PATTERN P’pattern’ | DATE})

VALIDATE
VAL

Specify conditional function. It validates a field for a
pattern or date.

■ If the field contains a valid date or its content matches
the specified validation pattern, the function is true.

■ If the field does not contain a valid date or the
specified validation pattern, the function is false.

Use the VALIDATE function as a logical expression in
procedure statements. There are three keywords:

FIELD field-name
FLD

Specifies the field to be validated. Use the name of a field
or a PF function of a field as the operand.

PATTERN P’pattern’
PAT

Specifies a pattern to use for the validation.

■ Specify a pattern starting with the letter P, followed
by a beginning single quotation mark, a string of
special pattern symbols, and a closing single
quotation mark.

■ Use up to 30 characters in the operand.

■ Code one pattern symbol for each character of the
field being validated.

For valid pattern symbols, see Appendix C, Technical
Notes.

The function checks each character in the specified field
against its corresponding pattern character. This
keyword is mutually exclusive with the DATE keyword.

DATE Checks that the field contains a valid calendar date. This
keyword causes the function to validate the content of
the field for a valid calendar date.

■ If the field contains a valid date, the function is
evaluated as true.

■ If the field contains a non-calendar date or the date is
not in the format expected by the function (as defined
to the system), the function is evaluated as false.

The type of date storage (for example, Julian and
MMDDYY) is defined in M4SFPARM. This keyword has
no operands and is mutually exclusive with the
PATTERN keyword.
4–16 ASL Reference Guide

Built-In Functions
Example 1

The next two examples show the conditional VALIDATE function in the IF
statement, which requires a logical expression. See Chapter 4, Procedural Command
Group for more information on the IF command.

Example 2

IF VALIDATE(FIELD ORDRDATE DATE)
CALL REPORT ORDER

ELSE
LET T.MSG =’ILLEGAL DATE’

END

If the field ORDRDATE contains 999999, the VALIDATE function would be
evaluated as false, because 999999 does not represent a valid calendar date.

Example 3

IF VALIDATE(PF(NUM 5 4) P’9999’)
LET T.COUNT = PF(NUM 5 4)

END

Function
If ORDRDATE
Contains Condition

VALIDATE(ORDRDATE PAT P’999999’) ’123456’ TRUE

VALIDATE(ORDRDATE DATE) ’987654’ FALSE

VALIDATE(ORDRDATE PAT P’999999’) ’011595’ TRUE

VALIDATE(ORDRDATE DATE) ’011595’ TRUE

VALIDATE(ORDRDATE PAT P’999999’) ’ABCDEF’ FALSE

VALIDATE(ORDRDATE DATE) ’ABCDEF’ FALSE
Procedural Command Group 4–17

CALL Command
This section describes each procedural command in detail.

CALL Command

Use the CALL statement to branch to subprocesses such as other internal
procedures, external user written modules, reports, and subfiles. When the
subprocess, invoked by the CALL command completes, the subprocess passes
control back to the procedure statement following the CALL command.

The keywords beginning with “CEE” designate selected IBM® Language
Environment® (LE) services that the CALL command specifically recognizes and
assists with parameter conversion where necessary. Specifically, the CALL
command automatically converts any parameter expected to be a length-prefixed
character string (VSTRING) for any of these CEE... services whenever the CEE...
keywords are used.

LE services can also be invoked using the “MODULE” keyword. However, no
parameter conversion takes place when this form is used.

CALL { [PROCEDURE] procedure-name |
REPORT report-name |
SUBFILE subfile-name |
MODULE ‘module-name’ |
CEEDATE | CEEDATM | CEEDAYS | CEEDYWK | CEEGMT |
CEEGMTO | CEEISEC | CEELOCT | CEEQCEN | CEESCEN |
CEESECI | CEESECS | CEEUTC
[USING parm ...] }

Note: The IBM Language Environment (LE) services, CEE..., are Year 2000
compliant.

See the IBM Language Environment for MVS & VM Programming
Reference manual for syntax and examples of these callable services.

PROCEDURE procedure-name
PROC

Specifies a procedure to be executed. Use the
name of a procedure within the current
application as the operand.

REPORT report-name
REP

Specifies that a report is to be output. Use the
name of a report in the current application as
the operand.

SUBFILE subfile-name
SUB

Specifies that data is to be output to a subfile.
Use the name of a subfile in the current
application as the operand.
4–18 ASL Reference Guide

CALL Command
MODULE module-name
MOD

Specifies an external user written load module
to call. Use an external load module name as
the operand (module-name).

CEEDATE LE service that converts dates in the Lilian
format to character values.

CEEDATM LE service that converts number of seconds to
character timestamp.

CEEDAYS LE service that converts character date values
to the Lilian format. Day one is
15 October 1582, and the value is incremented
by one for each subsequent day.

CEEDYWK LE service that provides day of week
calculation.

CEEGMT LE service that gets current Greenwich Mean
Time (date and time).

CEEGMTO LE service that gets difference between
Greenwich Mean Time and local time.

CEEISEC LE service that converts binary year, month,
day, hour, minute, second, and millisecond to
a number representing the number of seconds
since 00:00:00 15 October 1582.

CEELOCT LE service that retrieves current date and
time.

CEEQCEN LE service that queries the century window.

CEESCEN LE service that sets the century window.

CEESECI LE service that converts a number
representing the number of seconds since
00:00:00 15 October 1582 to seven separate
binary integers representing year, month,
day, hour, minute, second, and millisecond.

CEESECS LE service that converts character timestamps
(a date and time) to the number of seconds
since 00:00:00 15 October 1582.

CEEUTC LE service that performs the same function as
CEEGMT.
Procedural Command Group 4–19

CALL Command
Example 1.
CALL PROCEDURE AVGSAL

This CALL command calls a procedure named AVGSAL, which is defined as a
subroutine procedure. After AVGSAL executes, it passes control to the statement
after the CALL to the subroutine procedure.

Example 2.
CALL REPORT NAMELIST

This CALL command calls for output to a report named NAMELIST before
continuing within the procedure.

Example 3.
CALL SUBFILE MFDATA

This CALL command calls for a record to be output to the subfile MFDATA before
continuing in the procedure.

Example 4.
CALL MODULE MYPROG USING AMOUNT FIELDX ’ABC’

This CALL command calls for an external module of code named MYPROG to be
executed. The following parameters will be passed.

The first parameter is the contents of field AMOUNT, which is 10; the second
parameter is the contents of FIELDX, which is 011598; and the third parameter is
the literal constant ABC.

Example 5.
CALL CEEDAYS USING BRTHDATE ‘MM/DD/YY’ T.LILDATE T.FEEDBACK

This CALL command converts the date in the field BRTHDATE to a Lilian date.
The string ‘MM/DD/YY’ is a picture string representing the format of the contents
of the BRTHDATE field.

USING parm... Specifies any parameters to be passed to the
MODULE or CEE... service that was named in
the previous keyword phrase.

Use field names or constants as the operand.
Except as noted above, use parameter data
types that conform to the data types expected
by the called program.

AMOUNT contains: ‘10’

FIELDX contains: ‘011501’

A literal value: ‘ABC’
4–20 ASL Reference Guide

CALL Command
Example 6.
CALL CEEDATE USING T.LILDATE ‘DD Mmm YYYY’ T.NEWDATE T.FEEDBACK

This CALL command converts the Lilian date in temporary field LILDATE into
character format in the temporary field NEWDATE. The picture yields a date such
as 15 Jan 2001.
Procedural Command Group 4–21

CASE Command
CASE Command
CASE [WHERE] logical-expression

The CASE command begins a group of procedure statements within a DO CASE
block. The procedure statements are performed when the condition of the CASE
command is true.

The program performs only the first group of procedure statements whose CASE
command condition is true within the DO CASE block. Once the group of
procedure statements executes, control is transferred immediately to the END
command corresponding to the DO CASE block.

Example.
LET T.TEMP1 = 0
DO CASE

CASE WHERE CUSTNO EQ ’00001’
 LET T.TEMP1 = 1
CASE WHERE CUSTNO GT ’00001’

 LET T.TEMP1 = 2
ELSE

LET T.TEMP 1 = -1
END

This DO CASE block sets the value of T.TEMP1 to:

WHERE logical-expression Specifies the logical expression to be evaluated to
determine whether the following group of
statements is to be performed.

If the logical expression is true, control passes to
the statement immediately following the CASE
command; otherwise, control passes to the next
CASE, ELSE, or END command within the
current DO CASE block.

1 if CUSTNO is 00001.

2 if CUSTNO is greater than 00001.

-1 for all other cases (that is, CUSTNO is less than 00001).
4–22 ASL Reference Guide

COMBINE Command
COMBINE Command
COMBINE [FIELDS] field1 ... STORE result-field [[BLANKS] number]

Example 1

COMBINE ’(’ AREA ’)’ PHONE STORE RESULT

For the following field values, the COMBINE concatenates the literal ’(’ to the field
AREA with no spaces in between:

Then, the literal ’)’ is concatenated, followed by the contents of the PHONE field.
The result of the concatenations is stored in field RESULT.

Example 2

COMBINE FIELDS PF(AREA 1 1) PF(AREA 2 1) PF(AREA 3 1) ,
 STORE T.AREA BLANKS 1

For the following field values, the concatenation is done with one blank between
each field:

The partial field function is used on the fields in the FIELDS keyword phrase.
The command is also coded on two lines using a comma at the end of the first line
to denote a continuation of the procedure statement.

COMBINE
COM

The COMBINE command concatenates two or more
character strings and store the result in a specified
destination field. You can also specify the number of
blanks inserted between each string.

FIELDS field1
FLDS

Specifies a list of character string fields. Make operands the
names of character string fields (fixed or variable length) or
literals enclosed in quotation marks as operands.

STORE result-field Specifies the result field. Make the operand the name of a
character string field (fixed or variable length) to contain
the concatenation of all the literals and fields named in the
FIELDS keyword phrase.

BLANKS number Specifies the number of blanks to insert between each pair
of strings. Use an integer constant as an operand. If you
omit this keyword phrase, the default is zero (no blanks
between fields).

Fields AREA PHONE RESULT

Contents before: ’213’ ’555-1212 ’ ’9999999999999’

Contents after: ’213’ ’555-1212’ ’(213)555-1212’

Fields AREA T.AREA

Contents before: ’213’ ’99999’

Contents after: ’213’ ’2 1 3’
Procedural Command Group 4–23

CONTINUE Command
CONTINUE Command
CONTINUE
CONT

The CONTINUE command causes the normal record processing cycle to continue
with the next occurrence of the segment within the controlling set of segments.
(See Chapter 2, Terminology, Syntax, and Processing, section Implicit Loops and Set
Operation.)

Note that this action is equivalent to a RETURN command if this procedure has
been initiated by another procedure and there are no more occurrences of the
segment.

Example 1

IF CUSTNO EQ ’00001’
LET T.COUNT = T.COUNT + 1
CALL REPORT LISTX

ELSE
CONTINUE

END
CALL SUBFILE SUBF1

A CUSTNO value of 00001 causes the LET command to execute followed by the
CALL command to the LISTX report. Then, the CALL command to the subfile
SUBF1 is executed.
Any other value for CUSTNO causes the CONTINUE command to execute, and
the CALL command to the subfile SUBF1 is not executed.

Example 2

IF CUSTNO LT ’10000’
 CALL REPORT FIRST
 CONTINUE
END
CALL REPORT SECOND

A value of CUSTNO less than 10000 causes the CALL command to report FIRST to
execute. The CONTINUE bypasses the CALL command to report SECOND. A
value of CUSTNO greater than or equal to 10000 causes the CALL command to
report SECOND to execute.
4–24 ASL Reference Guide

DO Command
DO Command

The DO command begins a group of procedure statements called a DO block. The
procedure statements within the DO block define an explicit procedural looping
structure, the exception being individual CASE blocks.
Note that implicit looping, as discussed in Chapter 2, Terminology, Syntax, and
Processing, still occurs within DO CASE blocks.
The keyword phrases that follow the DO command determine which type of
processing is performed. The DO block must have a corresponding END
command.

DO { [WHILE logical-expression]
[UNTIL logical-expression]
[FORALL segment-name]
[FORALL CELLS IN ARRAY array-identifier] Array keywords

are available in
VISION:Builder
and VISION:Two, but
not VISION:Inform.

[FORALL COLUMNS IN ARRAY array-identifier
[WITHIN ROW row-number]]

[FORALL ROWS IN ARRAY array-identifier
 [WITHIN COLUMN column-number]]

[FOR integer] } |
[CASE]

WHILE logical-expression Specifies a logical expression that is evaluated at
the beginning of each iteration of the explicit
loop (that is, at the DO command).

■ If the condition is true, the program performs
another iteration of the explicit loop
performed.

■ Otherwise, the program terminates the
explicit loop and transfers control to the
statement after the END command
associated with the DO block.

Change the conditions in the logical expression
within the DO block in order to terminate the
explicit loop.

Do not use the WHILE keyword phrase with the
CASE keyword.
Procedural Command Group 4–25

DO Command
UNTIL logical-expression Specifies a logical expression that is evaluated at
the end of each iteration of the explicit loop (that
is, at the END command).

■ If the logical expression is true, the program
terminates the explicit loop and transfers
control to the statement after the END
command associated with the DO block.

■ Otherwise, the program performs another
iteration of the explicit loop.

Change the conditions in the logical expression
within the DO block in order to terminate the
explicit loop.

Do not use the UNTIL keyword phrase with the
CASE keyword.

FORALL segment-name Specifies the name of a segment.

■ If the segment is a root segment from a
user-read additional file, the program reads a
record from the file at each iteration of the
DO block. The processing of the DO block
finishes at the end of all occurrences of the
segment for the current record.

■ If the segment is a lower level segment, the
program executes the DO block for all of the
segment occurrences.

Each iteration of the DO block processes the next
occurrence of the specified segment.

Do not use the FORALL keyword phrase with
the CASE keyword.

ARRAY array-identifier
ARR

Specifies the array-identifier for the FORALL
keyword. Use the name of an array in the current
application as the operand.

ROW row-number Specifies the row of the array for the FORALL
keyword. Use a constant, field name, or
arithmetic expression, whose value specifies the
row number to locate, as the operand.

COLUMN column-number
COL

Specifies the column of the array for the
FORALL keyword. Use a constant, field name,
or arithmetic expression, whose value specifies
the column number to locate, as the operand.
4–26 ASL Reference Guide

DO Command
If the condition in the WHILE operand is initially false, the program does not
execute the DO block. Conversely, the UNTIL keyword makes it possible for the
program to execute the statements within the DO block at least once even though
the condition is initially true.

You can use the WHILE, UNTIL, FORALL, and FOR keywords in combination
with each other.

If you specify both the FORALL and WHILE keywords, the program retrieves the
first occurrence of the segment before the WHILE condition is evaluated.

Example 1

LET T.COUNT = 0
DO WHILE T.COUNT = 0
 CALL REPORT SAMPLE
 LET T.COUNT = 1
END

FOR integer Specifies the maximum number of times the
program executes the DO block. Use an integer
value from 1 to 99999.

If the conditions set up under the WHILE or
UNTIL operands have not been met within the
specified number of interactions on the FOR
keyword phrase, the program automatically
terminates the DO block at the maximum
number.

Do not use the FOR keyword phrase with the
CASE keyword.

CASE Specifies that CASE command blocks follow.
This keyword has no operands. You can have an
ELSE command in a DO CASE block.

■ The program executes the first CASE
command whose conditions are met within
the DO CASE block and passes control to the
corresponding END command.

■ The CASE operand does not cause any
explicit loop processing like the WHILE,
UNTIL, and FORALL keyword phrases.
However, all implicit looping, as discussed in
Chapter 2, Terminology, Syntax, and Processing,
still occurs.

Do not use the CASE keyword with the WHILE,
UNTIL, FORALL, or FOR keywords.
Procedural Command Group 4–27

DO Command
In the example above:

■ The program sets the field T.COUNT to zero before starting the DO block;
hence the condition in the DO command is true and the program executes the
procedure statements within the DO block.

■ In the second interaction of the explicit loop, the condition in the DO command
fails and the program bypasses the procedure statements.

■ The program passes control to the next procedure statement after the END for
the DO block.

■ The program processes the CALL command within the DO block only once
each time the procedure is executed.

Example 2

LET T.RECNUM = 0
DO UNTIL T.RECNUM EQ 3
 CALL SUBFILE RECOUT
 LET T.RECNUM = T.RECNUM + 1
END

Because the program sets T.RECNUM to zero before starting the DO block, the
program executes the procedure statements within the DO block.

■ At the end of the DO block, T.RECNUM contains a 1 and the UNTIL condition
fails, allowing the DO block to be executed a second time.

■ After the DO block executes a second time, T.RECNUM contains a 2 and the
UNTIL condition fails again, allowing the DO block to be executed a third time.

■ After the DO block executes a third time, T.RECNUM contains a 3 and the
UNTIL condition is true, causing the DO UNTIL to be satisfied.

Processing continues with the procedure statement after the END command
corresponding to the current DO command.

Example 3

LET T.FIELD1 = 0
DO FORALL 1.ITEM
 LET T.FIELD1 = 1.FIELD1 + T.FIELD1
END

The segment 1.ITEM is a root segment from a user-read additional file. The
program reads a record from the file at the beginning of the DO block.

■ If there is a record in the file, the program executes the procedure statements
within the DO block.

■ If there are no records to read, the DO block fails and the program bypasses the
procedure statements in the DO block. The program reads another record for
each execution of the loop and the previous record is no longer available to
process.
4–28 ASL Reference Guide

DO Command
The program executes the DO block once for each record in file 1. Therefore, the
field T.FIELD1 accumulates a total of all of the values of 1.FIELD1 from each record
of file 1. The program terminates the DO block at the end of file on file 1 and then
executes the statement following the END command.

For all files read with the DO FORALL, the program reads the file until EOF is
reached. The last record read is not kept for processing after the DO block.

Example 4

LET T.AMOUNT = 0
DO FORALL ROWS IN ARRAY A.XYZ WITHIN COLUMN T.COLNO,
 FOR 50,
 WHILE A.CLASS = ’X’,
 UNTIL T.AMOUNT > 5000
 LET T.AMOUNT = T.AMOUNT + A.AMOUNT
END

This example loops through up to 50 rows of column T.COLNO as long as
A.CLASS contains an X and until T.AMOUNT exceeds 5000.

Example 5

DO CASE
 CASE CLASS = 1
 LET RATE = RATE * 1.05
 CASE CLASS = 2
 LET RATE = RATE * 1.10
END

For the following field values, the program evaluates the first CASE command and
the logical expression is false:

The program evaluates the second CASE command and the logical expression is
true. The program executes the procedure statement following the second CASE
command and passes control to the END command corresponding to the current
DO CASE block.

The program executes the procedure statements following the first CASE
command evaluated with a true logical expression and immediately passes control
to the END command for the DO CASE block.

For the same code with the following field values, all of the logical expressions in
the CASE commands are evaluated as false:

Since an ELSE command is not coded, the program immediately passes control to
the END command for the DO block.

Field: CLASS RATE

Contents before: ’2’ ’5.00’

Contents after: ’2’ ’5.50’

Field: CLASS RATE

Contents before: ’0’ ’1’

Contents after: ’0’ ’1’
Procedural Command Group 4–29

ELSE Command
ELSE Command
ELSE

The ELSE command begins a group of procedure statements within an IF or DO
CASE block that execute if the conditions in the preceding IF command, or all of
the preceding CASE commands, are false. The ELSE command within a DO CASE
block must follow all of the CASE commands within the same DO CASE block.
There are no keywords.

Example 1

IF PF (CUSTPH 1 3) = ’713’
 LET T.TITLE = ’HOUSTON’
ELSE
 LET T.TITLE = ’OUTSIDE OF HOUSTON’
END

For the following field values, the logical expression in the IF command is false:

Because an ELSE command is coded, the program transfers control to the ELSE
command and executes the procedure statements that follow.

For the same code with the following field values, the logical expression in the IF
command is true:

The program processes the procedure statements following the IF command until
it encounters the ELSE command. The program then passes control to the
corresponding END command for the current IF command.

Example 2

DO CASE
CASE AREACODE= ’713’
LET T.TITLE= ’HOUSTON’
CASE AREACODE= ’806’
LET T.TITLE= ’NORTH WEST TEXAS’
CASE AREACODE= ’915’
LET T.TITLE= ’WEST TEXAS’
CASE AREACODE= ’512’
LET T.TITLE= ’SOUTH WEST TEXAS’
CASE AREACODE= ’409’
LET T.TITLE= ’S.E. TEXAS (EXCEPT HOUSTON)’
CASE AREACODE= ’817’
LET T.TITLE= ’NORTH CENTRAL TEXAS (FT. WORTH)’
CASE AREACODE= ’214’

Field: PF (CUSTPH 1 3) T.TITLE

Contents before: ’409’ ’ZZZZZZZZZZZZZZZZZZ’

Contents after: ’409’ ’OUTSIDE OF HOUSTON’

PF (CUSTPH 1 3) T.TITLE

Contents before: ’713’ ’OUTSIDE OF HOUSTON’

Contents after: ’713’ ’HOUSTON ’
4–30 ASL Reference Guide

ELSE Command
LET T.TITLE= ’N.E. TEXAS (INCLUDING DALLAS)’
 ELSE

LET T.TITLE= ’OUTSIDE OF TEXAS’
END

If AREACODE is one of the Texas state area codes, the program assigns T.TITLE
field to the portion of the state corresponding to the area code. If the area code is
not one of the Texas state area codes, the program executes the ELSE command
and sets the T.TITLE field to OUTSIDE OF TEXAS.
Procedural Command Group 4–31

END Command
END Command
END [{DO | IF | PROC}]

The END command signifies the end of an IF, DO, or PROC block. If no block
parameter is given, the END command is assumed to be for the innermost active
block.

Examples.

Specify an END command for every DO or IF command.

In the example, the first END command delimits the end of the embedded IF
command. The second END command delimits the end of the DO FORALL
command. The third END command delimits the end of the DO CASE command.

PROC MAXITEMS 25
CALL PROC XYZ

END PROC

The above example shows the use of the END command to terminate a procedure
block.

DO Specifies that this END command is for the current DO block.

IF Specifies that this END command is for the current IF block.

PROC Specifies that this END command is for the current procedure
block.

DO FORALL 1.PARM
 IF 1.RECORD NE ’ ’ THEN
 LET T.FIELD1 = 1.FIELD1
 LET T.FIELD2 = 1.FIELD2
 LET T.FIELD3 = 1.FIELD3
 END IF
END DO

 DO CASE
 CASE CLASS = 1
 LET RATE = RATE * 1.05
 CASE CLASS = 2
 LET RATE = RATE * 1.10
 END
4–32 ASL Reference Guide

FIELD Command
FIELD Command

The FIELD command defines a temporary field within a procedure. Once you
define a temporary field in the FIELD command, you can use it in other
procedures, reports, or subfiles. Make it a practice to define all temporary fields in
the first procedure in the application. The statement label is the field name.

field name:FIELD [TYPE] field type [[LENGTH] field-length]
[DECIMALS decimal-places]
[FLOAT floating-edit-char]
[FILL fill-edit-char]
[TRAIL trailing-edit-char]
[EDLEN edit-length]
[INIT initial-value]
[HEADING `line1` [`line2’]]

field name: FIELD
 FLD

Specifies a temporary field name.

■ Make field names from one to eight characters
long starting with an alphabetic character. See
Chapter 2, Terminology, Syntax, and Processing
for valid field names.

■ Place a colon at the end of the field name
followed by one or more blanks.

■ Even though the syntax appears to be
“labeling” the line, the FIELD keyword causes
the line to be a temporary field definition.

■ Specify all FIELD statements at the beginning
of a procedure.

TYPE field-type Specifies the field type. Make this operand a
1-character code corresponding to the storage
type of the field being defined (for example, C for
character type field, Z for zoned decimal).

For valid entries, see Appendix C, Technical Notes.

LENGTH field-length
LEN

Specifies the field length. Use an integer constant,
with a value within the range of the limits
imposed by the field type, as the operand.

For default field lengths for each field type, see
Appendix C, Technical Notes.

DECIMALS decimal-places
DEC

Specifies the number of decimal places for
numeric fields. Use an integer from 0 through 9 as
the operand. Make this value smaller than the
length of the numeric field.
Procedural Command Group 4–33

FIELD Command
FLOAT floating-edit-char
FLT

Specifies the floating edit character. Use a single
character constant as the operand.

For valid floating edit characters, see Appendix C,
Technical Notes.

FILL fill-edit-char Specifies filling edit character. Use a single
character constant as the operand.

For valid fill edit characters, see Appendix C,
Technical Notes.

TRAIL trailing-edit-char
TRL

Specifies the trailing edit character. Use a single
character constant as the operand.

For valid trailing edit characters, see Appendix C,
Technical Notes.

EDLEN edit-length Specifies an overriding edit length. Use an integer
constant as the operand.

For valid edit length entries, see Appendix C,
Technical Notes.

INIT initial-value Specifies an initial value. Use a constant, whose
type corresponds to the field type (For example,
for numeric type fields use numeric digits, as the
operand. Add a negative sign and decimal point,
if needed.)

HEADING ‘line1’ ‘line2’
HEAD

Specifies one or two lines of column heading for
the field if it is output to a report.

■ Use character constants enclosed in single
quotation marks as the operands.

■ Make each line of heading up to 14 characters
long.

■ To force a blank column heading, insert the
system delimiter after a blank within the
quotation marks.

■ Use two consecutive single quotation marks
within a heading to represent a single
quotation mark.

■ If you leave this operand blank, the field name
is used as the column heading.
4–34 ASL Reference Guide

FIELD Command
Example 1

FRSTTIME: FIELD TYPE C LENGTH 1 INIT ’Y’

You can reference the temporary field by using the qualifier T in front of the field
name (for example, T.FRSTTIME). The field contains character type values (such
as A to Z, 0 to 9, blanks) and is one character long with an initial value of Y.

Example 2

BALANCE: FIELD Z 8 2 HEADING ’CUSTOMER’ ’BALANCE’

The temporary field T.BALANCE contains numeric values (0 to 9, positive or
negative), has two decimal places, and is eight digits long. The first six digits are
to the left of the implied decimal place. If the temporary field is output to a report,
the column heading:

CUSTOMER
BALANCE

is centered over the column of data being printed.
Procedural Command Group 4–35

GO TO Command
GO TO Command
GO [TO] jump-to-label

The GO command branches forward to another labeled procedure statement in the
current procedure. Create labels for procedure statements by starting the line with
the label followed immediately by a colon and one or more blanks.

The GO command only branches forward to a subsequent labeled statement in the
current procedure. Do not attempt to use the GO command to branch backward to
a prior labeled statement.

You can use a GO statement to jump out of an IF-END or DO-END group of
statements. If you use a GO in this manner, it overrides the WHILE, UNTIL, FOR,
and FORALL conditions governing the DO loop.

Note: The periods mean that some of the procedure code has been omitted from
the example.

Example 1

.

.

.
GO TO LABEL10
.
.
.
LABEL10: LET A = A + 1
.
.
.

The example above shows the syntax of the GO command branching to a labeled
line forward in the procedure called LABEL10. The format of a label is shown on
the procedure statement with the LET command. When the GO command is
executed, all procedure statements between the GO command and the line labeled
LABEL10 are bypassed and processing continues with the LET command on the
labeled line.

Note: The periods between the END command and the ERROR labeled statement
mean that some of the procedure code has been omitted from the example.

Example 2

IF VALIDATE(ORDRDATE DATE)
 CALL REPORT ORDER
ELSE
 LET T.ERROR = ORDRDATE
 LET T.MSG = ’INVALID ORDER DATE’

TO jump-to-label Specifies the procedure statement to be executed next. You
can only jump to a subsequent labeled statement in the
current procedure.

The colon used on the labeled procedure statement is not
used on the GO TO command.
4–36 ASL Reference Guide

GO TO Command
 GO TO ERROR
END
;
IF VALIDATE(ITEMNO PATTERN P’9999999’)
 CALL REPORT ITEM
ELSE
 LET T.ERROR = ITEMNO
 LET T.MSG = ’INVALID ITEM NUMBER’
 GO TO ERROR
END
.
.
.
ERROR: CALL REPORT ERROR

The label ERROR is in a CALL command for an error report. Only the first error
detected is reported with this code.

■ If the order date is an invalid date, T.ERROR and T.MSG are set to indicate the
invalid date and a corresponding message. The next procedure statement is a
GO TO command that branches forward in the procedure to the line labeled
ERROR at the bottom of the procedure.

■ If the order date is valid, the CALL command for the report ORDER is
executed, and processing continues with the next IF command. If the field
ITEMNO does not contain all numerics according to the pattern, T.ERROR and
T.MSG are set to indicate the invalid item number and a corresponding
message. The next procedure statement is a GO TO command that branches
forward in the procedure to the line labeled ERROR at the bottom of the
procedure.
Procedural Command Group 4–37

IF Command
IF Command
IF [CONDITION] logical-expression [THEN]

Place the IF command at the beginning of a group of statements (an IF block) to be
performed when the logical expression on the IF command is true.

The program transfers control to the corresponding ELSE or END statement for
this IF block when the logical expression is false.

Use an END command to delimit the IF block of procedure statements.

Example 1

IF CUSTNO = ’00001’ THEN
 LET T.SET = ’ON’
ELSE
 LET T.SET = ’OFF’
END

When the field CUSTNO contains 00002, the program evaluates the logical
expression on the IF command as false, passes control to the ELSE command
within the IF block, and sets the field T.SET to OFF.

Example 2

IF PF(ORDRDATE 5 2) = PF(F.TODAY 5 2) -1 THEN
 CALL REPORT LASTYEAR
END

If the field ORDRDATE contains 011594 and the field F.TODAY contains 011595,
the logical expression on the IF command is true.

The logical expression on the IF command has an arithmetic sub-expression
PF(F.TODAY,5,2) -1. The last two positions of the flag field TODAY minus 1 are
compared to the last two positions of ORDRDATE. This logic isolates the year
portions of the two fields to see if the order was made last year with respect to the
current year.

Example 3

IF SCAN(CUSTNAME FOR ’ACME’) THEN
 CALL REPORT COMPANY
END

CONDITION logical-expression
COND

Specifies the logical expression. The logical
expression can contain:

■ Arithmetic sub-expressions (see
examples for further explanation).

■ PF, LOOKUP, FIND, SCAN, and
VALIDATE functions.

THEN Is an optional entry with no operands. Use it
for clarity and readability.
4–38 ASL Reference Guide

IF Command
The SCAN function serves as the logical expression, because it is a conditional
function. The program searches for the characters ACME in the field CUSTNAME.

■ If the program finds the character string, the SCAN function is true and the
program executes the CALL command for the report COMPANY.

■ Otherwise, if the logical expression is false, the program bypasses the
procedure statements between the IF command and the END command and
passes control to the statement following the END command.
Procedural Command Group 4–39

INCLUDE Command
INCLUDE Command

The INCLUDE command is used to include a cataloged request into the
application. This command may not be embedded inside a procedure but must be
placed either before or after a procedure block to include a cataloged request.

INCLUDE [ITEM] item-name,

[DATEFMT {DATE | TODAY | TODAYX | ISDATE | JULIAN | JULANX | mmddyy}],
[INFO ‘text’]

ITEM item-name Specifies the name of the cataloged request or
request group that is to be included in the
application.

DATEFMT format-code
DFMT

Specifies a code indicating how the report date is to
be formatted or specifies the date to be used as the
report date. Valid format codes are as follows:

DATE -- Specifies that the date be formatted as
mmm dd, yyyy (e.g. DEC 25, 2001) according to the
country conventions specified at installation time in
M4PARAMS.

TODAY -- Specifies that the date be formatted as
mm/dd/yy (e.g. 12/25/01) according to the county
conventions specified at installation time in
M4PARAMS.

TODAYX -- Specifies that the date be formatted as
mm/dd/yyyy (e.g. 12/25/2001) according to the
country conventions specified at installation time in
M4PARAMS.

ISDATE -- Specifies that the date be formatted as
yyyy-mm-dd (e.g. 2001-12-25).

JULIAN -- Specifies that the date be formatted as
yyddd where ddd is the serial day number of the
year (e.g. 01359).

JULANX -- Specifies that the date be formatted as
yyyyddd where ddd is the serial day number of the
year (e.g. 2001359).
4–40 ASL Reference Guide

INCLUDE Command
Examples
INCLUDE CATREQ1

The above example shows the use of the INCLUDE command to include cataloged
request CATREQ1 in the application.

PROC
CALL STATREPT

END PROC
INCLUDE STATREPT, DATEFMT TODAYX, INFO 'Status Report'

The above example shows the use of the INCLUDE command to include a
cataloged request that is a subroutine request along with the code to call the
cataloged request.

Alternatively, the date that is to be used as the report
date may be specified as mmddyy according to the
country conventions specified at installation time in
M4PARAMS (e.g. 070402 would be displayed as
07/04/02 using USA conventions).

If the DATEFMT keyword is omitted, the TODAY
format will be assumed.

INFO 'text' Specifies descriptive text that may be used to
annotate the cataloged request. The text cannot be
longer than 28 characters.
Procedural Command Group 4–41

LEAVE Command
LEAVE Command
LEAVE

The LEAVE command exits the corresponding DO block immediately (that is,
transfers control to the statement after the END command for the current block).

If the LEAVE command is within a nested DO block, the exit is to the outer DO
block. See Example 3 on the following page.

The LEAVE command can only be used in DO blocks. The LEAVE command
cannot be used in DO blocks with the keyword of CASE. The LEAVE command
has no keywords.

Example 1

LET T.COUNT = 0
DO UNTIL T.COUNT = 1000
 IF FIND(SEGMENT 1.ROOT)
 LET T.TOTAL = T.TOTAL + 1.AMOUNT
 LET T.COUNT = T.COUNT + 1
 ELSE
 LEAVE
 END
END

In this example, the LEAVE command transfers control out of the DO block if there
are less than 1000 records on the file being read by the FIND function. If the file
being read on the FIND function runs out of records before the DO UNTIL
command is satisfied, the false condition in the IF command passes control to the
ELSE command where the LEAVE command is executed. Without the LEAVE
command, there would be no way to exit the DO-END set of statements.

Example 2

LET T.ORDRCNT = 0
DO FORALL ORDER
 IF ORDCMPLT = ’Y’ THEN
 LET T.ORDRCNT = T.ORDRCNT + 1
 ELSE
 CALL REPORT ERROR
 LEAVE
 END
END

This section of code counts all of the completed orders. If any order is not complete
(that is, ORDCMPLT is not Y), the program executes the ELSE command along
with the subsequent procedure statements. The program processes the report
ERROR and exits the DO block without processing all of the ORDER segments.
4–42 ASL Reference Guide

LEAVE Command
Example 3.
DO UNTIL T.COUNT = 1000
 DO FORALL SEG20
 .
 .
 .
 LEAVE
 .
 .
 .
 END
END

The LEAVE command is within the inner DO block and when it is executed, the
program passes control to the statement after the END command which
corresponds to the inner DO block. The outer DO block is not affected by the
LEAVE command.
Procedural Command Group 4–43

LET Command
LET Command

Note: The IBM Language Environment (LE) service, CEEDATE, is Year 2000
compliant.

The LET command replaces or moves data between the source-expression and the
result-field.

LET [FIELD] result-field = source-expression [WITH][EDIT P’pattern’]
[ROUNDING] [JUSTIFY {LEFT | RIGHT}]

FIELD result-field
FLD

Specifies the receiving field. Use a field name or PF
function as the operand.

source-expression Specifies the “from” field or arithmetic expression. Use
a name, constant, or arithmetic expression, that can
include any value function (PF or LOOKUP), as the
operand.

WITH Is an optional entry with no operands. Use it for clarity
and readability where needed.

EDIT P’pattern' Specifies the edit pattern that is used to edit the
result-field. Specify a pattern string starting with the
letter P, followed by a beginning single quotation
mark, a string of special pattern symbols, and ending
with a closing quotation mark. It can be up to 31
characters long. Use EDIT only if the result-field is a
character string.

For valid edit pattern symbols, see Appendix C,
Technical Notes.

If the source-expression is a date field, the edit pattern
is a date format picture, for example MM/DD/YY.

For a list of valid picture characters. Use the date
format picture as a parameter in a call to CEEDATE,
see the IBM Language Environment Reference Manual.

ROUNDING Specifies that the result-field for all arithmetic and
replacement operations should contain rounded
results. Note that with the possible exception of divide,
no rounding occurs if the number of decimal places in
the result-field is not less than the number of decimal
places in the computed or replacement value.
4–44 ASL Reference Guide

LET Command
Example 1

LET T.NUMBER = 1.5

For the following field values, the temporary field T.NUMBER is replaced with the
numeric constant on the right side of the equal sign:

Example 2

LET FIELD1 = FIELD2 JUSTIFY LEFT

For the following field values, the contents of field FIELD2 are moved into the field
FIELD1:

The keyword JUSTIFY specifies LEFT for the direction and left-justifies the
contents of the FIELD1 field at the end of the LET command.

Example 3

LET A = X*Y+10

For the following field values, the contents of field X are multiplied by the contents
of field Y, 10 is added, and the result is stored in field A:

JUSTIFY {LEFT |
RIGHT}

Specifies that the result is to be left-justified or
right-justified after the move of the data. The direction
operand must be LEFT or RIGHT to indicate the
direction in which the result-field is to be justified.

■ If you omit RIGHT or LEFT, no action beyond
replace is taken.

■ JUSTIFY can only be used if the result-field is a
character string.

■ If EDIT and JUSTIFY are both specified, the
JUSTIFY take places after the edit.

Field: T.NUMBER

Contents before: ’0.0’

Contents after: ’1.5’

Field: FIELD1 FIELD2

Contents before: ’ZZZZZ’ ’ ABC’

Contents after: ’ABC ’ ’ ABC’

Field: A X Y

Contents before: ’0’ ’5’ ’5’

Contents after: ’35’ ’5’ ’5’
Procedural Command Group 4–45

LET Command
Example 4

LET T.AMOUNT = PAY + 100 WITH EDIT P’$,$$$.99’

For the following field values, the contents of field PAY plus 100 are stored in the
field T.AMOUNT with the specified edit pattern:

Example 5

LET RESULT = LOOKUP(MONTHS ARGUMENT ORDERMM)

This example uses the following lookup table where a number represents a month.

The program “looked up” value of the field ORDERMM in the argument list of the
MONTHS table. When the program finds a match, the program uses the result
value from the table as the value of the LOOKUP function and, in this case, puts it
into the field RESULT.

Field: T.AMOUNT PAY

Contents before: ’0’ ’950.25’

Contents after: ’$1,050.25’ ’950.25’

MONTHS (table)

 01 JANUARY

 02 FEBRUARY

 03 MARCH

 04 APRIL

 05 MAY

 06 JUNE

 07 JULY

 08 AUGUST

 09 SEPTEMBER

 10 OCTOBER

 11 NOVEMBER

 12 DECEMBER

RESULT ORDERMM

Before: ’ZZZZZZZZZ’ ’05’

After: ’MAY ’ ’05’
4–46 ASL Reference Guide

LET Command
Example 6

LET PF(T.STRING 02 04) = T.MIDDLE

For the following field values, the LET command moves the contents of the field
T.MIDDLE into the field T.STRING starting in location 2 for a length of 4:

Field: T.STRING T.MIDDLE

Contents before: ’123456789’ ’ABCD’

Contents after: ’1ABCD6789’ ’ABCD’
Procedural Command Group 4–47

LOCATE Command
LOCATE Command
Note: LOCATE is available in VISION:Builder and VISION:Two, but not
VISION:Inform.

■ If you use both ROW and COLUMN, the program locates a specific data cell in
the array.

■ If you code only ROW, the program processes all data cells in the row specified.

■ If you code only COLUMN, the program processes all data cells in the column
specified.

The program sets the system flag F.COLUMN to the column number being
processed as a result of the LOCATE command and sets the system flag F.ROW to
the row number being processed.

LOCATE [ARRAY] array-identifier
{[ROW row-number][COLUMN column-number]}

LOCATE
LOC

This command processes arrays by locating a
particular data cell in the array, a particular row
in the array, or a particular column in the array.

ARRAY array-identifier
ARR

Specifies the array-identifier. Use an identifier
that identifies an array in the current application
as the operand.

ROW row-number Specifies the row of the array. Use a constant, field
name, or arithmetic expression, whose value
specifies the row number to locate, as the
operand.

COLUMN column-number
COL

Specifies the column of the array. Use a constant,
field name, or arithmetic expression, whose value
specifies the column number to locate, as the
operand.

Array-identifier: A

Array name: BIRTHDAY

COLUMN 1 COLUMN 2

ROW1 JOE 020359 KAREN 122551

ROW2 DOUG 050658 SARA 100960
4–48 ASL Reference Guide

LOCATE Command
Example 1

LOCATE ARRAY A ROW 2 COLUMN 1

The program finds the data cell with DOUG and 050658 as a result of the LOCATE
command. When you use the field name(s) for the fields in the data cell, the
program processes only the one data cell that is located. At the end of the
procedure, the program automatically releases the array. The RELEASE command
can be performed before the end of the procedure to allow processing of the entire
array again.

Example 2

LOCATE A ROW X+1

If the field X contains 1, the arithmetic expression results in row 2 being located
(F.ROW contains 2). When fields in the array are referenced after the LOCATE
command, only row 2 is processed, looping through all columns in turn.
F.COLUMN contains each column number as the column is being processed.

Example 3

LOCATE A COLUMN T.COL

If the field T.COL contains 1, the value of the temporary field results in column 1
being located (F.COLUMN contains 1). When fields in the array are referenced
after the LOCATE command, only column 1 is processed, looping through all rows
in turn. F.ROW contains each row number as the row is being processed.
Procedural Command Group 4–49

PROC Command
PROC Command

The PROC command is used to begin a new procedure block. A procedure block
may contain any procedural command as well as report blocks and extract
statements. When the PROC command is used, no fixed syntax ER statement is
needed nor are the ##PROC and ##PEND statements required to bracket the ASL
procedural commands.

[proc-name:] PROC [TYPE {NORMAL | SUBROUTINE | INIT | PRE_MASTER_READ |
TYPE1 | TYPE2 | TYPEM | TYPE3 | TYPE4 |
EOF | EOFPLUS}],

[TEMPREINIT],
[SELECTIONCONTROL {YES | NO}],
[MAXITEMS number],
[BACKBRANCH number],
[INFO ‘text’],
[PARALLEL_LOOPING] (use with caution)

proc-name: Specifies the name of the procedure. Naming
a procedure is only required when the
procedure TYPE is specified as
SUBROUTINE.
4–50 ASL Reference Guide

PROC Command
TYPE invocation-event Specifies the event within the processing
cycle at which the procedure will be invoked.
If this keyword is omitted, the procedure will
be invoked during each iteration of the
master file read and standard coordination
cycles. Valid invocation-event specifications
are:

NORMAL -- Specifies that the procedure
will be invoked during each iteration of the
master file read and standard coordination
cycles.

SUBROUTINE or SUB -- Specifies that the
procedure will only be invoked when
explicitly called by a procedural CALL
statement.

INIT -- Specifies that the procedure will be
invoked only one time after the master and
coordinated files have been opened but
before any records from these files have been
processed.

PRE_MASTER_READ -- Specifies that the
procedure will be invoked just prior to
reading the next master file record.
Procedural Command Group 4–51

PROC Command
TYPE1 -- Specifies that the procedure will
be invoked after each transaction record has
been read.

TYPE2 -- Specifies that the procedure will
be invoked after the transaction file and the
master files have been aligned.

TYPEM -- Specifies that the procedure will
be invoked after the master file record has
been updated but before first round
coordination.

TYPE3 -- Specifies that the procedure will
be invoked after the master file record has
been updated but after first round
coordination.

TYPE4 -- Specifies that the procedure will
be invoked whenever a transaction record is
rejected, either explicitly by procedural code
or implicitly by transaction validation
controls.

EOF -- Specifies that the procedure will be
invoked only once after the transaction file,
master file, and all coordinated files have
reached end of file.

EOFPLUS -- Specifies that the procedure
will be invoked as in NORMAL and
additionally as in EOF above.

TEMPREINIT

REINIT

Specifies that temporary fields explicitly
defined in this procedure are to be
re-initialized every time this procedure is
invoked. If this keyword is omitted, the
contents of any temporary fields defined in
this procedure will be unchanged from their
last usage when this procedure is invoked.
4–52 ASL Reference Guide

PROC Command
SELECTIONCONTROL {YES | NO}

SELCNTL Specifies whether or not all occurrences of
repeated segments in a hierarchical structure
are to be examined.

YES -- Specifies that only the first
occurrence of a repeated segment within
each record that meets the selection
qualification will be selected.

NO -- Specifies that all occurrences of
repeated segments within each record that
meet the selection qualification will be
selected. This is the default if the
SELECTIONCONTROL keyword is omitted.

MAXITEMS number Specifies the maximum number of records
that will be selected for this procedure.
Specify a number from 1 to 9999 to limit the
number of records that will be selected for
this procedure. If this keyword is omitted,
the number of records that will be selected is
unlimited.

BACKBRANCH number
BACKB

Specifies the maximum number of times that
a TRANSFER command to a procedure
earlier on in the transaction processing cycle
may be executed.

INFO 'text' Specifies descriptive text that may be used to
annotate the procedure. The text cannot be
longer than 28 characters
Procedural Command Group 4–53

PROC Command
Examples
MAIN: PROC INFO 'Main Procedure'
PROC SELECTIONCONTROL YES, MAXITEMS 500
SUB1: PROC TYPE SUBROUTINE

PARALLEL_LOOPING This is a deprecated specification that
modifies the automatic looping algorithm for
hierarchical structures containing multiple
branches such that the Cartesian product of
all child occurrences within a parent will not
always be produced. Although
PARALLEL_LOOPING may optimize
performance, processing and output results
will be data dependent and therefore, could
be misleading. The ABBREVIATED keyword
specification on the REPORT and EXTRACT
commands is the preferred specification to
eliminate redundant output when dealing
with multi-branch hierarchical structures or
views. Use of the PARALLEL_LOOPING
specification is strongly discouraged and
should only be used in specific situations
where the implications of its use are fully
understood.
4–54 ASL Reference Guide

RELEASE Command
RELEASE Command
RELEASE {[SEGMENT] segment-name | ARRAY array-identifier}

Example 1

IF FIND(SEGMENT ORDER WHERE ORDERNO = 10001)
 RELEASE SEGMENT ORDER
 CALL REPORT ORDERS
END

The FIND function is true if there is at least one segment with an order number of
10001. The function positions on the first segment that is found.

The RELEASE command releases the ORDER segment that was found and the
report outputs all of the current orders. Without the RELEASE command, the
report ORDERS would only have access to the single segment established by the
FIND function.

RELEASE
REL

Releases a segment specified by the FIND
function or an array specified by the LOCATE
command.

A FIND or LOCATE command limits the
application’s view of data that is available.
Subsequent field references process data only
from segments that result from a FIND command
or cells that result from a LOCATE command.

The RELEASE command unlocks the application
view and makes available all segments, or cells, to
subsequent statements.

After the RELEASE command in the procedure,
any reference to the segment or array results in
processing, beginning with the first occurrence of
the segment or the beginning of the array.

Note: The RELEASE command ARRAY keyword
is available in VISION:Builder and VISION:Two,
but not VISION:Inform.

SEGMENT segment-name
SEG

Specifies a segment name to release. Do not use
the name of a root segment as the operand.

ARRAY array-identifier
ARR

Specifies the identifier of an array to release. Use
an identifier corresponding to the array to be
released as the operand.
Procedural Command Group 4–55

RELEASE Command
Example 2

The Birthday array from the examples for the LOCATE command is being used in
this example.

LOCATE ARRAY A ROW 1 COLUMN 1
IF A.NAME EQ ’JOE 020359’ THEN
 CALL REPORT NAMES
ELSE
 RELEASE ARRAY A
END

First, the program locates a cell of the array with the LOCATE command giving the
ROW and COLUMN of the data cell. The program tests the field A.NAME in the
array and, if the field does not contain JOE 020359, executes the ELSE command
and releases the array. Otherwise, the data cell located at row 1 column 1 is the
only cell available after the END of the IF block.
4–56 ASL Reference Guide

REPLACE Command
REPLACE Command
REPLACE [STRING] search-string [IN] modify-field [WITH] substitute-value

The system field SSCOUNT counts the number of matches found during the
REPLACE operation.

■ If the search-string is longer than the modify-field, the F.SSCOUNT system
field is set to zero.

■ If the modify-field or the search-string is null (an empty variable length field)
or invalid and/or the substitute-value is invalid, the operation is not performed
and the F.SSCOUNT system field is set to -2.

■ If the search-string and the substitute-value are of different lengths, the
REPLACE command is executed according to the following rules:

– If the search-string is smaller than the substitute-value, the portion to the
right of the matching characters is shifted to the right to make room for the
characters to be substituted.
Non-blank characters might be lost on the right (truncated) by this process,
unless the modify-field is a variable length field.

REPLACE
REP

This command replaces all occurrences in modify-field
of search-string with substitute-value.

■ The scan of the modify-field for the search-string
begins at the leftmost character in the modify-field.

■ The substitute-value is substituted into the
modify-field in place of the search-string.

■ The scan of the modify-field for the search-string
then resumes starting with the first character after
the substituted characters.

This process continues until the end of the scanned
field is reached.

STRING search-string
STR

Specifies the string to search for in modify-field. The
operand can be a field name, character constant, or
validation pattern.

For valid pattern symbols, see Appendix C, Technical
Notes.

IN modify-field Specifies the field to be modified (that is, the field that
contains the search-string). Use a field name or a PF
function as the operand.

WITH substitute-value Specifies the value to be substituted into modify-field
instead of search-string. Use a field name or character
constant as the operand.
Procedural Command Group 4–57

REPLACE Command
If the substitution would cause the maximum length of a variable length
field to be exceeded, the operation does not take place, the modify-field
becomes invalid, and the system field F.SSCOUNT is set to a -1.

– If the search-string is larger than the substitute-value, the portion of the
modify-field to the right of the matching characters is left-justified and
placed adjacent to the substituted characters.
If the modify-field is a fixed length character field, trailing blanks are
created in the field.

If the substitute-value is a variable length field with a null length, a zero
length field is substituted for the search-string, effectively eliminating it and
left-justifying the remaining portion of the field.

Example 1

REPLACE ’ABC’ IN CUSTNAME WITH ’XYZ’

For this example, each time the literal ABC is found in the field CUSTNAME, it is
replaced with the literal XYZ. F.SSCOUNT is set to 1, because one match was
found:

Example 2

REPLACE P’ZZZ999’ IN ITEMNO WITH ’111QQQ’

For this example, each time the pattern of three alphabetics followed by three
numerics is found in the field ITEMNO, it is replaced by the literal 111QQQ.
F.SSCOUNT is set to 1 because one match was found:

Example 3

REPLACE ’/’ IN SHIPDATE WITH T.NULL

For this example, each time the program finds ’/’ in the field DATE, the program
substitutes the null value from the field T.NULL. The program sets F.SSCOUNT to
2, because two matches were found:

Field: CUSTNAME

Contents before: ’THE ABC COMPANY’

Contents after: ’THE XYZ COMPANY’

Field: ITEMNO

Contents before: ’3AAA222C’

Contents after: ’3111QQQC’

Field: SHIPDATE T.NULL (TYPE V, EMPTY)

Contents before: ’01/15/01’ ’ ’

Contents after: ’011501 ’ ’ ’
4–58 ASL Reference Guide

RETURN Command
RETURN Command
RETURN
RET

Use the RETURN command in a subroutine procedure to branch back to the
calling procedure. Note that a RETURN statement is not required for a subroutine
procedure to get back to the calling procedure, because the end of a procedure
constitutes an automatic RETURN.

Control automatically passes back to the calling procedure after all of the
statements in the subroutine procedure process.

Example
IF ORDCMPLT = ’Y’
 CALL REPORT ORDERS
 RETURN
END
;
IF DATE LE ’010115’
 CALL REPORT TRACKDWN
 RETURN
END
CALL REPORT ALLOTHRS

These procedure statements make up a subroutine procedure that you can CALL
from any other procedure. When the subroutine procedure executes the RETURN
commands, the subroutine procedure passes control back to the calling procedure.

If ORDCMPLT is equal to Y or the DATE is less than or equal to 010115, the
program produces a report line and immediately exits the subroutine procedure
by one of the RETURN commands. The subroutine procedure automatically exits
after processing the CALL command to report ALLOTHRS where the RETURN
is implied.
Procedural Command Group 4–59

TRANSFER Command
TRANSFER Command
TRANSFER [TO] {NEXT_MASTER | TYPE_1 | TYPE_2}

The TRANSFER command exits procedures immediately and transfers processing
control to another type of procedure.

Example
IF CUSTOMER LT ’01000’
 TRANSFER NEXT_MASTER
END

In this example, the program processes only CUSTOMER values greater than or
equal to 01000 through the remainder of the procedure after the END command.
For CUSTOMER values less than 01000, the TRANSFER command is executed.
The program reads the next master file and then starts the processing cycle again.

NEXT_MASTER Causes the system to read the next master file record and start
the processing cycle again.

TYPE_1 Transfers control to the Transaction Record Initial Validation
control procedure. Because this procedure has already been
executed, a TRANSFER TYPE_1 constitutes recycling to an
earlier point in the processing cycle. The results of all previous
procedures (including the prior execution of the
event-controlled procedure) are still in effect.

TYPE_2 Transfers control to the Transaction/Master File Alignment
control procedure. Because this procedure has already been
executed, a TRANSFER TYPE_2 constitutes recycling to an
earlier point in the processing cycle. The results of all previous
procedures (including the prior execution of the
event-controlled procedure) are still in effect.
4–60 ASL Reference Guide

Chapter
5 R
eport Command Group
The Report command group includes the commands that are used to specify
report output. The statements used to specify report output must begin with a
REPORT command and end with an END command. These statements constitute
a report block.

A report block may in turn contain one or more groups of statements that specify
the layout for a section of the report (page title, column headings, or summaries)
in a formatted report. These statements are defined as section block commands.

The following table identifies each of the commands in the Report command group
along with an indication of whether the command is restricted for use within the
section block:

Command Function Section Block Only

AVERAGE Compute an average summary

COMPUTE Compute a value in a Summary Section
of a formatted report

Yes

COUNT Compute a count summary

CUMULATE Compute a cumulative total summary

DATA Format data for a line in a formatted
report

Yes

END End of Report Block or Section Block

FORMAT Report formatting parameters and
controls

GROUP Report data grouping controls

ITEM Report data content and controls

LINE Format and output data line in a
formatted report

Yes

MAX Compute a maximum value summary
Report Command Group 5–1

A report block may be embedded inside a procedure block, and a procedure block
may contain more than one report block. When embedded inside a procedure, a
report will be invoked based upon the logic flow of the procedure. When present
outside of a procedure, a report will be invoked based upon the TYPE keyword.

A section block must always be inside of a report block. Only one of each of the
three different section types may occur inside of a report block.

Partial field notation may be used for most character type fields referenced within
a report block. The statement descriptions explicitly note those instances where
partial field notation is not accepted. Unlike varchar field usage in procedure block
statements, partial field notation is not allowed for varchar fields referenced
within a report block.

MIN Compute a minimum value summary

NEWPAGE Control the beginning of a new page in
a formatted report

Yes

ORDER Report data sorting controls

PERCENT Compute a percent summary

PREFACE Report preface page contents

RATIO Compute a ratio summary

REPORT Begin report and specify report content

SECTION Begin a section of a formatted report Yes

SIZE Control the size of the detail section in a
formatted report

Yes

SKIP Skip lines (leave blank) in a formatted
report

Yes

TITLE Report title line contents

TOTAL Compute a total summary

XREP Extended report controls

Command Function Section Block Only
5–2 ASL Reference Guide

AVERAGE Command
AVERAGE Command

The AVERAGE command is used to specify that an average type summary is to be
computed for the field. AVG may be used as an abbreviation for AVERAGE.

Examples
AVERAGE AMOUNT BY CUSTNO

Compute the average of the field named AMOUNT grouped by CUSTNO.

AVERAGE SALARY AT LEVEL 2

Compute the average of the field named SALARY at the level 2 control break.

AVERAGE [ITEM] summary-field ...,

{BY group-field | AT LEVEL level-number}

ITEM summary-field … Specifies the qualified names of one or more fields
for which an average summary is to be computed.
The field may be a partial field using the PF function
notation.

BY group-field Specifies the qualified name of the field by which
the summaries are to be grouped. The field may be
a partial field using the PF function notation. This
keyword is mutually exclusive with the AT LEVEL
keyword.

AT LEVEL level-number Specifies a control break level number by which the
summaries are to be grouped. Valid specifications
for level number are 1 through 9 and G. If this
keyword is specified, a GROUP command with an
AT LEVEL keyword must also be specified. The
GROUP command specifies the name(s) of the
field(s) by which the summaries are grouped. This
keyword is mutually exclusive with the BY
keyword.
Report Command Group 5–3

COMPUTE Command
COMPUTE Command

The COMPUTE command is used to compute special temporary values to be used
in a summary section. The result of the computation is stored in an STEMP field
named STEMPnn where nn is specified as 01-99 to uniquely identify the field. A
maximum of 99 STEMP fields may be defined in this way. Note that the AT LEVEL
specification is always required.

COMPUTE STEMPnn = operand1 operator operand2,

[PICTURE P'picture'],
[DECIMALS decimal-places],
[ROUNDED],
AT LEVEL level-number

STEMPnn Specifies the result field for the command. The
nn of STEMPnn uniquely identifies the STEMP
result field and may be a value between 01-99
(leading 0 required when the value is less than
10). STEMP fields defined with the COMPUTE
command may be referenced in subsequent
COMPUTE commands and output using the
DATA and LINE commands.
5–4 ASL Reference Guide

COMPUTE Command
= operand1 operator operand2

Specifies the operation to be performed and
the operand(s) to be used. If only operand1 is
specified, the operation is a simple assignment
of operand1 to the STEMP result. Otherwise, a
simple arithmetic expression may be specified.
The operator may be +, -, *, / representing
addition, subtraction, multiplication, and
division, respectively. Operand1 and
operand2 may be STEMP fields, constants, or
summary functions. STEMP fields appearing
as operand1 or operand2 must have been
defined as a result field in a previous
COMPUTE command. Summary functions are
specified as summary-function(field-name
break-level) where summary-function may be
TOTAL[TOT], CUMULATE[CUM],
COUNT[CNT], MAX, MIN,
AVERAGE[AVG], PERCENT[PCT], or
RATIO[RTO] and break-level is the control
break level (1-9 or G) at which the summary
was computed. This level number must be at
the same or a more minor level (higher
number) than the number specified with the
AT LEVEL keyword.

PICTURE P'picture'
PIC

Specifies the edit picture to be used when
displaying the STEMP field. If this STEMP
field is not displayed, this keyword is ignored.
If this keyword is omitted on this command
but was specified on a previous COMPUTE
command for the same STEMP field, the
previous picture will persist. See Appendix B
for valid edit picture symbols.

DECIMALS decimal-places
DEC

Specifies the number of decimal places held in
the result field. The value may be a number
between 0 and 9.

ROUNDED Specifies that rounding is to be performed
when the STEMP result contains fewer
decimal places that the operand(s) on the right
side of the =.

AT LEVEL level-number Specifies the control break level number (1-9 or
G) at which this COMPUTE command is to be
performed. The level number must have been
specified or implied in a GROUP command.
This specification may not be omitted from the
command.
Report Command Group 5–5

COMPUTE Command
Example
COMPUTE STEMP01 = TOTAL(SALARY 2) * 1.10,

PIC P'$$$,$$9.99', DEC 2, AT LEVEL 2

Compute an STEMP field named STEMP01 containing 2 decimal places using the
total of SALARY at level multiplied times the constant 1.10. Display the value
using the edit picture and perform the computation at the level 1 control break.

COMPUTE STEMP02 = STEMP01, DEC 0, ROUNDED, AT LEVEL 2

Compute the STEMP field named STEMP02 with 0 decimal places by rounding
field STEMP01.

COMPUTE STEMP03 = TOTAL(SALARY 2) / TOTAL(SALARY 1),
AT LEVEL 1

COMPUTE STEMP03 = STEMP03 * 100

Compute the percentage that the total of SALARY computed at the last level 2
control break is of the total of SALARY at the level 1 control break.
5–6 ASL Reference Guide

COUNT Command
COUNT Command

The COUNT command is used to specify that a count type summary is to be
computed for the field. CNT may be used as an abbreviation for COUNT.

Examples
COUNT ORDERNO BY CUSTNO

Compute a count of the ORDERNO items grouped by CUSTNO.

COUNT ORDERNO AT LEVEL 2

Compute the count of the ORDERNO items at the level 2 control break.

COUNT [ITEM] summary-field ...,

{BY group-field | AT LEVEL level-number}

ITEM summary-field … Specifies the qualified names of one or more fields
for which a count summary is to be computed. The
field may be a partial field using the PF function
notation.

BY group-field Specifies the qualified name of the field by which
the summaries are to be grouped. The field may be
a partial field using the PF function notation. This
keyword is mutually exclusive with the AT LEVEL
keyword.

AT LEVEL level-number Specifies a control break level number by which the
summaries are to be grouped. Valid specifications
for level number are 1 through 9 and G. If this
keyword is specified, a GROUP command with an
AT LEVEL keyword must also be specified. The
GROUP command specifies the name(s) of the
field(s) by which the summaries are grouped. This
keyword is mutually exclusive with the BY
keyword.
Report Command Group 5–7

CUMULATE Command
CUMULATE Command

The CUMULATE command is used to specify that a cumulative total type
summary is to be computed for the field. A cumulative total represents an
accumulation of field totals since the beginning of the report. CUM may be used as
an abbreviation for CUMULATE.

Examples
CUMULATE AMOUNT BY CUSTNO

Compute the cumulative total for AMOUNT grouped by CUSTNO.

CUMULATE SALARY AT LEVEL 2

Compute the cumulative total for SALARY at the level 2 control break.

CUMULATE [ITEM] summary-field ...,

{BY group-field | AT LEVEL level-number}

ITEM summary-field … Specifies the qualified names of one or more fields
for which a cumulative total summary is to be
computed. The field may be a partial field using the
PF function notation.

BY group-field Specifies the qualified name of the field by which
the summaries are to be grouped. The field may be
a partial field using the PF function notation. This
keyword is mutually exclusive with the AT LEVEL
keyword.

AT LEVEL level-number Specifies a control break level number by which the
summaries are to be grouped. Valid specifications
for level number are 1 through 9 and G. If this
keyword is specified, a GROUP command with an
AT LEVEL keyword must also be specified. The
GROUP command specifies the name(s) of the
field(s) by which the summaries are grouped. This
keyword is mutually exclusive with the BY
keyword.
5–8 ASL Reference Guide

DATA Command
DATA Command

The DATA command is used to specify the content and layout for a portion of, or
all of, a report line within a summary section (see SECTION command). Note that
the DATA command does not output the report line. A subsequent LINE
command is required to output the report line.

DATA {'text' | LITERAL('text', repeat-count) | field-name |,

summary-function(field-name [level]) |,
STEMPnn | COL(column-number) | SPACES(number-spaces)}…,
AT LEVEL level-number

'text' Specifies literal text that is to be placed into the
report line at the current position.

LITERAL('text', repeat-count)
LIT

Specifies literal text that is to be placed into the
report line at the current position and repeated
repeat-count times.

field-name Specifies the qualified name of a field whose
contents are to be placed into the report line at
the current position. The field may not specify
partial field (PF) notation.
Report Command Group 5–9

DATA Command
summary-function(field-name [level])

Specifies that a summary value for the field
identified by field-name and whose summary
type is specified by summary-function is to be
placed into the report line at the current
position. Summary-function may be specified
as any of the TOTAL[TOT],
CUMULATE[CUM], COUNT[CNT], MAX,
MIN, AVERAGE[AVG], PERCENT[PCT], or
RATIO[RTO] summaries. When
summary-function is specified, a
corresponding summary command (for
example, TOTAL command) or a REPORT
command ITEMS operand summary function
(for example, TOTAL(field-name BY
field-name)) must also be specified. The
summary-function level number operand
specifies the control break level of the
summary to be used and is optional. If
specified, it must be a number between 1 and 9
or G and must be at a level equal to or lower
(numerically higher) than the level number
specified by AT LEVEL. If the
summary-function level is not specified, it will
default to the level number specified with the
AT LEVEL keyword. Partial field notation (PF
function) may not be used for the field.

STEMPnn Specifies the STEMP field that is to be placed
into the report line at the current position. The
STEMP operand may only be used when the
DATA command is part of a summary section.
STEMP fields must have been defined with a
COMPUTE command prior to the DATA
command. Refer to the COMPUTE command
for further detail regarding the definition and
use of STEMP fields.
5–10 ASL Reference Guide

DATA Command
Examples
DATA COL(10) 'State Total for ' T.STATE SPACES(5),

TOTAL(AMOUNT) AT LEVEL 1

The following line illustrates what the report line would contain beginning in
column 10 for this Example

State Total for CA $235,768

DATA LITERAL('-', 80) AT LEVEL G

A string of dashes 80 characters long would be placed into the print line when the
control break is at the Grand level.

COL(column-number) Specifies that the current columnar position
within the print line is to be set to
column-number.

SPACES(number-of-spaces) Specifies that the current columnar position
within the print line is to be advanced by
number-of-spaces positions.

AT LEVEL level-number Specifies the control break level number at
which the respective data elements are to be
placed into the report line. Valid specifications
for the number are 0 through 9 and G. A level
number of 0 indicates that the data is
formatted regardless of what the current
control break level is set to. A level number of
1 to 9 or G (grand level) specifies that the data
is formatted only when a control break has
occurred at a level equal to or higher
(numerically lower) than the number. The AT
LEVEL keyword is required for every DATA
command.
Report Command Group 5–11

END Command
END Command

The END command is used to signal the end of the current report block or section
block within a report block. If no block parameter is given, the END command is
assumed to be for the current innermost active block.

Examples
REPORT HIREDATE EMPNO LASTNAME FIRSTNME MIDINIT
ORDER BY HIREDATE, DESC HIREDATE
SECTION PAGETITLE
LINE 'Report listing employees as of ' F.DATE,

' by hire date'
END SECTION

END REPORT

The above example shows the use of the END command for a section block and a
report block.

END [{REPORT | SECTION}]

REPORT Specifies that this END command is for the current REPORT block.

SECTION Specifies that this END command is for the current SECTION block.
5–12 ASL Reference Guide

FORMAT Command
FORMAT Command

The FORMAT command specifies various report parameters and controls.

FORMAT [HEIGHT number],

[WIDTH number],
[DATEPOS {UL | UR | MT | LL | LR | MB | ND}],
[PAGEPOS {UL | UR | MT | LL | LR | MB | NP}],
[TITLEPOS {TOP | BOTTOM}],
[HEADINGS {YES | NO | NAME}],
[HEADPOS {ABOVE | BELOW}],
[DATEFMT {DATE | TODAY | TODAYX | ISDATE | JULIAN | JULANX |

mmddyy}],
[BORDER {YES | NO | 'x'}],
[STARTPAGE {number | PAGE}],
[MAXPAGES number],
[LINESPERPAGE number],
[DETAILSPACING number],
[INCOMPLETESUM 'x'],
[NODATA {SKELETON | NOREPORT}],
[SUBTITLE {REPEAT | NOREPEAT | NEWPAGE}],
[SUMMARYLABELS {SPACE | NOSPACE | SUPPRESS}],
[LINENUMS {NONE | LEFT | RIGHT | BOTH}],
[IMAGES number [IMGTITLE {LOGPAGE | PHYPAGE | NEWPAGE}]]
[METHOD {STDLIST | ALTLIST | CSV | TAB | HTML | PLAINTEXT |

RAWDATA}],
[STYLE number],
[DDNAME ddname],
[SUMFILE ddname],
[AUTODEF]

HEIGHT number Specifies the height of the printed report page,
including margins, as a number of lines. If this
keyword is omitted, the default page height
specified at installation time in M4PARAMS
is used.

WIDTH number Specifies the width of the printed report page,
including margins, as a number of characters.
Report Command Group 5–13

FORMAT Command
DATEPOS position-code
DPOS

Specifies the position on the page at which the
report date is to be placed. The valid position
codes are as follows:

■ UL -- Specifies the upper-left part of the
page

■ UR -- Specifies the upper-right part of
the page

■ MT -- Specifies the middle top part of the
page

■ LL -- Specifies the lower-left part of the
page

■ LR -- Specifies the lower-right part of the
page

■ MB -- Specifies the middle bottom part of
the page

■ ND -- Specifies that no report date is to
appear on the page

If this keyword is omitted, the report date will
be placed in the upper-left part of the page.
5–14 ASL Reference Guide

FORMAT Command
PAGEPOS position-code
PPOS

Specifies the position on the page at which the
page number is to be placed. The valid
position codes are as follows:

■ UL -- Specifies the upper-left part of the
page

■ UR -- Specifies the upper-right part of the
page

■ MT -- Specifies the middle top part of the
page

■ LL -- Specifies the lower-left part of the
page

■ LR -- Specifies the lower-right part of the
page

■ MB -- Specifies the middle bottom part of
the page

■ NP -- Specifies that no page number is to
appear on the page

If this keyword is omitted, the page number
will be placed in the upper-right part of the
page.

TITLEPOS title-position
TPOS

Specifies the position on the page at which the
title lines are to be placed. If this keyword is
omitted or title-position is specified as TOP,
any title lines will be positioned at the top of
the page. If title-position is specified as
BOTTOM, any title lines will be positioned at
the bottom of the page.
Report Command Group 5–15

FORMAT Command
HEADINGS heading-type
HEAD

Specifies whether the report will have a
column-heading section and, if so, the source
of the heading text. The valid heading-type
specifications are as follows:

■ YES -- Specifies that this report will
contain a column-heading section and that
the column text will be the column
headings contained in the file definition.

■ NO -- Specifies that this report will not
contain a column-heading section.

■ NAME -- Specifies that this report will
contain a column-heading section and the
column heading text will be the names of
the fields contained in the report.

HEADPOS heading-position
HPOS

Specifies the position on the page at which the
column-heading section, if any, is to be
placed. If this keyword is omitted or
heading-position is specified as ABOVE, the
column-heading section will appear above
the detail lines. If heading-position is
specified as BELOW, the column-heading
section will appear below the detail lines.
5–16 ASL Reference Guide

FORMAT Command
DATEFMT format-code
DFMT

Specifies a code indicating how the report
date is to be formatted or specifies the date to
be used as the report date. Valid format codes
are as follows:

■ DATE -- Specifies that the date be
formatted as mmm dd, yyyy (for example,
DEC 25, 2001) according to the country
conventions specified at installation time
in M4PARAMS.

■ TODAY -- Specifies that the date be
formatted as mm/dd/yy (for example,
12/25/01) according to the country
conventions specified at installation time
in M4PARAMS.

■ TODAYX -- Specifies that the date be
formatted as mm/dd/yyyy (for example,
12/25/2001) according to the country
conventions specified at installation time
in M4PARAMS.

■ ISDATE -- Specifies that the date be
formatted as yyyy-mm-dd (for example,
2001-12-25).

■ JULIAN -- Specifies that the date be
formatted as yyddd where ddd is the serial
day number of the year (for example,
01359).

■ JULANX -- Specifies that the date be
formatted as yyyyddd where ddd is the
serial day number of the year (for example,
2001359).

■ Alternatively, the date that is to be used as
the report date may be specified as
mmddyy according to the country
conventions specified at installation time
in M4PARAMS (for example, 070402
would be displayed as 07/04/02 using
USA conventions).

If the DATEFMT keyword is omitted, the
TODAY format will be assumed.
Report Command Group 5–17

FORMAT Command
BORDER border-type Specifies whether or not border lines are to
appear above and below the column-heading
section or specifies the character to be used to
form the border lines. Valid border-type
specifications are as follows:

■ YES -- Specifies that border lines are to
appear surrounding the column-heading
section lines and that the character
specified at installation time in
M4PARAMS is to be used to form the
lines.

■ NO -- Specifies that no border lines are to
appear.

Alternatively, a specific border character from
which the border line is to be formed may be
specified. If a blank is specified as the border
character, then the border lines will be blank
lines. If the BORDER keyword is omitted,
border lines containing the character specified
at installation time in M4PARAMS will
appear.

STARTPAGE number
START

Specifies either the starting page number for
the report, or that page numbers are to be
reset at a level 1 control break. Specify a
number from 1 to 9999 as the starting page
number or the word PAGE to specify that
page numbers are to be reset at a level 1
control break. If this keyword is omitted, the
report page numbers will start at 1.

MAXPAGES number
MAXP

Specifies the maximum number of pages that
will be produced for the report. When the
page count exceeds the maximum number of
pages and there is still more data that was
selected for the report, the remaining data will
be discarded. If this keyword is omitted, all
selected data will be output.

LINESPERPAGE number
LINES

Specifies that the number of lines printed on
each page be limited to the specified number.
If this keyword is omitted, the number of lines
is determined by the height of the page as
specified by the HEIGHT keyword (or its
default) less the standard margins.
5–18 ASL Reference Guide

FORMAT Command
DETAILSPACING number
SPACING

Specifies the spacing between logical detail
lines in the report. The number may be in the
range of 1 to 9. The number of blank lines that
are output between logical detail lines is 1 less
than the number specified. For example, if
number is 1, no blank lines will be output
between logical detail lines; if number is 2,
one blank line will be output between logical
detail lines.

INCOMPLETESUM 'x'
ISUM

Specifies a character that is to print in place of
a summary value for summaries that are
incomplete due to one or more missing or
invalid fields involved in computing the
summary. If this keyword is omitted, the
computed summary value, ignoring any
missing or invalid fields, will be printed.

NODATA action Specifies the action to be taken when no data
is selected for the report. The valid action
specifications are:

■ SKELETON -- Specifies that a skeleton
report is to be produced.

■ NOREPORT -- Specifies that all report
output is suppressed.

If this keyword is omitted, the default
specified action specified at installation time
in M4PARAMS will be used.
Report Command Group 5–19

FORMAT Command
SUBTITLE action Specifies the action to be taken when a page
break occurs that does not coincide with the
subtitle break. See the GROUP command for
information regarding subtitles. The valid
action specifications are:

■ REPEAT -- Specifies that the subtitle line
should be repeated before the first detail
line is output.

■ NOREPEAT -- Specifies that the subtitle
line should not be repeated before the first
detail line is output.

■ NEWPAGE -- Specifies that the repeating
subtitles print only on each new physical
page of a multi-image report. This is in
contrast to the specification of REPEAT
(see above) in which case, the repeating
subtitles would print on each new logical
page. The specification of NEWPAGE is
ignored for single-image reports.

SUMMARYLABELS
alignment
LABELS

Specifies how report columns are to be
aligned in relation to summary descriptions
when summaries are requested. Valid
alignment specifications are as follows:

■ SPACE -- Specifies that 14 spaces are
reserved at the left margin of the page for
summary labels. Data columns will begin
to the right of the summary labels. This is
the default if the SUMMARYLABELS
keyword is omitted.

■ NOSPACE -- Specifies that no space will
be reserved for the summary labels and
that data columns will begin at the left
margin of the page. Summary labels will
appear at the left margin of the page
underneath the leftmost data columns.

■ SUPPRESS -- Specifies that summary
labels are suppressed altogether.
Summary values will appear under their
respective data columns without any label
information.
5–20 ASL Reference Guide

FORMAT Command
LINENUMS position
LNUMS

Specifies whether logical detail lines of the
report should be numbered and, if so, the
position of the line numbers. Valid position
specifications are as follows:

■ NONE -- Specifies that lines will not be
numbered. This is the default if the
LINENUMS keyword is omitted.

■ LEFT -- Specifies that lines will be
numbered and the line numbers will
appear at the left margin of the page.

■ RIGHT -- Specifies that lines will be
numbered and the line numbers will
appear at the right margin of the page.

■ BOTH -- Specifies that lines will be
numbered and the line numbers will
appear at both the left and right margins of
the page.

If line numbers are specified, 6 positions are
reserved for the number. On folded lines, left
line numbers print on the first physical line
and right line numbers print on the last
physical line. Line numbers are reset
whenever page numbers are reset.

IMAGES number Specifies the number of logical page images
that are to be formatted onto a single physical
page. If this keyword is omitted, only 1 logical
page will be formatted for a physical page.
Report Command Group 5–21

FORMAT Command
IMGTITLE type Specifies how titles are formatted when the
physical page contains more than 1 logical
page. Valid type specifications are as follows:

■ LOGPAGE -- Specifies that the page title
appear at the top of each logical page. This
is the default if the IMGTITLE keyword is
omitted.

■ PHYPAGE -- Specifies that only a single
title, spanning the entire physical page,
appear at the top of the physical page.

■ NEWPAGE -- Specifies that in addition
to the layout as with PHYPAGE above, a
change in value of page subtitles, if any,
cause a skip to the next physical page.

The IMGTITLE keyword is ignored if the
IMAGES keyword and a number greater than
1 are not specified.
5–22 ASL Reference Guide

FORMAT Command
METHOD output-method Specifies the output-method to be used for
outputting the selected data. Valid
output-method specifications are as follows:

■ STDLIST -- Specifies that the selected
data be formatted for a printed page and
directed to DD name M4LIST unless the
LISTCNTL ALTLIST command is present.
In this case, the output will be directed to
DD name M4LIST1.

■ ALTLIST -- Specifies that the selected
data be formatted for a printed page and
directed to the DD name specified with the
DDNAME keyword or to M4LIST1 when
the DDNAME keyword is not present.

■ CSV -- Specifies that the selected data is
to be output as comma separated variable
data. Column headings will also be
formatted one time as the first line(s) of
comma separated variable data unless the
HEADINGS NO keyword is present. The
DDNAME keyword is required when CSV
is specified.

■ TAB -- Specifies that the selected data is
to output as tab delimited data. As with
the CSV method, column headings will
also be formatted one time as the first
line(s) of tab delimited output unless the
HEADINGS NO keyword is present. The
DDNAME keyword is required when TAB
is specified.

■ HTML -- Specifies that the selected data
is to be formatted as an HTML document
suitable for viewing with a browser. The
DDNAME keyword is required when
HTML is specified and the dataset
associated with the DD name must either
be a partitioned dataset (PDS) or a
hierarchical file system (HFS) file.
Report Command Group 5–23

FORMAT Command
■ PLAINTEXT -- Specifies that the selected
data be formatted for a printed page as
with STDLIST and ALTLIST above, except
that the data lines will not contain any
printer codes in position 1. Instead, the
required line spacing will be achieved by
including blank lines as appropriate to
create the desired spacing of report lines.
The DDNAME keyword is required when
PLAINTEXT is specified.

■ RAWDATA -- Specifies that the selected
data be output as is, in the same manner as
with subfile output, except that the data
will be sorted per the ORDER command
specifications and the output records
written during the report phase rather
than the processing phase.

STYLE number Specifies the HTML template to be used in
preparing the HTML document from the
selected data. The template number may be a
value from 1 through 99. If this keyword is
omitted, the default template will be used. See
the VISION:Builder Environment Guide for
OS/390 for information regarding the creation
of HTML templates.

DDNAME ddname Specifies the name of the DD to which the
output for this report is directed.

SUMFILE ddname Specifies that a report summary file is to be
created and the DD name to which the file is
to be directed. A report summary file is a data
file that contains the summary data records in
a format that is suitable for post-processing.

AUTODEF Specifies that file definition statements be
generated for the data elements contained in
this report when METHOD RAWDATA is
specified or that file definition statements be
generated for the report summary data file
when SUMFILE is specified. A FILE SUBFn
command with the AUTODEF keyword must
be present in the Run Control section of the
application when the AUTODEF keyword is
specified on the FORMAT statement.
5–24 ASL Reference Guide

FORMAT Command
Examples
FORMAT WIDTH 80, HEADINGS NAME,

FORMAT METHOD HTML, STYLE 5, DDNAME HTMLOUT1

FORMAT BORDER '.', SUBTITLE REPEAT, IMAGES 2, IMGTITLE PHYPAGE
Report Command Group 5–25

GROUP Command
GROUP Command

The GROUP command specifies how the selected report data is to be grouped.
Additionally, it may be used to specify that the grouping field is to be placed in a
line called a subtitle line rather than in a detail line.

GROUP [BY] field-name ...,

[AT LEVEL level-number],
[SUBTITLE [NEWPAGE]],
[LABEL field-name]

BY field-name … Specifies the qualified names of one or more fields
that will be used to determine the control break for
this group. The field may be a partial field using the
PF function notation.

AT LEVEL level-number Specifies that this set of grouping fields should be
considered the grouping fields for the indicated
level number. Valid specifications for number are 1
through 9. If this keyword is omitted, the level
number will be incremented by 1 from the level
number on the previous GROUP command. If this
keyword is omitted from the very first GROUP
command, the first level number will be assumed to
be 1 and will be incremented for each successive
GROUP command without an AT LEVEL keyword.

SUBTITLE Specifies that the fields identified with the BY
keyword are to be displayed as subtitle fields. This
means that the fields are not placed into the detail
report line but will appear on a line preceding the
detail lines as a group heading for this group. These
group headings will appear within the detail section
of the report page.

NEWPAGE Specifies that when a control break occurs for the
fields in this group, a new page should be
formatted. Furthermore, this keyword specifies that
the group heading line will appear in the title
section of the page after the page title lines but
before the column heading lines.

LABEL field-name Specifies the qualified name of the field whose value
will be used in the summary label at the
corresponding level when summaries are specified
for the same level or BY keyword fields as this
GROUP statement. The field may be a partial field
using the PF function notation.
5–26 ASL Reference Guide

GROUP Command
Examples
GROUP BY DEPT, SUBTITLE NEWPAGE

GROUP BY ZIPCODE AT LEVEL 3
Report Command Group 5–27

ITEM Command
ITEM Command

The ITEM command is used to specify special controls for columns specified on the
REPORT command with the COLUMNS keyword.

ITEM [COLUMN] field-name ...,

[SPACES number],
[PICTURE P‘pattern’],
[ENDLINE],
[NONPRINT],
[VWIDTH],
[NOWRAP],
[SPLITOK],
[CSVEDIT {QUOTE | TRUNCATE [DECIMALS number]}]

COLUMN field-name …
COLUMNS

Specifies the qualified names of one or more columns
included in the report to which the controls on this
ITEM statement apply. The field may be a partial
field using the PF function notation. The qualified
field names, including partial field specifications if
any, must match one of the fields specified on the
REPORT command ITEMS keyword list. If the
qualified field name, including partial field
specifications if any, matches more than one field in
the REPORT ITEMS list, the ITEM command
specifications will only apply to the first occurrence
of that field.

SPACES number Specifies the number of spaces that are to precede the
column for this field.

PICTURE P‘pattern’
PIC

Specifies the edit picture that defines how the data in
this field is to be presented. The picture
representation depends upon the type of field --
character fields, date fields, or numeric fields. See
Appendix B for valid edit pattern symbols for each
type of field.

ENDLINE Specifies that this field is the last (rightmost) field for
this physical line and that the next field, if any,
begins a new physical line.

NONPRINT
NOPRINT

Specifies that the field is selected for control
purposes only and should not be included in any
output for this report.
5–28 ASL Reference Guide

ITEM Command
VWIDTH number Specifies the column width for the associated V-type
field. Data from the V-type field will be folded into
multiple physical lines within the specified column
width. Valid specifications for number are 1 up the
report page width (see WIDTH keyword in
FORMAT command). If this keyword is omitted, the
column width will be assumed as the lesser of the
remaining positions on the line up to the right
margin or the length of the V-type field.

NOWRAP Specifies that word wrapping should not be used
when formatting this V-type field. Instead, the exact
number of characters assigned for the column width
(see keyword VWIDTH above) should be placed into
each physical line containing data for this field
without regard to word boundaries. If this keyword
is omitted, the V-type field data will be folded at
word boundaries unless the length of the word
exceeds the width of the column.

SPLITOK Specifies that formatting for this V-type field should
begin at the current vertical page position and then
be continued on the next page if the bottom of page
is reached before the entire V-type field is formatted.
If this keyword is omitted and the entire V-type field
will not fit onto the remainder of the current page,
formatting of the V-type field will begin on a new
page.

CSVEDIT action
CSV

Specifies that the specified action is to be taken when
the FORMAT command METHOD CSV keyword is
present. Valid specifications for action are as follows:

■ QUOTE -- Specifies that the field is to be
enclosed in quotes (") regardless of whether the
field contains an embedded comma. CSVEDIT
QUOTE may only be specified for character type
or V-type fields. If CSVEDIT QUOTE is not
specified, the field will only be quoted when it
contains an embedded comma.

■ TRUNCATE -- Specifies that non-significant
trailing zeros are to be truncated up to the limit
specified with the DECIMALS keyword.
CSVEDIT TRUNCATE may only be specified for
numeric type fields. If the DECIMALS keyword is
omitted but CSVEDIT TRUNCATE is specified,
all non-significant trailing zeros are truncated.
Report Command Group 5–29

ITEM Command
Examples
ITEM T.TEMP1, NONPRINT

ITEM DESCRIPT, VWIDTH 40, SPLITOK

ITEM ZIPCODE, CSVEDIT QUOTE

DECIMALS number
DEC

Specifies the number of positions to the right of the
decimal point that should be preserved during a
CSVEDIT TRUNCATE process even though they
may contain non-significant zeros. The valid
specification for number is 0 through 9.
5–30 ASL Reference Guide

LINE Command
LINE Command

The LINE command is used to output a line for the corresponding section of a
sectional report (see the SECTION command). For PAGETITLE or
COLUMNHEADING sections, the content and layout of the report line must be
specified on the LINE command itself. For a SUMMARY section, the content and
layout of a line may be specified by optional DATA commands followed by a LINE
command.

LINE [{'text' | LIT[ERAL]('text', repeat-count) | field-name |,

summary-function(field-name [level]) |,
STEMPnn | COL(col-num) | SPACES(num-spaces)}…] [AT LEVEL level]

'text' Specifies literal text that is to be placed into
the report line at the current position.

LITERAL('text', repeat-count)

LIT

Specifies literal text that is to be placed into
the report line at the current position and
repeated repeat-count times.

field-name Specifies the name of a field whose contents
are to be placed into the report line at the
current position.
Report Command Group 5–31

LINE Command
summary-function(field-name [level])

Specifies that a summary value for the field
identified by field-name whose summary
type specified by summary-function is to be
placed into the report line at the current
position. Summary-function may be
specified as any of the TOTAL[TOT],
CUMULATE[CUM], COUNT[CNT], MAX,
MIN, AVERAGE[AVG], PERCENT[PCT], or
RATIO[RTO] summaries. When
summary-function is specified, a
corresponding summary command (for
example, TOTAL command) or a REPORT
command ITEMS operand summary
function (for example, TOTAL(field-name
BY field-name)) must also be specified. The
summary-function level number operand
specifies the control break level of the
summary to be used and is optional. If
specified, it must be a number between 1 and
9 or G and must be at a level equal to or lower
(numerically higher) than the level number
specified by AT LEVEL. If the
summary-function level number is not
specified, it will default to the level number
specified with the AT LEVEL keyword. The
summary-function operand may only be
used when the LINE command is part of a
summary section. Partial field notation (PF
function) may not be used for the field.

Summary-function operands are only
permitted if the LINE command is within a
SUMMARY section.

STEMPnn Specifies the STEMP field that is to be placed
into the report line at the current position.
The STEMP operand may only be used when
the LINE command is part of a summary
section. STEMP fields must have been
defined with a COMPUTE command prior to
the LINE command. Refer to the COMPUTE
command for further detail regarding the
definition and use of STEMP fields.

STEMP fields are only permitted if the LINE
command is within a SUMMARY section.
5–32 ASL Reference Guide

LINE Command
Examples
DATA COL(60) 'DEPARTMENT TOTAL: ' TOTAL(AMOUNT) AT LEVEL 2
DATA COL(30) 'DIVISION TOTAL: ' TOTAL(AMOUNT) AT LEVEL 1
DATA COL(1) 'GRAND TOTAL: ' TOTAL(AMOUNT) AT LEVEL G
LINE

Output a line containing the data from the prior DATA commands.

LINE COL(35) 'INVENTORY STATUS REPORT'

Output a line containing the specified data.

COL(column-number) Specifies that the current columnar position
within the print line is to be set to
column-number.

SPACES(number-spaces) Specifies that the current columnar position
within the print line is to be advanced
number-spaces positions.

AT LEVEL level-number Specifies the control break level number at
which the respective data elements are to be
placed into the report line. Valid
specifications for level number are 1 through
9 and G. The report line is output when the
control break level is equal to or higher
(numerically lower) than the level number.
This keyword is only permitted if the LINE
command is within a summary section. If this
keyword is omitted, the line will always be
output.
Report Command Group 5–33

MAX Command
MAX Command

The MAX command is used to specify that a maximum value type summary is to
be determined for the field.

Examples
MAX AMOUNT BY CUSTNO

Determine the maximum value of the field named AMOUNT grouped by
CUSTNO.

MAX SALARY AT LEVEL 2

Determine the maximum of the field named SALARY at the level 2 control break.

MAX [ITEM] summary-field ...,

{BY group-field | AT LEVEL level-number}

ITEM summary-field … Specifies the qualified names of one or more fields
for which a maximum value is to be determined.
The field may be a partial field using the PF function
notation.

BY group-field Specifies the qualified name of the field by which
the summaries are to be grouped. The field may be
a partial field using the PF function notation. This
keyword is mutually exclusive with the AT LEVEL
keyword.

AT LEVEL level-number Specifies a control break level number by which the
summaries are to be grouped. Valid specifications
for level number are 1 through 9 and G. If this
keyword is specified, a GROUP command with an
AT LEVEL keyword must also be specified. The
GROUP command specifies the name(s) of the
field(s) by which the summaries are grouped. This
keyword is mutually exclusive with the BY
keyword.
5–34 ASL Reference Guide

MIN Command
MIN Command

The MIN command is used to specify that a minimum value type summary is to
be determined for the field.

Examples
MIN AMOUNT BY CUSTNO

Determine the minimum value of the field named AMOUNT grouped by
CUSTNO.

MAX SALARY AT LEVEL 2

Determine the minimum of the field named SALARY at the level 2 control break.

MIN [ITEM] summary-field ...,

{BY group-field | AT LEVEL level-number}

ITEM summary-field … Specifies the qualified names of one or more fields
for which a minimum value is to be determined. The
field may be a partial field using the PF function
notation.

BY group-field Specifies the qualified name of the field by which
the summaries are to be grouped. The field may be
a partial field using the PF function notation. This
keyword is mutually exclusive with the AT LEVEL
keyword.

AT LEVEL level-number Specifies a control break level number by which the
summaries are to be grouped. Valid specifications
for level number are 1 through 9 and G. If this
keyword is specified, a GROUP command with an
AT LEVEL keyword must also be specified. The
GROUP command specifies the name(s) of the
field(s) by which the summaries are grouped. This
keyword is mutually exclusive with the BY
keyword.
Report Command Group 5–35

NEWPAGE Command
NEWPAGE Command

The NEWPAGE command is used to specify the control break level that will force
a new page in a formatted report. This command must appear inside of either a
DETAIL section or a SUMMARY section (see SECTION command). If the
formatted report includes a DETAIL section, the NEWPAGE command must
appear there and the report must not be a summary only report. If the report is a
summary only report, the NEWPAGE command must appear inside the
SUMMARY section.

NEWPAGE [AT LEVEL] level-number

AT LEVEL level-number Specifies a control break level that will force a new
page to be output. When the NEWPAGE command
is inside a DETAIL section, the level number may
be 1 through 9 or G. When the NEWPAGE
command is inside a SUMMARY section, the level
number may be 0 through 9. A value of 0 in this case
means that a page break only occurs when the
current page has been filled (no space left to print
another set of summaries).
5–36 ASL Reference Guide

ORDER Command
ORDER Command

The ORDER command is used to specify the order in which the selected data
records are to be sorted. Multiple ORDER commands may be provided. The first
field specified on the first ORDER command is the most major sort field, the
second field on the first command the next major, and so on. The fields on the
second and subsequent ORDER commands become increasingly minor. A
maximum of 9 fields may be specified on all GROUP commands.

Examples
ORDER BY ZIPCODE PF(NAME 1 3), DESC PF(NAME 1 3)

Order the report data first in ascending order by ZIPCODE (major key) and then
in descending order by the first 3 characters of NAME (minor key).

ORDER BY CUSTNO PRODTYPE DATE

Order the report data first in ascending order by CUSTNO (major key) and then
by PRODTYPE (minor key) and DATE (next minor key).

ORDER [BY] field-name ...,

[DESC field-name ...]

BY field-name … Specifies the qualified names of one or more fields by
which the selected data is to be ordered. The field may
be a partial field using the PF function notation. The
ordering will be in ascending order unless the DESC
keyword (see below) is used as an override.

DESC field-name … Specifies the qualified names of one or more fields,
including partial field specifications if any, from the list
of fields specified with the BY keyword (see above) that
are to be ordered in descending order rather than
ascending order. The field may be a partial field using
the PF function notation.
Report Command Group 5–37

PERCENT Command
PERCENT Command

The PERCENT command is used to specify that a percent value type summary is
to be determined for the field. The percent is computed by dividing the ITEM field
value by the OF field value and multiplying by 100. PCT may be used as an
abbreviation for PERCENT.

PERCENT [ITEM] summary-field ... OF denominator-field,

{BY group-field | AT LEVEL level-number},
[DECIMALS decimal-places]

ITEM summary-field … Specifies the qualified names of one or more
fields for which a percent value is to be
determined. The field may be a partial field
using the PF function notation.

OF denominator-field Specifies the qualified name of the field that
will be used as the denominator for computing
the percent value.

BY group-field Specifies the qualified name of the field by
which the summaries are to be grouped. The
field may be a partial field using the PF
function notation. This keyword is mutually
exclusive with the AT LEVEL keyword.

AT LEVEL level-number Specifies a control break level number by
which the summaries are to be grouped. Valid
specifications for level number are 1 through 9
and G. If this keyword is specified, a GROUP
command with an AT LEVEL keyword must
also be specified. The GROUP command
specifies the name(s) of the field(s) by which
the summaries are grouped. This keyword is
mutually exclusive with the BY keyword.

DECIMALS decimal-places Specifies the number of decimal places that are
to be preserved in the result of the percent
computation. If this keyword is omitted, 2
decimal places will be preserved.
5–38 ASL Reference Guide

PERCENT Command
Examples
PERCENT NET_AMOUNT OF GROSS_AMOUNT BY STATE

Compute the percent that NET_AMOUNT is of GROSS_AMOUNT grouped by
STATE.

PERCENT ACTUAL OF ESTIMATED AT LEVEL 2 DECIMALS 3

Compute the percent that ACTUAL is of ESTIMATED to 3 decimal places at the
level 2 control break.
Report Command Group 5–39

PREFACE Command
PREFACE Command

The PREFACE command is used to specify text that is part of the report preface
page. Each PREFACE command specifies one line of the preface page, and the
PREFACE command is repeated as many times as needed. If no PREFACE
commands are provided, no report preface page will be produced.

Example
PREFACE 'This report is a listing of outstanding ',

'invoices by customer.'
PREFACE 'Customers are listed alphabetically by name and ',

'invoices are listed in descending order by due date.'

This example would produce a report preface containing 2 lines of text.

PREFACE [LINE] 'text' …

LINE 'text' … Specifies one or more segments of text for a preface line.
Concatenating all of the text segments together will form the
complete preface line. The concatenated length may not exceed
the page width. The text operands can be enclosed in double
quotation marks (“) in place of the single quotation marks (‘).
5–40 ASL Reference Guide

RATIO Command
RATIO Command

The RATIO command is used to specify that a ratio value type summary is to be
determined for the field. The ratio is computed by dividing the ITEM field value
by the TO field value. RTO may be used as an abbreviation for RATIO.

Examples
RATIO NET_AMOUNT TO GROSS_AMOUNT BY STATE

Compute the ratio of NET_AMOUNT to GROSS_AMOUNT grouped by STATE.

RATIO ACTUAL TO ESTIMATED AT LEVEL 2 DECIMALS 3

Compute the ratio of ACTUAL to ESTIMATED to 3 decimal places at the level 2
control break.

RATIO [ITEM] summary-field ..., TO denominator-field,

{BY group-field | AT LEVEL level-number},
[DECIMALS decimal-places]

ITEM summary-field … Specifies the qualified names of one or more
fields for which a ratio value is to be
determined. The field may be a partial field
using the PF function notation.

TO denominator-field Specifies the qualified name of the field that
will be used as the denominator for computing
the ratio value.

BY group-field Specifies the qualified name of the field by
which the summaries are to be grouped. The
field may be a partial field using the PF
function notation. This keyword is mutually
exclusive with the AT LEVEL keyword.

AT LEVEL level-number Specifies a control break level number by
which the summaries are to be grouped. Valid
specifications for level number are 1 through 9
and G. If this keyword is specified, a GROUP
command with an AT LEVEL keyword must
also be specified. The GROUP command
specifies the name(s) of the field(s) by which
the summaries are grouped. This keyword is
mutually exclusive with the BY keyword.

DECIMALS decimal-places Specifies the number of decimal places that are
to be preserved in the result of the ratio
computation. If this keyword is omitted, 3
decimal places will be preserved.
Report Command Group 5–41

REPORT Command
REPORT Command

The REPORT command begins a report block and specifies report content as well
as several other parameters and controls. A report block, headed by a REPORT
command, may appear either as a self-contained element within an application or
embedded inside a procedure block.

Within the context of VISION:Builder, a report is a logical entity that does not
necessarily mean that a printed report is produced. The term report is used to
represent selected data output in a variety of formats for printing, viewing, or
processing by other applications. Additional report parameters and controls may
be specified using the FORMAT command. See the FORMAT command METHOD
keyword for information regarding the various ways in which the selected report
data can be output.

[report-name:]REPORT [COLUMNS] {field-name | report-function} ...,

[SUMMARYONLY],
[SINGLESPACE],
[GRANDSUMS],
[EMPTYFIELD {INCLUDE | EXCLUDE}],
[SELECTIONCONTROL {YES | NO}],
[MAXITEMS number],
[ABBREVIATED],
[FILE report-file-name],
[TYPE {NORMAL | SUBROUTINE | INIT | PRE_MASTER_READ |

TYPE1 | TYPE2 | TYPEM | TYPE3 | TYPE4 |
EOF | EOFPLUS}],

[INFO 'text']

report-name: Specifies the name of the report. Naming a
report is optional and is only required if the
report is referenced in a Run Control
COLLATE or ROUTE statement or the report
type is declared as SUBROUTINE.

COLUMNS field-name …
COLUMN

Specifies the content of the report as a list of
fields that will be included in the report. The
fields may be partial fields using the PF
function notation or built-in report functions.
Each field in the operand list will represent
one column in the report, and the columns
will be ordered in the same order as the items
in the list. The ITEM command (see above)
may be used to specify additional properties
for the fields represented by the operands in
this list.
5–42 ASL Reference Guide

REPORT Command
The following list describes the syntax of the
PF function and the available built-in report
functions that may be used as ITEM
operands:

■ PF([FIELD] field-name [START]
start-position [LENGTH] partial-length)

– This function is used to specify that the
item is a partial field.

■ TOTAL([ITEM] summary-field [BY]
group-field)

– This function is used to specify a
report column and, in addition, that a
total summary is to be computed for
the column. The TOTAL function may
be specified in place of a TOTAL
command. Partial field notation (PF
function) may be used for both
summary-field and group-field. TOT
may be used as an abbreviation for
TOTAL.

■ CUMULATE([ITEM] summary-field [BY]
group-field)

– This function is used to specify a
report column and, in addition, that a
cumulative total summary is to be
computed for the column. The
CUMULATE function may be
specified in place of a CUMULATE
command. Partial field notation (PF
function) may be used for both
summary-field and group-field. CUM
may be used as an abbreviation for
CUMULATE.
Report Command Group 5–43

REPORT Command
■ COUNT([ITEM] summary-field [BY]
group-field)

– This function is used to specify a
report column and, in addition, that a
count summary is to be computed for
the column. The COUNT function
may be specified in place of a COUNT
command. Partial field notation (PF
function) may be used for both
summary-field and group-field. CNT
may be used as an abbreviation for
COUNT.

■ MAX([ITEM] summary-field [BY]
group-field)

– This function is used to specify a
report column and, in addition, that a
maximum value summary is to be
computed for the column. The MAX
function may be specified in place of a
MAX command. Partial field notation
(PF function) may be used for both
summary-field and group-field.

■ MIN([ITEM] summary-field [BY]
group-field)

– This function is used to specify a report
column and, in addition, that a
minimum value summary is to be
computed for the column. The MIN
function may be specified in place of a
MIN command. Partial field notation
(PF function) may be used for both
summary-field and group-field.

■ AVERAGE([ITEM] summary-field [BY]
group-field)

– This function is used to specify a
report column and, in addition, that an
average value summary is to be
computed for the column. The AVG
function may be specified in place of
an AVG command. Partial field
notation (PF function) may be used for
both summary-field and group-field.
AVG may be used as an abbreviation
for AVERAGE.
5–44 ASL Reference Guide

REPORT Command
SUMMARYONLY
SUMMARY

Specifies that the report is to be a summary
only report. The report will not contain any
detail data. If this keyword is omitted, the
report will contain both detail and summary
lines when summaries are specified.

SINGLESPACE
SINGLE

Specifies that all summary lines are to be
single-spaced except that summary lines for
the level 1 group will be double-spaced.
Beginning the GROUP levels at level number
2 rather than level 1 (the default) is a way to
cause all summary lines to be single-spaced.
This keyword may only be specified if the
SUMMARYONLY keyword is also specified.
If this keyword is omitted when the
SUMMARYONLY keyword is specified, all
summary lines will be
double- spaced.

GRANDSUMS
GRAND

Specifies that grand summaries are to be
automatically computed for every summary
specified for this report. If this keyword is
omitted, the default specified at installation
time in M4PARAMS will be used to
determine if automatic grand summaries are
to be computed.

EMPTYFIELD {INCLUDE | EXCLUDE}
EMPTY

Specifies the action to be taken for empty
fields when a summary is being computed.
An empty field is a field that is either blank
(character string type) or zero (numeric type).

■ INCLUDE -- Specifies that an empty
field is to be included in the computation
of the summary for this field.

■ EXCLUDE -- Specifies that an empty
field is to be excluded in the computation
of the summary for this field.

If this keyword is omitted, empty numeric
fields (contains zero) are included in the
computation of the summary, while empty
character string fields (contains blanks) are
excluded in the computation of the
summary.
Report Command Group 5–45

REPORT Command
SELECTIONCONTROL {YES | NO}
SELCNTL

Specifies whether or not all occurrences of
repeated segments in a hierarchical structure
are to be examined.

■ YES -- Specifies that only the first
occurrence of a repeated segment within
each record that meets the selection
qualification will be selected.

■ NO -- Specifies that all occurrences of
repeated segments within each record
that meet the selection qualification will
be selected. This is the default if the
SELECTIONCONTROL keyword is
omitted.

MAXITEMS number Specifies the maximum number of records
that will be selected for this report. Specify a
number from 1 to 9999 to limit the number of
records that will be selected for this report. If
this keyword is omitted, the number of
records that will be selected is unlimited.
5–46 ASL Reference Guide

REPORT Command
ABBREVIATED
ABBREV

Specifies whether repeated selections of the
same data will be output only once. This use
of this keyword is only meaningful when one
or more of the input files contain data in a
hierarchical structure wherein the segments
have multiple branches or when more than
one standard coordinated file (see the FILE
CORDn command) is used. These
coordinated files may be viewed as a
hierarchical structure with multiple
branches.

If this keyword is specified, an output record
will only be produced the first time that each
unique combination of different repeating
segments is examined and the qualifying
criteria are met. If this keyword is omitted, an
output record will be produced each time
any combination of different repeating
segments is examined and the qualifying
criteria are met.

Note: In earlier versions of VISION:Builder,
this functionality was achieved through a
specification called Parallel Looping. The use
of ABBREVIATED here limits the action of
Parallel Looping to output operations only.

FILE report-file-name Specifies the name of the report file to be used
for this report (see the Run Control FILE
REPORT command). If this keyword is
omitted, the report data will be output to the
default report file, M4REPO.
Report Command Group 5–47

REPORT Command
TYPE invocation-event Specifies the event within the application
processing cycle at which this report output
will be invoked. This keyword is invalid if
the report block is embedded inside a
procedure. If this keyword is omitted, the
report output will be invoked during each
iteration of the master file read and standard
coordination cycles. Valid invocation-event
specifications are:

■ NORMAL -- Specifies that the report
output will be invoked during each
iteration of the master file read and
standard coordination cycles.

■ SUBROUTINE or SUB -- Specifies that
the report output will only be invoked
when explicitly called by a procedural
CALL statement.

■ INIT -- Specifies that the report output
will be invoked only one time after the
master and coordinated files have been
opened but before any records from these
files have been processed.

■ PRE_MASTER_READ -- Specifies that
the report output will be invoked just
prior to reading the next master file
record.

■ TYPE1 -- Specifies that the report output
will be invoked after each transaction
record has been read.

■ TYPE2 -- Specifies that the report output
will be invoked after the transaction file
and the master files have been aligned.

■ TYPEM -- Specifies that the report
output will be invoked after the master
file record has been updated but before
first round coordination.

■ TYPE3 -- Specifies that the report output
will be invoked after the master file
record has been updated but after first
round coordination.
5–48 ASL Reference Guide

REPORT Command
Examples
PROC
IF HIREDATE - BIRTHDATE LT 30*365 ;Hired at age 30 or less
REPORT NAME, ADDRESS, PHONE
FORMAT DATEPOS NO, PAGEPOS NO, HEADINGS NO,

METHOD PLAINTEXT, DDNAME LIST1
END REPORT

END IF
END PROC

The above example shows a report block embedded within a procedure block.

REPORT DEPTNAME TOTAL(SALARY BY DEPTNAME), SUMMARYONLY
ORDER BY DEPTNAME
GROUP BY DEPTNAME

END REPORT

The above example shows a simple summary only report listing DEPTNAME and
SALARY totals by DEPTNAME.

PROC
CALL REPORT REP1

END PROC
;
REP1: REPORT PF(ZIPCODE 1 5) NAME ADDRESS, TYPE SUBROUTINE
ORDER BY ZIPCODE
GROUP BY ZIPCODE
COUNT NAME BY ZIPCODE

END REPORT

The above example shows a report defined as a subroutine being called from a
procedure.

■ TYPE4 -- Specifies that the report output
will be invoked whenever a transaction
record is rejected, either explicitly by
procedural code or implicitly by
transaction validation controls.

■ EOF -- Specifies that the report output
will be invoked only once after the
transaction file, master file, and all
coordinated files have reached end of file.

■ EOFPLUS -- Specifies that the report
output will be invoked as in NORMAL
and additionally as in EOF above.

INFO 'text' Specifies descriptive text that may be used to
annotate the report. The text cannot be longer
than 28 characters.
Report Command Group 5–49

SECTION Command
SECTION Command

The SECTION command is used to specify the beginning of a section block that
defines the content and layout for the section of a formatted report.

Examples
SECTION PAGETITLE
LINE COL(35) 'Weekly Status Report - Week Ending ' F.DATE

END SECTION

The above example shows a simple page title section.

REPORT GROUPNO DEPTNO EMPNO SALARY
ORDER BY GROUPNO DEPTNO
GROUP BY GROUPNO AT LEVEL 1
GROUP BY DEPTNO AT LEVEL 2
SECTION SUMMARY
LINE 'Department Totals ' TOTAL(AMOUNT) AT LEVEL 2
LINE 'Group Totals ' TOTAL(AMOUNT) AT LEVEL 1

END SECTION
END REPORT

The above example shows a section block as it would appear inside of a report
block.

SECTION {PAGETITLE | COLUMNHEADING | DETAIL | SUMMARY}

PAGETITLE Specifies that the following LINE and SKIP commands
are for the page title section of the report.

COLUMNHEADING Specifies that the following LINE and SKIP commands
are for the column heading section of the report.

DETAIL Specifies that the report is a formatted report. The
following required SIZE command specifies the
portion of the page reserved for the detail section. The
optional NEWPAGE command may be used to specify
the controls for beginning a new page of the report.

SUMMARY Specifies that the following COMPUTE, DATA, LINE,
NEWPAGE, and SKIP commands are for the summary
section of the report.
5–50 ASL Reference Guide

SIZE Command
SIZE Command

The SIZE command is used to specify the number of lines on the page to reserve
for the detail section of the formatted report.

SIZE number-of-lines [LINES]

number-of-lines LINES Specifies the number of lines to be reserved for the
detail section.
Report Command Group 5–51

SKIP Command
SKIP Command

The SKIP command is used to specify that blank lines are to be output for the
section.

Examples
SKIP 3 LINES

The above example would output 3 blank lines in the section.

REPORT STATE ZIPCODE NAME
ORDER BY STATE ZIPCODE NAME
GROUP BY STATE
GROUP BY ZIPCODE
COUNT NAME BY ZIPCODE
SECTION SUMMARY
SKIP 1 LINE AT LEVEL 2
LINE 'Count for ' ZIPCODE SPACES(2) COUNT(NAME) AT LEVEL 2
SKIP 2 LINES AT LEVEL 1
LINE 'Count for ' STATE SPACES(2) COUNT(NAME) AT LEVEL 1

END SECTION
END REPORT

The above example would output 1 blank line followed by the ZIPCODE summary
line at the level 2 control break, and 2 blank lines followed by the STATE summary
line at the level 1 control break.

SKIP number-of-lines LINES [AT LEVEL level-number]

number-of-lines LINES
LINE

Specifies the number of blank lines that are to be
output.

AT LEVEL level-number Specifies that the blank lines are to be output only
when a control break at a level equal to or higher
(numerically lower) than level-number occurs.
Level number may be specified as 1 through 9 or G.
The AT LEVEL keyword may only be specified
when the SKIP command is part of a summary
section.
5–52 ASL Reference Guide

TITLE Command
TITLE Command

The TITLE command is used to specify text that is part of the title section of the
report. Each TITLE command specifies one line of the title section, and the TITLE
command is repeated as many times as needed. If no TITLE commands are
provided, the title section will consist of one line containing the report date and
page number unless these are also suppressed through the FORMAT command
DATEPOS NO and PAGEPOS NO keywords.

Example
TITLE 'ACCOUNTS RECEIVABLE'
TITLE 'AGING REPORT'

This example would produce a title section containing 2 lines of text.

TITLE [LINE] 'text' …

LINE 'text' … Specifies one or more segments of text for a title line.
Concatenating all of the text segments together will form the
complete title line. The concatenated length may not exceed the
page width. The title lines will be centered on the page. Leading
or trailing blanks can be imbedded in the text to offset the
centering, if so desired. The text operands can be enclosed in
double quotation marks (“) in place of the single quotation
marks (‘).
Report Command Group 5–53

TOTAL Command
TOTAL Command

The TOTAL command is used to specify that a total type summary is to be
computed for the field.

Examples
TOTAL INVAMT BY CUSTNO

Compute the total for INVAMT grouped by CUSTNO.

TOTAL SALARY AT LEVEL 2

Compute the total for SALARY at the level 2 control break.

TOTAL [ITEM] summary-field ...,

{BY group-field | AT LEVEL level-number}

ITEM summary-field … Specifies the qualified names of one or more fields
for which a total is to be computed. The field may be
a partial field using the PF function notation.

BY group-field Specifies the qualified name of the field by which
the summaries are to be grouped. The field may be
a partial field using the PF function notation. This
keyword is mutually exclusive with the AT LEVEL
keyword.

AT LEVEL level-number Specifies a control break level number by which the
summaries are to be grouped. Valid specifications
for level number are 1 through 9 and G. If this
keyword is specified, a GROUP command with an
AT LEVEL keyword must also be specified. The
GROUP command specifies the name(s) of the
field(s) by which the summaries are grouped. This
keyword is mutually exclusive with the BY
keyword.
5–54 ASL Reference Guide

XREP Command
XREP Command

The XREP command is used to specify dynamic report line modification controls
for the report. Dynamic report line modification controls are applied to formatted
report lines just prior to their output to the report destination. Each XREP
command may only specify one control. XREP commands may only be specified
when the FORMAT command METHOD keyword specifies STDLIST or ALTLIST.

XREP [LINE] 'text'

LINE 'text' Specifies a dynamic report line modification control. The controls
consist of keywords, positional indicators (nnn), operators (=,1),
and operands. Because these operations take place after the report
line is formatted, generate a sample report first to determine
values for positional indicators and operands where needed. The
controls may be specified in any order; however, execution is in the
order of the commands as listed below. The text operands can be
enclosed in double quotation marks (“) in place of the single
quotation marks (‘). Following is a description of each control in
the order that they will be executed.

TITLE LINENO=nn Exempts a specified number of lines (nn = any
2-digit number) from processing by other
dynamic report line modification statements.

On an output printer, this specification takes
effect whenever a skip to new page (channel 1
punch) occurs.

The TITLE LINENO=nn keyword allows you
to modify line spacing or perform calculations
without affecting title lines and column
headings.
Report Command Group 5–55

XREP Command
SKIP c POSnnn*
=x Invokes ASA carriage control characters on

specific report lines. This is useful when using
preprinted forms.

c -- Carriage control channel to be invoked (2
to 9) or print without spacing (+).

nnn -- Any 3-digit number between 001 and
132 that indicates the position where the x
character is or is not found.

x -- Character (any printing or nonprinting
character) to cause the invoking of c to take
place, if:

= x character is found.

* x character is not found.

Note: Up to three SKIP statements are
allowed per report. Multiple fonts per printed
line are allowed for page printers (laser
printers).

NOSPACELINES Suppresses output of any blank line(s). When
lines are suppressed, the line count is
decremented; pages are filled as if the blank
lines had never been output to the report file.
This specification does not affect title lines or
those inserted by the SPACEBEFORE or
SPACEAFTER keywords.
5–56 ASL Reference Guide

XREP Command
NOCALC POSnnn*
=x Allows lines meeting specific logical

conditions to be exempted from some
calculations and formatting (PERCENT,
RATIO, ROUND, DECIMALEDIT,
SUPPRESS SPACE).

nnn -- Any 3-digit number between 001 and
132 to indicate the position where the x
character is or is not found.

x -- Character (any printing or nonprinting
character) to cause the operation of percent
ratio, round, decimal edit, or suppress space
to be bypassed, if:

= x character is found.

* x character is not found.

Note: The NOCALC keyword can be used to
avoid editing or calculating on subtitles or to
allow performing some operations on detail
lines but not on summaries.

Up to three NOCALC statements are allowed
per report.

PERCENT, RATIO, ROUND Specifies arithmetic operations that allow
division or rounding based on data in the
output line. These three operations are
executed in the processing phase, in order of
input, after NOCALC, and before
DECIMALEDIT.
Report Command Group 5–57

XREP Command
PERCENT A=(nnn,pppp)
B=(nnn,pppp) C=(nnn,pppp)

Calculates . The picture used

for each field must correspond exactly to the
output. The operand A and B pictures are
determined by the VISION:Builder output;
the operand C picture is determined by you.

nnn -- Location of first character associated
with the field involved in the calculation
(001–132).

pppp -- Picture edit in the following ranges:

■ The picture scan ends when the first
nonnumeric character is encountered.

■ A trailing % is required in the picture.

A
B
---- 100¥ C=

Operand A and B:
1–11 digits before the decimal
point.

Up to 4 digits following the decimal
point.

Include any leading or trailing
minus signs, as well as commas and
decimal points required by the
data.

Operand C (Result field):
1–11 digits before the decimal
point.

Up to 2 digits following the decimal
point.

Commas are not allowed, and a
leading minus sign always prints
for negative values.
5–58 ASL Reference Guide

XREP Command
■ Starting locations of two different
operands (nnn) can be the same to allow
you to replace a standard output field with
one that has been calculated.

■ Division by 0 or a field that does not agree
with its picture results in a blank output
field rather than the invalid field indicator
(*).

■ Result values that do not fit in the edit
picture for operand C produce a plus sign
(+) on the output.
Report Command Group 5–59

XREP Command
RATIO A=(nnn,pppp)
B=(nnn,pppp) C=(nnn,pppp) Calculates . The calculation is simple

division and can be used as such or as a true
ratio.

nnn -- Location of first character associated
with the calculation (001–132).

pppp -- Picture edit in the following ranges:

Note: In all result fields (operand C)
calculated by the dynamic report line
modification capability, leading zeroes are
suppressed up to the position before the
decimal point.

Starting locations of two different operands
(nnn) can be the same to allow you to replace
a standard output field with one that has been
calculated.

A
B
---- C=

Operand A and B:
A maximum of 4 digits following
the decimal point.

Include any leading or trailing
minus signs, as well as commas and
decimal points required by the data.

Operand C (Result field):
1–9 digits before the decimal point.

At least 1 digit after the decimal
point, up to a maximum of 4.

Commas are not allowed, and a
leading minus sign always prints
for negative values.
5–60 ASL Reference Guide

XREP Command
ROUND A=(nnn,pppp) Provides rounding (half adjusting) and
formatting.

nnn -- Location of first character associated
with the calculation made on it (001–132).

pppp -- Picture edit in the following ranges:

Rounding is done on the field specified in
nnn. If the number is positive, 5 is added to
the rightmost digit; if negative, 5 is
subtracted. In both cases, the last digit of the
result is truncated, including the decimal
point if there is only one place in the original
data field.

Formatting is a result of the picture
characteristics of the operand. With this
function:

■ A sign can be moved from leading to
trailing.

■ Extra unit positions can be inserted.

■ A number between +1 and -1 will be
shown with a zero before the decimal
point.

■ A zero value will print as blanks unless it
becomes zero only after the rounding
function is completed.

Note: Commas are permitted in the picture
and appear in the result when printed.

If the result of the rounding would overflow
the size of the picture, the maximum possible
value is inserted.

Operand A (Result field):
1–11 digits before the decimal point.

Up to a maximum of 4 digits
following the decimal point.

Leading or trailing minus signs can
be substituted for one of the digits.
Report Command Group 5–61

XREP Command
DECIMALEDIT Provides extra formatting features for fields
with a decimal point, no leading minus sign,
and values between +1 and -1. The results are
similar to those described for the ROUND
keyword.

When the DECIMALEDIT keyword is used,
data values on all output lines not exempted
by the TITLE LINENO or NOCALC
keywords are modified when they fall in the
specified value range:

■ On all zero results, printing is suppressed
and a blank is inserted in the output.

■ At the same time, on all fields with values
less than 1 with at least one place after the
decimal point and no leading minus sign,
a zero is printed before the decimal point.

These two operations occur simultaneously
and cannot be invoked separately. When it is
necessary to separate the functions, use the
ROUND keyword.

The location of the fields is determined by a
scan of the first line on the report not
controlled by the TITLE LINENO or
NOCALC keywords. This determines the
position of all decimal points.

■ If a column exists without a decimal point
on that first line, DECIMALEDIT will not
affect that column on any line.

■ Similarly, a period in a character string of
the first line will be interpreted as a
decimal point and DECIMALEDIT will be
attempted at that column on all
nonexempt lines.
5–62 ASL Reference Guide

XREP Command
SUPPRESS SPACE=(nnn,nnn) Suppresses printing of lines having spaces in
specific positions. The parameters nnn,nnn
specify the starting and ending positions to be
examined. When the print image between and
including those positions is blank, the report
line is suppressed.

■ The internal line count is adjusted taking
into account the effect of the ASA carriage
control character that can appear in
position zero (0) of the line. If the carriage
control is not one that causes single-,
double-, or triple-spacing (blank, 0, or +),
the line is not suppressed. Consequently,
the first line at the top of the page is never
suppressed.

■ Up to three SUPPRESS SPACE statements
are allowed for each report.

■ The SUPPRESS SPACE action occurs after
arithmetic and DECIMALEDIT operations
so that line suppression can be coded to
appear as the result of a calculation or on
lines that have a zero value in a field.
Report Command Group 5–63

XREP Command
SPACEBEFORE POSnnn*
=x

SPACEAFTER POSnnn*
=x

Inserts a blank line before and/or after a
specified line (nnn).

nnn -- Any 3-digit number between 001 and
132 that indicates the position where the x
character is or is not found.

x -- Character (any printing or nonprinting
character) that invokes the operation, if:

= x character is found.

* x character is not found.

These keywords override the
NOSPACELINES and SUPPRESS SPACE
keywords.

■ If you try to insert two blank lines by
following SPACEAFTER with
SPACEBEFORE, only one will result.

■ The keyword is effective only on
single-spaced reports because it changes
carriage control characters instead of
creating actual blank lines.

■ Up to three occurrences of each keyword
are allowed for each report.

LINE SIZE=(nnn,nnn)
[,MOVEPAGENO]

The LINE SIZE=(nnn,nnn) part of this
keyword allows you to reduce the size of a
page from the size specified in the first nnn to
that of the second nnn, where nnn is any
position from 001–132. Fields beyond the
truncated page size will not appear on the
report.

The MOVEPAGENO part of this keyword is
optional. When it is used, the page number
(valid only for upper-right page positions)
appears in the same relative position on the
narrowed page.

Note: The report title is not automatically
recentered by VISION:Builder when the LINE
SIZE parameters are specified. To recenter the
title on the narrowed page, the TITLE
command operands should contain trailing
blanks at the end of the text.
5–64 ASL Reference Guide

Diagnostic Messages
Diagnostic Messages
The following table lists the dynamic report line modification diagnostic messages:

Message Explanation

>3 SEPCHAR XREP allows a maximum of three separator characters
between integers. This has been exceeded.

>13%/RAT. A maximum of 13 PERCENT and/or RATIO keywords are
allowed in one report. This limit has been exceeded.

=/1MISS. The equal or not equal operator is invalid or missing for the
keyword used.

A-DEC.>4 The number of places after the decimal point in the
operand A picture of the PERCENT/RATIO keyword
must not exceed four.

A-END>PGW The last position of the operand A of the
PERCENT/RATIO keyword is specified outside the print
line width.

A-INTEG=0 No digits were found before the decimal point in the
operand A picture of the PERCENT/RATIO keyword or
the ROUND keyword.

A-INTEG>11 The number of digits before the decimal point in the
operand A picture of the PERCENT/RATIO keyword
must not exceed 11.

A-OP MISS. The operand A of the PERCENT/RATIO keyword is
missing.

A-PICT.END The operand A picture of the PERCENT/RATIO keyword
is not terminated by a right parenthesis. This message may
also occur when the last character of the picture is the
decimal point.

AADR>PGW The positional indicator of the operand A of the
PERCENT/RATIO keyword is outside the print line width
for the keyword used.

AADR WRONG The first positional indicator is not a 3-digit number for the
keyword used. Leading zeroes must be supplied.

ADDR>PGW The first positional indicator is outside the print line width.

ADDR WRONG The first positional indicator is not a 3-digit number for the
keyword used. Leading zeroes must be supplied.

ADR1>PGW The first positional indicator of the SUPPRESS SPACE
keyword is outside the print line width.
Report Command Group 5–65

Diagnostic Messages
ADR1 WRONG The first positional indicator of the SUPPRESS SPACE
keyword is not a 3-digit number. Leading zeroes must be
supplied.

ADR1>ADR2 The first positional indicator is greater than the second in
the SUPPRESS SPACE keyword.

ADR2>PGW The second positional indicator of the SUPPRESS SPACE
keyword is outside the print line width.

ADR2 WRONG The second positional indicator of the SUPPRESS SPACE
keyword is not a 3-digit number. Leading zeroes must be
supplied.

B-DEC>4 The number of places after the decimal point in the
operand B picture of the PERCENT/RATIO keyword must
not exceed four.

B-END>PGW The last position of the operand B of the PERCENT/RATIO
keyword is specified outside the print line width.

B-INTEG=0 No digits were found before the decimal point in the
operand B of the PERCENT/RATIO keyword.

B-INTEG>11 The number of digits before the decimal point in the
operand B picture of the PERCENT/RATIO keyword must
not exceed 11.

B-OP MISS. The operand B of the PERCENT/RATIO keyword is
missing.

B-PICT.END The operand B picture of the PERCENT/RATIO keyword
is not terminated by a right parenthesis. This message may
also occur when the last character of the picture is the
decimal point.

BAD ASACHAR The ASA character is not between 2 and 9 in the SKIP
keyword.

BADR>PGW The positional indicator of the operand B of the
PERCENT/RATIO keyword is outside the print line
width.

BADR WRONG The positional indicator of the operand B of the
PERCENT/RATIO keyword is not a 3-digit number.
Leading zeroes must be supplied.

C-DEC MISS. No decimal places were found after the decimal point in
the operand C picture of the PERCENT/RATIO keyword.

Message Explanation
5–66 ASL Reference Guide

Diagnostic Messages
C-DEC>4 The number of places after the decimal point in the
operand C picture of the PERCENT/RATIO keyword must
not exceed four.

C-END>PGW The last position of the operand C of the
PERCENT/RATIO keyword is specified outside the print
line width.

C-INTEG=0 No digits were found before the decimal point in the
operand C of the PERCENT/RATIO keyword.

C-INTEG>9 The number of digits before the decimal point in the
operand C picture of the RATIO keyword must not exceed
nine.

C-INTEG>11 The number of digits before the decimal point in the
operand C picture of the PERCENT keyword must not
exceed 11.

C-OP MISS. The operand C of the PERCENT/RATIO keyword is
missing.

C-PICT.END This message may occur for any of the following
conditions:

■ The operand C picture of the PERCENT/ RATIO
keyword is not terminated by a right parenthesis.

■ The last character of the picture is the decimal point.

■ The last character of the operand C picture of the
PERCENT keyword is not a percent sign (%).

■ Separating characters were found in the operand C
picture of the PERCENT/RATIO keyword.

CADR>PGW The positional indicator of the operand C of the
PERCENT/RATIO keyword is outside the print line
width.

CADR WRONG The positional indicator of the operand C of the
PERCENT/RATIO keyword is not a 3-digit number.
Leading zeroes must be supplied.

CDEC UNNUM Nonnumeric characters were found in the operand C
picture of the PERCENT keyword.

MORE THAN 3 Only three keywords of this type are allowed per report.

NO.NOT NUM The value in the operand of the TITLE LINENO keyword
is not one or two digits.

Message Explanation
Report Command Group 5–67

Diagnostic Messages
Example
REPORT VENDOR DUEDATE AMOUNT
TITLE 'ACCOUNTS RECEIVABLE'
TITLE 'AGING REPORT'
ORDER BY VENDOR DUEDATE
GROUP BY VENDOR
XREP 'NOSPACELINES'

END REPORT

The XREP command in this example suppresses the output of all blank lines in this
report.

NOMORE CORE Too many PERCENT, RATIO, or ROUND calculations
have been specified. Core is exceeded.

OP.2 MISS. The second positional indicator is missing for the keyword
used.

OP.3 WRONG SIZE in the LINE SIZE keyword is not followed by a
delimiter or MOVEPAGENO.

PARAMREPEAT Only one parameter of this type is allowed per report.

SHORT LINE The reduced line size specified in the LINE SIZE keyword
is not long enough to contain the page number.

SIZE L1<L2 The modified page width must be less than the input page
width.

SZ.1>PGW The input page width is greater than the print line width.

SZ.1 WRONG The input page width operand is not a 3-digit number in
the LINE SIZE keyword. Leading zeroes must be supplied.

SZ.2>PGW The modified page width is greater than the print line
width.

SZ.2 WRONG The modified page width operand is not a 3-digit number
in the LINE SIZE keyword. Leading zeroes must be
supplied.

Message Explanation
5–68 ASL Reference Guide

Chapter
6 S
ubfile Output Command Group
Subfile output is specified using the EXTRACT command. There are four
variations of the EXTRACT command as follows:

The EXTRACT command may be embedded inside a procedure block, and a
procedure block can contain many EXTRACT commands. When embedded inside
a procedure, an extract will be invoked based upon the logic flow of the procedure.
When present outside of a procedure, an extract will be invoked based upon the
TYPE keyword operand.

The EXTRACT FILE command requires that a corresponding FILE SUBFn
command appear in the run control section of the application. Subfiles created in
this way are referred to as traditional subfiles. The EXTRACT DDNAME,
EXTRACT DBDNAME, and EXTRACT TABLE commands do not require a
corresponding FILE SUBFn command and are referred to as extended subfiles.

Command Function

EXTRACT FILE Extract to a file identified by a FILE SUBFn command

EXTRACT DDNAME Extract to a sequential or VSAM file identified by DD
Name

EXTRACT DBDNAME Extract to an IMS database identified by DBD Name

EXTRACT TABLE Extract to a DB2 table identified by Table Name
Subfile Output Command Group 6–1

EXTRACT FILE Command
EXTRACT FILE Command

The EXTRACT FILE command is used to specify subfile output to a file declared
by a FILE SUBFn command in the Run Control section. The EXTRACT command
may be included inside a procedure block or may appear outside of any procedure
block. When included inside of a procedure block, its invocation will be controlled
by the procedure. When outside of a procedure block, its invocation will be
controlled by the use of the TYPE keyword.

[extract-name:] EXTRACT FILE subfile-name,

{[COLUMNS] field-name ... | ENTIRE qual-char},
[KEYS key-field …],
[VARCHARMAX NOPREFIX varchar-field1 …],
[VARCHARMAX WITHPREFIX varchar-field2 …],
[SELECTIONCONTROL {YES | NO}],
[MAXITEMS number],
[ABBREVIATED],
[RECFM {FIXED | VARIABLE | UNDEFINED | KEYVSAM |

ENTRYVSAM | DLI | HDAM | DB2 | PACKED}],
[BLKSIZE block-size],
[AUTODEF],
[TYPE {NORMAL | SUBROUTINE | INIT | PRE_MASTER_READ |

TYPE1 | TYPE2 | TYPEM | TYPE3 | TYPE4 |
EOF | EOFPLUS}],

[INFO 'text']

extract-name: Specifies the name of the extract. Naming an
extract is optional and is only required when
the EXTRACT command is not inside a
procedure block and TYPE is specified as
SUBROUTINE.

FILE subfile-name Specifies the name that matches the subfile
name on a FILE SUBFn to which this subfile
will be output. More than one EXTRACT
command may reference the same subfile
name.

COLUMNS field-name …
COLUMN

Specifies a list of one or more qualified field
names that make up the subfile record in the
order that they are listed. The field may be a
partial field using the PF function notation.
This keyword is mutually exclusive with the
ENTIRE keyword.

ENTIRE qual-char Specifies the qualifier for the file whose entire
record is to become the subfile record. This
keyword is mutually exclusive with the
ITEMS keyword.
6–2 ASL Reference Guide

EXTRACT FILE Command
KEYS key-field …
KEY

Specifies the qualified names of one or more
fields that have been included with the ITEMS
keyword operand list that are to be identified
as key fields in the created file definition when
the AUTODEF keyword is specified. The field
may be a partial field using the PF function
notation and must match the partial field
specifications for the field in the ITEMS
keyword operand list. The first field in the list
becomes key field 1, the second key field 2, and
so on. This keyword is only meaningful when
the ITEMS keyword is also specified.

VARCHARMAX NOPREFIX varchar-field1 …
VMAX NOP

Specifies the qualified names of one or more
varchar fields included in the ITEMS keyword
operand list whose output size will be the
maximum length of the varchar field. The field
may be a partial field using the PF function
notation. The field will be filled with trailing
blanks up to the output size. No prefix
indicating the number of significant characters
in the varchar field will be output.

VARCHARMAX WITHPREFIX varchar-field2 …
VMAX WITHP

Specifies the qualified names of one or more
varchar fields included in the ITEMS keyword
list whose output size will be the maximum
length of the varchar field. The field may be a
partial field using the PF function notation.
The field will be filled with trailing blanks up
to the output size. A 2-byte prefix will precede
the field and will contain the number of
significant characters in the field.
Subfile Output Command Group 6–3

EXTRACT FILE Command
SELECTIONCONTROL {YES | NO}
SELCNTL

Specifies whether or not all occurrences of
repeated segments in a hierarchical structure
are to be examined.

■ YES -- Specifies that only the first
occurrence of a repeated segment within
each record that meets the selection
qualification will be selected.

■ NO -- Specifies that all occurrences of
repeated segments within each record that
meet the selection qualification will be
selected. This is the default if the
SELECTIONCONTROL keyword is
omitted.

MAXITEMS number Specifies the maximum number of records that
will be selected for this subfile. Specify a
number from 1 to 9999 to limit the number of
records that will be selected for this subfile. If
this keyword is omitted, the number of records
that will be selected is unlimited.

ABBREVIATED
ABBREV

Specifies whether repeated selections of the
same data will be output only once. This use of
this keyword is only meaningful when one or
more of the input files contain data in a
hierarchical structure wherein the segments
have multiple branches or when more than
one standard coordinated file (see the FILE
CORDn command) is used. These coordinated
files may be viewed as a hierarchical structure
with multiple branches.

Note: In earlier versions of VISION:Builder,
this functionality was achieved through a
specification called Parallel Looping. The use
of ABBREVIATED here limits the action of
Parallel Looping to output operations only.
6–4 ASL Reference Guide

EXTRACT FILE Command
RECFM record-format Specifies the access method and record format
for the subfile. If this keyword is omitted, the
variable length format sequential file will be
used. Valid specifications for this keyword are:

■ FIXED -- Specifies that the subfile will be a
fixed length record format sequential file.

■ VARIABLE -- Specifies that the subfile
will be a variable length record format
sequential file.

■ UNDEFINED -- Specifies that the subfile
will be an undefined length record format
sequential file.

■ KEYVSAM -- Specifies that the subfile
will be a Key Sequenced VSAM file.

■ ENTRYVSAM -- Specifies
that the subfile will be an Entry Sequenced
VSAM file.

■ DLI -- Specifies that the subfile will be an
IMS database using HISAM, HIDAM, or
HSAM. When this keyword is specified,
the ENTIRE keyword must also be
specified.

■ HDAM -- Specifies that the subfile will be
an IMS database using HDAM. When this
keyword is specified, the ENTIRE keyword
must also be specified.

■ DB2 -- Specifies that the subfile will be a
DB2 table. When this keyword is specified,
the ITEMS keyword must also be specified.

■ PACKED -- Specifies that the subfile will
be a variable length record file sequential
file with record compression.
Subfile Output Command Group 6–5

EXTRACT FILE Command
BLKSIZE block-size Specifies the maximum size of a data block for
the VARIABLE, UNDEFINED, and PACKED
record formats. Specifies the blocking factor
(records per block) for the FIXED record
format. This keyword should not be specified
for the KEYVSAM, ENTRYVSAM, DLI,
HDAM, and DB2 record formats. If this
keyword is omitted for the sequential file
record formats, operating system defaults will
be used. It is recommended that this keyword
only be used in special circumstances.

AUTODEF Specifies that file definition statements will be
generated for the fields contained in this
subfile. The file definition name will be the
same as the subfile-name. A FILE SUBFn
command with the AUTODEF keyword must
be present in the Run Control section of the
application when this keyword is specified.

TYPE invocation-event Specifies the event within the application
processing cycle at which the extract output
will be invoked. If the EXTRACT command is
inside of a procedure block, this keyword
should be omitted because the PROC
statement will control the invocation event. If
this keyword is omitted and the command is
not inside of a procedure block, the extract
output will be invoked during each iteration of
the master file read and standard coordination
cycles. Valid invocation event specifications
are as follows:

■ NORMAL -- Specifies that the subfile
output will be invoked during each
iteration of master file read and standard
coordination cycles.

■ SUBROUTINE or SUB -- Specifies that the
subfile output will only be invoked when
explicitly called by a procedural CALL
statement.

■ INIT -- Specifies that the report subfile
will be invoked only one time after the
master and coordinated files have been
opened but before any records from these
files have been processed.
6–6 ASL Reference Guide

EXTRACT FILE Command
■ PRE_MASTER_READ --
Specifies that the subfile output will be
invoked just prior to reading the next
master file record.

■ TYPE1 -- Specifies that the subfile output
will be invoked after each transaction
record has been read.

■ TYPE2 -- Specifies that the subfile output
will be invoked after the transaction file
and the master files have been aligned.

■ TYPEM -- Specifies that the subfile output
will be invoked after the master file record
has been updated but before first round
coordination.

■ TYPE3 -- Specifies that the subfile output
will be invoked after the master file record
has been updated but after first round
coordination.

■ TYPE4 -- Specifies that the subfile output
will be invoked whenever a transaction
record is rejected, either explicitly by
procedural code or implicitly by
transaction validation controls.

■ EOF -- Specifies that the subfile output
will be invoked only once after the
transaction file, master file, and all
coordinated files have reached end of file.

■ EOFPLUS -- Specifies that the subfile
output will be invoked as in NORMAL and
additionally as in EOF above.

INFO 'text' ■ Specifies descriptive text that may be used
to annotate the subfile. The text cannot be
longer than 28 characters.
Subfile Output Command Group 6–7

EXTRACT FILE Command
Examples

EXTRACT FILE SUBOUT1,
COLUMNS EMPNO EMPNAME PHONENO

The above example shows how subfile output can be coded.

PROC TYPE TRAN3
CALL SUBFILE EXTR1

END PROC
;
EXTR1: EXTRACT FILE SUBOUT2, ENTIRE X, TYPE SUBROUTINE

The above example shows how subfile output can be coded as a subroutine and
called from a procedure.

PROC
IF HIREDATE LT 01011990
EXTRACT FILE SUBOUT3, RECFM KEYVSAM, BLKSIZE 2300,

COLUMNS WORKDEPT, 1.DEPTNAME, EMPNAME,
AUTODEF

END IF
END PROC

The above example shows how subfile output may be embedded inside of a
procedure block.
6–8 ASL Reference Guide

EXTRACT DDNAME Command
EXTRACT DDNAME Command

The EXTRACT DDNAME command is used to specify subfile output to the file
identified with the DDNAME keyword. The EXTRACT command may be
included inside a procedure block or may appear outside of any procedure block.
When included inside of a procedure block, its invocation will be controlled by the
procedure. When outside of a procedure block, its invocation will be controlled by
the use of the TYPE keyword.

[extract-name:] EXTRACT DDNAME ddname,

{[COLUMNS] field-name … | ENTIRE qual-char},
[KEYS key-field …],
[VARCHARMAX NOPREFIX varchar-field1 …],
[VARCHARMAX WITHPREFIX varchar-field2 …],
[SELECTIONCONTROL {YES | NO}],
[MAXITEMS number],
[ABBREVIATED],
[RECFM {FIXED | VARIABLE | UNDEFINED |

KEYVSAM | ENTRYVSAM | PACKED}],
[BLKSIZE block-size],
[AUTODEF],
[TYPE {NORMAL | SUBROUTINE | INIT | PRE_MASTER_READ
| TYPE1 | TYPE2 | TYPEM | TYPE3 | TYPE4 |

EOF | EOFPLUS}],
[INFO 'text']

extract-name: Specifies the name of the extract. Naming an
extract is optional and is only required when
the EXTRACT command is not inside a
procedure block and TYPE is specified as
SUBROUTINE.

DDNAME ddname Specifies the DD name corresponding to the
file to which the subfile will be output. Only
one EXTRACT command should reference this
DD name.

COLUMNS field-name…
COLUMN

Specifies the qualified names of one or more
fields that make up the subfile record in the
order that they are listed. The field may be a
partial field using the PF function notation.
This keyword is mutually exclusive with the
ENTIRE keyword.

ENTIRE qual-char Specifies the qualifier for the file whose entire
record is to become the subfile record. This
keyword is mutually exclusive with the
ITEMS keyword.
Subfile Output Command Group 6–9

EXTRACT DDNAME Command
KEYS key-field …
KEY

Specifies the qualified names of one or more
fields that have been included with the ITEMS
keyword operand list that are to be identified
as key fields in the created file definition when
the AUTODEF keyword is specified. The field
may be a partial field using the PF function
notation. The first field in the list becomes key
field 1, the second key field 2, and so on. This
keyword is only meaningful when the ITEMS
keyword is also specified.

VARCHARMAX NOPREFIX varchar-field1 …
VMAX NOP

Specifies the names of one or more varchar
fields included in the ITEMS keyword list
whose output size will be the maximum length
of the varchar field. The field will be filled with
trailing blanks up to the output size. No prefix
indicating the number of significant characters
in the varchar field will be output.

VARCHARMAX WITHPREFIX varchar-field2 …
VMAX WITHP

Specifies the names of one or more varchar
fields included in the ITEMS keyword list
whose output size will be the maximum length
of the varchar field. The field will be filled with
trailing blanks up to the output size. A 2-byte
prefix will precede the field and will contain
the number of significant characters in the
field.

SELECTIONCONTROL {YES | NO}
SELCNTL

Specifies whether or not all occurrences of
repeated segments in a hierarchical structure
are to be examined.

■ YES -- Specifies that only the first
occurrence of a repeated segment within
each record that meets the selection
qualification will be selected.

■ NO -- Specifies that all occurrences of
repeated segments within each record that
meet the selection qualification will be
selected. This is the default if the
SELECTIONCONTROL keyword is
omitted.
6–10 ASL Reference Guide

EXTRACT DDNAME Command
MAXITEMS number Specifies the maximum number of records that
will be selected for this subfile. Specify a
number from 1 to 9999 to limit the number of
records that will be selected for this subfile. If
this keyword is omitted, the number of records
that will be selected is unlimited.

ABBREVIATED
ABBREV

Specifies whether repeated selections of the
same data will be output only once. This use of
this keyword is only meaningful when one or
more of the input files contain data in a
hierarchical structure wherein the segments
have multiple branches or when more than
one standard coordinated file (see the FILE
CORDn command) is used. These coordinated
files may be viewed as a hierarchical structure
with multiple branches.

Note: In earlier versions of VISION:Builder,
this functionality was achieved through a
specification called Parallel Looping. The use
of ABBREVIATED here limits the action of
Parallel Looping to output operations only.

RECFM record-format Specifies the access method and record format
for the subfile. If this keyword is omitted, the
variable length format sequential file will be
used. Valid specifications for this keyword are:

FIXED -- Specifies that the subfile will be a
fixed length record format sequential file.

VARIABLE -- Specifies that the subfile will
be a variable length record format sequential
file.

UNDEFINED -- Specifies that the subfile will
be an undefined length record format
sequential file.

KEYVSAM -- Specifies that the subfile will be
a Key Sequenced VSAM file.

ENTRYVSAM -- Specifies that the subfile
will be an Entry Sequenced VSAM file.

PACKED -- Specifies that the subfile will be a
variable length record sequential file with
record compression.
Subfile Output Command Group 6–11

EXTRACT DDNAME Command
BLKSIZE block-size Specifies the maximum size of a data block for
the VARIABLE, UNDEFINED, and PACKED
record formats. Specifies the blocking factor
(records per block) for the FIXED record
format. This keyword should not be specified
for the KEYVSAM and ENTRYVSAM record
formats. If this keyword is omitted for the
non-VSAM record formats, operating system
defaults will be used. It is recommended that
this keyword only be used for special
circumstances.

AUTODEF Specifies that file definition statements will be
generated for the fields contained in this
subfile. The file definition name will be the
same as the ddname. A FILE SUBFn command
with the AUTODEF keyword must be present
in the Run Control section of the application
when this keyword is specified.

TYPE invocation-event Specifies the event within the application
processing cycle at which the extract output
will be invoked. If the EXTRACT command is
inside of a procedure block, this keyword
should be omitted because the PROC
statement will control the invocation event. If
this keyword is omitted and the command is
not inside of a procedure block, the extract
output will be invoked during each iteration of
the master file read and standard coordination
cycles. Valid invocation event specifications
are as follows:

NORMAL -- Specifies that the subfile output
will be invoked during each iteration of master
file read and standard coordination cycles.

SUBROUTINE or SUB -- Specifies that the
subfile output will only be invoked when
explicitly called by a procedural CALL
statement.

INIT -- Specifies that the report subfile will be
invoked only one time after the master and
coordinated files have been opened but before
any records from these files have been
processed.

PRE_MASTER_READ -- Specifies that the
subfile output will be invoked just prior to
reading the next master file record.
6–12 ASL Reference Guide

EXTRACT DDNAME Command
Examples
EXTRACT DDNAME FILE1, COLUMNS CUSTNO CUSTNAME BALANCE

EXTRACT DDNAME PARTLIST, COLUMNS PARTNO DESCRIPT PRICE,
VARCHARMAX NOPREFIX DESCRIPT, AUTODEF

The above examples show extended subfile output to a specific DD name.

TYPE1 -- Specifies that the subfile output will
be invoked after each transaction record has
been read.

TYPE2 -- Specifies that the subfile output will
be invoked after the transaction file and the
master files have been aligned.

TYPEM -- Specifies that the subfile output
will be invoked after the master file record has
been updated but before first round
coordination.

TYPE3 -- Specifies that the subfile output will
be invoked after the master file record has
been updated but after first round
coordination.

TYPE4 -- Specifies that the subfile output will
be invoked whenever a transaction record is
rejected, either explicitly by procedural code
or implicitly by transaction validation
controls.

EOF -- Specifies that the subfile output will
be invoked only once after the transaction file,
master file, and all coordinated files have
reached end of file.

EOFPLUS -- Specifies that the subfile output
will be invoked as in NORMAL and
additionally as in EOF above.

INFO 'text' Specifies descriptive text that may be used to
annotate the subfile. The text cannot be longer
than 28 characters.
Subfile Output Command Group 6–13

EXTRACT DBDNAME Command
EXTRACT DBDNAME Command

The EXTRACT DBDNAME command is used to specify subfile output to an IMS
database identified with the DBDNAME keyword. The EXTRACT command may
be included inside a procedure block or may appear outside of any procedure
block. When included inside of a procedure block, its invocation will be controlled
by the procedure. When outside of a procedure block, its invocation will be
controlled by the use of the TYPE keyword.

[extract-name:] EXTRACT DBDNAME dbdname,

ENTIRE qual-char,
[{DLI | HDAM}],
[SELECTIONCONTROL {YES | NO}],
[MAXITEMS number],
[AUTODEF],
[TYPE {NORMAL | SUBROUTINE | INIT | PRE_MASTER_READ |

TYPE1 | TYPE2 | TYPEM | TYPE3 | TYPE4 |
EOF | EOFPLUS}],

[INFO 'text']

extract-name: Specifies the name of the extract. Naming an
extract is optional and is only required when
the EXTRACT command is not inside a
procedure block and TYPE is specified as
SUBROUTINE.

DBDNAME dbdname Specifies the name of the IMS database
definition (DBD) that identifies the database
into which the selected records are to be
inserted.

ENTIRE qual-char Specifies the qualifier of the file whose entire
records are to be inserted into the IMS
database. Only entire records may be output
into an IMS subfile.

DLI Specifies that the IMS database is a HISAM,
HIDAM, or HSAM database. This keyword is
mutually exclusive with the HDAM keyword
and is the default if neither the DLI nor
HDAM keyword is specified.

HDAM Specifies that the IMS database is a HDAM
database. This keyword is mutually exclusive
with the DLI keyword.
6–14 ASL Reference Guide

EXTRACT DBDNAME Command
SELECTIONCONTROL {YES | NO}

SELCNTL Specifies whether or not all occurrences of
repeated segments in a hierarchical structure
are to be examined.

YES -- Specifies that only the first occurrence
of a repeated segment within each record that
meets the selection qualification will be
selected.

NO -- Specifies that all occurrences of
repeated segments within each record that
meet the selection qualification will be
selected. This is the default if the
SELECTIONCONTROL keyword is omitted.

MAXITEMS number Specifies the maximum number of records
that will be selected for this subfile. Specify a
number from 1 to 9999 to limit the number of
records that will be selected for this subfile. If
this keyword is omitted, the number of
records that will be selected is unlimited.

AUTODEF Specifies that file definition statements will be
generated for the fields contained in this
subfile. The file definition name will be the
same as the dbdname. A FILE SUBFn
command with the AUTODEF keyword must
be present in the Run Control section of the
application when this keyword is specified.
Subfile Output Command Group 6–15

EXTRACT DBDNAME Command
TYPE invocation-event Specifies the event within the application
processing cycle at which the extract output
will be invoked. If the EXTRACT command is
inside of a procedure block, this keyword
should be omitted because the PROC
statement will control the invocation event. If
this keyword is omitted and the command is
not inside of a procedure block, the extract
output will be invoked during each iteration
of the master file read and standard
coordination cycles. Valid invocation-event
specifications are as follows:

NORMAL -- Specifies that the subfile output
will be invoked during each iteration of
master file read and standard coordination
cycles.

SUBROUTINE or SUB -- Specifies that the
subfile output will only be invoked when
explicitly called by a procedural CALL
statement.

INIT -- Specifies that the report subfile will
be invoked only one time after the master and
coordinated files have been opened but before
any records from these files have been
processed.

PRE_MASTER_READ -- Specifies that the
subfile output will be invoked just prior to
reading the next master file record.

TYPE1 -- Specifies that the subfile output
will be invoked after each transaction record
has been read.

TYPE2 -- Specifies that the subfile output
will be invoked after the transaction file and
the master files have been aligned.

TYPEM -- Specifies that the subfile output
will be invoked after the master file record has
been updated but before first round
coordination.

TYPE3 -- Specifies that the subfile output
will be invoked after the master file record has
been updated but after first round
coordination.
6–16 ASL Reference Guide

EXTRACT DBDNAME Command
Examples
EXTRACT DBDNAME NEWDBD, ENTIRE O, HDAM

The above example shows extended subfile output to an IMS database.

TYPE4 -- Specifies that the subfile output
will be invoked whenever a transaction
record is rejected, either explicitly by
procedural code or implicitly by transaction
validation controls.

EOF -- Specifies that the subfile output will
be invoked only once after the transaction file,
master file, and all coordinated files have
reached end of file.

EOFPLUS -- Specifies that the subfile output
will be invoked as in NORMAL and
additionally as in EOF above.

INFO 'text' Specifies descriptive text that may be used to
annotate the subfile. The text cannot be longer
than 28 characters.
Subfile Output Command Group 6–17

EXTRACT TABLE Command
EXTRACT TABLE Command

The EXTRACT TABLE command is used to specify subfile output to a DB2 table
identified with the TABLE keyword. The EXTRACT command may be included
inside a procedure block or may appear outside of any procedure block. When
included inside of a procedure block, its invocation will be controlled by the
procedure. When outside of a procedure block, its invocation will be controlled by
the use of the TYPE keyword.

[extract-name:] EXTRACT TABLE "authid.tablename",

{CREATE | DELETE | INSERT | DROP},
[TABLESPACE tablespace-name],
[DATABASE database-name],
COLUMNS {field-name | PF(field-name start length} …,
[KEYS {key-field | PF(key-field start length} …],
[SELECTIONCONTROL {YES | NO}],
[MAXITEMS number],
[ABBREVIATED],
[AUTODEF],
[DEFNAME definition-name],
[TYPE {NORMAL | SUBROUTINE | INIT | PRE_MASTER_READ |

TYPE1 | TYPE2 | TYPEM | TYPE3 | TYPE4 |
EOF | EOFPLUS}],

[INFO 'text']

extract-name: Specifies the name of the extract. Naming an
extract is optional and is only required when
the EXTRACT command is not inside a
procedure block and TYPE is specified as
SUBROUTINE.

TABLE "authid.tablename" Specifies the name of the DB2 table and
optionally, the authorization id to be assigned
to the table. If authorization id is specified, it
must be followed with a period (.) and the
entire string of authorization id and table
name enclosed in quotation marks ("). If
authorization id is omitted, the default
authorization id determined by DB2
conventions will be used.

CREATE Specifies that the DB2 table is to be created
before any rows are inserted. The identifiers
specified with the TABLESPACE and
DATABASE keywords will be used in the
table creation process.
6–18 ASL Reference Guide

EXTRACT TABLE Command
DELETE Specifies that any existing rows in the DB2
table will be deleted prior to any new rows
being inserted.

INSERT Specifies that new rows are to be inserted into
the existing table. Note that the table may
contain duplicate data after processing is
complete when this keyword is specified.
Duplicate data may be avoided by creating an
index with the unique keys attribute for the
table. If this is the case and processing should
continue after a duplicate row is encountered,
the CONTROL command should specify the
CONTINUE keyword.

DROP Specifies that the existing DB2 table is to be
dropped and a new one created before any
rows are inserted. The identifiers specified
with the TABLESPACE and DATABASE
keywords will be used in the table creation
process.

TABLESPACE tablespace-name

Specifies the name of the DB2 table space in
which the table is to be created. This keyword
is only meaningful when CREATE or DROP is
specified. If this keyword is omitted when
CREATE or DROP is specified, the DB2
defaults will be used.

DATABASE database-name Specifies the name of the DB2 database in
which the table is to be created. This keyword
is only meaningful when CREATE or DROP is
specified. If this keyword is omitted when
CREATE or DROP is specified, the DB2
defaults will be used.

COLUMNS field-name …
COLUMN

Specifies a list of one or more qualified names
of fields that will become the columns in the
DB2 table in the order that they are listed. The
field may be a partial field using the PF
function notation.

KEYS key-field …
KEY

Specifies the names of one or more field
names that have been included with the
ITEMS keyword list, and which are to be
identified as key fields in the created file
definition when the AUTODEF keyword is
specified. The first field in the list becomes
key field 1, the second key field 2, and so on.
Subfile Output Command Group 6–19

EXTRACT TABLE Command
SELECTIONCONTROL {YES | NO}
SELCNTL

Specifies whether or not all occurrences of
repeated segments in a hierarchical structure
are to be examined.

YES -- Specifies that only the first occurrence
of a repeated segment within each record that
meets the selection qualification will be
selected.

NO -- Specifies that all occurrences of
repeated segments within each record that
meet the selection qualification will be
selected. This is the default if the
SELECTIONCONTROL keyword is omitted.

MAXITEMS number Specifies the maximum number of records
that will be selected for this subfile. Specify a
number from 1 to 9999 to limit the number of
records that will be selected for this subfile. If
this keyword is omitted, the number of
records that will be selected is unlimited.

ABBREVIATED
ABBREV

Specifies whether repeated selections of the
same data will be output only once. The use of
this keyword is only meaningful when one or
more of the input files contain data in a
hierarchical structure wherein the segments
have multiple branches or when more than
one standard coordinated file (see the FILE
CORDn command) is used. These
coordinated files may be viewed as a
hierarchical structure with multiple branches.

If this keyword is specified, an output record
will only be produced the first time that each
unique combination of different repeating
segments is examined and the qualifying
criteria are met. If this keyword is omitted, an
output record will be produced each time any
combination of different repeating segments
is examined and the qualifying criteria are
met.

Note: In earlier versions of VISION:Builder,
this functionality was achieved through a
specification called Parallel Looping. The use
of ABBREVIATED here limits the action of
Parallel Looping to output operations only.
6–20 ASL Reference Guide

EXTRACT TABLE Command
AUTODEF Specifies that file definition statements will be
generated for the fields contained in this
subfile. A FILE SUBFn command with the
AUTODEF keyword must be present in the
Run Control section of the application when
this keyword is specified.

DEFNAME definition-name Specifies the file definition name to be used
for the file definition created by specifying the
AUTODEF command. If this keyword is
omitted and the AUTODEF keyword is
specified, a default definition name of
X$SUBnnn will be used where nnn is a
uniquely assigned number.
Subfile Output Command Group 6–21

EXTRACT TABLE Command
TYPE invocation-event Specifies the event within the application
processing cycle at which the extract output
will be invoked. If the EXTRACT command is
inside of a procedure block, this keyword
should be omitted because the PROC
statement will control the invocation event. If
this keyword is omitted and the command is
not inside of a procedure block, the extract
output will be invoked during each iteration
of the master file read and standard
coordination cycles. Valid invocation-event
specifications are as follows:

NORMAL -- Specifies that the subfile output
will be invoked during each iteration of
master file read and standard coordination
cycles.

SUBROUTINE or SUB -- Specifies that the
subfile output will only be invoked when
explicitly called by a procedural CALL
statement.

INIT -- Specifies that the report subfile will
be invoked only one time after the master and
coordinated files have been opened but before
any records from these files have been
processed.

PRE_MASTER_READ -- Specifies that the
subfile output will be invoked just prior to
reading the next master file record.

TYPE1 -- Specifies that the subfile output
will be invoked after each transaction record
has been read.

TYPE2 -- Specifies that the subfile output
will be invoked after the transaction file and
the master files have been aligned.

TYPEM -- Specifies that the subfile output
will be invoked after the master file record has
been updated but before first round
coordination.

TYPE3 -- Specifies that the subfile output
will be invoked after the master file record has
been updated but after first round
coordination.
6–22 ASL Reference Guide

EXTRACT TABLE Command
Examples
EXTRACT TABLE "PAYROLL.NEWTABLE", CREATE,

TABLESPACE TEMPSPACE, DATABASE PAYDB,
COLUMNS HIREDATE BEGIN_SALARY CURRENT_SALARY,
KEYS HIREDATE,
AUTODEF, DEFNAME INCRATE

The above example shows extended subfile output to a DB2 table.

TYPE4 -- Specifies that the subfile output
will be invoked whenever a transaction
record is rejected, either explicitly by
procedural code or implicitly by transaction
validation controls.

EOF -- Specifies that the subfile output will
be invoked only once after the transaction file,
master file, and all coordinated files have
reached end of file.

EOFPLUS -- Specifies that the subfile output
will be invoked as in NORMAL and
additionally as in EOF above.

INFO 'text' Specifies descriptive text that may be used to
annotate the subfile. The text cannot be longer
than 28 characters.
Subfile Output Command Group 6–23

EXTRACT TABLE Command
6–24 ASL Reference Guide

Chapter
7 A
SL Examples
This chapter contains examples of ASL that show how the language is used in the
context of an entire procedure or application. The purpose of these examples is to
illustrate how the language is used to perform a variety of operations that use the
various features of the language.

Example 1

This example converts feet to centimeters. The program converts the value in field
DISTANCE to centimeters and stores the result back into the field DISTANCE in
the logical record. There is no change to the physical data.

; Convert distance in units of feet to distance in unit of
; centimeters.
;
LET DISTANCE = DISTANCE * 30.480 WITH ROUNDING

The WITH ROUNDING clause rounds the result to the nearest centimeter.

Because of the set operation of ASL, this one line procedure transforms all
instances of the field DISTANCE in the database.

Example 2

This example reports only employee records for employees whose salaries are less
than $50,000.

; Bypass all records for salaries of $50,000 and greater.
;
IF SALARY >= 50000
 TRANSFER TO NEXT_MASTER
END

All records for employees whose salaries are $50,000 or greater are ignored.

Example 3

This example reads a parameter record and places entries from the parameter
record into working storage fields. If you do not provide a parameter record, the
example writes the message text “NO PARAMETER RECORD” on the report
ERRLIST and terminates the run by forcing end of file on the master file.

; Read parameter record into working storage.
;
IF FIND(9.PARMDATA)
ASL Examples 7–1

 LET W.PARM1 = PF(9.PARMS 1 8) ;First parameter field
 LET W.PARM2 = PF(9.PARMS 10 4) ;Second parameter field
ELSE
 LET T.ERRMSG = ’NO PARAMETER RECORD’
 CALL REPORT ERRLIST ;Generate error report
 LET PF(F.EOF 1 1) = ’E’ ;Force End of File
END

The example:

■ Reads the parameter record from file 9 using the FIND function.

■ The FIND function returns a FALSE command if no record is available (that is,
the file is empty or at end of file).

■ Uses partial fielding of the field PARMS (in file 9) to isolate the parameters.

■ Terminates if no parameter record is found by placing the code E into the first
position of the EOF flag field. The first position controls the master file. When
the master file reaches the end of file, there are no secondary file coordinations
and the program terminates.

Example 4

This example illustrates the use of qualifiers to reference data from multiple files.

; Compute total by adding amounts from the file for each quarter.
;
LET T.TOTAL = 1.QTRTOT + 2.QTRTOT + 3.QTRTOT + 4.QTRTOT

Note that this example uses the qualifiers to indicate the file from which each
quarter’s totals are obtained.

The field names within each of the coordinated files are QTRTOT. Each of the files
can either use the same definition or different definitions. The qualifier identifies
from which of the coordinated files the data is obtained. The temporary field
TOTAL uses the qualifier T to identify that it is a computed field. The field is
available to all other procedures.

Example 5

This example illustrates the use of the FIND function for performing a file browse.

; ***** File Browse Example *****
;
; Report all customers whose customer name begins with ’B’.
; This assumes that the customer name is the primary key of the
; file.
;
IF FIND(1.CUSTOMER WHERE 1.CUSTNAME GE ’B’)
 DO UNTIL NOT FIND(1.CUSTOMER)
 IF PF(CUSTNAME 1 1) EQ ’B’
 CALL REPORT LISTCUST
 ELSE
 LEAVE
 END
 END
END
7–2 ASL Reference Guide

In this example, the first statement (IF) reads (FIND) the first record of the file
whose key (CUSTNAME) begins with B or greater.

■ If no record exists for this condition, the program does not produce report
output and terminates the procedures.

■ If the first FIND statement reads a record, the customer name (CUSTNAME) is
examined to see if it begins with a B.

■ If not, the LEAVE statement exits the DO loop and the procedure terminates.
Otherwise, the report output is produced and the loop continues by reading
(FIND) the next sequential record from the file. The UNTIL NOT FIND clause
fails and the loop terminates when the end of the file is reached or the customer
name is greater than B.

Note that the program evaluates the UNTIL clause only after the loop executes at
least one time.

Example 6

This example is of a GDBI mapping procedure for an ADABAS database.

; ***** Root-Level Mapping Procedure for ADABAS *****
;
IF F.COMMAND = ’GETFIRST’
 CALL MODULE INNXXEP T.LOCATE STARTSEG T.RESCODE
 IF T.RESCODE <> 0 OR F.CSTATUS <> ’ ’
 LET F.MSTATUS = ’STOP10’
 RETURN
 END
END
CALL INNXXEP T.SEQREAD STARTSEG T.RESCODE
IF F.CSTATUS = ’ ’
 DO CASE
 CASE WHERE T.RESCODE = 0
 T.BCUSED = 0
 RETURN
 CASE WHERE T.RESCODE = -1
 LET F.MSTATUS = ’NFOUND’
 RETURN
 END
END
LET F.MSTATUS = ’STOP20’

This procedure retrieves a root segment from the ADABAS database manager and
places it into the logical record in field STARTSEG. Based on the flag field
COMMAND, the procedure either retrieves the root segment starting from a
particular key value or from the beginning of the database.

If the COMMAND flag field contains GETFIRST, the CALL statement interfaces to
the INNXXEP module in ADABAS to set the position of the database to the root
segment that matches the key value contained in T.LOCATE.

■ If the CALL statement is not successful, a value of STOP10 is placed into the
MSTATUS flag field and the procedure terminates.

■ If the CALL statement is successful or if the COMMAND flag field does not
contain GETFIRST, the procedure continues with the second CALL statement
that interfaces to the INNXXEP module in ADABAS to actually retrieve the root
ASL Examples 7–3

segment from the current position and return the data in the STARTSEG field.
If the second CALL statement is successful, the DO CASE determines if
ADABAS found a segment.

– The program sets the field T.BCUSED to zero if a segment is retrieved.

– The program sets the MSTATUS flag field to NFOUND if a segment is not
retrieved. In either case, the RETURN statements terminate the procedure.

■ If the second CALL statement is not successful, the program places a value of
STOP20 into the MSTATUS flag field and the procedure terminates.

Example 7

This example isolates arguments from a text string.

;ISOLATE ARGUMENTS FROM A TEXT STRING
;
; INPUT IS T.TEXT, T.START, T.LENGTH
; OUTPUT IS T.ARGST (START OF ARGUMENT)
; T.ARGL (LENGTH OF ARGUMENT)
; T.START AND T.LENGTH ARE READY TO CONTINUE THE
; REMAINDER OF THE SCAN.
; SETTINGS OF ZERO ARE ERROR CONDITIONS
;
LET F.LSTART = T.START ;SET SCAN START
LET F.LNUMBER = T.LENGTH ;SET SCAN LENGTH
;
IF SCAN(PF(T.TEXT LS LN) FOR P’z’) ;SCAN FOR ALPHA
 LET T.ARGST = F.MSTART ;SAVE ARG START
 LET T.LENGTH = F.RNUMBER+F.MNUMBER ;SET TO SCAN REMAINDER
; OF TEXT
ELSE
 LET T.ARGST = 0 ;NO ALPHA SO SET ARG
; PARAMETERS
 LET T.ARGL = 0 ;TO ZERO
 RETURN
END
;
LET F.LSTART = T.ARGST ;SET SCAN START
LET F.LNUMBER = T.LENGTH ;SET SCAN LENGTH
IF SCAN(PF(T.TEXT LS LN) FOR P’B’) ;SCAN FOR BLANK
 LET T.ARGL = F.LNUMBER ;ARG LENGTH
 LET T.START = F.MSTART ;SET NEW START
 LET T.LENGTH = F.RNUMBER + F.MNUMBER ;SET REMAINDER OF SCAN
ELSE
 LET T.ARGL = T.LENGTH ;MUST BE END OF FIELD
 LET T.LENGTH = 0 ;SET FOR NO MORE TO SCAN
END

In this procedure, the SCAN function scans first for an alpha character, as
indicated by the pattern P’z’ in the first SCAN function. If the program finds an
argument, it saves the starting position in the text line; otherwise, the procedure
returns and indicates that no argument was found. After an argument is found, the
second SCAN function looks for a blank by using the pattern P’B’, which indicates
the end of the argument.

This routine is used as a subroutine. The calling routine initializes the three
temporary fields TEXT, START, and LENGTH. TEXT contains the text to be
scanned. START contains the start of the scan. LENGTH contains the length
to scan.
7–4 ASL Reference Guide

With these parameters, the procedure isolates the first word (or token) and returns
to the calling routine. When returning to the calling routine, START and LENGTH
are adjusted so that, on the next call to this procedure, the scan can continue to find
the next word. Thus, successive calls to the procedure return words (or tokens) in
sequence.

LENGTH is set to zero when the field TEXT has been completely scanned. The
calling procedure tests for this.
ASL Examples 7–5

7–6 ASL Reference Guide

Appendix
A A
SL Quick Reference
ASL (Advanced Syntax Language) is a companion product to VISION:Builder,
VISION:Inform, and VISION:Two.

Terminology

Term Description

Procedure A procedure defines an algorithm or sequence of
calculations. It is composed of a series of procedure
statements.

Procedure
statement

A procedure statement begins on a new line and consists
of an optional label followed by a command.

Label A label identifies a specific statement. The label is
optional. If used, place the label before a procedure
statement and follow the label immediately (without
intervening spaces) by a colon (:).

Command A command identifies the kind of procedure statement.
You can follow a command by keywords, functions,
constants, names, qualifiers, expressions, and comments.

Function A function is a subroutine that derives a value from other
data values.

Keyword A keyword identifies how certain parameters are used.
Most keywords are optional.

Keyword operand
(or just operand)

A keyword operand identifies the data values associated
with a keyword. In the procedure statement, follow a
keyword with one or more spaces and a keyword
operand.

Keyword phrase A keyword phrase is a keyword plus its operand.
ASL Quick Reference A–1

References
References
For information on IBM Language Environment® Callable Services (CEExxx),
refer to IBM Language Environment for MVS and VM Programming Reference.

Constants
There are six types of constants: character, integer, decimal, floating point, time,
and pattern. A description of each follows:

■ Delimit character constants by single quotation marks. Specify a single
quotation mark within a constant by two consecutive single quotation marks.
For example: ‘A’ or ‘CAN’’T’

■ Specify integer constants with numeric digits only. If the integer constant is
negative, place a minus sign (-) before the constant. If the integer constant is
positive, you can place an optional plus sign (+) before the constant. For
example: -2, 0, or +7

■ Specify decimal constants with numeric digits, an optional sign, and a decimal
point. If you use a plus sign (+) or a minus sign (-), make it the first character of
the constant. For example: -2000.00, 3.99, or +7.25

■ Specify floating point constants with an optional sign preceding an integer or
decimal constant followed by a power of ten expressed in exponential notation.
For example: 1.50E10 or 13.75E-5

■ Specify a time constant, HH:MM:SS.nn...n (hours, minutes, seconds, decimal
seconds) by the letter T, followed by a single quotation mark, the time constant,
and a closing single quotation mark. For example: T’12:01:00.125’

■ Specify a pattern starting with the letter P, followed by a single quotation mark,
a string of special pattern symbols, and a closing single quotation mark.
For example: P’#(#999#)#999#-#9999’ or P’ZZZ999’

Names
■ Begin field names and statement labels with an alphabetic character (A-Z).

■ Make the remaining seven characters either alphabetic characters (A-Z),
numeric digits (0-9), or underscores (_).

■ Enclose field names that do not conform to this syntax in double quotation
marks.
A–2 ASL Reference Guide

Qualifiers
Qualifiers
You can prefix a field name with a standard 1-character qualifier and a period. A
qualifier identifies the type of field or file where the field exists. The following are
valid qualifiers and their meanings:

Comments
Place comments anywhere following a semicolon (;), except on a continued line.

Arithmetic Expressions
Code arithmetic expressions with the operators +, -, *, and / for addition,
subtraction, multiplication, and division, respectively.

For example: A + B A - B B * C D / C

As in conventional algebraic notation, operations within an arithmetic expression
are processed according to a specific hierarchy, from left to right. However,
multiplication and division are performed prior to addition and subtraction unless
this order is overridden by parentheses.

Qualifier Type or Location

Blank or N New Master file

1-9 Coordinated files 1-9

T Temporary field

F Flag field

X Transaction file

O or 0 Old master file

W Working storage

V Linkage section

A, B, E, H, J, K, M, Q,
1-9

Array (must match the qualifier that identifies the
array)
ASL Quick Reference A–3

Logical Expressions
Logical Expressions
Use logical expressions in IF, CASE, and DO statements. Make logical expressions
from conditional functions, relational expressions, or list expressions connected by
logical operators.

■ A conditional function is a function that returns a true or false condition.

■ A relational expression is composed of two values connected by a logical
operator.
In relational expressions, you can represent the logical operator as characters or
as symbols:

EQ or =
NE or <>
GT or >
LT or <
GE or >=
LE or <=

■ A list expression lists the specific values to test.
For example: NUMBER = 0001 0002 0003

Statement Syntax
The following describes the conventions used to provide a precise description of
the syntax of a function or command. Enter commands and functions in the exact
order given.

■ Brackets [] indicate an optional parameter.

■ Braces { } indicate a choice of entry. Unless a default is indicated, you must
choose one of the entries.

■ Required parameters do not have brackets or braces surrounding them.

■ Items separated by a vertical bar (|) represent alternative items. Select only one
of the items.

■ An ellipsis (...) indicates that you can use a progressive sequence of the type
immediately preceding the ellipsis. For example: name1, name2, and so on.

■ Uppercase type indicates the characters to be entered. Enter such items exactly
as illustrated. You can also use authorized abbreviations.

■ Lowercase type specifies fields to be supplied by the user.

■ Separate commands, keywords, and keyword phrases by blanks.

■ Enter punctuation exactly as shown (parentheses, colons, and so on).
A–4 ASL Reference Guide

Continuation
Continuation
You can write procedure statements on multiple lines. Terminate each line by a
blank space followed by a comma. Continue the remainder of the statement on the
following lines. For example:

IF NAME = ‘THE ABC COMPANY ’ ,
AND NUMBER = ‘00001’ ,
OR NUMBER = ‘0002’ ,
OR NUMBER = ‘0003’ ,

THEN

Built-In Functions
Specify functions by entering a function name followed immediately (with no
intervening spaces) by a left parenthesis, one or more keyword phrases, and
terminating with a right parenthesis.

Conditional Functions
Conditional functions return a true or false condition.

FIND([SEGMENT] segment-name [FIRST | LAST |
NEXT | WHERE selection-expression])

LOCATE([ARRAY] array-identifier { [ROW row-number]

[COLUMN column-number] })

SCAN([FIELD] field-name [FOR] search-value/pattern
{ FROM LEFT | FROM RIGHT } [NOTEQUAL])

VALIDATE([FIELD] field-name { PATTERN
P’pattern’ | DATE })

Value Functions
Value functions return an actual value, either a result from a table or part of an
existing field.

LOOKUP([TABLE] table-name [ARGUMENT] lookup-argument
[NEAREST | SMALLER | LARGER | INTERPOLATE])

PF([FIELD] field-name [START] start-position
[LENGTH partial-length])
ASL Quick Reference A–5

Commands
Commands
Long commands that have abbreviations are shown in braces { } to indicate choice.
For example: { COMBINE | COM }, { CONTINUE | CONT }, { FIELD | FLD }, and
so on.

CALL { [PROCEDURE] procedure-name |
MODULE module-name |
REPORT report-name |
SUBFILE subfile-name |
MODULE ‘module-name’ |
CEEDATE | CEEDATM | CEEDAYS | IBM Language
CEEDYWK | CEEGMT | CEEGMTO | Environment (LE)
CEEISEC | CEELOCT | CEEQCEN | Callable Services
CEESCEN | CEESECI | CEESECS | CEEUTC Routines (CEExxxx)

[USING parm ...] }

CASE [WHERE] logical-expression

ARRAY [QUALIFIER] qualifier-char,

NAME definition-name,
[OVERDEFINES qualifier-char]

AVERAGE [ITEM] summary-field ...,

{BY group-field | AT LEVEL level-number}

CATALOG {SAVE [GROUP group-name] [REQUESTS request-name ...] |

 INSERT REQUEST request-name INTO group-name [AFTER request-name] |
DELETE [GROUP group-name] [REQUESTS request-name ...] |
REPLACE REQUESTS request-name … |
DUMP {ALL | ITEMS name … } |
LIST}

CHECKPOINT [COUNT number],

[FILE ddname],
[TIME number {MINUTES | SECONDS}],
[EOV ddname],
[OPERATOR],
[PREFIX id-prefix],
[COMMITONLY],
[ALTERNATING]

}

A–6 ASL Reference Guide

Commands
COLLATE { REPORTS report-name ...
[KEYLENGTH length] |
ALL KEYLENGTH length }

{ COMBINE | COM } [FIELDS] field1 ... STORE result-field
[[BLANKS] number]

{ CONTINUE | CONT }

COMPUTE STEMPnn = operand1 operator operand2,

[PICTURE P'picture'],
[DECIMALS decimal-places],
[ROUNDED],
AT LEVEL level-number

CONTROL [NAME run-name],

[DELIMITER ‘x’],
[{SCANONLY | SAMPLE | MAPDECODE}],
[{TERM | CONTINUE}],
[SORT {INTERNAL | EXTERNAL | NONE}, [SUMMARIZE]],
[{NOLIST | NOSOURCE | LISTGEN}],
[AMODE {31 | 24}],
[ABEND],
[GRANDSUM],
[CORDONLY],
[GETMAIN nnnnK],
[SORTSIZE nnnnK],
[REPTSIZE nnnnK],
[FREESIZE nnnnK],
[DB2 subsystem-id plan-name],
[SQLID authorization-id],
[EXPLAIN query-number],
[{SYSDATE mmddyy | SYSDATE4 yyyymmdd}],
[DECMSGS {YES | NO}],
[PROMSGS {YES | NO}],
[RPTMSGS {YES | NO}]

COPY [DDNAME] ddname[(member-name)],

[FIXED]

COUNT [ITEM] summary-field ...,

{BY group-field | AT LEVEL level-number}
ASL Quick Reference A–7

Commands
DO { [WHILE logical-expression]
[UNTIL logical-expression]
[FORALL segment-name]
[FORALL CELLS IN ARRAY array-identifier]
[FORALL COLUMNS IN ARRAY array-identifier

[WITHIN ROW row-number]]
[FORALL ROWS IN ARRAY array-identifier

[WITHIN COLUMN column-number]]
[FOR integer] } |
[CASE]

ELSE

CUMULATE [ITEM] summary-field ...,

{BY group-field | AT LEVEL level-number}

DATA {'text' | LITERAL('text', repeat-count) | field-name |,

summary-function(field-name [level]) |,
STEMPnn | COL(column-number) | SPACES(number-spaces)}…,
AT LEVEL level-number

DEBUG [CLEAR],

[DUMP],
[LONGNAMES],
[TRACE COMPCODE + IMSCALLA + MAPPING + SQLCALL]

DOCUMENT [CONVMSGS],

 [XREF],
[EXECTRACE],
[MAXLINES number]

END [{DO | IF | PROC | REPORT | SECTION}]
A–8 ASL Reference Guide

Commands
[extract-name:] EXTRACT DBDNAME dbdname,

ENTIRE qual-char,
[{DLI | HDAM}],
[SELECTIONCONTROL {YES | NO}],
[MAXITEMS number],
[AUTODEF],
[TYPE {NORMAL | SUBROUTINE | INIT | PRE_MASTER_READ |

TYPE1 | TYPE2 | TYPEM | TYPE3 | TYPE4 |
EOF | EOFPLUS}],

[INFO 'text']

[extract-name:] EXTRACT DDNAME ddname,

{[ITEMS] field-name … | ENTIRE qual-char},
[KEYS key-field …],
[VARCHARMAX NOPREFIX varchar-field1 …],
[VARCHARMAX WITHPREFIX varchar-field2 …],
[SELECTIONCONTROL {YES | NO}],
[MAXITEMS number],
[ABBREVIATED],
[RECFM {FIXED | VARIABLE | UNDEFINED |

KEYVSAM | ENTRYVSAM | PACKED}],
[BLKSIZE block-size],
[AUTODEF],
[TYPE {NORMAL | SUBROUTINE | INIT | PRE_MASTER_READ
| TYPE1 | TYPE2 | TYPEM | TYPE3 | TYPE4 |

EOF | EOFPLUS}],
[INFO 'text']

[extract-name:] EXTRACT FILE subfile-name,

{[ITEMS] field-name ... | ENTIRE qual-char},
[KEYS key-field …],
[VARCHARMAX NOPREFIX varchar-field1 …],
[VARCHARMAX WITHPREFIX varchar-field2 …],
[SELECTIONCONTROL {YES | NO}],
[MAXITEMS number],
[ABBREVIATED],
[RECFM {FIXED | VARIABLE | UNDEFINED | KEYVSAM |

ENTRYVSAM | DLI | HDAM | DB2 | PACKED}],
[BLKSIZE block-size],
[AUTODEF],
[TYPE {NORMAL | SUBROUTINE | INIT | PRE_MASTER_READ |

TYPE1 | TYPE2 | TYPEM | TYPE3 | TYPE4 |
EOF | EOFPLUS}],

[INFO 'text']
ASL Quick Reference A–9

Commands
field name: { FIELD | FLD } [TYPE] field-type [[LENGTH] field-length]
[DECIMALS decimal-places]
[FLOAT floating-edit-char]
[FILL fill-edit-char]
[TRAIL trailing-edit-char]
[EDLEN edit-length]
[INIT initial-value]
[HEADING ‘line1’ [‘line2’]]

[extract-name:] EXTRACT TABLE "authid.tablename",

{CREATE | DELETE | INSERT | DROP},
[TABLESPACE tablespace-name],
[DATABASE database-name],
ITEMS {field-name | PF(field-name start length} …,
[KEYS {key-field | PF(key-field start length} …],
[SELECTIONCONTROL {YES | NO}],
[MAXITEMS number],
[ABBREVIATED],
[AUTODEF],
[DEFNAME definition-name],
[TYPE {NORMAL | SUBROUTINE | INIT | PRE_MASTER_READ |

TYPE1 | TYPE2 | TYPEM | TYPE3 | TYPE4 |
EOF | EOFPLUS}],

[INFO 'text']

FILE AUDIT [DDNAME ddname]
A–10 ASL Reference Guide

Commands
FILE CORDn {[NAME] definition-name | SQL "sql-select-statement"},

[MOSAIC],
[CHKORDER],
[ARRAY],
[{SEGMENT segment-name WHERE "sql-where-clause" … |
SEGMENT segment-name SSA "pre-selection-ssa" … }],

[{PASSWORD password | AUTHID authorization-id}],
[IOPLUGIN module-name],
[DDNAME ddname]

Additional keywords for Indexed Direct Coordination (ICF):

[DIRECT BY q.fldname]

Additional keywords for Standard Coordination:

[STANDARD],
[{ALLRECS | MATCHONLY}],
[KEYNAME field-name ...]

Additional keywords for Chained Coordination:

[CHAIN TO qualifier],
[KEYNAME field-name ...]

Additional keywords for User Read files:

[USERREAD],
[GENERIC field-name]

FILE MASTER {INPUT | UPDATE},

{[NAME] definition-name | SQL "sql-select-statement"},
[ACCESS {SEQUENTIAL | DIRECT | PHYSICAL}],
[KEYS {UNIQUE | EQUAL | NONE}],
[STARTKEY 'key-value'],
[ENDKEY 'key-value'],
[KEYNAME field-name ...],
[MOSAIC],
[CHKORDER],
[ONEBUFFER],
[{SEGMENT segment-name WHERE "sql-where-clause" … |
SEGMENT segment-name SSA "pre-selection-ssa" … }],

[{PASSWORD password | AUTHID authorization-id}],
[IOPLUGIN module-name],
[DDNAME ddname]

FILE REJECT [DDNAME ddname]
ASL Quick Reference A–11

Commands
FILE REPn [NAME] report-file-name,

[DDNAME name]

FILE REPORT [DDNAME ddname]

FILE SUBFn [NAME] subfile-name,

[TABLE "authid.tablename" {CREATE | DELETE | INSERT | DROP}],
[TABLESPACE tablespace-name],
[DATABASE database-name],
[DELETESEGS],
[AUTODEF],
[{PASSWORD password],
[IOPLUGIN module-name],
[DDNAME ddname]

FILE TRAN [[NAME] definition-name],

[GROUPS group-name ...],
[CHKORDER],
[PASSWORD password],
[IOPLUGIN module-name],
[DDNAME ddname]
A–12 ASL Reference Guide

Commands
GO [TO] jump-to-label

IF [CONDITION] logical-expression [THEN]

FORMAT [HEIGHT number],

[WIDTH number],
[DATEPOS {UL | UR | UM | LL | LR | LM | NO}],
[PAGEPOS {UL | UR | UM | LL | LR | LM | NO}],
[TITLEPOS {TOP | BOTTOM}],
[HEADINGS {YES | NO | NAME}],
[HEADPOS {ABOVE | BELOW}],
[DATEFMT {DATE | TODAY | TODAYX | ISDATE | JULIAN | JULANX |

mmddyy}],
[BORDER {YES, NO, 'x'}],
[STARTPAGE {number | PAGE}],
[MAXPAGES number],
[LINESPERPAGE number],
[DETAILSPACING number],
[INCOMPLETESUM 'x'],
[NODATA {SKELETON | NOREPORT}],
[SUBTITLE {REPEAT | NOREPEAT | NEWPAGE}],
[SUMMARYLABELS {SPACE | NOSPACE | SUPPRESS}],
[LINENUMS {NONE | LEFT | RIGHT | BOTH}],
[IMAGES number [IMGTITLE {LOGPAGE | PHYPAGE | NEWPAGE}]]
[METHOD {STDLIST | ALTLIST | CSV | TAB | HTML | PLAINTEXT |

RAWDATA | CLEARACCESS}],
[STYLE number],
[DDNAME ddname],
[SUMFILE ddname],
[AUTODEF]

GROUP [BY] field-name ...

[AT LEVEL level-number],
[SUBTITLE [NEWPAGE]],
[LABEL field-name]

INCLUDE [ITEM] item-name,

[DATEFMT {DATE | TODAY | TODAYX | ISDATE | JULIAN | JULANX | mmddyy}],
[INFO ‘text’]

ITEM [FIELD] field-name ...,
ASL Quick Reference A–13

Commands
LEAVE

LET [FIELD] result-field = source-expression
[WITH] [EDIT P’pattern’] [ROUNDING]
[JUSTIFY { LEFT | RIGHT }]

{ LOCATE | LOC } [ARRAY] array-identifier
{ [ROW row-number]
[COLUMN column-number] }

[SPACES number],
[PICTURE P‘pattern’],
[ENDLINE],
[NONPRINT],
[VWIDTH],
[NOWRAP],
[SPLITOK],
[CSVEDIT {QUOTE | TRUNCATE [DECIMALS number]}]

LINE [{'text' | LIT[ERAL]('text', repeat-count) | field-name |,

summary-function(field-name [level]) |,
STEMPnn | COL(col-num) | SPACES(num-spaces)}…] [AT LEVEL level]

LINKAGE [AREA] number,

NAME definition-name

LISTCNTL [ALTLIST {YES | NO}],

[FILESUM {YES | NO}],
[INDEF {YES | NO}],
[INGLOSS {YES | NO}],
[INREQ {YES | NO}],
[CATREQ {YES | NO}],
[MAPREQ {YES | NO}],
[SQLSTAT {YES | NO}],
[MOSAICSTAT {YES | NO}]

LISTLIB GLOSSARY {ARRAY | FILE | GROUP | TABLE | VIEW | INVIEW},

{ALL | [ITEMS] name …}

LISTLIB NAMES {ALL | ARRAY | FILE | GROUP | TABLE | VIEW}
A–14 ASL Reference Guide

Commands
MAX [ITEM] summary-field ...,

{BY group-field | AT LEVEL level-number}

MIN [ITEM] summary-field ...,

{BY group-field | AT LEVEL level-number}

MULTILIB {OFF | ORDER ddname ...}

NEWPAGE [AT LEVEL] level-number

ORDER [BY] field-name ...,

[DESC field-name ...]

OVERRIDE [DDNAME] old-ddname,

WITH new-ddname

OWNCODE [MODULE] module-name,

HOOKS hook-number ...

PERCENT [ITEM] summary-field ... OF denominator-field,

{BY group-field | AT LEVEL level-number},
[DECIMALS decimal-places]

PREFACE [LINE] 'text' …

[proc-name:] PROC [TYPE {NORMAL | SUBROUTINE | INIT | PRE_MASTER_READ |
TYPE1 | TYPE2 | TYPEM | TYPE3 | TYPE4 |
EOF | EOFPLUS}],
ASL Quick Reference A–15

Commands
{ RELEASE | REL } { [SEGMENT] segment-name | ARRAY array-identifier }

{ REPLACE | REP } [STRING] search-string [IN] modify-field
[WITH] substitute-value

{ RETURN | RET }

[TEMPREINIT],
[SELECTIONCONTROL {YES | NO}],
[MAXITEMS number],
[INFO ‘text’],
[PARALLEL_LOOPING] (use with caution)

RATIO [ITEM] summary-field ..., TO denominator-field,

{BY group-field | AT LEVEL level-number},
[DECIMALS decimal-places]

[report-name:]REPORT [ITEMS] {field-name | report-function} ...,

[SUMMARYONLY],
[SINGLESPACE],
[GRANDSUMS],
[EMPTYFIELD {INCLUDE | EXCLUDE}],
[SELECTIONCONTROL {YES | NO}],
[MAXITEMS number],
[ABBREVIATED],
[FILE report-file-name],
[TYPE {NORMAL | SUBROUTINE | INIT | PRE_MASTER_READ |

TYPE1 | TYPE2 | TYPEM | TYPE3 | TYPE4 |
EOF | EOFPLUS}],

[INFO 'text']

RETRIEVE {ARRAY | FILE | GROUP | REQUEST | TABLE | VIEW | EOF},

{ALL | [ITEMS] name …},
[NEWNAME name]

ROUTE {[REPORTS] report-name ... | ALL},

[KEYVALUE ‘data-value’],
TO destination-names ...,
[DEFER]

SECTION {PAGETITLE | COLUMNHEADING | SUMMARY}
A–16 ASL Reference Guide

Commands
\

TRANSFER [TO] { NEXT_MASTER | TYPE_1 | TYPE_2 }

SIZE number-of-lines LINES

SKIP number-of-lines LINES [AT LEVEL level-number]

TITLE [LINE] 'text' …

TOTAL [ITEM] summary-field ...,

{BY group-field | AT LEVEL level-number}

TRACK [NAME] item-name,

[GENERIC],
[TYPE {FILE | ARRAY | TABLE | TRAN | REQUEST | REQGROUP}],
[FILENAME file-name],
[{EXPIRE mmddyy | RETAIN days}],
[USERID userid]

WORK [AREA] number,

NAME definition-name

XREP [LINE] 'text'
ASL Quick Reference A–17

Commands
A–18 ASL Reference Guide

Appendix
B R
F

elationship of ASL Statements to
ixed-Format-Syntax Statements
This appendix relates the procedural ASL functions and commands to their
approximate VISION:Builder statements. They are listed in the order in which
they appear in the body of this booklet, grouped by function, then by command.

ASL statements frequently generate more than one VISION:Builder statement. The
relationships provided in this appendix are only approximate and are provided for
the benefit of those users familiar with fixed format VISION:Builder statements.

Note: Functions and commands pertaining to arrays are applicable to
VISION:Builder and VISION:Two, but not VISION:Inform.

ASL Function VISION:Builder Operation

FIND FS when a lower level segment is named. RD, RE, or RG when a
root segment from a request read coordinated file is named.

LOOKUP TL, TN, TS, TB, or TI, depending on the optional keyword used.

PF A partial field operation is done on the field named in the
function. The PF function can be used on as many fields in the
command as needed.

SCAN SL, SR, or SN, depending on the keywords used in the function.

VALIDATE CV or DV, depending on the keywords used in the function.

CALL Branches to a subroutine request or procedure, a report, or a
subfile.
An external program can also be called with this command.

CASE Creates a logical expression showing what is to be performed
when the expression is true.

COMBINE Cn operator is used with a keyword phrase setting up the
number of blanks between fields.

CONTINUE Performs a GO END procedure.
Relationship of ASL Statements to Fixed-Format-Syntax Statements B–1

ASL Command VISION:Builder Operation

DO Sets up a loop depending on the keyword phrases used on the
command. The keywords UNTIL and WHERE set up back
branch loops with the FOR keyword putting a maximum
number of back branches to perform. The FORALL keyword
sets up an automatic loop for a lower level segment. The CASE
keyword sets up a case block that does not establish any loop.

ELSE Starts the block of code to be performed when the logical
expression on the preceding IF command fails or all of the
CASE commands within a DO CASE block fail.

END Delimits the end of a DO block or an IF-THEN-ELSE set of
code.

FIELD TF statement for a temporary field.

GO Performs a forward branch to a PR statement.

IF Creates a logical expression showing what is to be performed
when the expression is true. Optionally, an ELSE statement can
be entered before the corresponding END statement to allow
processing of code for a false condition.

LEAVE Can only be coded in a DO block without the CASE keyword.
The DO block is generated as a subroutine, and the LEAVE
command in a DO block generates a GO RETURN command.

LET An R, JR, or JL operation is performed, depending on the
keywords at the end of the LET command.

LOCATE An LR, LC, or LD, depending on the keyword phrases added
after the array qualifier is named.

RELEASE An RS or LA, depending on the keyword phrase provided on
the release command.

REPLACE An SS operator.

RETURN A GO RETURN from a subroutine procedure.

TRANSFER A GO NEXT MASTER, GO TYPE 1, or GO TYPE 2.
B–2 ASL Reference Guide

Appendix
C T
echnical Notes
This appendix contains additional information about topics described in this book.
In some instances, more detail is necessary about the entries that are valid for an
operand or more background information might be helpful in understanding a
part of the syntax used (for example, qualifiers).

Reserved Words
Do not make field names the same as system defined names (reserved words) such
as commands, functions, keywords, or operators. Making field names the same as
system defined names could produce errors.

If you need to, you can use any of these reserved words as a field name if you
surround the name by double quotation marks or enter all optional keywords in
the statement.

The following is a list of restricted ASL words.
Technical Notes C–1

Reserved Words
Figure C-1 Reserved Words (Page 1 of 2)

ARG
ARGUMENT
ARR
ARRAY
ASTATUS
ATTNID
AVG
BLANKS
CALL
CASE
CHAR
CHKP
CNT
Cn
COL
COLLATE
COLUMN
COM
COMBINE
COMMAND
COND
CONDCODE
CONDITION
CONT
CONTINUE
COUNT
CSTATUS
CUM
CV
DATE
DEC
DECIMALS
DELETE
DLI
DO
DV
ECORD
EDIT
EDLEN
ELSE
END
EOF
EQ
ERROR
EXPR
EXPRESSION

FDNAME
FIELD
FIELDS
FILE
FILEID
FILL
FIND
FIRST
FLD
FLDS
FLOAT
FLT
FOR
FORALL
FROM
FS
GE
GO
GOSC
GOTO
GS
GT
HEAD
HEADING
HEX
HIGHVALU
IF
IN
INIT
INT
INTERPOLATE
ISDATE
JL
JR
JST
JULIAN
JUSTIFY
KEY
LA
LAB
LABEL
LARGER
LAST
LC
LD
LE

LEAVE
LEN
LENGTH
LET
LEVEL
LN
LNUMBER
LOC
LOCATE
LOOKUP
LOWVALU
LR
LRGR
LS
LSTART
LSTATUS
LT
LU
MAX
MIN
MISSPASS
MN
MNUMBER
MOD
MODE
MODULE
MS
MSG
MSGLINE
MSTART
MSTATUS
NE
NEAREST
NEXT
NEXT_PROC
NEXTPROC
NOTEQUAL
NRST
NS
OPERID
OPERL
OUTPUT
OWN
C–2 ASL Reference Guide

Reserved Words
Figure C-1 Reserved Words (Page 2 of 2)

PAGE
PASSWORD
PAT
PATTERN
PCT
PF
PLI
PN
PNUMBER
PROC
PROCEDURE
PS
PSTART
R
RATIO
RD
RE
READ
REL
RELEASE
REP
REPLACE
REPORT
REQ
REQUEST
RESTART
RET
RETURN
RETURNCD

RG
RN
RNUMBER
ROUNDING
ROUTE
ROW
RS
RSTART
RSTATUS
RTO
SCAN
SEG
SEGNAME
SET
SL
SMALLER
SMLR
SN
SR
SS
SSCOUNT
START
STORE
STR
STRAN
STRING
SUB
SUBFILE
TAB

TABLE
TB
TERMID
TEXT
THEN
TI
TIME
TL
TN
TO
TODAY
TOT
TOTAL
TRACE
TRAIL
TRAN
TRANCODE
TRANSFER
TRL
TS
TYPEUNTIL
USING
VAL
VALIDATE
WHERE
WHILE
WITH
XTRAN
Technical Notes C–3

Qualifiers
Qualifiers
You can use a standard 1-character qualifier and a period to prefix a field name.
Qualifiers identify the type of field or file where the field exists. The following are
valid qualifiers and their meanings:

Patterns
There are two pattern types for VISION:Builder and VISION:Inform applications:
validation patterns and edit patterns. This section discusses each pattern type.

Validation Patterns
Use validation patterns in SCAN, VALIDATE, and REPLACE statements.
Enclose patterns in single quotation marks, preceded by a P. You can make
patterns up to 30 characters long. Code one pattern symbol for each character of
the field being validated.

Note: A minus (–) sign before any of these characters means scanning for other
than the specified pattern. Minus C (-C) is not a legal entry. Also, you must use
system delimiters to surround literals in a scan pattern.

VISION:Builder VISION:Inform

Qualifier Type or Location Qualifier Type or Location

Blank or N New master file. Blank or N Primary file.

O or 0 Old master file. O or 0 Primary file.

1-9 Coordinated files 1-9. 1-9 Synchronized files 1-9.

T Temporary field. T Temporary field.

F Flag field. F System field.

X Transaction file.

W Working storage.

V Linkage section.

A, B, E, G, H,
J, K, M, Q, 1-9

Array (must match the
qualifier that identifies
the array).
C–4 ASL Reference Guide

Patterns
You can use the following validation pattern symbols:

Edit Patterns
Create edit patterns to edit the result field in the LET statement. Using edit
patterns, you can specify whether to store additional characters into the result field
or truncate existing ones. You can make the edit pattern up to 30 characters long.

There are two styles of patterns available: the delimiter style or the COBOL style.

■ Delimiter style patterns use the delimiter character as the character/digit
selector symbol, the decimal point as a decimal alignment symbol, and all other
characters as literal insertion characters. Use this edit pattern style when
editing character data or when editing numeric data.

■ COBOL style patterns use the symbols described in Numeric Data (Packed,
Zoned, and Fixed Point Binary Only). Use this edit pattern style only with
numeric data.

Symbol Meaning

Z Alpha (A-Z).

z Alpha (A-Z, a-z).

A Alpha (A-Z) or blank.

a Alpha (A-Z, a-z) or blank.

D System delimiter.

9 Numeric (0-9).

I Numeric (0-9) or blank.

Y Alpha (A-Z) or numeric (0-9).

y Alpha (A-Z, a-z) or numeric (0-9).

X Alpha (A-Z), numeric (0-9), or blank.

x Alpha (A-Z, a-z), numeric (0-9), or blank.

B Blank.

C No validation.

Literal(s) Any character(s).

User-defined Provided by you at system installation time.
Technical Notes C–5

Patterns
Character String Data
Enter the edit pattern as a picture, with the delimiter (#) as an edit pattern symbol.
If required, you can insert additional edit symbols. For example, you can specify a
pattern as ##/##/##.

■ The first character in the edit pattern represents the character on the extreme
left.

■ Truncate characters on the right by not entering delimiters to represent them.

■ If left truncation or extraction of characters in the middle of a field is preferred,
use partial fielding to specify the partial field start position and number of
characters to be stored.

Numeric Data (Packed, Zoned, and Fixed Point Binary Only)
Use the edit pattern to truncate digits following the decimal point or
non-significant zeroes to the left of the decimal point. The pattern causes digits
surrounding the decimal point to be stored.

The period (.) has special meaning in the edit pattern.

■ The first period is interpreted as a printable decimal point and is used to align
decimal points.

■ If no period exists, only the integer portion of a number is stored.

Leading zeroes are suppressed if they are the leading characters of the picture.
When a negative value is output, the sign is stored to the left of the first digit or
replaces the first leading zero.
C–6 ASL Reference Guide

Patterns
You can use the following edit pattern symbols for numeric data:

Rules for Edit Patterns
■ You can edit source digits to the output positions with or without suppression

of leading zeroes or check protection (for example, 99.9 = no suppression,
ZZ.9 = suppress leading zeroes to decimal point, **.* = check protects the entire
field).

■ You can specify a leading or trailing sign. For example, +99, –99, 99–, 99+.

■ You can specify a leading sign as fixed (leftmost position on output) or floating.
For example, +99.9 = fixed, +++.9 = floating.

■ You can specify a currency symbol as fixed (leftmost position on output) or as
floating (for example, $99.9 = fixed, $$$.9 = floating). The currency symbol and
the sign symbols are mutually exclusive as fixed insertion characters in a given
picture.

Symbol Meaning

9 Digit select. Represents a character position that contains a numeral.

Z Digit select. Same as 9, except when the result contains a zero as a
leading character, the zero is replaced by a space (blank). Signs do
not print.

* Check protection. Same as Z, except a zero in a leading position is
replaced by an asterisk (*).

. Decimal position. Represents a decimal point for alignment in the
edit picture. For the output, the decimal point represents a position
into which a character is inserted.

, Grouping character. Represents an output position into which a
grouping character is placed.

+ – Sign control. These symbols are used as editing sign control symbols
to position the edit sign.

$ Currency symbol. Represents an output position into which the
currency symbol is placed.

Symbol in Edit
Picture

Result if Positive Data Item
(Includes Zero)

Result if Negative
Data Item

+ + –

– SPACE –
Technical Notes C–7

Patterns
■ Indicate floating insertion of leading sign or currency symbol by a string of at
least two occurrences of the same characters ($+–) to represent the leftmost
numeric position in the output. For example, +99.9 = fixed, +++.9 = floating.

– The currency symbol and the sign symbols are mutually exclusive as
floating insertion characters in a given picture.

– A fixed insertion character can also be specified in the same picture with a
floating insertion character as long as it is a different character.

■ Use floating insertion of leading sign or currency symbols to suppresses
leading zeroes in the same manner as the digit select character Z.

■ Suppression symbols (Z$*+–) can occur in an edit picture as follows:

– Any or all of the leading numeric positions to the left of the decimal point
are represented by suppression symbols (for example, $$,$$$.99).

– All of the numeric positions in the edit picture are represented by
suppression symbols (for example, $$,$$$.$$).

If the suppression symbols appear to the left of the decimal point, any leading
zero in the data that appears in a character position corresponding to a
suppression symbol in the picture is replaced by the space character or check
protection character.

Suppression terminates at the first non-zero digit in the data or at the decimal
point, whichever comes first. For example, $$$.99 with data 001.23 produces
$1.23.

– If all numeric positions in the picture are represented by suppression
symbols and the value of the data is not zero, the result is the same as if the
suppression characters were to the left of the decimal point.

– If the value of the data is zero, the entire output becomes spaces if all
numeric positions in the picture are represented by suppression symbols.
For example, $.$$ with data 0.00 produces all spaces.

– If check protection is used, all positions become the protection character,
except for a decimal character. For example, *.** with 0.00 produces *.**.

Any grouping characters embedded in the string of suppression characters or
to the immediate right of the string are suppressed if the left adjacent numeric
position is suppressed. For example, $,$$$.99+ with data 0012.34 produces
$12.34+.

■ Using a suppression symbol throughout a field suppresses a trailing sign on all
zero fields (for example, ZZ.ZZ+ with value +00.01 produces .01+, while +00.00
produces all spaces). Delimiters should not be used with Z picture edit as
ZZZ,ZZZ.##, but rather, as ZZZ,ZZZ.99.

■ The grouping character can occur on either side of the decimal position
character (for example, $$,$$$.999,99 international metric standard).
C–8 ASL Reference Guide

Output Edit
■ Truncating the significant trailing digits is valid (for example, 99.99 with data
12.345 produces 12.34). Truncating the significant leading digits is not valid.
For example, 9.99 with data 12.34 produces + or the “uneditable''
VISION:Builder symbol.

■ A trailing character, if specified, cannot be the same symbol used as a floating
or leading character in a given pattern. For example, +99.9+ is invalid; +99.9– is
valid.

Output Edit
Use the output edit entries (floating, filling, or trailing) only with numeric fields
(packed, zoned, and fixed point binary). These entries edit the data before
reporting it.

Commas
Commas print in these fields where they are preceded by a significant digit. To
suppress printing of commas, use edit suppress character ‘Z’ or the Override
“Picture” Edit on the reporting statement.

Standard Notation
Do not make an entry for floating point numbers. They always print in scientific
notation. The output edit length must exceed six to include two signs, a decimal
point, E, and two exponent digits. Standard notation for floating point numbers,
where Xs represent the fraction and Ys the exponent, is:

± .XXXXXXXE ±YY

Floating/Edit Suppress
An entry other than Z “floats” the value of the entry and prints to the immediate
left of the first significant digit in the printed report.

■ If this is not used, a leading blank prints if positive, a minus if negative.

■ If this operand contains a Z, all commas, leading zeroes to the left of the decimal
point, and the decimal point, if specified, are suppressed.
Technical Notes C–9

Output Edit
Float (Floating-Edit-Char)
This operand is valid only for packed, zoned, and fixed point binary field types.

Fill (Fill-Edit-Char)
The value of this operand prints in every position from the leftmost portion of the
field until the first non-zero digit is encountered. This operand is valid only for
packed, zoned, and fixed point binary fields.

Code Result

Blank When no output codes are specified, a leading blank prints if the
value of the field is positive; a leading minus sign prints if the value
of the field is negative; commas print and the decimal point prints if
the decimal places are specified.

A zero value, in a field where a decimal place is specified, prints as a
decimal point followed by as many zeroes as there are decimal
places.

$ A floating dollar sign prints before the first value when a control
break occurs and when summaries are taken.

+ A leading + sign prints if the value of the field is positive, – if
negative.

– A leading – sign prints if the value of the field is negative (default
specification).

Z The printing of leading zeroes is suppressed from the left to the first
non-zero digit or decimal place. Negative signs print, but no space is
allocated for them.

Any other
character

A floating leading character prints on control breaks and on
summaries.

Code Result

Any character Replaces leading zeroes.
C–10 ASL Reference Guide

Output Edit
Trail (Trailing-Edit-Char)
The value of this operand prints following positive and/or negative values. This
operand is valid only for packed, zoned, and fixed point binary fields.

Edlen (Edit-Length)
The number of print positions for reporting the field.

Code Result

+ A trailing + sign prints if the value of the field is positive.

– A trailing – sign prints if the value of the field is negative.

) Encloses negative field values in parentheses. If no filling
character is specified, the left parenthesis prints before the first
significant digit or decimal point, whichever comes first. If a
floating character and this character are specified, both can print.
The floating character prints inside the parentheses: ($43.50).
Only a single floating sign is permissible with the trailing “)''.

C Prints a trailing “CR'' for a negative value. Blanks follow a
positive value.

D Prints a trailing “DB'' for a negative value. Blanks follow a
positive value.

Any other
character

Prints a trailing character for negative values only.

Code Result

Blank For normal or fixed length fields, the system computes the
length.

For variable length fields, the system computes the length as
the shorter of either the defined field length or report page
width minus spaces before columns.

Any two-digit
number

For normal or fixed length fields, the system uses the output
edit length or field, including any floating, filling, and/or
trailing characters.

For variable length fields, the system uses the width of the
column.
Text automatically wraps until it is exhausted.
Technical Notes C–11

Valid Field Types and Default Field Lengths
Valid Field Types and Default Field Lengths
The following table gives the valid entries for field type and field length and the
defaults for field length.

FIELD TYPE FIELD RANGE DEFAULT FIELD LENGTH

C Character 1-255 Bytes 16

Z Zoned 1-15 Bytes 15

P Packed 1-15 Bytes 8

V Variable 1-999 or 1H-99H
(H implies 00)

NULL

E Floating point binary 4-Bytes only 4

F Fixed point binary 1-4 Bytes 4

L Time
HOUR:MIN:SEC

8

8

S Time
MIN:SEC

Where Nn is the number
of decimal-of-seconds
digits. (Nn ≤ 9) and []
around the equation
means use only the
integer portion of the
number.

D Lilian Date 4 Bytes only 4

Nn 7+
2

------------------ to 8

Nn 5+
2

------------------ to 8
C–12 ASL Reference Guide

Appendix
D F
lags
A flag is an internal indicator defined by VISION:Builder, VISION:Inform, and
VISION:Two, which designates the existence of certain conditions during the
application run. Special words function as flags. The names of the flags are not
reserved; you can use flags as field names without restriction. You can also use
flags in processing and reporting statements. The F qualifier identifies a flag to
VISION:Builder.

Note: Flags pertaining to arrays are not applicable to VISION:Inform. Also, in this
appendix, the symbol or (VISION:Builder 4000 Model Series Only) designates
that the feature or function being described only applies to the VISION:Builder
4000 model series and not to the VISION:Two 2000 model series.

The VISION:Builder software system has the following processing options,
available in both the 4000 and 2000 model series.

■ IMS™ — The IMS option provides support for processing information in
IBM IMS Databases using the standard DL/I processing facilities.
In this appendix, the symbol or (IMS Only) designates that the specification,
feature, or function being described only applies to the IMS option.

■ DB2 — The DB2 option provides support for processing information in IBM
Database2 Relational Tables using the standard SQL processing facilities.
In this appendix, the symbol or (DB2 Only) designates that the specification,
feature, or function being described only applies to the DB2 option.

■ GDBI — The GDBI option provides a facility for interfacing user code with the
standard mechanisms of VISION:Builder to perform I/O operations using any
database processing facilities.
In this appendix, the symbol or (GDBI Only) designates that the
specification, feature, or function being described only applies to the GDBI
option.

❹

I

D

G

Flags D–1

Flag Application Format

ASTATUS Indicates the status of an array operation. 4 bytes
character

CHKP Directs VISION:Builder to take a checkpoint before
reading the next master file root segment.

1 byte
character

CKPTID Contains the checkpoint ID of the last checkpoint
taken.

8 bytes
character

COLUMN Indicates the number of the current column of the
array.

4 bytes
fixed

COMMAND Contains the command identifier. 8 bytes
character

CONDCODE Modifies VISION:Builder condition codes (MVS,
CMS), terminates job at end of job step (VSE). (User
modifiable)

2 bytes
binary

CSTATUS Indicates that a CALL was suppressed by
VISION:Builder and gives the reason.

4 bytes
character

DATE Records the operating system date in the format:
MMM DD, YYYY.

12 bytes
character

DELETE Directs VISION:Builder to delete the current
master file record, to delete all segment
occurrences having empty key field values, or to
reject the current transaction.

1 byte
fixed

ECORD Indicates the match condition between the master
record key field and the key fields of the current
coordinated records.

9 bytes
character

EOF Detects or forces end of file on any sequentially
input files. (User modifiable)

11 bytes
character

FDNAME Contains the file name of the mapped file. 8 bytes
character

FILE Contains the VISION:Builder logical file name. 8 bytes
character

FILEID Contains the file identification of the mapped file. 8 bytes
character

I

I

G

❹

G

G

G

D–2 ASL Reference Guide

ISDATE Records the operating system date in the format:

■ YYYYMMDD (normal usage)

■ YYYY-MM-DD (formatted reports)

8 bytes
character

10 bytes
character

JULANX Records the operating system date in the format:

■ YYYYDDD (normal usage)

■ YYYY.DDD (formatted reports)

7 bytes
character

8 bytes
character

JULIAN Records the operating system date in the format:

■ YYDDD (normal usage)

■ YY.DDD (formatted reports)

5 bytes
character

6 bytes
character

LILIAN Date type field containing the Lilian date as the
number of days since the beginning of the
Gregorian calendar (October 14, 1582). The valid
range of Lilian dates is 1 – 3,074,324 (October 15,
1582 to December 31, 9999). For example, a Lilian
date with a value of 152384 converts to the
standard date of December 31, 1999.

4 bytes
integer
(date
type)

LNUMBER Indicates the number of characters in the left part of
the field just scanned. (User modifiable)

4 bytes
fixed

LSTART Indicates the starting location of the left part of the
field just scanned. (User modifiable)

4 bytes
fixed

LSTATUS Indicates the status of segment operations. 4 bytes
character

M4AUDIT Provides the number of deleted master file records
output to M4AUDIT during application execution.

4 bytes
fixed

M4CORD1 Provides the number of records read from
M4CORD1 during application execution.

4 bytes
fixed

M4CORD2 Provides the number of records read from
M4CORD2 during application execution.

4 bytes
fixed

M4CORD3 Provides the number of records read from
M4CORD3 during application execution.

4 bytes
fixed

Flag Application Format

❹

Flags D–3

M4CORD4 Provides the number of records read from
M4CORD4 during application execution.

4 bytes
fixed

M4CORD5 Provides the number of records read from
M4CORD5 during application execution.

4 bytes
fixed

M4CORD6 Provides the number of records read from
M4CORD6 during application execution.

4 bytes
fixed

M4CORD7 Provides the number of records read from
M4CORD7 during application execution.

4 bytes
fixed

M4CORD8 Provides the number of records read from
M4CORD8 during application execution.

4 bytes
fixed

M4CORD9 Provides the number of records read from
M4CORD9 during application execution.

4 bytes
fixed

M4NEW Provides the number of records output to M4NEW
during application execution.

4 bytes
fixed

M4OLD Provides the number of records read from M4OLD
during application execution.

4 bytes
fixed

M4REJECT Provides the number of records output to
M4REJCT during application execution.

4 bytes
fixed

M4SUBF0 Provides the number of records output to
M4SUBF0 during application execution.

4 bytes
fixed

M4SUBF1 Provides the number of records output to
M4SUBF1 during application execution.

4 bytes
fixed

M4SUBF2 Provides the number of records output to
M4SUBF2 during application execution.

4 bytes
fixed

M4SUBF3 Provides the number of records output to
M4SUBF3 during application execution.

4 bytes
fixed

M4SUBF4 Provides the number of records output to
M4SUBF4 during application execution.

4 bytes
fixed

M4SUBF5 Provides the number of records output to
M4SUBF5 during application execution.

4 bytes
fixed

M4SUBF6 Provides the number of records output to
M4SUBF6 during application execution.

4 bytes
fixed

M4SUBF7 Provides the number of records output to
M4SUBF7 during application execution.

4 bytes
fixed

M4SUBF8 Provides the number of records output to
M4SUBF8 during application execution.

4 bytes
fixed

Flag Application Format

❹

❹

D–4 ASL Reference Guide

M4SUBF9 Provides the number of records output to
M4SUBF9 during application execution.

4 bytes
fixed

M4TRAN Provides the number of records read from
M4TRAN during application execution.

4 bytes
fixed

MISSPASS Indicates the status of the follow-up pass in
sequential coordination for master file records.

1 byte
character

MNUMBER Indicates the number of characters in the middle
part of a field just scanned. (User modifiable)

4 bytes
fixed

MODE Contains information about the application mode
of operation.

2 bytes
character

MSTART Indicates the starting location of the middle part of
a field just scanned. (User modifiable)

4 bytes
fixed

MSTATUS Used by the mapping request to instruct
VISION:Builder on a specific action to take
subsequent to completion of the mapping request.
(User modifiable)

6 bytes
character

OWN Provides a means of communication between user
routines and own-code exits. (User modifiable)

16 bytes
character

PAGE Indicates placement of page numbers in formatted
reporting.

6 bytes
character

PASSWORD Contains the password from the RF statement. 8 bytes
character

RESTART Indicates restart ID or blank if not a restart. 8 bytes
character

RETURNCD Determines the results of the CALL as set by the
generalized system interface CALL routine.

4 bytes
fixed

RNUMBER Indicates the number of characters in the right part
of a field just scanned. (User modifiable)

4 bytes
fixed

ROW Indicates the row number in the array. 4 bytes
fixed

RSTART Indicates the starting location of the right part of
the field just scanned. (User modifiable)

4 bytes
fixed

RSTATUS Indicates the results of a read operation. 4 bytes
character

SEGNAME Contains the segment name as defined on the LS
statement.

8 bytes
character

Flag Application Format

❹

G

G

G

I

G

Flags D–5

SQL Indicates the status of inserting a row into an SQL
table.

4 bytes
character

SSCOUNT Counts the number of matches found during a
REPLACE operation.

2 bytes
fixed

STRAN Interrogates status of transactions at each segment
and indicates which have been applied to the
master file.

9 bytes
character

TIME Records the time of day a job was started in the
format: HH.MM.SS (hours, minutes, seconds).

8 bytes
character

TODAY Records the operating system date in the format:

■ MMDDYY (normal usage)

■ MM/DD/YY (formatted reports)

6 bytes
character

8 bytes
character

TODAYX Records the operating system date in the format:

■ MMDDYYYY (normal usage)

■ MM/DD/YYYY (formatted reports)

8 bytes
character

10 bytes
character

TRAN Indicates the status of a master file record and/or
the rejection of a transaction.

1 byte
fixed

XTRAN Identifies the reason for rejection of a particular
transaction.

1 byte
fixed

Flag Application Format

D

❹

❹

❹

D–6 ASL Reference Guide

ASTATUS Flag
ASTATUS Flag
The ASTATUS flag indicates the status code following the execution of an array
operation. It is a character field with a length of 4 bytes. The status information can
be examined to determine if the operation was successful, failed, or was
suppressed.

■ Use the ASTATUS flag to debug applications or to determine sources of
erroneous input to applications.

■ As part of the array operation, there is an implied compare to blanks in the
ASTATUS flag when there is an NS or GS operation immediately following an
array operation. The NS or GS branch will be taken on any status other than
blanks. At the “branch-to” location, the status information can be examined to
determine why the operation failed or was suppressed.

The ASTATUS codes and explanations are shown in the following table.

Value

Operations Involved

Comments

Locate
Row and
Column

Locate
Row

Locate
Column Release

b/b/b/b/ Yes Yes Yes Yes The operation executed
successfully.

BMIS
BINV
CMIS
CINV

Yes
Yes
Yes
Yes

Yes
Yes
No
No

No
No
Yes
Yes

No
No
No
No

The operation is
unsuccessful. The value of
the indicated row or column
is missing or invalid as
indicated or is larger than a
4-byte fixed point field.

If the first character is B, the
error applies to the row. If it
is C, the respective error
applies to the column.
Flags D–7

ASTATUS Flag
ROWH
ROWL
COLH
COLL

Yes
Yes
Yes
Yes

Yes
Yes
No
No

No
No
Yes
Yes

No
No
No
No

The operation is
unsuccessful. The value
supplied for row or column
is not within the
dimensions of the array.

The value is greater than the
highest row number.

The row value is less than 1.

The value is greater than the
highest column number.

The column value is less
than 1.

AUTO Yes Yes Yes Yes The operation is
suppressed. An automatic
loop is active on the array.

INHR Yes Yes Yes Yes The operation is
suppressed. A subroutine
was called; it attempted to
perform an array operation
on an array that was
already positioned to a
specific data cell due to field
references in the calling
request, or a subset of the
array was located by a
calling request by means of
a successful array
operation.

Value

Operations Involved

Comments

Locate
Row and
Column

Locate
Row

Locate
Column Release
D–8 ASL Reference Guide

CHKP Flag (IMS Only)
CHKP Flag (IMS Only)

The CHKP flag triggers a checkpoint operation by placing a non-blank value
into the flag from any request except preselection (type P). It is a character field
with a length of 1 byte. The checkpoint does not occur until just before
VISION:Builder is ready to read the next master file root segment. The flag is reset
to a blank after every checkpoint.

The user can place an “A” in the CHKP flag to force an ABEND to occur instead of
a checkpoint. The ABEND code issued will be 117.

CKPTID Flag (IMS Only)

The CKPTID flag contains the ID of the last checkpoint taken. It is a character
field with a length of 8 bytes. It contains blanks prior to the first checkpoint.

COLUMN Flag
The COLUMN flag is set after the successful completion of an array operation.
It is a fixed field with a length of 4 bytes. It contains a numeric value set to the
column number being processed.

■ If the operation fails, the flag is set to zero.

■ If an array operation is suppressed, the COLUMN flag value is not changed.

I

I

Flags D–9

COMMAND Flag (GDBI Only)
COMMAND Flag (GDBI Only)

The COMMAND flag contains the command identifier. It is a character field
with a length of 8 bytes. Flag values are:

The COMMAND flag settings are not strictly necessary if LM statements are used.
Some mapping developers may prefer to write a single request to handle all
situations. In this case, the flag becomes valuable to identify the activity required.

The information is primarily useful for directing the operation of the mapping
request, but may also be useful to a database manager. The flags are initialized
prior to entering a mapping request.

Input: Sequential or Serial: GETFIRST Get first segment within a
parent.

GETNEXT Get the next occurrence of the
segment type previously
obtained.

Key driven:
(transaction
driven, ICF,
start search)

GETFKEY Get first segment with key
greater than or equal to the
supplied value.

GETKEY Get the segment with the key
provided.

Output: REPLACE Replace the segment. Some data
has been changed.

ADD Add the segment. A new
segment has been created.

NOCHANGE This segment has not changed
(however, BDAM may still need
to see it).

DELETE Delete the segment. This
segment was explicitly deleted
by the application by a
transaction or DELETE flag
setting. The parent segment has
not been deleted.

INIT Initialization request call.

TERM Termination request call.

G

❹

❹

❹

❹

❹

D–10 ASL Reference Guide

CONDCODE Flag
CONDCODE Flag
Use the CONDCODE flag to communicate with your job control. It is a binary field
with a length of 2 bytes. The flag has an external effect only on MVS, CMS, and
VSE.

Note: It is your responsibility to ensure that the final value of the condition code
is recognized by the operating system.

You can access this flag during processing for arithmetic calculations, selection,
and output. It is initialized to zero at the beginning of the run. During processing,
it contains only the values supplied by you. The values normally supplied by
VISION:Builder are not available during request processing.

VSE: Placing any non-zero numeric value in the CONDCODE flag cancels the
job due to program control at the end of the current step. Thus, you can
cancel a job by replacing 1 into CONDCODE and setting the EOF flag to
all Es.

MVS
and
CMS:

At the end of the run, after all request processing is completed and all
files have reached end of file, the values you placed in the CONDCODE
flag during request processing are added to the condition code values
normally supplied by VISION:Builder.

■ Use this procedure to control the range of condition codes without
losing the settings provided by VISION:Builder.

■ Only the last value of CONDCODE is used; intermediate values have
no effect.

■ If the CONDCODE flag is invalid at the end of the
run,VISION:Builder sets it to 20 before adding it to the normal
condition code value. In CMS, the condition code is referred to as the
return code.
Flags D–11

CSTATUS Flag
CSTATUS Flag
The CALL status flag (CSTATUS flag) indicates the status of a CALL. It is a
character field with a length of 4 bytes. The CSTATUS flag values are set by
VISION:Builder and indicate whether a CALL was suppressed by VISION:Builder
and why.

■ A CALL is suppressed if a parameter specifies an invalid or missing field.
The following table shows the settings of the CSTATUS flag:

■ The CSTATUS flag should be examined before using a value from the
RETURNCD flag, because a suppressed call would not allow the called routine
to set the RETURNCD flag.

DATE Flag
The DATE flag records the date, acquired from the operating system, in the format:
MMM DD, YYYY, where MMM equals 3 alpha characters for month, DD equals 2
numerals for day of month, and YYYY equals 4 numerals for year (that is,
January 15, 2001 equals JAN 15, 2001). It is a character field with a length of 12
bytes.

Value Meaning

PMIS Parameter missing.

PINV Parameter invalid.

blank CALL successful.
D–12 ASL Reference Guide

DELETE Flag (VISION:Builder 4000 Model Series Only)
DELETE Flag (VISION:Builder 4000 Model Series Only)
The DELETE flag directs VISION:Builder to delete records or segment
occurrences from a master file or to force rejection of a transaction record during
processing. It is a fixed field with a length of 1 byte. The settings for the DELETE
flag are shown in the following table.

ECORD Flag
The ECORD flag indicates the status of the coordinated files in relation to the
master file or coordinated file to which it is chained. It is a character field with a
length of 9 bytes. The values for the ECORD flag are shown in the following table.

Setting Result

0 All M4OLD data is output to M4NEW. The DELETE flag is
automatically set to zero each time a record is processed.

1 The master file record is deleted before it can be written to the new
master file following standard request processing. Records can also
be dynamically deleted from the master file in type M, 2, and 3
procedures/requests.

Deleted records can be output to an audit file.

2 The appropriately marked lower level segments are deleted from the
new master record before it is written to the new master file.
Segments are marked for deletion procedurally by placing blank or
zero into the segment key and placing 2 into the DELETE flag.
Segments can be marked for deletion in type N, M, 2, and 3
procedures/requests. This is not supported when processing a
relational file.

4 The transaction is rejected without the master file being updated.
This occurs only in type 1 and 2 procedures/requests.

❹

Value Meaning

M The coordinated file and master file keys are equal. The coordinated
file has a match and its record is available for processing.

X The coordinated file is high in relation to the master file key. The
coordinated file record is not available for processing. This value is
also used when the coordinated file reaches the end of file, when no
coordinated file exists for the run, or if the file is request read.

L The coordinating file key is less than the master file key. The record
is available for processing.
Flags D–13

ECORD Flag
In the ECORD flag, each character indicates the current status of a corresponding
coordinated file. Partial fielding is used to determine the status of one or more of
the coordinated files, as shown below.

The ECORD flag is initialized whenever a master file record is read or created.
For each coordinated file specified on an RF statement, the ECORD flag is
initialized to X. As each coordinated file record is advanced, its status (in relation
to the master file record being matched) is reflected in the ECORD flag.

The ECORD flag indicates file status and must not be altered. Altering the ECORD
flag does not change the physical status of the files, but misleads subsequent
processing.

File Name Partial Field Start and Length

Coordinated File 1 1,1

Coordinated File 2 2,1

Coordinated File 3 3,1

Coordinated File 4 4,1

Coordinated File 5 5,1

Coordinated File 6 6,1

Coordinated File 7 7,1

Coordinated File 8 8,1

Coordinated File 9 9,1
D–14 ASL Reference Guide

EOF Flag
EOF Flag
Use the EOF flag to detect or force an end of file on sequentially read input files. It
is a character field with a length of 11 bytes. You can test this flag to determine if
an input file exists. Alternatively, you can use it to terminate the reading of an
input file by storing the appropriate value in the flag.

Note: When forcing end of file, if any value except E is placed into the EOF flag,
the results are unpredictable.

Each character pertains to an input file as shown in the following table and can
have one of three values:

Value Meaning

E File has reached end of file.

Y File has not reached end of file.

N File does not exist.

Input File Name Partial Field Specification

M4OLD 1,1

M4TRAN 2,1

M4CORD1 3,1

M4CORD2 4,1

M4CORD3 5,1

M4CORD4 6,1

M4CORD5 7,1

M4CORD6 8,1

M4CORD7 9,1

M4CORD8 10,1

M4CORD9 11,1
Flags D–15

FDNAME Flag (GDBI Only)
FDNAME Flag (GDBI Only)

The FDNAME flag contains the file name as in columns [1-8] on the FD
statement. It is a character field with a length of 8 bytes.

It is initialized prior to entering a mapping request. The information in the flag is
generally required by database managers.

FILE Flag (GDBI Only)

The FILE flag contains the VISION:Builder logical file name. It is a character
field with a length of 8 bytes. Values are: M4OLD, M4NEW, and M4CORD1–9.

The information is primarily useful for directing the operation of the mapping
request, but can also be useful to a database manager.

FILEID Flag (GDBI Only)

The FILEID flag contains the file identification as provided in columns [11-18] of
the FD statement. It is a character field with a length of 8 bytes.

It is initialized prior to entering a mapping request. The information in the flag is
generally required by database managers.

ISDATE Flag
The ISDATE flag records the system date in two International Standards
Organization (ISO) formats.

Note: The date delimiter (-) is an installation option and can be changed using
M4PARAMS. See the Installation Guide.

Normal processing/standard reporting (8 characters)
This flag records the date in the format of YYYYMMDD, where YYYY equals 4
numerals for year, MM equals 2 numerals for month, and DD equals 2 numerals
for day (that is, January 15, 2001 equals 20010115).

Formatted reporting (10 characters)
This flag records the date in the format of YYYY-MM-DD (2001-01-15).

G

G

G

D–16 ASL Reference Guide

JULANX Flag
JULANX Flag
The JULANX flag records the system date in two formats.

Note: The date delimiter (.) is an installation option and can be changed using
M4PARAMS. See the Installation Guide.

Normal processing/reporting (7 characters)
This flag records the date in the format of YYYYDDD, where YYYY equals year
and DDD equals day in the year (that is, January 15, 2001 equals 2001015).

Formatted reporting (8 characters)
This flag records the date in the format of YYYY.DDD (2001.015).

JULIAN Flag
The JULIAN flag records the system date in two formats.

Note: The date delimiter (.) is an installation option and can be changed using
M4PARAMS. See the Installation Guide.

Normal processing/reporting (5 characters)
This flag records the date in the format of YYDDD, where YY equals year and DDD
equals day in the year (that is, January 15, 2001 equals 01015).

Formatted reporting (6 characters)
This flag records the date in the format of YY.DDD (01.015).

LILIAN Flag
The LILIAN flag contains the current date in Lilian date format as a fixed-binary
number with a length of 4 bytes. The valid range of Lilian dates is 1 – 3,074,324
(October 15, 1582 to December 31, 9999). VISION:Builder automatically converts a
LILIAN flag field into character format using M4PARAMS settings when a
LILIAN flag field is specified for printing. The format is identical to the TODAYX
flag conventions unless an override edit picture is specified.
Flags D–17

LNUMBER FLAG
LNUMBER FLAG
The LNUMBER flag is a text processing partial field flag that specifies the number
of characters in the left part of the field. It is a fixed field with a length of 4 bytes.
It is used in a scan left or right operation and can be tested, modified, or used in
computation during request processing.

■ The value LN can be used in place of the standard partial field specification in
order to access a particular area of the scanned field.

■ The value LN (dynamic partial field specification) cannot be used on the output
specification (Rn) statement, nor in place of the flag names in operand A,
operand B, or result specifications. For example, if LN is entered in starting
character on the PR statement, the current value of LNUMBER is used at the
time the PR statement is executed.

Because the value of LNUMBER may change during processing, you can use this
flag to perform dynamic partial field operations.

A dynamic partial field specification might be in error during processing because:

■ The partial field flag is invalid.

■ The partial field specification is outside the current size of the field.

■ The starting character or number of characters value is less than 1.

If the dynamic partial field specification is in error, the field to which it is applied
becomes invalid for the current operation. If an invalid dynamic partial field is
applied to a result field, the result field becomes invalid (except in a scan and
substitute (SS) operation, where the result field is invalid for the current operation
only).

LSTART Flag
The LSTART flag is a text processing partial field flag that specifies the starting
position of the left part of the field. It is a fixed field with a length of 4 bytes. It is
used in a scan left or right operation and can be tested, modified, or used in
computation during request processing.

■ The value LS can be used in place of the standard partial field specification on
the processing and record selection statement in order to access a particular
area of the scanned field.

■ The value LS (dynamic partial field specification) cannot be used on the output
specification (Rn) statement, nor in place of the flag names in operand A,
operand B, or result specifications. For example, if LS is entered in starting
character on the PR statement, the current value of LSTART is used at the time
the PR statement is executed.
D–18 ASL Reference Guide

LSTATUS Flag
Because the value of LSTART may change during processing, you can use this flag
to perform dynamic partial field operations.

A dynamic partial field specification might be in error during processing because:

■ The partial field flag is invalid.

■ The partial field specification is outside the current size of the field.

■ The starting character or number of characters value is less than 1.

If the dynamic partial field specification is in error, the field to which it is applied
becomes invalid for the current operation. If an invalid dynamic partial field is
applied to a result field, the result field becomes invalid (except in a scan and
substitute (SS) operation where the result field is invalid for the current operation
only).

LSTATUS Flag
The LSTATUS flag indicates the status code following the execution of any
segment operation. It is a character field with a length of 4 bytes. The status
information can be examined to determine if the operation was successful, failed,
or suppressed. This flag and its contents are independent of the type of file being
accessed (for example, IMS, sequential, ISAM).

As part of the segment operation, there is an implied compare to blanks in the
LSTATUS flag when there is an NS or GS operation immediately following a
segment operation. The NS or GS branch will be taken on any status other than
blanks. At the “branch-to” location, the status information can be examined to
determine why the operation failed or was suppressed. You can use this flag in
debugging applications or in determining sources of erroneous input to
applications.
Flags D–19

LSTATUS Flag
The LSTATUS codes and explanations are shown in the following table. The
priority column indicates the order in which the LSTATUS flag settings occur.

LSTATUS
Value

Applicable To

Priority ExplanationFS FF FL RS

b/b/b/b/ Yes Yes Yes The operation executed successfully.

NREC Yes Yes No 1 The operation is suppressed. The current
record is unavailable for the referenced
segment.

AUTO Yes Yes Yes 2 The operation is suppressed. The segment
type referenced is already in an automatic
loop; or a field in operand B is part of the
segment type referenced, or part of an
unreferenced (by an FS or RS operator)
dependent segment.

TRAN Yes Yes Yes 3 The operation is suppressed. The segment
type referenced was matched, created, or
inserted by the current transaction record.
It can only be set in the type M procedures
or its subroutines.

TDEL Yes Yes Yes 3 The operation is suppressed. The segment
type referenced was deleted by the current
transaction record. It can only be set in the
type M procedure or its subroutines.

INHR Yes Yes Yes 4 The operation is suppressed. The segment
type referenced in a subroutine procedure
is in an automatic loop inherited from the
calling procedure.

BMIS Yes No No 6 A field in the operand B has a missing
value.

BINV Yes No No 6 A field in the operand B has an invalid
value.

NPAR Yes Yes Yes 7 The operation is suppressed. The segment
type referenced has a parent segment that
is unavailable or does not exist.

NFND Yes Yes No 8 The operation fails. VISION:Builder cannot
find any segment occurrences that satisfy
the operation.

NOMO Yes No No 8 The operation fails. The next occurrence of
a referenced segment type does not exist.

❹

❹

D–20 ASL Reference Guide

M4AUDIT Flag (VISION:Builder 4000 Model Series Only)
M4AUDIT Flag (VISION:Builder 4000 Model Series Only)
The M4AUDIT flag provides access to the number of records output to the
M4AUDIT file during application execution. It is a fixed field with a length of 4
bytes. The M4AUDIT flag can be referenced in any type of request (except
preselection); however, it can only be referenced if the M4AUDIT file is being used
in the application.

M4CORDn (n=1 to 9) Flags
There are separate flags provided for each one of the nine VISION:Builder
coordinated files, M4CORDn where n=1 to 9. These are fixed fields with lengths of
4 bytes.

These flags (M4CORD1, M4CORD2, M4CORD3, M4CORD4, M4CORD5,
M4CORD6, M4CORD7, M4CORD8, and M4CORD9) provide access to the number
of records read from each of the various coordinated files during application
execution. These coordinated file flags can be referenced in any type of request
(except preselection); however, they can only be referenced if the coordinated file
they reference is being used in the application.

M4NEW Flag (VISION:Builder 4000 Model Series Only)
The M4NEW flag provides access to the number of records output to the
M4NEW file during application execution. It is a fixed field with a length of 4
bytes. The M4NEW flag can be referenced in any type of request (except
preselection); however, it can only be referenced if the M4NEW file is being used
in the application.

M4OLD Flag
The M4OLD flag provides access to the number of records read from the M4OLD
file during application execution. It is a fixed field with a length of 4 bytes. The
M4OLD flag can be referenced in any type of request (except preselection);
however, the flag can only be referenced if the M4OLD file is being used in the
application. When using update-in-place, the flag will represent only the records
read from M4OLD.

❹

❹

Flags D–21

M4REJECT Flag (VISION:Builder 4000 Model Series Only)
M4REJECT Flag (VISION:Builder 4000 Model Series Only)
The M4REJECT flag provides access to the number of records output to the
M4REJCT file during application execution. It is a fixed field with a length of 4
bytes. The M4REJECT flag can be referenced in any type of request (except
preselection); however, it can only be referenced if the M4REJCT file is being used
in the application.

M4SUBFn (n= 0 to 9) Flags
There are separate flags provided for each one of the ten VISION:Builder subfiles,
M4SUBFn where n=0 to 9. These are fixed fields with lengths of 4 bytes.

These flags (M4SUBF0, M4SUBF1, M4SUBF2, M4SUBF3, M4SUBF4, M4SUBF5,
M4SUBF6, M4SUBF7, M4SUBF8, and M4SUBF9) provide access to the number of
records output to each of the various subfiles during application execution. These
subfile flags can be referenced in any type of request (except preselection);
however, they can only be referenced if the subfile they reference is being used in
the application.

M4TRAN Flag (VISION:Builder 4000 Model Series Only)
The M4TRAN flag provides access to the number of records read from the
M4TRAN file during application execution. It is a fixed field with a length of 4
bytes. The M4TRAN flag can be referenced in any type of request (except
preselection); however, it can only be referenced if the M4TRAN file is being used
in the application.

MISSPASS Flag
The MISSPASS flag value is automatically set by VISION:Builder only at the start
of the all-miss pass (ECORD setting of all Xs). It is a character field with a length of
1 byte. This flag will contain either an X or an M during the all-miss pass. An X
setting indicates that no hits occurred during coordination for the master record;
an M setting indicates at least one hit occurred during coordination. The
MISSPASS flag is blank when the all-miss pass is not in progress.

While the ECORD flag indicates the status of coordinated files, the MISSPASS flag
indicates the status of the master file. The MISSPASS flag should not be used with
RPCORDONLY, because its value during a match or low cycle is blank and
meaningless.

❹

❹

D–22 ASL Reference Guide

MNUMBER Flag
MNUMBER Flag
The MNUMBER flag is a text processing partial field flag that specifies the number
of characters in the middle (matching) part of the field. It is a fixed field with a
length of 4 bytes. It is used in a scan left or right operation and can be tested,
modified, or used in computation during request processing.

■ The value MN can be used in place of the standard partial field specification in
order to access a particular area of the scanned field.

■ The value MN (dynamic partial field specification) cannot be used on the
output specification (Rn) statement, nor in place of the flag names in operand
A, operand B, or result specifications. For example, if MN is entered in starting
character on the PR statement, the current value of MNUMBER is used at the
time the PR statement is executed.

Because the value of MNUMBER may change during processing, you can use this
flag to perform dynamic partial field operations.

A dynamic partial field specification might be in error during processing because:

■ The partial field flag is invalid.

■ The partial field specification is outside the current size of the field.

■ The starting character or number of characters value is less than 1.

If the dynamic partial field specification is in error, the field to which it is applied
becomes invalid for the current operation. If an invalid dynamic partial field is
applied to a result field, the result field becomes invalid (except in a scan and
substitute (SS) operation where the result field is invalid for the current operation
only).

MODE Flag (GDBI Only)
The MODE flag contains information about the application mode of operation.
The following table shows the X and Y values. It is a character field with a length
of 2 bytes.

It is initialized prior to entering a mapping request. The information in the flag is
generally required by database managers.

In Operation Mode X = In Update Mode Y =

S
M

Standard Processing
MOSAIC Processing

R
U
L

Retrieval Update
Update
Load Module

G

Flags D–23

MSTART Flag
MSTART Flag
The MSTART flag is a text processing partial field flag that specifies the starting
position of the middle (matching) part of the field. It is a fixed field with a length
of 4 bytes. It is used in a scan left or right operation and can be tested, modified, or
used in computation during request processing.

■ The value MS can be used in place of the standard partial field specification on
the processing and record selection statement in order to access a particular
area of the scanned field.

■ The value MS (dynamic partial field specification) cannot be used on the output
specification (Rn) statement, nor in place of the flag names in operand A,
operand B, or result specifications. For example, if MS is entered in starting
character on the PR statement, the current value of MSTART is used at the time
the PR statement is executed.

Because the value of MSTART may change during processing, you can use this flag
to perform dynamic partial field operations.

A dynamic partial field specification might be in error during processing because:

■ The partial field flag is invalid.

■ The partial field specification is outside the current size of the field.

■ The starting character or number of characters value is less than 1.

If the dynamic partial field specification is in error, the field to which it is applied
becomes invalid for the current operation. If an invalid dynamic partial field is
applied to a result field, the result field becomes invalid (except in a scan and
substitute (SS) operation where the result field is invalid for the current operation
only).
D–24 ASL Reference Guide

MSTATUS Flag (GDBI Only)
MSTATUS Flag (GDBI Only)

The MSTATUS flag is used by the mapping request to instruct VISION:Builder
on a specific action to take subsequent to completion of the mapping request. It is
a character field with a length of 6 bytes.

MSTATUS is initialized to blanks prior to each call to a mapping request.
Permissible return values are listed in the following table.

The information is primarily useful for directing the operation of the mapping
request, but can also be useful to a database manager.

OWN Flag
The OWN flag is used by own-code routines to communicate between own-code
requests. It is a character field with a length of 16 bytes.

It is not examined or altered by VISION:Builder in any way. The flag name OWN
can be entered in field name A, B, or C depending on the operation being
performed.

Value Explanation

blank Mapping successfully completed.

NFOUND Segment not found. Useful for input mapping only. Signifies to
VISION:Builder that there was no data to fill the skeleton segment,
either because of having run out of repeated segments, or because of
failure to locate a keyed segment.

In the process of building a hierarchical record (standard or
MOSAIC processing, non-keyed operations), VISION:Builder
returns to the mapping requests for each segment type to request
repeated segments. Thus, the mapping requests must be
programmed to issue NFOUND for each segment type to terminate
a series of repeated segments.

STOPnn Stop the run and set the condition code to nn (condition code setting
support in MVS only). Used by mapping requests to cease
processing.

G

Flags D–25

PAGE Flag
PAGE Flag
The PAGE flag is used only in formatted reporting and specifies the placement of
the page numbers, which are printed left-aligned in the title and summary lines of
formatted reports. It is a character field with a length of 6 bytes. Enter the PAGE
flag as F.PAGE.

PASSWORD Flag (GDBI Only)

The PASSWORD flag contains the password as provided on the RF statement
for the appropriate VISION:Builder file. It is a character field with a length of 8
bytes. It is available for all mapping requests, but is expected to be most valuable
to the initialization mapping request to control access to the database. This field is
set prior to a mapping request receiving control. Valid only in mapping requests.

RESTART Flag (IMS Only)

The RESTART flag is used by requests to determine the restart status of a
VISION:Builder run. It is a character field with a length of 8 bytes. If a run has been
restarted, the RESTART flag contains the checkpoint ID at which the restart
occurred. Otherwise, the value of the RESTART flag is all blanks.

RETURNCD Flag
The return code (RETURNCD flag) reflects the status of a CALL. It is a fixed field
with a length of 4 bytes. The values are set by the called routine and the contents
can be examined after a CALL. If the flag is included in a report, VISION:Builder
treats the flag as a 2-byte fixed point field (output width of 7, maximum printable
value 99,999). The value in this field is the value in general register 15 upon return
to VISION:Builder from a called routine.

G

I

D–26 ASL Reference Guide

RNUMBER Flag
RNUMBER Flag
The RNUMBER flag is a text processing partial field flag that specifies the number
of characters in the right part of the field. It is a fixed field with a length of 4 bytes.
It is used in a scan left or right operation and can be tested, modified, or used in
computation during request processing.

■ The value RN can be used in place of the standard partial field specification in
order to access a particular area of the scanned field.

■ The value RN (dynamic partial field specification) cannot be used on the output
specification (Rn) statement, nor in place of the flag names in operand A,
operand B, or result specifications. For example, if RN is entered in starting
character on the PR statement, the current value of RNUMBER is used at the
time the PR statement is executed.

Because the value of RNUMBER may change during processing, you can use this
flag to perform dynamic partial field operations.

A dynamic partial field specification might be in error during processing because:

■ The partial field flag is invalid.

■ The partial field specification is outside the current size of the field.

■ The starting character or number of characters value is less than 1.

If the dynamic partial field specification is in error, the field to which it is applied
becomes invalid for the current operation. If an invalid dynamic partial field is
applied to a result field, the result field becomes invalid (except in a scan and
substitute (SS) operation where the result field is invalid for the current operation
only).

ROW Flag
The ROW flag is set after successfully completing an array operation. It is a fixed
field with a length of 4 bytes. It contains a numeric value set to the ROW number
being processed. If the operation fails, the flag is set to zero. If an array operation
is suppressed, the ROW flag is not suppressed.
Flags D–27

RSTART Flag
RSTART Flag
The RSTART flag is a text processing partial field flag that specifies the starting
position of the right part of the field. It is a fixed field with a length of 4 bytes. It is
used in a scan left or right operation and can be tested, modified, or used in
computation during request processing.

■ The value RS can be used in place of the standard partial field specification on
the processing and record selection statement in order to access a particular
area of the scanned field.

■ The value RS (dynamic partial field specification) cannot be used on the output
specification (Rn) statement, nor in place of the flag names in operand A,
operand B, or result specifications. For example, if RS is entered in starting
character on the PR statement, the current value of RSTART is used at the time
the PR statement is executed.

Because the value of RSTART may change during processing, you can use this flag
to perform dynamic partial field operations.

A dynamic partial field specification might be in error during processing because:

■ The partial field flag is invalid.

■ The partial field specification is outside the current size of the field.

■ The starting character or number of characters value is less than 1.

If the dynamic partial field specification is in error, the field to which it is applied
becomes invalid for the current operation. If an invalid dynamic partial field is
applied to a result field, the result field becomes invalid (except in a scan and
substitute (SS) operation where the result field is invalid for the current operation
only).
D–28 ASL Reference Guide

RSTATUS Flag
RSTATUS Flag
The RSTATUS flag indicates the results of the most recent request-read (RD, RE, or
RG) operation performed in a PR statement. It is a character field with a length of
4 bytes.

The RSTATUS flag is set whenever a read (RD), read equal key (RE), or read
greater than or equal key (RG) operator is used with coordinated files. The settings
of the RSTATUS flag are shown in the following table.

An NS or GS statement immediately following an RE or RG operator causes an
implied compare of the RSTATUS flag.

■ If the RE or RG operation fails (that is, the RSTATUS flag is equal to AINV,
AMIS, or NREC), the NS branch is taken.

■ If the RE or RG operation is successful (that is, the RSTATUS flag is equal to
KEQL, KGTR, or RIGN), processing continues with the next instruction.

You can use the GS statement in the same way as the NS statement to determine
success or failure.

Value Explanation

AINV Operand A contains an invalid field. The RE or RG operation was not
performed.

AMIS Operand A was missing. The RE or RG operation was not performed.

KEQL The RE or RG operation was performed and a root segment with a key
equal to the key in operand A was successfully returned, or an RD was
successful.

KGTR The RG operation was performed and a root segment with a key
greater than the key in operand A was successfully returned.

NREC The operation was performed but no record was found.

RIGN The read operation was ignored. A segment in the specified
coordinated file is in a loop or under control of a find segment (FS)
operation.

EGRP Specifies the end of a group. A sequential RD operator following a
direct-read operator compares the key of each root segment retrieved
to the search argument for the direct-read. When the key no longer
matches, the RSTATUS flag indicates the end of group. EGRP is also set
if end of file is reached on a sequential RD operation. In this situation,
the EOF flag for the appropriate coordinated file is set to E and reset to
Y on the next RE or RG operation for that file.

This is the only situation in which VISION:Builder resets an EOF flag
value. Successive RD operations without any intervening RE or RG
operations continue to return the EGRP and EOF flag values.
Flags D–29

SEGNAME Flag (GDBI Only)
SEGNAME Flag (GDBI Only)

The SEGNAME field contains the segment name as defined in columns [11-18]
of the LS statement. It is a character field with a length of 8 bytes. If an alias
segment name is provided on an LB statement in a run data group, the SEGNAME
flag still refers to the segment name as defined on the LS statement.

The information is primarily useful for directing the operation of the mapping
request, but can also be useful to a database manager. It is initialized prior to
entering a mapping request.

SQL Flag (DB2 Only)

The SQL flag contains status information after an attempt is made to insert a row
into a DB2 table with a UNIQUE index. It is a character field with a length of 4
bytes. It contains the character string DUPL if a matching row already exists in the
table. It contains blanks if a matching row does not exist.

■ If F.SQL equals blanks, the record is successfully inserted.

■ If F.SQL equals DUPL and Scan/Terminate does not equal 4, the run
terminates; however, if Scan/Terminate equals 4, processing continues (the
rejected row can be output to a report or another subfile). Note that this is the
only instance in which the Scan/Terminate value determines processing based
on message types other than type 4.

■ If type 0 and type 1 messages are suppressed, there is no indication that the
attempt to insert the row failed.

SSCOUNT Flag
The SSCOUNT flag counts the number of matches found during the REPLACE
operation. It is a fixed field with a length of 2 bytes. The flag is set to zero at the
start of each run. The settings are shown in the following table.

G

D

Setting Result

 0 There are no successful substitutes or the search-string is longer than
the field to be modified.

-1 Used with variable length fields. If a REPLACE operation causes the
maximum length of a type V field to be exceeded, the operation does
not take place, and the field to be modified is made invalid.

-2 The field to be modified or search-string is null and/or invalid, and/or
the replace-string is invalid prior to a REPLACE operation.
D–30 ASL Reference Guide

STRAN Flag (VISION:Builder 4000 Model Series Only)
STRAN Flag (VISION:Builder 4000 Model Series Only)
The STRAN flag interrogates the status of the current transaction at each
segment level and indicates the actions applied to the master file record by the
current transaction. It is a character field with a length of 9 bytes. The STRAN flag
is used in type M requests and their subroutines, but is available to any request
type.

Each of the 9 bytes of the STRAN flag corresponds to a segment level in a
structured record. The settings are shown in the following table.

The STRAN flag is reset to blanks before obtaining the next logical transaction
record (that is, either reading a new transaction record or retrying the last one).
However, the STRAN flag is not revalidated if you set it to an invalid value. This
is consistent with the treatment of other user flags.

The STRAN flag is set to non-blank values as the transaction actions are
successfully applied.

If a transaction is referenced in the type 4 request and rejected because of update
errors, the STRAN flag reflects the match actions that occurred but does not reflect
the insert, update, or delete actions. These actions were either not yet applied or
were backed out before the type 4 request received control.

Setting Explanation

Blank No action at this level.

M Match actions only occurred at this level. All match fields for the
segment at this level were matched (transaction action code M), but no
fields in the segment were updated (action codes B, R, A, S, P, or X).

I A segment was inserted at this level. This setting applies to level 1
(root), as well as lower levels 2 through 9. Thus, action code C or I was
used or M with default create or insert specified. In addition, update
actions (codes B, R, A, S, P, or X) may have been applied after the create
or insert.

U Update actions (codes B, R, A, S, P, or X) were applied to the segment
at this level, but C or I was not specified.

D The segment at this level was deleted by a transaction (action code E).
This setting applies only to the level that was explicitly deleted by the
transaction, not to lower level dependent segments. This setting is not
apparent at level 1, because deleted master records are not presented
to any type of request.

❹

Flags D–31

TIME Flag
TIME Flag
The TIME flag records the time of day at which the run was started. It is a character
field with a length of 8 bytes. The TIME flag prints as HH.MM.SS, where HH
equals hours, MM equals minutes, and SS equals seconds. Leading zeroes are
added where necessary.

TODAY Flag
The TODAY flag records the system date in two formats.

Note: The order of month, day, and year and the date delimiter (/) are installation
options and can be changed using M4PARAMS. See the Installation Guide.

Normal processing/standard reporting (6 characters)
The TODAY flag records the date in the format MMDDYY, where MM equals 2
numerals for month, DD equals 2 numerals for day, and YY equals 2 numerals for
year (that is, January 15, 2001 equals 011501).

Formatted reporting (8 characters)
The TODAY flag records the date in the format MM/DD/YY (01/15/01).

TODAYX Flag
The TODAYX flag records the system date in two formats.

Note: The order of month, day, and year and the date delimiter (/) are installation
options and can be changed using M4PARAMS. See the Installation Guide.

Normal processing/standard reporting (8 characters)
The TODAYX flag records the date in the format MMDDYYYY, where MM equals
2 numerals for month, DD equals 2 numerals for day, and YYYY equals 4 numerals
for year (that is, January 15, 2001 equals 01152001).

Formatted reporting (10 characters)
The TODAYX flag records the date in the format MM/DD/YYYY (01/15/2001).
D–32 ASL Reference Guide

TRAN Flag (VISION:Builder 4000 Model Series Only)
TRAN Flag (VISION:Builder 4000 Model Series Only)
The TRAN flag indicates the maintenance status of a master file record and/or
the rejection of a transaction record. It is a fixed field with a length of 1 byte. The
settings are shown in the following table.

XTRAN Flag (VISION:Builder 4000 Model Series Only)
The XTRAN flag identifies the reasons for rejected transactions. It is a fixed field
with a length of 1 byte. When more than one error is detected in a transaction, only
the last one is described.

The XTRAN settings are shown in the following table.

Value Conditions

0 No transaction records exist for the master file record.

1 The master file record was updated or matched by a transaction
record.

2 The master file record was created by a transaction record.

3 Conditions for values 1 and 2 both apply.

4 One or more transaction records against this master file record were
rejected.

5 Conditions for values 1 and 4 both apply.

6 Conditions for values 2 and 4 both apply.

7 Conditions for values 1, 2, and 4 all apply.

8 or higher Invalid.

❹

Value Explanation

 0 Inactive setting.

 1 Request rejection.

 2 The transaction record does not match any of the defined identifiers.

 3 The field in the transaction is outside the maximum or minimum
values specified in the transaction definition.

 4 A transaction record key is less than the preceding transaction record
key; the transaction file is out of sequence.

 5 Transaction record key field with M, D, or C action cannot be converted
for matching purposes.

❹

Flags D–33

XTRAN Flag (VISION:Builder 4000 Model Series Only)
 6 The contents of the date field in the transaction do not meet the date
validation criteria.

 7 The field in the transaction record does not conform to the input edit
pattern specified in the transaction definition.

 8 The transaction record key does not match any master file key and a
create is not specified.

 9 A create action has been specified for a record that already exists on the
master file.

10 Field associated with an M, E, C, D, or I action cannot be converted for
matching purposes or a field associated with B, R, A, S, P, or X action
causes an arithmetic or conversion error.

11 A non-record key field (that is, any field other than a record key field)
associated with an M action cannot be located in the master file record.

12 The segment for which a delete segment action (E) is specified does not
exist in the master file record.

13 The insert action (I) has been specified for a segment that is repeated a
fixed number of times. There are no “empty” segments into which the
insert can be made.

14 A segment to be inserted already exists in the master file record.

15 This value occurs with variable length records only. The requested
insertion would cause the maximum record length to be exceeded.

17 The count field controlling the segment to be inserted is too small to
contain the number of subordinate segments being inserted.

Value Explanation <$paranum
D–34 ASL Reference Guide

Appendix
E C
onversion Functions
This appendix provides suggestions for converting existing VISION:Builder
requests to ASL procedures.

Note: You must have experience with the fixed format PR statements.

Examples are provided in Conversion Examples on page E-4. The examples will
clarify certain concepts, demonstrate particular capabilities, or offer practical
techniques. Because some of these examples were coded and run in previous
releases, forms and listings may not conform to current release formats. These
minor discrepancies have no effect on the validity or value of the examples in
relation to ASL.

The intention of the manual is not to describe the specific use and operation of ASL
and assumes that the reader is already familiar with VISION:Builder Fixed Syntax
Processing and Record Selection (PR) statements.

Why ASL?
ASL is a free-form specification language with a comprehensive vocabulary and
syntax that gives you capabilities to express decision-making logic beyond the
fixed format VISION:Builder syntax. ASL streamlines many of the elements of
VISION:Builder code.

Defining ASL Procedures
ASL is generally used in VISION:Workbench for DOS and the
VISION:Workbench for ISPF. However, ASL procedures can also be entered
in-stream with fixed format VISION:Builder requests. Procedure statements and
fixed format statements cannot be mixed in the same procedure or request.
However, an application may contain a mixture of fixed format syntax and ASL
procedures (for example, separate requests).

In-stream ASL statements following any fixed-syntax statements are entered after
a ;;BEGASL statement. An ;;ENDASL statement must be entered after the last
ASL statement that is in turn followed by fixed-syntax statements.
Conversion Functions E–1

Why ASL?
The following is an example of in-stream ASL statements:

run control group (fixed-syntax)
 .
 .
;;BEGASL
PROC
 .
 .
ASL statements
 .
 .
END PROC
;;ENDASL
reqname ER
PR statements
 .
 .
;;BEGASL
PROC
 .
 .
ASL statements
 .
 .
END PROC

Tips and Techniques
ASL procedures and fixed format VISION:Builder requests can be used in the
same application. As you perform program maintenance, use this opportunity to
begin replacing fixed format statements with ASL procedures. You cannot use PR
statements and ASL commands in the same request but you can call an ASL
procedure from a fixed format VISION:Builder request.

When converting an application, do not attempt to translate each statement on a
one for one basis. The function of the code is more important than matching exactly
how it is done. Remember, ASL lends itself to a building block structure that is
readable in a simple top-down fashion.

VISION:Workbench for DOS is an invaluable tool for learning ASL. It provides
syntax checking during the data entry process and includes a validation function.
One way to become comfortable with ASL is to actually go through a complete
VISION:Workbench export and specify that the ASL be translated into fixed
format syntax. By reviewing the fixed format VISION:Builder code created by this
type of export process, you can verify that what you wrote in ASL translates into
what you want to accomplish. Once you are comfortable with ASL, your
application can be exported in ASL.
E–2 ASL Reference Guide

Why ASL?
ASL Syntax and Terminology
ASL is a free-form language consisting of labels, commands, and functions. A
procedure statement begins on a new line and consists of an optional label
followed by a command. If the statement has a label, the label must be followed
immediately by a colon. What appears on the rest of the procedure statement after
the command depends on the syntax of the command. For example:

LABELX: LET FIELDA = FIELDB

is an actual procedure statement where:

One or more spaces must separate the command, keywords, and operands. For
example:

CUSTNAME: FIELD TYPE C LENGTH 30 HEADING 'CUSTOMER'

These examples are equally valid FIELD command procedure statements that
define a temporary field named CUSTNAME (the statement label is the field
name).

Procedure statements can be written using multiple lines. Each continuation
statement must be terminated by a comma preceded by a blank and then continued
on the next line. For example, both of the following statements are syntactically
correct:

IF NAME = 'ABC COMPANY' ,
 AND NUMBER = '01' ,
 OR NUMBER = '02'

or

IF NAME = 'ABC COMPANY' AND NUMBER = '01' OR NUMBER = '02'

Conversion Table on page E-14 contains a guide to the more common operations
used in fixed format VISION:Builder processing (PR) statements and relates them
to their approximate ASL function or command. The full syntax of ASL is
explained in the VISION:Builder ASL Reference Manual.

Indentation is provided only for program readability and does not affect execution
of an ASL statement. To improve readability, start the words IF/DO CASE and
ELSE in the same line position and indent the action statement verbs. Place the
word ELSE on a line by itself. The END command should be on a line by itself and
aligned with the IF or DO command that initiates the block of code delimited by
the END. An END command is required for every DO or IF command. It is easier
to determine that all delimiters have been accounted for with indentation. In

LABELX is the statement label.

LET is the command.

FIELDA = FIELDB places the contents of field B into field A (FIELDA and
FIELDB are the operands).
Conversion Functions E–3

Conversion Examples
addition, program modifications and debugging often require modification to
action statements. By indenting DO and IF blocks, such changes can be made with
minimum code disruption and chance for error.

In ASL, comments can be placed anywhere following a semicolon (;). Comments
are used throughout the examples shown in Conversion Examples on page E-4.

For easy identification of fields, a standard one-character qualifier and a period can
prefix a name. A qualifier identifies a specific file or usage of a field. For example,
T.TEMP is a reference to a temporary field named TEMP and 1.CORDFLD is a
reference to a field named CORDFLD from the file in the application that has been
assigned to coordinated file 1. If a qualifier does not precede a field name, the field
is located in the new master file.

If a name contains an embedded blank or special character, the name must be
enclosed in double quotation marks. For example:

T."CORD-FLD"
1."LAST AMT"

Conversion Examples
This chapter contains simple and complex conversion examples. The following are
some simple examples.

ASL:

LET RESULT = FIELDA + FIELDB + FIELDC + FIELDD + FIELDE ,
 WITH ROUNDING

Fixed Format:

FIELDA + FIELDB RESULT
RESULT + FIELDC RESULT
RESULT + FIELDD RESULT
RESULT + FIELDE RESULT
RESULT + D.005 RESULT

ASL:

COMBINE PF(DATE 1 2) '/' PF(DATE 3 2) '/' PF(DATE 5 2) STORE RESULT

Objective: Add several fields together with rounding.

Objective: Combine a field date into one with month, day, and year with
editing (for example, 101299 converted to 10/12/99).
E–4 ASL Reference Guide

Conversion Examples

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4

Fixed Format:

DATE R RESULT 0102A
RESULT C0C/ RESULT
RESULT C0 DATE RESULT 0302A
RESULT C0C/ RESULT
RESULT C0 DATE RESULT 0502A

ASL:

IF SALARY GT MGRSAL THEN
 CALL REPORT HIGHPAID
END

Fixed Format:

SALARY GT MGRSAL
 NS END
 GO SUB HIGHPAID

Example 1 Interest on Overdue Payments

The accounts receivable department needs to prepare bills for overdue payments.
Interest is charged on all overdue payments at a rate of 1.5% per month. The
incoming file contains the payment due date and the payment principal amount.

The following are the steps to calculate the interest.

■ Calculate the number of months the payment is overdue.

■ Set payment due amount to the principal payment amount.

■ Start a loop to set payment due to the principal amount multiplied by 1.015.

■ Decrement the overdue month counter by 1. Continue looping until this
counter is zero (0).

Figure E-1 shows the ASL procedure for Example 1. Note that all dates in this
example are in the format MMDDYY.

Objective: Report employees who earn more than their respective
managers.

* PROC NAME - CALCINT *
* INPUT STREAM PROCEDURE *

CALCINT: PROC TYPE SUBROUTINE 1
;CALCULATE INTEREST FOR PAYMENT 1
; 1
;Define temporary fields 1
; 1
YY: FIELD F 4 1
MM: FIELD F 4 1
NEWAMT: FIELD P 8 2 1
INTEREST: FIELD P 8 2 1
; 1
;Compute the number of months over which interest is to be charged 2
; 2
LET T.YY = PF(F.TODAY 5 2) - PF(DUEDATE 5 2) ;Compute years overdue 2
IF T.YY GE 0 ;Due date this year or later? 2

LET T.MM = T.YY * 12 + , 2

Figure E-1 Example 1: ASL Procedure
Conversion Functions E–5

Conversion Examples

5
6
7
8
9
0
1
2
3

The first LET statement calculates the elapsed years between the current year
(F.TODAY) and the master file field DUEDATE year. The IF command in this
example has no associated ELSE. If the temporary field (T.YY) is greater than or
equal to zero the IF group is processed. If the temporary field YY is less than zero,
the logical expression is false and control is transferred to the corresponding END
statement for this IF block. The normal record processing cycle continues with the
next occurrence of the segment controlling the record domain.

IF T.YY is greater than or equal to zero, the logical expression is true. The number
of elapsed months is calculated by multiplying the number of years by 12 and
adding the difference between the current month and the due date month. The
current principal amount is copied to the temporary field NEWAMT.

The DO WHILE logical expression establishes an explicit loop that is evaluated at
the beginning of each iteration if T.MM is greater than zero before each pass
through the calculation.

When the loop terminates, T.INTEREST is determined by subtracting the original
principal amount from T.NEWAMT.

Figure E-2 shows the fixed format VISION:Builder statements for Example 1.

Example 1 illustrates the steps of the sample problem in ASL with the result that
the functionality of the fixed format VISION:Builder code remains, but the ASL
code has a more closed-end decision construct. It has a smooth sequential flow that
is easier to understand than fixed format syntax.

PF(F.TODAY 1 2) - PF(DUEDATE 1 2) ;Compute months overdue 2
LET T.NEWAMT = PRINCIPL 2
DO WHILE T.MM GT 0 ;Accumulate new amount 2

LET T.NEWAMT = T.NEWAMT * 1.015 2
LET T.MM = T.MM - 1 2

END 3
LET T.INTEREST = T.NEWAMT - PRINCIPL ;Compute actual interest 3

END 3
END PROC 3

* REQUEST NAME - CALCINT *
* INPUT STREAM REQUEST *

--
STMT REPORT MAX SEL SUM VERT FORMS PAGE PAGE LINE REQ BACK BR RNT AB SEQUENCE LIST
TYPE DATE REQUESTOR ID ITEMS CTL RPT SP CNTRL WDTH HGHT NOS? TYP SET NAME CONTROL TMP FM 73 TO 80 SEQ
--
(ER) (S) 9
--
STMT FIELD FIELD FLD DEC OUTPT EDIT INITIAL LINE 1 OF LINE 2 OF SEQUENCE LIST
TYPE NAME LNGTH TYP PLC EDIT LGTH VALUE COLUMN HEADING COLUMN HEADING 73 TO 80 SEQ
--
(TF) (YY) (4) (F) 10
(TF) (MM) (4) (F) 11
(TF) (LOOP) (4) (F) 12
(TF) (NEWAMT) (8) (P) (2) 13
(TF) (INTEREST) (8) (P) (2) 14
--
STMT SEQ LOG CONOPERAND-A..... OPEROPERAND-B.............RESULT...... PARTIAL FIELD SEQUENCE LIST
TYPE NO. LEV CTR QLF FIELD SEG-LVL ATN QLF FIELD SEG-LVL (OR CONSTANT) QLF FIELD SEG-LVL STRT NUMB OPR 73 TO 80 SEQ
--
(PR)(010) (F,TODAY) (R) (T,YY) (5) (2) (A) 15
(PR)(020) (T,YY) (-) (DUEDATE) 01-1 (T,YY) (5) (2) (B) 16
(PR)(030) (T,YY) (GE) (D,0) 17
(PR)(040) (NS) (END) 18

Figure E-2 Example 1: Fixed Format Request

Figure E-1 Example 1: ASL Procedure
E–6 ASL Reference Guide

Conversion Examples

0
1
2
3
4
5
6
7
8
9
0
1
2

Example 2 Over 40 Hours Report

The payroll department needs to create a report of all employees who worked
more than 40 hours in a given week. These hours may have been reported as
regular hours or overtime hours.

The following lists the selection criteria:

■ Create a temporary field for overtime hours.

■ If the regular hours field is greater than 40, set this temporary field to regular
hours minus 40.

■ If the overtime hours field is greater than zero, add the overtime hours to the
temporary field.

Figure E-3 shows the procedure OTIMCARD.

The first command statement contains the FIELD command. The FIELD command
defines a temporary field within a procedure. The statement label, OTHOURS, is
the field name. The temporary field, OTHOURS, is defined as containing numeric
values (zoned), it is three bytes in length with one decimal place. A single line

(PR)(050) (T,YY) (*) (D,12) (T,YY) 20
(PR)(060) (F,TODAY) (R) (T,MM) (1) (2) (A) 21
(PR)(070) (T,MM) (-) (DUEDATE) 01-1 (T,MM) (1) (2) (B) 22
(PR)(080) (T,MM) (+) (T,YY) (T,LOOP) 23
(PR)(090) (R) (PRINCIPL) 01-1 (T,NEWAMT) 24
(PR)(100) (GO) (SUB INTEREST) 25
(PR)(110) (T,NEWAMT) (-) (PRINCIPL) 01-1 (T,INTEREST) 26

* REQUEST NAME - INTEREST *
* INPUT STREAM REQUEST *

--
STMT REPORT MAX SEL SUM VERT FORMS PAGE PAGE LINE REQ BACK BR RNT AB SEQUENCE LIST
TYPE DATE REQUESTOR ID ITEMS CTL RPT SP CNTRL WDTH HGHT NOS? TYP SET NAME CONTROL TMP FM 73 TO 80 SEQ
--
(ER) (S) (1200) 27
--
STMT SEQ LOG CONOPERAND-A..... OPEROPERAND-B.............RESULT...... PARTIAL FIELD SEQUENCE LIST
TYPE NO. LEV CTR QLF FIELD SEG-LVL ATN QLF FIELD SEG-LVL (OR CONSTANT) QLF FIELD SEG-LVL STRT NUMB OPR 73 TO 80 SEQ
--
(PR)(010) (T,LOOP) (GT) (D,0) 28
(PR)(020) (T,NEWAMT) (*) (D,1.015) (T,NEWAMT) 29
(PR)(030) (T,LOOP) (-) (D,1) (T,LOOP) 30
(PR)(040) (GO) (REQUEST INTEREST) 31

Figure E-2 Example 1: Fixed Format Request

* PROC NAME - OTIMCARD *
* INPUT STREAM PROCEDURE *

OTIMCARD: PROC TYPE SUBROUTINE 1
;Select all employees that worked more than 40 hours. 1
; 1
OTHOURS: FIELD Z 3 1 HEADING 'TOTAL OT HOURS' 1
; 1
IF HOURS > 40 1

LET T.OTHOURS = HOURS - 40 1
END 1
IF OTHOURS > 0 1

LET T.OTHOURS = OTHOURS + T.OTHOURS 1
END 2
CALL REPORT OTHOURS 2
END PROC 2

Figure E-3 Example 2: ASL Procedure
Conversion Functions E–7

Conversion Examples

-
T
Q
-

-
T
Q
-

-
T
Q
-

heading will appear over the column of data when the field is output to a report.
All of the fixed format VISION:Builder temporary field (TF) statement entries are
available in ASL and all of the data entry rules apply as well.

The ASL procedure has two IF statements. The special relational operator > has
been used in place of the operator GT; either relational operator is permitted.

■ The first IF block checks the master file field HOURS to see if it is greater than
40. If it is, the temporary field OTHOURS is set to the number of hours in excess
of 40.

■ The second IF block of statements checks the master file field OTHOURS to see
if it is greater than zero. If it is, the value in the master file field OTHOURS is
added to the value in the temporary field OTHOURS and the record is selected
for output.

Figure E-4 shows the request OTIMCARD.

Example 3 Country by Sports Category

Note: Example 3 converts an array application. Even if your installation does not
have or does not use the array feature, this example provides some significant
illustrations of ASL syntax.

The Olympic committee wants to track the performance of selected countries in
selected sports categories. To accomplish this task, you need a cross-tab report
showing the number of gold, silver, and bronze medals won by each of the 20
selected countries in each of the six selected sports categories. Also, calculate and
report the percentage of medals for each country and final totals and percentages.

Figure E-6 through Figure E-8 show the program written in ASL. Figure E-9 on
page E-11 shows the program written using PR statements.

* REQUEST NAME - OTIMCARD *
* INPUT STREAM REQUEST *

STMT REPORT MAX SEL SUM VERT FORMS PAGE PAGE LINE REQ BACK BR RNT AB SEQUENCE LIS
TYPE DATE REQUESTOR ID ITEMS CTL RPT SP CNTRL WDTH HGHT NOS? TYP SET NAME CONTROL TMP FM 73 TO 80 SE

(ER) (S) 9

STMT FIELD FIELD FLD DEC OUTPT EDIT INITIAL LINE 1 OF LINE 2 OF SEQUENCE LIS
TYPE NAME LNGTH TYP PLC EDIT LGTH VALUE COLUMN HEADING COLUMN HEADING 73 TO 80 SE

(TF) (OTHOURS) (3) (Z) (1) 10

STMT SEQ LOG CONOPERAND-A..... OPEROPERAND-B.............RESULT...... PARTIAL FIELD SEQUENCE LIS
TYPE NO. LEV CTR QLF FIELD SEG-LVL ATN QLF FIELD SEG-LVL (OR CONSTANT) QLF FIELD SEG-LVL STRT NUMB OPR 73 TO 80 SE

(PR)(010) (HOURS) 01-1 (GT) (D,40) 11
(PR)(020) (NS) (040) 12
(PR)(030) (HOURS) 01-1 (-) (D,40) (T,OTHOURS) 13
(PR)(040) (OTHOURS) 01-1 (GT) (D,0) 14
(PR)(050) (NS) (070) 15
(PR)(060) (OTHOURS) 01-1 (+) (T,OTHOURS) (T,OTHOURS) 16
(PR)(070) (GO) (SUB OTHOURS) 17

Figure E-4 Example 2: Fixed Format Request
E–8 ASL Reference Guide

Conversion Examples
The program is to be written using a structured, modular approach.

■ Define a two dimensional array with six sports and 20 countries. For the medal
counts, each cell has three fields: gold, silver, and bronze. Figure E-5 shows an
example of the array's layout.

■ Read the input file. Locate the correct row for the sport and column for the
country. Add one to the appropriate medal count. (See the procedure BUILD in
Figure E-6.)

■ After all records have been read, define the temporary fields that will contain
the counts and percentages. (See the procedure PRNTCNTL in Figure E-7.)

■ Read each row of the array and set the temporary counters to zero. (See the DO
WHILE loop in the procedure PRNTCNTL in Figure E-7.)

■ Call a procedure to add the totals to the temporary fields. (See the procedure
TOTAL in Figure E-7.)

■ Call a procedure to calculate the percentages and print the report. (See the
procedure PRINT in Figure E-8.)

Figure E-5 Example 3: Array Layout

* PROC NAME - BUILD *
* INPUT STREAM PROCEDURE *

BUILD: PROC 5
;ADD RESULST INTO ARRAY 6
; 7
;This procedure sums the results into the array by: 8
;(1) type of medal, (2) type of sport, (3) country. 9
; 10
IF CNTYNO LT 21 AND SPORTNO LT 7 11

LOC A ROW SPORTNO COLUMN CNTYNO 12
DO CASE 13

CASE WHERE MEDAL EQ 'GOLD' 14
LET A.GOLD = A.GOLD + 1 15

CASE WHERE MEDAL EQ 'SILV' 16
LET A.SILVER = A.SILVER + 1 17

CASE WHERE MEDAL EQ 'BRON' 18
LET A.BRONZE = A.BRONZE + 1 19

END 20
END 21
END PROC 22

Figure E-6 Example 3: ASL Procedure BUILD
Conversion Functions E–9

Conversion Examples
The ASL procedure BUILD provides an excellent example of the use of the CASE
command, as well as the simplified top-down structure of ASL. Only the first
group of procedure statements whose CASE command condition is true is
performed within the DO CASE block. Once the proper counter has been
incremented, control is transferred immediately to the END command.

In the ASL procedure PRNTCNTL, the DO WHILE command establishes an
explicit loop (back branching). The logical expression is evaluated at the beginning
of each iteration. If the value in the temporary field ROW is less than 6, the
statements between the DO WHILE command and its corresponding END
command are executed. Since T.ROW is set to zero before starting the DO block,
the condition on the WHILE operand is initially true and the statements within the
DO block are executed. Because T.ROW is incremented within the DO block, the
second time through the explicit loop, T.ROW contains a 1; the WHILE condition
remains true, allowing the DO block to be executed a second time.

* PROC NAME - PRNTCNTL *
* INPUT STREAM PROCEDURE *

PRNTCNTL: PROC TYPE EOF, TEMPREINIT 24
;ROW LOOPING DRIVER 25
; 26
;This procedure sets up a loop of 6 to cause all rows 27
;of the array to be processed one row at a time. 28
; 29
COUNTRY: FIELD C 15 HEAD 'COUNTRY' 30
SPORT: FIELD C 15 HEAD 'SPORT' 31
TOTGOLD: FIELD F 4 INIT 0 HEAD 'TOTAL' 'GOLD' 32
TOTSILV: FIELD F 4 INIT 0 HEAD 'TOTAL' 'SILVER' 33
TOTBRON: FIELD F 4 INIT 0 HEAD 'TOTAL' 'BRONZE' 34
TOTMED: FIELD F 4 INIT 0 HEAD 'TOTAL' 'MEDALS' 35
GRANDTOT: FIELD F 4 INIT 0 HEAD 'GRAND' 'TOTAL' 36
PCTGOLD: FIELD F 4 2 INIT 0 HEAD 'PCT OF' 'GOLD' 37
PCTSILV: FIELD F 4 2 INIT 0 HEAD 'PCT OF' 'SILVER' 38
PCTBRON: FIELD F 4 2 INIT 0 HEAD 'PCT OF' 'BRONZE' 39
PCTTOT: FIELD F 4 2 INIT 0 HEAD 'PCT OF' 'TOTAL' 40
ROW: FIELD F 4 INIT 0 HEAD 'ARRAY' 'ROW' 41
; 42
DO WHILE T.ROW LT 6 43
LET T.ROW = 1 + T.ROW 44
LET T.TOTGOLD = 0 45
LET T.TOTSILV = 0 46
LET T.TOTBRON = 0 47
CALL PROC TOTAL 48
CALL PROC PRINT 49

END 50
END PROC 51

* PROC NAME - TOTAL *
* INPUT STREAM PROCEDURE *

TOTAL: PROC TYPE SUBROUTINE, TEMPREINIT 53
;PERFORM ROW TOTALS 54
; 55
;This procedure sums up the number of medals in each category 56
;(i.e., gold, silver and bronze) for one sport (row). 57
; 58
LOC A ROW T.ROW 59
LET T.TOTGOLD = A.GOLD + T.TOTGOLD 60
LET T.TOTSILV = A.SILVER + T.TOTSILV 61
LET T.TOTBRON = A.BRONZE + T.TOTBRON 62
END PROC 63

Figure E-7 Example 3: ASL Procedures PRNTCNTL and TOTAL
E–10 ASL Reference Guide

Conversion Examples
This process continues until the seventh evaluation of the WHILE condition when
T.ROW contains a 6. Control is transferred to the statement following the END
command of that DO block. The ASL DO WHILE and DO UNTIL commands are
not only very powerful, but they provide a flexibility unmatched in the fixed
format syntax.

The ASL procedure PRINT illustrates the simplicity of arithmetic expressions.
Each computation is easy to read and identify because the entire mathematical
operation can be combined into a single statement for each field. The statement
preceding the CALL command to the report WINNERS is an example of the table
LOOKUP (LU) function. In this case, the abbreviated form of the function is used.

Figure E-9 shows the program written in fixed format PR statements.

* PROC NAME - PRINT *
* INPUT STREAM PROCEDURE *

PRINT: PROC TYPE SUBROUTINE, TEMPREINIT 65
;COMPUTE PERCENTAGES AND PRINTS RESULTS ONE SPORT AT A TIME. 66
; 67
;This procedure computes the percentages and calls the report 68
;routine to print the results one sport (row) at a time. 69
; 70
LOC A ROW T.ROW 71
LET T.SPORT = LU(NUMSPORT ARG F.ROW) 72
LET T.PCTGOLD = A.GOLD * 100 / T.TOTGOLD 73
LET T.PCTSILV = A.SILVER * 100 / T.TOTSILV 74
LET T.PCTBRON = A.BRONZE * 100 / T.TOTBRON 75
LET T.TOTMED = A.GOLD + A.SILVER + A.BRONZE 76
LET T.GRANDTOT = T.TOTGOLD + T.TOTSILV + T.TOTBRON 77
LET T.PCTTOT = T.TOTMED * 100 / T.GRANDTOT 78
LET T.COUNTRY = LU(NUMCNTY ARG F.COLUMN) 79
CALL REPORT WINNERS 80
END PROC 81

Figure E-8 Example 3: ASL Procedure PRINT

 * REQUEST NAME - BUILD *
 * INPUT STREAM REQUEST *

 --
 STMT REPORT MAX SEL SUM VERT FORMS PAGE PAGE LINE REQ BACK BR RNT AB SEQUENCE LIST
 TYPE DATE REQUESTOR ID ITEMS CTL RPT SP CNTRL WDTH HGHT NOS? TYP SET NAME CONTROL TMP FM 73 TO 80 SEQ
 --
 (ER) (N) 4
 COMMENT ***** ADD RESULTS INTO ARRAY ***** 5
 COMMENT ***** ***** 6
 COMMENT ***** THIS REQUEST SUMS THE RESULTS INTO THE ARRAY BY: ***** 7
 COMMENT ***** (1) TYPE OF MEDAL, (2) TYPE OF SPORT, (3) COUNTRY. ***** 8
 COMMENT ***** ***** 9
 --
 STMT SEQ LOG CONOPERAND-A..... OPER OPERAND-B............. RESULT...... PARTIAL FIELD SEQUENCE LIST
 TYPE NO. LEV CTR QLF FIELD SEG-LVL ATN QLF FIELD SEG-LVL (OR CONSTANT) QLF FIELD SEG-LVL STRT NUMB OPR 73 TO 80 SEQ
 --
 (PR)(101) (CNTYNO) 03-3 (LT) (D,21) 10
 (PR)(102) (A) (SPORTNO) 02-2 (LT) (D,7) 11
 (PR)(103) (NS) (END) 12
 (PR)(104) (A) (LD) (SPORTNO) 02-2 (CNTYNO) 03-3 13
 (PR)(105) (MEDAL) 03-3 (EQ) (C,GOLD) 14
 (PR)(106) (NS) (109) 15
 (PR)(107) (A,GOLD) (+) (D,1) (A,GOLD) 16
 (PR)(108) (GO) (END) 17
 (PR)(109) (MEDAL) 03-3 (EQ) (C,SILV) 18
 (PR)(110) (NS) (113) 19
 (PR)(111) (A,SILVER) (+) (D,1) (A,SILVER) 20
 (PR)(112) (GO) (END) 21
 (PR)(113) (MEDAL) 03-3 (EQ) (C,BRON) 22
 (PR)(114) (NS) (END) 23
 (PR)(115) (A,BRONZE) (+) (D,1) (A,BRONZE) 24

 * REQUEST NAME - PRNTCNTL *
 * INPUT STREAM REQUEST *

 --
 STMT REPORT MAX SEL SUM VERT FORMS PAGE PAGE LINE REQ BACK BR RNT AB SEQUENCE LIST
 TYPE DATE REQUESTOR ID ITEMS CTL RPT SP CNTRL WDTH HGHT NOS? TYP SET NAME CONTROL TMP FM 73 TO 80 SEQ

Figure E-9 Example 3: Fixed Format Request for Arrays (Page 1 of 2)
Conversion Functions E–11

Conversion Examples
 --
 (ER) (E) (6) (Y) 25
 COMMENT ***** ROW LOOPING DRIVER ***** 26
 COMMENT ***** ***** 27
 COMMENT ***** THIS REQUEST SETS UP A LOOP OF 6 TO CAUSE ALL ROWS OF THE ***** 28
 COMMENT ***** ARRAY TO BE PROCESSED ONE ROW AT A TIME. ***** 29
 COMMENT ***** ***** 30
 --
 STMT FIELD FIELD FLD DEC OUTPT EDIT INITIAL LINE 1 OF LINE 2 OF SEQUENCE LIST
 TYPE NAME LNGTH TYP PLC EDIT LGTH VALUE COLUMN HEADING COLUMN HEADING 73 TO 80 SEQ
 --
 (TF) (COUNTRY) (15) (C) (COUNTRY) 31
 (TF) (SPORT) (15) (C) (SPORT) 32
 (TF) (TOTGOLD) (4) (F) (0) (TOTAL) (GOLD) 33
 (TF) (TOTSILV) (4) (F) (0) (TOTAL) (SILVER) 34
 (TF) (TOTBRON) (4) (F) (0) (TOTAL) (BRONZE) 35
 (TF) (TOTMED) (4) (F) (0) (TOTAL) (MEDALS) 36
 (TF) (GRANDTOT) (4) (F) (0) (GRAND) (TOTAL) 37
 (TF) (PCTGOLD) (4) (F) (2) (0) (PCT OF) (GOLD) 38
 (TF) (PCTSILV) (4) (F) (2) (0) (PCT OF) (SILVER) 39
 (TF) (PCTBRON) (4) (F) (2) (0) (PCT OF) (BRONZE) 40
 (TF) (PCTTOT) (4) (F) (2) (0) (PCT OF) (TOTAL) 41
 (TF) (ROW) (4) (F) (0) (ARRAY) (ROW) 42
 --
 STMT SEQ LOG CONOPERAND-A..... OPER OPERAND-B............. RESULT...... PARTIAL FIELD SEQUENCE LIST
 TYPE NO. LEV CTR QLF FIELD SEG-LVL ATN QLF FIELD SEG-LVL (OR CONSTANT) QLF FIELD SEG-LVL STRT NUMB OPR 73 TO 80 SEQ
 --
 (PR)(010) (T,ROW) (LT) (D,6) 43
 (PR)(020) (T,ROW) (+) (D,1) (T,ROW) 44
 (PR)(030) (R) (D,0) (T,TOTGOLD) 45
 (PR)(040) (R) (D,0) (T,TOTSILV) 46
 (PR)(050) (R) (D,0) (T,TOTBRON) 47
 (PR)(060) (GO) (SUB TOTAL) 48
 (PR)(070) (GO) (SUB PRINT) 49
 (PR)(080) (GO) (REQUEST PRNTCNTL) 50

 * REQUEST NAME - TOTAL *
 * INPUT STREAM REQUEST *

 --
 STMT REPORT MAX SEL SUM VERT FORMS PAGE PAGE LINE REQ BACK BR RNT AB SEQUENCE LIST
 TYPE DATE REQUESTOR ID ITEMS CTL RPT SP CNTRL WDTH HGHT NOS? TYP SET NAME CONTROL TMP FM 73 TO 80 SEQ
 --
 (ER) (S) (Y) 51
 COMMENT ***** PERFORM ROW TOTALS ***** 52
 COMMENT ***** ***** 53
 COMMENT ***** THIS REQUEST SUMS UP THE NUMBER OF MEDALS IN EACH CATEGORY ***** 54
 COMMENT ***** (I.E., GOLD, SILVER AND BRONZE) FOR ONE SPORT (ROW). ***** 55
 --
 STMT SEQ LOG CONOPERAND-A..... OPER OPERAND-B............. RESULT...... PARTIAL FIELD SEQUENCE LIST
 TYPE NO. LEV CTR QLF FIELD SEG-LVL ATN QLF FIELD SEG-LVL (OR CONSTANT) QLF FIELD SEG-LVL STRT NUMB OPR 73 TO 80 SEQ
 --
 (PR)(010) (A) (LR) (T,ROW) 56
 (PR)(020) (A,GOLD) (+) (T,TOTGOLD) (T,TOTGOLD) 57
 (PR)(030) (A,SILVER) (+) (T,TOTSILV) (T,TOTSILV) 58
 (PR)(040) (A,BRONZE) (+) (T,TOTBRON) (T,TOTBRON) 59

 * REQUEST NAME - PRINT *
 * INPUT STREAM REQUEST *

 --
 STMT REPORT MAX SEL SUM VERT FORMS PAGE PAGE LINE REQ BACK BR RNT AB SEQUENCE LIST
 TYPE DATE REQUESTOR ID ITEMS CTL RPT SP CNTRL WDTH HGHT NOS? TYP SET NAME CONTROL TMP FM 73 TO 80 SEQ
 --
 (ER) (S) (Y) 60
 COMMENT ***** THIS REQUEST COMPUTES THE PERCENTAGES AND PRINTS THE ***** 63
 COMMENT ***** RESULTS ONE SPORT (ROW) AT A TIME. ***** 64
 --
 STMT SEQ LOG CONOPERAND-A..... OPER OPERAND-B............. RESULT...... PARTIAL FIELD SEQUENCE LIST
 TYPE NO. LEV CTR QLF FIELD SEG-LVL ATN QLF FIELD SEG-LVL (OR CONSTANT) QLF FIELD SEG-LVL STRT NUMB OPR 73 TO 80 SEQ
 --
 (PR)(010) (A) (LR) (T,ROW) 65
 (PR)(020) (F,ROW) (TL) (L,NUMSPORT) (T,SPORT) 66
 (PR)(030) (A,GOLD) (*) (D,100) (T,PCTGOLD) 67
 (PR)(040) (T,PCTGOLD) (/) (T,TOTGOLD) (T,PCTGOLD) 68
 (PR)(050) (A,SILVER) (*) (D,100) (T,PCTSILV) 69
 (PR)(060) (T,PCTSILV) (/) (T,TOTSILV) (T,PCTSILV) 70
 (PR)(070) (A,BRONZE) (*) (D,100) (T,PCTBRON) 71
 (PR)(080) (T,PCTBRON) (/) (T,TOTBRON) (T,PCTBRON) 72
 (PR)(090) (A,GOLD) (+) (A,SILVER) (T,TOTMED) 73
 (PR)(100) (T,TOTMED) (+) (A,BRONZE) (T,TOTMED) 74
 (PR)(110) (T,TOTGOLD) (+) (T,TOTSILV) (T,GRANDTOT) 75
 (PR)(120) (T,GRANDTOT) (+) (T,TOTBRON) (T,GRANDTOT) 76
 (PR)(130) (T,TOTMED) (*) (D,100) (T,PCTTOT) 77
 (PR)(140) (T,PCTTOT) (/) (T,GRANDTOT) (T,PCTTOT) 78
 (PR)(150) (F,COLUMN) (TL) (L,NUMCNTY) (T,COUNTRY) 79

Figure E-9 Example 3: Fixed Format Request for Arrays (Page 2 of 2)
E–12 ASL Reference Guide

Conversion Examples

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5

-
T
Q
-

-
T
Q
-

-
T
Q
-

Example 4 Reformat Dates

Example 4 shows how easy it is to reformat data using ASL. This example
reformats dates.

■ Convert MMDDYY to YYMMDD.

■ Convert MMDDYY to MM/DD/YY.

■ Convert YYMMDD to MM/DD/YY.

Figure E-10 and Figure E-11 show the procedure and request, respectively.

 * PROC NAME - DATECONV *
 * INPUT STREAM PROCEDURE *

 DATECONV: PROC TYPE SUBROUTINE 1
 ;EXAMPLE OF DATE REFORMATTING 1
 ; 1
 YYMMDD: FIELD C 6 1
 MM_DD_YY: FIELD C 8 1
 ; 1
 ;Reformat MMDDYY to YYMMDD format 1
 COMBINE PF(MMDDYY 5 2) MMDDYY STORE T.YYMMDD 1
 ; 1
 ;Reformat overdefined MMDDYY (MONTH DAY YEAR) to MM/DD/YY 1
 COMBINE MONTH '/' DAY '/' YEAR STORE T.MM_DD_YY 2
 ; 2
 ;Reformat YYMMDD into MM/DD/YY 2
 COMBINE PF(YYMMDD 3 2) '/' PF(YYMMDD 5 2) '/' PF(YYMMDD 1 2) , 2
 STORE T.MM_DD_YY 2
 END PROC 2

Figure E-10 Example 4: ASL Procedure

 * REQUEST NAME - DATECONV *
 * INPUT STREAM REQUEST *

 STMT REPORT MAX SEL SUM VERT FORMS PAGE PAGE LINE REQ BACK BR RNT AB SEQUENCE LIS
 TYPE DATE REQUESTOR ID ITEMS CTL RPT SP CNTRL WDTH HGHT NOS? TYP SET NAME CONTROL TMP FM 73 TO 80 SE

 (ER) (S) 6
 COMMENT ***** ***** 7
 COMMENT ***** EXAMPLE OF DATE REFORMATTING ***** 8
 COMMENT ***** ***** 9

 STMT FIELD FIELD FLD DEC OUTPT EDIT INITIAL LINE 1 OF LINE 2 OF SEQUENCE LIS
 TYPE NAME LNGTH TYP PLC EDIT LGTH VALUE COLUMN HEADING COLUMN HEADING 73 TO 80 SE

 (TF) (DAYONLY) (2) (C) 10
 (TF) (YYMMDD) (6) (C) 11
 (TF) (MM_DD_YY) (8) (C) 12

 STMT SEQ LOG CONOPERAND-A..... OPER OPERAND-B............. RESULT...... PARTIAL FIELD SEQUENCE LIS
 TYPE NO. LEV CTR QLF FIELD SEG-LVL ATN QLF FIELD SEG-LVL (OR CONSTANT) QLF FIELD SEG-LVL STRT NUMB OPR 73 TO 80 SE

 (PR)(010) (MMDDYY) 01-1 (C0) (MMDDYY) 01-1 (T,YYMMDD) (5) (2) (A) 13
 (PR)(020) (R) (C, / /) (T,MM_DD_YY) 14
 (PR)(020) (R) (MONTH) 01-1 (T,MM_DD_YY) (1) (2) (C) 15
 (PR)(020) (R) (DAY) 01-1 (T,MM_DD_YY) (4) (2) (C) 16
 (PR)(020) (R) (YEAR) 01-1 (T,MM_DD_YY) (7) (2) (C) 17
 (PR)(030) (R) (YYMMDD) 01-1 (T,MM_DD_YY) (3) (2) (B) 18
 (PR)(030) (R) (YYMMDD) 01-1 (T,MM_DD_YY) (7) (2) (C) 19
 (PR)(030) (R) (C,/ /) (T,MM_DD_YY) (3) (4) (C) 20
 (PR)(030) (R) (YYMMDD) 01-1 (T,DAYONLY) (5) (2) (B) 21
 (PR)(030) (R) (T,DAYONLY) (T,MM_DD_YY) (4) (2) (C) 22

Figure E-11 Example 4: Fixed Format Request
Conversion Functions E–13

Conversion Table
Conversion Table
Note: Because there may not always be a one-to-one correspondence, the
relationships provided here are only approximate.

This appendix relates the fixed format VISION:Builder processing (PR) statement
operations to their approximate ASL command.

Operator Type
VISION:Builder
Operator ASL Command

Arithmetic +, -, *, / +, -, *, /

Array LA
LC, LD, LR

RELEASE
LOCATE

Character Scan SR, SL, SN SCAN

Conditional Branching NS, GS CASE
IF
ELSE
END

Connectors OR, AND Boolean Logical Operators
OR, AND, NOT

Data Access Control RD, RE, RG
RS
FS

FIND
RELEASE
FIND

Logic Levels 0 - 9 Conventional Algebraic
Notation

Loops and Back
Branches

DO UNTIL

WHILE
FOR
FORALL

END

Partial Field PF

Relational EQ
NE
LT
GT
GE
LE

EQ or =
NE or <>
LT or <
GT or >
GE or ≥
LE or ≤

Replacement R
Cn
SS
JL, JR

LET
COMBINE
REPLACE
LET with JUSTIFY
E–14 ASL Reference Guide

Conversion Table
Table TL, TN, TB, TS, TI LOOKUP

Temporary Field
Definition

TF FIELD

Unconditional
Branching

GO CALL
CONTINUE
GO
LEAVE
RETURN
TRANSFER

Validation CV, DV VALIDATE

Operator Type
VISION:Builder
Operator ASL Command
Conversion Functions E–15

Conversion Table
E–16 ASL Reference Guide

Chapter
Index
Symbols

- date delimiter, D-16

. date delimiter, D-17

Numerics

1-9 qualifier, A-3

A

A qualifier, A-3

ABEND, D-9

AINV setting, D-29

aliases, D-30

AMIS setting, D-29

arithmetic, A-3

arithmetic expressions, 2-6

ARRAY command, 3-3

arrays
ASTATUS, D-7
ROW flag, D-27

ASA carriage control, 5-56

ASL
description, 2-1, 2-12, 2-13, 2-14, 2-15, 2-16, 2-17,
2-22
examples, 7-1
implicit loops, 2-12
record processing, 2-17
segment processing, 2-17

set operation, 2-12
terminology, 2-2

ASTATUS flag, D-7

audit files, D-13
M4AUDIT, D-21

AVERAGE command, 5-3

B

B qualifier, A-3

Blank qualifier, A-3

books, 1-2
IBM Language Environment for MVS & VM
Programming Reference, 4-18
IBM Language Environment Reference Manual,
4-44
VISION:Workbench for DOS Reference Guide,
1-2

built-in functions, 4-4, 4-5, 4-6, 4-7, 4-8, 4-9, 4-10,
4-11, 4-13, 4-14, 4-15, 4-16, 4-17, A-5

conditional, 4-3
value, 4-4

C

CALL command, 4-1, 4-18, 4-20, 4-21, 4-23, 4-24,
4-27, 4-28, 4-29, 4-30, 4-35, 4-36, 4-38, 4-42, 4-43,
4-45, 4-46, 4-47, 4-49, 4-55, 4-56, 4-58

CALL statement
CEEDATE, 4-19
CEEDATM, 4-19
Index–1

CEEDAYS, 4-19
CEEDYWK, 4-19
CEEGMT, 4-19
CEEGMTO, 4-19
CEEISEC, 4-19
CEELOCT, 4-19
CEEQCEN, 4-19
CEESCEN, 4-19
CEESECI, 4-19
CEESECS, 4-19
CEEUTC, 4-19
MOD module-name, 4-19
MODULE module-name, 4-19
PROC procedure-name, 4-18
PROCEDURE procedure-name, 4-18
REP report-name, 4-18
REPORT report-name, 4-18
SUB subfile-name, 4-18
SUBFILE subfile-name, 4-18
USING parm..., 4-20

CALL statements
CSTATUS flag, D-12
RETURNCD flag, D-5

CASE command, 4-1, 4-22

CATALOG command, 3-4

CEEDATE, 4-19

CEEDATM, 4-19

CEEDAYS, 4-19

CEEDYWK, 4-19

CEEGMT, 4-19

CEEGMTO, 4-19

CEEISEC, 4-19

CEELOCT, 4-19

CEEQCEN, 4-19

CEESCEN, 4-19

CEESECI, 4-19

CEESECS, 4-19

CEEUTC, 4-19

Chained Coordination

additional keywords for, 3-23

character, A-2

character constants, 2-3

character date values, 4-19

CHECKPOINT command, 3-6

CHKP flag, D-9

CKPTID flag, D-9

CMS, 1-1, 1-2

COLLATE command, 3-8

COM command, 4-1

COMBINE command, 4-1, 4-23, 4-24, 4-27, 4-28,
4-29, 4-30, 4-35, 4-36, 4-38, 4-42, 4-43, 4-45, 4-46,
4-47, 4-49, 4-55, 4-56, 4-58

COMMAND flag, D-10

command group
Report, 5-1
Run Control, 3-1

commands, 4-1
alphabetic listing of all commands, A-6
CALL, 4-1
CASE, 4-1
COM, 4-1
COMBINE, 4-1
CONT, 4-1
CONTINUE, 4-1
DO, 4-1
ELSE, 4-1
END, 4-1
FIELD, 4-1
FLD, 4-1
GO, 4-1
IF, 4-1
LEAVE, 4-2
LET, 4-2
LOC, 4-2
LOCATE, 4-2
REL, 4-2
RELEASE, 4-2
REP, 4-2
REPLACE, 4-2
Index–2 ASL Reference Guide

RET, 4-2
RETURN, 4-2
TRANSFER, 4-2

comments, 2-6, A-3

COMPUTE command, 5-4

CONDCODE flag, D-11

conditional functions, A-4, A-5

constants, 2-3, 2-4, A-2

CONT command, 4-1

contacting Computer Associates, web page, 1-3

CONTINUE, 2-16

CONTINUE command, 4-1, 4-24

CONTROL command, 3-10

converting character timestamps, 4-19

converts number of seconds, 4-19

coordinated files
M4CORDn, D-21
RSTATUS flag, D-29

coordination, D-22

COPY command, 3-18

COUNT command, 5-7

CSTATUS flag, D-12

CUMULATE command, 5-8

D

DATA command, 5-9

database manager, D-10, D-16, D-23, D-25, D-30

DATE, D-12

dates
ISDATE, D-16
JULANX, D-17
JULIAN, D-17
LILIAN, D-17
TODAY, D-32
TODAYX, D-32

day of week, 4-19

DB2, 4-5

SQL flag, D-30

DEBUG command, 3-19

decimal, A-2

decimal constants, 2-4

Definition Processor, 1-1
VISION:Workbench for ISPF, 1-1

delete, D-2

DELETE flag, D-13

delimiters
dates, D-16, D-17

direct-read, D-29

DO command, 4-1, 4-25, 4-26, 4-27, 4-29

DOCUMENT command, 3-21

DOS, 1-1

dynamic
partial field specification, D-18, D-19, D-23, D-27,
D-28

dynamic report line modification
diagnostic messages, 5-65

E

E qualifier, A-3

ECORD flag, D-13, D-14, D-22

edit patterns, C-5

EGRP setting, D-29

ELSE command, 4-1, 4-30

END command, 4-1, 4-32, 5-12

EOF flag, D-11, D-15, D-29

examples, 7-1

EXTRACT command
four variations of, 6-1

EXTRACT DBDNAME command, 6-14

EXTRACT DDNAME command, 6-9

EXTRACT FILE command, 6-1, 6-2

EXTRACT TABLE command, 6-18
Index–3

F

F qualifier, A-3

FDNAME flag, D-16

FIELD command, 4-1, 4-33, 4-34

field names, 2-4, A-2, C-1

fields
result, 5-58, 5-60

FILE AUDIT command, 3-22

FILE CORDn command, 3-23

FILE flag, D-16

FILE MASTER command, 3-31, 3-41
rules, 3-31

FILE MASTER command variation
variation for in-memory only, 3-31
variation for input/update, 3-31
variation for output, 3-31

FILE REJECT command, 3-39

FILE REPn command, 3-40

FILE REPORT command, 3-41

FILE SUBFn command, 3-42

FILE TRAN command, 3-45

FILEID flag, D-16

files
audit, D-13, D-21

FIND function, 4-5, 4-6, 4-7

flags, D-2
ASTATUS, D-7
CHKP, D-9
CKPTID, D-9
COLUMN, D-9
COMMAND, D-10
CONDCODE, D-11
CSTATUS, D-12
DATE, D-12
DELETE, D-13
ECORD, D-13, D-14, D-22
EOF, D-15, D-29
FDNAME, D-16

FILE, D-16
FILEID, D-16
ISDATE, D-16
JULANX, D-17
JULIAN, D-17
LILIAN, D-17
LNUMBER, D-18
LSTART, D-18
LSTATUS, D-19
M4AUDIT, D-21
M4CORDn, D-21
M4NEW, D-21
M4OLD, D-21
M4REJECT, D-22
M4SUBFn, D-22
M4TRAN, D-22
MISSPASS, D-22
MNUMBER, D-23
MSTART, D-24
MSTATUS, D-25
OWN, D-25
PAGE, D-26
PASSWORD, D-26
RESTART, D-26
RETURNCD, D-12, D-26
RNUMBER, D-27
ROW, D-27
RSTART, D-28
RSTATUS, D-29
SEGNAME, D-30
SQL, D-30
SSCOUNT, D-30
STRAN, D-31
TIME, D-32
TODAY, D-32
TODAYX, D-32
TRAN, D-33
XTRAN, D-33

FLD command, 4-1

floating point, A-2

floating point constants, 2-4

FORMAT command, 5-13
Index–4 ASL Reference Guide

G

GDBI, 4-6

GO command, 4-1

GO TO command, 4-36

Greenwich Mean Time (date and time), 4-19

GROUP command, 5-26

GS statements, D-29

H

H qualifier, A-3

half-adjusting, 5-61

I

ICF, D-10

ICOLUMN flag, D-9

ID
checkpoint ID, D-9
CHPTID, D-9
FILEID, D-16

IF command, 4-1, 4-38

implicit loops, 2-12

INCLUDE command, 4-1, 4-40

Indexed Direct Coordination (ICF)
additional keywords for, 3-23

integer, A-2

integer constants, 2-3

ISDATE flag, D-16

ISPF, 1-1

ITEM command, 5-28

J

J qualifier, A-3

JULANX flag, D-17

JULIAN flag, D-17

K

K qualifier, A-3

KEQL setting, D-29

key field, D-33, D-34

keywords
DECIMALEDIT, 5-57, 5-62
NOCALC, 5-57
NOCALC POSnnn, 5-57, 5-62
NOSPACELINES, 5-56
number of occurrences, 5-64
override, 5-64
PERCENT, 5-57, 5-58
RATIO, 5-57, 5-60
ROUND, 5-57, 5-61, 5-62
SKIP c POSnnn, 5-56
SPACEAFTER, 5-56
SPACEBEFORE, 5-56
SUPPRESS SPACE, 5-57, 5-63
TITLE LINENO, 5-55, 5-62

KGTR setting, D-29

L

labels, 2-4

LEAVE, 2-16

LEAVE command, 4-2, 4-42

LET command, 4-2, 4-44, 4-45, 4-46

Lilian, 4-19

LILIAN flag, D-17

LINE command, 5-31

LINKAGE command, 3-47

list expressions, A-4

LISTCNTL command, 3-48

LISTLIB GLOSSARY command, 3-50

LISTLIB NAMES command, 3-51

LNUMBER flag, D-18

LOC command, 4-2

LOCATE command, 4-2, 4-48, 4-49
Index–5

LOCATE function, 4-7

Logical expressions, 2-7, 2-8

logical expressions, A-4

LOOKUP function, 4-8, 4-9, 4-10

LSTART flag, D-18

LSTATUS flag, D-19

M

M qualifier, A-3

M4AUDIT flag, D-21

M4CORDn flags, D-21

M4NEW, D-21

M4NEW flag, D-21

M4OLD flag, D-21

M4REJCT, D-22

M4REJECT flag, D-22

M4TRAN flag, D-22

mapping requests
PASSWORD, D-26

master files, D-31, D-33
M4NEW, D-21
M4OLD, D-21
MISSPASS, D-22
New, D-21
Old, D-21

MAX command, 5-34

MIN command, 5-35

MISSPASS flag, D-22

MNUMBER flag, D-23

MODULE keyword, 4-18

MODULE module-name, 4-19

MOSAIC, 4-6

MSTART flag, D-24

MSTATUS flag, D-25

MSUBFn flags, D-22

MULTILIB command, 3-52

MVS, 1-1

N

N qualifier, A-3

names, 2-4

NEWPAGE command, 5-36

NREC setting, D-29

NS statements, D-29

O

O qualifier, A-3

ORDER command, 5-37

output edit, C-9, C-10, C-11, C-12

OVERRIDE command, 3-53

overrides
keywords, 5-64

OWN flag, D-25

own-code
OWN flag, D-25

OWNCODE command, 3-54

P

PAGE flag, D-26

page layout, 2-11

Parallel Looping, 6-11, 6-20

partial fielding, D-14
dynamic, D-18, D-19, D-23, D-27, D-28
dynamic specification, D-27
errors, D-27
fixed point text, D-18, D-27
LNUMBER, D-18
MNUMBER, D-23
MSTART, D-24
RNUMBER, D-27
RSTART, D-28
standard specification, D-27
text processing, D-18, D-24, D-27, D-28
Index–6 ASL Reference Guide

PASSWORD flag, D-26

pattern, A-2

patterns, 2-4, C-4

PERCENT command, 5-38

PF function, 4-11

PINV, D-12

PMIS, D-12

PREFACE command, 5-40

PROC command, 4-2, 4-50

PROC procedure-name, 4-18

PROCEDURE procedure-name, 4-18

procedures/requests
type 1, D-13
type 2, D-13
type 3, D-13
type M, D-13
type N, D-13

Q

Q qualifier, A-3

qualifiers, 2-5, A-3, C-4
F flag, D-2

R

RATIO command, 5-41

record processing, 2-17

reject files, D-22

REL command, 4-2

relational
expressions, A-4

RELEASE command, 4-2, 4-55, 4-56

REP command, 4-2

REP report-name, 4-18

REPLACE, D-30

REPLACE command, 4-2, 4-57, 4-58

report block, 5-1

REPORT command, 5-42

Report command group, 5-1

REPORT report-name, 4-18

reports, D-16

request types, D-21, D-22, D-31
P preselection, D-9

request-read, D-29

requests
mapping, D-25
preselection, D-9

reserved words, C-1

RESTART flag, D-26

result field, 5-58

RET command, 4-2

RETRIEVE command, 3-55

retrieves current date, 4-19

retrieves current time, 4-19

return codes, D-26

RETURN command, 4-2, 4-59

RETURNCD flag, D-12, D-26

RIGN setting, D-29

RNUMBER flag, D-27

rounding, 5-61

ROUTE command, 3-57

ROW flag, D-27

RPCORDONLY, D-22

RSTART flag, D-28

RSTATUS flag, D-29

rules regarding statements allowed for various
types of runs, 3-2

Run Control command group, 3-1

S

SCAN function, 4-13, 4-14, 4-15

SECTION command, 5-50

segment names
Index–7

SEGNAME flag, D-30

segment processing, 2-17

segments, D-9, D-31
LSTATUS, D-19

SEGNAME flag, D-30

set operation, 2-12

setting the century window, 4-19

SIZE command, 5-51

SKIP command, 5-52

SPACEAFTER POSnnn x#, 5-64

SQL flag, D-30

SSCOUNT flag, D-30

Standard Coordination
additional keywords for, 3-23

statement labels, A-2

Statement syntax, 2-10

statement syntax, A-4

STRAN flag, D-31

SUBFILE subfile-name, 4-18

subfiles
M4SUBFn, D-22

suppress
blank lines, 5-56
spaces, 5-63

syntax of functions and commands, 2-10

system defined names, C-1

T

T qualifier, A-3

technical support, contacting Computer Associates,
1-3

terminology, 2-2

time, A-2

time constants, 2-4

TIME flag, D-32

timestamp, 4-19

TITLE command, 5-53

titles, D-26

TODAY flag, D-32

TODAYX flag, D-32

TOTAL command, 5-54

TRACK command, 3-59

TRAN flag, D-33

transaction file, D-33

transactions
M4TRAN file, D-22
STRAN flag, D-31

TRANSFER command, 4-2, 4-60

U

update-in-place, D-21

User Read files
additional keywords for, 3-23

USING parm..., 4-20

V

V qualifier, A-3

VALIDATE function, 4-16, 4-17

validation patterns, C-4

value functions, A-5

variable length fields, D-30

VISION:Builder, 1-1

VISION:Inform, 1-1

VISION:Two, 1-1

VISION:Workbench for DOS, 1-1

VISION:Workbench for ISPF, 1-1
aka Definition Processor, 1-1

VSE, 1-2

W

W qualifier, A-3
Index–8 ASL Reference Guide

web page
Computer Associates, 1-3

WORK command, 3-61

X

X qualifier, A-3

XREP command, 5-55

XTRAN flag, D-33
Index–9

	ASL Reference Guide
	Contents
	Chapter 1: Introduction
	Operating System and Environment Support
	In OS/390 and z/OS
	In CMS and VSE

	About This Book
	Contacting Computer Associates

	Chapter 2: Terminology, Syntax, and Processing
	ASL Terminology
	Syntax Terminology
	Spaces
	Continuation
	Constants
	Character Constants
	Integer Constants
	Decimal Constants
	Floating Point Constants
	Time Constants
	Patterns

	Names
	Qualifiers
	Names with Special Characters

	Comments
	Arithmetic Expressions
	Logical Expressions
	Conditional Functions
	Relational Expressions
	List Expression
	Boolean Logical Operators

	Statement Syntax
	Page Layout
	The Nature of ASL
	Implicit Loops and Set Operation
	Controlling the Processing of Repeated Segments
	Record and Segment Processing
	The Distinction Between Records and Segments
	Automatic Navigation
	Application-Controlled Navigation

	ASL Code Examples and Usage
	Combining ASL with Traditional Syntax Coding

	Use of ASL Prior to VISION:Builder 14.0
	Capturing the Equivalent Fixed-Syntax Statements

	Chapter 3: Run Control Command Group
	ARRAY Command
	CATALOG Command
	CHECKPOINT Command
	COLLATE Command
	CONTROL Command
	COPY Command
	DEBUG Command
	DOCUMENT Command
	FILE AUDIT Command
	FILE CORDn Command
	FILE MASTER Command
	FILE REJECT Command
	FILE REPn Command
	FILE REPORT Command
	FILE SUBFn Command
	FILE TRAN Command
	LINKAGE Command
	LISTCNTL Command
	LISTLIB GLOSSARY Command
	LISTLIB NAMES Command
	MULTILIB Command
	OVERRIDE Command
	OWNCODE Command
	RETRIEVE Command
	ROUTE Command
	TRACK Command
	WORK Command

	Chapter 4: Procedural Command Group
	Built-In Functions
	Value Functions and Conditional Functions
	Specifying Functions
	Types of Built-In Functions
	Conditional Functions
	Value Functions

	FIND Function (Conditional)
	LOCATE Function (Conditional)
	LOOKUP Function (Value)
	PF Function (Value)
	SCAN Function (Conditional)
	VALIDATE Function (Conditional)

	CALL Command
	CASE Command
	COMBINE Command
	CONTINUE Command
	DO Command
	ELSE Command
	END Command
	FIELD Command
	GO TO Command
	IF Command
	INCLUDE Command
	LEAVE Command
	LET Command
	LOCATE Command
	PROC Command
	RELEASE Command
	REPLACE Command
	RETURN Command
	TRANSFER Command

	Chapter 5: Report Command Group
	AVERAGE Command
	COMPUTE Command
	COUNT Command
	CUMULATE Command
	DATA Command
	END Command
	FORMAT Command
	GROUP Command
	ITEM Command
	LINE Command
	MAX Command
	MIN Command
	NEWPAGE Command
	ORDER Command
	PERCENT Command
	PREFACE Command
	RATIO Command
	REPORT Command
	SECTION Command
	SIZE Command
	SKIP Command
	TITLE Command
	TOTAL Command
	XREP Command
	XREP [LINE] 'text'

	Diagnostic Messages

	Chapter 6: Subfile Output Command Group
	EXTRACT FILE Command
	EXTRACT DDNAME Command
	EXTRACT DBDNAME Command
	EXTRACT TABLE Command

	Chapter 7: ASL Examples
	Appendix A: ASL Quick Reference
	Terminology
	References
	Constants
	Names
	Qualifiers
	Comments
	Arithmetic Expressions
	Logical Expressions
	Statement Syntax
	Continuation
	Built-In Functions
	Conditional Functions
	Value Functions

	Commands

	Appendix B: Relationship of ASL Statements to Fixed-Format-Syntax Statements
	Appendix C: Technical Notes
	Reserved Words
	Qualifiers
	Patterns
	Validation Patterns
	Edit Patterns
	Character String Data
	Numeric Data (Packed, Zoned, and Fixed Point Binary Only)
	Rules for Edit Patterns

	Output Edit
	Commas
	Standard Notation
	Floating/Edit Suppress
	Float (Floating-Edit-Char)
	Fill (Fill-Edit-Char)
	Trail (Trailing-Edit-Char)
	Edlen (Edit-Length)

	Valid Field Types and Default Field Lengths

	Appendix D: Flags
	ASTATUS Flag
	CHKP Flag (IMS Only)
	CKPTID Flag (IMS Only)
	COLUMN Flag
	COMMAND Flag (GDBI Only)
	CONDCODE Flag
	CSTATUS Flag
	DATE Flag
	DELETE Flag (VISION:Builder 4000 Model Series Only)
	ECORD Flag
	EOF Flag
	FDNAME Flag (GDBI Only)
	FILE Flag (GDBI Only)
	FILEID Flag (GDBI Only)
	ISDATE Flag
	JULANX Flag
	JULIAN Flag
	LILIAN Flag
	LNUMBER FLAG
	LSTART Flag
	LSTATUS Flag
	M4AUDIT Flag (VISION:Builder 4000 Model Series Only)
	M4CORDn (n=1 to 9) Flags
	M4NEW Flag (VISION:Builder 4000 Model Series Only)
	M4OLD Flag
	M4REJECT Flag (VISION:Builder 4000 Model Series Only)
	M4SUBFn (n= 0 to 9) Flags
	M4TRAN Flag (VISION:Builder 4000 Model Series Only)
	MISSPASS Flag
	MNUMBER Flag
	MODE Flag (GDBI Only)
	MSTART Flag
	MSTATUS Flag (GDBI Only)
	OWN Flag
	PAGE Flag
	PASSWORD Flag (GDBI Only)
	RESTART Flag (IMS Only)
	RETURNCD Flag
	RNUMBER Flag
	ROW Flag
	RSTART Flag
	RSTATUS Flag
	SEGNAME Flag (GDBI Only)
	SQL Flag (DB2 Only)
	SSCOUNT Flag
	STRAN Flag (VISION:Builder 4000 Model Series Only)
	TIME Flag
	TODAY Flag �
	TODAYX Flag
	TRAN Flag (VISION:Builder 4000 Model Series Only)
	XTRAN Flag (VISION:Builder 4000 Model Series Only)

	Appendix E: Conversion Functions
	Why ASL?
	Defining ASL Procedures
	Tips and Techniques
	ASL Syntax and Terminology

	Conversion Examples
	Conversion Table

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

