
STROBE MVS
STROBE Java Feature

Release 3.0

ii STROBE Java Feature

This docum

Copyright 2
Copyright L

U.S. GOVER
restrictions
227.7202-1(
FAR 52.227-

This produc
disclosure, o
Corporation
conditions o

STROBE, iST

AD/Cycle, B
Mall, Visual
a registered
of Microsoft
RUMBA is a
Inc. Java an
countries, o

Adobe ® Acr
Adobe and A

All other co

Doc. CWSTUJ3A

February 13, 20
Please direct questions about STROBE MVS
or comments on this document to:

STROBE MVS Technical Support
Compuware Corporation
124 Mount Auburn Street

Cambridge MA 02138-5758
1-800-585-2802 or

1-617-661-3020
1-617-498-4010 (fax)

strobe-sup@compuware.com

Outside the USA and Canada, please contact
your local Compuware office or agent.
ent and the product referenced in it are subject to the following legends:

002 Compuware Corporation. All rights reserved. Unpublished rights reserved under the
aws of the United States.

NMENT RIGHTS-Use, duplication, or disclosure by the U.S. Government is subject to
as set forth in Compuware Corporation license agreement and as provided in DFARS
a) and 227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (OCT 1988), FAR 12.212(a) (1995),
19, or FAR 52.227-14 (ALT III), as applicable. Compuware Corporation.

t contains confidential information and trade secrets of Compuware Corporation. Use,
r reproduction is prohibited without the prior express written permission of Compuware
. Access is limited to authorized users. Use of this product is subject to the terms and
f the user's License Agreement with Compuware Corporation.

ROBE, and APMpower are trademarks or registered trademarks of Compuware Corporation.

ookManager, CICS, DB2, IBM, IMS/ESA, Language Environment, MQSeries, OS/2, Software
Gen, and VTAM are trademarks of International Business Machines Corporation. Microsoft is
trademark of Microsoft Corporation. Windows, Windows NT, and Windows 98 are trademarks
 Corporation. Attachmate and EXTRA! are registered trademarks of Attachmate Corporation.
registered trademark of Wall Data Inc. WRQ and Reflection are registered trademarks of WRQ,
d Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
r both.

obat ® Reader copyright © 1987-2001 Adobe Systems Incorporated. All rights reserved.
crobat are trademarks of Adobe Systems Incorporated.

mpany and product names are trademarks or registered trademarks of their respective owners.

03.

iii

Contents
Figures . v

Introduction . ix
How This Manual Is Organized . ix
How to Use This Manual . ix
The STROBE Library . ix

STROBE Feature Manuals . x
Online Documentation . x

Online Help . x
Other Compuware Application Performance Management Productsxi

iSTROBE. .xi
SQL Analysis Feature .xi
APMpower .xi

Compuware APM Technical Support .xi
Compuware APM Training. .xi
Compuware APM Service Offerings . xii

APM Installation Assurance . xii
Application Performance Management Consulting xii
Application Performance Assessment . xii

Chapter 1. Overview . 1-1
Benefits of the STROBE Java Feature .1-1
Concepts and Terminology .1-2
Overview of the JVM Java Target Environment. .1-3

Measuring JVM and CICS Applications. .1-4
Measuring JVM and DB2 Applications .1-4

Overview of the HPJ Java Target Environment .1-5
Where to Find More Information. .1-6

Chapter 2. Using the STROBE Java Feature . 2-1
Requirements for the STROBE Java Feature .2-1

JVM Java Requirements .2-1
HPJ Java Requirements .2-1

Measuring the Application .2-2
Measuring an Active Job .2-2
Measuring a Job That is not yet Executing .2-2
Configuring Java Data Collection .2-3
Java Targeting and Reporting .2-4

Using Java Targeting .2-4
Targeting JVM Java Code for Measurement .2-5

Specifying Target Information. .2-5
Using the STROBE Java Target Selector .2-6

Creating a Performance Profile. .2-8
Controlling the Level of Detail in the Reports .2-8
Tailoring the STROBE HPJ Java Feature Reports .2-8

Chapter 3. Analyzing a HPJ Java Performance Profile . 3-1
Finding Significant Activity in the Java Application .3-1

Java Class Summary Report. .3-1
Attribution of CPU Execution Time Report .3-3

iv STROBE Java Feature
Chapter 4. Analyzing a JVM Java Performance Profile . 4-1
Measurement Session Data Report . 4-1

Java Targeting Information Report . 4-2
Java Environment Report . 4-3

Java CPU Reports. 4-3
Java CPU Usage by Called Method Summary Report 4-3
Java CPU Usage by Called Method Report. 4-4
The iSTROBE Java Activity by Called Method Report 4-7
Java CPU by Executing Method Report . 4-8

Java Wait Time Reports . 4-10
Java Wait Time by Called Method Summary Report. 4-10

Java Wait Time by Called Method Report . 4-11
Java Wait Time by Method Report . 4-12
Program Section Usage Summary Report. 4-13
Program Usage by Procedure Report . 4-15

Attribution Reports . 4-15
Attribution of CPU Execution Time Report 4-15
Attribution of CPU Wait Time Report . 4-16

Index . I-1

v

Figures

1-1. Overview of STROBE Tasks ...1-3
1-2. Java Virtual Machine Architecture ...1-4
1-3. Overview of Java Execution in a CICS TS 1.3 Environment....................................1-5
2-1. STROBE - DATA COLLECTORS Panel...2-3
2-2. STROBE - JAVA TARGETING Panel ..2-5
2-3. STROBE - JAVA TARGETING EXTENDED EDIT Panel ...2-6
2-4. STROBE - JAVA TARGETING LIST Panel ..2-7
2-5. STROBE - TAILOR REPORTS Panel ...2-9
3-1. Java Class Summary Report ..3-2
3-2. CPU Usage by Java Method Report ..3-3
3-3. Attribution of CPU Execution Time Report ...3-4
4-1. Measurement Session Data Report ...4-2
4-2. Java Targeting Information Report...4-2
4-3. Java Environment Report ...4-3
4-4. Java CPU Usage by Called Method Summary Report ..4-4
4-5. Java CPU Usage by Called Method Report ...4-5
4-6. iSTROBE Java Activity by Called Method Report...4-7
4-7. iSTROBE Java Call Stacks Report ..4-8
4-8. Java CPU By Executing Method Report..4-9
4-9. Java Wait Time by Called Method Summary Report ...4-10

4-10. Java Wait Time by Called Method Report..4-11
4-11. Java Wait Time by Method Report ...4-12
4-12. Program Section Usage Summary Report ...4-13
4-13. Program Usage by Procedure Report ..4-15
4-14. Attribution of CPU Execution Time Report ...4-16
4-15. Attribution of CPU Wait Time Report..4-16

vi STROBE Java Feature

vii
Summary of Changes Sum_Chgs

This section lists the changes to the Java Feature for STROBE MVS for Sysplex Release 3.0.

Changes to the Feature
In addition to supporting measurement of High Performance Java (HPJ) applications,
STROBE now supports measurement of applications running under the Java Virtual
Machine Version 1.3.1. CICS Transaction Server 2.2 is supported along with the
measurement of both JDBC (dynamic) and SQLJ (static) DB2 applications. The following
lists the changes to the STROBE Java Feature that enable you to measure and analyze JVM
applications:

• New ISPF panels that allow you to specify Java targeting information. You can either
identify the targets yourself, or you can use the STROBE Java targeting selector that
lists the contents of the Java applications and then you can pick what you want to
target.

• New summary reports that show CPU and wait time data for Java applications.

• New “called method” reports that show CPU and wait time Java call stack data for
either the initial application method or the user-targeted method.

• New “executing method” reports that show CPU and wait time for the method
STROBE found running when it took a sample. These reports distinguish between
code that has been interpreted or that was processed by the Just-In-Time (JIT)
compiler.

• New targeting and environment reports that show targeting data and JVM profile
information.

Changes to the Manual
The following changes have been made to this manual as a result of JVM support:

• Chapter 1

– Overview section describing the JVM environment and its interface with CICS
regions and DB2 applications.

• Chapter 2

– New JVM Java targeting ISPF panel descriptions and examples and a section
describing how targeting application methods for measurement impacts the
Performance Profile report contents.

• Chapter 3

– Descriptions and examples of HPJ reports.

• Chapter 4 (new)

– Descriptions and examples of JVM reports, including a description of the benefits
of using iSTROBE to analyze JVM application measurement data.

viii STROBE Java Feature

ix
Introduction I nt ro

This manual describes measurement concepts applicable to and specific data made
available by the STROBE Java Feature of the STROBE MVS Application Performance
Measurement System. The STROBE Java Feature augments functions provided by the
basic STROBE system.

The STROBE Application Performance Measurement System and the STROBE Java Feature
are products designed for IBM MVS/ESA, IBM OS/390, and IBM z/OS systems. The
STROBE Java Feature is designed for use with applications built with IBM’s High
Performance Java (HPJ) compiler packaged with VisualAge for Java for the OS/390 and
the Java Virtual Machine (JVM) Version 1.3.1.

How This Manual Is Organized
Chapter 1, “Overview” presents an overview of the STROBE Java Feature and how it
interacts with the Java operating environments.

Chapter 2, “Using the STROBE Java Feature” explains how to use the STROBE Java
Feature.

Chapter 3, “Analyzing a HPJ Java Performance Profile” describes the Performance Profile
reports for a HPJ Java program.

Chapter 4, “Analyzing a JVM Java Performance Profile” describes the Performance Profile
reports for a JVM Java program.

How to Use This Manual
You should read Chapter 1, “Overview” and Chapter 2, “Using the STROBE Java Feature”
before submitting a measurement request. To interpret a STROBE Performance Profile for
HPJ Java applications, read Chapter 3, “Analyzing a HPJ Java Performance Profile”. To
interpret a STROBE Performance Profile for JVM Java applications, read Chapter 4,
“Analyzing a JVM Performance Profile”.

The STROBE Library
The STROBE base product manuals include:

• STROBE MVS Concepts and Facilities, document number CWSTGX3A

STROBE MVS Concepts and Facilities explains how to decide which programs and online
regions to measure, when to measure them, and how to interpret the reports in the
STROBE Performance Profile.

• STROBE MVS Messages, document number CWSTXM3A

STROBE MVS Messages lists all messages and abnormal termination (ABEND) codes,
describes how to interpret them, and in many cases suggests a corrective action.

• STROBE MVS System Programmer’s Guide, document number CWSTXI3A

The STROBE MVS System Programmer’s Guide explains how to install and maintain
STROBE.

x STROBE Java Feature
• STROBE MVS User’s Guide, document number CWSTUX3A and the STROBE MVS User’s
Guide with Advanced Session Management, document number CWSTUA3A

The STROBE MVS User’s Guide explains how to use STROBE to measure application
performance. The STROBE MVS User’s Guide with Advanced Session Management explains
how to use STROBE with the STROBE Advanced Session Management Feature to
measure application performance. Users who have the STROBE Advanced Session
Management Feature will use this manual rather than the STROBE MVS User’s Guide.

• STROBE MVS Application Performance Measurement System Quick Reference

The STROBE MVS Application Performance Measurement System Quick Reference is a
convenient reference for how to use STROBE and for interpreting the STROBE
Performance Profile.

STROBE Feature Manuals

These manuals describe the optional features of the STROBE MVS Application
Performance Measurement System. Each manual describes measurement concepts
applicable to and specific data made available by the feature.

• STROBE MVS User’s Guide with Advanced Session Management, document number
CWSTUA3A

• STROBE ADABAS/NATURAL Feature, document number CWSTUN3A

• STROBE CA-IDMS Feature, document number CWSTUR3A

• STROBE CICS Feature, document number CWSTUC3A

• STROBE COOL:Gen Feature, document number CWSTUG3A

• STROBE CSP Feature, document number CWSTUP3A

• STROBE DB2 Feature, document number CWSTUD3A

• STROBE IMS Feature, document number CWSTUI3A

• STROBE Interface Feature, document number CWSTUF3A

• STROBE Java Feature, document number CWSTUJ3A

• STROBE MQSeries Feature, document number CWSTUM3A

• STROBE UNIX System Services Feature, document number CWSTUU3A

Online Documentation

STROBE manuals are available in HTML, Adobe Acrobat PDF format, and IBM
BookManager format, on CD-ROM and at Compuware’s technical support Web site at
http://frontline.compuware.com.

Online Help
STROBE products provide the following online information:

• STROBE/ISPF Online Tutorials, Option T from the STROBE/ISPF STROBE OPTIONS
menu

• STROBE/ISPF Online Message Facility, Option M from the STROBE/ISPF STROBE
OPTIONS menu

Introduction xi
Other Compuware Application Performance
Management Products

The following products and features work in conjunction with STROBE MVS Application
Performance Measurement System. These tools extend the benefits of application
performance management (APM).

iSTROBE

iSTROBE enables you to view and analyze STROBE Performance Profile data on a
workstation using a standard Web browser. Easy to install and easy to use, iSTROBE
guides you through the performance analysis process and offers recommendations for
improving performance. iSTROBE simplifies the performance analysis of applications
that you measure with STROBE. For more information on iSTROBE, see the iSTROBE
Getting Started Guide.

SQL Analysis Feature

The SQL Analysis Feature works in conjunction with STROBE and iSTROBE or APMpower
to supply access path analyses and database and SQL coding recommendations for DB2
applications measured by STROBE. The SQL Analysis Feature pinpoints the most
resource-consumptive static or dynamic SQL statements, explains why these statements
might be inefficient, and provides recommendations to improve the performance of the
DB2 application. For more information on the SQL Analysis Feature, see the STROBE MVS
User’s Guide or the STROBE MVS User’s Guide with Advanced Session Management.

APMpower

The APMpower Application Performance Analysis System extends the benefits of STROBE
to application developers who use workstations to develop, test, and maintain MVS
applications. Developers employ the APMpower graphical user interface and advanced
analytical aids to navigate the Performance Profile, analyze and improve application
performance, and share performance knowledge across the IS organization. For more
information about APMpower, see the APMpower documentation.

Compuware APM Technical Support
For North American customers, for technical support, please contact the Technical
Support department by telephone at (800) 585-2802 or (617) 661-3020, by fax at (617)
498-4010, or by e-mail at strobe-sup@compuware.com.

To access online technical support, visit Compuware’s FrontLine page on the World Wide
Web at http://frontline.compuware.com and select the product “STROBE and
APMpower.”

For other international customers, please contact your local Compuware office or
STROBE supplier.

Compuware APM Training
Compuware’s Education Resources Group offers a range of training options for
organizations that use STROBE, iSTROBE, and APMpower. To arrange Application
Performance Management training, please contact Compuware at 1-800-835-3190 or visit
Compuware’s Education Resources Group at http://www.compuware.com/training

xii STROBE Java Feature
For other international customers, please contact your local Compuware office or
STROBE supplier for a complete list of APM Training offerings.

Compuware APM Service Offerings
For North American customers, for information about current service offerings, please
contact your local Compuware sales office or call Compuware Corporate Headquarters at
1-800-COMPUWARE (266-7892) or visit Compuware’s APM Product page on the World
Wide Web at http://www.compuware.com/products/strobe.

For other international customers, please contact your local Compuware office or
STROBE supplier for a complete list of Services offerings.

APM Installation Assurance

The APM Installation Assurance service assists you in planning for, installing,
customizing and using APM products. The service will help you maximize the value and
benefits derived from the APM product family.

Consulting engineers work closely with your IT personnel to understand your operating
environment and your organization’s APM goals. The engineer will assist you in
developing a customization and installation plan for STROBE, iSTROBE, and APMpower.
The engineer will oversee the installation process and verify product readiness. The
engineer will also help set up measurement request schedules, request groups, history
records, AutoSTROBE measurement requests, and will verify the installation of the SQL
Analysis Feature.

With APM Installation Assurance services, your organization can immediately maximize
the value received from your investment in the APM product family. You will also benefit
from a fully customized installation that will enhance the product functionality and
increase the automation aspects of your APM initiatives.

Application Performance Management Consulting

The Application Performance Management (APM) Consulting services assist you in
identifying and resolving specific performance problems in your OS/390 business-critical
applications.

Using STROBE, iSTROBE, and APMpower, consulting engineers work closely with your IT
personnel to measure an application's performance, identify performance improvement
opportunities and make recommendations for implementing solutions.

With APM Consulting services, your organization cannot only resolve problems quickly
and effectively, but also gain the skills necessary to prevent application performance
degradation in the future.

Application Performance Assessment

The Application Performance Assessment (APA) service assists you in achieving a higher
level of performance for your OS/390 business-critical applications.

Using STROBE, iSTROBE, and APMpower, consulting engineers work closely with your IT
personnel to evaluate the efficiency of business-critical applications, identify
opportunities for improving performance and document the potential savings that can
result from implementing recommended solutions.

With APA services, you cannot only improve application performance quickly and
effectively, but also gain the knowledge and skills necessary to implement and sustain a
process-oriented application performance management (APM) program.

1-1

Chapter 1.

1Overview Chap 1

The STROBE MVS Application Performance Measurement System is a product that
determines where and how time is spent in online regions and batch processing
programs. You can produce a collection of reports with STROBE that helps you determine
how to revise applications to improve their performance.

The STROBE Java Feature provides detailed performance information when measuring:

• Java class files executing under JVM program objects running in a batch OMVS
system, or in a CICS Transaction Server 2.2. and higher environment. To obtain JVM
measurement data, installation of the STROBE UNIX System Services Feature is a
requirement. To obtain Java measurement data for a CICS environment, the STROBE
CICS Feature is a requirement.

• HPJ program objects running in a batch OMVS system, or in a CICS Transaction
Server 1.3 and higher environment. These applications are built with IBM’s High
Performance Java compiler packaged with IBM’s VisualAge for Java for the OS/390
operating system.

This chapter describes the benefits of the STROBE Java Feature, outlines concepts and
terminology of the Feature, and provides an overview of the Java environment.

Benefits of the STROBE Java Feature
The STROBE Java Feature collects application performance information as the application
executes. When measurement completes, STROBE organizes this information into the
STROBE Performance Profile, a series of reports that show where and how time is spent
during application execution, pinpointing possible areas for performance improvement.
In the JVM Environment, The Performance Profile provides:

• a summary of the CLASSPATH information pertaining to the JVM environment that
STROBE measures

• a summary of execution and wait activity at the method level

• execution and wait information for the executing method as far STROBE can trace
back the original invoker and all calls made immediately as a result of the call by the
original invoker

• execution and wait information for the method or service routine activity that was
processing at the time STROBE took a measurement sample.

• CPU and wait attribution report with Java information.

• Program Section Usage Summary and Program Usage by Procedure reports with Java
data.

• wait attribution for the OMVS and BPXBATCH environments

• In a CICS region, the STROBE CICS Feature Transaction Profiling reports show Java
execution and wait delay information.

In the HPJ Environment, The Performance Profile provides

• a summary of CPU use in Java classes

1-2 STROBE Java Feature
• execution and attribution activity specified by offset within Java modules, classes, or
methods

• the Java module, class, method and return address that invoked a system service
routine

• wait attribution for BPXBATCH environment

The STROBE Java Feature helps you to measure, analyze, and improve the performance of
Java programs by providing detailed performance information for Java programs that run
in batch environments, that run in a CICS Transaction Server 1.3 and higher
environment and in a OS/390 UNIX System Services environment. This enables you to
develop and maintain more efficient and responsive applications throughout the
application life cycle.

The next section discusses key concepts and terms that are central to the use of the
STROBE Java Feature.

Concepts and Terminology
Before using the STROBE Java Feature, it is helpful to become familiar with the basic
concepts and terminology specific to STROBE and the STROBE Java Feature. The
following sections introduce you to these concepts and terms.

A measurement request specifies the parameters for measuring the performance of an
application. When the application is active, STROBE begins a measurement session, an
interval where it collects performance data about the application while it is executing.
STROBE stores measurement data in a sample data set, a file that contains the information
collected during a single measurement session. Each measurement session corresponds to
one sample data set.

After STROBE closes the sample data set, you can use it to create the Performance Profile, a
hierarchical series of reports that present the performance data collected during a
measurement session. These reports show where and how the application spends its time
during execution.

Attribution identifies the methods that invoke service routines causing CPU time. Review
the Attribution of CPU Execution Time report when Java methods are responsible for
significant CPU use.

Overview 1-3
Figure 1-1. Overview of STROBE Tasks

The STROBE Java Feature provides specific information on the Java programs that it
measures. Java is an object-oriented programming language. In object-oriented
programming, objects represent data. Objects have two sections, fields (instance variables)
and methods. A field determines what an object is. A method determines what an object
does. A Java class is a collection of fields and methods that encapsulate functionality into
a reusable and dynamically loadable object.

STROBE provides information that enables you to identify a Java program’s resource
consumption in a class and, within the class, in a method.

Overview of the JVM Java Target Environment
The Java Virtual Machine is the runtime instance in which a Java application executes.
When the Java bytecode is compiled, it can execute on the Java Virtual Machine (JVM).
The JVM defines a set of specifications that enable Java programs to run on virtually any
platform.

Figure 1-2 shows an example of the Java Virtual Machine and the process that takes place
from source code to execution. The first part of the process is the compilation of the Java
source code to Java bytecode. Then the JVM starts and takes the name of the class for the
.class file. It is then loaded by the class loader which processes the bytecode stream and
sends it to the byte code verifier.

1-4 STROBE Java Feature
The structure and the bytecode validity is checked and if it is in order, it is sent on to
either the JIT compiler or the Java interpreter. The JIT compiler will compile the byte
code to machine code and the method, when invoked, will be executing machine code. If
the interpreter receives the byte code, it executes the code, and it is is either processed by
the hardware or trapped by the operating system and indirectly executed.

Measuring JVM and CICS Applications

If the JVM is running in a CICS region, it has been optimized for the execution of CICS
transactions. CICS manages a pool of JVMs. A JVM may be in use or available for reuse.
Characteristics of the JVM are specified in JVM profiles that are defined for a CICS region.
The profile contains pertinent information, including the name of the JVM properties
file. See the IBM CICS Transaction Server for z/OS: Java Applications in CICS documentation
for more information about CICS and the JVM.

Measuring JVM and DB2 Applications

A JVM Java program can access DB2 through the JDBC and SQLJ application
programming interfaces (APIs). The JDBC API provides an interface for Java programs to
process relational data, but only for dynamic SQL. If the SQL uses static execution, the
SQLJ API is used. See the IBM documentation covering the JDBC and SQLJ APIs for
information about Java and the DB2 environment.

Figure 1-2. Java Virtual Machine Architecture

Hardware

Operating System

Class Loader
Bytecode
Verifier

Java
Bytecode
(.class)

Java
Compiler

Java
Source
(.java)

Java
Interpreter

Just In Time
Compiler

Runtime System

Java
Virtual

Machine

Java Class
Libraries

Compile-time Environment

Runtime Environment
(Java Platform)

Overview 1-5
Overview of the HPJ Java Target Environment
STROBE also supports measurement of Java applications built with IBM’s high
performance Java compiler running in a CICS Transaction Server 1.3 and higher
environment on OS/390. To create these Java applications, the Java compiler creates
bytecode from Java source code.

The Java bytecode is further bound and compiled by IBM’s high performance Java
compiler to produce a High Performance Java program object, which can be an
executable or a DLL. The High Performance Java executable or DLL executes in a CICS TS
1.3 region. With STROBE you can measure the Java program when it is executed by a
CICS transaction.

In the OS/390 environment, IBM’s High Performance Java compiler statically compiles
Java bytecode directly into native (object) code. Unlike just-in-time (JIT) compilers used
by Java Virtual Machines, this OS/390 static compilation occurs only once, before
execution time. Since it compiles only once, the amount of optimization the compiler
can perform is greater than that with the JIT compiler.

The high performance Java compiler can use resource-intensive optimization techniques
such as dataflow analysis and interprocedural optimization of IBM’s common XL and
OS/390 C/C++ compiler family. This compiler fully binds the code in an executable or
dynamic link library (DLL) in a partitioned data set extended (PDSE) that can be run
under the CICS Transaction Server for the OS/390. This enables you to write your
enterprise’s CICS applications in Java and optimize code performance on the server.

Figure 1-3. Overview of Java Execution in a CICS TS 1.3 Environment

Java
Source
(.java)

Java compiler

HPJ
Executable
or DLL
on a PDSE

CICS
Region
(CTS 1.3)

High Performance
Java Compiler

HPJ
Object
(.o)

OS/390
(V2R5 or higher)

Java Program

invoked by a

CICS
Transaction

Java Java bytecode bytecode
(.class)(.class)

1-6 STROBE Java Feature
Where to Find More Information
You can find detailed instructions for submitting and managing measurement requests
and creating Performance Profiles in the STROBE/ISPF online Tutorial and in Chapter 2 of
the STROBE MVS User’s Guide or in Chapter 2 of the STROBE MVS User’s Guide with Advanced
Session Management. For more information on interpreting reports in the Performance
Profile, see STROBE MVS Concepts and Facilities.

2-1

Chapter 2.

2Using the STROBE Java Feature Chap 2

Using STROBE to measure a Java application differs depending on it is running in a JVM
environment or the HPJ applications. For JVM, this chapter explains the following types
of support for measurement with STROBE Java Feature:

• JVM Java program running in running an OMVS batch environment

• JVM Java program executed by CICS transactions running in a CICS environment

• JVM Java program calling DB2 databases using the JDBC and JSQL interfaces.

For HPJ, the chapter explains using STROBE to measure a HPJ Java program executed by
CICS transactions in a CICS environment.

Requirements for the STROBE Java Feature
Depending on whether you are using STROBE to measure HPJ Java applications or Java
applications written using Java JVM, there are certain requirements that must be met
before you can measure and produce a STROBE Performance Profile.

JVM Java Requirements

When you measuring applications running under the JVM environment, you must have:

• Java Virtual Machine Version 1.3.1

• STROBE UNIX System Services Feature

• To measure Java programs in a CICS environment, you must have the STROBE CICS
Feature installed.

• To obtain data reflecting SQL and Java in the JVM Performance Profile reports, you
must have the STROBE DB2 Feature installed.

HPJ Java Requirements

To measure HPJ applications, the Feature requires that you build the Java program with
IBM’s High Performance Java compiler packaged with IBM’s VisualAge for Java for
OS/390. When you compile Java source code for CICS, you include the Java class files
that are output from the Java compiler in the CLASSPATH.

To measure a Java application with the STROBE Java Feature, you must also do the
following:

• Compile with the binder option EDIT=YES (the default) of the High Performance Java
compiler to ensure that control section information is complete.

Do not specify the COMPRESS option of the High Performance Java compiler.

2-2 STROBE Java Feature
Measuring the Application
You use the same procedures to submit STROBE requests regardless of whether you are
measuring a JVM or HPJ application. This section explains submitting a request to
measure a job as it executes or to measure a job that has not yet executed.

Measuring an Active Job

To measure an active job or online region, select Option 1 (ADD ACTIVE) from the
STROBE OPTIONS menu. Complete the following information on the STROBE - ADD
ACTIVE panel:

1. Specify the target system in the SYSTEM field or clear this field to select from a list of
systems.

2. Specify the target job name in the JOBNAME field or clear this field to select from a
list of active jobs.

3. Configure the measurement session by specifying

– how long you want to measure the job in the SESSION DURATION field
– how many performance samples you want STROBE to take in the TARGET

SAMPLE SIZE field
– the TSO user ID for STROBE to notify when the request is complete in the TSO

USER ID TO NOTIFY field

4. Specify the sample data set information in the SAMPLE DATA SET INFORMATION
fields.

5. Specify any additional measurement options by entering “Y” in the corresponding
field and then pressing Enter. You can

– specify special data collectors
– specify additional module mapping facilities
– add session management parameters
– request a retention time frame
– specify Java targeting information

STROBE displays the selected panels. When you press Enter on the last panel,
STROBE submits the measurement request. See the STROBE MVS User’s Guide or the
STROBE MVS User’s Guide with Advanced Session Management for more information on
these measurement options.

6. Press Enter to submit the request.

Measuring a Job That is not yet Executing

To add a measurement request for a job that is not yet executing, select Option 2 (ADD
QUEUED) from the STROBE OPTIONS menu. Complete the following information in the
STROBE - ADD QUEUED REQUEST panel:

1. Specify the target job name in the JOBNAME field.

2. Specify the target job step in the PROGRAM or STEP fields.

3. Specify the target system in the SYSTEM field or clear this field to select from a list of
systems.

4. Configure the measurement by specifying

– the estimated run time in the SESSION DURATION field
– how many performance samples you want STROBE to take in the TARGET

SAMPLE SIZE field
– the TSO user ID for STROBE to notify when the request is complete in the TSO

USER ID TO NOTIFY field

Using the STROBE Java Feature 2-3
5. Specify the sample data set information in the SAMPLE DATA SET INFORMATION
fields.

6. Specify any additional measurement options by entering “Y” in the corresponding
field and then pressing Enter. You can

– specify special data collectors
– specify additional module mapping facilities
– add session management parameters
– request a retention time frame
– specify Java targeting information

STROBE displays the selected panels. When you press Enter on the last panel,
STROBE submits the measurement request. See the STROBE MVS User’s Guide or the
STROBE MVS User’s Guide with Advanced Session Management for more information on
these measurement options.

7. Press Enter to submit the request.

Note: In the JVM application environment, an OMVS batch job step can create multiple
address spaces. You may need to examine these address spaces to determine
exactly which one requires STROBE measurement. Or you can issue multiple ADD
QUEUED measurement requests for the job step.

Configuring Java Data Collection

To measure a Java application running in either a HPJ or JVM environment, there is only
one requirement: to make sure the Java data collector is invoked. STROBE automatically
invokes the Java data collector . If necessary, you can specify “Y” next to the JAVA field
on the STROBE - DATA COLLECTORS panel to invoke the data collector. To suppress the
collection of Java data, enter “N” in this field as shown in Figure 2-1 on page 2-3.

If you are measuring Java running under JVM, you can specify certain targeting criteria
than enables you to select portions of the Java code that you want to measure. The next
section “Java Targeting and Reporting” explains how to make these specifications.

Note: When measuring Java applications executing in a CICS environment or accessing
DB2, do not specify “N” for the CICS or the DB2 data collector options on the
STROBE - DATA COLLECTORS panel.

Figure 2-1. STROBE - DATA COLLECTORS Panel

--------------------------- STROBE - DATA COLLECTORS --------------------------
COMMAND ===>

OVERRIDE DATA COLLECTOR DEFAULTS FOR JOBNAME: WPAJEA
DATA COLLECTORS: (Y or N; Y adds to and N removes from your system defaults)

ADABAS ===> ADA3GL ===> C ===>
CICS ===> COBOL ===> CSP ===>
DB2 ===> IDMS ===> IDMS BATCH DML ===>
IEF ===> IMS ===> JAVA ===> Y
MQSERIES ===> NATURAL ===> PL/I ===>
SVC ===> VSAM ===>

CICS Options:
Collect Region Data ===> OR Produce Performance Supplement ===>
Detail Transaction (TRAN or TR*): Collect Terminal Activity ===>
=> => => => =>

CAPTURE Options: (Y or N; default is Y)
DB2 ===> IMS ===>

JVM targeting data (Y/N ===> Y

MQ Common User Module ===> Always use as default (Y/N) ===>

OTHER DATA COLLECTORS:

2-4 STROBE Java Feature
Java Targeting and Reporting

By default, the STROBE Java Feature will attempt to attribute CPU or wait time to the main
user method of the Java programs seen executing in an address space by examining the
Java call stack that is in place when STROBE takes samples. As Java methods execute,
memory in the Java call stack is allocated to them in the form of “stack frames”. As
methods are invoked and then return, these frames are pushed and popped on and off of
the call stack. At the time of a STROBE sample, the Java call stack state reflects the chain
of methods from the first method invoked, usually the main method, to the method
currently executing.

STROBE searches the call stack from the current method back to the first method in the
stack. When it finds main, it stops and collects data about it and the method immediately
invoked by main.

If you enter Java targeting information, STROBE performs an examination of the calling
stack based on the provided targeting input. As it traverses the call stack, STROBE stops
searching when it finds a call stack entry with a method name matching any of the
targeting criteria or reaches main.

If multiple Java targeting criteria is specified, STROBE stops at the first call stack entry
with a method name exactly matching the criteria or is called main. If STROBE finds
neither main or a targeted method, it continues until it reaches the bottom of the call
stack and attributes activity to the associated method.

For example, if the main method of class HelloWorld was invoked and STROBE sampled
when the call stack was in the following state:

/my/test/HelloWorld.main(String[])
 ->/my/test/HelloWorld.SendGreeting(String[])
 ->/my/test/HelloWorld.formatData(String[])
 ->/java/slang/String.trim()

Be default, the CPU or wait time for that sample would be associated with
/my/test/HelloWorld.main(String[]). STROBE would also note that main had invoked
/my/test/HelloWorld.SendGreeting(String[]).

Using Java Targeting

In the above example, you could have targeted packages, classes and methods that you
wanted STROBE to measure. If you had targeted /my/test/HelloWorld.formatData, then
STROBE would have attributed the CPU or wait time to that method. And it would report
that the method had invoked /java/lang/String.trim(). If you specified targeting data of
/my/test/HelloWorld.GetGreeting, STROBE would not have found the method in the call
stack. Instead, it would stop at main and associate the CPU time with
/my/test/HelloWorld.main(String[]).

In certain situations, targeting is more useful than others. For example, if you measure a
Java application and examine the Java CPU Usage by Called Method report, you would
see that a certain called method appears to be involved in a logic path that consumed a
large percentage of CPU time. You could target that method and measure the application
again. The next set of Performance Profile reports would contain information about the
methods that had been called by the targeted method. By continuing this approach to
targeting, you can drill down as far as you want into a Java application’s activity.

Note: Performance Profiles for applications or classes without main methods (such as
EJBs) may contain information about system methods only. In these cases, you
should target a method of interest, such as an EJB business method or any other
user-written method or class. The Performance Profile will then provide more
detail about user-written methods instead of system methods.

Using the STROBE Java Feature 2-5
Targeting JVM Java Code for Measurement

For the JVM environment, there are a set of STROBE ISPF panels you can use to specify
measurement target information. Entering “Y” in the “JVM targeting data” field show in
Figure 2-1 causes STROBE to display the STROBE - JAVA TARGETING ISPF panel shown in
Figure 2-2 on page 2-5.

Figure 2-2. STROBE - JAVA TARGETING Panel

Specifying Target Information

You can target Java code in a JVM environment where you want STROBE to focus either
by specifying it yourself or by selecting from a STROBE-generated list that shows the
contents of the Java packages and classes you want to measure. The section “Using the
STROBE Java Target Selector” on page 2-6 explains how to select measurement targets off
of this list.

If you want to enter the Java targeting information yourself make sure that the
specifications you make are as precise as possible. For example, some methods are part of
multiple classes. To enable STROBE to measure exactly what you want in the Java
program, you should provide as much detail in your targeting information as possible.

Note: Unless you have already determined what specific methods you want to measure,
you should not use targeting the first time you measure a Java application
running in the JVM environment. By first creating a STROBE Performance Profile
that shows all of the Java activity for the measurement request, you can can select
packages, classes and methods that showed performance problems. Then you can
target what you have identified as containing improvement opportunities and
create another Performance Profile.

Follow these instructions, to target Java code for STROBE measurement.

1. In the Type field, identify the type of Java code that you will specify on the following
lines:

– P indicates you are specifying a Java Package

– C indicates you are specifying a Java Class or a Package and Class combination

--------------------------- STROBE - JAVA TARGETING --------------------------
COMMAND ===>

List java targets ===> N (Y or N; default N)
OR
Enter Packages, Classes or Methods() to target below
Line commands E -Extended Edit
Targeting data types P -Package C -Class M -Method

Lc Type

_ _ __
__

_ _ __
__

_ _ __

_ _ ___

2-6 STROBE Java Feature
– M indicates you are specifying a Java Method, a Class and a Method, or a
Package, Class and Method combination. The Java Target Selector is unable to
distinguish between overloaded methods.

If you mis-specify the type of Java code, e.g. specify C for a package, the Java
target selector will not be able to find the target.

2. On the line(s) after the target type you specified, enter the name of the package, class
or method that STROBE should measure, using the standard Unix file naming format.
If the targeting naming information extends beyond the limits of the text entry
fields of this panel, enter “e” for an extended edit. Figure 2-3 on page 2-6 shows the
pop-up STROBE - JAVA TARGETING EXTENDED EDIT panel.

Figure 2-3. STROBE - JAVA TARGETING EXTENDED EDIT Panel

3. After you have specified your targeting information up to a limit of 1K, press ENTER.
You will return to the STROBE - JAVA TARGETING panel shown in Figure 2-2 and you
must press ENTER again. The STROBE active or queued measurement request that
you made will then be initiated.

Using the STROBE Java Target Selector

If you would prefer to specify target Java code for measurement from a list generated by
STROBE, enter “Y” in the “List Java Targets field on the STROBE - JAVA TARGETING panel
shown in Figure 2-2 on page 2-5. The STROBE - JAVA TARGETING LIST panel shown in
Figure 2-4 on page 2-7 is displayed.

To target Java code for measurement:

1. On the first set of lines, you can specify the location of your Java targets. If you know
the Java code you want to measure is identified in CLASSPATH, leave this field blank.
To make an entry, you must use the UNIX directory format, e.g. /usr/java/lib. If you
are measuring a Java application that executes in a CICS region, you cannot be sure
that the CLASSPATH will contain what you want to target and you are required to
identify the code location here.

2. On the second set of parameter entry lines, you can enter your Java targets. Java
target names can be any of the following:

--------------------------- STROBE - JAVA TARGETING-----------------------------
COMMAND ===> SCROLL ===> PAGE

|--------------STROBE - JAVA TARGETING EXTENDED EDIT--------------------------|
|COMMAND ===> |
|ENTER P package C class or M method ===> M |
|___|
|___|
|___|
|___|
|___|
|___|
|___|
|___|
|___|
|___|
|___|
|___|
|___|
|___|
|___|
|___|
|___|
|___ |
| |
Press ENTER to update or END command to cancel

Using the STROBE Java Feature 2-7
– EAR file name

– JAR file name

– WAR file name

– ZIP file name

– Package name

– Class File name (This can be the name of the ZIP file in which the Java package is
contained.) You can also enter the exact name of a class file. If you leave this
entry blank, but have specified a location on the first set of lines, then a list of all
packages in that location and its subdirectories is returned.

3. Press ENTER, and the Java targeting selector will return a list of packages. If you enter
just the class name , the list only provides a class name and the methods it contains.

Note: Using the selector to obtain Java targets from locations where a large number
of classes or files exist can return an excessive number of targets. To
minimize the amount of data returned, the targeting information should be
as specific as possible.

Figure 2-4. STROBE - JAVA TARGETING LIST Panel

The targeting list shows what exactly is contained in the Java packages classes and
methods as specified by the targeting information you provided.

4. Entering “S” next to a class or method name indicates this is where you want STROBE
to focus the measurement. If you enter a plus “+” sign, next to a class name, then all
the methods contained within that class are listed. You can can then select the
method by entering “S” next to its name. .

5. Once you press ENTER after all targets have been selected, their names will be
displayed on the STROBE - JAVA TARGETING LIST ISPF panel. Press ENTER again and
the measurement request is submitted by STROBE.

------------------------ STROBE - JAVA TARGETING LIST--------------------------
COMMAND ===>

Enter location of java targets (blank if in classpath)

__
__

Enter file, package or class name to target

_com.compuware.strobe___
__

Enter ’S’ to select Package, Class, or Method to target:
Enter ’+’ against Class to list Methods:

_ __
_Package: com.compuware.strobe
_ Class():Class
_ method: read()
_ method: toString()
_ method: write()
_ Class(-):Directory
S method: find()
_ method: list()
S Class(+):File

2-8 STROBE Java Feature
Creating a Performance Profile
The STROBE Performance Profile contains base STROBE reports and reports specific to the
STROBE Java Feature. STROBE automatically generates the Java reports if the Feature has
collected Java-specific data.

Depending on whether you are measuring HPJ applications or programs written using
JVM, you will get a different set of reports. See Chapter 3 for examples and descriptions
of the HPJ reports and Chapter 4 for example and descriptions of the JVM reports..

Controlling the Level of Detail in the Reports

By specifying certain STROBE options, you can either compress or expand the level of
detail in the Performance Profile reports.

You can control the size of the reports by specifying certain parameters when you create
the Performance Profile. For example, on the reports listed below, you can specify a
minimum percentage of activity that must occur for a procedure or cylinder to appear as
an individual line on the report. If the minimum percentage is not attained, contiguous
procedures or cylinders are condensed on a single line in the report. The lower the
number you specify, the greater the level of detail in the reports.

The following reports have minimum percentage options:

• Program Usage by Procedure
• DASD Usage by Cylinder
• Transaction Usage by Control Section
• the Attribution report

You can break the reports into manageable sections by specifying the report resolution —
the number of bytes considered to be a codeblock for detailed reporting. The lower the
number you specify, the greater the level of detail in the reports. For more information,
see STROBE MVS Concepts and Facilities.

Tailoring the STROBE HPJ Java Feature Reports

To tailor the reporting of HPJ Java information, you may specify the following
parameters in the OTHER PARAMETERS field of the STROBE - DETAIL FOR A
PERFORMANCE PROFILE panel:

• The JAVARPT=nn.nn (default 00.01%) This parameter enables you to condense
activity reported on the CPU Usage by Java Method report. The value nn.nn indicates
the minimum percentage of solo and total CPU time that STROBE reports. STROBE
suppresses solo and total CPU time if the solo CPU time is less than this percentage.

• NOJAVRPT This parameter enables you to suppress the Java Class Summary and the
CPU Usage by Java Method reports.

To suppress the Java Attribution of CPU Execution Time report enter “Y” in the Java field
in the ATTRIBUTION Reports section of the Tailor Reports panel as shown in Figure 2-5.

Using the STROBE Java Feature 2-9
Figure 2-5. STROBE - TAILOR REPORTS Panel

--------------------------- STROBE - TAILOR REPORTS ---------------------------
COMMAND ===>

WAIT TIME BY MODULE -- Show location of wait ===> (Specify Y)
-------------- Report --------------- Compress below OR Suppress (Specify Y)
PROGRAM USAGE BY PROCEDURE ===> % ===>
DASD USAGE BY CYLINDER ===> 02.0 % ===>
TRANSACTION USAGE BY CONTROL SECTION ===> % ===>
CICS TRANSACTION PROFILE ===> sec ===>
CICS REGION LEVEL ===> sec ===>
MQSERIES CALLS ===> %
ATTRIBUTION Reports ===> % ===>

Suppress reports for:
C ===> CICS ===> COBOL ===>
CSP ===> DB2 ===> DL/I ===>
IDMS ===> IEF ===> JAVA ===> Y
MQSERIES ===> PL/I ===> SVC ===>

PROGRAM SECTION USAGE SUMMARY Display inactive ===>
TIME and RESOURCE DEMAND DISTRIBUTION
Combine tasks ===> Display all tasks ===> Display all DDs ===>

CICS TRANSACTION PROFILE FILTERS => => => => =>
Suppress non-CICS TRANSACTION REPORTS ===> (Specify Y)

USE DATE AND TIME FORMAT FROM PARMLIB ===>

2-10 STROBE Java Feature

3-1

Chapter 3.

3Analyzing a HPJ Java Performance Profile Chap 3

Once your measurement is complete and you have created a Performance Profile, your
next step is to examine the Profile and identify performance improvement opportunities.
Once you have identified the performance improvement opportunities and incorporated
the indicated changes into the Java application, you can then measure the application
again with STROBE and produce a Performance Profile to verify the effects of your
changes.

This chapter explains the specialized reports produced by the STROBE Java Feature for
HPJ Java applications and one standard STROBE report that is tailored to report Java
information. The Feature produces two reports that detail execution of CPU time in Java
classes and methods. STROBE produces all the standard STROBE Performance Profile
reports, including an Attribution of CPU Execution Time report that identifies Java
classes and methods that invoked system services. A detailed description of the
additional standard STROBE reports is provided in STROBE MVS Concepts and Facilities.

Finding Significant Activity in the Java Application
To find CPU activity within the Java application, analyze the Java Class Summary, the
CPU Usage by Java Method, and the Attribution of CPU Execution Time reports. The Java
Class Summary and the CPU Usage by Java Method reports are produced only by the
STROBE Java Feature and show CPU consumption by Java classes and, within classes, by
Java methods. The Attribution of CPU Execution Time report is a standard STROBE report
tailored to report Java-specific information.

Java Class Summary Report

The Java Class Summary report (Figure 3-1 on page 3-2) provides an overview of the CPU
usage in the classes within each module that STROBE measured. This section describes
each of the fields on this report.

MODULE NAME

The name of the module which is responsible for CPU usage.

Note: For all module or section names that exceed eight characters, STROBE generates a
token, which is an eight-byte identifier. The token comprises the first four
characters of the module or section name followed by a hyphen (-) and then the
last three characters of the name. Refer to the Token - Longname Cross Reference
report to reconcile all tokens with their long names. For more information on this
report see Chapter 3 of STROBE MVS Concepts and Facilities.

CLASS NAME

The name of the Java class within the module identified in the MODULE NAME field for
which STROBE is detailing CPU usage.

Note: For all class names that exceed eight characters, STROBE generates a token, which
is an eight-byte identifier. The token comprises the first four characters of the
module or section name followed by a hyphen (-) and then the last three
characters of the name. Refer to the Token - Longname Cross Reference report to

3-2 STROBE Java Feature
reconcile all tokens with their long names. For more information on this report
see Chapter 3 of STROBE MVS Concepts and Facilities.

CLASS SIZE

The decimal size of the class in bytes.

% CPU TIME

The total percent of CPU time used in class code plus system services activity attributed
to class code.

• SOLO shows activity without any concurrent I/O or CPU activity being performed
under control of programs executing within the address space.

• TOTAL shows activity with or without any concurrent I/O or CPU activity.

CPU TIME HISTOGRAM

The histogram shows the distribution of CPU usage within each class. Solo CPU time is
indicated with the symbol “*”. The remaining CPU time is indicated with the symbol
“+”. Spikes, or lengthy lines in the histogram, highlight classes with a high proportion of
activity.

Figure 3-1. Java Class Summary Report

The CPU Usage by Java Method report (Figure 3-2 on page 3-3) shows execution and
attribution activity for a Java module, class, or method. In the header lines, the report
reflects the lowest level at which the Feature detected activity. In the detail lines the
report indicates the offset within the lowest level—the module, class, or method—at
which the Feature detected activity.

In the header lines this report lists:

MODULE

The name of the module for which STROBE is detailing CPU usage.

CLASS

The name of the class within the module identified in MODULE for which STROBE is
detailing CPU usage.

METHOD

The name of the method within the class identified in CLASS for which STROBE is
detailing CPU usage. For all method names that exceed eight characters, STROBE
generates a token, which is an eight-byte identifier. The token comprises the first four
characters of the module or section name followed by a hyphen (-) and then the last
three characters of the name. Refer to the Token - Longname Cross Reference report to

** JAVA CLASS SUMMARY **

MODULE CLASS CLASS % CPU TIME CPU TIME HISTOGRAM MARGIN OF ERROR: 1.02%
NAME NAME SIZE SOLO TOTAL .00 .50 1.00 1.50 2.00

JCICSMED JCICSMED 23648 .13 .13 .**
----- -----

JCICSMED TOTALS .13 .13

----- -----
JAVA CLASS TOTALS .13 .13

Analyzing a HPJ Java Performance Profile 3-3
reconcile all tokens with their long names. For more information on this report see
Chapter 3 of STROBE MVS Concepts and Facilities.

Each detail line on the report lists:

OFFSET

The location by offset within the module, class, or method at which STROBE detected
activity. The lowest level in the header line indicates whether this is an offset within a
module, class, or method.

STATEMENT NUMBER

The line number of the Java program that corresponds to the offset within the module,
class, or method at which STROBE detected activity.

% CPU TIME

The percent of CPU time used by the module, class, or method that exceeds the value
specified with the JAVARPT parameter (default .01%).

• SOLO shows activity without any concurrent I/O or CPU activity being performed
under control of programs executing within the address space.

• TOTAL shows activity with or without any concurrent I/O activity.

CPU TIME HISTOGRAM

The histogram shows the distribution of CPU usage within each class. Solo CPU time is
indicated with the symbol “*”. The remaining CPU time is indicated with the symbol
“+”. Spikes, or lengthy lines in the histogram, highlight classes with a high proportion of
activity.

Figure 3-2. CPU Usage by Java Method Report

Attribution of CPU Execution Time Report

The Attribution of CPU Execution Time report (Figure 3-3 on page 3-4) shows the Java
method within the Java class that invoked a system service. Each Attribution report detail
line identifies a location from which the service routine was directly or indirectly
invoked. The location is defined by module, class, method, and return address.

If the method did not directly invoke the service routine, the routine first called by the
invoking location is defined under “via” by module and control section with a brief
description of its function.

The report lists:

XACTION

The name of the transaction that invoked the service routine, if there was one.

** CPU USAGE BY JAVA METHOD **

MODULE - JCICSMED
CLASS - JCICSMED
METHOD - main-er) - main(com.ibm.cics.server.CommAreaHolder)

STATEMENT % CPU TIME CPU TIME HISTOGRAM MARGIN OF ERROR: 1.02%
OFFSET NUMBER SOLO TOTAL .00 .50 1.00 1.50 2.00

0000066E 00000052 .01 .01 .
00000D5C 00000065 .12 .12 .**

----- -----
CLASS JCICSMED TOTALS .13 .13

----- -----
MODULE JCICSMED TOTALS .13 .13

3-4 STROBE Java Feature
MODULE

The name of the module that invoked the service routine.

CLASS

The name of the class within the module identified in MODULE that invoked the service
routine.

METHOD

The name of the method within the class identified in CLASS that invoked the service
routine.

RETURN

The location, in hexadecimal, where the application invoked the service routine.

MODULE (under VIA)

The name of the module that invoked the service routine if it was not directly invoked.

SECTION (under VIA)

The name of the control section that invoked the service routine if it was not directly
invoked.

FUNCTION

A brief description of the function of the control section that invoked the service routine
if it was not directly invoked.

CPU TIME %

The percentage of all CPU execution time used by programs executed within the address
space that was spent in the invoked system service routine on behalf of the invoking
routine.

• SOLO shows activity without any concurrent I/O or CPU activity being performed
under control of programs executing within the address space.

• TOTAL shows activity with or without any concurrent I/O activity.

Figure 3-3. Attribution of CPU Execution Time Report

** ATTRIBUTION OF CPU EXECUTION TIME **

.LELIBS CEEPLPKA LE/370 VECTOR CSECT
---------------------------WAS INVOKED BY------------------------------------VIA-------------------- CPU TIME %
XACTION MODULE SECTION RETURN LINE PROCECURE NAME MODULE SECTION FUNCTION SOLO TOTAL

MED DFJCZDTC 003C34 CEEPLPKA LE/370 VECTOR CSECT .14 .14
MED DFJCZDTC 003C7C CEEPLPKA LE/370 VECTOR CSECT .04 .04

XACTION MODULE CLASS METHOD RETURN MODULE SECTION FUNCTION SOLO TOTAL

MED JCICSMED main-er) 00066e JCICSMED __hp-rap 2.37 2.37
----- -----
2.55 2.55

4-1

Chapter 4.

4Analyzing a JVM Java Performance Profile Chap 4

If you are measuring a JVM Java application with STROBE, the Performance Profile
contains a different set of reports than if you were measuring a HPJ Java program. The
following lists the reports that are produced for a JVM-written application:

• Java CPU Usage and Wait Time by Called Method Summary reports present execution
information at the method level. Processing and wait are related back to the user
targeted method or the initial method run.

• Java CPU Usage and Wait Time by Called Method reports show the package, class and
methods directly invoked by the user targeted or initial method. Additionally,
invoked DB2 statements are shown.

• Java CPU Usage and Wait Time by Executing Method reports show the method or
service routine actually processing at the time STROBE samples. (These reports
distinguish between interpreted and Just-In-Time “JITted” compiled code.)

• Java Targeting - This report shows the names of the search arguments used by the
Java targeting function.

• Java Environment - This report shows CLASSPATH information for each JVM profile.

Note: If you have the STROBE CICS Feature installed, the CICS API and Non-API
transaction profile reports show Java methods invoked under CICS.

This chapter explains the specialized reports produced by the STROBE Java Feature and
one standard STROBE report that is tailored to report Java information. The Feature
produces two reports that detail execution of CPU time in Java classes and methods.
STROBE produces all the standard STROBE Performance Profile reports, including an
Attribution of CPU Execution Time report that identifies Java classes and methods that
invoked system services. A detailed description of the additional standard STROBE
reports is provided in STROBE MVS Concepts and Facilities.

Compuware’s iSTROBE product enables you to view and analyze STROBE Performance
Profile data on a workstation using a standard Web browser. If you use iSTROBE to
analyze a JVM Java application, you have access to much more detailed information
about called methods, as described in “The iSTROBE Java Activity by Called Method
Report” on page 4-7.

Measurement Session Data Report
The Measurement Session Data Report enables you to validate the Performance Profile
and helps you focus your effort to improve application performance. If you have the
STROBE Java Feature installed, the Java data collector is active, and you targeted Java code
for measurement, this report will indicate that a Java targeting report will be generated.

4-2 STROBE Java Feature
Figure 4-1. Measurement Session Data Report

SUBSYSTEM

This field will show the Java release you are using.

JAVA TARGETING DATA

If this field contains data, targeting information was specified for the measurement
request. shows all the targeting data for Java measurements you provided as described in
Chapter 2. The Java Targeting Information report shows a complete list of targeting a
arguments.

Java Targeting Information Report

The Java Targeting Information report shown in Figure 4-2 contains the parameters you
specified to target Java code.

Figure 4-2. Java Targeting Information Report

TARGETING SEARCH ARGUMENTS

This field lists all of the Java targeting information you provided to STROBE to select Java
code for measurement.

** MEASUREMENT SESSION DATA **

------- JOB ENVIRONMENT -------- ------- MEASUREMENT PARAMETERS ------ ----- MEASUREMENT STATISTICS ----

PROGRAM MEASURED - DFHSIP ESTIMATED SESSION TIME - 45 MIN CPS TIME PERCENT - 13.90
JOB NAME - CICSPROD TARGET SAMPLE SIZE - 10,000 WAIT TIME PERCENT - 86.10
JOB NUMBER - STC 1427 REQUEST NUMBER - 26 RUN MARGIN OF ERROR PERCENT - .98
STEP NAME - CICSPR02 FINAL SESSION ACTION (A)- QUIT CPU MARGIN OF ERROR PERCENT - .13

JAVA TARGETING DATA
TOTAL SAMPLES TAKEN - 10,000

DATE OF SESSION - 09/23/02 --------- REPORT PARAMETERS --------- TOTAL SAMPLES PROCESSED - 10,000
TIME OF SESSION - 10:45:16 INITIAL SAMPLING RATE - 3.70/SEC
CONDITION CODE - C-0000 REPORT RESOLUTION - 64 BYTES FINAL SAMPLING RATE - 3.70/SEC

SORTSIZE - 999,999
SYSTEM - z/OS 01.04.00 LINES/PAGE - 60 SESSION TIME - 49 MIN 0.78 SEC
DFSMS - 1.3.0 CPU TIME - 6 MIN 53.95 SEC
SUBSYSTEM - CICS TS 2.2 WAIT TIME - 42 MIN 42.35 SEC

JVM 1.3.1 STRETCH TIME - 0 MIN 0.00 SEC
UNIX SERVICES

CPU MODEL - 3090-400E
SMF/SYSTEM ID - ASYS DASD= 1.0% DASDGAP=5
LPAR C222
64-BIT ARCHITECTURE ENABLED

SRB TIME - 0 MIN 0.24 SEC
REGION SIZE BELOW 16M - 7,104K DATE FORMAT MM/DD/YY SERVICE UNITS - 344
REGION SIZE ABOVE - 32,768K TIME FORMAT (24 HOURS) HH:MM:SS PAGES IN - 0 OUT- 16

PAGING RATE - 0.01/SEC
PTF LEVEL - 3.0.000/000 EXCPS - 113,803 38.70/SEC

SAMPLE DATA SET - SA.CICSPROD.S001D001

** JAVA TARGETING INFORMATION **

TARGETING SEARCH ARGUMENT()S : METHOD: com/timbow/services/business/TargetsSer
vice/validateTarget

PACKAGE:com/timbow/tracing
CLASS: com/timbow/services/business/Calculator

Analyzing a JVM Java Performance Profile 4-3
Java Environment Report

The Java Environment report shown in Figure 4-3 contains CLASSPATH information for
JVM profiles. For each profile, the report lists:

Figure 4-3. Java Environment Report

PROFILE

This field provides the name of the JVM profile that was measured by STROBE. If you
measuring in a CICS Transaction Server environment, more than one profile may appear
in the report with its associated CLASSPATH. If STROBE measures a batch region, this
field is blank.

CLASSPATH

This field shows the CLASSPATH environment variable which is used by the JVM to find
user-defined class libraries.

Java CPU Reports
This section provides examples and descriptions of the Performance Profile reports that
contain information about CPU usage for the targeted methods. The Java “called
method” report attributes execution activity back to the ultimate invoker or application
method. The Java “executing” method report only contains information about the
method STROBE found executing at the time it took a sample.

Java CPU Usage by Called Method Summary Report

The Called Method Summary report shown Figure 4-4 on page 4-4 provides information
at the method level. The method name is composed of (if present, the package name),
the class name, the method name and the argument list. Processing time is related back
to the application method (the main method).

STROBE attempts to attribute CPU or wait time to the main user method of the Java
programs seen executing in an address space by examining the Java call stack that is in
place when STROBE takes samples. It searches the call stack from the current method
back to the first method in the stack. When it finds main, it stops and collects data about
it and the method immediately invoked by main.

As STROBE examines the Java call stack, it may find either or both the class constructor
and initialization methods. The constructor method is the initialization method that is
called automatically when an object is created. It is identified by the syntax “<init>”.

The class initialization method is called by the JVM to initialize the created object’s static
variables. It is identified by the syntax “<clinit>”. Both the <init> and <clinit> methods
will appear in Performance Profile reports when STROBE is able to collect measurement
data for them.

** JAVA ENVIRONMENT **

PROFILE : DFHJVMPR
CLASSPATH - /usr/lpp/cicsts/cts220/samples/dfjcics

/u/sb/wpama/classes:
/u/sb/wpajma:
/u/sb/wpanjkl/java:
/u/sb/wpanjk0:
/usr/lpp/db2/db2710/classes/db2j2classes.zip:
/u/sb/pbtsdc0/java/sqlj/CUP222_CICS/CupCICS.jar

4-4 STROBE Java Feature
In this example, the greatest CPU usage (45.65%)was attributed to method
main(com/ibm/cics/server/CommAreaHolder).

Figure 4-4. Java CPU Usage by Called Method Summary Report

METHOD/SIGNATURE

Name of the method and argument list associated with the method. If a method has
more than one argument lists, each instance of the method name and each argument list
is considered a separate method.

% CPU TIME

The total percent of CPU time used on behalf of this method plus system services activity
attributed to class code.

• SOLO shows activity without any concurrent I/O or CPU activity being performed
under control of programs executing within the address space.

• TOTAL shows activity with or without any concurrent I/O or CPU activity.

CPU TIME HISTOGRAM

The histogram shows the distribution of CPU usage within each class. Solo CPU time is
indicated with the symbol “*”. The remaining CPU time is indicated with the symbol
“+”. Spikes, or lengthy lines in the histogram, highlight classes with a high proportion of
activity.

MARGIN OF ERROR

The margin of error for CPU time percentages. This value also appears in the CPU
MARGIN OF ERROR PCT field on the Measurement Session Data report.

JAVA METHOD TOTALS

Total amount of CPU usage for the reported methods.

Java CPU Usage by Called Method Report

This report shows the package, class and methods directly invoked by the user targeted or
initial application method. For each class, the total CPU time for all of its methods is

** JAVA CPU USAGE BY CALLED METHOD SUMMARY **

METHOD SIGNATURE % CPU TIME CPU TIME HISTOGRAM MARGIN OF ERROR: 1.20%
SOLO TOTAL .00 11.50 23.00 34.50 46.00

com/ibm/cics/server/Wrapper.<clinit>() 11.09 .11.09 .*********
com/ibm/cics/server/Wrapper.main(java/lang/string) .69 .69 .
com.ibm/jvm/Trace.initializeTrace() .16 .16 .
com/timbow/appl/cta/CTAInitialSelections.main(com/ibm/ci 45.63 45.65 .**
cs/server/CommAreaHolder)

java/lang/ref/Finalizer.<clinit>() .01 .01 .
java/lang/Character.<clinit>() .30 .30 .
java/lang/Class/<clinit>() .07 .07 .
java/lang/ClassLoader.getSystemClassLoader() 1.13 1.13 .
java/lang/ClassLoader.loadClass(java/lang/String) 11.21 11.22 .********
java/lang/Compiler.<clinit>() .12 .12 .
java/lang/System.initializeSystemClass() .40 .40 .
java/lang/Thread.init(java/lang/ThreadGroup,java/lang/Ru
nnable,java/lang/String)

java/lang/ThreadGroup.<init>(java/langThreadGroup,java/ .06 .06
lang/String)

java/util/jar/JarFile.ibmJVMTidyUp() .01 .01
sun/io/CharacterEnclding.(clinit>() .06 .06
sun/misc/signal.<clinit>() .01 .01
COM/ibm/db0s390/sqlj/jdbc/DB2SQLJDriver.ibmJVMTidyUp() .03 .03

----- -----
JAVA METHOD TOTALS 71.07 71.07

Analyzing a JVM Java Performance Profile 4-5
reported. Figure 4-5 on page 4-5 shows an example of the report. The methods listed
below were all directly invoked by main(com/ibm/cics/server/CommAreaHolder). The CPU
time associated with the called method is the percentage of CPU time use that can be
attributed to the logic path beginning with CommAreaHolder() calling the method
associated with the CPU time.

Figure 4-5. Java CPU Usage by Called Method Report

PACKAGE
CLASS
METHOD

The name of the package and class and method that is the ultimate invoker of the rest of
the classes and methods listed in the report.

** JAVA CPU USAGE BY CALLED METHOD **

PACKAGE - com/timbow/appl/cta
CLASS - CTAInitialSelectins
METHOD - main(com/ibm/cics/server/CommAreaHolder)

PACKAGE/CLASS % CPU TIME CPU TIME HISTOGRAM MARGIN OF ERROR: 2.61%
METHOD SOLO TOTAL .00 .50 1.00 1.50 2.00

INVOKED SQL

com/timbow/appl/ca/CTAConcert
toTarget(java/lang/Object) 5.77 5.77 .******

----- -----
CLASS CATConvert TOTAL 5.77 5.77

com/timbow/appl/cta/CTAInitialSelections ----- -----
getData() .03 .03 .

----- -----
CLASS CTAInitialSelections TOTAL .03 .03

com/timbow/business/procedure/matching/CTAInterpreter
<clinit>() .45 .45 .

----- -----
CLASS CTAInterpreter .45 .45

com/timbow/services/business/TargetsService
findTargets(com/timbow/business/entities/TargetsFile, 35.85 35.87 .**

com/timbow/business/procedure/atching/ItargetRes
ultsInterpreter)

SQL OPEN CMPWR312 0-01 .22 .22 .
SQL OPEN CMPWR312 0-02 .19 .19 .

----- -----
CLASS TargetService TOTAL 36.27 36.27

com/timbow/service/persistence/DataAccessService
writePerformanceStatistics() .07 .07 .

----- -----
CLASS DataAccessService TOTAL .07 .07

----- -----

com/timbow/services/persistence/Loader
build/TargetsFile(long, 2.51 2.51 .**

com/tibow/services/persistence/persistenceMetadat
a)

SQL SELECT CMPWR342 0-00 .01 .01 .
SQL SELECT CMPWR342 0-01 .01 .01 .
SQL SELECT CMPWR342 0-02 .01 .01 .

----- -----
CLASS Loader TOTAL 2.56 2.56

java/io/PrintStream
println(java/lang/String) .03 .03 .

----- -----
CLASS PrintStream TOTAL .03 .03

java/lang/ClassLoader
loadClass(java,lang/String) .27 .27 .

----- -----
CLASS ClassLoader TOTAL .27 .27

java/lang/Throwable
printStackTrace() .01 .01 .

----- -----
CLASS Throwable TOTAL .01 .01

----- -----
METHOD com/timbow/appl/cta/CTAInitialSelections. TOTAL 45.56 45.57

main(com/ibm/cics/server/CommAreaHolder)

4-6 STROBE Java Feature
PACKAGE/CLASS
asfasfd METHOD
asdfasf sadaf daf dsafdf afds.INVOKED SQL

The name of the method and the class containing it that was invoked by the the initial
user application method or the user-targeted method. The method name(s) is indented
two characters past the class name. Any SQL statement that was invoked by the called
method, either directly or via lower levels of called methods is listed for the method and
class and is indented two characters past the method name.

After the SQL statement name, the DBRM name is listed. Then the report will show a pair
of numbers separated by a dash. The first number is the SQL statement number if one can
be determined by STROBE. (Generally, the SQL statement number cannot be determined
in a Java environment.) The second number is a STROBE generated number. You can use
the number generated by STROBE and the DBRM name to be able to cross-reference the
STROBE DB2 Feature Performance Profile reports to obtain additional SQL report
information.

% CPU TIME

The total percent of CPU time used in class code plus system services activity attributed
to class code.

• SOLO shows activity without any concurrent I/O or CPU activity being performed
under control of programs executing within the address space.

• TOTAL shows activity with or without any concurrent I/O or CPU activity.

CPU TIME HISTOGRAM

The histogram shows the distribution of CPU usage within each class. Solo CPU time is
indicated with the symbol “*”. The remaining CPU time is indicated with the symbol
“+”. Spikes, or lengthy lines in the histogram, highlight classes with a high proportion of
activity.

CLASS TOTAL

Total amount of CPU usage for the reported classes.

Analyzing a JVM Java Performance Profile 4-7
The iSTROBE Java Activity by Called Method Report

Users of iSTROBE have a greatly enhanced ability to analyze Java JVM measurement data.
The STROBE printed Performance Profile shows only two layers of a call stack, while
iSTROBE provides access to as many as eight. To view stack data in iSTROBE, start by
selecting the Java Activity by Called Method report (Figure 4-6 on page 7).

Figure 4-6. iSTROBE Java Activity by Called Method Report

Like the STROBE Called Method reports, this iSTROBE report shows the package, class
and methods directly invoked by the user-targeted or initial application method.
However, in iSTROBE:

• Both CPU and wait activity are conveniently aggregated into one report.

• The Threshold field enables you to modify the minimum percentage of CPU or wait
that a method must have used if it is to appear on the report.

• You can choose exactly which Package/Class you wish to examine in more detail,
rather than viewing the called methods for all of them.

Click the stacks icon next to a method to see the Java Call Stacks report, shown in
Figure 4-7.

4-8 STROBE Java Feature
Figure 4-7. iSTROBE Java Call Stacks Report

For the method you select, the Java Call Stacks report shows all the methods that it called
directly. For each of these called methods, you can view the contents of its associated call
stacks, along with any SQL statements attributed to them.

iSTROBE online help provides a detailed description of the data and functions provided
by these reports. To view it, from the iSTROBE Java Activity by Called Method, select
Help, Help for current page.

Java CPU by Executing Method Report

This report shows CPU execution in a Java method. A Java method may be executing as
machine instructions or as bytecode. If an asterisk “*” appears next to a method name in
the report, it indicates the the JVM was executing and interpreting the method’s
bytecode. Figure 4-8 shows an example of the report.

Analyzing a JVM Java Performance Profile 4-9
Figure 4-8. Java CPU By Executing Method Report

PACKAGE/CLASS
asdfasd fasdfMETHOD

The name of the package/class and method that was actively processing at the time
STROBE sampled.

% CPU TIME

The total percent of CPU time used in class code.

• SOLO shows activity without any concurrent I/O or CPU activity being performed
under control of programs executing within the address space.

• TOTAL shows activity with or without any concurrent I/O or CPU activity.

CPU TIME HISTOGRAM

The histogram shows the distribution of CPU usage within each class. Solo CPU time is
indicated with the symbol “*”. The remaining CPU time is indicated with the symbol
“+”. Spikes, or lengthy lines in the histogram, highlight classes with a high proportion of
activity.

CLASS TOTAL

Total amount of CPU usage for the reported classes.

** JAVA CPU BY EXECUTING METHOD **

NOTE: * DENOTES INTERPRETED METHOD

PACKAGE/CLASS % CPU TIME CPU TIME HISTOGRAM MARGIN OF ERROR: 1.20%
METHOD SOLO TOTAL .00 .50 1.00 1.50 2.00

com/ibm/jvmTrace
*initializeTrace() .01 .01 .

----- -----
CLASS Trace TOTAL .01 .01

com/ibm/mqservices/Trace
*trace(int,java/lang/String,java/lang/String) .01 .01 .

----- -----
CLASS Trace TOTAL .01 .01

com/ibm/ras/RASMaskChangeGenerator
*init() .01 .01 .

----- -----
CLASS RASMaskChangeGenerator TOTAL .01 .01

com/timbow/appl/cta/sntranslation/SNResponder
*initPI() .01 .01 .

----- -----
CLASS SNResponder TOTAL .01 .01

com/timbow/appl/cta/snstrnslation/
SDRTargetsFileTranslator

*createBytes(com/timbow/services/translator/IMessage .01 .01 .
----- -----

CLASS SDRTargetsFileTranslator TOTAL .01 .01

com/timbow/appl/cta/sntranslation/SDRUtil
*setByteArrayDate(byte,int,int,int,java/lang/String) .01 .01 .
setByteArrayDate(byte,int,int,int,java/lang/String) .01 .01 .

----- -----
CLASS SDRUtil TOTAL .03 .03

4-10 STROBE Java Feature
Java Wait Time Reports
This section provides examples of the Performance Profile reports containing wait time
information for JVM Java applications.

Note: The CICS Transaction Profile reports will contain Java execution measurement,
but wait time is not recorded for a CICS address space.

Java Wait Time by Called Method Summary Report

This report shows information at the method level. The method name is composed of (if
present, the package name), the class name, the method name and the argument list.
Wait time is related back to the application method (the main method).

Figure 4-9. Java Wait Time by Called Method Summary Report

METHOD/SIGNATURE

Name of the method and argument list associated with the method. If a method has
more than one argument lists, each instance of the method name and each argument list
is considered a separate method.

RUN TIME PERCENT

The percentage of time during the measurement session that the address space was in
the wait state. There are two measures of run time:

– PAGE shows wait time that results from retrieving a page from the page data set.
A high value in this column indicates that there is not enough physical memory
assigned to the address space. If you noticed a high paging rate on the
Measurement Session Data report, the this report enables you to see which
method was experiencing delay because of paging.

– TOTAL measures all causes of wait time, including page retrieval, programmed
I/O operations, and timer requests.

RUN TIME HISTOGRAM

The histogram shows the distribution of run time within each class. Solo run time is
indicated with the symbol “*”. The remaining run time is indicated with the symbol “+”.
Spikes, or lengthy lines in the histogram, highlight classes with a high proportion of
activity.

MARGIN OF ERROR

The margin of error for wait time percentages. This value also appears in the RUN
MARGIN OF ERROR PCT field on the Measurement Session Data report.

JAVA METHOD TOTALS

Total amount of wait time for the reported methods.

** JAVA WAIT TIME BY CALLED METHOD SUMMARY **

METHOD SIGNATURE % RUN TIME RUN TIME HISTOGRAM MARGIN OF ERROR: .72%
PAGE TOTAL .00 9.00 18.00 27.50 36.00

com/ibm/mq/MqThread.run() .00 35.64 .+++++++++++++++++++++++++++++++++++++++
com/timbow/appl/CollectStatisticsByRequest/CollectStatist .00 .18 .
ics.main(java/lang/string)

----- -----
JAVA METHOD TOTALS 3.21 39.04

Analyzing a JVM Java Performance Profile 4-11
Java Wait Time by Called Method Report

This report shows the package, class and methods directly invoked by the user targeted or
initial application method. For each class, the total wait time for all of its methods is
reported. Figure 4-10 on page 4-11 shows an example of the report. In this example, the
initial method is main(java/lang/string). The methods listed below were all directly
invoked by this method. The wait time associated with the called method is the
percentage of wait time use that can be attributed to the logic path beginning with
java/lang/string calling the method associated with the wait time.

Note: For an explanation of the advantages of using the iSTROBE version of this report,
see “The iSTROBE Java Activity by Called Method Report” on page 4-7.

Figure 4-10. Java Wait Time by Called Method Report

PACKAGE
CLASS
METHOD

The name of the package and class and method that is the ultimate invoker of the rest of
the classes and methods listed in the report.

PACKAGE/CLASS
asfasfd METHOD
asdfasf sadaf daf dsafdf afds.INVOKED SQL

The name of the method and the class containing it that was invoked by the the initial
user application method or the user-targeted method. The method name(s) is indented
two characters past the class name. Any SQL statement that was invoked by the called
method, either directly or via lower levels of called methods is listed for the method and
class and is indented two characters past the method name.

RUN TIME PERCENT

The percentage of time during the measurement session that the address space was in
the wait state. There are two measures of run time:

– PAGE shows wait time that results from retrieving a page from the page data set.
A high value in this column indicates that there is not enough physical memory
assigned to the address space. If you noticed a high paging rate on the
Measurement Session Data report, this report enables you to see which method
was experiencing delay because of paging.

– TOTAL measures all causes of wait time, including page retrieval, programmed
I/O operations, and timer requests.

** JAVA WAIT TIME BY CALLED METHOD **

PACKAGE - com/timbow/appl/CollectStatisticsbyRequest/
CLASS - CollectStatistics
METHOD - main(java/lang/string)

PACKAGE/CLASS % RUN TIME RUN TIME HISTOGRAM MARGIN OF ERROR: 2.61%
METHOD PAGE TOTAL .00 .50 1.00 1.50 2.00

INVOKED SQL

com/tibow/appl/SelectStatus
processRequestStats() .00 .00 .

SQL SELEC CMPWR252 0-07 .00 .18
----- -----

CLASS SelectStatus TOTAL .00 .18

4-12 STROBE Java Feature
RUN TIME HISTOGRAM

The histogram shows the distribution of run time within each class. Solo run time is
indicated with the symbol “*”. The remaining run time is indicated with the symbol “+”.
Spikes, or lengthy lines in the histogram, highlight classes with a high proportion of
activity.

MARGIN OF ERROR

The margin of error for wait time percentages. This value also appears in the RUN
MARGIN OF ERROR PCT field on the Measurement Session Data report.

JAVA METHOD TOTALS

Total amount of wait time for the reported methods.

CLASS TOTAL

Total amount of wait time for the reported classes.

Java Wait Time by Method Report

This report shows wait time in a Java method. Figure 4-11 on page 4-12 shows an
example of the report.

Figure 4-11. Java Wait Time by Method Report

PACKAGE/CLASS
asdfasd fasdfMETHOD

The name of the package/class and method that was the cause of wait at the time STROBE
sampled.

** JAVA WAIT TIME BY METHOD **

NOTE: * DENOTES INTERPRETED METHOD

PACKAGE/CLASS % RUN TIME RUN TIME HISTOGRAM MARGIN OF ERROR: 2.61%
METHOD WAIT TOTAL .00 1.00 3.00 3.00 4.00

com.ibm.or.gapache.xml.utiles.synthetic.Buildme
declareInnerClass(String); .14 .14 .**
toSource(PrintStream, int); .05 .05 .
toSource(PrintStream, int); 1.45 1.45 .**************
writeObjects(String, BuildMe, Object, PrintStream, .14 .14

MaterialCompositionDetector);
----- -----

CLASS BuildeMe TOTAL 1.78 1.78

com.ibm.org.apache.xml.utils.synthetic.
MaterialCompositionDetector
*findCompositionOfMaterial(PrintStream, int); 1.35 1.35 .************
findCompositionOfMaterial(PrintStream, int); 1.15 1.15 .**********

----- -----
CLASS MaterialCompositionDetector TOTAL 2.50 2.50

java.io.PrintStream
print(String); .70 .70 .********
println(String); .21 .21 .****

----- -----
CLASS PrintStream TOTAL .91 .91

TOTAL ----- -----
5.19 5.19

Analyzing a JVM Java Performance Profile 4-13
RUN TIME PERCENT

The percentage of time during the measurement session that the address space was in
the wait state. There are two measures of run time:

– PAGE shows wait time that results from retrieving a page from the page data set.
A high value in this column indicates that there is not enough physical memory
assigned to the address space. If you noticed a high paging rate on the
Measurement Session Data report, this report enables you to see which method
was experiencing delay because of paging.

– TOTAL measures all causes of wait time, including page retrieval, programmed
I/O operations, and timer requests.

RUN TIME HISTOGRAM

The histogram shows the distribution of run time within each class. Solo run time is
indicated with the symbol “*”. The remaining run time is indicated with the symbol “+”.
Spikes, or lengthy lines in the histogram, highlight classes with a high proportion of
activity.

MARGIN OF ERROR

The margin of error for wait time percentages. This value also appears in the RUN
MARGIN OF ERROR PCT field on the Measurement Session Data report.

CLASS TOTAL

Total amount of wait time for the reported classes.

Program Section Usage Summary Report

The Program Section Usage Summary report shown in Figure 4-12 provides the
distribution of CPU time used by each active control section of each Java module in the
measured address space. Examine this report to determine what programs or systems
services are consuming the most CPU resources. You can then look up those programs in
the Program Usage by Procedure report to determine which procedures cause the
consumption.

Figure 4-12. Program Section Usage Summary Report

MODULE NAME

The name of the module or pseudo-module for which STROBE is detailing CPU usage.
For module names that exceed eight characters, see the note in the SECTION NAME
paragraph. A module name of JAVAJIT indicates activity was observed in Java
methods that had been compiled to machine code. The “Java CPU by Executing
Method Report” on page 4-8 and the “Java Wait Time by Method Report” on page
4-12 includes JAVAJIT activity.

** PROGRAM SECTION USAGE SUMMARY **

MODULE SECTION 16M SECT FUNCTION CPU TIME PERCENT CPU TIME HISTOGRAM MARGIN OF ERROR: 2.61%
NAME NAME <,> SIZE SOLO TOTAL .00 13.50 27.00 40.50 54.00

.SYSTEM .ISG GRS 7.78 7.78 .*****

.SYSTEM .JAVA JAVA 5.19 5.19 .***

.SYSTEM .LELIB LE/370 LIBRARY SUBROUTNE 3.40 3.40 .**

.SYSTEM .NUCLEUS MVS NUCLEUS 1.77 1.77 .*

.SYSTEM .SMS SYSTEM MANAGER STORAGE 16.84 16.84 .**************

.SYSTEM .USS UNIX SYSTEM SERVICES 52.58 52.58 .***********************************
----- -----

.SYSTEM TOTALS SYSTEM SERVICES 87.56 87.56

4-14 STROBE Java Feature
SECTION NAME

The name of the control section or the pseudo-section within the module or pseudo-
module identified in MODULE NAME for which STROBE is detailing CPU usage. A
section name may not appear if the activity in the section is less than the percentage
specified in the MODULE MAPPING BASELINE (default 2%) or if STROBE was unable
to map the module. STROBE is unable to index a section that is not mapped. A
section name of .JAVA indicates activity in either HPJ Java modules or JVM system
modules.

For all module or section names that exceed eight characters, STROBE generates a
token, which is an eight-byte identifier. The token comprises the first four characters
of the module or section name followed by a hyphen (-) and then the last three
characters of the name. Refer to the Token - Longname Cross Reference report to
reconcile all tokens with their long names.

Note: STROBE reports "?LONGnnn" for the section names that exceed eight
characters if initialization of the long names data space fails. The suffix "nnn"
is a sequence number beginning with "001". The suffix is reset to "001" for
each module. If initialization of the long names data space fails, STROBE also
does not produce the Token - Longname Cross Reference report.

16M < , >

Indicates whether the RMODE of a module is 24 bit (<) or 31 bit (>). If the module
has multiple control sections, this indication appears next to TOTALS in the
SECTION NAME column. If the module is a Generalized Object File Format (GOFF)
split-RMODE module an “S” appears in this column. If a GOFF module contains
multiple control sections, the RMODE indicator appears for each control section.

SECT SIZE

The size of the control section in bytes, expressed in decimal notation. The report
does not show section size for pseudo-sections, such as .IOCS and .SVC, that group
related system services together and summarize those services.

FUNCTION

A short description of the function of the control section or pseudo-section or of the
module or pseudo-module. Function descriptors appear for all pseudo-sections and
pseudo-modules and, if your STROBE system programmer has supplied them, for
other control sections and modules as well.

CPU TIME PERCENT

The percentage of all CPU time executing on behalf of the control section. There are
two measures of CPU time:

– SOLO shows activity without any concurrent I/O activity for the target program
or subsystem.

– TOTAL shows activity with or without concurrent I/O activity.

If a module contains more than one control section, the report also shows subtotals
by control section. The Program Usage by Procedure repor treats each control section
in the Program Section Usage Summary report in greater detail.

CPU TIME HISTOGRAM

Displays the intensity of CPU usage within each control section. Solo CPU time is
indicated by the symbol “*”. The remaining CPU time is indicated by the symbol “+”.
Spikes, or lengthy lines in the histogram, highlight control sections with a high
proportion of activity.

MARGIN OF ERROR

The margin of error for the CPU time percentages, also reported on the Measurement
Session Data report. This margin of error, which appears in the header line, applies
only to the number of samples in which STROBE found the CPU to be active.

Analyzing a JVM Java Performance Profile 4-15
Program Usage by Procedure Report

The Program Usage by Procedure report shown in Figure 4-13 details the time the CPU
spent executing Java code within each area of each control section of each module of the
program or subsystem. The report is ordered alphabetically by module and, within
module, by control section. Examine this report when the Program Section Usage
Summary or the Most Intensively Executed Procedures reports show a concentration of
CPU use. This report normally appears in two formats: a report formatted for system
modules and a report formatted for user-written modules.

Figure 4-13. Program Usage by Procedure Report

This report show CPU usage for all system service routines under the pseudo-module
.SYSTEM. A report for a system module begins with a header line that shows the pseudo-
module (.SYSTEM) and the pseudo-section, with a description of its function.

Detail lines show:

• MODULE NAME, the true module name or an SVC identified by number. The module
name JAVAJIT indicates activity was observed in Java methods that had been
compiled to machine code. The “Java CPU by Executing Method Report” on page 4-8
and the “Java Wait Time by Method Report” on page 4-12 details JAVAJIT activity.

• SECTION NAME, the control section name (if STROBE obtained one during
sampling). If the section name is a token, refer to the Token - Longname Cross
Reference report to resolve the token name.

• FUNCTION, the function descriptor of the control section (if available) or the
function descriptor of the module. Function descriptors do not appear for STROBE
Features not installed at your site.

Attribution Reports

The STROBE Java Feature produces two attribution reports.

Attribution of CPU Execution Time Report

When relevant, attribution of CPU activity seen in system routines or Java methods that
have been JIT compiled is attributed to the initial application method or the user-
targeted method. See STROBE MVS Concepts and Facilities for more information about this
report.

** PROGRAM USAGE BY PROCEDURE **

.SYSTEM SYSTEM SERVICES .JAVA JAVA
MODULE SECTION FUNCTION INTERVAL % CPU TIME CPU TIME HISTOGRAM MARGIN OF ERROR: 1.53%

NAME NAME LENGTH SOLO TOTAL .00 .50 1.00 1.50 2.00

.JAVA com.-dME JAVA 1.78 1.78 .*********************

.JAVA com.-tor JAVA 2.50 2.50 .*****************************

.JAVA com.-eam JAVA .91 .91 .********
----- -----

.JAVA TOTALS 5.19 5.19

4-16 STROBE Java Feature
Figure 4-14. Attribution of CPU Execution Time Report

Attribution of CPU Wait Time Report

When it relevant, attribution of wait time seen in system routines or Java methods that
have been JIT compiled is attributed to the initial application method or the user-
targeted method. See STROBE MVS Concepts and Facilities for more information about this
report.

Figure 4-15. Attribution of CPU Wait Time Report

** ATTRIBUTION OF CPU EXECUTION TIME **
.USS BXINPVT VECT TBL PRIV AREA MOD

------------------------ WAS INVOKED BY--------- ---------VIA-------------- -CPU TIME %-
XACTION PACKAGE/CLASS/METHOD PACKAGE/CLASS/METHOD SOLO TOTAL

TRANA java-e() com.ng) .14 .14
----- -----

.14 .14

** ATTRIBUTION OF CPU WAIT TIME **

.USS BXINPVT VECT TBL PRIV AREA MOD
------------------------ WAS INVOKED BY--------- ---------VIA-------------- WAIT TIME %-
XACTION PACKAGE/CLASS/METHOD PACKAGE/CLASS/METHOD PAGE TOTAL

TRANA java-e() com.ng) .00 .01
----- -----

.00 .01

 I-1
Index

Special Characters

.SYSTEM
in Program Usage by Procedure report, 4-15

?LONGnnn, defined, 4-14

A

active jobs, measuring, 2-2
adding

active measurement requests, 2-2
additional measurement options, specifying, 2-2
Attribution of CPU Execution Time report, 3-3

using to identify CPU time, 1-2
attribution reports, showing system services, 3-3
attribution, described, 1-2

B

batch processing applications, measuring, 2-2
benefits of using STROBE

overview, 1-1

C

CICS Transaction Server 1.3, 1-5
configuring measurement sessions, 2-2
control sections

displaying inactive, 4-13
controlling the level of detail in reports, 2-8
CPU

time
in Program Section Usage Summary report, 4-13

CPU TIME HISTOGRAM
in Program Section Usage Summary report, 4-14

CPU TIME PERCENT column
in Program Section Usage Summary report, 4-14

CPU Usage by Java Method report, 3-2

D

data collectors, specifying, 2-2

F

field, described, 1-3

FUNCTION
column

in Program Section Usage Summary report, 4-14
in Program Usage by Procedure report, 4-15

function descriptors
of control sections or pseudo-control sections, 4-14

H

High Performance Java compiler, 1-5

I

iSTROBE
advantages of, 4-7
Java Activity by Called Method report, 4-7
Java Call Stacks report, 4-8

J

Java Class Summary report, 3-1
Java CPU by Executing Method report, example, 4-8
Java CPU Usage by Called Method report, example,

4-4
Java CPU Usage by Called Method Summary report,

example, 4-3
Java environment report, example, 4-3
Java programming language, described, 1-3
Java targeting information report, example, 4-2
Java Virtual Machine, 1-5
Java Wait Time by Called Method Summary report, ex-

ample, 4-10
JAVARPT, 2-8
job name, specifying, 2-2
JVM environment targeting, 2-5

M

MARGIN OF ERROR field
in Program Section Usage Summary report, 4-14
in Program Usage by Procedure report, 4-4, 4-10,

4-12–4-13
measurement requests

described, 1-2
Measurement Session Data report, example, 4-1
measurement sessions

configuring, 2-2
described, 1-2

measurement task, 4-1
measuring application performance, benefits of, 1-1
measuring the application

active jobs, 2-2
adding session management parameters, 2-2
batch processing applications, 2-2
online regions, 2-2
requesting retention, 2-2

I-2 STROBE Java Feature
specifying additional measurement options, 2-2
specifying data collectors, 2-2
specifying module mapping facilities, 2-2

method, described, 1-3
minimum percentage options, reports with, 2-8
module mapping facilities, specifying, 2-2
MODULE NAME column

in Program Section Usage Summary report, 4-13
in Program Usage by Procedure report, 4-15

N

NOJAVARPT, 2-8

O

object, described, 1-3
online applications, measuring, 2-2

P

PAGE wait column, in Wait Time by Module report,
4-10–4-11, 4-13

parameters
JAVARPT, 2-8
NOJAVARPT, 2-8

Performance Profile
described, 4-1

Program Section Usage Summary report
columns

16M, 4-14
CPU TIME PERCENT, 4-14
FUNCTION, 4-14
MODULE NAME, 4-13
SECT SIZE, 4-14
SECTION NAME, 4-14
SOLO, 4-14
TOTAL, 4-14

CPU TIME HISTOGRAM, 4-14
MARGIN OF ERROR, 4-14

Program Usage by Procedure report, 4-4, 4-10, 4-12–
4-13, 4-15
columns

FUNCTION, 4-15
MODULE NAME, 4-15
SECTION NAME, 4-15

fields
MARGIN OF ERROR, 4-4, 4-10, 4-12–4-13

function of, 4-15
relation to Program Section Usage Summary report,

4-14

R

reports
Attribution of CPU Execution Time, 1-2, 3-3
controlling level of detail in, 2-8
controlling size of, 2-8
CPU Usage by Java Method, 3-2
Java Class Summary, 3-1

showing system services invoked by the applica-
tion, 3-3

specifying resolution, 2-8
with minimum percentage options, 2-8

resolution, specifying in reports, 2-8
retention, requesting, 2-2
RUN TIME PERCENT column

in Wait Time by Module report, 4-10–4-11, 4-13

S

sample data sets
described, 1-2
specifying, 2-2

SECT SIZE column, in Program Section Usage Summa-
ry report, 4-14

SECTION NAME column
in Program Section Usage Summary report, 4-14
in Program Usage by Procedure report, 4-15

session management parameters, adding, 2-2
SOLO column

in Program Section Usage Summary report, 4-14
specifying

additional measurement options, 2-2
job names, 2-2
report resolution, 2-8
sample data sets, 2-2
target systems, 2-2

STROBE
benefits of using, 1-1
defined, 1-1

systems, specifying, 2-2

T

targeting in JVM, 2-5
TOTAL

column
in Program Section Usage Summary report, 4-14

wait column, in Wait Time by Module report, 4-10–
4-11, 4-13

U

using STROBE
terminology, 1-2

W

Wait Time by Module report
columns

PAGE wait, 4-10–4-11, 4-13
RUN TIME PERCENT, 4-10–4-11, 4-13
TOTAL wait, 4-10–4-11, 4-13

	Figures
	Summary of Changes
	Changes to the Feature
	Changes to the Manual

	Introduction
	How This Manual Is Organized
	How to Use This Manual
	The STROBE Library
	STROBE Feature Manuals
	Online Documentation

	Online Help
	Other Compuware Application Performance Management Products
	iSTROBE
	SQL Analysis Feature
	APMpower

	Compuware APM Technical Support
	Compuware APM Training
	Compuware APM Service Offerings
	APM Installation Assurance
	Application Performance Management Consulting
	Application Performance Assessment

	Overview
	Benefits of the STROBE Java Feature
	Concepts and Terminology
	Overview of the JVM Java Target Environment
	Measuring JVM and CICS Applications
	Measuring JVM and DB2 Applications

	Overview of the HPJ Java Target Environment
	Where to Find More Information

	Using the STROBE Java Feature
	Requirements for the STROBE Java Feature
	JVM Java Requirements
	HPJ Java Requirements

	Measuring the Application
	Measuring an Active Job
	Measuring a Job That is not yet Executing
	Configuring Java Data Collection
	Java Targeting and Reporting
	Using Java Targeting

	Targeting JVM Java Code for Measurement
	Specifying Target Information
	Using the STROBE Java Target Selector

	Creating a Performance Profile
	Controlling the Level of Detail in the Reports
	Tailoring the STROBE HPJ Java Feature Reports

	Analyzing a HPJ Java Performance Profile
	Finding Significant Activity in the Java Application
	Java Class Summary Report
	Attribution of CPU Execution Time Report

	Analyzing a JVM Java Performance Profile
	Measurement Session Data Report
	Java Targeting Information Report
	Java Environment Report

	Java CPU Reports
	Java CPU Usage by Called Method Summary Report
	Java CPU Usage by Called Method Report
	The iSTROBE Java Activity by Called Method Report
	Java CPU by Executing Method Report

	Java Wait Time Reports
	Java Wait Time by Called Method Summary Report
	Java Wait Time by Called Method Report
	Java Wait Time by Method Report
	Program Section Usage Summary Report
	Program Usage by Procedure Report

	Attribution Reports
	Attribution of CPU Execution Time Report
	Attribution of CPU Wait Time Report

	Index

