
 COVER Book Cover
 --
 IBM Language Environment for MVS & VM

 Fortran Run-Time Migration Guide

 Release 5

 Document Number SC26-8499-00

 Program Number
 5688-198

 --

Lang Env V1R5 Fortran Migration Guide
Book Cover

¦ Copyright IBM Corp. 1995
COVER - 1

 NOTICES Notices

 +--- Note! --+
 ¦ ¦
 ¦ Before using this information and the products it supports, be ¦
 ¦ sure to read the general information under "Notices" in ¦
 ¦ topic FRONT_1. ¦
 ¦ ¦
 +--+

Lang Env V1R5 Fortran Migration Guide
Notices

¦ Copyright IBM Corp. 1995
NOTICES - 1

 EDITION Edition Notice
First Edition (December 1995)

This edition applies to Version 1 Release 5 of Language Environment for MVS & VM, Program Number 5688-198, and to any

 subsequent releases until otherwise indicated in new editions or technical newsletters. Make sure you are using the correct edition
 for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
 address given below.

A form for reader's comments is provided at the back of this publication. If the form has been removed, address your comments to:

 IBM Corporation, Department J58
 P. O. Box 49023
 San Jose, CA, 95161-9023
 United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
 appropriate without incurring any obligation to you.

 ¦ Copyright International Business Machines Corporation 1995. All
 rights reserved.

Note to U.S. Government Users -- Documentation related to restricted rights -- Use, duplication or disclosure is subject to restrictions
 set forth in GSA ADP Schedule Contract with IBM Corp.

Lang Env V1R5 Fortran Migration Guide
Edition Notice

¦ Copyright IBM Corp. 1995
EDITION - 1

 CONTENTS Table of Contents
 COVER Book Cover
 NOTICES Notices
 EDITION Edition Notice
 CONTENTS Table of Contents
 FRONT_1 Notices
 FRONT_1.1 Programming Interface Information
 FRONT_1.2 Trademarks
 PREFACE About This Book
 PREFACE.1 Using Your Documentation
 PREFACE.2 How to Read the Syntax Diagrams
 1.0 Part 1. Planning the Migration
 1.1 Chapter 1. Introducing Fortran with Language Environment
 1.1.1 What Language Environment Is and How It Supports Fortran
 1.1.2 Fortran Object Module Compatibility
 1.1.3 Obstacles to Migrating Applications Containing Fortran
 1.1.4 Fortran Load Module Compatibility
 1.2 Chapter 2. Identifying the Incompatibilities
 1.2.1 List of Incompatibilities
 1.2.2 VS FORTRAN Facilities without Language Environment Counterparts
 1.3 Chapter 3. Limited Use of Language Environment Facilities
 1.3.1 Fortran Cannot Directly Call Language Environment Callable Services
 1.3.2 Fortran Routines Cannot Be Included in Reentrant Load Modules
 1.3.3 Fortran Routines Restricted to Initial POSIX Thread
 1.3.4 Preinitialization Services Cannot Refer to Fortran Routines
 2.0 Part 2. Link-Editing and Running the Application
 2.1 Chapter 4. Specifying the Language Environment Libraries
 2.1.1 Libraries Used to Link-Edit and Run Your Application
 2.1.2 Cataloged Procedures
 2.1.3 Specifying Run-Time Libraries under TSO
 2.2 Chapter 5. Removing VS FORTRAN Library Routines
 2.3 Chapter 6. Declaring the Presence of Fortran Routines
 2.3.1 Link-Editing Fortran Routines That Don't Call Fortran Library Routines
 2.3.2 Dynamically Loading the First Fortran Routine in Your Application
 2.4 Chapter 7. Resolving Conflicting Library Routine References
 2.4.1 Step 1: Identifying the Conflicting References
 2.4.2 Step 2: Recompiling Programs to Eliminate Conflicting References
 2.4.3 Step 3: Automatically Resolving the Conflicting References
 2.4.4 Step 4: Manually Resolving the Conflicting References
 2.5 Chapter 8. Migrating VS FORTRAN Run-Time Options
 2.5.1 Coding the Option String
 2.5.2 Comparing the Individual Run-Time Options
 2.5.3 Providing Default Run-Time Options for Your Application
 2.6 Chapter 9. Interpreting Return Codes and Completion Codes
 2.6.1 Specifying How Unhandled Conditions Should Be Reported
 2.6.2 Return Codes
 2.6.3 Completion (Abend) Codes
 3.0 Part 3. Changing Source Programs
 3.1 Chapter 10. Handling Run-Time Errors
 3.1.1 Overview of the Language Environment Condition Handling Model
 3.1.2 Overview of the VS FORTRAN Extended Error Handling Facility
 3.1.3 Fortran-Specific Services for Error Handling
 3.1.4 Handling Run-Time Errors from Your Fortran Routines
 3.1.5 Regaining Control for Conditions Not Handled by a Subprogram
 3.2 Chapter 11. Making Other Source Program Changes
 3.2.1 Texts of Run-Time Error Messages
 3.2.2 Values Returned through the IOSTAT Specifier
 3.2.3 Permissible Input/Output to the Error Message Unit
 3.2.4 Data Set Attributes for the Message File
 3.2.5 Fix-Up for Misaligned Vector Instruction Operands

Lang Env V1R5 Fortran Migration Guide
Table of Contents

¦ Copyright IBM Corp. 1995
CONTENTS - 1

 3.2.6 Fixed-Point Overflow
 3.2.7 DVCHK and OVERFL Subroutines
 3.2.8 Assembler Language Routines That Find Program Arguments
 3.2.9 Run-Time Initialization from Assembler Language
 APPENDIX1 Part 4. Appendixes
 APPENDIX1.1 Appendix A. Fortran Callable Services and Functions
 APPENDIX1.1. AFHCEEF--Invoke a Callable Service Passing the Feedback Code
 APPENDIX1.1. AFHCEEN--Invoke a Callable Service Omitting the Feedback Code
 APPENDIX1.1. QDFETCH Callable Service--Retrieve a Qualifying Datum of Any Type
 APPENDIX1.1. QDLEN Function--Determine the Length of a Qualifying Datum
 APPENDIX1.1. QDLOC Function--Obtain the Address of a Qualifying Datum
 APPENDIX1.1. QDSTORE Callable Service--Update a Qualifying Datum
 APPENDIX1.1. QDTYPE Function--Determine the Data Type of a Qualifying Datum
 APPENDIX1.1. QDxxxxx Functions--Retrieve a Qualifying Datum of a Specific Type
 APPENDIX1.2 Appendix B. Qualifying Data for Language Environment Conditions
 APPENDIX1.2. q_data Structure for Abends
 APPENDIX1.2. q_data Structure for Arithmetic Program Interruptions
 APPENDIX1.2. q_data Structure for Square-Root Exception
 APPENDIX1.2. q_data Structure for Math and Bit-Manipulation Conditions
 APPENDIX1.2. Format of q_data Descriptors
 APPENDIX1.3 Appendix C. Message Number Mappings
 APPENDIX1.3. Language Environment Conditions for VS FORTRAN Message Numbers
 APPENDIX1.3. VS FORTRAN Message Numbers for Language Environment Conditions
 APPENDIX1.4 Appendix D. VS FORTRAN Error Handling Behavior
 BACK_1 Bibliography
 BACK_1.1 Language Products Publications
 BACK_1.2 Related Publications
 BACK_1.3 Softcopy Publications
 GLOSSARY Language Environment Glossary
 INDEX Index
 BACK_2 We'd Like to Hear from You
 COMMENTS Readers' Comments

Lang Env V1R5 Fortran Migration Guide
Table of Contents

¦ Copyright IBM Corp. 1995
CONTENTS - 2

 FRONT_1 Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in all
 countries in which IBM operates. Any reference to an IBM product, program, or service is not intended to state or imply that only
 that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe
 any of the intellectual property rights of IBM may be used instead of the IBM product, program, or service. The evaluation and
 verification of operation in conjunction with other products, except those expressly designated by IBM, are the responsibility of the
 user.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does
 not give you any license to these patents. You can send license inquiries, in writing, to the IBM Director of Licensing, IBM
 Corporation, 500 Columbus Avenue, Thornwood, NY 10594, U.S.A.

Licensees of this program who wish to have information about it for the purpose of enabling: (1) the exchange of information
 between independently created programs and other programs (including this one) and (2) the mutual use of the information which
 has been exchanged, should contact IBM Corporation, Department J01, 555 Bailey Avenue, San Jose, CA 95161-9023. Such
 information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

 Subtopics
 FRONT_1.1 Programming Interface Information
 FRONT_1.2 Trademarks

Lang Env V1R5 Fortran Migration Guide
Notices

¦ Copyright IBM Corp. 1995
FRONT_1 - 1

 FRONT_1.1 Programming Interface Information

This book is intended to help with application programming. This book documents General-Use Programming Interface and
 Associated Guidance Information provided by Language Environment for MVS & VM.

General-Use programming interfaces allow you to write programs that obtain the services of Language Environment for MVS & VM.

Lang Env V1R5 Fortran Migration Guide
Programming Interface Information

¦ Copyright IBM Corp. 1995
FRONT_1.1 - 1

 FRONT_1.2 Trademarks

The following terms are trademarks of the IBM Corporation in the United States or other countries or both:

 AD/Cycle DB2 MVS/SP
 C++/MVS DFSMS/MVS MVS/XA
 C/MVS IBM OpenEdition
 C/370 IMS/ESA SAA
 CICS Language Environment SOMobjects
 CICS/ESA MVS/ESA SQL/DS
 COBOL/370 MVS/DFP System/370
 VM/ESA

C-bus is a trademark of Corollary, Inc.

PC Direct is a trademark of Ziff Communications Company and is used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open Company Limited.

Windows is a trademark of Microsoft Corporation.

X/Open is a trademark of X/Open Company Limited.

Other company, product, and service names, which may be denoted by a double asterisk (**), may be trademarks or service marks
 of others.

Lang Env V1R5 Fortran Migration Guide
Trademarks

¦ Copyright IBM Corp. 1995
FRONT_1.2 - 1

 PREFACE About This Book
IBM Language Environment for MVS & VM (Language Environment) provides common services and language-specific routines in a

 single run-time environment for C, C++, COBOL, Fortran, PL/I, and assembler applications. It offers consistent and predictable results
 for language applications, independent of the language they are written in.

This book describes what you must do to link-edit and run applications with Language Environment on MVS when these applications
 contain Fortran routines compiled by one of these Fortran compilers:

� FORTRAN IV G
 � FORTRAN IV H Extende
 � VS FORTRAN Version
 � VS FORTRAN Version

As you read this book, you will learn:

� Which Fortran load modules can run with Language Environment without link-editing them with Language Environmen

� Which VS FORTRAN facilities aren't available in Language Environmen

� Which Fortran object modules can be link-edited and run with Language Environmen

� What source code changes are needed to run with Language Environmen

� Where to find more detailed informatio

Before you read this book, you should be aware of the VS FORTRAN Version 1 or Version 2 facilities that are used by your
 applications. You should also have some understanding of the features of Language Environment and of the basics of link-editing
 and running applications.

 Subtopics
 PREFACE.1 Using Your Documentation
 PREFACE.2 How to Read the Syntax Diagrams

Lang Env V1R5 Fortran Migration Guide
About This Book

¦ Copyright IBM Corp. 1995
PREFACE - 1

 PREFACE.1 Using Your Documentation

The publications provided with Language Environment are designed to help you:

� Manage the run-time environment for applications generated with a Language Environment-conforming compiler

� Write applications that use the Language Environment callable services

� Develop interlanguage communication applications

� Plan for, install, customize, and maintain Language Environment

� Debug problems in applications that run with Language Environment

� Migrate your high-level language applications to Language Environment

Language programming information is provided in the supported high-level language programming manuals, which provide language
 definition, library function syntax and semantics, and programming guidance information.

Each publication helps you perform a different task, some of which are listed in Table 1. All books are available in both hardcopy
 and softcopy. For a complete list of publications that you may need, see "Bibliography" in topic BACK_1.

 +---+
 ¦ Table 1. How to Use Language Environment for MVS & VM Publications ¦
 +---¦
 ¦ To ... ¦ Use ... ¦
 +------------------------------+--¦
 ¦ Evaluate Language ¦ Specification Sheet ¦
 ¦ Environment ¦ Concepts Guide ¦
 +------------------------------+--¦
 ¦ Plan for Language ¦ Concepts Guide ¦
 ¦ Environment ¦ Installation and Customization on MVS ¦
 ¦ ¦ Run-Time Migration Guide ¦
 +------------------------------+--¦
 ¦ Plan for installation, ¦ Installation and Customization on MVS ¦
 ¦ install, customize, and ¦ ¦
 ¦ maintain Language ¦ ¦
 ¦ Environment on MVS/ESA ¦ ¦
 +------------------------------+--¦
 ¦ Understand the Language ¦ Concepts Guide ¦
 ¦ Environment program models ¦ Programming Guide ¦
 ¦ and concepts ¦ ¦
 +------------------------------+--¦
 ¦ Find syntax for Language ¦ Programming Reference ¦
 ¦ Environment run-time options ¦ ¦
 ¦ and callable services ¦ ¦
 +------------------------------+--¦
 ¦ Develop applications that ¦ Programming Guide ¦
 ¦ run with Language ¦ Fortran Run-Time Migration Guide ¦
 ¦ Environment ¦ and your language programming guide ¦
 +------------------------------+--¦
 ¦ Debug applications that run ¦ Debugging Guide and Run-Time Messages ¦
 ¦ with Language Environment, ¦ ¦
 ¦ get details on run-time ¦ ¦
 ¦ messages, diagnose problems ¦ ¦
 ¦ with Language Environment ¦ ¦
 +------------------------------+--¦
 ¦ Develop interlanguage ¦ Writing Interlanguage Communication ¦
 ¦ communication (ILC) ¦ Applications, and your language ¦

Lang Env V1R5 Fortran Migration Guide
Using Your Documentation

¦ Copyright IBM Corp. 1995
PREFACE.1 - 1

 ¦ applications ¦ programming guide ¦
 +------------------------------+--¦
 ¦ Understand warranty ¦ Licensed Program Specifications ¦
 ¦ information ¦ ¦
 +------------------------------+--¦
 ¦ Migrate applications to ¦ Run-Time Migration Guide ¦
 ¦ Language Environment ¦ Fortran Run-Time Migration Guide ¦
 ¦ ¦ and other language migration guides ¦
 +---+

Lang Env V1R5 Fortran Migration Guide
Using Your Documentation

¦ Copyright IBM Corp. 1995
PREFACE.1 - 2

 PREFACE.2 How to Read the Syntax Diagrams

The following rules apply to the notation used in the syntax diagrams contained in this book:

� Read the syntax diagrams from left to right, top to bottom following the path of the line

� Each syntax diagram begins with a double arrowhead (>>)

� An arrow (->) at the end of a line indicates that the option, service, or macro syntax continues on the next line. A continuation
 line begins with an arrow (>-).

� IBM-supplied default keywords appear above the main path or options path (see the sample on page PREFACE.2). In the
 parameter list, IBM-supplied default choices are underlined.

� Keywords appear in nonitalic capital letters and should be entered exactly as shown. However, some keywords may be
 abbreviated by truncation from the right as long as the result is unambiguous. In this case, the unambiguous truncation is shown
 in capital letters in the keyword, for example:

 ANyheap

� Words in lowercase letters represent user-defined parameters or suboptions

� Enter parentheses, arithmetic symbols, colons, semicolons, commas, and greater-than signs where shown

� Required parameters appear on the same horizontal line (the main path) as the option, service, or macro

 >>--OPTION--required_parameter--------------------------------------><

� If you can choose from two or more parameters, the choices are stacked one above the other

 If choosing one of the items is optional, the entire stack appears below the main line.

 >>--OPTION--><
 +-optional_parameter_1-¦
 +-optional_parameter_2-¦
 +-optional_parameter_3-+

 If you must choose one of the items, one item of the stack appears on the main path:

 >>--OPTION----optional_parameter_1----------------------------------><
 +-optional_parameter_2-¦
 +-optional_parameter_3-+

� An arrow returning to the left above a line indicates that an item can be repeated

 <-----------------+
 >>--OPTION----repeatable_item---------------------------------------><
 OR

 >>--OPTION--><
 ¦ <-----------------+ ¦
 +---repeatable_item---+

� A comma or semicolon included in the repeat symbol indicates a separator that you must include between repeated parameters.
 These separators must be coded where shown.

� When entering commands, parameters and keywords must be separated by at least one blank if there is no intervening
 punctuation.

Lang Env V1R5 Fortran Migration Guide
How to Read the Syntax Diagrams

¦ Copyright IBM Corp. 1995
PREFACE.2 - 1

� A double arrow (-><) at the end of a line indicates the end of the syntax diagram

The following example demonstrates how to read the syntax notation. Numbers in the example correspond to explanations supplied
 below the example.

 +--- Format ---+
 ¦ ¦
 ¦ (1) ¦
 ¦ >>--ANyheap---,------> ¦
 ¦ ¦ (2) ¦ ¦
 ¦ +-(-----------------------,----------------+ ¦
 ¦ ¦ (3)¦ +-incr_size-+ ¦
 ¦ +-init_size----+ ¦
 ¦ ¦
 ¦ (5) ¦
 ¦ +-ANYWHERE-+ +-FREE----+ ¦
 ¦ >--+----------+--,--+---------+--)---------------------------------->< ¦
 ¦ +-BELOW----+ ¦ (4)¦ ¦
 ¦ +-KEEP----+ ¦
 ¦ ¦
 ¦ Notes: ¦
 ¦ (1) Keyword with minimum unambiguous truncation shown in capital ¦
 ¦ letters ¦
 ¦ ¦
 ¦ (2) Opening parenthesis (must be specified if any parameters are ¦
 ¦ specified) ¦
 ¦ ¦
 ¦ (3) Optional parameter ¦
 ¦ ¦
 ¦ (4) Optional keyword ¦
 ¦ ¦
 ¦ (5) Optional keyword (IBM-supplied default) ¦
 ¦ ¦
 +--+

Lang Env V1R5 Fortran Migration Guide
How to Read the Syntax Diagrams

¦ Copyright IBM Corp. 1995
PREFACE.2 - 2

 1.0 Part 1. Planning the Migration

 Subtopics
 1.1 Chapter 1. Introducing Fortran with Language Environment
 1.2 Chapter 2. Identifying the Incompatibilities
 1.3 Chapter 3. Limited Use of Language Environment Facilities

Lang Env V1R5 Fortran Migration Guide
Part 1. Planning the Migration

¦ Copyright IBM Corp. 1995
1.0 - 1

 1.1 Chapter 1. Introducing Fortran with Language Environment
This chapter introduces you to Language Environment for MVS & VM and provides an overview of how applications containing

 Fortran routines can run with Language Environment. You will learn about the following:

� What Language Environment is and how it supports Fortra
 � Fortran object module compatibilit
 � Obstacles to migrating applications containing Fortra
 � Fortran load module compatibilit

 Subtopics
 1.1.1 What Language Environment Is and How It Supports Fortran
 1.1.2 Fortran Object Module Compatibility
 1.1.3 Obstacles to Migrating Applications Containing Fortran
 1.1.4 Fortran Load Module Compatibility

Lang Env V1R5 Fortran Migration Guide
Chapter 1. Introducing Fortran with Language Environment

¦ Copyright IBM Corp. 1995
1.1 - 1

 1.1.1 What Language Environment Is and How It Supports Fortran

Language Environment is a single run-time environment for applications written in C, C++, COBOL, Fortran, and PL/I. In addition to
 support for many existing applications, Language Environment provides common condition handling and improved interlanguage
 communication (ILC). Application development is simplified by the use of common conventions, common run-time facilities, and a set
 of callable services that can be used from various languages.

Prior to Language Environment, a high-level language product, such as VS COBOL II or VS FORTRAN Version 2, included a compiler,
 a run-time library, and, in some cases, a debugger. Language Environment is a single product that provides the functions of the
 run-time libraries for all five supported high-level languages.

C, C++, COBOL, and PL/I all offer new compiler products that don't include run-time library components, but depend instead on
 Language Environment for that support. For example, the new COBOL compiler product is COBOL for MVS & VM, which produces
 object modules that use Language Environment internal interface conventions. Therefore, you must link-edit and run these new
 object modules with Language Environment rather than with the run-time libraries from any of the predecessor COBOL products.
 With some restrictions, you can link-edit and run the code produced by certain earlier COBOL compilers.

In the case of Fortran, there is no new compiler that produces code specifically for Language Environment. However, on MVS but
 not on VM, you can use Language Environment to link-edit and run much of the code that various Fortran compilers, such as VS
 FORTRAN Version 2, produce. You can also construct applications in which Fortran routines call or are called by routines written in
 C, C++, COBOL, or PL/I. The considerations for these interlanguage applications are discussed in Language Environment for MVS &
 VM Writing Interlanguage Communication Applications .

To link-edit and run Fortran routines with Language Environment, you might need to change your source programs, JCL statements,
 or TSO commands. In some cases, these changes could be significant. This book helps you understand these changes. For a list
 of what might affect the migration of your applications that contain Fortran routines, see Chapter 2, "Identifying the Incompatibilities"
 in topic 1.2.

Lang Env V1R5 Fortran Migration Guide
What Language Environment Is and How It Supports Fortran

¦ Copyright IBM Corp. 1995
1.1.1 - 1

 1.1.2 Fortran Object Module Compatibility

Subject to the migration considerations discussed in this book, you can use Language Environment to link-edit and run the code
 produced by any of the following Fortran compilers:

� FORTRAN IV G
 � FORTRAN IV H Extende
 � VS FORTRAN Version 1 (1)
 � VS FORTRAN Version

When you link-edit your application with Language Environment, the resulting load module must not contain any run-time library
 routines from the VS FORTRAN Version 1 or Version 2 products. If your input to the linkage editor includes a VS FORTRAN
 executable load module, use Language Environment's set of linkage editor REPLACE statements to remove the VS FORTRAN library
 routines. For more information, see Chapter 5, "Removing VS FORTRAN Library Routines" in topic 2.2.

 (1) There's one exception to the object module compatibility for VS FORTRAN Version 1: An object module cannot be link-edited with
 Language Environment if both of the following conditions are true:
 - The program was compiled with VS FORTRAN Version 1 prior to Release 3
 - The program either passes character arguments to a subprogram or is a subprogram that receives character arguments.

 If you have such an object module, recompile it with VS FORTRAN Version 2.

Lang Env V1R5 Fortran Migration Guide
Fortran Object Module Compatibility

¦ Copyright IBM Corp. 1995
1.1.2 - 1

 1.1.3 Obstacles to Migrating Applications Containing Fortran

A number of VS FORTRAN Version 2 facilities are not available when you link-edit and run Fortran routines with Language
 Environment. For some of your applications, this might make the migration difficult or even impossible. Following are the major VS
 FORTRAN Version 2 facilities that aren't available with Language Environment:

� Parallel program
 � Extended common blocks (EC compile-time option
 � Extended error handling facility subroutine
 � Automatic error fix-up action
 � Self-contained load modules (link mode
 � Interactive Debu
 � Support for Fortran on V

For a detailed list of the VS FORTRAN Version 2 facilities that either aren't available or require you to make some changes, see
 Chapter 2, "Identifying the Incompatibilities" in topic 1.2.

Because the code produced by the Fortran compilers doesn't conform to the Language Environment interface conventions, you can't
 use certain Language Environment facilities, primarily the callable services, directly from a Fortran routine. For further information,
 see Chapter 3, "Limited Use of Language Environment Facilities" in topic 1.3.

Lang Env V1R5 Fortran Migration Guide
Obstacles to Migrating Applications Containing Fortran

¦ Copyright IBM Corp. 1995
1.1.3 - 1

 1.1.4 Fortran Load Module Compatibility

On MVS (but not on VM), can use the Language Environment product as the run-time library for load modules that were link-edited
 with either the VS FORTRAN Version 1 or Version 2 library and that were link-edited so that library routines are loaded at run time.
 The existing load modules that you can run in this way are those that were link-edited in one of these ways:

� With the VS FORTRAN Version 1 Release 2, 3, or 3.1 library to use the MVS reentrant I/O library (sometimes called the IFYVRENT
 facility)

� With the VS FORTRAN Version 1 Release 4 or Release 4.1 library to run in load mod

� With the VS FORTRAN Version 2 library to run in load mod

To run your VS FORTRAN load module, the only change you need to make is to change your STEPLIB DD statement to refer to the
 Language Environment load library, CEE.V1R5M0.SCEERUN. For the applications that you choose to run in this way, none of the
 migration considerations in this book apply because the applications will run exactly as they did with the VS FORTRAN Version 2
 Release 6 library. You can even run applications using Fortran facilities, like parallel programs, that aren't available to applications
 that are link-edited with Language Environment. However, once you link-edit one of your VS FORTRAN load modules with Language
 Environment, your application is subject to all of the considerations described in this book, such as the unavailability of certain VS
 FORTRAN Version 2 facilities, like parallel programs.

If you have an application that dynamically loads other parts of the application at run time, you must not link-edit any of the load
 modules with Language Environment unless you link-edit all of them with Language Environment.

Load Modules with Languages Other Than Fortran: If your VS FORTRAN load module contains one or more routines written in C,
 COBOL, or PL/I, in most cases you must link-edit the load module with Language Environment if you want to run it with Language
 Environment. The requirement to link-edit applies to load modules link-edited to run either in load mode or in link mode.

Load Modules That Run in Link Mode: Load modules link-edited with VS FORTRAN Version 1 or Version 2 to run in link mode (as
 opposed to load mode) do not require a library to be available at run time. These load modules are not affected by the presence of
 Language Environment.

Lang Env V1R5 Fortran Migration Guide
Fortran Load Module Compatibility

¦ Copyright IBM Corp. 1995
1.1.4 - 1

 1.2 Chapter 2. Identifying the Incompatibilities
This chapter lists the incompatibilities that you might encounter in migrating to Language Environment, and it explains how to deal

 with some of the VS FORTRAN facilities for which there are no Language Environment counterparts.

 Subtopics
 1.2.1 List of Incompatibilities
 1.2.2 VS FORTRAN Facilities without Language Environment Counterparts

Lang Env V1R5 Fortran Migration Guide
Chapter 2. Identifying the Incompatibilities

¦ Copyright IBM Corp. 1995
1.2 - 1

 1.2.1 List of Incompatibilities

Table 2 shows various VS FORTRAN facilities that, if used in your application, could affect your migration to Language
 Environment. The "Status" column indicates that the facility either is different or is not available with Language Environment. On the
 referenced page, you can find information on how to address the incompatibility.

 +--+
 ¦ Table 2. Summary of Fortran Incompatibilities ¦
 +--¦
 ¦ Facility ¦ Status ¦ Topic ¦
 +--+---------------+---------¦
 ¦ Extended error handling facility subroutines ¦ Not available ¦ 3.1 ¦
 +--+---------------+---------¦
 ¦ Automatic error fix-up actions ¦ Not available ¦ 3.1 ¦
 +--+---------------+---------¦
 ¦ Parallel programs ¦ Not available ¦ 1.2.2.1 ¦
 ¦ ¦ ¦ ¦
 +--+---------------+---------¦
 ¦ Extended common blocks (EC compile-time ¦ Not available ¦ 1.2.2.2 ¦
 ¦ option) ¦ ¦ ¦
 +--+---------------+---------¦
 ¦ Alternative mathematical routines ¦ Not available ¦ 1.2.2.3 ¦
 ¦ ¦ ¦ ¦
 +--+---------------+---------¦
 ¦ Values returned through the IOSTAT specifier ¦ Changed ¦ 3.2.2 ¦
 +--+---------------+---------¦
 ¦ Permissible input/output to the error ¦ Changed ¦ 3.2.3 ¦
 ¦ message unit ¦ ¦ ¦
 +--+---------------+---------¦
 ¦ Data set attributes for the message file ¦ Changed ¦ 3.2.4 ¦
 +--+---------------+---------¦
 ¦ Fixed-point overflow ¦ Changed ¦ 3.2.6 ¦
 +--+---------------+---------¦
 ¦ Restricted source materials tape ¦ Not available ¦ 1.2.2.4 ¦
 ¦ ¦ ¦ ¦
 +--+---------------+---------¦
 ¦ Internal run-time library interfaces ¦ Changed ¦ 1.2.2.5 ¦
 ¦ ¦ ¦ ¦
 +--+---------------+---------¦
 ¦ Run-time options specified at program ¦ Changed ¦ 2.5 ¦
 ¦ invocation ¦ ¦ ¦
 +--+---------------+---------¦
 ¦ Link-editing an application containing ¦ Changed ¦ 2.0 ¦
 ¦ Fortran routines ¦ ¦ ¦
 +--+---------------+---------¦
 ¦ Self-contained load modules (link mode) ¦ Not available ¦ 1.2.2.6 ¦
 ¦ ¦ ¦ ¦
 +--+---------------+---------¦
 ¦ Return codes and completion (abend) codes ¦ Changed ¦ 2.6 ¦
 +--+---------------+---------¦
 ¦ Loading modules through the ddname FORTLIB ¦ Not available ¦ 2.1.3 ¦
 +--+---------------+---------¦
 ¦ Run-time initialization from assembler ¦ Changed ¦ 3.2.9 ¦
 ¦ language ¦ ¦ ¦
 +--+---------------+---------¦
 ¦ Assembler language routines obtaining ¦ Changed ¦ 3.2.8 ¦
 ¦ program arguments ¦ ¦ ¦
 +--+---------------+---------¦
 ¦ Texts of run-time error messages ¦ Changed ¦ 3.2.1 ¦
 +--+---------------+---------¦

Lang Env V1R5 Fortran Migration Guide
List of Incompatibilities

¦ Copyright IBM Corp. 1995
1.2.1 - 1

 ¦ Fix-up for misaligned vector instruction ¦ Not available ¦ 3.2.5 ¦
 ¦ operands ¦ ¦ ¦
 +--+---------------+---------¦
 ¦ DVCHK and OVERFL subroutines ¦ Not available ¦ 3.2.7 ¦
 +--+---------------+---------¦
 ¦ Static debug packets ¦ Not available ¦ 1.2.2.7 ¦
 ¦ ¦ ¦ ¦
 +--+

Lang Env V1R5 Fortran Migration Guide
List of Incompatibilities

¦ Copyright IBM Corp. 1995
1.2.1 - 2

 1.2.2 VS FORTRAN Facilities without Language Environment Counterparts

The following sections discuss VS FORTRAN facilities that are not available and have no counterparts in Language Environment. In
 some cases, the only solutions are either:

� Continue running the application with VS FORTRAN Version 2

� On MVS, without link-editing your application with Language Environment, change your STEPLIB DD statement to refer to the
 Language Environment load library, CEE.V1R5M0.SCEERUN. In this case, you cannot use any of the Language Environment
 facilities, such as the callable services or the improved communication among routines written in different languages.

 Subtopics
 1.2.2.1 Parallel Programs
 1.2.2.2 Extended Common Blocks (EC Compile-Time Option)
 1.2.2.3 Alternative Mathematical Routines
 1.2.2.4 Restricted Source Materials Tape
 1.2.2.5 Internal Run-Time Library Interfaces
 1.2.2.6 Self-Contained Load Modules (Link Mode)
 1.2.2.7 Static Debug Packets

Lang Env V1R5 Fortran Migration Guide
VS FORTRAN Facilities without Language Environment Counterparts

¦ Copyright IBM Corp. 1995
1.2.2 - 1

 1.2.2.1 Parallel Programs

You cannot link-edit and run parallel programs with Language Environment.

A parallel program is one that was compiled with the VS FORTRAN Version 2 Release 5 or 6 compiler and that either:

� Contains parallel language construct

� Invokes any of the parallel callable services (PEORIG, PEPOST, PEWAIT, PETERM, PLCOND, PLFREE, PLLOCK, PLORIG, or
 PLTERM)

� Was compiled with the PARALLEL compile-time optio

If you want to continue to run the program as a parallel program, link-edit the application with VS FORTRAN Version 2 Release 6,
 and run it either with the VS FORTRAN Version 2 Release 6 library or with the MVS version of Language Environment. However,
 you cannot use any of the Language Environment facilities in this case.

Programs using the Fortran multitasking facility (MTF) are not considered parallel programs. If your program uses MTF, you can
 link-edit and run it with Language Environment.

Lang Env V1R5 Fortran Migration Guide
Parallel Programs

¦ Copyright IBM Corp. 1995
1.2.2.1 - 1

 1.2.2.2 Extended Common Blocks (EC Compile-Time Option)

With Language Environment, you cannot link-edit and run programs that use extended common blocks. An extended common block
 is a common block whose name is specified in the EC compile-time option and that is created in a data space.

If your extended common blocks are small enough to fit in the primary address space, then recompile the programs that refer to them
 and provide the names of the common blocks in the DC compile-time option. If possible, reduce the size of your programs or the size
 of other data to make more space available in the primary address space.

If you can't restructure your programs and their data to fit in the primary address space, link-edit the application with VS FORTRAN
 Version 2 Release 6, and run it either with the VS FORTRAN Version 2 Release 6 library or with the MVS version of Language
 Environment. However, you cannot use any of the Language Environment facilities in this case.

Lang Env V1R5 Fortran Migration Guide
Extended Common Blocks (EC Compile-Time Option)

¦ Copyright IBM Corp. 1995
1.2.2.2 - 1

 1.2.2.3 Alternative Mathematical Routines

The VS FORTRAN Version 1 and VS FORTRAN Version 2 products each include a set of alternative mathematical routines that you
 can use instead of the standard set:

� With VS FORTRAN Version 1, the alternative set includes several routines that provide improved performance and accuracy

� With VS FORTRAN Version 2, the alternative set includes several routines whose results are compatible with those of the
 standard set of routines in VS FORTRAN Version 1.

Neither of the alternative sets is available with Language Environment.

When no errors are detected, the mathematical routines used when you link-edit your Fortran routines with Language Environment
 provide exactly the same results as the standard set of routines in VS FORTRAN Version 2.

Lang Env V1R5 Fortran Migration Guide
Alternative Mathematical Routines

¦ Copyright IBM Corp. 1995
1.2.2.3 - 1

 1.2.2.4 Restricted Source Materials Tape

There is no Language Environment counterpart to the VS FORTRAN restricted source materials tape, which contains the assembler
 language source code for many of the VS FORTRAN library routines. The source code isn't available for any of the components of
 Language Environment: the common component, the Fortran run-time library, or any of the other languages' run-time libraries.

If you've used the restricted source materials to modify the VS FORTRAN product, determine whether the general-use programming
 interfaces in Language Environment provide the functions you need. If they don't, contact your IBM representative for assistance.

Lang Env V1R5 Fortran Migration Guide
Restricted Source Materials Tape

¦ Copyright IBM Corp. 1995
1.2.2.4 - 1

 1.2.2.5 Internal Run-Time Library Interfaces

Your applications probably won't run if they depend on any internal VS FORTRAN product interfaces that aren't documented in
 either VS FORTRAN Version 2 Language and Library Reference or VS FORTRAN Version 2 Programming Guide for CMS and
 MVS. If you've used any undocumented interfaces, restructure your applications to use only the general-use programming
 interfaces in Language Environment. In many cases, the Language Environment callable services should satisfy your needs. If they
 don't, contact your IBM representative for assistance.

Lang Env V1R5 Fortran Migration Guide
Internal Run-Time Library Interfaces

¦ Copyright IBM Corp. 1995
1.2.2.5 - 1

 1.2.2.6 Self-Contained Load Modules (Link Mode)

With VS FORTRAN, you can link-edit your program to operate in link mode, which produces a load module that contains all the
 required VS FORTRAN library routines; such a load module can run on a system that doesn't have the VS FORTRAN library
 installed. Language Environment has no link mode equivalent; the required run-time library routines are always loaded at run time.
 Therefore, you must have Language Environment installed on the system on which you run your application.

Lang Env V1R5 Fortran Migration Guide
Self-Contained Load Modules (Link Mode)

¦ Copyright IBM Corp. 1995
1.2.2.6 - 1

 1.2.2.7 Static Debug Packets

The static debug facility of VS FORTRAN is not available with Language Environment. (Static debug includes the AT, DEBUG,
 DISPLAY, END DEBUG, and TRACE statements. The DEBUG and END DEBUG statements surround one or more debug packets,
 each of which begins with an AT statement.)

With Language Environment, you can link-edit and run object modules whose source code contains a debug packet. However, the
 debug packet, including all the statements in it, is ignored.

Lang Env V1R5 Fortran Migration Guide
Static Debug Packets

¦ Copyright IBM Corp. 1995
1.2.2.7 - 1

 1.3 Chapter 3. Limited Use of Language Environment Facilities
This chapter lists some of the Language Environment facilities that aren't available to Fortran routines, and it describes some

 techniques that let you take advantage of much of what Language Environment offers.

 Subtopics
 1.3.1 Fortran Cannot Directly Call Language Environment Callable Services
 1.3.2 Fortran Routines Cannot Be Included in Reentrant Load Modules
 1.3.3 Fortran Routines Restricted to Initial POSIX Thread
 1.3.4 Preinitialization Services Cannot Refer to Fortran Routines

Lang Env V1R5 Fortran Migration Guide
Chapter 3. Limited Use of Language Environment Facilities

¦ Copyright IBM Corp. 1995
1.3 - 1

 1.3.1 Fortran Cannot Directly Call Language Environment Callable Services

A Fortran routine cannot directly call any of the Language Environment callable services, all of which have names beginning with
 CEE. The reason for this restriction is that Language Environment has extended the standard linkage convention for subroutine
 calls; currently, no Fortran compiler produces code that conforms to these new conventions.

The two Fortran-specific callable services AFHCEEF and AFHCEEN permit Fortran routines to call most of the Language Environment
 callable services described in Language Environment for MVS & VM Programming Reference. For some examples of the use of the
 AFHCEEF and AFHCEEN callable services, see "Fortran Services for Calling Language Environment Callable Services" in topic
 3.1.3.4. These and other Fortran-specific callable services are described in detail in Appendix A, "Fortran Callable Services and
 Functions" in topic APPENDIX1.1.

Lang Env V1R5 Fortran Migration Guide
Fortran Cannot Directly Call Language Environment Callable Services

¦ Copyright IBM Corp. 1995
1.3.1 - 1

 1.3.2 Fortran Routines Cannot Be Included in Reentrant Load Modules

Do not mix non-Fortran reentrant routines with Fortran routines in the same load module if you want the resulting load module to be
 reentrant. This restriction applies even if you compile the Fortran routine with the RENT compile-time option.

Including any Fortran routine in a load module makes the load module nonreentrant, and a nonreentrant load module must not be
 placed in a read-only area, such as a link pack area.

If you have a reentrant routine written in a language other than Fortran and you want to include it in a reentrant load module,
 dynamically load any Fortran routines that it calls. Use the other language's dynamic loading facility, such as the C fetch(), the
 COBOL dynamic call, or the PL/I fetch facility.

Lang Env V1R5 Fortran Migration Guide
Fortran Routines Cannot Be Included in Reentrant Load Modules

¦ Copyright IBM Corp. 1995
1.3.2 - 1

 1.3.3 Fortran Routines Restricted to Initial POSIX Thread

Fortran routines can communicate with OpenEdition-conforming C routines, but the Fortran routines are restricted to the initial thread,
 and the main routine must be written in C.

Lang Env V1R5 Fortran Migration Guide
Fortran Routines Restricted to Initial POSIX Thread

¦ Copyright IBM Corp. 1995
1.3.3 - 1

 1.3.4 Preinitialization Services Cannot Refer to Fortran Routines

The Language Environment preinitialization services let you use an assembler language routine to initialize the run-time environment
 once, perform multiple executions of routines within the environment, and explicitly terminate the environment. The routines that are
 invoked directly by these services cannot be Fortran routines. To circumvent this restriction, structure the application as shown in
 Figure 1.

 --

 +---+
 ¦ DRVR: Assembler Language Driver Routine ¦
 +---¦
 ¦ ... ¦
 ¦ CALL CEEPIPI (init_sub, ...) ¦
 ¦ ... ¦
 ¦ CALL CEEPIPI (call_sub, ...) ¦
 ¦ ... ¦
 +---+
 ¦
 ¦
 �
 +---+
 ¦ ASMSUB: Assembler Language Subroutine ¦
 +---¦
 ¦ASMSUB CEEENTRY MAIN=NO, ... ¦
 ¦ ... ¦
 ¦ CALL FORTSUB (...) ¦
 ¦ ... ¦
 +---+
 ¦
 ¦
 �
 +---+
 ¦ FORTSUB: Fortran subroutine ¦
 +---¦
 ¦ SUBROUTINE FORTSUB (...) ¦
 ¦ ... ¦
 +---+

 --
 Figure 1. Assembler Language Routine to Invoke a Fortran Subroutine

 Notes on the Example:

1. The first call to CEEPIPI from the routine DRVR initializes the run-time environment, allowing subroutines that use or depend on
 Language Environment services to be called.

2. The routine DRVR is not considered to operate as part of the run-time environment because it is neither a main routine nor is it
 called (directly or indirectly) by a main routine. Therefore, it can't call any Language Environment services other than the
 preinitialization services.

3. The second call to CEEPIPI invokes the assembler language subroutine ASMSUB. Because the init_sub function is specified in
 the first call to CEEPIPI, only subroutines (rather than main routines) can be called.

4. Because the routine called by CEEPIPI must conform to the Language Environment linkage conventions, the assembler language
 subroutine ASMSUB uses the CEEENTRY macro to establish these conventions. It then calls the Fortran subroutine FORTSUB.

5. After control is returned to it, the driver program DRVR can call ASMSUB again, or it can call other subroutines. While the
 subroutines are executing, they operate within the run-time environment established by the first call to CEEPIPI.

Lang Env V1R5 Fortran Migration Guide
Preinitialization Services Cannot Refer to Fortran Routines

¦ Copyright IBM Corp. 1995
1.3.4 - 1

The preinitialization services provide several variations on the preceding scenario, such as allowing a main routine to be called. For

 further information on the preinitialization services and on the CEEENTRY macro, see Language Environment for MVS & VM
 Programming Guide.

Lang Env V1R5 Fortran Migration Guide
Preinitialization Services Cannot Refer to Fortran Routines

¦ Copyright IBM Corp. 1995
1.3.4 - 2

 2.0 Part 2. Link-Editing and Running the Application
Because the Fortran run-time library is part of Language Environment, there are numerous changes in the way you compile, link-edit,

 and run your Fortran programs. The following chapters explain the changes you'll have to make as you migrate to Language
 Environment. Most of the comparisons are between VS FORTRAN Version 2 Release 6 and Language Environment, although
 migration from VS FORTRAN Version 1 is similar.

 Subtopics
 2.1 Chapter 4. Specifying the Language Environment Libraries
 2.2 Chapter 5. Removing VS FORTRAN Library Routines
 2.3 Chapter 6. Declaring the Presence of Fortran Routines
 2.4 Chapter 7. Resolving Conflicting Library Routine References
 2.5 Chapter 8. Migrating VS FORTRAN Run-Time Options
 2.6 Chapter 9. Interpreting Return Codes and Completion Codes

Lang Env V1R5 Fortran Migration Guide
Part 2. Link-Editing and Running the Application

¦ Copyright IBM Corp. 1995
2.0 - 1

 2.1 Chapter 4. Specifying the Language Environment Libraries
The Fortran run-time library, the run-time libraries of the other supported languages, and the common component of Language

 Environment are installed together in a single set of libraries. This chapter discusses the following topics to help you understand
 how to use these libraries to link-edit and run your application:

� Libraries used to link-edit and run your applicatio
 � Cataloged procedure
 � Specifying load libraries under TS

 Subtopics
 2.1.1 Libraries Used to Link-Edit and Run Your Application
 2.1.2 Cataloged Procedures
 2.1.3 Specifying Run-Time Libraries under TSO

Lang Env V1R5 Fortran Migration Guide
Chapter 4. Specifying the Language Environment Libraries

¦ Copyright IBM Corp. 1995
2.1 - 1

 2.1.1 Libraries Used to Link-Edit and Run Your Application

Use the following libraries to link-edit and run your application with Language Environment. The names shown are the names
 supplied by IBM, but check with those who installed Language Environment at your site to see whether these names have been
 changed.

CEE.V1R5M0.SCEELKED
 Contains the run-time library routines that the linkage editor includes in your load module along with your own routines. These
 library routines are sometimes called resident run-time library routines or simply resident routines .

 CEE.V1R5M0.SCEELKED contains the resident routines for all of the high-level languages installed at your site and for the common
 library component of Language Environment.

 When you link-edit your application, specify the data set CEE.V1R5M0.SCEELKED in the DD statement or ALLOCATE command
 with the ddname SYSLIB. This data set is similar to but is not an exact replacement for the VS FORTRAN Version 2 data set
 SYS1.VSF2FORT.

 Important: Before you use CEE.V1R5M0.SCEELKED to link-edit an application containing Fortran routines, be sure you understand
 how to deal with the conflicting names that exist in the C/C++ and Fortran run-time libraries. For further information, see Chapter 7,
 "Resolving Conflicting Library Routine References" in topic 2.4.

CEE.V1R5M0.SAFHFORT
 Contains certain Fortran-specific run-time library routines that the linkage editor includes in your load module along with your own
 routines. It has routines, such as SQRT and EXIT, for which there are C-specific run-time library routines of the same name. You
 must use this data set in certain cases to correctly resolve potential name conflicts, as discussed in Chapter 7, "Resolving
 Conflicting Library Routine References" in topic 2.4.

 In some cases you must concatenate CEE.V1R5M0.SAFHFORT ahead of CEE.V1R5M0.SCEELKED in the SYSLIB input to the
 linkage editor to include the Fortran library routines rather than the corresponding C library routines in CEE.V1R5M0.SCEELKED.

 The data set CEE.V1R5M0.SAFHFORT has no VS FORTRAN counterpart. However, for a Fortran-only application, the following
 concatenation of data sets replaces the VS FORTRAN Version 2 data set SYS1.VSF2FORT:

 //SYSLIB DD DSN=CEE.V1R5M0.SAFHFORT,DISP=SHR
 // DD DSN=CEE.V1R5M0.SCEELKED,DISP=SHR

CEE.V1R5M0.SCEERUN
 Contains the library routines that are loaded at run-time. These routines are sometimes called transient run-time library routines or
 simply transient routines .

 CEE.V1R5M0.SCEERUN contains the transient routines for all of the high-level languages installed at your site and for the common
 library component of Language Environment.

 When you run your application, make CEE.V1R5M0.SCEERUN available in one of the following ways:

 � Refer to CEE.V1R5M0.SCEERUN in a DD statement w ith ddname STEPLIB or JOBLIB.

 � From TSO, use the MVS/TSO Dynamic STEPLIB Facility program offering (5798-DZW) to add CEE.V1R5M0.SCEERUN to your
 STEPLIB allocation. For an example of using this program offering, see "Specifying Run-Time Libraries under TSO" in topic 2.1.3.

 � Have your system programmer include CEE.V1R5M0.SCEERUN in the system link list so it is accessible w ithout being
 referenced through a STEPLIB or JOBLIB allocation.

 CEE.V1R5M0.SCEERUN is the Language Environment replacement for the VS FORTRAN Version 2 data set SYS1.VSF2LOAD.

Lang Env V1R5 Fortran Migration Guide
Libraries Used to Link-Edit and Run Your Application

¦ Copyright IBM Corp. 1995
2.1.1 - 1

 2.1.2 Cataloged Procedures

Language Environment includes cataloged procedures for link-editing and running your programs. The C/C++, COBOL, and PL/I
 products also include procedures for compiling, link-editing, and running programs written in those languages. For details, see
 Language Environment for MVS & VM Programming Guide.

Table 3 summarizes the procedures that you're likely to use for an application containing Fortran routines:

 +--+
 ¦ Table 3. Cataloged Procedures Often Used with Fortran ¦
 +--¦
 ¦ Name ¦ Function of the Procedure ¦
 +---------+--¦
 ¦ CEEWG ¦ Load and run a program written in a language supported by ¦
 ¦ ¦ Language Environment. ¦
 +---------+--¦
 ¦ CEEWL ¦ Link-edit a program written in a language supported by ¦
 ¦ ¦ Language Environment. ¦
 +---------+--¦
 ¦ CEEWLG ¦ Link-edit and run a program written in a language supported ¦
 ¦ ¦ by Language Environment. ¦
 +---------+--¦
 ¦ AFHWL ¦ Link-edit an application containing routines written in ¦
 ¦ ¦ Fortran and possibly in languages other than C/C++. ¦
 +---------+--¦
 ¦ AFHWLG ¦ Link-edit and run an application containing routines written ¦
 ¦ ¦ in Fortran and possibly in languages other than C/C++. ¦
 +---------+--¦
 ¦ AFHWN ¦ Link-edit with NCAL to facilitate changing external names in ¦
 ¦ ¦ conflict between C/C++ and Fortran to names recognized by ¦
 ¦ ¦ Fortran. ¦
 +---------+--¦
 ¦ AFHWRL ¦ Separate the nonshareable and shareable parts of a Fortran ¦
 ¦ ¦ object module, then link-edit the program. ¦
 +---------+--¦
 ¦ AFHWRLG ¦ Separate the nonshareable and shareable parts of a Fortran ¦
 ¦ ¦ object module, then link-edit and run the program. ¦
 +--+

 Subtopics
 2.1.2.1 Resolving Library Name Conflicts When Link-Editing Fortran Routines
 2.1.2.2 Creating Cataloged Procedures for Fortran Compilations

Lang Env V1R5 Fortran Migration Guide
Cataloged Procedures

¦ Copyright IBM Corp. 1995
2.1.2 - 1

 2.1.2.1 Resolving Library Name Conflicts When Link-Editing Fortran Routines

There are several resident run-time library routines that have the same name in both the Fortran and the C/C++ run-time libraries. In
 many cases, you must take special action to ensure that you link-edit the correct routine into your load module. For example, if the
 procedures CEEWG, CEEWL, and CEEWLG haven't been customized at your site, they might cause the C/C++ library routines to be
 included into your load module instead of the required Fortran routines. To avoid this problem when there are no C/C++ routines in
 your load module, you can sometimes use the procedures AFHWL and AFHWLG instead. For complete information on this subject,
 see Chapter 7, "Resolving Conflicting Library Routine References" in topic 2.4.

Lang Env V1R5 Fortran Migration Guide
Resolving Library Name Conflicts When Link-Editing Fortran Routines

¦ Copyright IBM Corp. 1995
2.1.2.1 - 1

 2.1.2.2 Creating Cataloged Procedures for Fortran Compilations

None of the cataloged procedures that are part of Language Environment include a job step to compile a Fortran program. However,
 you can combine existing cataloged procedures to include the job steps you need. For example, if you need a cataloged procedure
 that compiles a Fortran program with the VS FORTRAN Version 2 compiler and then link-edits and runs that program with Language
 Environment, you could create a cataloged procedure, say VSF2ECLG, from the following:

1. Procedure step FORT from the VSF2CLG cataloged procedure (supplied as part of VS FORTRAN Version 2)

2. Procedure steps LKED and GO from the AFHWLG cataloged procedure (supplied as part of Language Environment)

In the combined procedure, make the SYSLIN DD statement in the LKED step refer to the data set (&&LOADSET in this case)
 referenced by the SYSLIN DD statement in the FORT step. Figure 2 shows what that combined procedure might look like (with some
 of the symbolic parameters in the original VSF2CLG cataloged procedure removed to simplify the example).

In the example, the SYSLIB DD statement in the FORT step refers to the data set CEE.V1R5M0.SCEESAMP, which contains the
 following files that you can include in your Fortran source program:

� xxxFORCT--symbolic feedback code files. See "Symbolic Feedback Codes" in topic 3.1.1.3.2.

� AFHCQDSB--type declarations for qualifying data functions. See page 3.1.3.2.

 --

 //VSF2ECLG PROC LIBPRFX='CEE.V1R5M0',
 // PGMLIB='&&GOSET',GOPGM=GO
 //FORT EXEC PGM=FORTVS2,REGION=2100K,COND=(4,LT),
 // PARM='NODECK,NOLIST,OPT(0)'
 //STEPLIB DD DSN=SYS1.VSF2COMP,DISP=SHR
 //SYSPRINT DD SYSOUT=*,DCB=BLKSIZE=3429
 //SYSTERM DD SYSOUT=*
 //SYSLIB DD DSN=CEE.V1R5M0.SCEESAMP,DISP=SHR
 //SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA,
 // SPACE=(CYL,(1,1)),DCB=BLKSIZE=3200
 //LKED EXEC PGM=HEWL,REGION=1024K
 //SYSLIB DD DSNAME=&LIBPRFX..SAFHFORT,DISP=SHR
 // DD DSNAME=&LIBPRFX..SCEELKED,DISP=SHR
 //SYSPRINT DD SYSOUT=*
 //SCEESAMP DD DSNAME=&LIBPRFX..SCEESAMP,DISP=SHR
 //SYSLIN DD DSN=&&LOADSET,DISP=(OLD,PASS)
 // DD DDNAME=SYSIN
 //SYSLMOD DD DSNAME=&PGMLIB(&GOPGM),
 // SPACE=(TRK,(10,10,1)),
 // UNIT=SYSDA,DISP=(MOD,PASS)
 //SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
 //GO EXEC PGM=*.LKED.SYSLMOD,COND=(4,LT,LKED),REGION=2048K
 //STEPLIB DD DSNAME=&LIBPRFX..SCEERUN,DISP=SHR
 //SYSOUT DD SYSOUT=*
 //CEEDUMP DD SYSOUT=*

 --
 Figure 2. Sample Cataloged Procedure to Compile, Link-Edit, and Run a
 Fortran Program

Important: Before you create and use a cataloged procedure such as the one in Figure 2, be sure you understand how to deal
 with the conflicting names that exist in the C/C++ and Fortran run-time libraries. See Chapter 7, "Resolving Conflicting Library
 Routine References" in topic 2.4.

Lang Env V1R5 Fortran Migration Guide
Creating Cataloged Procedures for Fortran Compilations

¦ Copyright IBM Corp. 1995
2.1.2.2 - 1

 2.1.3 Specifying Run-Time Libraries under TSO

Under TSO, VS FORTRAN Version 2 lets you provide an ALLOCATE statement with ddname FORTLIB to refer to the data sets that
 contain the dynamically loaded run-time library routines and your own dynamically loaded routines. There is no Language
 Environment equivalent of ddname FORTLIB. Instead, the Language Environment transient routines (in CEE.V1R5M0.SCEERUN) and
 your own dynamically loaded routines are loaded using the standard MVS search order:

1. Task libraries
 2. STEPLIB
 3. JOBLIB (if no STEPLIB)
 4. Link pack area
 5. System link list

There are three ways to make the required load libraries available to your programs when you run them under TSO:

� If you can update your LOGON procedure, include CEE.V1R5M0.SCEERUN and any of your own load libraries in its STEPLIB DD
 statement to make these libraries available during your TSO session. If you don't have the authority to update your LOGON
 procedure, ask your system programmer to make the change for you.

� If your site chooses to make the required load libraries available to all users, the system programmer should specify them in the
 system link list. Doing so makes the load libraries available without the need to refer to them in a batch job or TSO session.

� If it's not practical either to add the STEPLIB allocation to your LOGON procedure or to make the load libraries available in the
 system link list, use the MVS/TSO Dynamic STEPLIB Facility (5798-DZW). This program offering lets you modify your STEPLIB
 allocation to refer to the data sets you need to run your application.

 For example, to add the data set CEE.V1R5M0.SCEERUN to your STEPLIB allocation, use the following commands, where the
 ddname SL is an arbitrary name:

 ALLOCATE FILE(SL) DATASET('CEE.V1R5M0.SCEERUN') SHR
 STEPLIB SET(SL)

 The STEPLIB allocation persists only during your current TSO session or until you change it with another STEPLIB command. For
 further information, see MVS/TSO Dynamic STEPLIB Facility Program Description/Operations Manual .

Lang Env V1R5 Fortran Migration Guide
Specifying Run-Time Libraries under TSO

¦ Copyright IBM Corp. 1995
2.1.3 - 1

 2.2 Chapter 5. Removing VS FORTRAN Library Routines
When you link-edit your application with Language Environment, your input to the linkage editor could include an executable load

 module that was link-edited with VS FORTRAN. For example, you would have to use such a load module if you didn't have the
 original object modules available and if you couldn't recompile one or more of your routines. To successfully link-edit and run such
 an application, you must remove the VS FORTRAN run-time library routines from the load module.

To remove library routines from a load module, use the Fortran library module replacement tool. This tool is a set of linkage editor
 REPLACE statements for removing Fortran library routines for these products:

� VS FORTRAN Version
 � VS FORTRAN Version
 � Language Environmen

The REPLACE statements are in member AFHWRLK in data set CEE.V1R5M0.SCEESAMP. The following example shows how to
 remove the library routines from load module MYLMOD and to link-edit it with Language Environment using cataloged procedure
 AFHWL:

 //RELINK EXEC PROC=AFHWL,PGMLIB=USER.APPL.LOAD,GOPGM=MYLMOD
 //VSFLOAD DD DSN=USER.VSF.LOAD,DISP=OLD
 //SYSIN DD *
 INCLUDE SCEESAMP(AFHWRLK)
 INCLUDE VSFLOAD(MYLMOD)
 /*

You don't need to include a DD statement referring to the data set CEE.V1R5M0.SCEESAMP because the AFHWL and AFHWLG
 cataloged procedures both contain one with ddname SCEESAMP.

The following example shows how to use the TSO LINK command to perform the same task:

 LINK ('CEE.V1R5M0.SCEESAMP(AFHWRLK)', 'USER.VSF.LOAD(MYLMOD)') +
 LOAD ('USER.APPL.LOAD(MYLMOD)') +
 LIB ('CEE.V1R5M0.SAFHFORT', 'CEE.V1R5M0.SCEELKED') +
 NOTERM

Important: Because certain names exist in both the C/C++ and the Fortran libraries, the preceding examples work properly only
 when there are no C/C++ routines in the load module. For further information, see Chapter 7, "Resolving Conflicting Library Routine
 References" in topic 2.4.

Lang Env V1R5 Fortran Migration Guide
Chapter 5. Removing VS FORTRAN Library Routines

¦ Copyright IBM Corp. 1995
2.2 - 1

 2.3 Chapter 6. Declaring the Presence of Fortran Routines
When you link-edit an application that contains a Fortran routine, there are two cases in which you must include in your load module

 the Fortran signature CSECT (CEESG007), a resident library routine that Language Environment uses to recognize the presence of
 a Fortran routine in your application. Include the Fortran signature CSECT in your load module if either of the following is true:

� All of the Fortran routines in your load module are subprograms that don't use any Fortran library routines. For information on
 determining whether your subprograms use Fortran library routines and on including the Fortran signature CSECT, see
 "Link-Editing Fortran Routines That Don't Call Fortran Library Routines" in topic 2.3.1.

� Your main program is written in a language other than Fortran, and the first Fortran routine in your application is dynamically
 loaded. See "Dynamically Loading the First Fortran Routine in Your Application" in topic 2.3.2.

 Subtopics
 2.3.1 Link-Editing Fortran Routines That Don't Call Fortran Library Routines
 2.3.2 Dynamically Loading the First Fortran Routine in Your Application

Lang Env V1R5 Fortran Migration Guide
Chapter 6. Declaring the Presence of Fortran Routines

¦ Copyright IBM Corp. 1995
2.3 - 1

 2.3.1 Link-Editing Fortran Routines That Don't Call Fortran Library Routines

You must include the Fortran signature CSECT in any load module for which all of the following conditions are true:

� The load module doesn't contain a Fortran main program
 � The load module contains Fortran subprograms (subroutines or functions)
 � None of the Fortran subprograms calls a Fortran library routine

 If your Fortran routine does any of the following, you can assume that it calls a Fortran library routine (and therefore you don't
 have to include the Fortran signature CSECT):

 - Refers to any mathematical or bit-manipulation intrinsic function other than simple ones (such as ABS, REAL, and MOD) for
 which inline code is generated

 - Contains any I/O statement

 - Calls any Fortran-specific callable service, such as FILEINF, AFHCEEF, or SYSRCS

 - Contains a STOP or PAUSE statement

 - Declares a common block that the DC compile-time option specifies as a dynamic common block

 It might not always be obvious whether your Fortran subprograms use Fortran library routines; however, including the Fortran
 signature CSECT is permissible even when you don't have to do so.

The example in Figure 3 shows how to compile and link-edit a COBOL main program that calls a Fortran subroutine (FSUB) that
 doesn't use any Fortran library routines.

 --

 //CMAIN EXEC IGYWCL
 //SYSIN DD *
 IDENTIFICATION DIVISION.
 PROGRAM-ID. CBFC32I.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 1 X PIC S9(9) USAGE IS BINARY.
 PROCEDURE DIVISION.
 MOVE 5 to X.
 CALL "FSUB" USING X.
 DISPLAY "UPDATED VALUE IN COBOL: ", X.
 GOBACK.
 END PROGRAM CBFC32I.
 /*
 //LKED.SYSIN DD *
 INCLUDE SYSLIB(CEESG007)
 /*

 --
 Figure 3. Link-Editing a Fortran Subprogram That Calls No Library Routines

 Notes on the Example:

1. The cataloged procedure IGYWCL compiles and link-edits the COBOL main program, which calls the Fortran subroutine FSUB.
 IGYWCL is described in COBOL for MVS & VM Programming Guide.

2. The INCLUDE statement directs the linkage editor to include the Fortran signature CSECT (CEESG007) in the load module. This

Lang Env V1R5 Fortran Migration Guide
Link-Editing Fortran Routines That Don't Call Fortran Library Routines

¦ Copyright IBM Corp. 1995
2.3.1 - 1

 INCLUDE statement should be used no matter which language is used to call the Fortran subroutine.

Lang Env V1R5 Fortran Migration Guide
Link-Editing Fortran Routines That Don't Call Fortran Library Routines

¦ Copyright IBM Corp. 1995
2.3.1 - 2

 2.3.2 Dynamically Loading the First Fortran Routine in Your Application

If the first Fortran routine in your application is dynamically loaded, include the Fortran signature CSECT in at least one load module
 invoked prior to the dynamically loaded Fortran routine.

The example in Figure 4 shows how to assemble and link-edit an assembler language routine that dynamically loads and executes a
 Fortran subroutine:

 --

 //AMAIN EXEC ASMACL
 //C.SYSLIB DD
 // DD DSN=CEE.V1R5M0.MACLIB,DISP=SHR
 //SYSIN DD *
 AMAIN CEEENTRY MAIN=YES
 CEELOAD NAME=FORTSUB
 LA 1,=A(ARG1,ARG2,ARG3+X'80000000')
 BALR 14,15
 CEETERM RC=0
 .
 .
 .
 PPA CEEPPA
 LTORG
 CEEDSA
 CEECAA
 END
 /*
 //L.SYSLIB DD DSN=CEE.V1R5M0.SCEELKED,DISP=SHR
 //SYSIN DD *
 INCLUDE SYSLIB(CEESG007)
 /*

 --
 Figure 4. Link-Editing a Routine That Dynamically Loads a Fortran
 Subroutine

 Notes on the Example:

1. The cataloged procedure ASMACL compiles and link-edits the assembler language routine. ASMACL is described in High Level
 Assembler for MVS & VM & VSE Programmer's Guide, MVS & VM Edition.

2. The CEELOAD macro instruction dynamically loads the routine FORTSUB. The BALR instruction invokes the loaded routine.

3. The macros whose names begin with CEE are described in Language Environment for MVS & VM Programming Guide.

4. The INCLUDE statement directs the linkage editor to include the Fortran signature CSECT (CEESG007) in the load module. This
 INCLUDE statement should be used no matter which language is used to dynamically load the Fortran routine.

Lang Env V1R5 Fortran Migration Guide
Dynamically Loading the First Fortran Routine in Your Application

¦ Copyright IBM Corp. 1995
2.3.2 - 1

 2.4 Chapter 7. Resolving Conflicting Library Routine References
The Fortran object modules you link-edit with Language Environment might contain references to some Fortran library routines with

 the same names as in the C/C++ library. For example, if one of your Fortran routines uses the SQRT function and was compiled
 with the FORTRAN IV H Extended compiler, the object module has a reference to the library routine SQRT. Although the Language
 Environment data set CEE.V1R5M0.SCEELKED, which is normally used to resolve such references, contains a library routine named
 SQRT, this library routine is a version of SQRT that can be link-edited only with C/C++ routines. Because the Fortran and the C/C++
 SQRT routines are not interchangeable, you must ensure that the Fortran SQRT library routine is the one link-edited with your Fortran
 routines. This chapter discusses how to do this.

There are 20 library routines with conflicting names (listed in Table 4 in topic 2.4.1); all of these routines in CEE.V1R5M0.SCEELKED
 are the C/C++ rather than the Fortran versions. Therefore, a potential problem arises whenever your application requires or might
 require the Fortran routines. When in doubt about the requirement for these routines, assume that they are required, and follow the
 process described in this chapter to resolve the conflict. (If the C/C++ component of Language Environment isn't installed at your
 site, you still must follow the process described here to include the Fortran routines.)

In the following discussion, the term conflicting reference means an external reference from an object module to one of the 20
 conflicting names when the intended resolution is to a Fortran library routine rather than to a C/C++ library routine. Conflicting
 references aren't restricted to Fortran programs; a conflicting reference also occurs when an assembler language routine refers to
 one of the names and was written to use the Fortran (rather than C) library routine.

To solve the problem of conflicting references, use the following process when you link-edit applications that might require Fortran
 library routines:

1. Determine whether Fortran or assembler language code contains any conflicting references. See "Step 1: Identifying the
 Conflicting References" in topic 2.4.1. If there are no conflicting references, no special actions are required.

2. If any conflicting references are present, determine whether they can be eliminated by recompiling the programs. See "Step 2:
 Recompiling Programs to Eliminate Conflicting References" in topic 2.4.2. If recompiling the programs solves the problem, no
 further special actions are required.

3. If you can't recompile the programs to remove the conflicting references, determine whether the conflicting references are
 resolved automatically during link-editing. See "Step 3: Automatically Resolving the Conflicting References" in topic 2.4.3. If the
 conflicting references are resolved automatically, no further special actions are required.

4. If steps 1, 2, and 3 don't provide a solution, see "Step 4: Manually Resolving the Conflicting References" in topic 2.4.4.

The following sections discuss the preceding steps in detail and suggest the simplest possible solution for each of several cases
 that you need to identify.

 Subtopics
 2.4.1 Step 1: Identifying the Conflicting References
 2.4.2 Step 2: Recompiling Programs to Eliminate Conflicting References
 2.4.3 Step 3: Automatically Resolving the Conflicting References
 2.4.4 Step 4: Manually Resolving the Conflicting References

Lang Env V1R5 Fortran Migration Guide
Chapter 7. Resolving Conflicting Library Routine References

¦ Copyright IBM Corp. 1995
2.4 - 1

 2.4.1 Step 1: Identifying the Conflicting References

Table 4 lists the 20 Fortran library routine names that conflict with names in the C/C++ library. It also shows which products could
 generate each of the conflicting references.

 +---+
 ¦ Table 4. Existence of Fortran Conflicting References ¦
 +---¦
 ¦ ¦ Product Used for Compilation ¦
 ¦ +--¦
 ¦ Library ¦ ¦ FORTRAN IV ¦ VS FORTRAN ¦ ¦
 ¦ Routine ¦ ¦ G1 ¦ Version 1 ¦ VS FORTRAN ¦
 ¦ Name ¦ Assembler ¦ ¦ ¦ Version 2 ¦
 ¦ ¦ (Any) ¦ FORTRAN IV ¦ VS FORTRAN ¦ Rel. 5 or 6 ¦
 ¦ ¦ ¦ H Extended ¦ Version 2 ¦ ¦
 ¦ ¦ ¦ ¦ Rel. 1-4 ¦ ¦
 +------------+-------------+----------------+----------------+----------------¦
 ¦ ABS EXP ¦ ¦ ¦ ¦ ¦
 ¦ ACOS GAMMA¦ ¦ ¦ If passed as ¦ ¦
 ¦ ASIN LOG ¦ ¦ ¦ an ¦ ¦
 ¦ ATAN LOG10¦ ¦ ¦ argument,(1) ¦ ¦
 ¦ ATAN2 SIN ¦ Conflicting ¦ Conflicting ¦ conflicting ¦ No conflicting ¦
 ¦ COS SINH ¦ reference ¦ reference ¦ reference ¦ reference ¦
 ¦ COSH SQRT ¦ ¦ ¦ ¦ ¦
 ¦ ERF TAN ¦ ¦ ¦ Otherwise, ¦ ¦
 ¦ ERFC TANH ¦ ¦ ¦ no conflicting ¦ ¦
 ¦ ¦ ¦ ¦ reference ¦ ¦
 ¦ ¦ ¦ ¦ ¦ ¦
 +------------+-------------+----------------+----------------+----------------¦
 ¦ CLOCK EXIT ¦ Conflicting ¦ Conflicting ¦ Conflicting ¦ Conflicting ¦
 ¦ ¦ reference ¦ reference ¦ reference ¦ reference ¦
 +---¦
 ¦ Note: ¦
 ¦ ¦
 ¦ ¦
 ¦ 1. Passed as an argument means that one of the library routine names is ¦
 ¦ provided as an actual argument in a call to a subroutine. For example, ¦
 ¦ when compiled with the indicated compilers, the following code results ¦
 ¦ in a conflicting reference to the SQRT library routine: ¦
 ¦ ¦
 ¦ INTRINSIC SQRT ¦
 ¦ REAL*4 A ¦
 ¦ . ¦
 ¦ . ¦
 ¦ . ¦
 ¦ CALL SUB (A, SQRT) ¦
 ¦ ¦
 ¦ Because passing an intrinsic function name as an argument is an ¦
 ¦ infrequently used feature of the language, there are unlikely to be ¦
 ¦ conflicting references in object modules produced by the VS FORTRAN ¦
 ¦ Version 1 and Version 2 compilers. ¦
 ¦ ¦
 ¦ ¦
 +---+

If you're sure that none of your modules contain any of the 20 conflicting references, you don't have to worry about a solution to
 this problem and can skip the rest of this chapter. Otherwise, read the following sections.

 Subtopics
 2.4.1.1 Examining Your Programs to Find Conflicting References

Lang Env V1R5 Fortran Migration Guide
Step 1: Identifying the Conflicting References

¦ Copyright IBM Corp. 1995
2.4.1 - 1

 2.4.1.1 Examining Your Programs to Find Conflicting References

If Table 4 in topic 2.4.1 suggests that your Fortran or assembler language routines might contain conflicting references, read this
 section to determine whether they really do. No matter whether your routines are available as source programs, object modules, or
 load modules, you can determine whether there are any conflicting references.

The analysis described in the following paragraphs might prove that you have no conflicting references. In this case, no further
 special actions are required.

Source Programs : If your Fortran or assembler language source programs are available, examine them for the use of the library
 routine names shown in Table 4 in topic 2.4.1.

Object Modules: If your Fortran or assembler language routines are in the form of object modules, (2) use an editor to examine the
 object modules. In the records with the characters ESD in positions 2 through 4, look for the 20 names that can be conflicting
 references. If you find one of these names, it is a conflicting reference unless it's the name of one of your own routines.

Load Modules: If your Fortran or assembler language routines are part of a load module and you don't have them in either source
 program or object module form, check the load module to determine which conflicting references, if any, are present:

� If you have the linkage editor's printed output from the creation of the load module (or if you can re-link-edit your load module to
 get the printed output), and if this output has a cross-reference listing, examine the references from the CSECTs for your Fortran
 or assembler language routines. Compare these references with the list of conflicting references in Table 4 in topic 2.4.1.

� If the linkage editor output isn't available, use the AMBLIST service aid to get a listing of the references made by each CSECT in
 the load module. The following example shows how to use AMBLIST to get a cross-reference listing for the load module MOD1 in
 the data set USER.VSF.LOAD:

 //L1 EXEC PGM=AMBLIST
 //SYSPRINT DD SYSOUT=*
 //SYSLIB DD DSN=USER.VSF.LOAD,DISP=SHR
 //SYSIN DD *
 LISTLOAD OUTPUT=XREF,MEMBER=MOD1
 /*

 In the cross-reference listing produced by AMBLIST, look for the CSECTs that you know are Fortran or assembler language
 routines. Examine the references from these CSECTs for the use of the conflicting references shown in Table 4 in topic 2.4.1.

 For more information on the AMBLIST service aid, see one of the following:

 - MVS/ESA Diagnosis: Tools and Service Aids, MVS/ESA System Product: JES2 Version 4, JES3 Version 4

 - MVS/ESA Diagnosis: Tools and Service Aids, MVS/ESA System Product: JES2 Version 5, JES3 Version 5

No further special actions are required if your routines prove to have no conflicting references. If you do find conflicting
 references, then, as directed by step 2 of the process outlined on page 2.4, see "Step 2: Recompiling Programs to Eliminate
 Conflicting References" in topic 2.4.2.

 (2) The term object module means the output of a compiler or assembler prior to the output's being link-edited. Object modules
 consist of 80-character records; the first position of each record has the value X'02'.

Lang Env V1R5 Fortran Migration Guide
Examining Your Programs to Find Conflicting References

¦ Copyright IBM Corp. 1995
2.4.1.1 - 1

 2.4.2 Step 2: Recompiling Programs to Eliminate Conflicting References

Fortran Routines: If your Fortran source programs are available and they don't call CLOCK or EXIT, recompile them with the VS
 FORTRAN Version 2 Release 6 compiler to eliminate all of the conflicting references.

As Table 4 in topic 2.4.1 shows, recompiling your Fortran programs won't eliminate conflicting references to the EXIT and CLOCK
 callable services, so:

� If your routines use the CLOCK callable service, then as directed by ste 3 of the process outlined on page 2.4, skip to "Step 3:
 Automatically Resolving the Conflicting References" in topic 2.4.3.

� If your routines use EXIT but not CLOCK, replace the use of the EXIT callable service either with a STOP statement or with a call
 to the SYSRCX callable service. Then recompile your routines with the VS FORTRAN Version 2 Release 6 compiler.

Assembler Language Routines: For assembler language routines with conflicting references, change the source programs as
 follows. Then reassemble the programs.

 Instead of Use this
 this name: name:
 ABS A#ABS
 ACOS A#COS
 ASIN A#SIN
 ATAN A#TAN
 ATAN2 A#TAN2
 CLOCK CLOCK#
 COS C#OS
 COSH C#OSH
 ERF E#RF
 ERFC E#RFC
 EXIT EXIT#
 EXP E#XP
 GAMMA G#AMMA
 LOG A#LOG
 LOG10 A#LOG1
 SIN S#IN
 SINH S#INH
 SQRT S#QRT
 TAN T#AN
 TANH T#ANH

The following examples show how to change two typical assembler language statements to remove conflicting references:

 Change this: To this:

 ABSADDR DC V(ABS) ABSADDR DC V(A#ABS)

 L 15,=V(COS) L 15,=V(C#OS)

 Subtopics
 2.4.2.1 After Recompiling or Reassembling
 2.4.2.2 When Recompiling Does Not Provide a Solution

Lang Env V1R5 Fortran Migration Guide
Step 2: Recompiling Programs to Eliminate Conflicting References

¦ Copyright IBM Corp. 1995
2.4.2 - 1

 2.4.2.1 After Recompiling or Reassembling

After changing your programs as necessary and recompiling them to remove any conflicting references, simply link-edit your
 programs using the method of your choice. If you're not yet familiar with link-editing with Language Environment, see Chapter 4,
 "Specifying the Language Environment Libraries" in topic 2.1.

Lang Env V1R5 Fortran Migration Guide
After Recompiling or Reassembling

¦ Copyright IBM Corp. 1995
2.4.2.1 - 1

 2.4.2.2 When Recompiling Does Not Provide a Solution

For routines whose conflicting references can't be removed by recompiling (such as routines for which you don't have the source
 code), continue with the following sections as directed by steps 3 and 4 of the process outlined on page 2.4.

Lang Env V1R5 Fortran Migration Guide
When Recompiling Does Not Provide a Solution

¦ Copyright IBM Corp. 1995
2.4.2.2 - 1

 2.4.3 Step 3: Automatically Resolving the Conflicting References

Even when you can't recompile your programs to eliminate the conflicting references, you'll still find that in many cases there is an
 easy solution. Following are summaries of two common cases; these summaries are followed by more detailed explanations.

Your load module requires Fortran library routines but no C/C++ library ines
 In your link-edit step, concatenate CEE.V1R5M0.SAFHFORT ahead of CEE.V1R5M0.SCEELKED in the SYSLIB input, or use the
 cataloged procedures AFHWL or AFHWLG, which do the concatenation. This resolves the conflicting references to the Fortran
 library routines, and no further action is required. For detailed information, see "Fortran Library Routines but No C/C++ Library
 Routines" in topic 2.4.3.1.

DFSMS/MVS Version 1 Release 3 is installed at your site and you don't have conflicting references from assembler
 language routines
 For your link-edit step, ensure that the Language Environment interface validation exit is activated in one of these places, as
 described in detail in "DFSMS/MVS and the Interface Validation Exit" in topic 2.4.3.2:

 � In your JCL for the link-edit step
 � In your TSO LINK or LOADGO command
 � In your site's cataloged procedures such as CEEWL and CEEWLG

 This resolves the conflicting references to the Fortran library routines, and it resolves references from any C/C++ routines to the
 C/C++ library routines. No further action is required. For detailed information, see "DFSMS/MVS and the Interface Validation Exit"
 in topic 2.4.3.2.

If neither case applies to your situation (for example, your load module has C/C++ routines, and it also has assembler language
 routines with conflicting references), you can still handle the conflicting references. In this case, as directed by step 4 of the
 process outlined on page 2.4, see "Step 4: Manually Resolving the Conflicting References" in topic 2.4.4.

 Subtopics
 2.4.3.1 Fortran Library Routines but No C/C++ Library Routines
 2.4.3.2 DFSMS/MVS and the Interface Validation Exit

Lang Env V1R5 Fortran Migration Guide
Step 3: Automatically Resolving the Conflicting References

¦ Copyright IBM Corp. 1995
2.4.3 - 1

 2.4.3.1 Fortran Library Routines but No C/C++ Library Routines

Even though Fortran or assembler language routines in your application contain conflicting references, you can include the Fortran
 library routines into your load module as long as there are no references to any C/C++ library routines. (3) Depending on whether
 you're using one of the Language Environment cataloged procedures, there are two different ways to do this:

Without using Language Environment cataloged procedures
 When you link-edit your load module, concatenate the data set CEE.V1R5M0.SAFHFORT ahead of CEE.V1R5M0.SCEELKED in the
 SYSLIB input. This causes the linkage editor to include the Fortran library routines from CEE.V1R5M0.SAFHFORT rather than the
 C/C++ library routines from CEE.V1R5M0.SCEELKED. Here is how you would do this using DD statements in your JCL:

 //SYSLIB DD DSN=CEE.V1R5M0.SAFHFORT,DISP=SHR
 // DD DSN=CEE.V1R5M0.SCEELKED,DISP=SHR

 Here is how you would do this using the LIB parameter in a TSO LINK or LOADGO command:

 LIB('CEE.V1R5M0.SAFHFORT','CEE.V1R5M0.SCEELKED')

Using Language Environment cataloged procedures
 Language Environment provides two cataloged procedures, AFHWL and AFHWLG, that include the concatenation of
 CEE.V1R5M0.SAFHFORT in the SYSLIB input to the linkage editor. Use these procedures instead of CEEWL and CEEWLG to
 include Fortran library routines rather than the C/C++ library routines.

The following example illustrates:

� Using the cataloged procedure AFHWL to link-edit a load module that contains Fortran but no C/C++ routine

� Including an existing load module, MYLMOD, as input to the linkage editor

� Removing the VS FORTRAN library routines by including AFHWRLK during the link-edi (4)

 //RELINK EXEC PROC=AFHWL,PGMLIB=USER.APPL.LOAD,GOPGM=MYLMOD
 //VSFLOAD DD DSN=USER.VSF.LOAD,DISP=OLD
 //SYSIN DD *
 INCLUDE SCEESAMP(AFHWRLK)
 INCLUDE VSFLOAD(MYLMOD)
 /*

The following example shows how to use the TSO LINK command to perform the same task:

 LINK ('CEE.V1R5M0.SCEESAMP(AFHWRLK)', 'USER.VSF.LOAD(MYLMOD)') +
 LOAD ('USER.APPL.LOAD(MYLMOD)') +
 LIB ('CEE.V1R5M0.SAFHFORT', 'CEE.V1R5M0.SCEELKED') +
 NOTERM

If you have C/C++ routines in your load module, read the following section for an alternative method for correctly resolving
 conflicting references.

 (3) If you have any C/C++ routines in your load module, assume that there are references to C/C++ library routines. Another
 example of references to C/C++ library routines is an assembler language routine that was written to use these routines.

 (4) As discussed in Chapter 5, "Removing VS FORTRAN Library Routines" in topic 2.2, if your input to the linkage editor includes a
 load module containing VS FORTRAN library routines, you must remove these library routines by including AFHWRLK during the
 link-edit process.

Lang Env V1R5 Fortran Migration Guide
Fortran Library Routines but No C/C++ Library Routines

¦ Copyright IBM Corp. 1995
2.4.3.1 - 1

 2.4.3.2 DFSMS/MVS and the Interface Validation Exit

When both of the following conditions are satisfied, you can use the Language Environment interface validation exit to automatically
 resolve conflicting references:

� DFSMS/MVS Version 1 Release 3 is installed at your site

� Your load module doesn't contain any assembler language routines with conflicting references

If either condition isn't satisfied, then as directed by step 4 of the process outlined on page 2.4, see "Step 4: Manually Resolving the
 Conflicting References" in topic 2.4.4.

 Subtopics
 2.4.3.2.1 Function of the Interface Validation Exit
 2.4.3.2.2 Activating and Using the Interface Validation Exit
 2.4.3.2.3 Conflicting References in Assembler Language Routines

Lang Env V1R5 Fortran Migration Guide
DFSMS/MVS and the Interface Validation Exit

¦ Copyright IBM Corp. 1995
2.4.3.2 - 1

 2.4.3.2.1 Function of the Interface Validation Exit

The interface validation exit is a tool that, when used with the binder (5) in DFSMS/MVS Version 1 Release 3, automatically resolves
 the conflicting references in your Fortran routines. It does this during the link-edit process by:

1. Recognizing object modules produced by one of the Fortran compilers whose object modules can be run with Language
 Environment

2. In these Fortran object modules, identifying any conflicting references not already resolved to one of your own routines

3. Directing the binder to resolve each identified reference to an equivalent Fortran-specific library routine with a different name

4. Allowing the corresponding library routine references in C/C++ routines (and from any non-Fortran routines) to be resolved to the
 C/C++ library routines in CEE.V1R5M0.SCEELKED

 (5) Binder is the term used in DFSMS/MVS for the replacement for the linkage editor. It has many features beyond those in the
 linkage editor (such as the ability to invoke an interface validation exit), although for most of the discussion in this book, the linkage
 editor and the binder are equivalent.

Lang Env V1R5 Fortran Migration Guide
Function of the Interface Validation Exit

¦ Copyright IBM Corp. 1995
2.4.3.2.1 - 1

 2.4.3.2.2 Activating and Using the Interface Validation Exit

If DFSMS/MVS Version 1 Release 3 is installed at your site, those who install Language Environment are directed to update the
 cataloged procedures such as CEEWL and CEEWLG to make certain the interface validation exit is available to everyone who uses
 the procedures. (Tailoring the cataloged procedures is discussed in Language Environment for MVS & VM Installation and
 Customization on MVS.) Once you ensure that the cataloged procedures have been updated, you can use them without taking any
 special action to activate the interface validation exit.

If the JCL or cataloged procedures used to link-edit your applications haven't been updated to activate the interface validation exit,
 do both of the following to activate it:

� Add the EXITS(INTFVAL(CEEPINTV)) binder option as follows to direct the binder to invoke the exit

 - In your JCL for the link-edit step, include the option in the PARM parameter as follows:

 PARM='...EXITS(INTFVAL(CEEPINTV))...'

 - For the TSO LINK or LOADGO command, include the option among any other options that you specify.

� Include the data set CEE.V1R5M0.SCEELKED in a STEPLIB allocation as follows to make the interface validation exit available to
 the binder:

 - In your JCL for the link-edit step, include the following DD statement:

 //STEPLIB DD DSN=CEE.V1R5M0.SCEELKED,DISP=SHR

 - Under TSO, use the MVS/TSO Dynamic STEPLIB Facility (5798-DZW) program offering as follows:

 ALLOCATE FILE(SL) DATASET('CEE.V1R5M0.SCEELKED') SHR
 STEPLIB SET(SL)

 For further information on the Dynamic STEPLIB Facility, see MVS/TSO Dynamic STEPLIB Facility Program
 Description/Operations Manual .

 Don't add CEE.V1R5M0.SCEELKED to your LOGON procedure, and don't ask your system programmer to add it to the system
 link list in order to avoid using the Dynamic STEPLIB Facility. Making CEE.V1R5M0.SCEELKED available outside the link-edit
 process could cause unpredictable results because there are names in CEE.V1R5M0.SCEELKED that conflict with the names of
 certain system components.

The following example illustrates:

� Using the cataloged procedure CEEWL (which is assumed to have been updated to activate the interface validation exit) to
 link-edit a load module that contains a Fortran subroutine (possibly with conflicting references), a C main routine, but no assembler
 language routines with conflicting references

� Including an existing load module, MYLMOD, as input to the linkage editor

� Removing the VS FORTRAN library routines by including AFHWRLK during the link-edi (6)

� Replacing certain C library routines during the link-edi

 //RELINK EXEC PROC=CEEWL,PGMLIB=USER.APPL.LOAD,GOPGM=MYLMOD
 //SCEESAMP DD DSN=CEE.V1R5M0.SCEESAMP,DISP=SHR
 //VSFLOAD DD DSN=USER.VSF.LOAD,DISP=OLD
 //SYSIN DD *
 INCLUDE SYSLIB(EDCSTART)

Lang Env V1R5 Fortran Migration Guide
Activating and Using the Interface Validation Exit

¦ Copyright IBM Corp. 1995
2.4.3.2.2 - 1

 INCLUDE SYSLIB(CEEROOTB)
 INCLUDE SYSLIB(@@FTOC)
 INCLUDE SYSLIB(@@CTOF)
 INCLUDE SCEESAMP(AFHWRLK)
 INCLUDE VSFLOAD(MYLMOD)
 ENTRY CEESTART
 /*

 The first four INCLUDE statements are needed only when link-editing an
 existing load module that contains C routines. For further information,
 see C/C++ for MVS/ESA Compiler and Run-Time Migration Guide.

If your main routine is written in Fortran, then specify its name rather than CEESTART in the ENTRY statement.

 (6) As discussed in Chapter 5, "Removing VS FORTRAN Library Routines" in topic 2.2, if your input to the linkage editor includes a
 load module containing VS FORTRAN library routines, you must remove these library routines by including AFHWRLK during the
 link-edit process.

Lang Env V1R5 Fortran Migration Guide
Activating and Using the Interface Validation Exit

¦ Copyright IBM Corp. 1995
2.4.3.2.2 - 2

 2.4.3.2.3 Conflicting References in Assembler Language Routines

If you have assembler language routines with conflicting references that are intended to be resolved to Fortran library routines, you
 cannot use the interface validation exit to correctly resolve these references. (This is because the exit cannot determine whether
 the assembler language routine intends to call the Fortran library routines or the C/C++ library routines.) In this case, as directed by
 step 4 of the process outlined on page 2.4, see "Step 4: Manually Resolving the Conflicting References" in topic 2.4.4.

Lang Env V1R5 Fortran Migration Guide
Conflicting References in Assembler Language Routines

¦ Copyright IBM Corp. 1995
2.4.3.2.3 - 1

 2.4.4 Step 4: Manually Resolving the Conflicting References

This section describes what you must do to resolve conflicting references in your Fortran or assembler language routines if you
 can't link-edit your application using the approach described in the preceding section. Depending on the form in which your routines
 are available as input to the linkage editor, you'll have to take different actions, which are summarized here. These summaries are
 followed by more detailed explanations.

Modules without any references to C library routines
 If your Fortran or assembler language routines don't refer to any C/C++ library routines and if you have your routines available in
 either of the following forms:

 � Individual Fortran or assembler language object modules, or

 � Load modules that, in addition to your Fortran or assembler language routines, don't contain any routines w ith intended
 references to C/C++ library routines, (7)

 use the conflicting references removal tool provided by Language Environment to remove the conflicting references. The tool
 changes the conflicting references to names that are not in conflict with C/C++ library routine names. Once the conflicting
 references have been removed in this way, no further special action is required in the link-edit process. For further information,
 see "Using the Conflicting References Removal Tool" in topic 2.4.4.1.

Load modules that also contain C library references
 If your Fortran and assembler language routines with the conflicting references are available only as part of a load module
 containing intended references to C library routines, determine which Fortran library routines are needed and include them by
 name when you link-edit the load module. This doesn't remove the conflicting references, but it provides a way to link-edit your
 load module in spite of them. For information on how to do this, see "Including Fortran Library Routines To Resolve Conflicting
 References" in topic 2.4.4.2.

 (7) If you have any C/C++ routines in your load module, assume that there are references to C/C++ library routines. In this case,
 you can't use the conflicting references removal tool.

 Subtopics
 2.4.4.1 Using the Conflicting References Removal Tool
 2.4.4.2 Including Fortran Library Routines To Resolve Conflicting References

Lang Env V1R5 Fortran Migration Guide
Step 4: Manually Resolving the Conflicting References

¦ Copyright IBM Corp. 1995
2.4.4 - 1

 2.4.4.1 Using the Conflicting References Removal Tool

The conflicting references removal tool , member AFHWNCH in data set CEE.V1R5M0.SCEESAMP, is a set of linkage editor CHANGE
 statements used during a link-edit step to change conflicting references to their corresponding unambiguous Fortran names. Once
 you have used this tool to process a module containing conflicting references, the conflicting references are gone, and no further
 special actions are required to link-edit the module.

You can use the conflicting references removal tool only if your linkage editor input does not contain any intended references to
 C/C++ library routines. This linkage editor input can be in one of these forms:

� Individual Fortran or assembler language object module

� Load module (7)

If your linkage editor input does contain intended references to C/C++ library routines, bypass this section, and resolve the conflicting
 references using the technique described in "Including Fortran Library Routines To Resolve Conflicting References" in topic 2.4.4.2.

The examples in the following sections show two different ways to use the conflicting references removal tool:

� Removing the conflicting references from your routines and saving the resulting module in a library in a form that's intended to be
 link-edited into other load modules later. Use this approach if you plan to use your routines in several different load modules or if
 your routines are stable but you plan to link-edit the application frequently. See "Saving the Load Module for Use in Other Load
 Modules" in topic 2.4.4.1.1.

� In a single step, removing the conflicting references from your routines and creating an executable load module that contains C
 routines. Use this approach if you don't plan to link-edit the routines with the conflicting references into more than one load
 module. See "Creating an Executable Load Module" in topic 2.4.4.1.2.

 Subtopics
 2.4.4.1.1 Saving the Load Module for Use in Other Load Modules
 2.4.4.1.2 Creating an Executable Load Module

Lang Env V1R5 Fortran Migration Guide
Using the Conflicting References Removal Tool

¦ Copyright IBM Corp. 1995
2.4.4.1 - 1

 2.4.4.1.1 Saving the Load Module for Use in Other Load Modules

The following example shows how to use the conflicting references removal tool to remove any conflicting references from a
 Fortran or assembler language routine (SUB1) and to save the resulting load module as a member of a library so that the routine can
 subsequently be incorporated into various applications.

 //CHGNAM EXEC PROC=AFHWN,PGMLIB=USER.LE.LOAD,GOPGM=SUB1
 //VSFLOAD DD DSNAME=USER.VSF.LOAD,DISP=SHR
 //SYSIN DD *
 INCLUDE SCEESAMP(AFHWRLK)
 INCLUDE SCEESAMP(AFHWNCH)
 INCLUDE VSFLOAD(SUB1)
 /*

 Notes on the Example:

1. The linkage editor INCLUDE statements include the following:

 AFHWRLK
 The Fortran library module removal tool, needed only if the input module (SUB1 in this case) is a load module that was link-edited
 with VS FORTRAN and that contains Fortran library routines. For further information, see Chapter 5, "Removing VS FORTRAN
 Library Routines" in topic 2.2.

 AFHWNCH
 The conflicting references removal tool.

 SUB1
 The module with the conflicting references. This is the load module from which library routines and conflicting references are
 removed.

2. The linkage editor stores the resulting load module in member SUB1 in data set USER.LE.LOAD.

3. The use of the AFHWN cataloged procedure, which specifies the NCAL option, causes the linkage editor's automatic library call
 to be is suppressed. Therefore, required library routines aren't included in the resulting load module (SUB1), and you cannot
 invoke SUB1 until you link-edit it into a fully executable load module.

Removing Conflicting References from More Than One Routine: If you need to remove the conflicting references from more than one
 routine, say SUB1, SUB2, and SUB3, you can do this in one job step as follows:

 //CHGNAM EXEC PROC=AFHWN,PGMLIB=USER.LE.LOAD,GOPGM=SUB1
 //VSFLOAD DD DSNAME=USER.VSF.LOAD,DISP=SHR
 //SYSIN DD *
 INCLUDE SCEESAMP(AFHWRLK)
 INCLUDE SCEESAMP(AFHWNCH)
 INCLUDE VSFLOAD(SUB1)
 NAME SUB1(R)
 INCLUDE SCEESAMP(AFHWRLK)
 INCLUDE SCEESAMP(AFHWNCH)
 INCLUDE VSFLOAD(SUB2)
 NAME SUB2(R)
 INCLUDE SCEESAMP(AFHWRLK)
 INCLUDE SCEESAMP(AFHWNCH)
 INCLUDE VSFLOAD(SUB3)
 NAME SUB3(R)
 /*

You must include AFHWRLK (if needed) and AFHWNCH before each of your input modules whose conflicting references are to be

Lang Env V1R5 Fortran Migration Guide
Saving the Load Module for Use in Other Load Modules

¦ Copyright IBM Corp. 1995
2.4.4.1.1 - 1

 removed. Also provide a linkage editor NAME statement for each new member of the data set USER.LE.LOAD.

The following TSO LINK commands give the same result:

 LINK ('CEE.V1R5M0.SCEESAMP(AFHWRLK)', +
 'CEE.V1R5M0.SCEESAMP(AFHWNCH)', +
 'USER.VSF.LOAD(SUB1)') +
 LOAD ('USER.LE.LOAD(SUB1)') +
 NOTERM LET NCAL
 LINK ('CEE.V1R5M0.SCEESAMP(AFHWRLK)', +
 'CEE.V1R5M0.SCEESAMP(AFHWNCH)', +
 'USER.VSF.LOAD(SUB2)') +
 LOAD ('USER.LE.LOAD(SUB2)') +
 NOTERM LET NCAL
 LINK ('CEE.V1R5M0.SCEESAMP(AFHWRLK)', +
 'CEE.V1R5M0.SCEESAMP(AFHWNCH)', +
 'USER.VSF.LOAD(SUB3)') +
 LOAD ('USER.LE.LOAD(SUB3)') +
 NOTERM LET NCAL

Using Modules from Which Conflicting References Have Been Removed: Once you have removed the conflicting references from
 your routines, you can link-edit them into your applications without taking any further special actions. In the following example,
 assume that you have a C main routine whose object module is in member CMAIN in data set USER.APPL.OBJ and that CMAIN calls
 the Fortran or assembler routines SUB1, SUB2, and SUB3, which the preceding example put in USER.LE.LOAD:

 //LINKAPP EXEC PROC=CEEWL,PGMLIB=USER.APPL.LOAD,GOPGM=CMAIN
 //SYSLIB DD
 // DD DSN=USER.LE.LOAD,DISP=SHR
 //APPLOBJ DD DSN=USER.APPL.OBJ,DISP=SHR
 //SYSIN DD *
 INCLUDE APPLOBJ(CMAIN)
 /*

The use of the CEEWL cataloged procedure to link-edit the C application causes automatic library call processing; therefore, the
 linkage editor includes the required library routines from CEE.V1R5M0.SCEELKED and the routines SUB1, SUB2, and SUB3 from
 USER.LE.LOAD. The resulting load module is given the member name CMAIN in data set USER.APPL.LOAD.

The following example link-edits CMAIN under TSO:

 LINK ('USER.APPL.OBJ(CMAIN)') +
 LIB ('CEE.V1R5M0.SCEELKED', 'USER.LE.LOAD') +
 LOAD ('USER.APPL.LOAD(CMAIN)') +
 NOTERM

This completes the resolution of the conflicting references using the conflicting references removal tool. The following section
 describes another way to use the tool.

Lang Env V1R5 Fortran Migration Guide
Saving the Load Module for Use in Other Load Modules

¦ Copyright IBM Corp. 1995
2.4.4.1.1 - 2

 2.4.4.1.2 Creating an Executable Load Module

This section shows how to use the conflicting references removal tool to remove the conflicting references and to create an
 executable load module, all in one step. The technique shown here is simpler than the technique described in the preceding section
 because there's no need for an intermediate library. However, if you want to use the same Fortran or assembler language routines
 in other load modules, you have to remove the conflicting references each time you link-edit them into another load module.

The following example creates an executable load module from the same routines (CMAIN, SUB1, SUB2, and SUB3) as the previous
 example; however, this example bypasses putting SUB1, SUB2, and SUB3 in USER.LE.LOAD:

 //CHGLINK EXEC PROC=CEEWL,PGMLIB=USER.APPL.LOAD,GOPGM=CMAIN
 //SCEESAMP DD DSN=CEE.V1R5M0.SCEESAMP,DISP=SHR
 //APPLOBJ DD DSN=USER.APPL.OBJ,DISP=SHR
 //VSFLOAD DD DSNAME=USER.VSF.LOAD,DISP=SHR
 //SYSIN DD *
 INCLUDE APPLOBJ(CMAIN)
 INCLUDE SCEESAMP(AFHWRLK)
 INCLUDE SCEESAMP(AFHWNCH)
 INCLUDE VSFLOAD(SUB1)
 INCLUDE SCEESAMP(AFHWRLK)
 INCLUDE SCEESAMP(AFHWNCH)
 INCLUDE VSFLOAD(SUB2)
 INCLUDE SCEESAMP(AFHWRLK)
 INCLUDE SCEESAMP(AFHWNCH)
 INCLUDE VSFLOAD(SUB3)
 /*

 Notes on the Example:

1. The first INCLUDE statement includes the C main routine, CMAIN.

2. For each of the three Fortran or assembler language routines with conflicting references, there are linkage editor INCLUDE
 statements to:

 a. Remove VS FORTRAN library routines using AFHWRLK

 b. Remove the conflicting references using AFHWNCH

 c. Include the Fortran or assembler language routine (SUB1, SUB2, or SUB3) with the conflicting references

The following TSO LINK command gives the same result:

 LINK ('USER.APPL.OBJ(CMAIN)' +
 'CEE.V1R5M0.SCEESAMP(AFHWRLK)', +
 'CEE.V1R5M0.SCEESAMP(AFHWNCH)', +
 'USER.VSF.LOAD(SUB1)', +
 'CEE.V1R5M0.SCEESAMP(AFHWRLK)', +
 'CEE.V1R5M0.SCEESAMP(AFHWNCH)', +
 'USER.VSF.LOAD(SUB2)', +
 'CEE.V1R5M0.SCEESAMP(AFHWRLK)', +
 'CEE.V1R5M0.SCEESAMP(AFHWNCH)', +
 'USER.VSF.LOAD(SUB3)') +
 LIB ('CEE.V1R5M0.SCEELKED') +
 LOAD ('USER.APPL.LOAD(CMAIN)') +
 NOTERM

This completes the resolution of the conflicting references using the conflicting references removal tool.

Lang Env V1R5 Fortran Migration Guide
Creating an Executable Load Module

¦ Copyright IBM Corp. 1995
2.4.4.1.2 - 1

 2.4.4.2 Including Fortran Library Routines To Resolve Conflicting References

This section shows how to deal with the conflicting references when both of the following conditions are satisfied:

� Your input to the linkage editor is a load module containing both of the following

 - One or more C routines
 - Fortran or assembler language routines with conflicting references

� You don't have the Fortran or assembler language routines available as source modules or as individual object modules (8)

Follow these steps to resolve the conflicting references to the proper Fortran library routines:

1. Identify exactly which of the 20 names in Table 4 in topic 2.4.1 are referenced by the Fortran or assembler language routines.
 To find this information, look at cross-reference information produced when the load module was link-edited. (If you don't have
 the output from the linkage editor, use the AMBLIST service aid as shown in "Load Modules" in topic 2.4.1.1.)

2. From the data set CEE.V1R5M0.SAFHFORT, specifically include into your load module each library routine identified in step 1.
 This resolves the conflicting references to the correct Fortran library routines, but the conflicting references remain in the
 resulting load module.

The following example shows how to link-edit a load module MOD1 from the data set USER.VSF.LOAD. Assume that the main
 routine is written in C and that you've found three conflicting references: SIN, LOG, and CLOCK.

 //FORTC EXEC PROC=CEEWL,PGMLIB=USER.APPL.LOAD,GONAME=MOD1
 //SCEESAMP DD DSNAME=CEE.V1R5M0.SCEESAMP,DISP=SHR
 //SAFHFORT DD DSNAME=CEE.V1R5M0.SAFHFORT,DISP=SHR
 //VSFLOAD DD DSNAME=USER.VSF.LOAD,DISP=SHR
 //SYSIN DD *
 INCLUDE SAFHFORT(SIN)
 INCLUDE SAFHFORT(LOG)
 INCLUDE SAFHFORT(CLOCK)
 INCLUDE SYSLIB(EDCSTART)
 INCLUDE SYSLIB(CEEROOTB)
 INCLUDE SYSLIB(@@FTOC)
 INCLUDE SYSLIB(@@CTOF)
 INCLUDE SCEESAMP(AFHWRLK)
 INCLUDE VSFLOAD(MOD1)
 ENTRY CEESTART
 NAME MOD1(R)
 /*

 Notes on the Example:

1. The linkage editor INCLUDE statements include the following:

 SIN, LOG, CLOCK
 The Fortran library versions of the routines for which there are conflicting references. These included routines replace VS
 FORTRAN routines with the same names.

 EDCSTART, CEEROOTB, @@FTOC, @@CTOF
 C library routines that must replace C library routines with the same names in order to link-edit the application with Language
 Environment. These library routines are included from data set CEE.V1R5M0.SCEELKED because the SYSLIB DD statement in
 the CEEWL cataloged procedure refers to it. For further information on link-editing existing load modules that contain C routines,
 see C/C++ for MVS/ESA Compiler and Run-Time Migration Guide.

 AFHWRLK
 The Fortran library module removal tool, needed because the input load module (MOD1) contains Fortran library routines.

Lang Env V1R5 Fortran Migration Guide
Including Fortran Library Routines To Resolve Conflicting References

¦ Copyright IBM Corp. 1995
2.4.4.2 - 1

 MOD1

 The load module with the conflicting references.

2. All required library routines not specifically included with INCLUDE statements are included from CEE.V1R5M0.SCEELKED through
 the automatic library call process.

3. The references to SIN, LOG, and CLOCK are not removed; they are just resolved to the proper Fortran library routines.

 (8) If you have the Fortran or assembler language source programs and can recompile them, following step 2 of the process
 outlined on page 2.4 leads you to an easier technique for resolving conflicting references than is described in this section. See
 "Step 2: Recompiling Programs to Eliminate Conflicting References" in topic 2.4.2 instead.

Lang Env V1R5 Fortran Migration Guide
Including Fortran Library Routines To Resolve Conflicting References

¦ Copyright IBM Corp. 1995
2.4.4.2 - 2

 2.5 Chapter 8. Migrating VS FORTRAN Run-Time Options
Run-time options are parameters that control certain run-time behavior of Language Environment and of your routines. Many of the

 run-time options apply to all languages in the application. An example is XUFLOW, which controls whether an exponent-underflow
 exception should be allowed to occur. Others apply only to routines written in a certain language, such as Fortran. An example is
 PRTUNIT, which indicates the unit number of the print unit, that is, the unit to which output from a Fortran PRINT statement is directed.

With Language Environment you can use most VS FORTRAN Version 2 run-time options but there are the following differences,
 which this chapter discusses:

� The format in which you code the string of run-time options when you invoke your application is slightly different

� A few of the run-time options from VS FORTRAN Version 2 have no meaning with Language Environment, and others have
 replacement options that provide similar functions.

� The process that you use to create a set of default run-time options that you can link-edit into your load module is different

 Subtopics
 2.5.1 Coding the Option String
 2.5.2 Comparing the Individual Run-Time Options
 2.5.3 Providing Default Run-Time Options for Your Application

Lang Env V1R5 Fortran Migration Guide
Chapter 8. Migrating VS FORTRAN Run-Time Options

¦ Copyright IBM Corp. 1995
2.5 - 1

 2.5.1 Coding the Option String

When you invoke your application, you can provide a string that consists of both run-time options and program arguments. (The
 program arguments are the data that can be retrieved in your program as a string of characters using either the Fortran-specific
 ARGSTR callable service or the CEE3PRM callable service.)

 Subtopics
 2.5.1.1 Where to Code the Option String
 2.5.1.2 Format of Option String

Lang Env V1R5 Fortran Migration Guide
Coding the Option String

¦ Copyright IBM Corp. 1995
2.5.1 - 1

 2.5.1.1 Where to Code the Option String

If you want to supply either run-time options or program arguments when you invoke your application, code the option string,
 opt_str, in one of the following ways, depending on how you invoke the application:

� As the value of the PARM parameter on the EXEC statement in your JCL

 //step EXEC PGM=name,PARM='opt_str'

� As the parameter string on the TSO CALL command

 CALL dsname(name) 'opt_str'

� As the parameter string on the TSO LOADGO command

 LOADGO name 'opt_str'

� In a standard parameter list passed from an assembler language routine to a main program when these two routines are
 link-edited together:

 LA 1,PARMLIST
 L 15,=V(assm_name)
 BALR 14,15

 PARMLIST DC A(PARMDATA+X'80000000')
 PARMDATA DC Y(L'OPTIONS)
 OPTIONS DC C'opt_str'

 For a Fortran main program, assm_name is the name in the PROGRAM statement. (If there was no PROGRAM statement in the
 Fortran main program, assm_name is MAIN# for programs compiled with the VS FORTRAN Version 2 Release 5 or Release 6
 compiler; assm_name is MAIN for programs compiled with previous Fortran compilers.)

Lang Env V1R5 Fortran Migration Guide
Where to Code the Option String

¦ Copyright IBM Corp. 1995
2.5.1.1 - 1

 2.5.1.2 Format of Option String

The option string has the following format, which is slightly different than its counterpart in VS FORTRAN:

 +--- Format of the Option String --+
 ¦ ¦
 ¦ >>-->< ¦
 ¦ +----------------------- / ------------------------¦ ¦
 ¦ ¦ +-run-time options-+ +-program arguments-+ ¦ ¦
 ¦ +-program arguments--------------------------------+ ¦
 ¦ ¦
 +--+

Here are some examples of providing either run-time options only, program arguments only, or both:

� Both run-time options and program arguments

 NOOCSTATUS,MSGFILE(FT06F001)/ANNUAL-REPORT

� Run-time options only

 NOOCSTATUS,MSGFILE(FT06F001)/

 Note that the slash (/) isn't required following the run-time options with VS FORTRAN Version 2, but that it is required with
 Language Environment.

� Program arguments only

 /ANNUAL-REPORT

 or

 ANNUAL-REPORT

If the main program is written in COBOL, there are some differences in the format of the option string (even when Fortran-specific
 options are present).

Lang Env V1R5 Fortran Migration Guide
Format of Option String

¦ Copyright IBM Corp. 1995
2.5.1.2 - 1

 2.5.2 Comparing the Individual Run-Time Options

Most of the run-time options that you can use in VS FORTRAN Version 2 are available with Language Environment. However, there
 are a few that aren't supported in Language Environment, and a few whose functions are provided by different options in Language
 Environment. Table 5 lists the options from VS FORTRAN Version 2 and shows their equivalents, where applicable, in Language
 Environment. As the tables indicates, Language Environment automatically maps some VS FORTRAN run-time options into the
 equivalent Language Environment run-time options. In other cases, there is no automatic mapping, and you must specify the
 replacement run-time option. If you specify a VS FORTRAN run-time option that has no Language Environment equivalent and isn't
 automatically mapped to another option, Language Environment prints an information message at run time.

 +--+
 ¦ Table 5. Fortran and Language Environment Options ¦
 +--¦
 ¦ ¦ Language Environment ¦ ¦
 ¦ Fortran Option ¦ Equivalent ¦ Notes ¦
 +-----------------------+-----------------------+------------------------¦
 ¦ ABSDUMP | NOABSDUMP ¦ TERMTHDACT ¦ TERMTHDACT(DUMP) ¦
 ¦ ¦ ¦ replaces ABSDUMP to ¦
 ¦ ¦ ¦ produce a Language ¦
 ¦ ¦ ¦ Environment dump at ¦
 ¦ ¦ ¦ termination, but there ¦
 ¦ ¦ ¦ is no automatic ¦
 ¦ ¦ ¦ mapping. ¦
 ¦ ¦ ¦ ¦
 ¦ ¦ ¦ TERMTHDACT with ¦
 ¦ ¦ ¦ suboptions TRACE, ¦
 ¦ ¦ ¦ QUIET, or MSG replaces ¦
 ¦ ¦ ¦ NOABSDUMP to avoid ¦
 ¦ ¦ ¦ getting a Language ¦
 ¦ ¦ ¦ Environment dump at ¦
 ¦ ¦ ¦ termination. ¦
 +-----------------------+-----------------------+------------------------¦
 ¦ AUTOTASK | NOAUTOTASK ¦ AUTOTASK | NOAUTOTASK ¦ AUTOTASK | NOAUTOTASK ¦
 ¦ ¦ ¦ provides behavior ¦
 ¦ ¦ ¦ compatible with VS ¦
 ¦ ¦ ¦ FORTRAN Version 2. ¦
 +-----------------------+-----------------------+------------------------¦
 ¦ CNVIOERR | NOCNVIOERR ¦ Not applicable ¦ There is no Language ¦
 ¦ ¦ ¦ Environment equivalent ¦
 ¦ ¦ ¦ for CNVIOERR | ¦
 ¦ ¦ ¦ NOCNVIOERR. Fortran ¦
 ¦ ¦ ¦ semantics are as ¦
 ¦ ¦ ¦ though CNVIOERR were ¦
 ¦ ¦ ¦ in effect. ¦
 +-----------------------+-----------------------+------------------------¦
 ¦ DEBUG | NODEBUG ¦ Not applicable ¦ There is no debugger ¦
 ¦ ¦ ¦ support for Fortran. ¦
 +-----------------------+-----------------------+------------------------¦
 ¦ DEBUNIT ¦ Not applicable ¦ There is no Language ¦
 ¦ ¦ ¦ Environment equivalent ¦
 ¦ ¦ ¦ for DEBUNIT. ¦
 +-----------------------+-----------------------+------------------------¦
 ¦ ECPACK | NOECPACK ¦ Not applicable ¦ There is no Language ¦
 ¦ ¦ ¦ Environment equivalent ¦
 ¦ ¦ ¦ for ECPACK | NOECPACK. ¦
 ¦ ¦ ¦ You cannot run ¦
 ¦ ¦ ¦ programs with Language ¦
 ¦ ¦ ¦ Environment that use ¦
 ¦ ¦ ¦ access registers or ¦
 ¦ ¦ ¦ that were compiled ¦

Lang Env V1R5 Fortran Migration Guide
Comparing the Individual Run-Time Options

¦ Copyright IBM Corp. 1995
2.5.2 - 1

 ¦ ¦ ¦ with the EC or EMODE ¦
 ¦ ¦ ¦ compiler options. ¦
 +-----------------------+-----------------------+------------------------¦
 ¦ ERRUNIT ¦ ERRUNIT ¦ ERRUNIT provides ¦
 ¦ ¦ ¦ behavior compatible ¦
 ¦ ¦ ¦ with VS FORTRAN ¦
 ¦ ¦ ¦ Version 2. ¦
 +-----------------------+-----------------------+------------------------¦
 ¦ FAIL ¦ ABTERMENC ¦ ABTERMENC replaces ¦
 ¦ ¦ ¦ FAIL, but there is no ¦
 ¦ ¦ ¦ automatic mapping. ¦
 ¦ ¦ ¦ ABTERMENC controls ¦
 ¦ ¦ ¦ whether a condition of ¦
 ¦ ¦ ¦ severity 2 or greater ¦
 ¦ ¦ ¦ is terminated with a ¦
 ¦ ¦ ¦ return code or an ¦
 ¦ ¦ ¦ abend. ¦
 ¦ ¦ ¦ ABTERMENC(RETCODE) is ¦
 ¦ ¦ ¦ similar to FAIL(RC), ¦
 ¦ ¦ ¦ and ABTERMENC(ABEND) ¦
 ¦ ¦ ¦ is similar to ¦
 ¦ ¦ ¦ FAIL(ABEND). ¦
 +-----------------------+-----------------------+------------------------¦
 ¦ FILEHIST | NOFILEHIST ¦ FILEHIST | NOFILEHIST ¦ FILEHIST | NOFILEHIST ¦
 ¦ ¦ ¦ provides behavior ¦
 ¦ ¦ ¦ compatible with VS ¦
 ¦ ¦ ¦ FORTRAN Version 2. ¦
 +-----------------------+-----------------------+------------------------¦
 ¦ INQPCOPN | NOINQPCOPN ¦ INQPCOPN | NOINQPCOPN ¦ INQPCOPN | NOINQPCOPN ¦
 ¦ ¦ ¦ provides behavior ¦
 ¦ ¦ ¦ compatible with VS ¦
 ¦ ¦ ¦ FORTRAN Version 2. ¦
 +-----------------------+-----------------------+------------------------¦
 ¦ IOINIT | NOIOINIT ¦ Not applicable ¦ There is no Language ¦
 ¦ ¦ ¦ Environment equivalent ¦
 ¦ ¦ ¦ for IOINIT | NOIOINIT. ¦
 ¦ ¦ ¦ The message file is ¦
 ¦ ¦ ¦ opened either when the ¦
 ¦ ¦ ¦ first record is ¦
 ¦ ¦ ¦ written to it or when ¦
 ¦ ¦ ¦ an OPEN statement ¦
 ¦ ¦ ¦ refers to error ¦
 ¦ ¦ ¦ message unit. If no ¦
 ¦ ¦ ¦ allocation for the ¦
 ¦ ¦ ¦ ddname has been made ¦
 ¦ ¦ ¦ for the message file, ¦
 ¦ ¦ ¦ it is dynamically ¦
 ¦ ¦ ¦ allocated to the ¦
 ¦ ¦ ¦ terminal (under TSO) ¦
 ¦ ¦ ¦ or to SYSOUT=* (under ¦
 ¦ ¦ ¦ MVS batch). ¦
 +-----------------------+-----------------------+------------------------¦
 ¦ OCSTATUS | NOOCSTATUS ¦ OCSTATUS | NOOCSTATUS ¦ OCSTATUS | NOOCSTATUS ¦
 ¦ ¦ ¦ provides behavior ¦
 ¦ ¦ ¦ compatible with VS ¦
 ¦ ¦ ¦ FORTRAN Version 2. ¦
 +-----------------------+-----------------------+------------------------¦
 ¦ PARALLEL | NOPARALLEL ¦ Not applicable ¦ There is no Language ¦
 ¦ ¦ ¦ Environment equivalent ¦
 ¦ ¦ ¦ for PARALLEL | ¦

Lang Env V1R5 Fortran Migration Guide
Comparing the Individual Run-Time Options

¦ Copyright IBM Corp. 1995
2.5.2 - 2

 ¦ ¦ ¦ NOPARALLEL. Parallel ¦
 ¦ ¦ ¦ programs cannot be run ¦
 ¦ ¦ ¦ with Language ¦
 ¦ ¦ ¦ Environment. ¦
 +-----------------------+-----------------------+------------------------¦
 ¦ PRTUNIT ¦ PRTUNIT ¦ PRTUNIT provides ¦
 ¦ ¦ ¦ behavior compatible ¦
 ¦ ¦ ¦ with VS FORTRAN ¦
 ¦ ¦ ¦ Version 2. ¦
 +-----------------------+-----------------------+------------------------¦
 ¦ PTRACE | NOPTRACE ¦ Not applicable ¦ There is no Language ¦
 ¦ ¦ ¦ Environment equivalent ¦
 ¦ ¦ ¦ for PTRACE | NOPTRACE. ¦
 ¦ ¦ ¦ Parallel programs ¦
 ¦ ¦ ¦ cannot be run with ¦
 ¦ ¦ ¦ Language Environment. ¦
 +-----------------------+-----------------------+------------------------¦
 ¦ PUNUNIT ¦ PUNUNIT ¦ PUNUNIT provides ¦
 ¦ ¦ ¦ behavior compatible ¦
 ¦ ¦ ¦ with VS FORTRAN ¦
 ¦ ¦ ¦ Version 2. ¦
 +-----------------------+-----------------------+------------------------¦
 ¦ RDRUNIT ¦ RDRUNIT ¦ RDRUNIT provides ¦
 ¦ ¦ ¦ behavior compatible ¦
 ¦ ¦ ¦ with VS FORTRAN ¦
 ¦ ¦ ¦ Version 2. ¦
 +-----------------------+-----------------------+------------------------¦
 ¦ RECPAD | NORECPAD | ¦ RECPAD(OFF | NONE | ¦ NORECPAD automatically ¦
 ¦ RECPAD(VAR) ¦ VAR | ALL | ON) ¦ maps to RECPAD(OFF). ¦
 ¦ ¦ ¦ RECPAD(VAR) provides ¦
 ¦ ¦ ¦ behavior compatible ¦
 ¦ ¦ ¦ with VS FORTRAN ¦
 ¦ ¦ ¦ Version 2. RECPAD ¦
 ¦ ¦ ¦ must be changed to ¦
 ¦ ¦ ¦ RECPAD(ON). ¦
 +-----------------------+-----------------------+------------------------¦
 ¦ SPIE | NOSPIE, ¦ TRAP(ON | OFF) ¦ If either SPIE or STAE ¦
 ¦ STAE | NOSTAE ¦ ¦ is specified in input, ¦
 ¦ ¦ ¦ TRAP is set to ¦
 ¦ ¦ ¦ TRAP(ON). If both ¦
 ¦ ¦ ¦ NOSPIE and NOSTAE are ¦
 ¦ ¦ ¦ specified, TRAP is set ¦
 ¦ ¦ ¦ to TRAP(OFF). ¦
 ¦ ¦ ¦ TRAP(ON) must be in ¦
 ¦ ¦ ¦ effect for many ¦
 ¦ ¦ ¦ applications to run ¦
 ¦ ¦ ¦ successfully. ¦
 +-----------------------+-----------------------+------------------------¦
 ¦ XUFLOW | ¦ XUFLOW(ON | AUTO) ¦ There is no automatic ¦
 ¦ NOXUFLOW ¦ XUFLOW(OFF) ¦ mapping of XUFLOW to ¦
 ¦ ¦ ¦ the Language ¦
 ¦ ¦ ¦ Environment XUFLOW. ¦
 ¦ ¦ ¦ ¦
 ¦ ¦ ¦ NOXUFLOW maps to the ¦
 ¦ ¦ ¦ Language Environment ¦
 ¦ ¦ ¦ XUFLOW(OFF), which ¦
 ¦ ¦ ¦ provides compatible ¦
 ¦ ¦ ¦ behavior. ¦
 +--+

Lang Env V1R5 Fortran Migration Guide
Comparing the Individual Run-Time Options

¦ Copyright IBM Corp. 1995
2.5.2 - 3

 2.5.3 Providing Default Run-Time Options for Your Application

With VS FORTRAN Version 2, you can create a set of run-time options that you can use in one or more applications without
 specifying the options when you invoke the application. You do this by assembling a VSF2PARM macro instruction with the options
 you want, which produces an object module with the name AFBVLPRM. (9) You then include this object module into the load module
 that contains your main program.

You can't use the VS FORTRAN Version 2 macro or an existing copy of AFBVLPRM with Language Environment, but there is a
 comparable way of providing the run-time options. Follow these steps:

1. Code a CEEXOPT macro instruction with the run-time options that you want to use.

2. Assemble the file containing the CEEXOPT macro instruction to produce a CEEUOPT object module.

3. Link-edit the CEEUOPT object module into the load module that contains your main program.

The specified options take effect when you invoke the application. You can use the same copy of the CEEUOPT object module for
 different applications, or you can create copies with different sets of run-time options for different applications. For further
 information, see the chapter on using run-time options in Language Environment for MVS & VM Programming Guide.

 (9) Those who install VS FORTRAN Version 2 can assemble a VSF2PARM macro instruction to provide run-time options that apply
 to your whole site. (In this case, the assembly creates the module AFBVGPRM.) With Language Environment, there is a different
 process for providing site-wide run-time options, as described in Language Environment for MVS & VM Installation and
 Customization on MVS.

Lang Env V1R5 Fortran Migration Guide
Providing Default Run-Time Options for Your Application

¦ Copyright IBM Corp. 1995
2.5.3 - 1

 2.6 Chapter 9. Interpreting Return Codes and Completion Codes
When your application completes, either successfully or unsuccessfully, it returns an indication of how the application terminated to

 the invoker of the application. An application that terminates normally (10) provides a return code. One that terminates abnormally
 provides a system or user completion code.

This chapter provides an overview of how return codes and completion codes are set and shows how certain Language
 Environment return codes and completion codes differ from the VS FORTRAN ones.

 (10) To say that an application terminated normally doesn't necessarily mean that it completed successfully from your point of view.
 Normal termination is used in the MVS sense to mean that no abend (or abnormal termination) occurred.

 Subtopics
 2.6.1 Specifying How Unhandled Conditions Should Be Reported
 2.6.2 Return Codes
 2.6.3 Completion (Abend) Codes

Lang Env V1R5 Fortran Migration Guide
Chapter 9. Interpreting Return Codes and Completion Codes

¦ Copyright IBM Corp. 1995
2.6 - 1

 2.6.1 Specifying How Unhandled Conditions Should Be Reported

With VS FORTRAN, the FAIL run-time option lets you control whether certain kinds of failures result in normal termination with a
 return code of 16 or an abnormal termination (abend) with a user completion code of 240. The default is for abnormal terminations to
 be translated into a user completion code 240 and for all other failures to cause normal termination with return code 16.

Language Environment has the ABTERMENC run-time option, which has a similar function. This option controls what happens when
 termination occurs because of an unhandled condition with a severity of 2 or greater:

ABTERMENC(ABEND)
 Causes abnormal termination to occur. The completion code depends on the type of the original failure, such as program
 interruption, software-detected error, or abend.

ABTERMENC(RETCODE)
 Causes normal termination with a nonzero return code. For the value of the return code, see "Interpreting Return Codes for
 Unhandled Conditions" in topic 2.6.2.3.

As supplied by IBM, the default value of the ABTERMENC run-time option is RETCODE. Therefore, with Language Environment, an
 unhandled condition of severity 2 or greater causes a normal termination with a nonzero return code; with VS FORTRAN, the same
 error might cause an abnormal termination. For example, with Language Environment, a program interruption due to an protection
 exception causes normal termination with a return code of 3000. With VS FORTRAN, the same error causes an abnormal termination
 with user completion code 240. If you have JCL or CLISTs that interpret return codes or abends, then revise your code to detect
 failures as defined by the ABTERMENC run-time option.

Language Environment lets you write an assembler user exit called CEEBXITA, which can override the actions of the ABTERMENC
 run-time option. For further information, see the section on the termination behavior for unhandled conditions in Language
 Environment for MVS & VM Programming Guide.

Lang Env V1R5 Fortran Migration Guide
Specifying How Unhandled Conditions Should Be Reported

¦ Copyright IBM Corp. 1995
2.6.1 - 1

 2.6.2 Return Codes

An application terminates normally for one of these reasons:

� Some language construct, such as a STOP statement, requests termination and possibly provides a return code to be used

� The ABTERMENC(RETCODE) run-time option is in effect and there is an unhandled condition of severity 2 or greater

Every application that terminates normally provides a return code that indicates the success or failure of the application. By
 convention, a return code of 0 usually indicates successful completion, but when your program provides the return code, the values
 can have whatever meaning you choose.

This section discusses the following topics:

� Detecting the return code from the completed applicatio
 � Specifying the return code in your Fortran routin
 � Interpreting return codes for unhandled condition

 Subtopics
 2.6.2.1 Detecting the Return Code from the Completed Application
 2.6.2.2 Specifying the Return Code in Your Fortran Routine
 2.6.2.3 Interpreting Return Codes for Unhandled Conditions

Lang Env V1R5 Fortran Migration Guide
Return Codes

¦ Copyright IBM Corp. 1995
2.6.2 - 1

 2.6.2.1 Detecting the Return Code from the Completed Application

Your application's return code is presented to you in different ways, depending on how you invoked your application. Here are
 some common ways:

� When you use the EXEC statement in your JCL to specify the name of the load module containing your main program, the return
 code is nnnn in the following message in the job log:

 COND CODE nnnn

 You can test the return code by using the COND parameter on the EXEC statement for subsequent job steps.

� When you use a CALL command in a TSO CLIST to specify the name of the load module containing your main program, the
 return code is available to your CLIST in the variable &LASTCC.

� When you invoke your main program using the REXX language, the return code is available to your REXX exec in the REXX
 special variable RC.

� When you call your main program directly from an assembler language program, the return code is provided to the calling
 program in general register 15.

The following sections explain what causes different return code values to be set.

Lang Env V1R5 Fortran Migration Guide
Detecting the Return Code from the Completed Application

¦ Copyright IBM Corp. 1995
2.6.2.1 - 1

 2.6.2.2 Specifying the Return Code in Your Fortran Routine

With Language Environment, the following Fortran statements terminate your application with the return code shown. These return
 codes are the same as in VS FORTRAN.

 +--+
 ¦ Table 6. Return Codes from Fortran Statements That Terminate an ¦
 ¦ Application ¦
 +--¦
 ¦ Fortran Statement ¦ Return Code ¦
 +-------------------------+--¦
 ¦ STOP ¦ 0 ¦
 +-------------------------+--¦
 ¦ END in a main program ¦ 0 ¦
 +-------------------------+--¦
 ¦ STOP n ¦ n ¦
 +-------------------------+--¦
 ¦ STOP 'message' ¦ ¦
 ¦ (message is a string ¦ 0 ¦
 ¦ of up to 72 ¦ ¦
 ¦ characters.) ¦ ¦
 +-------------------------+--¦
 ¦ CALL SYSRCX (n) ¦ n if n is between 0 and 4095, inclusive. ¦
 ¦ ¦ Otherwise, undefined. ¦
 +-------------------------+--¦
 ¦ CALL EXIT ¦ The most recent user return code that was ¦
 ¦ or ¦ set either by a call to SYSRCS or CEE3SRC or ¦
 ¦ CALL SYSRCX ¦ by some other language's service ¦
 +-------------------------+--¦
 ¦ CALL DUMP ¦ ¦
 ¦ or ¦ 0 ¦
 ¦ CALL CDUMP ¦ ¦
 +--+

At some point while your application is running, you can set a value that might be used later as the return code when the application
 finally terminates. The value that you set in this way is called the user return code to contrast it with the final return code when the
 application terminates. The statements in the following table set a user return code without terminating immediately:

 +--+
 ¦ Table 7. Fortran Statements That Set a User Return Code ¦
 +--¦
 ¦ Statement ¦ User Return Code ¦
 +-------------------------+--¦
 ¦ CALL SYSRCS (n) ¦ n if n is between 0 and 4095, inclusive. ¦
 ¦ or ¦ Otherwise, undefined. ¦
 ¦ CALL CEE3SRC (n, fc) ¦ ¦
 +--+

You can't call the CEE3SRC callable service directly from a Fortran routine, but you can call it using the AFHCEEF or AFHCEEN
 callable service, or you can call it from an assembler language routine.

Other languages also provide services for setting the user return code. An example is the PLIRETC built-in subroutine in PL/I.
 Regardless of the language that was used to set the user return code, the most recently set value is used when the application
 terminates.

Lang Env V1R5 Fortran Migration Guide
Specifying the Return Code in Your Fortran Routine

¦ Copyright IBM Corp. 1995
2.6.2.2 - 1

 2.6.2.3 Interpreting Return Codes for Unhandled Conditions

Whenever the ABTERMENC(RETCODE) run-time option is in effect and the application terminates due to an unhandled condition of
 severity 2 or greater, a normal termination occurs, and the return code is set according to the following formula:

 1000 ¦ severity + user_return_code

severity
 The severity (2, 3, or 4) of the unhandled condition. The value 1000 ¦ severity is called the return code modifier.

user_return_code
 The user return code that was set with the most recent call either to the SYSRCS or CEE3SRC callable service or to another
 language's service, such as PL/I's PLIRETC built-in subroutine.

For example, the following program sets the user return code to 201 and is then terminated due to the unhandled condition FOR1916,
 the severity 3 condition that results from the excessively large unit number in the OPEN statement:

 CALL SYSRCS (201)
 OPEN (10000)
 END

The return code for the application is 3201. With VS FORTRAN, this same program terminates normally with return code 16 if the
 number of allowed occurrences of the error is 1.

Lang Env V1R5 Fortran Migration Guide
Interpreting Return Codes for Unhandled Conditions

¦ Copyright IBM Corp. 1995
2.6.2.3 - 1

 2.6.3 Completion (Abend) Codes

An application abnormally terminates (abends) for one of these reasons:

� One of your routines requests the abnormal termination and provides the user completion code, such as with a call to the
 SYSABN callable service.

� The ABTERMENC(ABEND) run-time option is in effect and there is an unhandled condition of severity 2 or greater

� The CEEBXITA assembler user exit, which is described in Language Environment for MVS & VM Programming Guide, requests
 that an unhandled condition of severity 2 or greater cause an abnormal termination rather than a normal termination with a return
 code.

� Language Environment detects some unusual situation for which continued execution is impossible

An application that terminates abnormally provides a completion code, often called an abend code, that indicates the cause of the
 failure. Many completion codes are accompanied by a reason code that provides more detailed information on the error. There are
 two types of completion codes: system completion codes and user completion codes. The system completion codes are produced
 by operating system components and are printed as three hexadecimal digits. For the meaning of the system completion codes and
 reason codes, see one of the following:

� MVS/ESA System Codes, MVS/ESA System Product: JES2 Version 4, JES3 Version 4

� MVS/ESA System Codes, MVS/ESA System Product: JES2 Version 5, JES3 Version 5

User completion codes are dependent on the application that detected the error and are usually printed as four decimal digits.
 Language Environment produces user completion codes above 4000 to report problems for which continued processing is
 impossible. For the meaning of these codes, see the chapter on Language Environment abend codes in Language Environment for
 MVS & VM Debugging Guide and Run-Time Messages . For user completion codes produced by your application, see whatever
 information describes the code. Be aware that your application could produce a user completion code that overlaps with Language
 Environment's 40nn codes; if it does so, there could be some confusion about the meaning of the code.

Lang Env V1R5 Fortran Migration Guide
Completion (Abend) Codes

¦ Copyright IBM Corp. 1995
2.6.3 - 1

 3.0 Part 3. Changing Source Programs
Some VS FORTRAN facilities aren't available in Language Environment, and their absence will affect the migration of your Fortran

 routines that depend on them. The most significant of these features is the extended error handling facility, which provides
 corrective actions and other services for Fortran applications. The following chapters discuss how to change your Fortran source
 programs to use Language Environment features when you want behavior similar to that of VS FORTRAN. Chapter 10 discusses
 how to deal with run-time errors using the condition handling services that are part of Language Environment, and Chapter 11
 discusses several other VS FORTRAN facilities and how to use Language Environment services to get similar results.

 Subtopics
 3.1 Chapter 10. Handling Run-Time Errors
 3.2 Chapter 11. Making Other Source Program Changes

Lang Env V1R5 Fortran Migration Guide
Part 3. Changing Source Programs

¦ Copyright IBM Corp. 1995
3.0 - 1

 3.1 Chapter 10. Handling Run-Time Errors
You can use the Language Environment condition handling model to replace much of the error handling that is part of VS FORTRAN.

 If your Fortran programs depend on the extended error handling facility of VS FORTRAN, either for fix-up actions or for continued
 execution when an error occurs, change these programs to use the services that are part of the Language Environment condition
 handling model. This chapter discusses the following topics:

� Overview of the Language Environment condition handling mode
 � Overview of the VS FORTRAN extended error handling facilit
 � Fortran-specific services for error handlin
 � Handling run-time errors from your Fortran routine
 � Regaining control for conditions not handled by a subprogra

 Subtopics
 3.1.1 Overview of the Language Environment Condition Handling Model
 3.1.2 Overview of the VS FORTRAN Extended Error Handling Facility
 3.1.3 Fortran-Specific Services for Error Handling
 3.1.4 Handling Run-Time Errors from Your Fortran Routines
 3.1.5 Regaining Control for Conditions Not Handled by a Subprogram

Lang Env V1R5 Fortran Migration Guide
Chapter 10. Handling Run-Time Errors

¦ Copyright IBM Corp. 1995
3.1 - 1

 3.1.1 Overview of the Language Environment Condition Handling Model

This section introduces you the Language Environment condition handling model. It discusses the terminology involved, the operation
 of the Language Environment condition manager, and the interaction with your routines. Emphasis is placed on the interaction with
 Fortran routines.

There is detailed information on condition handling in Language Environment for MVS & VM Programming Guide.

 Subtopics
 3.1.1.1 Conditions and the Enablement Step
 3.1.1.2 Stack Frames, Cursors, and the Condition Step
 3.1.1.3 The Condition Token
 3.1.1.4 Interaction with a User-Written Condition Handler
 3.1.1.5 Unhandled Conditions

Lang Env V1R5 Fortran Migration Guide
Overview of the Language Environment Condition Handling Model

¦ Copyright IBM Corp. 1995
3.1.1 - 1

 3.1.1.1 Conditions and the Enablement Step

A condition is some exceptional situation detected by the one of the following and processed through the Language Environment
 condition handling model:

Hardware
 These are the program interruptions that are detected by the central processing unit. Examples are the exponent-overflow and
 addressing exceptions.

Operating system
 These are software errors that are reported as abends. An example is the failure of an OPEN macro instruction which could fail
 with a system completion (abend) code of 813-04 to indicate that a requested data set isn't on the tape volume.

Other software
 These are errors detected either by Language Environment (including the language-specific libraries, such as the Fortran library)
 or by your own routines.

Not all exceptional situations necessarily become conditions.

There are several participants in the Language Environment condition handling model. The first is the Language Environment
 condition manager (or just condition manager), which controls the actions defined by the model. Other participants include
 language-specific condition handlers and user-written condition handlers.

A condition is signaled when it is brought to the attention of the condition manager through the CEESGL callable service. The
 condition manager's first action is to determine whether the condition should continue to be processed as a condition. This is called
 the enablement step. A participant at this step is the language-specific enablement routine, a language-specific library routine that
 is invoked immediately after the condition is signaled. A specific enablement routine, such as the one for Fortran, is invoked only for
 a condition resulting from the execution of one of your routines written in that specific language. A condition is said to be enabled if
 the language-specific enablement routine indicates that the condition should be processed further as a condition. The decision
 whether to enable a specific condition is based on the semantics of the language involved.

If an enablement routine does not to enable a condition, then no further condition handling occurs, and execution continues at the
 next instruction or as defined by the language semantics.

The Fortran-specific enablement routine enables all conditions that are presented to it except for cases in which the language
 standard requires that control be returned to the program. An example of a condition that is not enabled is a system completion
 (abend) code 813-04 that occurs during the execution of a Fortran OPEN statement with an ERR specifier. This condition is not
 enabled, and control passes to the label indicated by the ERR specifier.

Lang Env V1R5 Fortran Migration Guide
Conditions and the Enablement Step

¦ Copyright IBM Corp. 1995
3.1.1.1 - 1

 3.1.1.2 Stack Frames, Cursors, and the Condition Step

The Language Environment condition handling model views the invoked routines of an application as residing in a last-in-first-out
 (LIFO) stack. Two pointers, or cursors, point at various levels of the stack. Each entry in the stack, called a stack frame, represents
 a routine (either a user or library routine) in the call chain. The most recent stack frame represents the most recently invoked
 routine. The condition manager processes the stack frames of the stack in LIFO order. The language-specific enablement routine
 involved is the one associated with the most recent stack frame.

The handle cursor points to the stack frame whose condition handling actions are to be performed. The resume cursor points to the
 stack frame and the instruction where execution will resume if a condition handler decides that it is appropriate to resume
 execution. Language Environment provides the following callable services to let a program move the resume cursor:

 Name Purpose

 CEEMRCE Moves the resume cursor to the point following a call to the CEE3SRP callable service. (A routine must use CEE3SRP to
 establish the resume point before the condition occurs.) You can't call CEE3SRP from a Fortran routine.

 CEEMRCR Moves the resume cursor to the return point in an earlier stack frame. There's a Fortran example of the use of the
 CEEMRCR callable service in "Regaining Control for Conditions Not Handled by a Subprogram" in topic 3.1.5.

For further details on these callable services, see Language Environment for MVS & VM Programming Reference.

During the condition step, the condition handling model defines for each stack frame a logical queue of condition handlers which
 might in turn get a chance to handle a condition. The sequence of condition handlers in the queue for each stack frame is as follows:

1. Registered user-written condition handlers, if any, in LIFO order
 2. The language-specific condition handler

A user-written condition handler is a routine that you can write to deal with a condition presented to it. You register your condition
 handler on behalf of a given stack frame using the CEEHDLR callable service, and you unregister it using the CEEHDLU callable
 service. It is automatically unregistered when the routine that called CEEHDLR returns to its caller. You can register more than one
 user-written condition handler for a given stack frame.

Lang Env V1R5 Fortran Migration Guide
Stack Frames, Cursors, and the Condition Step

¦ Copyright IBM Corp. 1995
3.1.1.2 - 1

 3.1.1.3 The Condition Token

When a condition is signaled, it is represented by a condition token. A condition token is an instance of a 12-byte datum which
 represents a single occurrence of some condition. (The detailed format of a condition token can be found in the chapter on using
 condition tokens in Language Environment for MVS & VM Programming Guide.) The condition token contains identifying information,
 such as the following, that identifies a particular condition:

� The facility ID, a three-character identifier of a product or component

� A unique message number that identifies a condition and its corresponding messag

Another component of the condition token is the condition's severity, which is a value from 0 through 4. The severities have the
 following meanings:

 Severity Meaning
 0 Information
 1 Warning
 2 Error
 3 Severe error
 4 Critical error

Severity 4 usually refers to situations where continued execution of the application is not likely to be successful, such as when
 some internal control block has been destroyed. The other severities usually refer to impact on the particular service being
 performed, not necessarily to the impact on the overall application. For example, a mathematical routine might signal a severity 2
 condition, but this could be a catastrophic error from the point of view of your application if your application can't continue without
 the computed value. On the other hand, the library routine that processes your OPEN statement might signal a severity 3 condition
 while opening your file, but your program could ignore this error if it's necessary to do other processing even without the file.

The condition token also refers to the following instance-specific information about the condition:

� The variable data to be substituted in a messag

� The qualifying data associated with the condition. The qualifying data are unique pieces of information about a particular
 occurrence of a condition. One example of a qualifying datum is the input argument to the service that detected the condition. For
 example, if -4.0 is passed as an argument to a real square root routine, one qualifying datum associated with the condition token
 for this error has the value -4.0.

 A user-written condition handler uses qualifying data to determine what corrective actions to take and to provide the data needed
 for the corrective actions.

 Subtopics
 3.1.1.3.1 Condition Tokens as Feedback Codes
 3.1.1.3.2 Symbolic Feedback Codes

Lang Env V1R5 Fortran Migration Guide
The Condition Token

¦ Copyright IBM Corp. 1995
3.1.1.3 - 1

 3.1.1.3.1 Condition Tokens as Feedback Codes

The condition token is also used in another context, which is outside the condition manager's control. Most of the Language
 Environment callable services have an optional argument, called a feedback code, which is a condition token that indicates the
 success or failure of the execution of the service. By convention, if the feedback code is present in the call to a callable service
 and if some error is detected by the service, the error is reported through the feedback code when the service returns to its caller.
 In this case, the calling routine must interpret the feedback code (a condition token) and take whatever action it chooses. However,
 if the feedback code is omitted from the call and if some error is detected, the service does not return to the caller; instead, it signals
 the condition that represents the error.

Lang Env V1R5 Fortran Migration Guide
Condition Tokens as Feedback Codes

¦ Copyright IBM Corp. 1995
3.1.1.3.1 - 1

 3.1.1.3.2 Symbolic Feedback Codes

For any condition, the first eight bytes of the 12-byte condition token are always the same and can be used to uniquely identify the
 condition. The last four bytes have information that is unique to a particular occurrence (or instance) of the condition. To assist you
 in writing programs that must identify specific conditions or that create condition tokens, each condition is given a name, called the
 symbolic feedback code. The names CEE0CF and FOR1003 are two examples. The value of the symbolic feedback code is eight
 bytes long and is in the first eight bytes of the condition token.

The symbolic feedback codes are shown along with the messages in Language Environment for MVS & VM Debugging Guide and
 Run-Time Messages . For example, CEE0CF is shown as the symbolic feedback code associated with the message CEE399W, and
 FOR1003 is shown as the symbolic feedback code associated with message FOR1003S. For every Fortran-specific condition, the
 symbolic feedback code consists of the characters FOR followed by the four-digit message number.

Language Environment includes several symbolic feedback code files, each of which contains a single language's data declarations
 of a set of symbolic feedback codes. These files are in the data set CEE.V1R5M0.SCEESAMP. For example, there is a file with
 Fortran language declarations of the Fortran conditions, another with the Fortran language declarations of the conditions for the
 common component of Language Environment, and so on. The names of these files are based on:

� Which component's symbolic feedback codes are declared in the file, an
 � The language in which the declarations are code

The names of the symbolic feedback code files have the following format:

 xxxyyyCT

xxx The facility ID of the component whose symbolic feedback codes are declared in the file. xxx can be one of the following:

 xxx Component
 CEE Common component of Language Environment
 EDC C and C++
 FOR Fortran
 IBM PL/I
 IGZ COBOL

yyy The facility ID of the language in which the declarations are coded. yyy can be one of the following:

 yyy Language
 BAL Assembler
 EDC C and C++
 FOR Fortran
 IBM PL/I
 IGZ COBOL

The two symbolic feedback code files that you will use most often in your Fortran programs are FORFORCT and CEEFORCT; these
 are the Fortran declarations for the Fortran-specific conditions and for the common component conditions, respectively. To make
 these files available to the Fortran compiler, provide the following INCLUDE lines among the data declarations in your Fortran source
 program:

 INCLUDE (FORFORCT)
 INCLUDE (CEEFORCT)

and provide the following DD statement in your JCL for the compilation step:

 //SYSLIB DD DSN=CEE.V1R5M0.SCEESAMP,DISP=SHR

Lang Env V1R5 Fortran Migration Guide
Symbolic Feedback Codes

¦ Copyright IBM Corp. 1995
3.1.1.3.2 - 1

 3.1.1.4 Interaction with a User-Written Condition Handler

A user-written condition handler receives control from the condition manager as a subroutine with four arguments, the first of which
 is the condition token that, along with the qualifying data, represents the condition being processed. Based on this information, the
 condition handler can decide how to deal with the condition. The following sections discuss the different actions that a condition
 handler can request the condition manager to take and the detailed interface between a user-written condition handler and the
 condition manager.

 Subtopics
 3.1.1.4.1 Actions That a User-Written Condition Handler Can Request
 3.1.1.4.2 User-Written Condition Handler Interface

Lang Env V1R5 Fortran Migration Guide
Interaction with a User-Written Condition Handler

¦ Copyright IBM Corp. 1995
3.1.1.4 - 1

 3.1.1.4.1 Actions That a User-Written Condition Handler Can Request

Through the third argument passed to it, the condition handler requests one of the following actions that it wants the condition
 manager to take to continue processing the condition:

 resume
 The condition handler considers the condition to have been handled, and program execution should continue at the instruction to
 which the resume cursor points. If the resume cursor has not been moved by a condition handler using the CEEMRCE or
 CEEMRCR callable service, the resume cursor points to the next instruction following the call to CEESGL.

 The condition handler can move the resume cursor for any condition. For some conditions, this is the only way to request the
 resume action. Other conditions do allow the resume action when the resume cursor hasn't been moved, but there usually isn't
 any corrective action other than ignoring the failing statement or service and continuing execution. For any of the Fortran
 conditions, you can determine whether resume is allowed by referring to the permissible resume actions listed with the message
 in Language Environment for MVS & VM Debugging Guide and Run-Time Messages .

 percolate
 The condition handler declines to handle the condition, and the next condition handler defined by condition handling model should
 be given a chance to handle it.

 The percolate action has two variations. The normal case is to invoke the next condition handler, if any, on the stack frame to
 which the handle cursor points. The alternative is to bypass any remaining condition handlers on that stack frame, to move the
 handle cursor to the stack frame just before the one to which it currently points, and to present the condition to first condition
 handler, if any, for the stack frame to which the handle cursor was moved.

 Important: Always request the percolate action for any condition that your condition handler either does not understand or
 chooses not to process.

 promote
 The condition handler declines to handle the current condition, but it requests that this condition be converted to a different
 condition, which it specifies through one of the arguments.

 The promote action has three variations. After the condition has been converted, the normal case is to invoke the next condition
 handler, if any, on the stack frame to which the handle cursor points. One alternative is to bypass any remaining condition
 handlers on that stack frame, to move the handle cursor to the stack frame just before the one to which it currently points, and to
 present the condition to first condition handler, if any, for the stack frame to which the handle cursor was moved. Another
 alternative is to keep the handle cursor at the same stack frame but to invoke the first condition handler on that same stack
 frame. In this case, the current condition handler could be invoked again for the new condition.

 fix-up and resume
 To handle the condition, the condition handler requests that one of several possible corrective actions should be taken.

 In the fourth argument passed to it, the condition handler provides a condition token that corresponds to the specific corrective
 action that it wants the condition manager to take. For the Fortran conditions, there are three possible fix-up and resume actions,
 not all of which apply to any one condition:

 resume with new input value
 The failing service should be retried with a new input value, which the condition handler provides through a qualifying datum.

 The condition token for requesting this action has the symbolic feedback code CEE0CE; its message number is 398.

 resume with new output value
 Execution should continue but with a specified result instead of what the failing instruction or service would have provided.
 The condition handler provides this result through a qualifying datum.

 The condition token for requesting this action has the symbolic feedback code CEE0CF; its message number is 399.

 resume with Fortran-specific correction
 Execution should continue but with a Fortran-specific action that is unique to a particular condition. This action applies to a
 few Fortran conditions, such as FOR1002, that are signaled during the processing of an I/O statement.

Lang Env V1R5 Fortran Migration Guide
Actions That a User-Written Condition Handler Can Request

¦ Copyright IBM Corp. 1995
3.1.1.4.1 - 1

 The condition token for requesting this action has the symbolic feedback code FOR0070; its message number is 70.

 Not all conditions allow any or all of the fix-up and resume actions. Before you write a condition handler that requests one of the
 fix-up and resume actions, ensure that the condition being processed allows that particular fix-up and resume action. When a
 fix-up and resume action is allowed for a condition, your condition handler must provide the qualifying data needed for the
 corrective action; in most cases, this is the new input value or the new output value. Depending on the condition, look for the
 information on how to do this in one of these places:

 � For the Fortran conditions, refer to the permissible resume actions listed w ith the messages in Language Environment for MVS
 & VM Debugging Guide and Run-Time Messages .

 � For mathematical routine errors and arithmetic program interruptions, such as the exponent-overf low exception, see
 Appendix B, "Qualifying Data for Language Environment Conditions" in topic APPENDIX1.2.

 The fix-up and resume action is allowed only if the resume cursor still points to the location where the error was originally
 detected.

Lang Env V1R5 Fortran Migration Guide
Actions That a User-Written Condition Handler Can Request

¦ Copyright IBM Corp. 1995
3.1.1.4.1 - 2

 3.1.1.4.2 User-Written Condition Handler Interface

This section discusses the details of the interface between the Language Environment condition manager and a user-written
 condition handler. Before you read this section, be sure that you understand the actions that a condition handler can request of the
 condition manager.

Here is the format of the Fortran SUBROUTINE statement for a condition handler and the Fortran declarations of the dummy
 arguments:

 +--- Fortran Declarations for a User-Written Condition Handler ----------+
 ¦ ¦
 ¦ SUBROUTINE name (curr_ctok, token, result_code, new_ctok) ¦
 ¦ CHARACTER*12 curr_ctok ¦
 ¦ INTEGER*4 token ¦
 ¦ INTEGER*4 result_code ¦
 ¦ CHARACTER*12 new_ctok ¦
 ¦ ¦
 ¦ ¦
 +--+

name
 The name of the condition handler. This is the name specified either as the first argument in the call to the CEEHDLR callable
 service or as the value of the USRHDLR run-time option.

curr_ctok (input)
 A 12-byte condition token that represents the condition being processed by the condition manager and for which the condition
 handler is entered. This condition token has associated with it all of the qualifying data that applies to the condition.

token (input)
 A 4-byte integer whose value is the token that was included as the second argument in the call to the CEEHDLR callable service
 that registered this condition handler. Using token, you can communicate data between the condition handler and the routine that
 registered the condition handler.

result_code (output)
 A 4-byte integer that the condition handler sets to indicate how it wants the condition manager to continue its processing of the
 condition. Table 8 shows the permissible values for result_code. For details on the associated actions, see "Actions That a
 User-Written Condition Handler Can Request" in topic 3.1.1.4.1.

 +--+
 ¦ Table 8. Values of result_code Set by a User-Written Condition ¦
 ¦ Handler ¦
 +--¦
 ¦ result_code ¦ Response ¦ Action ¦
 +-------------+------------+---¦
 ¦ 10 ¦ resume ¦ Resume execution at the resume cursor. ¦
 +-------------+------------+---¦
 ¦ 20 ¦ percolate ¦ Percolate the condition to the next ¦
 ¦ ¦ ¦ condition handler for the same stack ¦
 ¦ ¦ ¦ frame as the current condition handler. ¦
 +-------------+------------+---¦
 ¦ 21 ¦ percolate ¦ Move the handle cursor to the stack ¦
 ¦ ¦ ¦ frame just before the one to which it ¦
 ¦ ¦ ¦ currently points. Then percolate the ¦
 ¦ ¦ ¦ condition to first condition handler, ¦
 ¦ ¦ ¦ if any, for the stack frame to which ¦
 ¦ ¦ ¦ the handle cursor was moved. ¦
 +-------------+------------+---¦
 ¦ 30 ¦ promote ¦ Promote the condition to the one ¦
 ¦ ¦ ¦ indicated by the new_ctok argument. ¦

Lang Env V1R5 Fortran Migration Guide
User-Written Condition Handler Interface

¦ Copyright IBM Corp. 1995
3.1.1.4.2 - 1

 ¦ ¦ ¦ Then provide this new condition to the ¦
 ¦ ¦ ¦ next condition handler for the same ¦
 ¦ ¦ ¦ stack frame as the current condition ¦
 ¦ ¦ ¦ handler. ¦
 +-------------+------------+---¦
 ¦ 31 ¦ promote ¦ Promote the condition to the one ¦
 ¦ ¦ ¦ indicated by the new_ctok argument. ¦
 ¦ ¦ ¦ Then move the handle cursor to the ¦
 ¦ ¦ ¦ stack frame just before the one to ¦
 ¦ ¦ ¦ which it currently points, and present ¦
 ¦ ¦ ¦ this new condition to first condition ¦
 ¦ ¦ ¦ handler, if any, for the stack frame to ¦
 ¦ ¦ ¦ which the handle cursor was moved. ¦
 +-------------+------------+---¦
 ¦ 32 ¦ promote ¦ Promote the condition to the one ¦
 ¦ ¦ ¦ indicated by the new_ctok argument. ¦
 ¦ ¦ ¦ Then provide this new condition to the ¦
 ¦ ¦ ¦ first condition handler for the same ¦
 ¦ ¦ ¦ stack frame as the current condition ¦
 ¦ ¦ ¦ handler. ¦
 +-------------+------------+---¦
 ¦ 60 ¦ fix-up and ¦ Provide the fix-up actions specified by ¦
 ¦ ¦ resume ¦ the new_ctok argument and by the ¦
 ¦ ¦ ¦ applicable qualifying data. Then ¦
 ¦ ¦ ¦ resume execution at the resume cursor, ¦
 ¦ ¦ ¦ which must not have been moved from its ¦
 ¦ ¦ ¦ original point. ¦
 +--+

 If the condition handler doesn't set result_code, a value of 20 is assumed.

new_ctok (output)
 A 12-byte condition code that the condition handler sets as follows based on the action it requests through the result_code
 argument:

 � For promote, the condition handler sets new_ctok to the condition token for the condition to which the current condition should
 be changed.

 � For fix-up and resume, the condition handler sets new_ctok to the condition token that indicates the type of fix-up that should
 be done. Table 9 shows the symbolic feedback codes that represent the permissible condition tokens for new_ctok .

 +--+
 ¦ Table 9. Actions for fix-up and resume ¦
 +--¦
 ¦ Symbolic ¦ ¦
 ¦ Feedback ¦ ¦
 ¦ Code ¦ Action ¦
 +----------+---¦
 ¦ CEE0CE ¦ resume with new input value ¦
 +----------+---¦
 ¦ CEE0CF ¦ resume with new output value ¦
 +----------+---¦
 ¦ FOR0070 ¦ resume with Fortran-specific correction ¦
 +--+

 For details about the meaning of the three fix-up and resume actions, see the discussion of these actions on page 3.1.1.4.1.

 For information on how to use symbolic feedback codes to set new_ctok , see "Symbolic Feedback Codes" in topic 3.1.1.3.2.

Lang Env V1R5 Fortran Migration Guide
User-Written Condition Handler Interface

¦ Copyright IBM Corp. 1995
3.1.1.4.2 - 2

 The new_ctok argument isn't used for the resume and percolate actions.

Lang Env V1R5 Fortran Migration Guide
User-Written Condition Handler Interface

¦ Copyright IBM Corp. 1995
3.1.1.4.2 - 3

 3.1.1.5 Unhandled Conditions

During the condition step, the condition manager processes the stack frames in LIFO order, that is, from the most recent to the
 earliest in the call chain. In each stack frame, user condition handlers, if any, are entered in LIFO order prior to a language-specific
 condition handler.

If a condition isn't handled by any condition handler registered for any stack frame in the call chain, there is still one more
 user-written condition handler that can get control. If you've specified the name of a condition handler in the USRHDLR run-time
 option, then this condition handler gains control after the condition manager processes all of the stack frames. This condition
 handler can handle the condition if it chooses. If it doesn't, there's another language-specific handler that enforces default actions
 for certain languages; for conditions that arise from Fortran routines, no action is taken at this point.

If the condition still hasn't been handled, the condition is said to be unhandled. For the conditions signaled by Language Environment
 (as opposed to signaled by your own code), the default action taken for the unhandled condition depends on the severity of the
 condition as shown in Table 10:

 +--+
 ¦ Table 10. Condition Manager Actions for an Unhandled Condition ¦
 +--¦
 ¦ Severity ¦ Action Taken by the Condition Manager ¦
 +----------+---¦
 ¦ 0 ¦ Resumes execution without printing the message. ¦
 +----------+---¦
 ¦ 1 ¦ If the condition occurred in a stack frame associated with ¦
 ¦ ¦ a COBOL routine, prints the message and resumes execution. ¦
 ¦ ¦ ¦
 ¦ ¦ If the condition occurred in a stack frame associated with ¦
 ¦ ¦ a non-COBOL routine, resumes execution without printing the ¦
 ¦ ¦ message. ¦
 +----------+---¦
 ¦ 2, 3, 4 ¦ Takes the following steps to terminate the application: ¦
 ¦ ¦ ¦
 ¦ ¦ 1. Promotes the unhandled condition to the T_I_U (CEE066, ¦
 ¦ ¦ Termination Imminent due to Unhandled Condition) ¦
 ¦ ¦ condition. ¦
 ¦ ¦ ¦
 ¦ ¦ 2. Processes each stack frame in LIFO order beginning with ¦
 ¦ ¦ the one where the condition occurred, giving control to ¦
 ¦ ¦ the condition handlers (including the condition ¦
 ¦ ¦ handler, if any, specified with the USRHDLR run-time ¦
 ¦ ¦ option). During this step, any condition handler can ¦
 ¦ ¦ abandon the termination by moving the resume cursor and ¦
 ¦ ¦ requesting the resume action. ¦
 ¦ ¦ ¦
 ¦ ¦ 3. Prints the message for the original condition unless ¦
 ¦ ¦ the TERMTHDACT(QUIET) run-time option is in effect. ¦
 ¦ ¦ ¦
 ¦ ¦ 4. Terminates the application in one of these ways: ¦
 ¦ ¦ ¦
 ¦ ¦ � If the ABTERMENC(RETCODE) run-time option, ¦
 ¦ ¦ terminates normally with a return code based on the ¦
 ¦ ¦ user return code and the severity of the original ¦
 ¦ ¦ condition. ¦
 ¦ ¦ ¦
 ¦ ¦ � If the ABTERMENC(ABEND) run-time option, terminates ¦
 ¦ ¦ abnormally (abends) with one of several possible ¦
 ¦ ¦ completion (abend) codes. ¦
 ¦ ¦ ¦
 ¦ ¦ For more information on the return codes and the ¦
 ¦ ¦ completion codes based on the ABTERMENC run-time ¦

Lang Env V1R5 Fortran Migration Guide
Unhandled Conditions

¦ Copyright IBM Corp. 1995
3.1.1.5 - 1

 ¦ ¦ option, see Chapter 9, "Interpreting Return Codes and ¦
 ¦ ¦ Completion Codes" in topic 2.6. ¦
 +--+

Lang Env V1R5 Fortran Migration Guide
Unhandled Conditions

¦ Copyright IBM Corp. 1995
3.1.1.5 - 2

 3.1.2 Overview of the VS FORTRAN Extended Error Handling Facility

Language Environment does not have an equivalent of the VS FORTRAN extended error handling facility, which includes the
 following:

� Automatic corrective actions that are taken when an error occurs. There are fix-up actions to correct errors in the arguments for
 the mathematical routines and to provide result values for certain program interruptions, such as the exponent-underflow and
 exponent-overflow exceptions.

� The ERRSET, ERRSTR, ERRSAV, and ERRMON subroutines (11) These subroutines are used to control error handling
 characteristics, such as the number of times certain messages should be printed and the number of times certain errors should
 be allowed to occur before the application is terminated.

� The error option table, which contains the information that controls the error handling characteristics

With Language Environment, unless your application takes specific action to deal with errors, it is terminated after the first
 occurrence of an error. Having your application terminated in this way is often exactly the way you want your application to
 behave. If so, then the only changes that you'll have to make will be to remove any references to the extended error handling facility
 subroutines (ERRSET, and so on) from your source programs.

As you saw earlier in this chapter, the Language Environment condition handling model defines a set of services for error handling.
 You can create a user-written condition handler that provides some or all of the functions of the VS FORTRAN extended error
 handling facility. This condition handler can perform fix-up actions that are similar to those in VS FORTRAN, and it can control when
 termination occurs.

If you're not already familiar with the VS FORTRAN extended error handling facility but must convert existing Fortran applications
 that use it, read the following sections to learn more about how the error option table, the subroutines, and the automatic error
 correction interact with each other. For a list of the VS FORTRAN error numbers and their associated corrective actions, see
 Appendix D, "VS FORTRAN Error Handling Behavior" in topic APPENDIX1.4.

 (11) However, the ERRTRA subroutine, which produces a traceback of the active called routines, is available in Language
 Environment.

 Subtopics
 3.1.2.1 Error Option Table
 3.1.2.2 Extended Error Handling Facility Subroutines
 3.1.2.3 Automatic Error Correction

Lang Env V1R5 Fortran Migration Guide
Overview of the VS FORTRAN Extended Error Handling Facility

¦ Copyright IBM Corp. 1995
3.1.2 - 1

 3.1.2.1 Error Option Table

The extended error handling facility maintains a table called the error option table with an entry for each VS FORTRAN error
 number. Each entry contains the following information to control what happens when the error occurs:

� The number of occurrences of the error to allow before terminating the applicatio

� The number of times the error message is to be printed before suppressing further printing of i

� A count of the number of times this error has occurre

� Whether the I/O buffer is to be printed after the message is printe

� Whether the traceback is to be printed after the messag

� The name of the user error exit routine, if any, which is to be invoked after the message is printe

The information in the error option table controls the handling of errors throughout the entire application (unless the information is
 changed using the extended error handling facility subroutines), an approach to error handling sometimes called the global error
 table model. This differs from the Language Environment condition handling model where the actions of a condition handler do not
 apply to stack frames that are earlier in the call chain than the stack frame that registered the condition handler.

Those who install or customize VS FORTRAN at your site can customize the values in the error option table to apply selected error
 handling characteristics to all Fortran applications.

Lang Env V1R5 Fortran Migration Guide
Error Option Table

¦ Copyright IBM Corp. 1995
3.1.2.1 - 1

 3.1.2.2 Extended Error Handling Facility Subroutines

The extended error handling facility includes the following five subroutines to manipulate the error option table and to control the
 handling of errors:

 Name Purpose

 ERRSAV Copies an entry from the error option table into an 8-byte storage area accessible to the Fortran programmer.

 ERRSTR Stores an entry into the error option table.

 ERRSET Modifies certain information in the error option table for a specific error or for a range of errors.

 ERRMON Prints text provided by the user for a given error number and processes the error using the information in the
 corresponding error option table entry. This subroutine also returns an indication of whether the standard corrective action
 or a user corrective action should be taken.

 ERRTRA Prints a traceback of the called routines. ERRTRA is available in Language Environment.

A call to the ERRSET subroutine can register a user error exit routine to be given control when a specific error occurs. For each
 different error, a unique set of arguments is passed to the user error exit routine. The exit routine can modify these arguments to
 request that some error corrective action, either a default action or a user-specified action, be taken.

Lang Env V1R5 Fortran Migration Guide
Extended Error Handling Facility Subroutines

¦ Copyright IBM Corp. 1995
3.1.2.2 - 1

 3.1.2.3 Automatic Error Correction

Another feature of the VS FORTRAN extended error handling facility is the automatic correction of many errors. As an example,
 consider the case of the real-valued square root function. If the argument has a negative value, no mathematically correct square
 root can be computed. However, after printing an error message, the VS FORTRAN library automatically returns the square root of
 the absolute value of the argument. Unless overridden (either by customizing the error option table default values for your site or by
 calling the ERRSTR or ERRSET subroutine), this action occurs as many as nine times; then on the tenth occurrence of the error, the
 application is terminated.

For the details of the corrective actions that the extended error handling facility provides for each error, see Appendix D, "VS
 FORTRAN Error Handling Behavior" in topic APPENDIX1.4.

Lang Env V1R5 Fortran Migration Guide
Automatic Error Correction

¦ Copyright IBM Corp. 1995
3.1.2.3 - 1

 3.1.3 Fortran-Specific Services for Error Handling

Because Language Environment doesn't include the VS FORTRAN extended error handling facility, you must use Language
 Environment condition handling services to provide the error handling required by your Fortran routines. Although Fortran routines
 cannot call any of the Language Environment callable services directly, there are some Fortran-specific callable services that
 Fortran routines can use for calling the Language Environment callable services. There are also some services for retrieving and
 updating qualifying data. The following sections show you how to use these Fortran-specific services. For the complete
 descriptions of these services, see Appendix A, "Fortran Callable Services and Functions" in topic APPENDIX1.1.

 Subtopics
 3.1.3.1 Callable Services to Retrieve and Update Qualifying Data
 3.1.3.2 Fortran Functions to Retrieve Qualifying Data
 3.1.3.3 Fortran Functions That Provide Information about Qualifying Data
 3.1.3.4 Fortran Services for Calling Language Environment Callable Services

Lang Env V1R5 Fortran Migration Guide
Fortran-Specific Services for Error Handling

¦ Copyright IBM Corp. 1995
3.1.3 - 1

 3.1.3.1 Callable Services to Retrieve and Update Qualifying Data

From a user-written condition handler you'll usually have to use the qualifying data for the condition in order to provide the fix-up
 actions that your application needs. You are likely to use qualifying data in one or more of these ways:

� To determine which mathematical function or I/O statement was in use when the error was detecte

� To examine the input data that caused the error to be detecte

� To provide the condition manager a new argument value when you request the resume with new input value action

� To provide the condition manager a result value when you request the resume with new output value action

Language Environment provides the following callable services for retrieving and updating a single qualifying datum:

 Name Purpose

 QDFETCH Returns the value of a specific qualifying datum to your program.

 QDSTORE Sets a specific qualifying datum to a value that your program supplies.

For both services, the arguments are:

1. The condition token with which the qualifying datum is associated

2. A specification of which qualifying datum (first, second, and so on) you want to retrieve or update

3. The qualifying datum (the QDFETCH output value; the QDSTORE input value)

The QDFETCH and QDSTORE callable services are intended to be called by Fortran routines, but you can call them from assembler
 language routines if you follow the Fortran conventions for argument lists with character arguments. See "Passing Character
 Arguments Using the Standard Linkage Convention" in VS FORTRAN Version 2 Programming Guide for CMS and MVS.

The following example shows how to use the QDFETCH callable service.

 CHARACTER*12 COND_INP
 INTEGER*4 CHAR_POSITION
 .
 .
 .
 CALL QDFETCH (COND_INP, 7, CHAR_POSITION)

Following are the arguments in the call to the QDFETCH callable service:

 COND_INP The condition token, which, for this example, is assumed to be for condition FOR1003 (the error in which an integer
 input field in a READ statement contains a character other than an integer or a blank).

 7 The specification that the seventh qualifying datum for condition FOR1003 is to be retrieved.

 CHAR_POSITION The variable in which the callable service returns the value of the seventh qualifying datum, a 4-byte integer
 containing the relative character position (first, second, and so on) of the invalid character within the whole input field.

When you use the QDFETCH and QDSTORE callable services, be sure that the type and length of the third argument matches what
 is defined for the actual qualifying datum. Depending on the particular condition, determine the type, length, and content of the
 qualifying data as follows:

Lang Env V1R5 Fortran Migration Guide
Callable Services to Retrieve and Update Qualifying Data

¦ Copyright IBM Corp. 1995
3.1.3.1 - 1

� For the Fortran conditions, see the Fortran messages in Language Environment for MVS & VM Debugging Guide and Run-Time
 Messages .

� For abends, mathematical routine errors, and arithmetic program interruptions, such as the exponent-overflow exception, see
 Appendix B, "Qualifying Data for Language Environment Conditions" in topic APPENDIX1.2.

Lang Env V1R5 Fortran Migration Guide
Callable Services to Retrieve and Update Qualifying Data

¦ Copyright IBM Corp. 1995
3.1.3.1 - 2

 3.1.3.2 Fortran Functions to Retrieve Qualifying Data

There are a number of Fortran functions for retrieving a single qualifying datum. These provide exactly the same information as
 QDFETCH; however, because they're functions, you'll find them easier to use in many cases. These functions let you retrieve
 qualifying data of the indicated types:

 Name Return Value Type
 QDCH1 CHARACTER*1
 QDCH6 CHARACTER*6
 QDCH8 CHARACTER*8
 QDCH31 CHARACTER*31
 QDCH62 CHARACTER*62
 QDCH255 CHARACTER*255
 QDCX8 COMPLEX*8
 QDCX16 COMPLEX*16
 QDCX32 COMPLEX*32
 QDINT1 INTEGER*1
 QDINT2 INTEGER*2
 QDINT4 INTEGER*4
 QDINT8 INTEGER*8
 QDR4 REAL*4
 QDR8 REAL*8
 QDR16 REAL*16
 QDUS1 UNSIGNED*1

The input arguments for these functions are:

1. The condition token with which the qualifying datum is associated

2. A specification of which qualifying datum (first, second, and so on) you want to retrieve

Because these functions are not intrinsic functions, you must declare their data types in your Fortran program by using member
 AFHCQDSB of data set CEE.V1R5M0.SCEESAMP. To do this, provide the following INCLUDE line among the data declarations in your
 Fortran program:

 INCLUDE (AFHCQDSB)

and provide the following DD statement in your JCL for the compilation step:

 //SYSLIB DD DSN=CEE.V1R5M0.SCEESAMP,DISP=SHR

The following example shows how to use the QDINT4 function:

 CHARACTER*12 COND_INP
 CHARACTER*1 INPUT_CHAR(255)
 INCLUDE (AFHCQDSB)
 .
 .
 .
 PRINT *, 'The invalid character is ', INPUT_CHAR(QDINT4(COND_INP, 7))

For the Fortran condition FOR1003 (nonnumeric character in an integer input field), the QDINT4 function returns the character
 position of the invalid character within the input field.

Using the QDINT4 function can be more convenient than using the QDFETCH callable service because you don't need an intermediate
 variable to hold the value of the seventh qualifying datum.

When you use one of these functions to retrieve a qualifying datum, be sure that the function you use corresponds to the data type
 and length of the actual qualifying datum. Because the preceding example retrieved a 4-byte qualifying datum, it used the QDINT4

Lang Env V1R5 Fortran Migration Guide
Fortran Functions to Retrieve Qualifying Data

¦ Copyright IBM Corp. 1995
3.1.3.2 - 1

 function.

Lang Env V1R5 Fortran Migration Guide
Fortran Functions to Retrieve Qualifying Data

¦ Copyright IBM Corp. 1995
3.1.3.2 - 2

 3.1.3.3 Fortran Functions That Provide Information about Qualifying Data

The following Fortran functions return information about a single qualifying datum:

 Name Information Returned

 QDLOC Address, a 4-byte pointer

 QDTYPE Data type, a 4-byte integer as defined in APPENDIX1.1.7.1

 QDLEN Length, a 4-byte integer

Use the QDTYPE and QDLEN functions for a qualifying datum that can have different data types or lengths, depending on the
 arguments to the service that detected the error. You can use these functions only for a qualifying datum that has an associated
 q_data descriptor, which indicates the qualifying datum's type and length.

The input arguments for these functions are:

1. The condition token with which the qualifying datum is associated

2. A specification of which qualifying datum's (first, second, and so on) information you want returned

The QDLOC, QDTYPE, and QDLEN functions are not intrinsic functions. Therefore, use the AFHCQDSB file described on page
 3.1.3.2 to provide data type declarations for the functions.

The following example shows how to use the QDLOC and QDLEN functions for the Fortran condition FOR1003 (nonnumeric
 character in an integer input field):

 CHARACTER*12 COND_INP
 POINTER*4 (INPUT_FIELD_LOC, INPUT_FIELD)
 CHARACTER*255 INPUT_FIELD
 INCLUDE (AFHCQDSB)
 .
 .
 .
 INPUT_FIELD_LOC = QDLOC(COND_INP, 6)
 PRINT *, 'The invalid field is ', INPUT_FIELD(1:QDLEN(COND_INP, 6))

Lang Env V1R5 Fortran Migration Guide
Fortran Functions That Provide Information about Qualifying Data

¦ Copyright IBM Corp. 1995
3.1.3.3 - 1

 3.1.3.4 Fortran Services for Calling Language Environment Callable Services

There are two Fortran-specific callable services that Fortran routines can use to call most of the Language Environment callable
 services (in particular, the condition handling services) described in Language Environment for MVS & VM Programming Reference.

 Name Purpose

 AFHCEEN Passes control to any Language Environment callable service if you omit the optional feedback code when it is the last
 argument.

 AFHCEEF Passes control to any Language Environment callable service if you provide all of the arguments, including the optional
 feedback code.

Both of these callable services have the following arguments:

1. The name of the Language Environment callable service that you want to call
 2. The arguments required by the Language Environment callable service

Following is an example of using AFHCEEN to call CEERAN0, which generates a random number:

 INTEGER*4 SEED / 0 /
 REAL*8 RANDOM_NUM
 EXTERNAL CEERAN0
 .
 .
 .
 CALL AFHCEEN (CEERAN0, SEED, RANDOM_NO)

The variables SEED and RANDOM_NUM are the CEERAN0 callable service's first two arguments. The last of the CEERAN0 callable
 service's three arguments, the feedback code, is omitted, as required for a call to AFHCEEN.

If you want to pass a feedback code to CEERAN0, and thus gain control if an error is detected, use the AFHCEEF callable service,
 and provide the feedback code as a character variable of length 12 as shown in this example:

 INTEGER*4 SEED / 0 /
 REAL*8 RANDOM_NO
 CHARACTER*12 FC
 EXTERNAL CEERAN0
 .
 .
 .
 CALL AFHCEEF (CEERAN0, SEED, RANDOM_NO, FC)

Lang Env V1R5 Fortran Migration Guide
Fortran Services for Calling Language Environment Callable Services

¦ Copyright IBM Corp. 1995
3.1.3.4 - 1

 3.1.4 Handling Run-Time Errors from Your Fortran Routines

This section shows how to use Language Environment's condition handling to provide error handling similar to what you have in VS
 FORTRAN. There are several examples of user-written condition handlers that provide fix-up actions using the concepts and
 services discussed earlier in this chapter. The examples cover the following errors:

� Square-root exceptio
 � Fixed-point overflow exceptio
 � Exponent-overflow exceptio
 � Invalid character in a numeric input fiel

 Several of the examples use Fortran language extensions added to VS
 FORTRAN Version 2 in Release 6. These extensions include pointer
 variables, the LOC intrinsic function, and the use of hexadecimal
 constants in assignment statements.

 Subtopics
 3.1.4.1 Sample Condition Handler for a Square-Root Exception
 3.1.4.2 Sample Condition Handlers for a Fixed-Point Overflow Exception
 3.1.4.3 Sample Condition Handler for an Exponent-Overflow Exception
 3.1.4.4 Sample Condition Handlers for an Invalid Character in a Numeric Field

Lang Env V1R5 Fortran Migration Guide
Handling Run-Time Errors from Your Fortran Routines

¦ Copyright IBM Corp. 1995
3.1.4 - 1

 3.1.4.1 Sample Condition Handler for a Square-Root Exception

Figure 5 shows a condition handler that handles the condition that is signaled when a negative argument is passed to the Fortran
 SQRT function. For this condition, the condition handler provides a new argument value that is the absolute value of the negative
 argument value, and it requests the resume with new input value action. This fix-up action is the same as what VS FORTRAN
 provides, but you could provide whatever fix-up values you choose. This example has a main program that registers the condition
 handler, invokes the SQRT function with an argument value of -4.0, prints the final result after the fix-up, and finally prints the
 message about the error.

This example of the square-root exception is typical of how you would write condition handlers for errors detected by most of the
 mathematical routines.

For information on the qualifying data that are used in this example, see "q_data Structure for Math and Bit-Manipulation Conditions" in
 topic APPENDIX1.2.4.

 --

 PROGRAM SQRTXMP
 REAL*4 ARG / -4.0E0 /
 REAL*4 RESULT
 CHARACTER*12 ERROR_CTOK
 EXTERNAL SQRTHDL
 EXTERNAL CEEHDLR
 EXTERNAL CEEMSG
 CALL AFHCEEN(CEEHDLR, SQRTHDL, LOC(ERROR_CTOK))
 RESULT = SQRT(ARG)
 PRINT *, 'The result of SQRT(', ARG, ') is', RESULT
 CALL AFHCEEN(CEEMSG, ERROR_CTOK, 2)
 END

 SUBROUTINE SQRTHDL(HDLR_CTOK, COMM_TOK, RESPONSE, FIXUP_CTOK)
 INCLUDE (CEEFORCT)
 INCLUDE (AFHCQDSB)
 CHARACTER*12 HDLR_CTOK
 POINTER*4 (COMM_TOK, MAIN_CTOK)
 INTEGER*4 RESPONSE
 CHARACTER*12 FIXUP_CTOK
 CHARACTER*12 MAIN_CTOK
 IF (HDLR_CTOK(1:8) .EQ. CEE1UQ
 1 .AND. QDCH8(HDLR_CTOK,2) .EQ. 'SQRT') THEN
 IF (QDLEN(HDLR_CTOK,6) .EQ. 4) THEN
 CALL QDSTORE(HDLR_CTOK, 6, ABS(QDR4(HDLR_CTOK,6)))
 ELSE IF (QDLEN(HDLR_CTOK,6) .EQ. 8) THEN
 CALL QDSTORE(HDLR_CTOK, 6, DABS(QDR8(HDLR_CTOK,6)))
 ELSE
 CALL QDSTORE(HDLR_CTOK, 6, QABS(QDR16(HDLR_CTOK,6)))
 FIXUP_CTOK(1:8) = CEE0CE
 FIXUP_CTOK(9:12) = Z'00000000'
 RESPONSE = 60
 ENDIF
 MAIN_CTOK = HDLR_CTOK
 RETURN
 END

 --
 Figure 5. Condition Handler Giving New Argument Value for Square-Root
 Exception

 Notes on the Example:

Lang Env V1R5 Fortran Migration Guide
Sample Condition Handler for a Square-Root Exception

¦ Copyright IBM Corp. 1995
3.1.4.1 - 1

1. In the main program, the first call to the AFHCEEN callable invokes the CEEHDLR callable service to register the condition handler

 with the name SQRTHDL. The second and third arguments for AFHCEEN represent the first two arguments for CEEHDLR. The
 third argument for CEEHDLR is the feedback code, which is omitted in this case. (If you want to supply the feedback code, then
 use AFHCEEF instead of AFHCEEN.) Because the feedback code is omitted, a condition is signaled if the CEEHDLR callable
 service fails.

2. The three EXTERNAL statements are required because the names of the three subroutines are supplied as arguments to
 AFHCEEN.

3. When the main program invokes the SQRT function with the argument of -4.0, condition CEE1UQ is signaled, and the condition
 manager gives control to the condition handler SQRTHDL.

4. In the condition handler SQRTHDL, the INCLUDE line includes the symbolic feedback code file CEEFORCT. As described in
 "Symbolic Feedback Codes" in topic 3.1.1.3.2, this file contains Fortran language declarations for the symbolic feedback codes for
 the condition tokens created by the common component of Language Environment. These symbolic feedback codes have names
 beginning with CEE.

5. The first IF statement in the condition handler determines whether the condition is the square-root exception that the condition
 handler is prepared to handle. The square-root exception is identified by condition CEE1UQ and by a value of SQRT in the second
 qualifying datum. For any other condition, the condition handler returns without requesting any action; this is the same as
 requesting percolate.

6. Even though the main program uses only a REAL*4 argument for SQRT, the condition handler handles real variables of length 4,
 8, or 16. The QDLEN function returns the length of the argument so that the condition handler can set a new argument value of
 the proper length.

7. The second argument for QDLEN refers to the qualifying datum, the sixth in this case, whose length is needed; it does not refer
 directly to the corresponding q_data descriptor, which is the fifth of the qualifying data.

8. The condition handler uses the QDSTORE callable service to update the sixth qualifying datum with the absolute value of the
 negative argument.

9. The condition handler sets the third dummy argument, RESPONSE, to 60 to request the fix-up and resume action, and it sets the
 fourth dummy argument, FIXUP_CTOK, to condition CEE0CE to request the resume with new input value action.

10. Before returning to the condition manager, the condition handler provides the main program a copy of the condition token for the
 condition being processed. It uses the second dummy argument, COMM_TOK, which is the value passed as the second argument
 in the call to CEEHDLR. This value is a pointer to the main program's variable ERROR_CTOK. Using a pointer in this way is a
 convention for communicating between this main program and this condition handler. When you write a condition handler, you can
 use the value that's passed as second argument to CEEHDLR in any way you choose.

11. To provide the resume with new input value action, the condition manager invokes the SQRT function again with the new
 argument value. This time, no error is detected, and control returns to the main program where the SQRT function was invoked.

12. Through the final call to AFHCEEN, the main program invokes the CEEMSG callable service to print the message associated with
 the condition that was just handled. If the program hadn't printed the message itself, then no message would have been printed
 because Language Environment doesn't print the message for a handled condition.

Lang Env V1R5 Fortran Migration Guide
Sample Condition Handler for a Square-Root Exception

¦ Copyright IBM Corp. 1995
3.1.4.1 - 2

 3.1.4.2 Sample Condition Handlers for a Fixed-Point Overflow Exception

 Subtopics
 3.1.4.2.1 Requesting resume for Fixed-Point Overflow Exception
 3.1.4.2.2 Providing Information about Fixed-Point Overflow Exceptions

Lang Env V1R5 Fortran Migration Guide
Sample Condition Handlers for a Fixed-Point Overflow Exception

¦ Copyright IBM Corp. 1995
3.1.4.2 - 1

 3.1.4.2.1 Requesting resume for Fixed-Point Overflow Exception

Figure 6 shows a condition handler that simply requests the resume action for a fixed-point overflow condition. The results are
 equivalent to the behavior of VS FORTRAN, where the program mask is set to disable the program interruption that occurs due to
 fixed-point overflow. Because this condition handler takes no action for the fixed-point overflow other than to resume execution, it
 doesn't use any of the qualifying data associated with the condition.

 --

 PROGRAM FOVXMP1
 INTEGER*4 INT_VAR / 0 /
 INTEGER*4 BIG / 2000000000 /
 EXTERNAL CEEHDLR. FOVHDL1,
 CALL AFHCEEN(CEEHDLR, FOVHDL1, 0)
 INT_VAR = BIG + BIG
 PRINT *, 'SUM IS', INT_VAR
 END

 SUBROUTINE FOVHDL1(HDLR_CTOK, DUMMY1, RESPONSE, DUMMY2)
 INCLUDE (CEEFORCT)
 CHARACTER*12 HDLR_CTOK
 INTEGER*4 DUMMY1
 INTEGER*4 RESPONSE
 CHARACTER*12 DUMMY2
 IF (HDLR_CTOK(1:8) .EQ. CEE348) THEN
 RESPONSE = 10
 ENDIF
 END

 --
 Figure 6. Condition Handler Requesting resume for Fixed-Point Overflow
 Exception

 Notes on the Example:

1. The addition of the large numbers in FOVXMP1 causes a fixed-point overflow exception. Condition CEE348 is signaled, and the
 condition manager gives control to the condition handler FOVHDL1.

2. The IF statement in the condition handler determines whether the condition is the fixed-point overflow exception that the condition
 handler is prepared to handle. The exponent-overflow exception is identified by condition CEE348. For any other condition, the
 condition handler returns without requesting any action; this is the same as requesting percolate.

3. The condition handler sets the third dummy argument, RESPONSE, to 10 to request the resume action.

4. To provide the resume action, the condition manager restores the registers to the values they had at the time of the interruption
 and returns to the next sequential instruction after the failing instruction. In the event that the failing machine instruction was a
 vector instruction, the condition manager resumes the execution of that instruction.

5. The result of the addition in the main program is a negative number with a large magnitude.

Lang Env V1R5 Fortran Migration Guide
Requesting resume for Fixed-Point Overflow Exception

¦ Copyright IBM Corp. 1995
3.1.4.2.1 - 1

 3.1.4.2.2 Providing Information about Fixed-Point Overflow Exceptions

In Figure 7, the condition handler for the fixed-point overflow condition requests the resume action, and it sets increments or
 decrements one of the main program's variables to indicate whether the fixed-point overflow is in a positive or negative direction.
 After the computation, the main program determines whether the overflows in the positive and negative directions cancel each other
 so that the final result of the computation is correct.

For information on the qualifying data that are used in this example, see "q_data Structure for Arithmetic Program Interruptions" in
 topic APPENDIX1.2.2.

 --

 PROGRAM FOVXMP2
 INTEGER*4 DIRECTION
 INTEGER*4 INT_VAR / 0 /
 INTEGER*4 POS / 2000000000 /
 INTEGER*4 NEG / -2000000000 /
 EXTERNAL FOVHDL2
 EXTERNAL CEEHDLR
 CALL AFHCEEN(CEEHDLR, FOVHDL2, LOC(DIRECTION))
 DIRECTION = 0
 INT_VAR = POS + POS + POS + NEG + NEG + NEG
 IF (DIRECTION .EQ. 0) THEN
 PRINT *, 'OVERFLOWS BALANCE. THE RESULT IS', INT_VAR
 ELSE IF (DIRECTION .GT. 0) THEN
 PRINT *, 'THE RESULT IS', INT_VAR, '+', DIRECTION, '*2**32'
 ELSE
 PRINT *, 'THE RESULT IS', INT_VAR, '-', -DIRECTION, '*2**32'
 ENDIF
 END

 SUBROUTINE FOVHDL2(HDLR_CTOK, PASSED_DIR_PTR, RESPONSE, DUMMY)
 INCLUDE (CEEFORCT)
 INCLUDE (AFHCQDSB)
 CHARACTER*12 HDLR_CTOK
 POINTER*4 (PASSED_DIR_PTR, PASSED_DIRECTION)
 INTEGER*4 RESPONSE
 CHARACTER*12 DUMMY
 POINTER*4 (INST_RESULT_PTR, INST_RESULT)
 INTEGER*4 INST_RESULT
 INTEGER*4 PASSED_DIRECTION
 IF (HDLR_CTOK(1:8) .EQ. CEE348) THEN
 INST_RESULT_PTR = QDLOC(HDLR_CTOK, 3)
 IF (INST_RESULT .LT. 0) THEN
 PASSED_DIRECTION = PASSED_DIRECTION + 1
 ELSE
 PASSED_DIRECTION = PASSED_DIRECTION - 1
 ENDIF
 RESPONSE = 10
 ENDIF
 END

 --
 Figure 7. Condition Handler Providing Information on Fixed-Point Overflow
 Exceptions

 Notes on the Example:

1. The additions of the large numbers in FOVXMP2 cause fixed-point overflow exceptions. Condition CEE348 is signaled, and the

Lang Env V1R5 Fortran Migration Guide
Providing Information about Fixed-Point Overflow Exceptions

¦ Copyright IBM Corp. 1995
3.1.4.2.2 - 1

 condition manager gives control to the condition handler FOVHDL2.

2. The outermost IF statement in the condition handler determines whether the condition is the fixed-point overflow exception that
 the condition handler is prepared to handle. The exponent-overflow exception is identified by condition CEE348. For any other
 condition, the condition handler returns without requesting any action; this is the same as requesting percolate.

3. The condition handler uses the QDLOC function to get the address of the data that the failing machine instruction left in the general
 register. Based on whether this data is either positive or negative, the condition handler either decrements or increments one of
 the main program's variables to indicate how many times the result is in error by a value of 2**32. It does this by using the second
 dummy argument, PASSED_DIR_PTR, which is the value given as the second argument in the call to CEEHDLR. In this example,
 this value is a pointer to the main program's variable DIRECTION.

4. The condition handler sets the third dummy argument, RESPONSE, to 10 to request the resume action.

5. To provide the resume action, the condition manager restores the registers to the values they had at the time of the interruption
 and returns to the next sequential instruction after the failing instruction. In the event that the failing machine instruction was a
 vector instruction, the condition manager resumes the execution of that instruction.

Lang Env V1R5 Fortran Migration Guide
Providing Information about Fixed-Point Overflow Exceptions

¦ Copyright IBM Corp. 1995
3.1.4.2.2 - 2

 3.1.4.3 Sample Condition Handler for an Exponent-Overflow Exception

Figure 8 shows a condition handler that handles the exponent-overflow exception. The condition handler requests the same fix-up
 action that VS FORTRAN provides, that is, it sets the result of the failing floating-point instruction to the value with the largest
 magnitude. Depending on the sign that the correct mathematical result would have had, this result value is either positive or negative.

For information on the qualifying data that are used in this example, see "q_data Structure for Arithmetic Program Interruptions" in
 topic APPENDIX1.2.2.

 --

 PROGRAM XOVFXMP
 INTEGER*4 OVERFLOWS / 0 /
 REAL*4 BIG_4 / 1E50 /, RESULT_4
 REAL*8 BIG_8 / 1D50 /, RESULT_8
 REAL*16 BIG_16 / 1Q50 /, RESULT_16
 EXTERNAL CEEHDLR, XOVFHDL
 CALL AFHCEEN(CEEHDLR, XOVFHDL, LOC(OVERFLOWS))
 RESULT_4 = BIG_4 * BIG_4
 RESULT_8 = -BIG_8 * BIG_8
 RESULT_16 = BIG_16 * BIG_16
 PRINT *, OVERFLOWS, ' exponent-overflow exceptions.'
 PRINT *,'REAL*4 result is ', RESULT_4
 PRINT *,'REAL*8 result is ', RESULT_8
 PRINT *,'REAL*16 result is ', RESULT_16
 END

 SUBROUTINE XOVFHDL(HDLR_CTOK, COUNTER_PTR, RESPONSE, FIXUP_CTOK)
 INCLUDE (CEEFORCT)
 INCLUDE (AFHCQDSB)
 CHARACTER*12 HDLR_CTOK
 POINTER*4 (COUNTER_PTR, PASSED_COUNTER)
 INTEGER*4 RESPONSE
 CHARACTER*12 FIXUP_CTOK
 INTEGER*4 PASSED_COUNTER
 INTEGER*4 RESULT_LENGTH
 REAL*4 MAX_POS_4 /Z7FFFFFFF/
 REAL*4 MAX_NEG_4 /ZFFFFFFFF/
 REAL*8 MAX_POS_8 /Z7FFFFFFFFFFFFFFF/
 REAL*8 MAX_NEG_8 /ZFFFFFFFFFFFFFFFF/
 REAL*16 MAX_POS_16 /Z7FFFFFFFFFFFFFFF71FFFFFFFFFFFFFF/
 REAL*16 MAX_NEG_16 /ZFFFFFFFFFFFFFFFFF1FFFFFFFFFFFFFF/
 EXTERNAL CEEMSG
 IF (HDLR_CTOK(1:8) .EQ. CEE34C) THEN
 RESULT_LENGTH = QDLEN(HDLR_CTOK,5)
 IF (RESULT_LENGTH .EQ. 4) THEN
 IF (QDR4(HDLR_CTOK,5) .GT. 0E0) THEN
 CALL QDSTORE(HDLR_CTOK, 5, MAX_POS_4)
 ELSE
 CALL QDSTORE(HDLR_CTOK, 5, MAX_NEG_4)
 ENDIF
 ELSE IF (RESULT_LENGTH .EQ. 8) THEN
 IF (QDR8(HDLR_CTOK,5) .GT. 0D0) THEN
 CALL QDSTORE(HDLR_CTOK, 5, MAX_POS_8)
 ELSE
 CALL QDSTORE(HDLR_CTOK, 5, MAX_NEG_8)
 ENDIF
 ELSE
 IF (QDR16(HDLR_CTOK,5) .GT. 0Q0) THEN
 CALL QDSTORE(HDLR_CTOK, 5, MAX_POS_16)

Lang Env V1R5 Fortran Migration Guide
Sample Condition Handler for an Exponent-Overflow Exception

¦ Copyright IBM Corp. 1995
3.1.4.3 - 1

 ELSE
 CALL QDSTORE(HDLR_CTOK, 5, MAX_NEG_16)
 ENDIF
 ENDIF
 FIXUP_CTOK(1:8) = CEE0CF
 FIXUP_CTOK(9:12) = Z'00000000'
 RESPONSE = 60
 PASSED_COUNTER = PASSED_COUNTER + 1
 CALL AFHCEEN(CEEMSG, HDLR_CTOK, 2)
 ENDIF
 END

 --
 Figure 8. Condition Handler Giving New Result Value for Exponent-Overflow
 Exception

 Notes on the Example:

1. Each of the three multiplications in XOVFXMP causes an exponent-overflow exception. Condition CEE34C is signaled, and the
 condition manager gives control to the condition handler XOVFHDL.

2. The first IF statement in the condition handler determines whether the condition is the exponent-overflow exception that the
 condition handler is prepared to handle. The exponent-overflow exception is identified by condition CEE34C. For any other
 condition, the condition handler returns without requesting any action; this is the same as requesting percolate.

3. The condition handler sets the third dummy argument, RESPONSE, to 60 to request the fix-up and resume action, and it sets the
 fourth dummy argument, FIXUP_CTOK, to condition CEE0CF to request the resume with new output value action.

4. The condition handler increments the main program's counter that indicates the number of occurrences of condition CEE34C. It
 does this by using the second dummy argument, COUNTER_PTR, which is the value given as the second argument in the call to
 CEEHDLR. In this example, this value is a pointer to the main program's variable OVERFLOWS.

5. Before returning to the condition manager, the condition handler calls AFHCEEN to invoke the CEEMSG callable service to print the
 message associated with the condition.

6. To provide the resume with new output value action, the condition manager updates the floating-point register used in the failing
 machine instruction with the value that the condition handler stored in the fifth qualifying datum. Then the condition manager
 passes control to the next sequential machine instruction. In the event that the failing machine instruction was a vector
 instruction, the condition manager resumes the execution of that instruction.

Lang Env V1R5 Fortran Migration Guide
Sample Condition Handler for an Exponent-Overflow Exception

¦ Copyright IBM Corp. 1995
3.1.4.3 - 2

 3.1.4.4 Sample Condition Handlers for an Invalid Character in a Numeric Field

The section has two examples showing condition handlers that handle the condition that's signaled for a READ statement when the
 input field corresponding to a numeric edit descriptor contains an invalid character.

 Subtopics
 3.1.4.4.1 Replacing a Nonnumeric Input Character with Zero
 3.1.4.4.2 Giving New Result Value for Nonnumeric Input Character

Lang Env V1R5 Fortran Migration Guide
Sample Condition Handlers for an Invalid Character in a Numeric Field

¦ Copyright IBM Corp. 1995
3.1.4.4 - 1

 3.1.4.4.1 Replacing a Nonnumeric Input Character with Zero

Figure 9 shows a condition handler whose fix-up action is to replace the invalid numeric character in the input field with a 0 and then
 to repeat the data conversion with the field's updated value. This is VS FORTRAN's standard corrective action for this error.

For information on the qualifying data that are used in these examples, see condition FOR1003 in the section with the Fortran
 run-time messages in Language Environment for MVS & VM Debugging Guide and Run-Time Messages .

 --

 PROGRAM ICHXMP1
 INTEGER*2 INT_ITEM
 CHARACTER*20 INPUT_FILE / ' 12X4 ' /
 EXTERNAL ICHHDL1
 EXTERNAL CEEHDLR
 CALL AFHCEEN(CEEHDLR, ICHHDL1, 0)
 READ (INPUT_FILE, *) INT_ITEM
 PRINT *,'INT_ITEM has the value', INT_ITEM
 END

 SUBROUTINE ICHHDL1(HDLR_CTOK, DUMMY, RESPONSE, FIXUP_CTOK)
 INCLUDE (FORFORCT)
 INCLUDE (CEEFORCT)
 INCLUDE (AFHCQDSB)
 CHARACTER*12 HDLR_CTOK
 INTEGER*4 DUMMY
 INTEGER*4 RESPONSE
 CHARACTER*12 FIXUP_CTOK
 POINTER*4 (INPUT_FIELD_PTR, INPUT_FIELD)
 CHARACTER*1 INPUT_FIELD(255)
 IF (HDLR_CTOK(1:8) .EQ. FOR1003) THEN
 INPUT_FIELD_PTR = QDLOC(HDLR_CTOK, 6)
 INPUT_FIELD(QDINT4(HDLR_CTOK, 7)) = '0'
 FIXUP_CTOK(1:8) = CEE0CE
 FIXUP_CTOK(9:12) = Z'00000000'
 RESPONSE = 60
 ENDIF
 END

 --
 Figure 9. Condition Handler Replacing a Nonnumeric Input Character with
 Zero

 Notes on the Example:

1. After registering the condition handler ICHHDL1, the main program executes a list-directed READ statement referring to an internal
 file. This internal file, INPUT_FILE, contains a single field with the value 12X4. The READ statement tries to interpret this value as
 an integer, but condition FOR1003 is signaled because of the nonnumeric character in the value.

2. The IF statement in the condition handler determines whether the condition is the invalid-character condition, FOR1003, that the
 condition handler is prepared to handle. For any other condition, the condition handler returns without requesting any action; this
 is the same as requesting percolate.

3. Using the QDLOC function, the condition handler obtains the address of the sixth qualifying datum, which contains the whole
 input field, and stores this address in the pointer INPUT_FIELD_PTR so that the variable INPUT_FIELD contains the input data.

4. The seventh qualifying datum is the subscript value that refers to the character in error within the input field. The condition
 handler gets this value with the QDINT4 function and replaces the invalid character with a 0.

Lang Env V1R5 Fortran Migration Guide
Replacing a Nonnumeric Input Character with Zero

¦ Copyright IBM Corp. 1995
3.1.4.4.1 - 1

5. The condition handler sets the third dummy argument, RESPONSE, to 60 to request the fix-up and resume action, and it sets the
 fourth dummy argument, FIXUP_CTOK, to condition CEE0CE to request the resume with new input value action.

6. To provide the resume with new input value action, the condition manager retries the data conversion with the updated input field,
 and execution of the READ statement continues.

Lang Env V1R5 Fortran Migration Guide
Replacing a Nonnumeric Input Character with Zero

¦ Copyright IBM Corp. 1995
3.1.4.4.1 - 2

 3.1.4.4.2 Giving New Result Value for Nonnumeric Input Character

In Figure 10 the fix-up action for an invalid numeric character is to provide a value of 1 as the result of the data conversion.

 --

 PROGRAM ICHXMP2
 COMMON / ICHCOM2 / INPUT_LENGTH, ERROR_INDEX, INPUT_FIELD
 INTEGER*2 INPUT_LENGTH
 INTEGER*2 ERROR_INDEX
 CHARACTER*255 INPUT_FIELD
 INTEGER*2 INT_ITEM
 CHARACTER*20 INPUT_FILE / ' 12X4 ' /
 EXTERNAL CEEHDLR, ICHHDL2
 CALL AFHCEEN(CEEHDLR, ICHHDL2, 0)
 ERROR_INDEX = 0
 READ (INPUT_FILE, *) INT_ITEM
 PRINT *,'INT_ITEM has the value', INT_ITEM
 IF (ERROR_INDEX .NE. 0) THEN
 PRINT *, 'Invalid character at position', ERROR_INDEX
 PRINT *, 'Input field: "', INPUT_FIELD(1:INPUT_LENGTH), '"'
 ENDIF
 END

 SUBROUTINE ICHHDL2(HDLR_CTOK, DUMMY, RESPONSE, FIXUP_CTOK)
 INCLUDE (FORFORCT)
 INCLUDE (CEEFORCT)
 INCLUDE (AFHCQDSB)
 COMMON / ICHCOM2 / INPUT_LENGTH, ERROR_INDEX, INPUT_FIELD
 INTEGER*2 INPUT_LENGTH
 INTEGER*2 ERROR_INDEX
 CHARACTER*255 INPUT_FIELD
 CHARACTER*12 HDLR_CTOK
 INTEGER*4 DUMMY
 INTEGER*4 RESPONSE
 CHARACTER*12 FIXUP_CTOK
 INTEGER*4 RESULT_LENGTH
 INTEGER*1 INT1_1 / 1 /
 INTEGER*2 INT2_1 / 1 /
 INTEGER*4 INT4_1 / 1 /
 INTEGER*8 INT8_1 / 1 /
 IF (HDLR_CTOK(1:8) .EQ. FOR1003 .AND.
 1 QDTYPE(HDLR_CTOK,11) .EQ. QDTYPE_INTEGER) THEN
 RESULT_LENGTH = QDLEN(HDLR_CTOK,11)
 IF (RESULT_LENGTH .EQ. 1) THEN
 CALL QDSTORE(HDLR_CTOK, 11, INT1_1)
 ELSE IF (RESULT_LENGTH .EQ. 2) THEN
 CALL QDSTORE(HDLR_CTOK, 11, INT2_1)
 ELSE IF (RESULT_LENGTH .EQ. 4) THEN
 CALL QDSTORE(HDLR_CTOK, 11, INT4_1)
 ELSE
 CALL QDSTORE(HDLR_CTOK, 11, INT8_1)
 ENDIF
 FIXUP_CTOK(1:8) = CEE0CF
 FIXUP_CTOK(9:12) = Z'00000000'
 RESPONSE = 60
 INPUT_LENGTH = QDLEN(HDLR_CTOK,6)
 CALL QDFETCH(HDLR_CTOK, 6, INPUT_FIELD(1:INPUT_LENGTH))
 ERROR_INDEX = QDINT4(HDLR_CTOK, 7)
 ENDIF

Lang Env V1R5 Fortran Migration Guide
Giving New Result Value for Nonnumeric Input Character

¦ Copyright IBM Corp. 1995
3.1.4.4.2 - 1

 END

 --
 Figure 10. Condition Handler Giving New Result Value for Nonnumeric Input
 Character

 Notes on the Example:

1. The main program and the condition handler ICHHDL2 share the common block ICHCOM2 to communicate information about the
 input field that was in error. The condition handler provides the field's length and contents as well as the subscript that refers to
 the invalid character.

2. As in the earlier example, the condition handler determines whether the condition is FOR1003. For simplicity, this example
 handles input items of integer type only. It determines whether the condition applies to an integer item by using the QDTYPE
 function to obtain the data type of the eleventh qualifying datum, the result field. If this result field is not of integer type, then
 instead of dealing with the condition, the condition handler lets the condition percolate.

3. The file AFHCQDSB contains declarations for named constants, such as QDTYPE_INTEGER, for the values returned by the
 QDTYPE function. For a list of these named constants, see the description of the QDTYPE function in Appendix A on page
 APPENDIX1.1.7.

4. After determining the length of the integer result field with the QDLEN function, the condition handler uses the QDSTORE callable
 service to set an integer value 1 of the appropriate length into the eleventh qualifying datum, which is the result of the data
 conversion.

5. The condition handler sets the third dummy argument, RESPONSE, to 60 to request the fix-up and resume action, and it sets the
 fourth dummy argument, FIXUP_CTOK, to condition CEE0CF to request the resume with new output value action.

6. Before returning to the condition manager, the condition handler updates the fields in the common block ICHCOM2 with information
 about the input field that was in error. This information includes the length of the input field, the actual contents of the input field,
 and the subscript value of the character in error within the input field.

7. To provide the resume with new output value action, the condition manager provides the value in the eleventh qualifying datum as
 the result of the data conversion. This result becomes the value of the input item INT_ITEM in the main program.

8. There's an implicit assumption that ICHXMP2 is compiled with optimization level 0 or 1, that is, with the OPT(0) or OPT(1)
 compile-time option. If ICHXMP2 were compiled with a higher optimization level, the compiler would assume that ERROR_INDEX
 doesn't change between the assignment statement (where it's set to 0) and the IF statement (where it's tested); therefore, the
 compiler wouldn't generate any code to test the value of ERROR_INDEX. The problem is that the compiler isn't aware of the
 hidden transfer of control to the condition handler ICHHDL2, which sets ERROR_INDEX to a different value. At optimization level 0
 or 1, the compiler doesn't do the analysis that causes this problem.

Lang Env V1R5 Fortran Migration Guide
Giving New Result Value for Nonnumeric Input Character

¦ Copyright IBM Corp. 1995
3.1.4.4.2 - 2

 3.1.5 Regaining Control for Conditions Not Handled by a Subprogram

You can structure your application with a control program that continues running in spite of conditions that aren't handled by
 routines it calls. The example in Figure 11 shows how to do this with a user-written condition handler that uses the CEEMRCR
 callable service. (CEEMRCR moves the resume cursor relative to the position of the handle cursor so that control is passed to the
 point at which one routine calls another. CEEMRCR is described in Language Environment for MVS & VM Programming Reference.)
 In this example, CNTLPGM is the control program to which the control should return even if conditions signaled in routines it calls
 aren't handled.

 --

 PROGRAM CNTLPGM
 INCLUDE (CEEFORCT)
 EXTERNAL PROCRTN
 REAL*4 INARG / -4.0 /
 REAL*4 OUTARG
 CHARACTER*12 PROCRTN_FC
 EXTERNAL CEEMSG
 CALL ROUTER (PROCRTN, INARG, OUTARG, PROCRTN_FC)
 IF (PROCRTN_FC(1:8) .NE. CEE000) THEN
 PRINT *, 'PROCRTN FAILED. MESSAGE FOLLOWS.'
 CALL AFHCEEN (CEEMSG, PROCRTN_FC, 2)
 ENDIF
 END

 SUBROUTINE ROUTER (ROUTINE, ARG1, ARG2, ROUTINE_FC)
 INCLUDE (CEEFORCT)
 EXTERNAL ROUTINE
 REAL*4 ARG1, ARG1
 CHARACTER*12 ROUTINE_FC
 EXTERNAL GETFC
 EXTERNAL CEEHDLR
 CALL AFHCEEN(CEEHDLR, GETFC, LOC(ROUTINE_FC))
 ROUTINE_FC(1:8) = CEE000
 ROUTINE_FC(9:12) = Z'00000000'
 CALL ROUTINE (ARG1, ARG2)
 END

 SUBROUTINE GETFC(HDLR_CTOK, PASS_FC_PTR, RESPONSE, FIXUP_CTOK)
 CHARACTER*12 HDLR_CTOK
 POINTER*4 (PASS_FC_PTR, PASSED_FC)
 CHARACTER*12 PASSED_FC
 INTEGER*4 RESPONSE
 CHARACTER*12 FIXUP_CTOK
 EXTERNAL CEEMRCR
 PASSED_FC = HDLR_CTOK
 CALL AFHCEEN (CEEMRCR, 1)
 RESPONSE = 10
 END

 SUBROUTINE PROCRTN (INPUT, OUTPUT)
 REAL*4 INPUT, OUTPUT
 OUTPUT = SQRT(INPUT)
 END

 --
 Figure 11. Using CEEMRCR to Return to a Common Point for Conditions in a
 Subroutine

Lang Env V1R5 Fortran Migration Guide
Regaining Control for Conditions Not Handled by a Subprogram

¦ Copyright IBM Corp. 1995
3.1.5 - 1

 Notes on the Example:

1. The control program CNTLPGM calls ROUTER, passing to it the following:

 a. The name of the subroutine to be called (PROCRTN in this case)

 b. The actual arguments to be passed to PROCRTN

 c. The feedback code in which ROUTER returns the feedback code that results from calling PROCRTN

2. Through the Fortran-specific callable service AFHCEEN (discussed in "Fortran Services for Calling Language Environment
 Callable Services" in topic 3.1.3.4), the routine ROUTER uses the CEEHDLR callable service to register the user-written condition
 handler GETFC. Using CEEHDLR's second argument (AFHCEEN's third argument), ROUTER passes to GETFC the address of the
 feedback code argument provided by CNTLPGM.

3. After setting the feedback code argument to CEE000, ROUTER calls the subroutine that CNTLPGM specified should be called
 (PROCRTN).

4. If the subroutine PROCRTN experiences a condition that isn't handled, the condition is percolated to the condition handler GETFC,
 which returns the condition through the feedback code argument provided by CNTLPGM. In this example, PROCRTN calls the
 SQRT function with the negative argument that CNTLPGM provided; because PROCRTN hasn't registered a condition handler, the
 condition for the square-root exception is presented to GETFC.

5. Before returning to the condition manager, GETFC uses the CEEMRCR callable service to move the resume cursor to the point in
 CNTLPGM immediately following the call to ROUTER.

6. Because GETFC requests the resume action (by setting RESPONSE to 10), the condition manager passes control to the
 statement where the resume cursor points--just beyond the call to ROUTER.

7. After it regains control, the control program CNTLPGM checks the feedback code to determine whether the subprogram
 PROCRTN completed successfully.

In the example, ROUTER receives and passes along exactly two arguments for the routine requested by CNTLPGM. However,
 ROUTER could be generalized to receive and pass along an arbitrary number of arguments.

Lang Env V1R5 Fortran Migration Guide
Regaining Control for Conditions Not Handled by a Subprogram

¦ Copyright IBM Corp. 1995
3.1.5 - 2

 3.2 Chapter 11. Making Other Source Program Changes
Chapter 10 discussed how to use the Language Environment condition handling model to replace the VS FORTRAN extended error

 handling facility. Besides error handling, there are a few other differences between VS FORTRAN and Language Environment;
 some of these might require changes in your source programs. This chapter discusses the following topics:

� Texts of run-time error message
 � Values returned through the IOSTAT specifie
 � Permissible input/output to the error message uni
 � Data set attributes for the message fil
 � Fix-up for misaligned vector instruction operand
 � Fixed-point overflo
 � DVCHK and OVERFL subroutine
 � Run-time initialization from assembler languag
 � Assembler language routines that find program argument

 Subtopics
 3.2.1 Texts of Run-Time Error Messages
 3.2.2 Values Returned through the IOSTAT Specifier
 3.2.3 Permissible Input/Output to the Error Message Unit
 3.2.4 Data Set Attributes for the Message File
 3.2.5 Fix-Up for Misaligned Vector Instruction Operands
 3.2.6 Fixed-Point Overflow
 3.2.7 DVCHK and OVERFL Subroutines
 3.2.8 Assembler Language Routines That Find Program Arguments
 3.2.9 Run-Time Initialization from Assembler Language

Lang Env V1R5 Fortran Migration Guide
Chapter 11. Making Other Source Program Changes

¦ Copyright IBM Corp. 1995
3.2 - 1

 3.2.1 Texts of Run-Time Error Messages

With Language Environment, the Fortran run-time error messages differ from the corresponding VS FORTRAN messages in several
 ways:

� The message number prefixes and the message numbers are different. For example, Language Environment produces the
 message FOR1002E instead of the AFB212I that VS FORTRAN Version 2 produces.

� The message texts more accurately describe the error that was detected

� The message texts have more information describing a given occurrence of the error. For example, the message texts for most
 I/O conditions include additional information, such as file names, unit numbers, and record lengths, that isn't in the VS FORTRAN
 message texts.

As an example, consider the following VS FORTRAN Version 2 message that's printed when the record read by a formatted READ
 statement doesn't contain enough data for all the input items:

 AFB212I VCOMH : FORMATTED I/O, END OF RECORD, FILE MYINPUT

This is the equivalent Language Environment message:

 FOR1002E The READ statement for unit 10, which was connected to MYINPUT,
 failed. An input item required data from beyond the end of the
 data that was available in a record. The length of the available
 data was 56.

If any of your programs read and interpret files containing error messages, change these programs either to interpret the new
 messages or to obtain the required information using Language Environment callable services.

Lang Env V1R5 Fortran Migration Guide
Texts of Run-Time Error Messages

¦ Copyright IBM Corp. 1995
3.2.1 - 1

 3.2.2 Values Returned through the IOSTAT Specifier

All of the integer values provided when an I/O statement contains the IOSTAT specifier are different from their VS FORTRAN
 values. The values provided by Language Environment are the new message numbers that are shown for the Fortran run-time
 messages in Language Environment for MVS & VM Debugging Guide and Run-Time Messages . For example, the following Fortran
 statements cause condition FOR1002 to be signaled if the READ statement encounters a record that's too short:

 INTEGER*4 ERROR_NO
 REAL*4 A
 .
 .
 .
 OPEN (10, FILE='MYINPUT')
 READ (10, '(56X, F8.2)', IOSTAT=ERROR_NO) A
 .
 .
 .

VS FORTRAN sets the variable ERROR_NO to 212 while Language Environment sets it to 1002.

If you have any programs that depend on the error numbers returned through the IOSTAT specifier, change them to refer to the
 Language Environment numbers. For the mapping of the VS FORTRAN Version 2 message numbers to the Language Environment
 conditions, see Appendix C on page APPENDIX1.3.1. This appendix also shows the mapping of the Language Environment
 conditions to the VS FORTRAN Version 2 message numbers on page APPENDIX1.3.2.

As shown in Appendix C, there isn't a one-to-one mapping between the Language Environment and the VS FORTRAN Version 2
 error numbers. For example, the VS FORTRAN Version 2 error AFB212 is detected for a short record with either a READ or a
 WRITE statement. With Language Environment, a short record detected during execution of a READ statement causes condition
 FOR1002 to be signaled while a short record during execution of a WRITE statement causes condition FOR1001 to be signaled.

Lang Env V1R5 Fortran Migration Guide
Values Returned through the IOSTAT Specifier

¦ Copyright IBM Corp. 1995
3.2.2 - 1

 3.2.3 Permissible Input/Output to the Error Message Unit

With Language Environment, error messages and other diagnostic information are written to the Language Environment message file
 along with certain printed output from programs written in other high-level languages. In a Fortran routine, all output directed to the
 Fortran error message unit is written to the message file. Fortran also has another unit, the print unit, which is used for output from
 certain Fortran output statements. The unit numbers of the error message unit and the print unit are specified by the ERRUNIT and
 PRTUNIT run-time options. Depending on whether the Fortran print unit is the same unit as the error message unit or a different unit,
 printed output from your Fortran program either can be interspersed with other message file output or can be written to a separate
 file. Table 11 summarizes the destination of various forms of printed output. In the table, print file means the file associated with the
 print unit when the error message unit and the print units are different units.

 +--+
 ¦ Table 11. Destination of Printed Output from Fortran Routines ¦
 +--¦
 ¦ ¦ Print Unit ¦ ¦
 ¦ ¦ Same as the ¦ ¦
 ¦ ¦ Error Message ¦ Destination ¦
 ¦ Fortran Statement or Callable Service ¦ Unit ¦ of Output ¦
 +---+---------------+--------------¦
 ¦ ¦ Yes ¦ Message file ¦
 ¦ PRINT statement +---------------+--------------¦
 ¦ ¦ No ¦ Print file ¦
 +---+---------------+--------------¦
 ¦ WRITE ([UNIT=]*, [FMT=]fmt, ...) ¦ Yes ¦ Message file ¦
 ¦ where fmt is any format identifier. +---------------+--------------¦
 ¦ ¦ No ¦ Print file ¦
 +---+---------------+--------------¦
 ¦ WRITE ([UNIT=]emu, [FMT=]fmt, ...) ¦ ¦ ¦
 ¦ where emu has same value as the error ¦ Either ¦ Message file ¦
 ¦ message unit number, and fmt is any ¦ ¦ ¦
 ¦ format identifier. ¦ ¦ ¦
 +---+---------------+--------------¦
 ¦ CDUMP / CPDUMP callable service ¦ ¦ ¦
 ¦ DUMP / PDUMP callable service ¦ Either ¦ Message file ¦
 ¦ SDUMP callable service ¦ ¦ ¦
 +---+---------------+--------------¦
 ¦ Error messages from any component of ¦ Either ¦ Message file ¦
 ¦ Language Environment ¦ ¦ ¦
 +--+

The message file can be used only for output, and the only Fortran statements that can refer to the error message unit are those
 listed in the preceding table plus the INQUIRE, OPEN, and CLOSE statements. This differs from VS FORTRAN where the error
 message unit can be used for both input and output. (12)

You must make changes if your programs use the following statements to refer to the error message unit:

� REA
 � BACKSPAC
 � REWIN
 � ENDFIL
 � CLOSE with a STATUS specifier value of DELET

If you want to use the preceding I/O statements for the file that contains the printed output produced by WRITE and PRINT statements
 in your Fortran routines, make the following changes:

� Provide different values for the ERRUNIT and PRTUNIT run-time options so that the error message unit and the print unit are
 different units.

� On the I/O statements that refer to the error message unit, provide a unit number that is the same as what you've used as the
 value of the PRTUNIT run-time option.

Lang Env V1R5 Fortran Migration Guide
Permissible Input/Output to the Error Message Unit

¦ Copyright IBM Corp. 1995
3.2.3 - 1

The suggested changes separate the message file output from the print file output and allow you to manipulate the print file output.
 The results won't be identical to those of VS FORTRAN because you still can't use statements other than those listed in Table 11 for
 the error message unit.

 (12) There are additional Fortran statements, such as an unformatted WRITE statement or a direct access WRITE statement, that
 can't refer to the error message unit with either VS FORTRAN or Language Environment.

Lang Env V1R5 Fortran Migration Guide
Permissible Input/Output to the Error Message Unit

¦ Copyright IBM Corp. 1995
3.2.3 - 2

 3.2.4 Data Set Attributes for the Message File

As shown in Table 11 in topic 3.2.3, certain printed output from your Fortran routines is written to the Language Environment
 message file. This file is shared with routines written in other languages and is equivalent to the file that is connected to the error
 message unit in VS FORTRAN. However, with Language Environment, as shipped by IBM, the data set attributes shown in Table 12
 have values that differ from those with VS FORTRAN:

 +---+
 ¦ Table 12. IBM-Supplied Attributes for Message File ¦
 +---¦
 ¦ ¦ ¦ ¦ Language ¦
 ¦ ¦ DCB ¦ VS FORTRAN ¦ Environment ¦
 ¦ Data Set Attribute ¦ Parameter ¦ Value ¦ Value ¦
 +--------------------+-----------+------------+-------------¦
 ¦ Record format ¦ RECFM ¦ UA ¦ FBA ¦
 +--------------------+-----------+------------+-------------¦
 ¦ Record length ¦ LRECL ¦ 133 ¦ 121 ¦
 +--------------------+-----------+------------+-------------¦
 ¦ ddname ¦ -- ¦ FTnnF001 ¦ SYSOUT ¦
 +---+

If your Fortran routine writes to the message file, such as with a PRINT statement, and if your output record is longer than what a
 message file record holds, the condition FOR1001 is signaled, and your application is terminated if the condition isn't handled. To
 avoid this problem, increase the message file's record length in one of the following ways:

� In the DD statement or ALLOCATE command for the message file, provide an LRECL parameter that's large enough to hold your
 records.

� As the third subparameter of the MSGFILE run-time option, provide a larger value for the record length. For example, the
 following run-time option specifies values for the record format and the record length that are the same as in VS FORTRAN:

 MSGFILE(SYSOUT,UA,133)

� Prepare a set of default run-time options that you link-edit with your application, and include a MSGFILE run-option such as the
 preceding one. For further information, see "Providing Default Run-Time Options for Your Application" in topic 2.5.3 and the
 chapter on run-time options in Language Environment for MVS & VM Programming Guide.

� Ensure that Language Environment is installed at your site with a MSGFILE run-time option default value such as the preceding
 one. If you do this, the default values will apply to all applications that run with Language Environment. For information on setting
 default run-time options for your site, see Language Environment for MVS & VM Installation and Customization on MVS.

If you want to make the ddname of the message file the same as it was in VS FORTRAN, provide the ddname as the first suboption
 of the MSFGILE run-time option as follows:

 MSGFILE(FTnnF001)

where nn is the unit number of the error message unit. The value nn is the value given for the ERRUNIT run-time option:

 ERRUNIT(nn)

Lang Env V1R5 Fortran Migration Guide
Data Set Attributes for the Message File

¦ Copyright IBM Corp. 1995
3.2.4 - 1

 3.2.5 Fix-Up for Misaligned Vector Instruction Operands

Unlike VS FORTRAN Version 2, there is no fix-up action in Language Environment to provide error recovery when a vector
 instruction operand isn't aligned on the proper boundary in storage. For example, if an array with REAL*8 elements is used in
 vectorized code, the array must be aligned so its elements are on doubleword storage boundaries. If the elements aren't properly
 aligned and if a vector instruction refers to the incorrectly aligned data, a specification exception is detected, and a program
 interruption occurs.

Usually data is incorrectly aligned because of its declaration either in a common block or with an EQUIVALENCE statement. In the
 following example, the array R8 isn't aligned on doubleword storage boundaries because of its position within the COM1 common
 block. When the array is passed to the DOADD subroutine, which in this example is assumed to be compiled with the VECTOR
 compile-time option, a specification exception occurs.

 COMMON / COM1 / I4, R8
 INTEGER*4 I4
 REAL*8 R8(10000)
 .
 .
 .
 CALL DOADD (R8)
 .
 .
 .
 END
 SUBROUTINE DOADD (X8)
 REAL*8 X8(10000)
 DO I = 1, 10000
 X8(I) = X8(I) + 1.0D0
 ENDDO
 END

To correct this problem, add padding in the common block as shown to align the array R8 on doubleword storage boundaries:

 COMMON / COM1 / I4, DUMMY4, R8
 INTEGER*4 I4
 INTEGER*4 DUMMY4
 REAL*8 R8(10000)
 .
 .
 .
 CALL DOADD (R8)
 .
 .
 .
 END
 SUBROUTINE DOADD (X8)
 REAL*8 X8(10000)
 DO I = 1, 10000
 X8(I) = X8(I) + 1.0D0
 ENDDO
 END

If you the change the common block in this way, recompile all programs that use it.

Lang Env V1R5 Fortran Migration Guide
Fix-Up for Misaligned Vector Instruction Operands

¦ Copyright IBM Corp. 1995
3.2.5 - 1

 3.2.6 Fixed-Point Overflow

When there is a Fortran routine in an application, the program mask bit for fixed-point overflow is on, which causes a program
 interruption when fixed-point overflow occurs. This is different from VS FORTRAN, where the mask bit is off, and no program
 interruption occurs.

If the logic of your Fortran routines depends on continued execution when fixed-point overflow occurs, there are two solutions.
 The first is to disable the program interruption due to fixed-point overflow by changing the program mask. Use the CEE3SPM callable
 service as follows:

 CHARACTER*80 DISABLE_FIXED_PT_OVERFLOW / 'NOF' /
 INTEGER*4 SET_PGM_MASK
 PARAMETER (SET_PGM_MASK = 1)
 EXTERNAL CEE3SPM
 .
 .
 .
 CALL AFHCEEN (CEE3SPM, SET_PGM_MASK, DISABLE_FIXED_PT_OVERFLOW)

If you disable the interruption, routines written in languages other than Fortran might not operate correctly because some languages
 depend on the interruption to provide certain language semantics. If this is a problem in your application, use the push and pop
 features of the CEE3SPM callable service to disable the interruption for limited portions of your Fortran routines. Do this as follows:

 CHARACTER*80 DISABLE_FIXED_PT_OVERFLOW / 'NOF' /
 CHARACTER*80 BLANK_80 / ' ' /
 INTEGER*4 PUSH_SET_PGM_MASK
 PARAMETER (PUSH_SET_PGM_MASK = 5)
 INTEGER*4 POP_PGM_MASK
 PARAMETER (POP_PGM_MASK = 4)
 EXTERNAL CEE3SPM
 .
 .
 .
 CALL AFHCEEN (CEE3SPM, PUSH_SET_PGM_MASK,
 1 DISABLE_FIXED_PT_OVERFLOW)
 .
 .
 .
 CALL AFHCEEN (CEE3SPM, POP_PGM_MASK, BLANK_80)

Between the two calls to CEE3SPM, no program interruption occurs due to fixed-point overflow. The second call to CEE3SPM
 restores the program mask to the setting it had before the first call.

Another way to handle fixed-point overflow is with a user-written condition handler that resumes execution after the condition is
 signaled for the fixed-point overflow exception. For a simple example providing the same results as VS FORTRAN, see Figure 6 in
 topic 3.1.4.2.1. However, processing the program interruption in this way can degrade run-time performance.

Lang Env V1R5 Fortran Migration Guide
Fixed-Point Overflow

¦ Copyright IBM Corp. 1995
3.2.6 - 1

 3.2.7 DVCHK and OVERFL Subroutines

Language Environment does not provide the DVCHK and OVERFL subroutines, which in VS FORTRAN report the occurrence of the
 following program interruptions:

� Fixed-point divide exceptio
 � Floating-point divide exceptio
 � Fixed-point overflow exceptio
 � Exponent-overflow exceptio

The condition handling facilities in Language Environment include services for writing condition handlers to detect and report various
 conditions, such as the divide and overflow exceptions. To learn how to provide the error handling that's similar to what is available
 with VS FORTRAN's DVCHK and OVERFL subroutines, read Chapter 10, "Handling Run-Time Errors" in topic 3.1. There are several
 examples of user-written condition handlers beginning on page 3.1.4.

Lang Env V1R5 Fortran Migration Guide
DVCHK and OVERFL Subroutines

¦ Copyright IBM Corp. 1995
3.2.7 - 1

 3.2.8 Assembler Language Routines That Find Program Arguments

An assembler language routine that searches backward through the save area chain to find the option string (13) and returns all or
 part of the string to the caller will probably not work with Language Environment. This is because Language Environment inserts an
 additional save area in the save area chain just after the operating system's save area and just before the main program's save
 area. This additional save area interferes with the logic of an assembler language routine that extracts the general register 1 value
 from a save area that's a fixed number of save areas prior to the assembler language routine's save area. There are several ways
 to correct this problem:

� Change your Fortran routine to call the ARGSTR callable service which is described in VS FORTRAN Version 2 Language and
 Library Reference, to get the program arguments as shown in the following example:

 CHARACTER*40 PROG_ARGS
 INTEGER*4 ARGSTR_RC
 .
 .
 .
 CALL ARGSTR (PROG_ARGS, ARGSTR_RC)
 .
 .
 .

 If the PARM parameter in your EXEC statement is coded as follows:

 PARM='NOOCSTATUS,MSGFILE(FT06F001)/ANNUAL_REPORT'

 the variable PROG_ARGS is assigned the value ANNUAL_REPORT.

� Change the assembler language routine to call the ARGSTR callable service. Be sure to follow the Fortran conventions for
 argument lists with character arguments. These conventions are described in the section "Passing Character Arguments Using
 the Standard Linkage Convention" in VS FORTRAN Version 2 Programming Guide for CMS and MVS.

� Change the assembler language routine to bypass the additional save area in the save area chain

 (13) The option string is the information given in the PARM parameter of the EXEC statement in your JCL or as the parameter string
 on the TSO CALL or LOADGO command. For further information on the format of the option string with Language Environment,
 see "Coding the Option String" in topic 2.5.1.

Lang Env V1R5 Fortran Migration Guide
Assembler Language Routines That Find Program Arguments

¦ Copyright IBM Corp. 1995
3.2.8 - 1

 3.2.9 Run-Time Initialization from Assembler Language

If your VS FORTRAN application has an assembler language routine rather than a Fortran main program to initialize the Fortran
 run-time environment, you might have to change the application to run it with Language Environment. Such an assembler language
 routine calls the VFEIN# callable service (or the equivalent VSCOM# or IBCOM# callable service) for initialization. Depending on the
 relationship of the assembler language routine to the rest of the application, there are different changes that you must make.

The following sections discuss different scenarios involving initialization using VFEIN#. In the figures, the term operating system
 means the invoker of the high-level language application. The invoker is usually MVS, but it can be any routine that isn't running
 under the control of Language Environment.

 Subtopics
 3.2.9.1 Assembler Language Routine Acting as a Main Program
 3.2.9.2 Assembler Language Routine for an Active Environment
 3.2.9.3 Assembler Language Routine Operating outside the Environment
 3.2.9.4 COBOL Routine Invoking an Assembler Language Routine for Initialization

Lang Env V1R5 Fortran Migration Guide
Run-Time Initialization from Assembler Language

¦ Copyright IBM Corp. 1995
3.2.9 - 1

 3.2.9.1 Assembler Language Routine Acting as a Main Program

Figure 12 shows an assembler language routine acting as a Fortran main program:

 --

 +-----------------------------------+
 ¦ Operating System ¦
 +-----------------------------------+
 �
 +-----------------------------------+
 ¦ FMAIN: Assembler Language Main ¦
 +-----------------------------------¦
 ¦ ... ¦
 ¦ CALL VFEIN# ¦
 ¦ ... ¦
 ¦ CALL SUBF (...) ¦
 ¦ ... ¦
 ¦ CALL LOG10 (...) ¦
 ¦ ... ¦
 +-----------------------------------+
 ¦
 +---------------------------------+
 ¦ ¦
 � �
 +---------------------------+ +---------------------------+
 ¦ SUBF: Fortran Subroutine ¦ ¦ LOG10: Library Routine ¦
 +---------------------------¦ +---------------------------¦
 ¦ ... ¦ ¦ ... ¦
 +---------------------------+ +---------------------------+

 --
 Figure 12. Assembler Language Routine Acting as a Main Program

The assembler language routine FMAIN calls the VFEIN# callable service for initialization of the Fortran run-time environment. This
 allows either Fortran subroutines or Fortran run-time library routines, such as SUBF or LOG10 in this example, to be called. In this
 case, VS FORTRAN treats FMAIN as a replacement for a Fortran main program. When the application terminates (because of a
 STOP statement, for example), control returns to the caller of FMAIN.

For an application structured like the one shown in Figure 12, no change is required in the assembler language routine to run the
 application with Language Environment. When FMAIN is called by the operating system or by some other program that's not running
 with Language Environment, the VFEIN# callable service initializes the environment as it does with VS FORTRAN. When the
 application terminates, control returns to the caller of FMAIN.

If you're writing a new assembler language main program, use the CEEENTRY macro to generate a main program prolog that
 conforms to the Language Environment's standard linkage conventions. In this case, Language Environment automatically initializes
 the run-time environment, including the Fortran-specific portion, and you don't have to use the VFEIN# callable service. For more
 information on the CEEENTRY and related macros, see Language Environment for MVS & VM Programming Guide. When you
 link-edit your assembler language routine, might have to include the Fortran signature CSECT as described in Chapter 6, "Declaring
 the Presence of Fortran Routines" in topic 2.3.

Lang Env V1R5 Fortran Migration Guide
Assembler Language Routine Acting as a Main Program

¦ Copyright IBM Corp. 1995
3.2.9.1 - 1

 3.2.9.2 Assembler Language Routine for an Active Environment

When the assembler language routine that calls VFEIN# isn't called directly by the operating system but rather by a routine written in
 a high-level language such as COBOL, the Language Environment behavior differs from the VS FORTRAN behavior. Consider the
 structure in Figure 13.

 --

 +---------------------------------------+
 ¦ Operating System ¦
 +---------------------------------------+
 �
 +---------------------------------------+
 ¦ CMAIN: COBOL Main Routine ¦
 +---------------------------------------¦
 ¦ ... ¦
 ¦ CALL FMAIN (...) ¦
 ¦ ... ¦
 +---------------------------------------+
 �
 +---------------------------------------+
 ¦ FMAIN: Assembler Language Subroutine ¦
 +---------------------------------------¦
 ¦ ... ¦
 ¦ CALL VFEIN# ¦
 ¦ ... ¦
 ¦ CALL SUBF (...) ¦
 ¦ ... ¦
 ¦ CALL LOG10 (...) ¦
 ¦ ... ¦
 +---------------------------------------+
 ¦
 +---------------------------------+
 ¦ ¦
 � �
 +---------------------------+ +---------------------------+
 ¦ SUBF: Fortran Subroutine ¦ ¦ LOG10: Library Routine ¦
 +---------------------------¦ +---------------------------¦
 ¦ ... ¦ ¦ ... ¦
 +---------------------------+ +---------------------------+

 --
 Figure 13. Assembler Language Routine Called from a Main Program

Because Language Environment provides a single run-time environment for all languages, there's only one main program in the
 application, and the COBOL routine CMAIN is treated as the main program. The assembler language routine FMAIN is a subroutine
 even though it calls VFEIN#. The effect of having CMAIN rather than FMAIN as the main routine is that when the application
 terminates, control returns to the caller of the COBOL main routine CMAIN. This is true even when a Fortran STOP statement is
 executed.

(With VS FORTRAN, the assembler language routine FMAIN is considered to be the main program from the Fortran point of view. If
 the application terminates within the Fortran portion, control returns to the caller of FMAIN, that is, to CMAIN.)

The call to VFEIN# in Figure 13 isn't needed because Language Environment initializes the entire run-time environment, including the
 Fortran-specific portion, when the main program CMAIN is entered. However, the call to VFEIN# is permitted and is ignored.

Lang Env V1R5 Fortran Migration Guide
Assembler Language Routine for an Active Environment

¦ Copyright IBM Corp. 1995
3.2.9.2 - 1

 3.2.9.3 Assembler Language Routine Operating outside the Environment

Figure 14 shows a structure in which the assembler language routine that calls VFEIN# doesn't work properly as the main routine in
 some cases.

 --

 +-----------------------------------+
 ¦ Operating System ¦
 +-----------------------------------+
 �
 +-----------------------------------+
 ¦ FDRVR: Assembler Language Driver ¦
 +-----------------------------------¦
 ¦ ... ¦
 ¦ CALL FINI ¦
 ¦ ... ¦
 ¦ CALL SUBF (...) ¦
 ¦ ... ¦
 ¦ CALL LOG10 (...) ¦
 ¦ ... ¦
 +-----------------------------------+
 ¦
 +-----------------------+-----------------+
 ¦ ¦ ¦
 � ¦ �
 +---------------------------------------+ ¦ +---------------------------+
 ¦ FINI: Assembler Language Initializer ¦ ¦ ¦ LOG10: Library Routine ¦
 +---------------------------------------¦ ¦ +---------------------------¦
 ¦ ... ¦ ¦ ¦ ... ¦
 ¦ CALL VFEIN# ¦ ¦ +---------------------------+
 ¦ ... ¦ ¦
 +---------------------------------------+ ¦
 �
 +---------------------------+
 ¦ SUBF: Fortran Subroutine ¦
 +---------------------------¦
 ¦ ... ¦
 +---------------------------+

 --
 Figure 14. Assembler Language Routine Operating Outside the Environment

The assembler language driver routine FDRVR calls the assembler language routine FINI, which calls the VFEIN# callable service to
 initialize the Fortran run-time environment. FINI returns to FDRVR, which calls Fortran subroutines or Fortran run-time library
 routines, such as SUBF or LOG10. With VS FORTRAN, when the Fortran routines return directly to their callers and don't terminate
 the application, this approach works successfully. However, it doesn't work correctly if the application terminates from one of the
 Fortran routines; in this case, control returns to FDRVR, sometimes at an unexpected place.

With Language Environment, an application structured in this way does not work because FINI is treated as the main program. When
 FINI returns to its caller (FDRVR), the application terminates. When FDRVR calls the Fortran subroutine SUBF or the Fortran library
 routine LOG10, the results are unpredictable because the application has already terminated.

To enable this application to run with Language Environment, move the call to the VFEIN# callable service to FDRVR. Then the
 structure of the application is the same as that in Figure 12 on page 3.2.9.1, and FDRVR becomes the main routine.

If it's not practical to change this application in this way, consider using the Language Environment preinitialization callable services to
 construct an application in which calls are made from a routine, such as FDRVR, outside the environment to a routine, such as
 SUBF, that's part of the environment. For information on the preinitialization callable services, see Language Environment for MVS &
 VM Programming Guide. For some limitations on the use of these services in calling Fortran routines, see "Preinitialization Services

Lang Env V1R5 Fortran Migration Guide
Assembler Language Routine Operating outside the Environment

¦ Copyright IBM Corp. 1995
3.2.9.3 - 1

 Cannot Refer to Fortran Routines" in topic 1.3.4.

Lang Env V1R5 Fortran Migration Guide
Assembler Language Routine Operating outside the Environment

¦ Copyright IBM Corp. 1995
3.2.9.3 - 2

 3.2.9.4 COBOL Routine Invoking an Assembler Language Routine for Initialization

If the assembler language driver (FDRVR) in Figure 14 on page 3.2.9.3 is replaced by a COBOL routine, as in Figure 15, the behavior
 is different.

 --

 +-----------------------------------+
 ¦ Operating System ¦
 +-----------------------------------+
 �
 +-----------------------------------+
 ¦ CMAIN: COBOL Main Routine ¦
 +-----------------------------------¦
 ¦ ... ¦
 ¦ CALL FINI ¦
 ¦ ... ¦
 ¦ CALL SUBF (...) ¦
 ¦ ... ¦
 +-----------------------------------+
 ¦
 +---+
 ¦ ¦
 � �
 +---------------------------------------+ +---------------------------+
 ¦ FINI: Assembler Language Initializer ¦ ¦ SUBF: Fortran Subroutine ¦
 +---------------------------------------¦ +---------------------------¦
 ¦ ... ¦ ¦ ... ¦
 ¦ CALL VFEIN# ¦ +---------------------------+
 ¦ ... ¦
 +---------------------------------------+

 --
 Figure 15. COBOL Routine Invoking an Assembler Language Routine for
 Initialization

The COBOL routine CMAIN calls the assembler language routine FINI, which calls the VFEIN# callable service to initialize the Fortran
 run-time environment. FINI returns to CMAIN, which calls Fortran subroutines such as SUBF. With VS FORTRAN, this is one method
 of incorporating Fortran routines into a COBOL application. When the Fortran routines return directly to their callers and don't
 terminate the application, this approach works successfully. However, it doesn't work correctly if the application terminates from
 one of the Fortran routines; in this case, control returns to CMAIN, sometimes at an unexpected place.

With Language Environment, the COBOL routine CMAIN is the main routine, and the initialization of the run-time environment, including
 the Fortran portion, occurs when CMAIN is entered. You can remove the call to VFEIN# because calling VFEIN# has no effect when
 the environment is already established.

When the application terminates, control returns to the caller of the COBOL main routine CMAIN. This is true even when a Fortran
 STOP statement is executed.

Lang Env V1R5 Fortran Migration Guide
COBOL Routine Invoking an Assembler Language Routine for Initialization

¦ Copyright IBM Corp. 1995
3.2.9.4 - 1

 APPENDIX1 Part 4. Appendixes

 Subtopics
 APPENDIX1.1 Appendix A. Fortran Callable Services and Functions
 APPENDIX1.2 Appendix B. Qualifying Data for Language Environment Conditions
 APPENDIX1.3 Appendix C. Message Number Mappings
 APPENDIX1.4 Appendix D. VS FORTRAN Error Handling Behavior

Lang Env V1R5 Fortran Migration Guide
Part 4. Appendixes

¦ Copyright IBM Corp. 1995
APPENDIX1 - 1

 APPENDIX1.1 Appendix A. Fortran Callable Services and Functions
This appendix describes a set of Fortran-specific callable services and functions that give your Fortran routines access to most of

 the Language Environment features, such as its callable services.

You can use these callable services to call the Language Environment callable services from your Fortran routines:

 Name How Invoked Purpose
 AFHCEEF CALL statement Invoke a callable service passing the
 feedback code
 AFHCEEN CALL statement Invoke a callable service omitting the
 feedback code

You can use these callable services and functions to manipulate or get information about the qualifying data associated with a
 condition token:

 Name How Invoked Purpose
 QDFETCH CALL statement Retrieve a qualifying datum of any data
 type
 QDLEN Function reference Determine the length of a qualifying
 datum
 QDLOC Function reference Obtain the address of a qualifying datum
 QDSTORE CALL statement Update a qualifying datum
 QDTYPE Function reference Determine the data type of a qualifying
 datum

You can use these functions to retrieve the qualifying data associated with a condition token:

 Name How Invoked Purpose
 QDCH1 Function reference Retrieve a CHARACTER*1 qualifying datum
 QDCH6 Function reference Retrieve a CHARACTER*6 qualifying datum
 QDCH8 Function reference Retrieve a CHARACTER*8 qualifying datum
 QDCH31 Function reference Retrieve a CHARACTER*31 qualifying datum
 QDCH62 Function reference Retrieve a CHARACTER*62 qualifying datum
 QDCH255 Function reference Retrieve a CHARACTER*255 qualifying
 datum
 QDCX8 Function reference Retrieve a COMPLEX*8 qualifying datum
 QDCX16 Function reference Retrieve a COMPLEX*16 qualifying datum
 QDCX32 Function reference Retrieve a COMPLEX*32 qualifying datum
 QDINT1 Function reference Retrieve a INTEGER*1 qualifying datum
 QDINT2 Function reference Retrieve a INTEGER*2 qualifying datum
 QDINT4 Function reference Retrieve a INTEGER*4 qualifying datum
 QDINT8 Function reference Retrieve a INTEGER*8 qualifying datum
 QDR4 Function reference Retrieve a REAL*4 qualifying datum
 QDR8 Function reference Retrieve a REAL*8 qualifying datum
 QDR16 Function reference Retrieve a REAL*16 qualifying datum
 QDUS1 Function reference Retrieve a UNSIGNED*1 qualifying datum

The preceding set of functions for retrieving qualifying data is described in "QDxxxxx Functions--Retrieve a Qualifying Datum of a
 Specific Type" in topic APPENDIX1.1.8.

 Subtopics
 APPENDIX1.1.1 AFHCEEF--Invoke a Callable Service Passing the Feedback Code
 APPENDIX1.1.2 AFHCEEN--Invoke a Callable Service Omitting the Feedback Code
 APPENDIX1.1.3 QDFETCH Callable Service--Retrieve a Qualifying Datum of Any Type
 APPENDIX1.1.4 QDLEN Function--Determine the Length of a Qualifying Datum
 APPENDIX1.1.5 QDLOC Function--Obtain the Address of a Qualifying Datum
 APPENDIX1.1.6 QDSTORE Callable Service--Update a Qualifying Datum
 APPENDIX1.1.7 QDTYPE Function--Determine the Data Type of a Qualifying Datum
 APPENDIX1.1.8 QDxxxxx Functions--Retrieve a Qualifying Datum of a Specific Type

Lang Env V1R5 Fortran Migration Guide
Appendix A. Fortran Callable Services and Functions

¦ Copyright IBM Corp. 1995
APPENDIX1.1 - 1

 APPENDIX1.1.1 AFHCEEF--Invoke a Callable Service Passing the Feedback Code

AFHCEEF calls a specified Language Environment callable service from a Fortran routine with the optional feedback code as the last
 argument.

 +--- Syntax ---+
 ¦ ¦
 ¦ <-,---+ ¦
 ¦ >>--CALL--AFHCEEF--(--service--,----arg----,--fc--)----------------->< ¦
 ¦ ¦
 +--+

service (input)
 The name of the Language Environment callable service to be called. Declare the name service with an EXTERNAL statement in
 the Fortran routine as follows:

 EXTERNAL service

arg (input or output as used by service)
 One of the arguments for the service callable service. The number and type of these arguments are based on the requirements
 of service as described in Language Environment for MVS & VM Programming Reference.

fc (output)
 A character variable or array element of length 12 that becomes defined with the feedback code from the service callable
 service. The feedback codes are listed in the description of the service callable service in Language Environment for MVS & VM
 Programming Reference.

 Subtopics
 APPENDIX1.1.1.1 Usage Notes

Lang Env V1R5 Fortran Migration Guide
AFHCEEF--Invoke a Callable Service Passing the Feedback Code

¦ Copyright IBM Corp. 1995
APPENDIX1.1.1 - 1

 APPENDIX1.1.1.1 Usage Notes

� The AFHCEEF callable service establishes the Language Environment linkage conventions required by the Language Environment
 callable services and passes the arguments along to the specified callable service.

� To use the AFHCEEF callable service from your Fortran routine, compile the routine with the VS FORTRAN Version 1 or VS
 FORTRAN Version 2 compiler using the LANGLVL(77) compile-time option.

� Do not use the AFHCEEF callable service to CEE3SRP callable service

� Do not use the AFHCEEF callable service to invoke the Language Environment callable services for the mathematical routines
 because the mathematical routine names exceed Fortran's seven-character limit. (You shouldn't have to use the callable services
 for the mathematical routines because there are Fortran intrinsic functions for almost all of these routines.)

� Because a feedback code is passed to the service callable service, an error detected by the service is indicated by returning to
 the caller and providing a feedback code of other than CEE000.

Lang Env V1R5 Fortran Migration Guide
Usage Notes

¦ Copyright IBM Corp. 1995
APPENDIX1.1.1.1 - 1

 APPENDIX1.1.2 AFHCEEN--Invoke a Callable Service Omitting the Feedback Code

AFHCEEN calls a specified Language Environment callable service from a Fortran routine without providing the optional feedback
 code as the last argument.

 +--- Syntax ---+
 ¦ ¦
 ¦ <-,---+ ¦
 ¦ >>--CALL--AFHCEEN--(--service--,----arg----)------------------------>< ¦
 ¦ ¦
 +--+

service (input)
 The name of the Language Environment callable service to be called. Declare the name service with an EXTERNAL statement in
 the Fortran routine as follows:

 EXTERNAL service

arg (input or output as used by service)
 is one of the arguments for the service callable service. The number and type of these arguments are based on the requirements
 of service as described in Language Environment for MVS & VM Programming Reference.

 Subtopics
 APPENDIX1.1.2.1 Usage Notes

Lang Env V1R5 Fortran Migration Guide
AFHCEEN--Invoke a Callable Service Omitting the Feedback Code

¦ Copyright IBM Corp. 1995
APPENDIX1.1.2 - 1

 APPENDIX1.1.2.1 Usage Notes

� Do not provide the final feedback code argument for service in the call to AFHCEEN.

� To use the AFHCEEN callable service from your Fortran routine, compile the routine with the VS FORTRAN Version 1 or VS
 FORTRAN Version 2 compiler using the LANGLVL(77) compile-time option.

� Do not use the AFHCEEN callable service to CEE3SRP callable service

� Do not use the AFHCEEN callable service to invoke the Language Environment callable services for the mathematical routines
 because none of the mathematical routines have the feedback code as the last argument, and because the mathematical routine
 names exceed Fortran's seven-character limit. (You shouldn't have to use the callable services for the mathematical routines
 because there are Fortran intrinsic functions for almost all of these routines.)

� The AFHCEEN callable service establishes the Language Environment linkage conventions required by the Language Environment
 callable services, rebuilds the argument list in a form that indicates that the final feedback code argument is omitted, and passes
 the arguments along to the specified callable service.

� Because the feedback code is omitted in the call to the service callable service, an error detected by the service is indicated by
 signaling a condition that reflects the error rather than by returning to the caller.

Lang Env V1R5 Fortran Migration Guide
Usage Notes

¦ Copyright IBM Corp. 1995
APPENDIX1.1.2.1 - 1

 APPENDIX1.1.3 QDFETCH Callable Service--Retrieve a Qualifying Datum of Any Type

QDFETCH returns one of the qualifying data associated with a condition token.

 +--- Syntax ---+
 ¦ ¦
 ¦ >>--CALL--QDFETCH--(--cond_rep--,--index--,--receiver--)------------>< ¦
 ¦ ¦
 +--+

cond_rep (input)
 A character expression of length 12 whose value is the condition token with which the requested qualifying datum is associated.

index (input)
 An integer variable or an integer array element of length 4. Its value is the ordinal number of the requested qualifying datum within
 the qualifying data associated with condition cond_rep. For example, if you want to retrieve the fifth qualifying datum associated
 with the condition cond_rep, provide a value of 5 for index .

receiver (output)
 A variable, array element, or character substring which becomes defined with the value of the requested qualifying datum. The
 data type and length of receiver must be the same as the data type and length of qualifying datum number index defined for the
 condition cond_rep.

 Subtopics
 APPENDIX1.1.3.1 Usage Notes

Lang Env V1R5 Fortran Migration Guide
QDFETCH Callable Service--Retrieve a Qualifying Datum of Any Type

¦ Copyright IBM Corp. 1995
APPENDIX1.1.3 - 1

 APPENDIX1.1.3.1 Usage Notes

� You can use the QDFETCH callable service only for conditions for which qualifying data are available

� The value of index must be a positive number that doesn't exceed the number of elements of qualifying data associated with the
 condition cond_rep.

� The data type and length of any qualifying datum is a convention between the routine that signals a condition and the user of that
 qualifying datum. The QDFETCH callable service does not ensure that the type and length of receiver match the type and length of
 the qualifying datum for the condition cond_rep. If there is a mismatch, the results are unpredictable.

� The QDFETCH callable service is intended to be called by Fortran routines. However, you can call QDFETCH from assembler
 language routines if you follow the Fortran conventions for argument lists with character arguments. These conventions are
 described in the section "Passing Character Arguments Using the Standard Linkage Convention" in VS FORTRAN Version 2
 Programming Guide for CMS and MVS.

Lang Env V1R5 Fortran Migration Guide
Usage Notes

¦ Copyright IBM Corp. 1995
APPENDIX1.1.3.1 - 1

 APPENDIX1.1.4 QDLEN Function--Determine the Length of a Qualifying Datum

QDLEN returns the length of a specified qualifying datum associated with a condition token. The qualifying datum must have an
 associated q_data descriptor.

 +--- Syntax ---+
 ¦ ¦
 ¦ >>--...--QDLEN--(--cond_rep--,--index--)--...----------------------->< ¦
 ¦ ¦
 +--+

cond_rep (input)
 A character expression of length 12 whose value is the condition token with which the qualifying datum is associated.

index (input)
 An integer variable or an integer array element of length 4. Its value is the ordinal number of the qualifying datum within the
 qualifying data associated with condition cond_rep. For example, if you want to obtain the length of the fifth qualifying datum
 associated with the condition cond_rep, provide a value of 5 for index .

 Subtopics
 APPENDIX1.1.4.1 Usage Notes

Lang Env V1R5 Fortran Migration Guide
QDLEN Function--Determine the Length of a Qualifying Datum

¦ Copyright IBM Corp. 1995
APPENDIX1.1.4 - 1

 APPENDIX1.1.4.1 Usage Notes

� Provide the following INCLUDE line among the data declarations in your Fortran source program so the compiler will understand
 that the QDLEN function returns a value of integer type.

 INCLUDE (AFHCQDSB)

� The QDLEN function returns the length of the qualifying datum as an integer of length 4

� You can use the QDLEN function only for conditions for which qualifying data are available

� The value of index must be a positive number that doesn't exceed the number of elements of qualifying data associated with the
 condition cond_rep.

� index must refer to a qualifying datum that has a q_data descriptor associated with it. Most qualifying data that don't have q_data
 descriptors are of fixed lengths; therefore, you don't have to determine their lengths at run time.

Lang Env V1R5 Fortran Migration Guide
Usage Notes

¦ Copyright IBM Corp. 1995
APPENDIX1.1.4.1 - 1

 APPENDIX1.1.5 QDLOC Function--Obtain the Address of a Qualifying Datum

QDLOC returns the address of a specified qualifying datum associated with a condition token.

 +--- Syntax ---+
 ¦ ¦
 ¦ >>--ptr-- = --QDLOC--(--cond_rep--,--index--)----------------------->< ¦
 ¦ ¦
 +--+

ptr (output)
 A pointer variable of length 4 that becomes defined with the address of the specified qualifying datum.

cond_rep (input)
 A character expression of length 12 whose value is the condition token with which the qualifying datum is associated.

index (input)
 An integer variable or an integer array element of length 4. Its value is the ordinal number of the qualifying datum within the
 qualifying data associated with condition cond_rep. For example, if you want to obtain the address of the fifth qualifying datum
 associated with the condition cond_rep, provide a value of 5 for index .

 Subtopics
 APPENDIX1.1.5.1 Usage Notes

Lang Env V1R5 Fortran Migration Guide
QDLOC Function--Obtain the Address of a Qualifying Datum

¦ Copyright IBM Corp. 1995
APPENDIX1.1.5 - 1

 APPENDIX1.1.5.1 Usage Notes

� Provide the following INCLUDE line among the data declarations in your Fortran source program so the compiler will understand
 that the QDLOC function returns a value of integer type.

 INCLUDE (AFHCQDSB)

� The QDLOC function returns the address of the qualifying datum as an integer of length 4. Use an assignment statement to
 assign the value returned by the QDLOC function to a pointer variable of length 4.

� You can use the QDLOC function only for conditions for which qualifying data are available

� The value of index must be a positive number that doesn't exceed the number of elements of qualifying data associated with the
 condition cond_rep.

Lang Env V1R5 Fortran Migration Guide
Usage Notes

¦ Copyright IBM Corp. 1995
APPENDIX1.1.5.1 - 1

 APPENDIX1.1.6 QDSTORE Callable Service--Update a Qualifying Datum

QDSTORE updates one of the qualifying data associated with a condition token using a value that you provide.

 +--- Syntax ---+
 ¦ ¦
 ¦ >>--CALL--QDSTORE--(--cond_rep--,--index--,--source--)-------------->< ¦
 ¦ ¦
 +--+

cond_rep (input)
 A character expression of length 12 whose value is the condition token with which the qualifying datum is associated.

index (input)
 An integer variable or an integer array element of length 4. Its value is the ordinal number of the target qualifying datum within the
 qualifying data associated with condition cond_rep. For example, if you want to update the fifth qualifying datum associated with
 the condition cond_rep, provide a value of 5 for index .

source (input)
 A variable, array element, or character substring whose value replaces the existing value of the indicated qualifying datum. The
 data type and length of source must be the same as the data type and length of qualifying datum number index defined for the
 condition cond_rep.

 Subtopics
 APPENDIX1.1.6.1 Usage Notes

Lang Env V1R5 Fortran Migration Guide
QDSTORE Callable Service--Update a Qualifying Datum

¦ Copyright IBM Corp. 1995
APPENDIX1.1.6 - 1

 APPENDIX1.1.6.1 Usage Notes

� You can use the QDSTORE callable service only for conditions for which qualifying data are available

� The value of index must be a positive number that doesn't exceed the number of elements of qualifying data associated with the
 condition cond_rep.

� The data type and length of any qualifying datum is a convention between the routine that signals a condition and the user of that
 qualifying datum. The QDSTORE callable service does not ensure that the type and length of source match the type and length of
 the qualifying datum for the condition cond_rep. If there is a mismatch, the results are unpredictable.

� Do not use the QDSTORE callable service to update a qualifying datum unless that qualifying datum is specifically intended to be
 used as output.

� The QDSTORE callable service is intended to be called by Fortran routines. However, you can call QDSTORE from assembler
 language routines if you follow the Fortran conventions for argument lists with character arguments. These conventions are
 described in the section "Passing Character Arguments Using the Standard Linkage Convention" in VS FORTRAN Version 2
 Programming Guide for CMS and MVS.

Lang Env V1R5 Fortran Migration Guide
Usage Notes

¦ Copyright IBM Corp. 1995
APPENDIX1.1.6.1 - 1

 APPENDIX1.1.7 QDTYPE Function--Determine the Data Type of a Qualifying Datum

QDTYPE returns an integer value that represents the data type of a specified qualifying datum associated with a condition token.
 The qualifying datum must have an associated q_data descriptor.

 +--- Syntax ---+
 ¦ ¦
 ¦ >>--...--QDTYPE--(--cond_rep--,--index--)--...---------------------->< ¦
 ¦ ¦
 +--+

cond_rep (input)
 A character expression of length 12 whose value is the condition token with which the qualifying datum is associated.

index (input)
 An integer variable or an integer array element of length 4. Its value is the ordinal number of the qualifying datum within the
 qualifying data associated with condition cond_rep. For example, if you want to obtain the data type of the fifth qualifying datum
 associated with the condition cond_rep, provide a value of 5 for index .

 Subtopics
 APPENDIX1.1.7.1 Usage Notes

Lang Env V1R5 Fortran Migration Guide
QDTYPE Function--Determine the Data Type of a Qualifying Datum

¦ Copyright IBM Corp. 1995
APPENDIX1.1.7 - 1

 APPENDIX1.1.7.1 Usage Notes

� Provide the following INCLUDE line among the data declarations in your Fortran source program so the compiler will understand
 that the QDTYPE function returns a value of integer type.

 INCLUDE (AFHCQDSB)

� The QDTYPE function returns the data type of the qualifying datum as an integer of length 4. The file AFHCQDSB contains
 declarations for the following named constants that represent the data types shown:

 Named Constant Data Type
 QDTYPE_CHAR character
 QDTYPE_CHARACTER character
 QDTYPE_COMPLEX complex
 QDTYPE_INT integer
 QDTYPE_INTEGER integer
 QDTYPE_REAL real
 QDTYPE_UNSIGNED unsigned
 QDTYPE_FAILURE unknown

� You can use the QDTYPE function only for conditions for which qualifying data are available

� The value of index must be a positive number that doesn't exceed the number of elements of qualifying data associated with the
 condition cond_rep.

� index must refer to a qualifying datum that has a q_data descriptor associated with it. Most qualifying data that don't have q_data
 descriptors are of fixed data types; therefore, you don't have to determine their data types at run time.

Lang Env V1R5 Fortran Migration Guide
Usage Notes

¦ Copyright IBM Corp. 1995
APPENDIX1.1.7.1 - 1

 APPENDIX1.1.8 QDxxxxx Functions--Retrieve a Qualifying Datum of a Specific Type

Each of these retrieval functions returns a qualifying datum of a certain type, as indicated by the name of the function. The
 following functions are available in this set:

 Name Return Value Type
 QDCH1 CHARACTER*1
 QDCH6 CHARACTER*6
 QDCH8 CHARACTER*8
 QDCH31 CHARACTER*31
 QDCH62 CHARACTER*62
 QDCH255 CHARACTER*255
 QDCX8 COMPLEX*8
 QDCX16 COMPLEX*16
 QDCX32 COMPLEX*32
 QDINT1 INTEGER*1
 QDINT2 INTEGER*2
 QDINT4 INTEGER*4
 QDINT8 INTEGER*8
 QDR4 REAL*4
 QDR8 REAL*8
 QDR16 REAL*16
 QDUS1 UNSIGNED*1

 +--- Syntax ---+
 ¦ ¦
 ¦ >>--...--QDxxxxx--(--cond_rep--,--index--)--...--------------------->< ¦
 ¦ ¦
 +--+

cond_rep (input)
 A character expression of length 12 whose value is the condition token with which the qualifying datum is associated.

index (input)
 An integer variable or an integer array element of length 4. Its value is the ordinal number of the qualifying datum within the
 qualifying data associated with condition cond_rep. For example, if you want to retrieve the fifth qualifying datum associated with
 the condition cond_rep, provide a value of 5 for index .

 Subtopics
 APPENDIX1.1.8.1 Usage Notes

Lang Env V1R5 Fortran Migration Guide
QDxxxxx Functions--Retrieve a Qualifying Datum of a Specific Type

¦ Copyright IBM Corp. 1995
APPENDIX1.1.8 - 1

 APPENDIX1.1.8.1 Usage Notes

� Provide the following INCLUDE line among the data declarations in your Fortran source program so the compiler will understand
 the type of the data the retrieval functions return.

 INCLUDE (AFHCQDSB)

� You can use these retrieval functions only for conditions for which qualifying data are available

� The value of index must be a positive number that doesn't exceed the number of elements of qualifying data associated with the
 condition cond_rep.

� The data type and length of any qualifying datum is a convention between the routine that signals a condition and the user of that
 qualifying datum. These retrieval functions do not ensure that the type and length of the qualifying data they return match the type
 and length of the qualifying datum for the condition cond_rep. If there is a mismatch, the results are unpredictable.

Lang Env V1R5 Fortran Migration Guide
Usage Notes

¦ Copyright IBM Corp. 1995
APPENDIX1.1.8.1 - 1

 APPENDIX1.2 Appendix B. Qualifying Data for Language Environment Conditions
This appendix shows the qualifying data associated with the conditions that are signaled for these situations:

� Abend

 � Arithmetic program interruption
 � Square-root exceptio
 � Math and bit manipulation condition

For the qualifying data associated with the Fortran-specific condition, see the Fortran messages in Language Environment for MVS
 & VM Debugging Guide and Run-Time Messages .

 Subtopics
 APPENDIX1.2.1 q_data Structure for Abends
 APPENDIX1.2.2 q_data Structure for Arithmetic Program Interruptions
 APPENDIX1.2.3 q_data Structure for Square-Root Exception
 APPENDIX1.2.4 q_data Structure for Math and Bit-Manipulation Conditions
 APPENDIX1.2.5 Format of q_data Descriptors

Lang Env V1R5 Fortran Migration Guide
Appendix B. Qualifying Data for Language Environment Conditions

¦ Copyright IBM Corp. 1995
APPENDIX1.2 - 1

 APPENDIX1.2.1 q_data Structure for Abends

If an abend occurs, Language Environment signals condition CEE35I (corresponding to message number 3250) and builds the q_data
 structure shown in Figure 16.

 --

 ADDRESS LIST Q_DATA

 +--------------+
 ¦ q_data_token +---------- +----------------+
 +--------------+ ¦ � +--------------------- +--------------------+
 +----------------¦ ¦ parm count ¦
 ¦ � +-------------+ +--------------------+
 +----------------¦ +------- +--------------------+
 ¦ � +-------+ ¦ abend code ¦
 +----------------+ ¦ +--------------------+
 +------------- +--------------------+
 ¦ reason code ¦
 +--------------------+

 --
 Figure 16. Structure of Abend Qualifying Data

parm count (input)
 A fullword field containing the total number of parameters in the q_data structure, including parm count. In this case, the value of
 parm count is a fullword containing the integer 3.

abend code (input)
 A 4-byte field containing the abend code in the following format:

 +---+
 ¦ ¦ system abend code ¦ user abend code ¦
 +---+
 0 7 8 19 20 31

 system abend code
 The 12-bit system completion (abend) code. If these bits are all zero, then the abend is a user abend.

 user abend code
 The 12-bit user completion (abend) code. The abend is a user abend when bits 8 through 19 are all zero.

reason code (input)
 A 4-byte field containing the reason code accompanying the abend code. If a reason code is not available (as occurs, for
 example, in a CICS abend), reason code has the value zero.

 Subtopics
 APPENDIX1.2.1.1 Usage Notes

Lang Env V1R5 Fortran Migration Guide
q_data Structure for Abends

¦ Copyright IBM Corp. 1995
APPENDIX1.2.1 - 1

 APPENDIX1.2.1.1 Usage Notes

� You can use the CEEGQDT callable service to retrieve the q_data_token; see Language Environment for MVS & VM
 Programming Reference for further information.

� From a Fortran routine, you can retrieve the qualifying data using Fortran-specific callable services and functions, which are
 described in Appendix A on page APPENDIX1.1.

Lang Env V1R5 Fortran Migration Guide
Usage Notes

¦ Copyright IBM Corp. 1995
APPENDIX1.2.1.1 - 1

 APPENDIX1.2.2 q_data Structure for Arithmetic Program Interruptions

If one of the arithmetic program interruptions shown in Table 13 occurs, and the corresponding condition is signaled, Language
 Environment builds the q_data structure shown in Figure 17.

 +--+
 ¦ Table 13. Arithmetic Program Interruptions and Corresponding ¦
 ¦ Conditions ¦
 +--¦
 ¦ ¦ Program ¦ ¦ ¦
 ¦ ¦ Interruption¦ ¦ Message ¦
 ¦ Program Interruption(1, 2) ¦ Code ¦ Condition ¦ Number ¦
 +--------------------------------+-------------+------------+------------¦
 ¦ Fixed-point overflow exception ¦ 08 ¦ CEE348 ¦ 3208 ¦
 +--------------------------------+-------------+------------+------------¦
 ¦ Fixed-point divide exception ¦ 09 ¦ CEE349 ¦ 3209 ¦
 +--------------------------------+-------------+------------+------------¦
 ¦ Exponent-overflow exception ¦ 0C ¦ CEE34C ¦ 3212 ¦
 +--------------------------------+-------------+------------+------------¦
 ¦ Exponent-underflow exception ¦ 0D ¦ CEE34D ¦ 3213 ¦
 +--------------------------------+-------------+------------+------------¦
 ¦ Floating-point divide ¦ 0F ¦ CEE34F ¦ 3215 ¦
 ¦ exception ¦ ¦ ¦ ¦
 +--------------------------------+-------------+------------+------------¦
 ¦ Unnormalized-operand exception ¦ 1E ¦ CEE34U ¦ 3230 ¦
 +--¦
 ¦ Notes: ¦
 ¦ ¦
 ¦ ¦
 ¦ 1. The square root exception is also an arithmetic program ¦
 ¦ interruption, but is treated like the condition from the square ¦
 ¦ root mathematical routine. ¦
 ¦ ¦
 ¦ ¦
 ¦ 2. An arithmetic program interruption that occurs on a vector ¦
 ¦ instruction is presented to a user-written condition handler in ¦
 ¦ the same form as though it had occurred on a scalar instruction. ¦
 ¦ A single vector instruction could cause multiple, possibly ¦
 ¦ different, program interruptions to occur, but each interruption ¦
 ¦ is presented individually. ¦
 ¦ ¦
 ¦ ¦
 +--+

 --

 ISI ADDRESS LIST Q_DATA

 +--------------+
 ¦ q_data_token +---------- +----------------+
 +--------------+ ¦ � ¦------------------- +-----------------------+
 +----------------¦ ¦ parm_count ¦
 ¦ � ¦----------+ +-----------------------+
 +----------------¦ +-------- +-----------------------+
 ¦ � ¦--------+ ¦ mach_inst_result_desc ¦
 +----------------¦ ¦ +-----------------------+
 ¦ � ¦------+ +---------- +-----------------------+
 +----------------¦ ¦ ¦ mach_inst_result ¦
 ¦ � ¦----+ ¦ +-----------------------+
 +----------------¦ ¦ +------------ +-----------------------+

Lang Env V1R5 Fortran Migration Guide
q_data Structure for Arithmetic Program Interruptions

¦ Copyright IBM Corp. 1995
APPENDIX1.2.2 - 1

 ¦ � ¦--+ ¦ ¦fixup_resume_value_desc¦
 +----------------+ ¦ ¦ +-----------------------+
 ¦ +-------------- +-----------------------+
 ¦ ¦ fixup_resume_value ¦
 ¦ +-----------------------+
 +---------------- +-----------------------+
 ¦ mach_inst_address ¦
 +-----------------------+

 --
 Figure 17. q_data Structure for Arithmetic Program Interruption
 Conditions. Language Environment builds this data structure
 for the conditions of exponent overflow, exponent underflow,
 floating-point divide, fixed-point overflow, fixed-point
 divide, and unnormalized-operand exceptions.

The following information is provided by the q_data structure shown in Figure 17:

q_data_token (input)
 The 4-byte address of the address list. This value is returned by the CEEGQDT callable service.

parm_count (input)
 A 4-byte binary integer containing the value 6, which is the total number of q_data fields in the q_data structure, including
 parm_count.

mach_inst_result_desc (input)
 The q_data descriptor for mach_inst_result. (See "Format of q_data Descriptors" in topic APPENDIX1.2.5 for more information on
 q_data descriptors.)

mach_inst_result (input)
 The value left in the machine register (general register, floating-point register, or element of a vector register) by the failing
 machine instruction. Based on the program interruption, mach_inst_result has one of the following lengths and types (as
 reflected in the q_data descriptor field mach_inst_result_desc):

 Program Interruption Length and Type
 Fixed-point overflow exception 4- or 8-byte binary integer
 Fixed-point divide exception 8-byte binary integer
 Exponent-overflow exception 4-, 8-, or 16-byte floating-point
 number
 Exponent-underflow exception 4-, 8-, or 16-byte floating-point
 number
 Floating-point divide exception 4-, 8-, or 16-byte floating-point
 number
 Unnormalized-operand 4- or 8-byte floating-point number
 exception (14)

 This is also the result value with which execution is resumed when the user condition handler requests the resume action (result
 code 10).

fixup_resume_value_desc (input)
 The q_data descriptor for fixup_resume_value.

fixup_resume_value (input/output)
 The fix-up value which, for the exceptions other than the unnormalized-operand exception, is the result value with which
 execution is resumed when the user condition handler requests the fix-up and resume action (result code 60 with a condition
 token of CEE0CF). fixup_resume_value initially has one of the following values:

 � For an exponent-underf low exception, the value 0

Lang Env V1R5 Fortran Migration Guide
q_data Structure for Arithmetic Program Interruptions

¦ Copyright IBM Corp. 1995
APPENDIX1.2.2 - 2

 � For an unnormalized-operand exception, the value 0

 � For one of the other program interruptions, the same value as in mach_inst_result

 Based on the program interruption, fixup_resume_value has the following lengths and types (as reflected in the q_data descriptor
 field fixup_resume_value_desc):

 Program Interruption Length and Type
 Fixed-point overflow exception 4- or 8-byte binary integer
 Fixed-point divide exception 8-byte binary integer or
 two 4-byte binary integers
 (remainder, quotient)
 Exponent-overflow exception 4-, 8-, or 16-byte floating-point
 number
 Exponent-underflow exception 4-, 8-, or 16-byte floating-point
 number
 Floating-point divide exception 4-, 8-, or 16-byte floating-point
 number
 Unnormalized-operand 4- or 8-byte floating-point number
 exception (14)

mach_inst_address (input)
 The address of the machine instruction causing the program interruption.

 (14) The unnormalized-operand exception occurs only on vector instructions.

 Subtopics
 APPENDIX1.2.2.1 Usage Notes

Lang Env V1R5 Fortran Migration Guide
q_data Structure for Arithmetic Program Interruptions

¦ Copyright IBM Corp. 1995
APPENDIX1.2.2 - 3

 APPENDIX1.2.2.1 Usage Notes

� You can use the CEEGQDT callable service to retrieve the q_data_token; see Language Environment for MVS & VM
 Programming Reference for further information.

� From a Fortran routine, you can retrieve the qualifying data using Fortran-specific callable services and functions, which are
 described in Appendix A on page APPENDIX1.1.

� Using the q_data structure, a user condition handler can resume either with

 - The resume action (result code 10) using the value in mach_inst_result. The effect is the same as though execution had
 continued without any change to the register contents left by the machine instruction.

 - The fix-up and resume action (result code 60 with a condition token of CEE0CF) for exceptions other than
 unnormalized-operand. This allows any value to be placed in the result register that the machine instruction used.

� You can use the CEE3SPM callable service to set or reset the exponent-underflow mask bit in the program mask; the bit controls
 whether a program interruption occurs when exponent-underflow occurs, as follows:

 - When the bit is on, the program interruption occurs and condition CEE34D is signaled.

 - When the bit is off, no program interruption occurs; therefore no condition is signaled.

 See Language Environment for MVS & VM Programming Reference for further information on the CEE3SPM callable service.

Lang Env V1R5 Fortran Migration Guide
Usage Notes

¦ Copyright IBM Corp. 1995
APPENDIX1.2.2.1 - 1

 APPENDIX1.2.3 q_data Structure for Square-Root Exception

If a square-root exception (15) occurs and the corresponding condition as shown in Table 14 is signaled, Language Environment
 builds the q_data structure shown in Figure 18 in topic APPENDIX1.2.4.

 +--+
 ¦ Table 14. Square-Root Exception and Corresponding Condition ¦
 +--¦
 ¦ ¦ Program ¦ ¦ ¦
 ¦ ¦ Interruption¦ ¦ Message ¦
 ¦ Program Interruption ¦ Code ¦ Condition ¦ Number ¦
 +--------------------------------+-------------+------------+------------¦
 ¦ Square-root exception ¦ 1D ¦ CEE1UQ ¦ 2010 ¦
 +--+

For a square-root exception, Language Environment signals the same condition (CEE1UQ) as it does when one of the square root
 routines detects a negative argument. For this exception, a user-written condition handler can request the same resume and fix-up
 and resume actions that it can request when the condition is signaled by one of the square root routines.

 (15) A square-root exception is the program interruption that occurs when a square root instruction is executed with a negative
 argument.

Lang Env V1R5 Fortran Migration Guide
q_data Structure for Square-Root Exception

¦ Copyright IBM Corp. 1995
APPENDIX1.2.3 - 1

 APPENDIX1.2.4 q_data Structure for Math and Bit-Manipulation Conditions

For conditions that occur in the mathematical or bit manipulation routines, the Language Environment condition manager creates
 q_data that user condition handlers can use to handle the condition. The q_data structure is shown in Figure 18, and is the same for
 all entry points of the mathematical and bit manipulation routines.

 --

 ISI ADDRESS LIST Q_DATA

 +--------------+
 ¦ q_data_token +----->+---------------+
 +--------------+ ¦ � +--------------------- +-----------------------+
 +---------------¦ ¦ parm_count ¦
 ¦ � +------------------+ +-----------------------+
 +---------------¦ +-- +-----------------------+
 ¦ � +----------------+ ¦ math_operation ¦
 +---------------¦ ¦ +-----------------------+
 ¦ � +--------------+ +---- +-----------------------+
 +---------------¦ ¦ ¦ std_resume_value_desc ¦
 ¦ � +------------+ ¦ +-----------------------+
 +---------------¦ ¦ +------ +-----------------------+
 ¦ � +----------+ ¦ ¦ std_resume_value ¦
 +---------------¦ ¦ ¦ +-----------------------+
 ¦ � +--------+ ¦ +-------- +-----------------------+
 +---------------¦ ¦ ¦ ¦ parameter_1_desc ¦
 ¦ � +------+ ¦ ¦ +-----------------------+
 +---------------¦ ¦ ¦ +---------- +-----------------------+
 ¦ � +----+ ¦ ¦ ¦ parameter_1 ¦
 +---------------¦ ¦ ¦ ¦ +-----------------------+
 ¦ � +--+ ¦ ¦ +------------ +-----------------------+
 +---------------+ ¦ ¦ ¦ ¦ parameter_2_desc ¦
 ¦ ¦ ¦ +-----------------------+
 ¦ ¦ +-------------- +-----------------------+
 ¦ ¦ ¦ parameter_2 ¦
 ¦ ¦ +-----------------------+
 ¦ +---------------- +-----------------------+
 ¦ ¦fixup_resume_value_desc¦
 ¦ +-----------------------+
 +------------------ +-----------------------+
 ¦ fixup_resume_value ¦
 +-----------------------+

 --
 Figure 18. q_data Structure for Math and Bit Manipulation Routines

The following information is provided by the q_data structure shown in Figure 18:

q_data_token (input)
 The 4-byte address of the address list. This value is returned by the CEEGQDT callable service.

parm_count (input)
 A 4-byte binary integer containing the value 10, which is the total number of q_data fields in the q_data structure, including
 parm_count.

math_operation (input)
 An 8-byte field containing an abbreviation for the mathematical or bit manipulation operation for which the condition occurred. The
 field is left-justified and padded with blanks. (See Table 15 for a list of the abbreviations that can appear.)

std_resume_value_desc (input)

Lang Env V1R5 Fortran Migration Guide
q_data Structure for Math and Bit-Manipulation Conditions

¦ Copyright IBM Corp. 1995
APPENDIX1.2.4 - 1

 The q_data descriptor for std_resume_value.

std_resume_value (input)
 A default value used as the result of the mathematical or bit manipulation function when the user condition handler requests the
 resume action (result code 10). The length and type of this field are dependent on math_operation and are reflected in the q_data
 descriptor std_resume_value_desc.

parameter_1_desc (input)
 The q_data descriptor for parameter_1.

parameter_1 (input/output)
 The value of the first parameter provided to the mathematical or bit manipulation routine. The length and type of this field are
 dependent on math_operation and are reflected in the q_data descriptor parameter_1_desc.

 This is the value of the first parameter that is used as input to the routine when the user condition handler requests a resume with
 new input value (result code 60 with a new condition token of CEE0CE).

parameter_2_desc (input)
 The q_data descriptor for parameter_2 if the mathematical or bit manipulation routine has two input parameters. (If the routine has
 only one parameter, the q_data structure has an address slot for this field, but the address is not meaningful and the field must
 not be referenced.)

parameter_2 (input/output)
 The value of the second parameter provided to the mathematical or bit manipulation routine if the routine has two input
 parameters. (If the routine has only one parameter, the q_data structure has an address slot for this field, but the address is not
 meaningful and the field must not be referenced.) The length and type of the field are dependent on math_operation and are
 reflected in the q_data descriptor parameter_2_desc.

 This is the value of the second parameter that is used as input to the routine when the user condition handler requests a resume
 with new input value (result code 60 with a new condition token of CEE0CE).

fixup_resume_value_desc (input)
 The q_data descriptor for fixup_resume_value. (See "Format of q_data Descriptors" in topic APPENDIX1.2.5 for more information
 on q_data descriptors.)

fixup_resume_value (output)
 The value to be used as the result of the mathematical or bit manipulation function when the user condition handler requests a
 resume with new output value (result code 60 with a new condition token of CEE0CF). The length and type of this field are
 dependent on math_operation and are reflected in the q_data descriptor fixup_resume_value_desc.

 +--+
 ¦ Table 15. Abbreviations of Math Operations in q_data Structures. ¦
 ¦ Column two shows the abbreviations that can occur in field ¦
 ¦ math_operation for the math operations shown in column one. ¦
 +--¦
 ¦ Mathematical Operation ¦ Abbreviation ¦
 +------------------------------------+-----------------------------------¦
 ¦ Logarithm Base e ¦ LN ¦
 +------------------------------------+-----------------------------------¦
 ¦ Logarithm Base 10 ¦ LOG ¦
 +------------------------------------+-----------------------------------¦
 ¦ Logarithm Base 2 ¦ LOG2 ¦
 +------------------------------------+-----------------------------------¦
 ¦ Exponential (base e) ¦ E**Y ¦
 +------------------------------------+-----------------------------------¦
 ¦ Exponentiation (x raised to the ¦ X**Y ¦
 ¦ power y) ¦ ¦
 +------------------------------------+-----------------------------------¦

Lang Env V1R5 Fortran Migration Guide
q_data Structure for Math and Bit-Manipulation Conditions

¦ Copyright IBM Corp. 1995
APPENDIX1.2.4 - 2

 ¦ Arcsine ¦ ARCSIN ¦
 +------------------------------------+-----------------------------------¦
 ¦ Arccosine ¦ ARCCOS ¦
 +------------------------------------+-----------------------------------¦
 ¦ Arctangent ¦ ARCTAN ¦
 +------------------------------------+-----------------------------------¦
 ¦ Arctangent2 ¦ ARCTAN2 ¦
 +------------------------------------+-----------------------------------¦
 ¦ Sine ¦ SIN ¦
 +------------------------------------+-----------------------------------¦
 ¦ Cosine ¦ COS ¦
 +------------------------------------+-----------------------------------¦
 ¦ Tangent ¦ TAN ¦
 +------------------------------------+-----------------------------------¦
 ¦ Cotangent ¦ COTAN ¦
 +------------------------------------+-----------------------------------¦
 ¦ Hyperbolic Sine ¦ SINH ¦
 +------------------------------------+-----------------------------------¦
 ¦ Hyperbolic Cosine ¦ COSH ¦
 +------------------------------------+-----------------------------------¦
 ¦ Hyperbolic Tangent ¦ TANH ¦
 +------------------------------------+-----------------------------------¦
 ¦ Hyperbolic Arctangent ¦ ARCTANH ¦
 +------------------------------------+-----------------------------------¦
 ¦ Square Root ¦ SQRT ¦
 +------------------------------------+-----------------------------------¦
 ¦ Error Function ¦ ERF ¦
 +------------------------------------+-----------------------------------¦
 ¦ Error Function Complement ¦ ERFC ¦
 +------------------------------------+-----------------------------------¦
 ¦ Gamma Function ¦ GAMMA ¦
 +------------------------------------+-----------------------------------¦
 ¦ Log Gamma Function ¦ LOGGAMMA ¦
 +------------------------------------+-----------------------------------¦
 ¦ Absolute Value Function ¦ ABS ¦
 +------------------------------------+-----------------------------------¦
 ¦ Modular Arithmetic ¦ MOD ¦
 +------------------------------------+-----------------------------------¦
 ¦ Truncation ¦ TRUNC ¦
 +------------------------------------+-----------------------------------¦
 ¦ Imaginary Part of Complex ¦ IPART ¦
 +------------------------------------+-----------------------------------¦
 ¦ Conjugate of Complex ¦ CPART ¦
 +------------------------------------+-----------------------------------¦
 ¦ Nearest Whole Number ¦ NWN ¦
 +------------------------------------+-----------------------------------¦
 ¦ Nearest Integer ¦ NINT ¦
 +------------------------------------+-----------------------------------¦
 ¦ Positive Difference ¦ POSDIFF ¦
 +------------------------------------+-----------------------------------¦
 ¦ Transfer of Sign ¦ XFERSIGN ¦
 +------------------------------------+-----------------------------------¦
 ¦ Floating Complex Multiply ¦ CPLXMULT ¦
 +------------------------------------+-----------------------------------¦
 ¦ Floating Complex Divide ¦ CPLXDIVD ¦
 +------------------------------------+-----------------------------------¦
 ¦ Bit Shift ¦ ISHFT ¦
 +------------------------------------+-----------------------------------¦
 ¦ Bit Clear ¦ IBCLR ¦
 +------------------------------------+-----------------------------------¦

Lang Env V1R5 Fortran Migration Guide
q_data Structure for Math and Bit-Manipulation Conditions

¦ Copyright IBM Corp. 1995
APPENDIX1.2.4 - 3

 ¦ Bit Set ¦ IBSET ¦
 +------------------------------------+-----------------------------------¦
 ¦ Bit Test ¦ BTEST ¦
 +--+

 Subtopics
 APPENDIX1.2.4.1 Usage Notes

Lang Env V1R5 Fortran Migration Guide
q_data Structure for Math and Bit-Manipulation Conditions

¦ Copyright IBM Corp. 1995
APPENDIX1.2.4 - 4

 APPENDIX1.2.4.1 Usage Notes

� You can use the CEEGQDT callable service to retrieve the q_data_token; see Language Environment for MVS & VM
 Programming Reference for details.

� From a Fortran routine, you can retrieve the qualifying data using Fortran-specific callable services and functions, which are
 described in Appendix A on page APPENDIX1.1.

� A user condition handler can request one of three different actions to continue the execution of a failing mathematical or bit
 manipulation routine:

 - The resume action (result code 10). The value in std_resume_value (either the default value provided to the user condition
 handler or a modified value provided by the user condition handler) becomes the final result value for the routine.

 - The resume with new input value action (result code 60 with a new condition token of CEE0CE). The values to be used as
 parameters for invoking the routine again are provided by the user condition handler in parameter_1 and, if applicable, in
 parameter_2.

 - The resume with new output value action (result code 60 with a new condition token of CEE0CF). The fixup_resume_value
 value provided by the user condition handler becomes the final result value for the routine.

Lang Env V1R5 Fortran Migration Guide
Usage Notes

¦ Copyright IBM Corp. 1995
APPENDIX1.2.4.1 - 1

 APPENDIX1.2.5 Format of q_data Descriptors

q_data descriptors contain additional information you need to fix up the parameter or result fields of the math q_data structures, the
 result field of the program interruption q_data structures, or fields for any conditions whose q_data structures contain q_data
 descriptors. The descriptors contain information about the length and data type of these fields. The format of the q_data descriptor
 is illustrated in Figure 19.

 --

 +---+
 +0 ¦ X'02' ¦ data_type_1 ¦ X'CE' ¦ data_type_2 ¦
 +---¦
 +4 ¦ length ¦
 +---+

 --
 Figure 19. Format of a q_data Descriptor

The following information is provided by the q_data descriptor shown in Figure 19:

data_type_1
 An integer value of length 1 that, along with data_type_2, indicates the data type. See Table 16 for the values and their
 corresponding data types.

data_type_2
 An integer value of length 1 that, along with data_type_1, indicates the data type. See Table 16 for the values and their
 corresponding data types.

length
 An integer value of length 4 that represents the length of the data.

For each type code that can occur in a q_data descriptor, Table 16 shows the corresponding data type.

 +--+
 ¦ Table 16. q_data Descriptor Data Types ¦
 +--¦
 ¦ data_type_1 ¦ data_type_2 ¦ ¦
 ¦ Type Code ¦ Type Code ¦ Description ¦
 +-------------+-------------+--¦
 ¦ 2 ¦ 0 ¦ String of single-byte characters with no ¦
 ¦ ¦ ¦ length prefix or ending delimiter ¦
 +-------------+-------------+--¦
 ¦ 1 ¦ 13 ¦ Signed binary integer whose length is 1, ¦
 ¦ ¦ ¦ 2, 4, or 8 bytes ¦
 +-------------+-------------+--¦
 ¦ 1 ¦ 14 ¦ Floating-point number whose length is 4, ¦
 ¦ ¦ ¦ 8, or 16 bytes ¦
 +-------------+-------------+--¦
 ¦ 1 ¦ 15 ¦ Complex number whose length is 8, 16, or ¦
 ¦ ¦ ¦ 32 bytes ¦
 +-------------+-------------+--¦
 ¦ 1 ¦ 18 ¦ Unsigned binary integer whose length is 1 ¦
 ¦ ¦ ¦ byte ¦
 +--+

Lang Env V1R5 Fortran Migration Guide
Format of q_data Descriptors

¦ Copyright IBM Corp. 1995
APPENDIX1.2.5 - 1

 APPENDIX1.3 Appendix C. Message Number Mappings
The message numbers for the conditions detected during execution with Language Environment are not the same as the message

 numbers for the corresponding errors in VS FORTRAN Version 2. In some cases, an error represented by a single message in VS
 FORTRAN Version 2 is separated into several different Language Environment conditions so that the conditions more precisely
 describe the errors. In other cases, the errors represented by several different VS FORTRAN Version 2 messages are combined
 into a single Language Environment condition because they are the same condition.

The following list is in order of the VS FORTRAN Version 2 message numbers and shows the corresponding Language Environment
 conditions. The list starting on page APPENDIX1.3.2 is in order of the Language Environment conditions and shows the
 corresponding VS FORTRAN Version 2 message numbers. In both lists, messages that don't have a counterpart in the other
 product are not listed.

 Subtopics
 APPENDIX1.3.1 Language Environment Conditions for VS FORTRAN Message Numbers
 APPENDIX1.3.2 VS FORTRAN Message Numbers for Language Environment Conditions

Lang Env V1R5 Fortran Migration Guide
Appendix C. Message Number Mappings

¦ Copyright IBM Corp. 1995
APPENDIX1.3 - 1

 APPENDIX1.3.1 Language Environment Conditions for VS FORTRAN Message Numbers

 VSF V2 Language
 Message Environment
 Number Condition

 AFB001I FOR0340
 AFB002I FOR0341
 AFB090I FOR1276
 AFB090I FOR1411
 AFB091I FOR1554

 AFB091I FOR1563
 AFB092I FOR1250
 AFB093I FOR1251
 AFB094I FOR1252
 AFB095I FOR1023

 AFB095I FOR1024
 AFB095I FOR1025
 AFB096I FOR0120
 AFB096I FOR0121
 AFB096I FOR0122

 AFB099I FOR2044
 AFB100I FOR1416
 AFB101I FOR1022
 AFB102I FOR1395
 AFB103I FOR1502

 AFB103I FOR1503
 AFB103I FOR1504
 AFB103I FOR1505
 AFB103I FOR1506
 AFB103I FOR1507

 AFB103I FOR1508
 AFB103I FOR1509
 AFB103I FOR1550
 AFB103I FOR1551
 AFB104I FOR1387

 AFB105I FOR1900
 AFB106I FOR1340
 AFB107I FOR1381
 AFB108I FOR1396
 AFB108I FOR1397

 AFB108I FOR1398
 AFB108I FOR1399
 AFB108I FOR1400
 AFB108I FOR1401
 AFB108I FOR1402

 AFB108I FOR1403
 AFB108I FOR1404
 AFB108I FOR1920
 AFB109I FOR1341
 AFB110I FOR1917

Lang Env V1R5 Fortran Migration Guide
Language Environment Conditions for VS FORTRAN Message Numbers

¦ Copyright IBM Corp. 1995
APPENDIX1.3.1 - 1

 AFB111I FOR1557
 AFB111I FOR1558
 AFB111I FOR1559
 AFB111I FOR1560
 AFB111I FOR1561

 AFB111I FOR1900
 AFB112I CEE3206
 AFB114I FOR1411
 AFB115I FOR1501
 AFB116I CEE3230

 AFB117I CEE3230
 AFB118I CEE2020
 AFB119I CEE2020
 AFB120I FOR1413
 AFB121I FOR1405

 AFB122I FOR1921
 AFB123I FOR1026
 AFB123I FOR1103
 AFB124I FOR1104
 AFB125I FOR1106

 AFB126I FOR1107
 AFB127I FOR1113
 AFB128I FOR1113
 AFB129I FOR1112
 AFB130I FOR1557

 AFB130I FOR1558
 AFB131I FOR1417
 AFB132I FOR1418
 AFB133I FOR1419
 AFB134I FOR1414

 AFB135I FOR1114
 AFB136I FOR1382
 AFB137I FOR1406
 AFB138I FOR1407
 AFB139I FOR1100

 AFB140I FOR1102
 AFB142I FOR0404
 AFB143I FOR0100
 AFB143I FOR0101
 AFB144I FOR0102

 AFB145I FOR0405
 AFB146I FOR0406
 AFB147I FOR0407
 AFB148I FOR0414
 AFB148I FOR0415

 AFB149I FOR0409
 AFB152I FOR1922
 AFB153I FOR0402
 AFB154I FOR0104
 AFB154I FOR0105

Lang Env V1R5 Fortran Migration Guide
Language Environment Conditions for VS FORTRAN Message Numbers

¦ Copyright IBM Corp. 1995
APPENDIX1.3.1 - 2

 AFB154I FOR0106
 AFB155I FOR1408
 AFB155I FOR1409
 AFB156I FOR0301
 AFB157I FOR0303

 AFB157I FOR2040
 AFB157I FOR2041
 AFB157I FOR0304
 AFB158I FOR0300
 AFB158I FOR0302

 AFB159I CEE2028
 AFB160I FOR1182
 AFB161I FOR1278
 AFB162I FOR1331
 AFB163I FOR1020

 AFB164I FOR1001
 AFB164I FOR1002
 AFB165I FOR1411
 AFB165I FOR1412
 AFB166I FOR1023

 AFB167I FOR1557
 AFB167I FOR1558
 AFB168I FOR1330
 AFB169I FOR1510
 AFB169I FOR1512

 AFB169I FOR1555
 AFB169I FOR1561
 AFB171I FOR1360
 AFB172I FOR1415
 AFB173I FOR1200

 AFB174I FOR1180
 AFB175I FOR1915
 AFB180I FOR1342
 AFB180I FOR1383
 AFB181I FOR1380

 AFB182I FOR1384
 AFB183I FOR1385
 AFB184I FOR1386
 AFB185I FOR1410
 AFB186I FOR1361

 AFB187I FOR0416
 AFB187I FOR0417
 AFB188I FOR0601
 AFB189I FOR0602
 AFB191I FOR0603

 AFB192I FOR1277
 AFB193I FOR0500
 AFB194I FOR1276
 AFB195I FOR0501
 AFB196I FOR0502

Lang Env V1R5 Fortran Migration Guide
Language Environment Conditions for VS FORTRAN Message Numbers

¦ Copyright IBM Corp. 1995
APPENDIX1.3.1 - 3

 AFB197I FOR0503
 AFB199I FOR0504
 AFB200I FOR1008
 AFB200I FOR1910
 AFB201I FOR1001

 AFB201I FOR1002
 AFB203I FOR1923
 AFB204I FOR1001
 AFB204I FOR1002
 AFB205I FOR1279

 AFB206I FOR1000
 AFB207I CEE3212
 AFB208I CEE3213
 AFB209I CEE3209
 AFB209I CEE3215

 AFB210I CEE32xx
 AFB211I FOR1181
 AFB211I FOR1183
 AFB212I FOR1001
 AFB212I FOR1002

 AFB213I FOR1001
 AFB213I FOR1002
 AFB214I FOR1201
 AFB214I FOR1280
 AFB215I FOR1003

 AFB217I FOR1008
 AFB217I FOR1910
 AFB218I FOR1022
 AFB218I FOR1027
 AFB218I FOR1500

 AFB218I FOR1554
 AFB218I FOR1559
 AFB218I FOR1560
 AFB219I FOR1388
 AFB219I FOR1511

 AFB219I FOR1512
 AFB219I FOR1554
 AFB219I FOR1555
 AFB219I FOR1560
 AFB219I FOR1565

 AFB219I FOR1570
 AFB219I FOR1571
 AFB219I FOR1926
 AFB220I FOR1916
 AFB221I FOR1220

 AFB221I FOR1225
 AFB222I FOR1221
 AFB223I FOR1222
 AFB224I FOR1223
 AFB224I FOR1224

Lang Env V1R5 Fortran Migration Guide
Language Environment Conditions for VS FORTRAN Message Numbers

¦ Copyright IBM Corp. 1995
APPENDIX1.3.1 - 4

 AFB225I FOR1004
 AFB225I FOR1010
 AFB225I FOR1011
 AFB226I FOR1005
 AFB227I FOR1210

 AFB228I FOR1272
 AFB230I FOR0401
 AFB231I FOR1020
 AFB231I FOR1071
 AFB232I FOR1070

 AFB233I FOR1389
 AFB234I FOR1925
 AFB235I FOR1071
 AFB236I FOR1072
 AFB238I FOR1006

 AFB238I FOR1007
 AFB239I FOR1271
 AFB240I CEE3250
 AFB241I CEE2003
 AFB242I CEE2004

 AFB243I CEE2004
 AFB244I CEE2006
 AFB245I CEE2006
 AFB246I CEE2008
 AFB247I CEE2008

 AFB248I CEE2004
 AFB249I CEE2006
 AFB249I CEE2020
 AFB250I CEE2021
 AFB251I CEE2010

 AFB252I CEE2011
 AFB253I CEE2012
 AFB254I CEE2017
 AFB255I CEE2014
 AFB256I CEE2016

 AFB257I CEE2016
 AFB258I CEE2017
 AFB259I CEE2002
 AFB260I CEE2007
 AFB261I CEE2010

 AFB262I CEE2011
 AFB263I CEE2012
 AFB264I CEE2017
 AFB265I CEE2014
 AFB266I CEE2016

 AFB267I CEE2016
 AFB268I CEE2017
 AFB269I CEE2002
 AFB270I CEE2008
 AFB271I CEE2009

Lang Env V1R5 Fortran Migration Guide
Language Environment Conditions for VS FORTRAN Message Numbers

¦ Copyright IBM Corp. 1995
APPENDIX1.3.1 - 5

 AFB272I CEE2015
 AFB273I CEE2018
 AFB274I CEE2019
 AFB275I CEE2013
 AFB276I CEE2009

 AFB277I CEE2013
 AFB278I CEE2018
 AFB279I CEE2019
 AFB280I CEE2013
 AFB281I CEE2009

 AFB282I CEE2015
 AFB283I CEE2018
 AFB284I CEE2019
 AFB285I CEE2013
 AFB286I FOR1273

 AFB286I FOR1274
 AFB287I FOR1270
 AFB288I FOR1275
 AFB289I CEE2010
 AFB290I CEE2005

 AFB291I CEE2005
 AFB292I CEE2011
 AFB293I CEE2012
 AFB294I CEE2017
 AFB295I CEE2014

 AFB296I CEE2016
 AFB297I CEE2016
 AFB298I CEE2017
 AFB299I CEE2002
 AFB300I CEE2005

 AFB301I CEE2005
 AFB904I FOR1927
 AFB905I FOR0400
 AFB916I FOR2122
 AFB917I FOR2121

 AFB918I FOR2030
 AFB918I FOR2031
 AFB918I FOR2032
 AFB919I FOR2000
 AFB919I FOR2001

 AFB919I FOR2003
 AFB919I FOR2004
 AFB919I FOR2005
 AFB920I FOR0303
 AFB920I FOR2040

 AFB920I FOR2041
 AFB920I FOR2042
 AFB920I FOR2043
 AFB921I FOR2060
 AFB922I FOR2056

Lang Env V1R5 Fortran Migration Guide
Language Environment Conditions for VS FORTRAN Message Numbers

¦ Copyright IBM Corp. 1995
APPENDIX1.3.1 - 6

 AFB922I FOR2057
 AFB922I FOR2058
 AFB922I FOR2069
 AFB922I FOR2070
 AFB922I FOR2071

 AFB922I FOR2072
 AFB922I FOR2073
 AFB923I FOR1924
 AFB924I FOR2062
 AFB925I FOR2063

 AFB927I FOR2064
 AFB928I FOR2065
 AFB930I FOR2067
 AFB931I FOR2068
 AFB932I FOR0410

 AFB934I FOR2101
 AFB935I FOR2102
 AFB936I FOR1552
 AFB936I FOR1553
 AFB936I FOR1556

 AFB952I FOR1281

Lang Env V1R5 Fortran Migration Guide
Language Environment Conditions for VS FORTRAN Message Numbers

¦ Copyright IBM Corp. 1995
APPENDIX1.3.1 - 7

 APPENDIX1.3.2 VS FORTRAN Message Numbers for Language Environment Conditions

 Language VSF V2
 Environment Message
 Condition Number

 CEE2002 AFB259I
 CEE2002 AFB269I
 CEE2002 AFB299I
 CEE2003 AFB241I
 CEE2004 AFB242I

 CEE2004 AFB243I
 CEE2004 AFB248I
 CEE2005 AFB290I
 CEE2005 AFB291I
 CEE2005 AFB300I

 CEE2005 AFB301I
 CEE2006 AFB244I
 CEE2006 AFB245I
 CEE2006 AFB249I
 CEE2007 AFB260I

 CEE2008 AFB246I
 CEE2008 AFB247I
 CEE2008 AFB270I
 CEE2009 AFB271I
 CEE2009 AFB276I

 CEE2009 AFB281I
 CEE2010 AFB251I
 CEE2010 AFB261I
 CEE2010 AFB289I
 CEE2011 AFB252I

 CEE2011 AFB262I
 CEE2011 AFB292I
 CEE2012 AFB253I
 CEE2012 AFB263I
 CEE2012 AFB293I

 CEE2013 AFB275I
 CEE2013 AFB277I
 CEE2013 AFB280I
 CEE2013 AFB285I
 CEE2014 AFB255I

 CEE2014 AFB265I
 CEE2014 AFB295I
 CEE2015 AFB272I
 CEE2015 AFB282I
 CEE2016 AFB256I

 CEE2016 AFB257I
 CEE2016 AFB266I
 CEE2016 AFB267I
 CEE2016 AFB296I
 CEE2016 AFB297I

Lang Env V1R5 Fortran Migration Guide
VS FORTRAN Message Numbers for Language Environment Conditions

¦ Copyright IBM Corp. 1995
APPENDIX1.3.2 - 1

 CEE2017 AFB254I
 CEE2017 AFB258I
 CEE2017 AFB264I
 CEE2017 AFB268I
 CEE2017 AFB294I

 CEE2017 AFB298I
 CEE2018 AFB273I
 CEE2018 AFB278I
 CEE2018 AFB283I
 CEE2019 AFB274I

 CEE2019 AFB279I
 CEE2019 AFB284I
 CEE2020 AFB118I
 CEE2020 AFB119I
 CEE2020 AFB249I

 CEE2021 AFB250I
 CEE2028 AFB159I
 CEE32xx AFB210I
 CEE3206 AFB112I
 CEE3209 AFB209I

 CEE3212 AFB207I
 CEE3213 AFB208I
 CEE3215 AFB209I
 CEE3230 AFB116I
 CEE3230 AFB117I

 CEE3250 AFB240I
 FOR0100 AFB143I
 FOR0101 AFB143I
 FOR0102 AFB144I
 FOR0104 AFB154I

 FOR0105 AFB154I
 FOR0106 AFB154I
 FOR0120 AFB096I
 FOR0121 AFB096I
 FOR0122 AFB096I

 FOR0300 AFB158I
 FOR0301 AFB156I
 FOR0302 AFB158I
 FOR0303 AFB920I
 FOR0303 AFB157I

 FOR0304 AFB157I
 FOR0340 AFB001I
 FOR0341 AFB002I
 FOR0400 AFB905I
 FOR0401 AFB230I

 FOR0402 AFB153I
 FOR0404 AFB142I
 FOR0405 AFB145I
 FOR0406 AFB146I
 FOR0407 AFB147I

Lang Env V1R5 Fortran Migration Guide
VS FORTRAN Message Numbers for Language Environment Conditions

¦ Copyright IBM Corp. 1995
APPENDIX1.3.2 - 2

 FOR0409 AFB149I
 FOR0410 AFB932I
 FOR0414 AFB148I
 FOR0415 AFB148I
 FOR0416 AFB187I

 FOR0417 AFB187I
 FOR0500 AFB193I
 FOR0501 AFB195I
 FOR0502 AFB196I
 FOR0503 AFB197I

 FOR0504 AFB199I
 FOR0601 AFB188I
 FOR0602 AFB189I
 FOR0603 AFB191I
 FOR1000 AFB206I

 FOR1001 AFB164I
 FOR1001 AFB201I
 FOR1001 AFB204I
 FOR1001 AFB212I
 FOR1001 AFB213I

 FOR1002 AFB164I
 FOR1002 AFB201I
 FOR1002 AFB204I
 FOR1002 AFB212I
 FOR1002 AFB213I

 FOR1003 AFB215I
 FOR1004 AFB225I
 FOR1005 AFB226I
 FOR1006 AFB238I
 FOR1007 AFB238I

 FOR1008 AFB200I
 FOR1008 AFB217I
 FOR1010 AFB225I
 FOR1011 AFB225I
 FOR1020 AFB163I

 FOR1020 AFB231I
 FOR1022 AFB101I
 FOR1022 AFB218I
 FOR1023 AFB095I
 FOR1023 AFB166I

 FOR1024 AFB095I
 FOR1025 AFB095I
 FOR1026 AFB123I
 FOR1027 AFB218I
 FOR1070 AFB232I

 FOR1071 AFB235I
 FOR1071 AFB231I
 FOR1072 AFB236I
 FOR1100 AFB139I
 FOR1102 AFB140I

Lang Env V1R5 Fortran Migration Guide
VS FORTRAN Message Numbers for Language Environment Conditions

¦ Copyright IBM Corp. 1995
APPENDIX1.3.2 - 3

 FOR1103 AFB123I
 FOR1104 AFB124I
 FOR1106 AFB125I
 FOR1107 AFB126I
 FOR1112 AFB129I

 FOR1113 AFB127I
 FOR1113 AFB128I
 FOR1114 AFB135I
 FOR1180 AFB174I
 FOR1181 AFB211I

 FOR1182 AFB160I
 FOR1183 AFB211I
 FOR1200 AFB173I
 FOR1201 AFB214I
 FOR1210 AFB227I

 FOR1220 AFB221I
 FOR1221 AFB222I
 FOR1222 AFB223I
 FOR1223 AFB224I
 FOR1224 AFB224I

 FOR1225 AFB221I
 FOR1250 AFB092I
 FOR1251 AFB093I
 FOR1252 AFB094I
 FOR1270 AFB287I

 FOR1271 AFB239I
 FOR1272 AFB228I
 FOR1273 AFB286I
 FOR1274 AFB286I
 FOR1275 AFB288I

 FOR1276 AFB090I
 FOR1276 AFB194I
 FOR1277 AFB192I
 FOR1278 AFB161I
 FOR1279 AFB205I

 FOR1280 AFB214I
 FOR1281 AFB952I
 FOR1330 AFB168I
 FOR1331 AFB162I
 FOR1340 AFB106I

 FOR1341 AFB109I
 FOR1342 AFB180I
 FOR1360 AFB171I
 FOR1361 AFB186I
 FOR1380 AFB181I

 FOR1381 AFB107I
 FOR1382 AFB136I
 FOR1383 AFB180I
 FOR1384 AFB182I
 FOR1385 AFB183I

Lang Env V1R5 Fortran Migration Guide
VS FORTRAN Message Numbers for Language Environment Conditions

¦ Copyright IBM Corp. 1995
APPENDIX1.3.2 - 4

 FOR1386 AFB184I
 FOR1387 AFB104I
 FOR1388 AFB219I
 FOR1389 AFB233I
 FOR1395 AFB102I

 FOR1396 AFB108I
 FOR1397 AFB108I
 FOR1398 AFB108I
 FOR1399 AFB108I
 FOR1400 AFB108I

 FOR1401 AFB108I
 FOR1402 AFB108I
 FOR1403 AFB108I
 FOR1404 AFB108I
 FOR1405 AFB121I

 FOR1406 AFB137I
 FOR1407 AFB138I
 FOR1408 AFB155I
 FOR1409 AFB155I
 FOR1410 AFB185I

 FOR1411 AFB090I
 FOR1411 AFB114I
 FOR1411 AFB165I
 FOR1412 AFB165I
 FOR1413 AFB120I

 FOR1414 AFB134I
 FOR1415 AFB172I
 FOR1416 AFB100I
 FOR1417 AFB131I
 FOR1418 AFB132I

 FOR1419 AFB133I
 FOR1500 AFB218I
 FOR1501 AFB115I
 FOR1502 AFB103I
 FOR1503 AFB103I

 FOR1504 AFB103I
 FOR1505 AFB103I
 FOR1506 AFB103I
 FOR1507 AFB103I
 FOR1508 AFB103I

 FOR1509 AFB103I
 FOR1510 AFB169I
 FOR1511 AFB219I
 FOR1512 AFB169I
 FOR1512 AFB219I

 FOR1550 AFB103I
 FOR1551 AFB103I
 FOR1552 AFB936I
 FOR1553 AFB936I
 FOR1554 AFB091I

Lang Env V1R5 Fortran Migration Guide
VS FORTRAN Message Numbers for Language Environment Conditions

¦ Copyright IBM Corp. 1995
APPENDIX1.3.2 - 5

 FOR1554 AFB218I
 FOR1554 AFB219I
 FOR1555 AFB169I
 FOR1555 AFB219I
 FOR1556 AFB936I

 FOR1557 AFB111I
 FOR1557 AFB130I
 FOR1557 AFB167I
 FOR1558 AFB111I
 FOR1558 AFB130I

 FOR1558 AFB167I
 FOR1559 AFB111I
 FOR1559 AFB218I
 FOR1560 AFB111I
 FOR1560 AFB218I

 FOR1560 AFB219I
 FOR1561 AFB111I
 FOR1561 AFB169I
 FOR1563 AFB091I
 FOR1565 AFB219I

 FOR1570 AFB219I
 FOR1571 AFB219I
 FOR1900 AFB105I
 FOR1900 AFB111I
 FOR1910 AFB200I

 FOR1910 AFB217I
 FOR1915 AFB175I
 FOR1916 AFB220I
 FOR1917 AFB110I
 FOR1920 AFB108I

 FOR1921 AFB122I
 FOR1922 AFB152I
 FOR1923 AFB203I
 FOR1924 AFB923I
 FOR1925 AFB234I

 FOR1926 AFB219I
 FOR1927 AFB904I
 FOR2000 AFB919I
 FOR2001 AFB919I
 FOR2003 AFB919I

 FOR2004 AFB919I
 FOR2005 AFB919I
 FOR2030 AFB918I
 FOR2031 AFB918I
 FOR2032 AFB918I

 FOR2040 AFB920I
 FOR2040 AFB157I
 FOR2041 AFB920I
 FOR2041 AFB157I
 FOR2042 AFB920I

Lang Env V1R5 Fortran Migration Guide
VS FORTRAN Message Numbers for Language Environment Conditions

¦ Copyright IBM Corp. 1995
APPENDIX1.3.2 - 6

 FOR2043 AFB920I
 FOR2044 AFB099I
 FOR2056 AFB922I
 FOR2057 AFB922I
 FOR2058 AFB922I

 FOR2060 AFB921I
 FOR2062 AFB924I
 FOR2063 AFB925I
 FOR2064 AFB927I
 FOR2065 AFB928I

 FOR2067 AFB930I
 FOR2068 AFB931I
 FOR2069 AFB922I
 FOR2070 AFB922I
 FOR2071 AFB922I

 FOR2072 AFB922I
 FOR2073 AFB922I
 FOR2101 AFB934I
 FOR2102 AFB935I
 FOR2121 AFB917I

 FOR2122 AFB916I

Lang Env V1R5 Fortran Migration Guide
VS FORTRAN Message Numbers for Language Environment Conditions

¦ Copyright IBM Corp. 1995
APPENDIX1.3.2 - 7

 APPENDIX1.4 Appendix D. VS FORTRAN Error Handling Behavior
Table 17 shows how the extended error handling facility of VS FORTRAN handles the errors that have corrective actions. Use this

 information to determine what corrective actions (that is, fix-up actions) are needed for your Fortran routines as you migrate them to
 Language Environment. The table includes the following information for each error listed:

� The VS FORTRAN Version 2 error numbe

� The equivalent Language Environment conditio

� The Fortran statement or function that detected the erro

� The invalid condition stated in terms of the input argument

� The value supplied by IBM for the number of times the error can occur before the application is terminate

� The value supplied by IBM for the number of times that the error message is to be printe

� The corrective action applied by the extended error handling facility in VS FORTRA

In the table:

 result The function value or other result value that the extended error handling facility sets for the intrinsic function, machine
 instruction, or data conversion for which the condition was signaled

 max The largest floating-point number that can be represented. This is approximately 7.2*10**75 or, to be precise:

 Short (4-byte) format 16**63¦(1-16**(-6))
 Long (8-byte) format 16**63¦(1-16**(-14))
 Extended (16-byte) format 16**63¦(1-16**(-28))

 e The base of natural logarithms

 pi The ratio of the circumference of a circle to its diameter

 i The square root of -1

 ALLOW The column that shows the number of times the error is allowed to occur before the application is terminated

 PRINT The column that shows the number of times the error message is to be printed

 inf unlimited

 RF The resume with Fortran-specific correction action. See page 3.1.1.4.1.

The table lists only the VS FORTRAN errors with a corrective action that manipulates the input data or the final result of a
 computation in some way. There are a number of errors, primarily I/O errors, for which execution continues without any corrective
 action. These errors are not listed.

 +--+
 ¦ Table 17. Corrective Actions for VS FORTRAN Version 2 Error Numbers ¦
 +--¦
 ¦ ¦ VSF ¦ A ¦ P ¦ Fortran Statement, ¦ ¦ ¦
 ¦ Lang. ¦ V2 ¦ L ¦ R ¦ Intrinsic Function, or ¦ ¦
 ¦ Env. ¦ Error ¦ L ¦ I ¦ Machine Instruction ¦ Error Detected ¦
 ¦ Condition ¦ No. ¦ O ¦ N ¦ That Was Executed ¦ ¦
 ¦ ¦ ¦ W ¦ T ¦ ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦

Lang Env V1R5 Fortran Migration Guide
Appendix D. VS FORTRAN Error Handling Behavior

¦ Copyright IBM Corp. 1995
APPENDIX1.4 - 1

 ¦ ¦ ¦ ¦ ¦ ¦ ¦ the rightmost 32 bits of the ¦
 ¦ CEE3208 ¦ - ¦ inf¦ 5 ¦ Fixed-point arithmetic ¦ Fixed-point overflow exception ¦ mathematical result treated as a ¦
 ¦ ¦ ¦ ¦ ¦ instruction ¦ ¦ 32-bit signed integer that differs ¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ from the true result by +2**32 or ¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ -2**32. ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ ¦ base < 0 and ¦ ¦
 ¦ ¦ ¦ ¦ ¦ base ** exp ¦ ((0 < |exp| <= 16**6-1 and ¦ ¦
 ¦ CEE2020 ¦ 118 ¦ 10 ¦ 5 ¦ where base and exp are of REAL*4 ¦ exp isn't a whole number) ¦
 ¦ ¦ ¦ ¦ ¦ type ¦ or ¦ ¦
 ¦ ¦ ¦ ¦ ¦ ¦ |exp| > 16**6-1) ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ ¦ base < 0 and ¦ ¦
 ¦ ¦ ¦ ¦ ¦ base ** exp ¦ ((0 < |exp| <= 16**14-1 and ¦ ¦
 ¦ CEE2020 ¦ 119 ¦ 10 ¦ 5 ¦ where base and exp are of REAL*8 ¦ exp isn't a whole number) ¦
 ¦ ¦ ¦ ¦ ¦ type ¦ or ¦ ¦
 ¦ ¦ ¦ ¦ ¦ ¦ |exp| > 16**14-1) ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ ISHFT(x, y) ¦ Let b be the number of bits in x ¦ ¦
 ¦ ¦ ¦ ¦ ¦ LSHIFT(x, y) ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ¦ RSHIFT(x, y) ¦ For ISHFT: ¦ For ISHFT(
 ¦ ¦ ¦ ¦ ¦ IBSET(x, y) ¦ |y| > b ¦ For LSHIFT(
 ¦ CEE2028 ¦ 159 ¦ 10 ¦ 5 ¦ IBCLR(x, y) ¦ For LSHIFT and RSHIFT: ¦ For RSHIFT(
 ¦ ¦ ¦ ¦ ¦ BTEST(x, y) ¦ y > b ¦ For IBSET(
 ¦ ¦ ¦ ¦ ¦ ¦ or y < 0 ¦ For IBCLR(
 ¦ ¦ ¦ ¦ ¦ where x and y are of integer ¦ For IBSET, IBCLR, and BTEST: ¦ For BTEST(
 ¦ ¦ ¦ ¦ ¦ type ¦ y > b - 1 ¦ ¦
 ¦ ¦ ¦ ¦ ¦ ¦ or y < 0 ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ ISHFTC(x, y, z) ¦ Let b be the number of bits in x ¦ ¦
 ¦ CEE2040 ¦ 159 ¦ 10 ¦ 5 ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ¦ where x, y, and z are of integer ¦ z > b ¦ ¦
 ¦ ¦ ¦ ¦ ¦ type ¦ or z < 0 ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ ISHFTC(x, y, z) ¦ Let b be the number of bits in x ¦ ¦
 ¦ CEE2041 ¦ 159 ¦ 10 ¦ 5 ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ¦ where x, y, and z are of integer ¦ |y| > z or ¦ ¦
 ¦ ¦ ¦ ¦ ¦ type ¦ |y| > b ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ IBITS(x, y, z) ¦ Let b be the number of bits in x ¦ ¦
 ¦ CEE2042 ¦ 159 ¦ 10 ¦ 5 ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ¦ where x, y, and z are of integer ¦ y + z > b ¦ ¦
 ¦ ¦ ¦ ¦ ¦ type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ IBITS(x, y, z) ¦ ¦ ¦
 ¦ CEE2043 ¦ 159 ¦ 10 ¦ 5 ¦ ¦ For IBITS: ¦
 ¦ ¦ ¦ ¦ ¦ where x, y, and z are of integer ¦ y < 0 or z < 0 ¦ ¦
 ¦ ¦ ¦ ¦ ¦ type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ 164 ¦ ¦ ¦ ¦ ¦ The permissible resume action
 ¦ ¦ 201 ¦ ¦ ¦ WRITE ¦ The length of the record to be ¦ condition FOR1001. See
 ¦ FOR1001 ¦ 204 ¦ 10 ¦ 5 ¦ REWRITE ¦ written was greater than the maximum ¦
 ¦ ¦ 212 ¦ ¦ ¦ ¦ record length allowed for the file. ¦
 ¦ ¦ 213 ¦ ¦ ¦ ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ 164 ¦ ¦ ¦ ¦ ¦ The permissible resume action
 ¦ ¦ 201 ¦ ¦ ¦ ¦ The I/O list requested data from ¦ condition FOR1002. See
 ¦ FOR1002 ¦ 204 ¦ 10 ¦ 5 ¦ READ ¦ beyond the end of the record being ¦
 ¦ ¦ 212 ¦ ¦ ¦ ¦ read. ¦
 ¦ ¦ 213 ¦ ¦ ¦ ¦ ¦ ¦

Lang Env V1R5 Fortran Migration Guide
Appendix D. VS FORTRAN Error Handling Behavior

¦ Copyright IBM Corp. 1995
APPENDIX1.4 - 2

 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ For
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ If
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ If
 ¦ ¦ ¦ ¦ ¦ ¦ The number being converted, n, had a ¦ ¦
 ¦ ¦ ¦ ¦ ¦ Integer conversion for an input ¦ larger magnitude than could be ¦
 ¦ FOR1000 ¦ 206 ¦ 10 ¦ 5 ¦ list item in a formatted READ ¦ represented in result, which is of ¦ INTEGER*1 127 ¦
 ¦ ¦ ¦ ¦ ¦ statement ¦ UNSIGNED*1, INTEGER*1, INTEGER*2, ¦ INTEGER*2 32767 ¦
 ¦ ¦ ¦ ¦ ¦ ¦ INTEGER*4, or INTEGER*8 type. ¦ INTEGER*4 2147483647 ¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ INTEGER*8 9223372036854775807 ¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ If
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ If
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ If the mathematical result > 0, ¦
 ¦ CEE3212 ¦ 207 ¦ inf¦ 5 ¦ Floating-point instruction ¦ Exponent-overflow exception ¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ If the mathematical result < 0, ¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ CEE3213 ¦ 208 ¦ inf¦ 5 ¦ Floating-point instruction ¦ Exponent-underflow exception ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ CEE3209 ¦ 209 ¦ inf¦ 5 ¦ Fixed-point divide instruction ¦ Fixed-point divide exception ¦ Let
 ¦ ¦ ¦ ¦ ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ Let
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ If
 ¦ ¦ ¦ ¦ ¦ Floating-point divide ¦ ¦
 ¦ CEE3215 ¦ 209 ¦ inf¦ 5 ¦ instruction ¦ Floating-point divide exception ¦ If
 ¦ ¦ ¦ ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ If
 ¦ ¦ ¦ ¦ ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ The permissible resume action
 ¦ FOR1280 ¦ 214 ¦ 10 ¦ 5 ¦ Asynchronous I/O statement ¦ The record format specified was ¦ condition FOR1280. See
 ¦ ¦ ¦ ¦ ¦ ¦ other than variable spanned. ¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ Numeric data conversion for an ¦ In the data being converted, there ¦ The character
 ¦ FOR1003 ¦ 215 ¦ inf¦ 5 ¦ input list item in a formatted ¦ was a nonnumeric character where ¦ character and the conversion is done ¦
 ¦ ¦ ¦ ¦ ¦ READ statement ¦ there should have been a numeric ¦ with that revised input character ¦
 ¦ ¦ ¦ ¦ ¦ ¦ character. ¦ string. ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ Hexadecimal data conversion for ¦ The data being converted had a ¦ The character
 ¦ FOR1004 ¦ 225 ¦ 10 ¦ 5 ¦ an input list item in a ¦ character other than 0 through 9 or ¦ character and the conversion is done ¦
 ¦ ¦ ¦ ¦ ¦ formatted READ statement ¦ A through F. ¦ with that revised input character ¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ string. ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ Binary data conversion for an ¦ ¦ The character
 ¦ FOR1010 ¦ 225 ¦ 10 ¦ 5 ¦ input list item in a formatted ¦ The data being converted had a ¦ character and the conversion is done ¦
 ¦ ¦ ¦ ¦ ¦ READ statement ¦ character other than 0 or 1. ¦ with that revised input character ¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ string. ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ Octal data conversion for an ¦ ¦ The character
 ¦ FOR1011 ¦ 225 ¦ 10 ¦ 5 ¦ input list item in a formatted ¦ The data being converted had a ¦ character and the conversion is done ¦
 ¦ ¦ ¦ ¦ ¦ READ statement ¦ character other than 0 through 7. ¦ with that revised input character ¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ string. ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ ¦ The number being converted, n, had a ¦ If the magnitude of
 ¦ ¦ ¦ ¦ ¦ ¦ magnitude that was larger or smaller ¦
 ¦ ¦ ¦ ¦ ¦ Real or complex data conversion ¦ than could be represented in result, ¦ If the magnitude of

Lang Env V1R5 Fortran Migration Guide
Appendix D. VS FORTRAN Error Handling Behavior

¦ Copyright IBM Corp. 1995
APPENDIX1.4 - 3

 ¦ FOR1005 ¦ 226 ¦ 10 ¦ 5 ¦ for an input list item in a ¦ which either is of REAL type or is ¦ if
 ¦ ¦ ¦ ¦ ¦ formatted READ statement ¦ the real or imaginary part of an ¦
 ¦ ¦ ¦ ¦ ¦ ¦ item of COMPLEX type. ¦ if
 ¦ ¦ ¦ ¦ ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ base ** exp ¦ ¦ ¦
 ¦ CEE2003 ¦ 241 ¦ 10 ¦ 5 ¦ where base and exp are of ¦ base = 0 and exp <= 0 ¦
 ¦ ¦ ¦ ¦ ¦ integer type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ base ** exp ¦ ¦ If
 ¦ CEE2004 ¦ 242 ¦ 10 ¦ 5 ¦ where base is of REAL*4 type and ¦ base = 0 and exp <= 0 ¦
 ¦ ¦ ¦ ¦ ¦ exp is of integer type ¦ ¦ If
 ¦ ¦ ¦ ¦ ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ base ** exp ¦ ¦ If
 ¦ CEE2004 ¦ 243 ¦ 10 ¦ 5 ¦ where base is of REAL*8 type and ¦ base = 0 and exp <= 0 ¦
 ¦ ¦ ¦ ¦ ¦ exp is of integer type ¦ ¦ If
 ¦ ¦ ¦ ¦ ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ base ** exp ¦ ¦ If
 ¦ CEE2006 ¦ 244 ¦ 10 ¦ 5 ¦ where base and exp are of REAL*4 ¦ base = 0 and exp <= 0 ¦
 ¦ ¦ ¦ ¦ ¦ type ¦ ¦ If
 ¦ ¦ ¦ ¦ ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ base ** exp ¦ ¦ If
 ¦ CEE2006 ¦ 245 ¦ 10 ¦ 5 ¦ where base and exp are of REAL*8 ¦ base = 0 and exp <= 0 ¦
 ¦ ¦ ¦ ¦ ¦ type ¦ ¦ If
 ¦ ¦ ¦ ¦ ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ ¦ For exp of integer type, ¦ ¦
 ¦ ¦ ¦ ¦ ¦ base ** exp ¦ let rexp be exp ¦ If
 ¦ CEE2008 ¦ 246 ¦ 10 ¦ 5 ¦ where base is of COMPLEX*8 type ¦ For exp of complex type, ¦
 ¦ ¦ ¦ ¦ ¦ and exp is either of integer ¦ let rexp be exp's real part ¦ If
 ¦ ¦ ¦ ¦ ¦ type or of COMPLEX*8 type ¦ ¦
 ¦ ¦ ¦ ¦ ¦ ¦ base = 0 and rexp <= 0 ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ ¦ For exp of integer type, ¦ ¦
 ¦ ¦ ¦ ¦ ¦ base ** exp ¦ let rexp be exp ¦ If
 ¦ CEE2008 ¦ 247 ¦ 10 ¦ 5 ¦ where base is of COMPLEX*16 type ¦ For exp of complex type, ¦
 ¦ ¦ ¦ ¦ ¦ and exp is either of integer ¦ let rexp be exp's real part ¦ If
 ¦ ¦ ¦ ¦ ¦ type or of COMPLEX*16 type ¦ ¦
 ¦ ¦ ¦ ¦ ¦ ¦ base = 0 and rexp <= 0 ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ base ** exp ¦ ¦ If
 ¦ CEE2004 ¦ 248 ¦ 10 ¦ 5 ¦ where base is of REAL*16 type ¦ base = 0 and exp <= 0 ¦
 ¦ ¦ ¦ ¦ ¦ and exp is of integer type ¦ ¦ If
 ¦ ¦ ¦ ¦ ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ base ** exp ¦ ¦ If
 ¦ CEE2006 ¦ 249 ¦ 10 ¦ 5 ¦ where base and exp are of ¦ base = 0 and exp <= 0 ¦
 ¦ ¦ ¦ ¦ ¦ REAL*16 type ¦ ¦ If
 ¦ ¦ ¦ ¦ ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ ¦ base < 0 and ¦ ¦
 ¦ ¦ ¦ ¦ ¦ base ** exp ¦ ((0 < |exp| <= 16**28-1 and ¦ ¦
 ¦ CEE2020 ¦ 249 ¦ 10 ¦ 5 ¦ where base and exp are of ¦ exp isn't a whole number) ¦
 ¦ ¦ ¦ ¦ ¦ REAL*16 type ¦ or ¦ ¦
 ¦ ¦ ¦ ¦ ¦ ¦ |exp| > 16**28-1) ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ base ** exp ¦ ¦ ¦

Lang Env V1R5 Fortran Migration Guide
Appendix D. VS FORTRAN Error Handling Behavior

¦ Copyright IBM Corp. 1995
APPENDIX1.4 - 4

 ¦ CEE2021 ¦ 250 ¦ 10 ¦ 5 ¦ where base and exp are of ¦ exp * LOG[2](base) >= 252 ¦
 ¦ ¦ ¦ ¦ ¦ REAL*16 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ CEE2010 ¦ 251 ¦ 10 ¦ 5 ¦ SQRT(x) ¦ x < 0 ¦
 ¦ ¦ ¦ ¦ ¦ where x is of REAL*4 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ CEE2011 ¦ 252 ¦ 10 ¦ 5 ¦ EXP(x) ¦ x > 174.673 ¦
 ¦ ¦ ¦ ¦ ¦ where x is of REAL*4 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ LOG(x) ¦ ¦ If
 ¦ ¦ ¦ ¦ ¦ ALOG(x) ¦ ¦ If
 ¦ CEE2012 ¦ 253 ¦ 10 ¦ 5 ¦ LOG10(x) ¦ x <= 0 ¦ For ALOG(
 ¦ ¦ ¦ ¦ ¦ ALOG10(x) ¦ ¦
 ¦ ¦ ¦ ¦ ¦ where x is of REAL*4 type ¦ ¦ For ALOG10(
 ¦ ¦ ¦ ¦ ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ SIN(x) ¦ ¦ ¦
 ¦ CEE2017 ¦ 254 ¦ 10 ¦ 5 ¦ COS(x) ¦ |x| >= 2**18*pi ¦
 ¦ ¦ ¦ ¦ ¦ where x is of REAL*4 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ CEE2014 ¦ 255 ¦ 10 ¦ 5 ¦ ATAN2(x, y) ¦ x = 0.0 and y = 0.0 ¦
 ¦ ¦ ¦ ¦ ¦ where x and y are of REAL*4 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ SINH(x) ¦ ¦ For SINH(
 ¦ CEE2016 ¦ 256 ¦ 10 ¦ 5 ¦ COSH(x) ¦ |x| > 175.366 ¦ If
 ¦ ¦ ¦ ¦ ¦ where x is of REAL*4 type ¦ ¦ If
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ for COSH(
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ For ACOS(
 ¦ ¦ ¦ ¦ ¦ ASIN(x) ¦ ¦ If
 ¦ CEE2016 ¦ 257 ¦ 10 ¦ 5 ¦ ACOS(x) ¦ |x| > 1 ¦ If
 ¦ ¦ ¦ ¦ ¦ where x is of REAL*4 type ¦ ¦ For ASIN(
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ If
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ If
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ TAN(x) ¦ ¦ ¦
 ¦ CEE2017 ¦ 258 ¦ 10 ¦ 5 ¦ COTAN(x) ¦ |x| >= 2**18*pi ¦
 ¦ ¦ ¦ ¦ ¦ where x is of REAL*4 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ TAN(x) ¦ For TAN(x), ¦ ¦
 ¦ CEE2002 ¦ 259 ¦ 10 ¦ 5 ¦ COTAN(x) ¦ x too close to ±pi/2, ±3pi/2, ... ¦
 ¦ ¦ ¦ ¦ ¦ where x is of REAL*4 type ¦ For COTAN(x), ¦ ¦
 ¦ ¦ ¦ ¦ ¦ ¦ x too close to 0, ±pi, ±2pi, ... ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ CEE2007 ¦ 260 ¦ 10 ¦ 5 ¦ 2 ** exp ¦ exp >= 2**252 ¦
 ¦ ¦ ¦ ¦ ¦ where exp is of REAL*16 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ SQRT(x) ¦ ¦ ¦
 ¦ CEE2010 ¦ 261 ¦ 10 ¦ 5 ¦ DSQRT(x) ¦ x < 0 ¦
 ¦ ¦ ¦ ¦ ¦ where x is of REAL*8 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ EXP(x) ¦ ¦ ¦
 ¦ CEE2011 ¦ 262 ¦ 10 ¦ 5 ¦ DEXP(x) ¦ x > 174.673 ¦
 ¦ ¦ ¦ ¦ ¦ where x is of REAL*8 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ LOG(x) ¦ ¦ If
 ¦ ¦ ¦ ¦ ¦ DLOG(x) ¦ ¦ If
 ¦ CEE2012 ¦ 263 ¦ 10 ¦ 5 ¦ LOG10(x) ¦ x <= 0 ¦ For DLOG(
 ¦ ¦ ¦ ¦ ¦ DLOG10(x) ¦ ¦
 ¦ ¦ ¦ ¦ ¦ where x is of REAL*8 type ¦ ¦ For DLOG10(

Lang Env V1R5 Fortran Migration Guide
Appendix D. VS FORTRAN Error Handling Behavior

¦ Copyright IBM Corp. 1995
APPENDIX1.4 - 5

 ¦ ¦ ¦ ¦ ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ SIN(x) ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ¦ DSIN(x) ¦ ¦ ¦
 ¦ CEE2017 ¦ 264 ¦ 10 ¦ 5 ¦ COS(x) ¦ |x| >= 2**50*pi ¦
 ¦ ¦ ¦ ¦ ¦ DCOS(x) ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ¦ where x is of REAL*8 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ ATAN2(x, y) ¦ ¦ ¦
 ¦ CEE2014 ¦ 265 ¦ 10 ¦ 5 ¦ DATAN2(x, y) ¦ x = 0.0 and y = 0.0 ¦
 ¦ ¦ ¦ ¦ ¦ where x and y are of REAL*8 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ SINH(x) ¦ ¦ For DSINH(
 ¦ ¦ ¦ ¦ ¦ DSINH(x) ¦ ¦ If
 ¦ CEE2016 ¦ 266 ¦ 10 ¦ 5 ¦ COSH(x) ¦ |x| > 175.366 ¦ If
 ¦ ¦ ¦ ¦ ¦ DCOSH(x) ¦ ¦ for DCOSH(
 ¦ ¦ ¦ ¦ ¦ where x is of REAL*8 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ ASIN(x) ¦ ¦ For DACOS(
 ¦ ¦ ¦ ¦ ¦ DASIN(x) ¦ ¦ If
 ¦ CEE2016 ¦ 267 ¦ 10 ¦ 5 ¦ ACOS(x) ¦ |x| > 1 ¦ If
 ¦ ¦ ¦ ¦ ¦ DACOS(x) ¦ ¦ For DASIN(
 ¦ ¦ ¦ ¦ ¦ where x is of REAL*8 type ¦ ¦ If
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ If
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ TAN(x) ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ¦ DTAN(x) ¦ ¦ ¦
 ¦ CEE2017 ¦ 268 ¦ 10 ¦ 5 ¦ COTAN(x) ¦ |x| >= 2**50*pi ¦
 ¦ ¦ ¦ ¦ ¦ DCOTAN(x) ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ¦ where x is of REAL*8 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ TAN(x) ¦ For DTAN(x), ¦ ¦
 ¦ ¦ ¦ ¦ ¦ DTAN(x) ¦ x too close to ±pi/2, ±3pi/2, ... ¦ ¦
 ¦ CEE2002 ¦ 269 ¦ 10 ¦ 5 ¦ COTAN(x) ¦ For DCOTAN(x), ¦
 ¦ ¦ ¦ ¦ ¦ DCOTAN(x) ¦ x too close to 0, ±pi, ±2pi, ... ¦ ¦
 ¦ ¦ ¦ ¦ ¦ where x is of REAL*8 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ ¦ For exp of integer type, ¦ ¦
 ¦ ¦ ¦ ¦ ¦ base ** exp ¦ let rexp be exp ¦ If
 ¦ CEE2008 ¦ 270 ¦ 10 ¦ 5 ¦ where base is of COMPLEX*32 type ¦ For exp of complex type, ¦
 ¦ ¦ ¦ ¦ ¦ and exp is either of integer ¦ let rexp be exp's real part ¦ If
 ¦ ¦ ¦ ¦ ¦ type or of COMPLEX*32 type ¦ ¦
 ¦ ¦ ¦ ¦ ¦ ¦ base = 0 and rexp <= 0 ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ EXP(c) ¦ Let c be x + y*i ¦ ¦
 ¦ CEE2009 ¦ 271 ¦ 10 ¦ 5 ¦ CEXP(c) ¦ x > 174.673 ¦
 ¦ ¦ ¦ ¦ ¦ where c is of COMPLEX*8 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ EXP(c) ¦ ¦ ¦
 ¦ CEE2015 ¦ 272 ¦ 10 ¦ 5 ¦ CEXP(c) ¦ result = e**x + 0i ¦ ¦
 ¦ ¦ ¦ ¦ ¦ where c is of COMPLEX*8 type Let ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ¦ c be x + y*i |y| >= 2**18*pi ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ LOG(c) ¦ Let c be x + y*i ¦ ¦
 ¦ CEE2018 ¦ 273 ¦ 10 ¦ 5 ¦ CLOG(c) ¦ x = 0.0 and y = 0.0 ¦
 ¦ ¦ ¦ ¦ ¦ where c is of COMPLEX*8 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ SIN(c) ¦ ¦ For CCOS(
 ¦ ¦ ¦ ¦ ¦ CSIN(c) ¦ Let c be x + y*i ¦
 ¦ CEE2019 ¦ 274 ¦ 10 ¦ 5 ¦ COS(c) ¦ |x| >= 2**18*pi ¦ For CSIN(

Lang Env V1R5 Fortran Migration Guide
Appendix D. VS FORTRAN Error Handling Behavior

¦ Copyright IBM Corp. 1995
APPENDIX1.4 - 6

 ¦ ¦ ¦ ¦ ¦ CCOS(c) ¦ ¦
 ¦ ¦ ¦ ¦ ¦ where c is of COMPLEX*8 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ If
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ For CSIN(
 ¦ ¦ ¦ ¦ ¦ SIN(c) ¦ ¦
 ¦ ¦ ¦ ¦ ¦ CSIN(c) ¦ ¦ For CCOS(
 ¦ CEE2013 ¦ 275 ¦ 10 ¦ 5 ¦ COS(c) ¦ Let c be x + y*i ¦
 ¦ ¦ ¦ ¦ ¦ CCOS(c) ¦ |y| > 174.673 ¦ If
 ¦ ¦ ¦ ¦ ¦ where c is of COMPLEX*8 type ¦ ¦ For CSIN(
 ¦ ¦ ¦ ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ For CCOS(
 ¦ ¦ ¦ ¦ ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ EXP(c) ¦ Let c be x + y*i ¦ ¦
 ¦ CEE2009 ¦ 276 ¦ 10 ¦ 5 ¦ CQEXP(c) ¦ x > 174.673 ¦
 ¦ ¦ ¦ ¦ ¦ where c is of COMPLEX*32 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ EXP(c) ¦ Let c be x + y*i ¦ ¦
 ¦ CEE2015 ¦ 277 ¦ 10 ¦ 5 ¦ CQEXP(c) ¦ |y| > 2**100*pi ¦
 ¦ ¦ ¦ ¦ ¦ where c is of COMPLEX*32 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ LOG(c) ¦ Let c be x + y*i ¦ ¦
 ¦ CEE2018 ¦ 278 ¦ 10 ¦ 5 ¦ CQLOG(c) ¦ x = 0.0 and y = 0.0 ¦
 ¦ ¦ ¦ ¦ ¦ where c is of COMPLEX*32 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ SIN(c) ¦ ¦ For CQSIN(
 ¦ ¦ ¦ ¦ ¦ CQSIN(c) ¦ Let c be x + y*i ¦
 ¦ CEE2019 ¦ 279 ¦ 10 ¦ 5 ¦ COS(c) ¦ |x| >= 2**100 ¦ For CQCOS(
 ¦ ¦ ¦ ¦ ¦ CQCOS(c) ¦ ¦
 ¦ ¦ ¦ ¦ ¦ where c is of COMPLEX*32 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ If
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ For CQSIN(
 ¦ ¦ ¦ ¦ ¦ SIN(c) ¦ ¦
 ¦ ¦ ¦ ¦ ¦ CQSIN(c) ¦ ¦ For CQCOS(
 ¦ CEE2013 ¦ 280 ¦ 10 ¦ 5 ¦ COS(c) ¦ Let c be x + y*i ¦
 ¦ ¦ ¦ ¦ ¦ CQCOS(c) ¦ |y| > 174.673 ¦ If
 ¦ ¦ ¦ ¦ ¦ where c is of COMPLEX*32 type ¦ ¦ For CQSIN(
 ¦ ¦ ¦ ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ For CQCOS(
 ¦ ¦ ¦ ¦ ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ EXP(c) ¦ Let c be x + y*i ¦ ¦
 ¦ CEE2009 ¦ 281 ¦ 10 ¦ 5 ¦ CDEXP(c) ¦ x > 174.673 ¦
 ¦ ¦ ¦ ¦ ¦ where c is of COMPLEX*16 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ EXP(c) ¦ Let c be x + y*i ¦ ¦
 ¦ CEE2015 ¦ 282 ¦ 10 ¦ 5 ¦ CDEXP(c) ¦ |y| >= 2**50*pi ¦
 ¦ ¦ ¦ ¦ ¦ where c is of COMPLEX*16 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ LOG(c) ¦ Let c be x + y*i ¦ ¦
 ¦ CEE2018 ¦ 283 ¦ 10 ¦ 5 ¦ CDLOG(c) ¦ x = 0.0 and y = 0.0 ¦
 ¦ ¦ ¦ ¦ ¦ where c is of COMPLEX*16 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ SIN(c) ¦ ¦ For CDSIN(
 ¦ ¦ ¦ ¦ ¦ CDSIN(c) ¦ Let c be x + y*i ¦
 ¦ CEE2019 ¦ 284 ¦ 10 ¦ 5 ¦ COS(c) ¦ |x| >= 2**50*pi ¦ For CDCOS(
 ¦ ¦ ¦ ¦ ¦ CDCOS(c) ¦ ¦
 ¦ ¦ ¦ ¦ ¦ where c is of COMPLEX*16 type ¦ ¦ ¦

Lang Env V1R5 Fortran Migration Guide
Appendix D. VS FORTRAN Error Handling Behavior

¦ Copyright IBM Corp. 1995
APPENDIX1.4 - 7

 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ If
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ For CDSIN(
 ¦ ¦ ¦ ¦ ¦ SIN(c) ¦ ¦
 ¦ ¦ ¦ ¦ ¦ CDSIN(c) ¦ ¦ For CDCOS(
 ¦ CEE2013 ¦ 285 ¦ 10 ¦ 5 ¦ COS(c) ¦ Let c be x + y*i ¦
 ¦ ¦ ¦ ¦ ¦ CDCOS(c) ¦ |y| > 174.673 ¦ If
 ¦ ¦ ¦ ¦ ¦ where c is of COMPLEX*16 type ¦ ¦ For CDSIN(
 ¦ ¦ ¦ ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ For CSCOS(
 ¦ ¦ ¦ ¦ ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ SQRT(x) ¦ ¦ ¦
 ¦ CEE2010 ¦ 289 ¦ 10 ¦ 5 ¦ QSQRT(x) ¦ x < 0 ¦
 ¦ ¦ ¦ ¦ ¦ where x is of REAL*16 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ CEE2005 ¦ 290 ¦ 10 ¦ 5 ¦ GAMMA(x) ¦ (x <= 2**(-252)) or (x > 57.5744 ¦
 ¦ ¦ ¦ ¦ ¦ where x is of REAL*4 type ¦) ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ CEE2005 ¦ 291 ¦ 10 ¦ 5 ¦ ALGAMA(x) ¦ (x <= 0) or (x > 4.2937*10**73) ¦
 ¦ ¦ ¦ ¦ ¦ where x is of REAL*4 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ EXP(x) ¦ ¦ ¦
 ¦ CEE2011 ¦ 292 ¦ 10 ¦ 5 ¦ QEXP(x) ¦ x > 174.673 ¦
 ¦ ¦ ¦ ¦ ¦ where x is of REAL*16 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ LOG(x) ¦ ¦ If
 ¦ ¦ ¦ ¦ ¦ QLOG(x) ¦ ¦ If
 ¦ CEE2012 ¦ 293 ¦ 10 ¦ 5 ¦ LOG10(x) ¦ x <= 0 ¦ For QLOG(
 ¦ ¦ ¦ ¦ ¦ QLOG10(x) ¦ ¦
 ¦ ¦ ¦ ¦ ¦ where x is of REAL*16 type ¦ ¦ For QLOG10(
 ¦ ¦ ¦ ¦ ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ SIN(x) ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ¦ QSIN(x) ¦ ¦ ¦
 ¦ CEE2017 ¦ 294 ¦ 10 ¦ 5 ¦ COS(x) ¦ |x| >= 2**100 ¦
 ¦ ¦ ¦ ¦ ¦ QCOS(x) ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ¦ where x is of REAL*16 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ ATAN2(x, y) ¦ ¦ ¦
 ¦ CEE2014 ¦ 295 ¦ 10 ¦ 5 ¦ QATAN2(x, y) ¦ x = 0.0 and y = 0.0 ¦
 ¦ ¦ ¦ ¦ ¦ where x and y are of REAL*16 ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ¦ type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ SINH(x) ¦ ¦ For QSINH(
 ¦ ¦ ¦ ¦ ¦ QSINH(x) ¦ ¦ If
 ¦ CEE2016 ¦ 296 ¦ 10 ¦ 5 ¦ COSH(x) ¦ |x| > 175.366 ¦ if
 ¦ ¦ ¦ ¦ ¦ QCOSH(x) ¦ ¦ For QCOSH(
 ¦ ¦ ¦ ¦ ¦ where x is of REAL*16 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ ARSIN(x) ¦ ¦ For QARCOS(
 ¦ ¦ ¦ ¦ ¦ QARSIN(x) ¦ ¦ If
 ¦ CEE2016 ¦ 297 ¦ 10 ¦ 5 ¦ ARCOS(x) ¦ |x| > 1 ¦ if
 ¦ ¦ ¦ ¦ ¦ QARCOS(x) ¦ ¦ For QARSIN(
 ¦ ¦ ¦ ¦ ¦ where x is of REAL*16 type ¦ ¦ If
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ if
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ TAN(x) ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ¦ QTAN(x) ¦ ¦ ¦
 ¦ CEE2017 ¦ 298 ¦ 10 ¦ 5 ¦ COTAN(x) ¦ |x| >= 2**100 ¦

Lang Env V1R5 Fortran Migration Guide
Appendix D. VS FORTRAN Error Handling Behavior

¦ Copyright IBM Corp. 1995
APPENDIX1.4 - 8

 ¦ ¦ ¦ ¦ ¦ QCOTAN(x) ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ¦ where x is of REAL*16 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ TAN(x) ¦ For QTAN(x), ¦ ¦
 ¦ ¦ ¦ ¦ ¦ QTAN(x) ¦ x too close to ±pi/2, ±3pi/2, ... ¦ ¦
 ¦ CEE2002 ¦ 299 ¦ 10 ¦ 5 ¦ COTAN(x) ¦ For QCOTAN(x), ¦
 ¦ ¦ ¦ ¦ ¦ QCOTAN(x) ¦ x too close to 0, ±pi, ±2pi, ... ¦ ¦
 ¦ ¦ ¦ ¦ ¦ where x is of REAL*16 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ GAMMA(x) ¦ (x <= 2**(-252)) or (x > 57.5744 ¦ ¦
 ¦ CEE2005 ¦ 300 ¦ 10 ¦ 5 ¦ DGAMMA(x) ¦) ¦
 ¦ ¦ ¦ ¦ ¦ where x is of REAL*8 type ¦ ¦ ¦
 +-----------+-------+----+----+----------------------------------+--------------------------------------+--------------------------------------¦
 ¦ ¦ ¦ ¦ ¦ LGAMA(x) ¦ ¦ ¦
 ¦ CEE2005 ¦ 301 ¦ 10 ¦ 5 ¦ DLGAMA(x) ¦ (x <= 0) or (x > 4.2937*10**73) ¦
 ¦ ¦ ¦ ¦ ¦ where x is of REAL*8 type ¦ ¦ ¦
 +--+

Lang Env V1R5 Fortran Migration Guide
Appendix D. VS FORTRAN Error Handling Behavior

¦ Copyright IBM Corp. 1995
APPENDIX1.4 - 9

 BACK_1 Bibliography

 Subtopics
 BACK_1.1 Language Products Publications
 BACK_1.2 Related Publications
 BACK_1.3 Softcopy Publications

Lang Env V1R5 Fortran Migration Guide
Bibliography

¦ Copyright IBM Corp. 1995
BACK_1 - 1

 BACK_1.1 Language Products Publications

Language Environment for MVS & VM

 Specification Sheet, GC26-4785

 Concepts Guide, GC26-4786

 Licensed Program Specifications, GC26-4774

 Programming Guide, SC26-4818

 Programming Reference, SC26-3312

 Installation and Customization on MVS, SC26-4817

 Debugging Guide and Run-Time Messages, SC26-4829

 Run-Time Migration Guide, SC26-8232

 Writing Interlanguage Communication Applications, SC26-8351

 Fortran Run-Time Migration Guide, SC26-8499

 Online Product Library, SK2T-2389

C/C++ for MVS/ESA

 General Information, GC09-2060

 Licensed Program Specifications, GC09-2064

 Library Reference, SC23-3881

 Compiler and Run-Time Migration Guide, SC09-2002

 Diagnosis Guide, SC09-1839

C++/MVS

 Programming Guide, SC09-1994

 User's Guide, SC09-1993

 Language Reference, SC09-1992

 Class Library User's Guide, SC09-2000

 Class Library Reference, SC09-2001

 Master Index, SC09-2003

 Support for SOMobjects under C++/MVS, SC09-2126

C/MVS

 Language Reference, SC09-2063

Lang Env V1R5 Fortran Migration Guide
Language Products Publications

¦ Copyright IBM Corp. 1995
BACK_1.1 - 1

 User's Guide, SC09-2061

 Programming Guide, SC09-2062

 Reference Summary, SX09-1303

 Master Index, SC09-2065

AD/Cycle C/370

 General Information, GC09-1358

 Licensed Program Specifications, GC09-1357

 Programming Guide for LE/370 V1R3 Library, SC09-1840

 Programming Guide for C/370 V2R2 Library, SC09-1841

 User's Guide, SC09-1763

 Language Reference, SC09-1762

 Library Reference, SC09-1761

 Reference Summary, SX09-1247

 Migration Guide, SC09-1359

 Diagnosis Guide, LY09-1806

 Master Index, GC09-1760

 Portable Operating System Interface (POSIX) Part 1: API for C Language, IEEE Std 1003.1

COBOL for MVS & VM (Release 2)

 Licensed Program Specifications, GC26-4761

 Programming Guide, SC26-4767

 Language Reference, SC26-4769

 Compiler and Run-Time Migration Guide, GC26-4764

 Installation and Customization under MVS, SC26-4766

 Diagnosis Guide, SC26-3138

COBOL/370 (Release 1)

 General Information, GC26-4762

 Licensed Program Specifications, GC26-4761

 Programming Guide, SC26-4767

Lang Env V1R5 Fortran Migration Guide
Language Products Publications

¦ Copyright IBM Corp. 1995
BACK_1.1 - 2

 Language Reference, SC26-4769

 Reference Summary, SX26-3788

 Compiler and Run-Time Migration Guide, GC26-4764

 Planning for Installation and Customization, SC26-4766

 Diagnosis Guide, LY26-9596

Debug Tool

 Debug Tool User's Guide and Reference, SC09-2137

VS FORTRAN Version 2

 Language and Library Reference, SC26-4221

 Programming Guide for CMS and MVS, SC26-4222

PL/I for MVS & VM

 Licensed Program Specifications, GC26-3116

 Programming Guide, SC26-3113

 Language Reference, SC26-3114

 Reference Summary, SX26-3821

 Compiler and Run-Time Migration Guide, SC26-3118

 Installation and Customization under MVS, SC26-3119

 Compile-Time Messages and Codes, SC26-3229

 Diagnosis Guide, SC26-3149

CoOperative Development Environment/370

 Specification Sheet, GC09-1861

 General Information, GC09-2048

 Debug Tool, SC09-1623

 Using Debug Tool, SC26-4662

 Debug Tool Reference, SC26-4664

 Installation, SC09-1624

 Licensed Program Specifications, GC09-1898

 Using CoOperative Development Environment/370 with VS COBOL II and OS PL/I, SC09-1862

Lang Env V1R5 Fortran Migration Guide
Language Products Publications

¦ Copyright IBM Corp. 1995
BACK_1.1 - 3

 Self-Study Guide, SC09-2047

Lang Env V1R5 Fortran Migration Guide
Language Products Publications

¦ Copyright IBM Corp. 1995
BACK_1.1 - 4

 BACK_1.2 Related Publications

MVS/ESA

 System Codes, MVS/ESA System Product: JES2 Version 4, JES3 Version 4, GC28-1664

 System Codes, MVS/ESA System Product: JES2 Version 5, JES3 Version 5, GC28-1486

 Diagnosis: Tools and Service Aids, MVS/ESA System Product: JES2 Version 4, JES3 Version 4, LY28-1813

 Diagnosis: Tools and Service Aids, MVS/ESA System Product: JES2 Version 5, JES3 Version 5, LY28-1845

MVS/TSO Dynamic STEPLIB Facility

 Program Description/Operations Manual , SH21-0029

High Level Assembler for MVS & VM & VSE

 Programmer's Guide, MVS & VM Edition, SC26-4941

Lang Env V1R5 Fortran Migration Guide
Related Publications

¦ Copyright IBM Corp. 1995
BACK_1.2 - 1

 BACK_1.3 Softcopy Publications

 Language Environment for MVS & VM Online Product Library, SK2T-2389

 IBM Online Library Omnibus Edition MVS Collection, SK2T-0710

 IBM Online Library Omnibus Edition VM Collection, SK2T-2067

You can order these publications from Mechanicsburg through your IBM representative.

Lang Env V1R5 Fortran Migration Guide
Softcopy Publications

¦ Copyright IBM Corp. 1995
BACK_1.3 - 1

 GLOSSARY Language Environment Glossary
This glossary defines terms and abbreviations that are used in this book. If you do not find the term you are looking for, refer to the

 index, to the glossary of the appropriate HLL manual, or to the IBM Dictionary of Computing, New York: McGraw-Hill, 1994.

 +---+
 ¦ A ¦
 +---+

abend. Abnormal end of application.

absolute value . The magnitude of a real number regardless of its algebraic sign.

active routine . The currently executing routine.

actual argument. The Fortran term for the data passed to a called routine at the point of call. See also dummy argument.

address space . Domain of addresses that are accessible by an application.

aggregate . A structured collection of data items that form a single data type. Contrast with scalar.

ALLOCATE command. In MVS, the TSO command that serves as the connection between a file's logical name (the ddname) and
 the file's physical name (the data srt name).

AMODE. Provided by the linkage editor, the attribute of a load module that indicates the addressing mode in which the load module
 should be entered.

application. A collection of one or more routines cooperating to achieve particular objectives.

application program . A collection of software components used to perform specific types of work on a computer, such as a
 program that does inventory control or payroll.

argument. The data passed to a called routine at the point of call or the data received by a called routine. See also actual
 argument and dummy argument.

array. An aggregate that consists of data objects, each of which may be uniquely referenced by subscripting.

array element. A data item in an array.

assembler. Translates symbolic assembler language into binary machine language. The High Level Assembler is an IBM licensed
 program.

assembler user exit. A routine to tailor the characteristics of an enclave prior to its establishment. The name of the routine is
 CEEBXITA.

automatic call. The process used by the linkage editor to resolve external symbols left undefined after all the primary input has
 been processed. See also automatic call library.

automatic call library. Contains load modules or object modules that are to be used as secondary input to the linkage editor to
 resolve external symbols left undefined after all the primary input has been processed.

The automatic call library may be:

� Libraries containing object modules, with or without linkage editor control statement

� Libraries containing load module

� The library containing Language Environment run-time routines (SCEELKED and SAFHFORT

Lang Env V1R5 Fortran Migration Guide
Language Environment Glossary

¦ Copyright IBM Corp. 1995
GLOSSARY - 1

automatic library call. Automatic call. See also automatic call library.

 +---+
 ¦ B ¦
 +---+

binder. The DFSMS/MVS component that processes the output of the language translators and compilers into an executable
 program (load module or program object). It replaces the linkage editor and batch loader in the MVS/ESA operating system.

byte . The basic unit of storage addressability. It has a length of 8 bits.

 +---+
 ¦ C ¦
 +---+

C language . A high-level language used to develop software applications in compact, efficient code that can be run on different
 types of computers with minimal change.

C++ language . An object-oriented high-level language that evolved from the C language. C++ exploits the benefits of
 object-oriented technology such as code modularity, portability, and reuse.

CAA. Common anchor area.

call chain. A trace of all active routines and subroutines that can be constructed by the user from information included in a system
 dump, such as the locations of save areas and the names of routines.

callable service stub. A short routine that is link-edited with an application and that is used to transfer control from the application
 to a callable service.

callable services. A set of services that can be invoked by a Language Environment-conforming high-level language using the
 conventional Language Environment-defined call interface, and usable by all programs sharing the Language Environment
 conventions.

Use of these services helps to decrease an application's dependence on the specific form and content of the services delivered by
 any single operating system.

called routine . A routine or program that is invoked by another.

callee. A routine or program that is invoked by another.

caller. A routine or program that invokes another routine.

calling routine . A routine or program that invokes another routine.

cataloged procedure. A set of job control language (JCL) statements placed in a library and retrievable by name.

character. (1) A letter, digit, or other symbol. (2) A letter, digit, or other symbol that is used as part of the organization, control, or
 representation of data. A character is often in the form of a spatial arrangement of adjacent or connected strokes.

child enclave . The nested enclave created as a result of certain commands being issued from a parent enclave.

CLIST . TSO command list.

COBOL. Common Business-Oriented Language. A high-level language, based on English, that is primarily used for business
 applications.

common anchor area (CAA). Dynamically acquired storage that represents a Language Environment thread. Thread-related

Lang Env V1R5 Fortran Migration Guide
Language Environment Glossary

¦ Copyright IBM Corp. 1995
GLOSSARY - 2

 storage /resources are anchored off of the CAA. This area acts as a central communications area for the program, holding
 addresses of various storage and error-handling routines, and control blocks. The CAA is anchored by an address in register 12.

common block . A storage area that may be referenced by one or more compilation units. It is declared in a Fortran program with
 the COMMON statement. See also external data.

compilation unit. An independently compilable sequence of HLL statements. Each HLL product has different rules for what makes
 up a compilation unit. Synonymous with program unit.

compile-time options . Keywords that can be specified to control certain aspects of compilation. Compiler options can control
 the nature of the load module generated by the compiler, the types of printed output to be produced, the efficient use of the compiler,
 the destination of error messages, and other things.

compiler options . See compiler-time options .

component. (1) Software that is part of a functional unit. (2) A set of modules that performs a major function within a system.

condition. An exception that has been enabled, or recognized, by Language Environment and thus is eligible to activate user and
 language condition handlers. Conditions can be detected by the hardware/operating system and result in an interrupt. They can
 also be detected by language-specific generated code or language library code.

condition handler. A user-written condition handler or language-specific condition handler (such as a PL/I ON-unit or C signal()
 function call) invoked by the Language Environment condition manager to respond to conditions.

condition handling. In Language Environment, the diagnosis, reporting, and/or tolerating of errors that occur while a routine is
 running.

condition manager. Manages conditions in the common execution environment by invoking various user-written and
 language-specific condition handlers.

condition step. The step of the Language Environment condition handling model that follows the enablement step. In the condition
 step, user-written condition handlers, C signal handlers, and PL/I ON-units are first given a chance to handle a condition. See also
 enablement step and termination imminent step.

condition token. In Language Environment, a data type consisting of 96 bits (12 bytes). The condition token contains structured
 fields that indicate various aspects of a condition including the severity, the associated message number, and information that is
 specific to a given instance of the condition.

conflicting name. One of 20 names that exist in both the Fortran and the C/C++ libraries. See also conflicting reference.

conflicting reference . An external reference from a Fortran or assembler language routine to a Fortran library routine with a
 name that is the same as the name of a C/C++ library routine. The reference is considered to be a conflicting reference only when
 the intended resolution is to the Fortran library routine rather than to the corresponding C/C++ library routine.

control block . A storage area used by a computer program to hold control information.

control section (CSECT). The part of a program specified by the programmer to be a relocatable unit, all elements of which are to
 be loaded into adjoining main storage locations.

control statement. (1) In programming languages, a statement that is used to alter the continuous sequential execution of
 statements; a control statement can be a conditional statement, such as IF, or an imperative statement, such as STOP. (2) In JCL, a
 statement in a job that is used in identifying the job or describing its requirements to the operating system.

CSECT. Control section.

cursor. One of two pointers managed by the condition manager as it processes a condition. See handle cursor and resume
 cursor.

 +---+

Lang Env V1R5 Fortran Migration Guide
Language Environment Glossary

¦ Copyright IBM Corp. 1995
GLOSSARY - 3

 ¦ D ¦
 +---+

data, qualifying. See qualifying data.

data set. Under MVS, a named collection of related data records that is stored and retrieved by an assigned name.

data type . The properties and internal representation that characterize data.

datum, qualifying. A single element of qualifying data associated with a condition. See qualifying data.

DBCS. Double-byte character set.

DD statement. In MVS, the data definition statement. A JCL control statement that serves as the connection between a file's
 logical name (the ddname) and the file's physical name (the data srt name).

ddname. Data definition name. The logical name of a file within an application. The ddname provides the means for the logical file
 to be connected to the physical file through a DD statement or ALLOCATE command.

default. A value that is used or an action that is taken when no alternative is specified.

descriptor, q_data. See q_data descriptor.

disabled/enabled. See enabled/disabled.

double-byte character set (DBCS) . A collection of characters represented by a 2-byte code.

double-precision. Pertaining to the use of two computer words to represent a number in accordance with the required precision.
 See also precision, single-precision.

doubleword. A sequence of bits or characters that comprises eight bytes (two 4-byte words) and is referenced as a unit.

doubleword boundary. A storage location whose address is evenly divisible by 8.

DSA. Dynamic storage area.

dummy argument. The Fortran term for the data received by a called routine. See also actual argument.

dynamic call. A call that results in locating a called routine at run time, that is, by loading the routine into virtual storage. Contrast
 with static call.

dynamic loading. See dynamic call.

dynamic storage area (DSA). An area of storage obtained during the running of an application that consists of a register save
 area and an area for automatic data, such as program variables. DSAs are generally allocated within Language
 Environment-managed stack segments. DSAs are added to the stack when a routine is entered and removed upon exit in a last in,
 first out (LIFO) manner. In Language Environment, a DSA is known as a stack frame.

 +---+
 ¦ E ¦
 +---+

enabled/disabled. A condition is enabled when its occurrence will result in the execution of condition handlers or in the
 performance of a standard system action to handle the condition as defined by Language Environment.

A condition is disabled when its occurrence is ignored by the condition manager.

enablement. The determination by a language at run time that an exception should be processed as a condition. This is the
 capability to intercept an exception and to determine whether it should be ignored or not; unrecognized exceptions are always

Lang Env V1R5 Fortran Migration Guide
Language Environment Glossary

¦ Copyright IBM Corp. 1995
GLOSSARY - 4

 defined to be enabled. Normally, enablement is used to supplement the hardware for capabilities that it does not have and language
 enforcement of a language's semantics. An example of supplementing the hardware is the specialized handling of
 exponent-overflow exceptions based on language standards.

enablement step. The first step of the Language Environment condition handling model. In the enablement step it is determined
 whether an exception is to be enabled and processed as a condition. See also condition step and termination imminent step.

enclave . In Language Environment, an independent collection of routines, one of which is designated as the main routine and is
 invoked first. An enclave is roughly analogous to an executable program.

entry name. In assembler language, a programmer-specified name within a control section that identifies an entry point and can be
 referred to by any control section. See also entry point.

entry point. (1) The address or label of the first instruction that is executed when a routine is entered for execution. (2) Within a
 load module, the location to which control is passed when the load module is invoked.

entry point name. The symbol (or name) that represents an entry point. See also entry point.

environment. A set of services and data available to a program during execution. In Language Environment, environment is
 normally a reference to the run-time environment of HLLs at the enclave level.

exception. The original event such as a hardware signal, software detected event, or user-signaled event which is a potential
 condition. This action may or may not include an alteration in a program's normal flow. See also condition.

execution time. Synonym for run time.

execution environment. Synonym for run-time environment.

exponent-overflow exception. The program interruption that occurs when an overflow occurs during the execution of a
 floating-point instruction, that is, when the result value from the instruction has a characteristic that is larger than the floating-point
 data format can handle.

exponent-underflow exception. The program interruption that occurs when the result value from executing a floating-point
 instruction has a nonzero fraction and a characteristic is smaller than the floating-point data format can handle. This program
 interruption can be disabled through a program mask bit setting.

extended error handling facility. The VS FORTRAN facility that provided automatic error correction and control over both the
 handling of the errors and the printing of error messages.

external data. Data that persists over the lifetime of an enclave and maintains last-used values whenever a routine within the
 enclave is reentered. Within an enclave consisting of a single load module, it is equivalent to C writable static data, a Fortran
 common block, and COBOL EXTERNAL data.

external reference . In an object module, a reference to a symbol, such as an entry point name, defined in another program or
 module.

 +---+
 ¦ F ¦
 +---+

feedback code (fc). A condition token value. If you specify fc in a call to a callable service, a condition token indicating whether
 the service completed successfully is returned to the calling routine.

file . A named collection of related data records that is stored and retrieved by an assigned name. Equivalent to an MVS data set.

fix-up and resume. The correction of a condition either by changing the argument or parameter and running the routine again or
 by providing a specific value for the result.

fixed-point overflow exception. A program interruption caused by an overflow during signed binary arithmetic or signed

Lang Env V1R5 Fortran Migration Guide
Language Environment Glossary

¦ Copyright IBM Corp. 1995
GLOSSARY - 5

 left-shift operations. This program interruption can be disabled through a program mask bit setting.

Fortran. A high-level language used primarily for applications involving numeric computations. In previous usage, the name of the
 language was written in all capital letters, that is, FORTRAN.

Fortran signature CSECT. The resident routine that indicates that the load module in which it is present contains a Fortran routine.

FORTRAN 66. The FORTRAN language standard formally known as American National Standard FORTRAN, ANSI X3.9-1966.
 This language standard specifies the form and establishes the interpretation of programs written to conform to it.

FORTRAN 77. The FORTRAN language standard formally known as American National Standard FORTRAN, ANSI X3.9-1978.
 This language standard specifies the form and establishes the interpretation of programs written to conform to it.

fullword. A sequence of bits or characters that comprises four bytes (one word) and is referenced as a unit.

fullword boundary. A storage location whose address is evenly divisible by 4.

function. A routine that is invoked by coding its name in an expression. The routine passes a result back to the invoker through the
 routine name.

 +---+
 ¦ G ¦
 +---+

global error table (GET). A method employed by some HLLs, for example, C and VS FORTRAN, to determine actions for handling
 conditions. Whereas Language Environment condition handling actions are defined at the stack frame level, actions defined using
 the global error table apply to an entire application until explicitly changed. See also extended error handling facility.

 +---+
 ¦ H ¦
 +---+

handle cursor. A pointer used by the condition manager as it traverses the stack. The handle cursor points to the condition
 handler currently being invoked in the stack frame, whether it be a user-written condition handler or an HLL-specific condition
 handler.

handled condition. A condition that either a user-written condition handler or the HLL-specific condition handler has processed
 and for which the condition handler has specified that execution should continue.

hexadecimal. A base 16 numbering system. Hexadecimal digits range from 0 through 9 and A through F, giving values of 0
 through 15.

high-level language (HLL). A programming language above the level of assembler language and below that of program
 generators and query languages. Examples are C, C++, COBOL, Fortran, and PL/I.

 +---+
 ¦ I ¦
 +---+

ILC. Interlanguage communication.

Initial process thread (IPT). See initial thread.

initial thread. In terms of POSIX, either the thread established by the fork() that created the process, or the first thread that calls
 main() after an exec. If the initial thread returns from main(), the effect is identical to having called exit(). Also known as initial
 process thread (IPT). [POSIX.1]

Lang Env V1R5 Fortran Migration Guide
Language Environment Glossary

¦ Copyright IBM Corp. 1995
GLOSSARY - 6

instance-specific information (ISI). Located within the Language Environment condition token, information used by a condition
 handler or the condition manager to interpret and react to a specific occurrence of a condition. Qualifying data is an example of
 instance-specific information.

integer. A positive or negative whole number or zero.

interactive . Pertaining to a program or system that alternately accepts input and responds. In an interactive system, a constant
 dialog exists between user and system. Contrast with batch.

interface validation exit. A routine that, when used with the binder, automatically resolves conflicting references within Fortran
 routines.

interlanguage communication (ILC). The ability of routines written in different programming languages to communicate. ILC
 support allows the application writer to readily build applications from component routines written in a variety of languages.

interrupt. A suspension of a process, such as the execution of a computer program, caused by an event external to that process,
 and performed in such a way that the process can be resumed.

interruption. Synonym for interrupt.

ISI. Instance specific information.

 +---+
 ¦ J ¦
 +---+

JCL. Job control language.

job control language (JCL). A sequence of commands used to identify a job to an operating system and to describe a job's
 requirements.

job step. The job control (JCL) statements that request and control execution of a program and that specify the resources needed
 to run the program. The JCL statements for a job step include one EXEC statement, which specifies the program or procedure to be
 invoked, followed by one or more DD statements, which specify the data sets or I/O devices that might be needed by the program.

 +---+
 ¦ L ¦
 +---+

Language Environment. Short form of Language Environment for MVS & VM.

A set of architectural constructs and interfaces that provides a common run-time environment and run-time services to applications
 compiled by Language Environment-conforming compilers.

Language Environment for MVS & VM. An IBM software product that provides a common run-time environment and common
 run-time services for conforming high-level language compilers.

Language Environment-conforming. Adhering to Language Environment's common interface conventions.

library. A collection of functions, subroutines, or other data.

LIFO. Last in, first out method of access. A queuing technique in which the next item to be retrieved is the item most recently
 placed in the queue.

link pack area (LPA). In MVS, an area of main storage containing reenterable routines from system libraries. Their presence in
 main storage saves loading time when a reenterable routine is needed.

link-edit. To create a loadable computer program by means of a linkage editor or binder.

Lang Env V1R5 Fortran Migration Guide
Language Environment Glossary

¦ Copyright IBM Corp. 1995
GLOSSARY - 7

linkage editor. An operating system component that resolves cross-references between separately compiled or assembled

 modules and then assigns final addresses to create a single relocatable load module. The linkage editor then stores the load module
 in a load library on disk.

load module . A collection of one or more routines that have been stored in a library by the linkage or binder after having been
 compiled or assembled. External references have usually been--but are not necessarily--resolved. When the external references
 have been resolved, the load module is in a form suitable for execution.

LPA. Link pack area.

 +---+
 ¦ M ¦
 +---+

main program . The first routine in an enclave to gain control from the invoker. In Fortran, a main program does not have a
 FUNCTION, SUBROUTINE, or BLOCK DATA statement as its first statement. It could have a PROGRAM statement as its first
 statement. Contrast with subprogram.

MTF. Multitasking Facility.

Multitasking Facility (MTF) . Facility provided separately by C and by Fortran to improve turnaround time on multiprocessor
 configurations by using MVS multitasking facilities. MTF is provided by C library functions or by Fortran callable services.

multitasking. See multithreading.

multithreading. Mode of operation that provides for the concurrent, or interleaved, execution of two or more tasks, or threads.

MVS. Multiple Virtual Storage operating system.

 +---+
 ¦ N ¦
 +---+

nested condition. A condition that occurs during the handling of another, previous condition. Language Environment by default
 permits 10 levels of nested conditions. This setting may be changed by altering the DEPTHCONDLMT run-time option.

nested enclave . A new enclave created by an existing enclave. The nested enclave that is created must be a new main routine
 within the process. See also child enclave and parent enclave.

next sequential instruction. The next instruction to be executed in the absence of any branch or transfer of control.

nonreentrant. A type of program that cannot be shared by multiple users.

 +---+
 ¦ O ¦
 +---+

object module . A collection of one or more control sections produced by an assembler or compiler and used as input to the
 linkage editor or binder. Synonym for text deck or object deck.

OpenEdition MVS. MVS/ESA services that support an environment within which operating systems, servers, distributed systems,
 and workstations share common interfaces. OpenEdition MVS supports standard application development across multivendor
 systems. It is required if you want to create and use MVS/ESA applications that conform to the POSIX standard.

operating system. Software that controls the running of programs; in addition, an operating system may provide services such
 as resource allocation, scheduling, input/output control, and data management.

Lang Env V1R5 Fortran Migration Guide
Language Environment Glossary

¦ Copyright IBM Corp. 1995
GLOSSARY - 8

overflow . Exceeding the capacity of the intended unit of storage. See also fixed-point overflow exception and exponent-overflow

 exception.

 +---+
 ¦ P ¦
 +---+

parallel program . In the context of the Fortran parallel facility (not MTF), a program that uses parallel language constructs, invokes
 any of the parallel callable services, or was compiled with the PARALLEL compile-time option.

parallel subroutine . In the context of MVS multitasking and the Fortran Multitasking Facitity, those portions of a program that can
 run independently of the main task program and each other. The parallel subroutines run in MVS subtasks.

parameter. The term used in certain other languages for the Fortran term dummy argument. See argument, actual argument, and
 dummy argument.

parent enclave . The enclave that issues a call to system services or language constructs to create a nested (child) enclave. See
 also child enclave and nested enclave.

percolate . The action taken by the condition manager when the returned value from a condition handler indicates that the handler
 could not handle the condition, and the condition will be transferred to the next handler.

pointer. A data element that indicates the location of another data element.

POSIX. Portable Operating System Interface.

precision. A measure of the ability to distinguish between nearly equal values, usually with data of different lengths. See also
 single-precision and double-precision.

preinitialization. A facility that allows a routine to initialize the run-time environment once, perform multiple executions within the
 environment, then explicitly terminate the environment.

pre-Language Environment-conforming. Any HLL program that does not adhere to Language Environment's common
 interface. For example, VS COBOL II Application Programming: Language Reference, OS/VS COBOL, OS PL/I, C/370 Version 1 and
 Version 2, VS FORTRAN Version 1, VS FORTRAN Version 2, FORTRAN IV G1, and FORTRAN IV H Extended are all pre-Language
 Environment-conforming HLLs.

program . See enclave.

program interruption. The interruption of the execution of a program due to some event such as an operation exception, an
 exponent-overflow exception, or an addressing exception.

program mask. In bits 20 through 23 of the program status word (PSW), a 4-bit structure that controls whether each of the
 fixed-point overflow, decimal overflow, exponent-overflow, and significance exceptions should cause a program interruption. The
 bits of the program mask can be manipulated to enable or disable the occurrence of a program interruption.

program status word (PSW). A 64-bit structure that includes the instruction address, program mask, and other information used
 to control instruction sequencing and to determine the state of the CPU. See also program mask.

program unit. Synonym for compilation unit.

promote . To change a condition to a different one by a condition handler. A condition handler routine promotes a condition
 because the error needs to be handled in a way other than that suggested by the original condition.

PSW. Program status word.

 +---+

Lang Env V1R5 Fortran Migration Guide
Language Environment Glossary

¦ Copyright IBM Corp. 1995
GLOSSARY - 9

 ¦ Q ¦
 +---+

q_data. Qualifying data. Information that a user-written condition handler can use to identify and react to a given instance of a
 condition.

q_data descriptor. A qualifying datum that contains the data type and length of the immediately following qualifying datum
 associated with a condition token.

q_data_token. An optional 32-bit data object that is placed in the ISI. It is used to access the qualifying data associated with a
 given instance of a condition.

qualifying data. q_data. Unique information associated through a condition token with a given instance of a condition. A
 user-written condition handler uses qualifying data to identify and react to the condition.

qualifying datum . A single element of qualifying data associated with a condition. See qualifying data.

 +---+
 ¦ R ¦
 +---+

reenterable . reentrant

reentrant. The attribute of a routine or application that allows more than one user to share a single copy of a load module.

resident routines. The Language Environment library routines linked with your application. They include such things as
 initialization routines and callable service stubs.

resume . To continue execution in an application at the point immediately after which a condition occurred. This occurs when a
 condition handler determines that a condition has been handled and normal application execution should continue.

resume cursor. The point in an application at which execution should continue if a condition handler requests the resume action
 for a condition it is processing. When a condition is signaled, the resume cursor is at the location at which the error occurred or at
 which the condition was first reported to the condition manager. The resume cursor can be moved with the CEEMRCE or CEEMRCR
 callable service.

return code . A code produced by a routine to indicate its success or failure. It may be used to influence the execution of
 succeeding instructions or programs.

return_code_modifier. A value set by Language Environment routines to indicate the severity of an unhandled condition. The
 return_code_modifier is a component of the return code that indicates the status of the execution of an enclave.

RMODE. Residence mode. Provided by the linkage editor, the attribute of a load module that specifies whether the module, when
 loaded, must reside below the 16MB virtual storage line or may reside anywhere in virtual storage.

routine . In this book, used as an exact equivalent of a COBOL program, a Fortran main program or subprogram, a PL/I procedure,
 or a C function or program, and means a named external routine, with or without named entry points, and with or without internal
 routines or nested programs.

run. To cause a program, utility, or other machine function to be performed.

run time. Any instant at which a program is being executed. Synonymous with execution time.

run-time environment. A set of resources that are used to support the execution of a program. Synonymous with execution
 environment.

 +---+
 ¦ S ¦

Lang Env V1R5 Fortran Migration Guide
Language Environment Glossary

¦ Copyright IBM Corp. 1995
GLOSSARY - 10

 +---+

SBCS. Single-byte character set.

scalar . A quantity characterized by a single value. Contrast with aggregate.

scalar instruction. An instruction, such as a load, store, arithmetic, or logical instruction, that operates on a scalar. Contrast with
 vector instruction.

signal. To make the condition manager aware of a condition for processing.

signature CSECT. The resident routine that indicates that the load module in which it is present contains a routine written in a
 particular language.

significance exception. The program interruption that occurs when the resulting fraction in a floating-point addition or subtraction
 instruction is zero. This program interruption can be disabled through a program mask bit setting.

single-byte character set (SBCS) . A collection of characters represented by a 1-byte code.

single-precision. Pertaining to the use of one computer word to represent a number in accordance with the required precision.
 See also precision and double-precision.

source code . The input to a compiler or assembler, written in a source language.

source program . A set of instructions written in a programming language that must be translated to machine language before the
 program can be run.

stack frame. The physical representation of the activation of a routine. The stack frame is allocated on a LIFO stack and contains
 various pieces of information including a save area, condition handling routines, fields to assist the acquisition of a stack frame from
 the stack, and the local, automatic variables for the routine. In Language Environment, a stack frame is synonymous with DSA.

static call. A call that results in the resolution of the called program during the link-edit of the application. Contrast with dynamic
 call.

suboption. A value that can be provided as part of a compile-time or run-time option to further specify the meaning of the option.

subprogram . A program unit that is invoked or used by another program unit. In Fortran, a subprogram has a FUNCTION,
 SUBROUTINE, or BLOCK DATA statement as its first statement. Contrast with main program.

symbolic feedback code . The symbolic representation of the first 8 bytes of the 12-byte condition tokens. Symbolic feedback
 codes are provided so that in a condition handling routine you don't have to code the condition token in hexadecimal form.

syntax. The rules governing the structure of a programming language and the construction of a statement in a programming
 language.

 +---+
 ¦ T ¦
 +---+

task. In a multiprogramming or multiprocessing environment, one or more sequences of instructions treated by a control program as
 an element of work to be accomplished by a computer.

termination imminent step. The final step of the 3-step Language Environment condition handling model. In the termination
 imminent step, user-written condition handlers and PL/I ON-units are given one last chance to handle a condition or perform cleanup
 before the thread is terminated. See also condition step and enablement step.

thread. The basic run-time path within the Language Environment program management model. It is dispatched by the system with
 its own instruction counter and registers. The thread is where actual code resides.

Lang Env V1R5 Fortran Migration Guide
Language Environment Glossary

¦ Copyright IBM Corp. 1995
GLOSSARY - 11

traceback . A section of a dump that provides information about the stack frame (DSA), the program unit address, the entry point of
 the routine, the statement number, and status of the routines on the call-chain at the time the traceback was produced.

transient routines. The Language Environment library routines that are loaded at run time. Contrast with resident routines .

TSO. TSO/E.

TSO/E. Time Sharing Option Extensions. An MVS component that permits interactive compiling, link-editing, executing, and
 debugging of programs.

 +---+
 ¦ U ¦
 +---+

underflow . See exponent-underflow exception.

unhandled condition. A condition that isn't handled by any condition handler for any stack frame in the call chain. Contrast with
 handled condition.

user-written condition handler. A routine that analyzes and possibly takes action on conditions presented to it by the condition
 manager. The condition handler is registered either by calling the CEEHDLR callable service or by specifying the USRHDLR run-time
 option.

 +---+
 ¦ V ¦
 +---+

vector. A linearly ordered collection of scalars of the same type. Each scalar is said to be an element of the vector. See also
 array. Contrast with scalar.

vector instruction. An instruction, such as a load, store, arithmetic, or logical instruction, that operates on vectors residing in
 storage or in a vector register in the vector facility. Contrast with scalar instruction.

Lang Env V1R5 Fortran Migration Guide
Language Environment Glossary

¦ Copyright IBM Corp. 1995
GLOSSARY - 12

 A
 abend (completion) codes
 ABTERMENC(ABEND) run-time option 2.6.1
 abnormal termination (abend)
 ABTERMENC(ABEND) run-time option 2.6.1 2.6.3
 CEEBXITA assembler user exit 2.6.3
 ABS intrinsic function
 duplicate name in Fortran and C libraries
 See also conflicting references
 as a conflicting reference 2.4.1
 unique, alternate name 2.4.2
 ABTERMENC run-time option
 ABTERMENC(ABEND) 2.6.3
 ABTERMENC(RETCODE) 2.6.2
 choosing normal or abnormal termination 2.6.1
 choosing return codes or abend codes 2.6.1
 ACOS intrinsic function
 duplicate name in Fortran and C libraries
 See also conflicting references
 as a conflicting reference 2.4.1
 unique, alternate name 2.4.2
 actions requested by a user-written condition handler
 about 3.1.1.4.1
 fix-up and resume action 3.1.1.4.1 3.1.1.4.2
 resume with Fortran-specific correction action 3.1.1.4.1 3.1.1.4.2
 resume with new input value action 3.1.1.4.1 3.1.1.4.2
 resume with new output value action 3.1.1.4.1 3.1.1.4.2
 percolate 3.1.1.4.1 3.1.1.4.2
 promote 3.1.1.4.1 3.1.1.4.2
 resume 3.1.1.4.1 3.1.1.4.2
 specifying 3.1.1.4.2
 AFBUOPT--VS FORTRAN error option table 3.1.2.1
 AFHCEEF callable service 3.1.3.4 APPENDIX1.1.1
 AFHCEEN callable service 3.1.3.4 APPENDIX1.1.2
 AFHCQDSB--type declarations for qualifying data functions 3.1.3.2
 AFHVLPRM--default run-time options, VS FORTRAN 2.5.3
 AFHWG--link-edit Fortran only 2.1.2
 AFHWLG--link-edit and run Fortran only 2.1.2
 AFHWN--link-edit with NCAL
 description 2.1.2
 for removing conflicting references 2.4.4.1.1
 See also conflicting references
 AFHWNCH--conflicting references removal tool
 about 2.4.4.1
 creating executable load module 2.4.4.1.2
 creating module in non-executable form 2.4.4.1.1
 AFHWRL--separate and link-edit 2.1.2
 AFHWRLG--separate, link-edit, and run 2.1.2
 AFHWRLK--library module removal tool 2.2
 alignment of vector instruction operands 3.2.5
 alternative mathematical routines
 VS FORTRAN 1.2.2.3
 AMBLIST service aid
 for identifying conflicting references 2.4.1.1
 See also conflicting references
 ARGSTR callable service
 for retrieving program arguments 3.2.8
 ASIN intrinsic function
 duplicate name in Fortran and C libraries
 See also conflicting references

Lang Env V1R5 Fortran Migration Guide
Index

¦ Copyright IBM Corp. 1995
INDEX - 1

 as a conflicting reference 2.4.1
 unique, alternate name 2.4.2
 assembler language routine
 initializing run-time environment 3.2.9 to 3.2.9.4
 retrieving program arguments 3.2.8
 VFEIN# callable service 3.2.9 to 3.2.9.4
 with preinitialization services 1.3.4
 assembler user exit (CEEBXITA)
 specifies normal or abnormal termination 2.6.1
 specifies return code or completion (abend) code 2.6.1
 assembling programs
 eliminating conflicting references 2.4.2 to 2.4.2.2
 See also conflicting references
 AT statement
 static debug 1.2.2.7
 ATAN intrinsic function
 duplicate name in Fortran and C libraries
 See also conflicting references
 as a conflicting reference 2.4.1
 unique, alternate name 2.4.2
 ATAN2 intrinsic function
 duplicate name in Fortran and C libraries
 See also conflicting references
 as a conflicting reference 2.4.1
 unique, alternate name 2.4.2
 automatic error correction, VS FORTRAN 3.1.2.3 APPENDIX1.4
 B
 BACKSPACE statement
 error message unit 3.2.3
 C
 C/C++ library routines
 duplicate names in Fortran and C libraries
 See conflicting references
 C/C++ routines
 duplicate names in Fortran and C libraries
 See conflicting references
 requirement to link-edit 1.1.4
 callable services
 for Language Environment callable services
 AFHCEEF--invoke callable service passing feedback code 3.1.3.4 APPENDIX1.1.1
 AFHCEEN--invoke callable service without feedback code 3.1.3.4 APPENDIX1.1.2
 linkage conventions and 1.3.1
 qualifying data (q_data)
 See qualifying data (q_data), callable services
 restrictions on calling from Fortran 1.3.1
 cataloged procedures
 AFHWG--link-edit Fortran only 2.1.2
 AFHWLG--link-edit and run Fortran only 2.1.2
 AFHWN--link-edit with NCAL 2.1.2
 AFHWRL--separate and link-edit 2.1.2
 AFHWRLG--separate, link-edit, and run 2.1.2
 CEEWG--link-edit 2.1.2
 CEEWG--link-edit and run 2.1.2
 CEEWG--load and run 2.1.2
 for compiling 2.1.2.2
 for link-editing and running 2.1.2 to 2.1.2.1
 CDUMP callable service
 output to the message file 3.2.3
 return code set by 2.6.2.2
 CEE.V1R5M0.SAFHFORT data set

Lang Env V1R5 Fortran Migration Guide
Index

¦ Copyright IBM Corp. 1995
INDEX - 2

 description 2.1.1
 resolving conflicting library routine references 2.4.3.1
 See also conflicting references
 CEE.V1R5M0.SCEELKED data set
 description 2.1.1
 duplicate names in Fortran and C libraries
 See conflicting references
 CEE.V1R5M0.SCEERUN data set
 description 2.1.1
 specifying under TSO 2.1.3
 CEE.V1R5M0.SCEESAMP data set
 AFHCQDSB--type declarations for qualifying data functions 3.1.3.2
 AFHWNCH--conflicting references removal tool 2.4.4.1
 AFHWRLK--library module removal tool 2.2
 symbolic feedback code files
 CEEFORCT--for common conditions 3.1.1.3.2
 FORFORCT--for Fortran conditions 3.1.1.3.2
 CEE0CE--resume with new input value 3.1.1.4.1 3.1.1.4.2
 CEE0CF--resume with new output value 3.1.1.4.1 3.1.1.4.2
 CEE3SRC callable service
 user return code set by 2.6.2.2
 CEE3SRP callable service 3.1.1.2
 CEEBXITA assembler user exit
 normal or abnormal termination 2.6.3
 return code or completion (abend) code 2.6.3
 specifies normal or abnormal termination 2.6.1
 specifies return code or completion (abend) code 2.6.1
 CEEFORCT--symbolic feedback codes for common conditions 3.1.1.3.2
 CEEHDLR callable service 3.1.1.2
 CEEHDLU callable service 3.1.1.2
 CEEMRCE callable service 3.1.1.2
 CEEMRCR callable service
 about 3.1.1.2
 example 3.1.5
 CEEPINTV--interface validation exit
 resolving conflicting references 2.4.3.2.1 to 2.4.3.2.3
 CEESG007--Fortran signature CSECT 2.3 to 2.3.2
 CEEUOPT--default run-time options 2.5.3
 CEEWG--link-edit 2.1.2
 CEEWG--link-edit and run 2.1.2
 CEEWG--load and run 2.1.2
 CEEXOPT macro 2.5.3
 CLOCK callable service
 duplicate name in Fortran and C libraries
 See also conflicting references
 as a conflicting reference 2.4.1
 unique, alternate name 2.4.2
 CLOSE statement, STATUS='DELETE
 error message unit 3.2.3
 COBOL routines with Fortran
 requirement to link-edit 1.1.4
 code, restricted source 1.2.2.4
 compatibility
 IFYVRENT facility (reentrant I/O library) 1.1.4
 incompatibilities with VS FORTRAN
 summary of 1.1.3 1.2.1
 load module 1.1.4
 non-Fortran routines 1.1.4
 object module
 incompatibilities, summary of 1.1.3 1.2.1

Lang Env V1R5 Fortran Migration Guide
Index

¦ Copyright IBM Corp. 1995
INDEX - 3

 supported Fortran compilers 1.1.2
 unsupported VS FORTRAN facilities 1.1.3 1.2.1 to 1.2.2.7
 compile-time options
 EC--extended common block 1.2.2.2
 PARALLEL--parallel program 1.2.2.1
 RENT--create reentrant program 1.3.2
 compilers, Fortran
 supported with Language Environment 1.1.2
 compiling programs
 eliminating conflicting references 2.4.2 to 2.4.2.2
 See also conflicting references
 completion (abend) codes
 ABTERMENC(ABEND) run-time option 2.6.1 2.6.3
 CEEBXITA assembler user exit 2.6.3
 values 2.6.3
 condition
 about 3.1.1.1
 severity 3.1.1.3
 unhandled 3.1.1.5
 condition handler, user-written
 See user-written condition handler
 condition handling model 3.1.1 to 3.1.1.5
 actions requested by a user-written condition handler
 about 3.1.1.4.1
 fix-up and resume action 3.1.1.4.1 3.1.1.4.2
 percolate 3.1.1.4.1 3.1.1.4.2
 promote 3.1.1.4.1 3.1.1.4.2
 resume 3.1.1.4.1 3.1.1.4.2
 resume with Fortran-specific correction action 3.1.1.4.1 3.1.1.4.2
 resume with new input value action 3.1.1.4.1 3.1.1.4.2
 resume with new output value action 3.1.1.4.1 3.1.1.4.2
 specifying 3.1.1.4.2
 CEE3SRP callable service 3.1.1.2
 CEEHDLR callable service 3.1.1.2
 CEEHDLU callable service 3.1.1.2
 CEEMRCE callable service 3.1.1.2
 CEEMRCR callable service
 about 3.1.1.2
 example 3.1.5
 condition
 about 3.1.1.1
 enabled, enablement 3.1.1.1
 severity 3.1.1.3
 signaling 3.1.1.1
 unhandled 3.1.1.5
 condition handler, user-written
 See condition handling model, user-written condition handler
 condition manager 3.1.1.1
 condition step 3.1.1.2
 condition token
 about 3.1.1.3
 as feedback code 3.1.1.3.1
 CEE0CE--resume with new input value 3.1.1.4.2
 CEE0CF--resume with new output value 3.1.1.4.2
 FOR0070--resume with Fortran-specific correction 3.1.1.4.2
 instance-specific information (ISI) 3.1.1.3
 symbolic feedback code 3.1.1.3.2
 cursors
 handle cursor 3.1.1.2
 resume cursor 3.1.1.2

Lang Env V1R5 Fortran Migration Guide
Index

¦ Copyright IBM Corp. 1995
INDEX - 4

 enablement routine, Fortran-specific 3.1.1.1
 enablement routine, language-specific 3.1.1.1
 enablement step 3.1.1.1
 facility IDs
 about 3.1.1.3
 list of 3.1.1.3.2
 feedback code 3.1.1.3.1
 See also condition handling model, symbolic feedback code
 handle cursor 3.1.1.2
 move resume cursor explicit (CEEMRCE) 3.1.1.2
 move resume cursor relative (CEEMRCR)
 about 3.1.1.2
 example 3.1.5
 qualifying data (q_data) 3.1.1.3
 registering a user-written condition handler (CEEHDLR) 3.1.1.2
 responses requested by a user-written condition handler
 See actions requested by a user-written condition handler
 resume cursor 3.1.1.2
 resume with Fortran-specific correction action 3.1.1.4.1
 resume with new input value action 3.1.1.4.1
 resume with new output value action 3.1.1.4.1
 set resume point (CEE3SRP) 3.1.1.2
 severity of a condition 3.1.1.3
 stack frame 3.1.1.2
 symbolic feedback code
 See also condition handling model, feedback code
 about 3.1.1.3.2
 CEE0CE--resume with new input value 3.1.1.4.1
 CEE0CF--resume with new output value 3.1.1.4.1
 FOR0070--resume with Fortran-specific correction 3.1.1.4.1
 symbolic feedback code files
 about 3.1.1.3.2
 CEEFORCT--for common conditions 3.1.1.3.2
 FORFORCT--for Fortran conditions 3.1.1.3.2
 unregistering a user-written condition handler (CEEHDLU) 3.1.1.2
 user-written condition handler
 about 3.1.1.2
 actions 3.1.1.4.1
 Fortran declarations for 3.1.1.4.2
 Fortran examples of 3.1.4 to 3.1.4.4.2
 Fortran-specific services for writing 3.1.3 to 3.1.3.4
 writing 3.1.1.4 to 3.1.1.4.2
 condition manager 3.1.1.1
 condition step 3.1.1.2
 condition token
 about 3.1.1.3
 as feedback code 3.1.1.3.1
 CEE0CE--resume with new input value 3.1.1.4.2
 CEE0CF--resume with new output value 3.1.1.4.2
 FOR0070--resume with Fortran-specific correction 3.1.1.4.2
 instance-specific information (ISI) 3.1.1.3
 symbolic feedback code 3.1.1.3.2
 conflicting library routine references
 See conflicting references
 conflicting references 2.4 to 2.4.4.2
 about 2.4
 eliminating
 by recompiling programs 2.4.2
 identifying 2.4.1 to 2.4.1.1
 list of names 2.4.1

Lang Env V1R5 Fortran Migration Guide
Index

¦ Copyright IBM Corp. 1995
INDEX - 5

 resolving automatically 2.4.3 to 2.4.3.2.3
 summary 2.4.3
 using DFSMS/MVS 2.4.3.2.1 to 2.4.3.2.3
 using interface validation exit 2.4.3.2.1 to 2.4.3.2.3
 with no C/C++ routines 2.4.3.1
 resolving manually 2.4.4 to 2.4.4.2
 conflicting references removal tool (AFHWNCH) 2.4.4.1
 including specific library routines 2.4.4.2
 removing conflicting references 2.4.4.1 to 2.4.4.1.2
 conflicting references removal tool (AFHWNCH)
 about 2.4.4.1
 creating executable load module 2.4.4.1.2
 creating module in non-executable form 2.4.4.1.1
 correction, error
 VS FORTRAN 3.1.2.3 APPENDIX1.4
 COS intrinsic function
 duplicate name in Fortran and C libraries
 See also conflicting references
 as a conflicting reference 2.4.1
 unique, alternate name 2.4.2
 COSH intrinsic function
 duplicate name in Fortran and C libraries
 See also conflicting references
 as a conflicting reference 2.4.1
 unique, alternate name 2.4.2
 CPDUMP callable service
 output to the message file 3.2.3
 cursors
 handle cursor 3.1.1.2
 resume cursor 3.1.1.2
 D
 data spaces
 EC compile-time option 1.2.2.2
 data, qualifying
 See qualifying data (q_data)
 datum, qualifying
 See qualifying data (q_data)
 DEBUG statement
 static debug 1.2.2.7
 Debug, Interactive 1.1.3
 debug, static 1.2.2.7
 descriptor, q_data
 format of APPENDIX1.2.5
 needed by Fortran functions 3.1.3.3
 DFSMS/MVS, interface validation exit
 resolving conflicting references 2.4.3.2.1 to 2.4.3.2.3
 DISPLAY statement
 static debug 1.2.2.7
 DUMP callable service
 output to the message file 3.2.3
 return code set by 2.6.2.2
 duplicate names in Fortran and C libraries
 See also conflicting references
 list of 2.4.1
 DVCHK subroutine 3.2.7
 Dynamic STEPLIB Facility
 for run-time libraries 2.1.3
 invoking interface validation exit 2.4.3.2.2
 dynamically loading Fortran routines
 Fortran signature CSECT (CEESG007) 2.3.2

Lang Env V1R5 Fortran Migration Guide
Index

¦ Copyright IBM Corp. 1995
INDEX - 6

 E
 EC compile-time option 1.2.2.2
 eliminating conflicting references 2.4.2 to 2.4.2.2
 See also conflicting references
 by recompiling 2.4.2 to 2.4.2.2
 enabled, definition 3.1.1.1
 enablement routine, Fortran-specific 3.1.1.1
 enablement routine, language-specific 3.1.1.1
 enablement step 3.1.1.1
 END statement
 return code set by 2.6.2.2
 ENDFILE statement
 error message unit 3.2.3
 entry point names, library routine
 duplicate names in Fortran and C libraries
 See conflicting references
 environment, run-time, initializing
 assembler language routine 3.2.9 to 3.2.9.4
 VFEIN# callable service 3.2.9 to 3.2.9.4
 ERF intrinsic function
 duplicate name in Fortran and C libraries
 See also conflicting references
 as a conflicting reference 2.4.1
 unique, alternate name 2.4.2
 ERFC intrinsic function
 duplicate name in Fortran and C libraries
 See also conflicting references
 as a conflicting reference 2.4.1
 unique, alternate name 2.4.2
 ERRMON subroutine 3.1.2.2
 error correction, VS FORTRAN 3.1.2.3 APPENDIX1.4
 error handling, VS FORTRAN
 See extended error handling facility, VS FORTRAN
 error message unit
 permissible I/O statements 3.2.3
 error messages, run-time
 message numbers
 changed from VS FORTRAN 3.2.1
 impact on IOSTAT specifier values 3.2.2
 Language Environment to VS FORTRAN mapping APPENDIX1.3.2
 VS FORTRAN to Language Environment mapping APPENDIX1.3.1
 message texts 3.2.1
 error option table (AFBUOPT), VS FORTRAN 3.1.2.1
 errors, run-time, handling 3.1 to 3.1.4.4.2
 See also condition handling model
 Fortran-specific services for 3.1.3 to 3.1.3.4
 See also qualifying data (q_data), callable services
 See also qualifying data (q_data), functions
 in Fortran routines
 exponent-overflow exception 3.1.4.3
 fixed-point overflow exception 3.1.4.2 to 3.1.4.2.2
 invalid character in numeric field 3.1.4.4 to 3.1.4.4.2
 square-root exception 3.1.4.1
 ERRSAV subroutine 3.1.2.2
 ERRSET subroutine 3.1.2.2
 ERRSTR subroutine 3.1.2.2
 ERRTRA subroutine 3.1.2.2
 ERRUNIT run-time option 3.2.3
 EXIT callable service
 duplicate name in Fortran and C libraries

Lang Env V1R5 Fortran Migration Guide
Index

¦ Copyright IBM Corp. 1995
INDEX - 7

 See also conflicting references
 as a conflicting reference 2.4.1
 unique, alternate name 2.4.2
 EXP intrinsic function
 duplicate name in Fortran and C libraries
 See also conflicting references
 as a conflicting reference 2.4.1
 unique, alternate name 2.4.2
 exponent-overflow exception
 OVERFL subroutine 3.2.7
 qualifying data APPENDIX1.2.2
 sample condition handler for 3.1.4.3
 exponent-underflow exception
 qualifying data APPENDIX1.2.2
 extended common block 1.2.2.2
 extended error handling facility, VS FORTRAN
 about 3.1.2
 automatic error correction 3.1.2.3 APPENDIX1.4
 ERRMON subroutine 3.1.2.2
 error correction 3.1.2.3 APPENDIX1.4
 error option table (AFBUOPT), VS FORTRAN 3.1.2.1
 ERRSAV subroutine 3.1.2.2
 ERRSET subroutine 3.1.2.2
 ERRSTR subroutine 3.1.2.2
 ERRTRA subroutine 3.1.2.2
 F
 facility IDs
 about 3.1.1.3
 list of 3.1.1.3.2
 feedback code 3.1.1.3.1
 See also symbolic feedback code
 fix-up actions
 VS FORTRAN 3.1.2.3 APPENDIX1.4
 fix-up and resume action 3.1.1.4.1 3.1.1.4.2
 resume with Fortran-specific correction action 3.1.1.4.1 3.1.1.4.2
 resume with new input value action 3.1.1.4.1 3.1.1.4.2
 resume with new output value action 3.1.1.4.1 3.1.1.4.2
 fixed-point divide exception
 DVCHK subroutine 3.2.7
 qualifying data APPENDIX1.2.2
 fixed-point overflow exception
 OVERFL subroutine 3.2.7
 program mask bit allows 3.2.6
 qualifying data APPENDIX1.2.2
 sample condition handler for 3.1.4.2 to 3.1.4.2.2
 floating-point divide exception
 DVCHK subroutine 3.2.7
 qualifying data APPENDIX1.2.2
 FOR0070--resume with Fortran-specific correction 3.1.1.4.1 3.1.1.4.2
 FORFORCT--symbolic feedback codes for Fortran conditions 3.1.1.3.2
 Fortran compilers
 supported with Language Environment 1.1.2
 FORTRAN IV G1
 object module compatibility 1.1.2
 FORTRAN IV H Extended
 object module compatibility 1.1.2
 Fortran signature CSECT (CEESG007) 2.3 to 2.3.2
 Fortran-specific enablement routine 3.1.1.1
 functions
 duplicate names in Fortran and C libraries

Lang Env V1R5 Fortran Migration Guide
Index

¦ Copyright IBM Corp. 1995
INDEX - 8

 See conflicting references
 qualifying data (q_data)
 See qualifying data (q_data), functions
 G
 GAMMA intrinsic function
 duplicate name in Fortran and C libraries
 See also conflicting references
 as a conflicting reference 2.4.1
 unique, alternate name 2.4.2
 GET--global error table
 See extended error handling facility, VS FORTRAN
 global error table (GET)
 See extended error handling facility, VS FORTRAN
 H
 handle cursor 3.1.1.2
 handler, condition
 See user-written condition handler
 I
 I/O statements for the error message unit 3.2.3
 IBCOM# callable service
 initializing run-time environment 3.2.9 to 3.2.9.4
 identifying conflicting references 2.4.1 to 2.4.1.1
 See also conflicting references
 IFYVRENT facility 1.1.4
 incompatibilities with VS FORTRAN
 summary of 1.1.3 1.2.1
 initializing run-time environment
 assembler language routine 3.2.9 to 3.2.9.4
 VFEIN# callable service 3.2.9 to 3.2.9.4
 instance-specific information (ISI) 3.1.1.3
 Interactive Debug 1.1.3
 interface validation exit
 resolving conflicting references 2.4.3.2.1 to 2.4.3.2.3
 interfaces, internal run-time library 1.2.2.5
 internal run-time library interfaces 1.2.2.5
 intrinsic functions
 duplicate names in Fortran and C libraries
 See conflicting references
 IOSTAT specifier 3.2.2
 ISI--instance-specific information 3.1.1.3
 J
 JOBLIB ddname
 CEE.V1R5M0.SCEERUN data set and 2.1.1
 L
 Language Environment
 about 1.1
 callable services
 Fortran services to invoke 3.1.3.4
 incompatibilities with VS FORTRAN
 summary of 1.1.3 1.2.1
 interface validation exit
 resolving conflicting references 2.4.3.2.1 to 2.4.3.2.3
 unsupported VS FORTRAN facilities 1.1.3 1.2.1 to 1.2.2.7
 language-specific enablement routine 3.1.1.1
 library interfaces, internal 1.2.2.5
 library module removal tool (AFHWRLK) 2.2
 library routines
 duplicate names in Fortran and C libraries
 See also conflicting references
 including specific library routines 2.4.4.2

Lang Env V1R5 Fortran Migration Guide
Index

¦ Copyright IBM Corp. 1995
INDEX - 9

 removing from load module 2.2
 library source materials, restricted 1.2.2.4
 link mode (self-contained load modules)
 availability of 1.2.2.6
 compatibility 1.1.4
 link-edit (CEEWL) 2.1.2
 link-edit and run (CEEWLG) 2.1.2
 link-edit and run Fortran only (AFHWLG) 2.1.2
 link-edit Fortran only (AFHWL) 2.1.2
 link-edit with NCAL (AFHWN)
 description 2.1.2
 for removing conflicting references 2.4.4.1.1
 See also conflicting references
 link-editing
 conflicting references removal tool
 See conflicting references
 duplicate names in Fortran and C libraries
 See conflicting references
 libraries used for
 CEE.V1R5M0.SAFHFORT 2.1.1
 CEE.V1R5M0.SCEELKED 2.1.1
 removing library routines from load module 2.2
 resolving conflicting library routine references
 See conflicting references
 load and run (CEEWG) 2.1.2
 load libraries
 availability under TSO 2.1.3
 CEE.V1R5M0.SCEERUN data set 2.1.1
 load mode, VS FORTRAN
 load module compatibility 1.1.4
 load modules
 compatibility with VS FORTRAN
 link mode 1.1.4
 load mode 1.1.4
 IFYVRENT facility (reentrant I/O library) 1.1.4
 link mode, VS FORTRAN 1.1.4
 load mode, VS FORTRAN 1.1.4
 non-Fortran routines 1.1.4
 removing library routines from 2.2
 LOG intrinsic function
 duplicate name in Fortran and C libraries
 See also conflicting references
 as a conflicting reference 2.4.1
 unique, alternate name 2.4.2
 LOG10 intrinsic function
 duplicate name in Fortran and C libraries
 See also conflicting references
 as a conflicting reference 2.4.1
 unique, alternate name 2.4.2
 M
 mathematical routines, alternative
 VS FORTRAN 1.2.2.3
 message file
 data set attributes 3.2.4
 ddname 3.2.4
 LRECL--record length 3.2.4
 RECFM--record format 3.2.4
 MSGFILE run-time option 3.2.4
 permissible I/O statements 3.2.3
 messages, error, run-time

Lang Env V1R5 Fortran Migration Guide
Index

¦ Copyright IBM Corp. 1995
INDEX - 10

 message numbers
 changed from VS FORTRAN 3.2.1
 impact on IOSTAT specifier values 3.2.2
 Language Environment to VS FORTRAN mapping APPENDIX1.3.2
 VS FORTRAN to Language Environment mapping APPENDIX1.3.1
 message texts 3.2.1
 misaligned vector instruction operands 3.2.5
 move resume cursor explicit (CEEMRCE) 3.1.1.2
 move resume cursor relative (CEEMRCR)
 about 3.1.1.2
 example 3.1.5
 MSGFILE run-time option 3.2.4
 data set attributes 3.2.4
 MTF (multitasking facility), support for 1.2.2.1
 multitasking facility (MTF), support for 1.2.2.1
 MVS/TSO Dynamic STEPLIB Facility
 for run-time libraries 2.1.3
 invoking interface validation exit 2.4.3.2.2
 N
 names, library routine
 duplicate names in Fortran and C libraries
 See conflicting references
 normal termination
 ABTERMENC(RETCODE) run-time option 2.6.1 2.6.2
 O
 object module compatibility
 incompatibilities with VS FORTRAN
 summary of 1.1.3 1.2.1
 supported Fortran compilers 1.1.2
 unsupported VS FORTRAN facilities 1.1.3 1.2.1 to 1.2.2.7
 options, compile-time
 See compile-time options
 options, run-time
 See run-time options
 OVERFL subroutine 3.2.7
 P
 PARALLEL compile-time option 1.2.2.1
 parallel programs 1.2.2.1
 PDUMP callable service
 output to the message file 3.2.3
 percolate action 3.1.1.4.1 3.1.1.4.2
 PL/I routines with Fortran
 requirement to link-edit 1.1.4
 preinitialization services 1.3.4
 PRINT statement and the message file 3.2.3
 program arguments
 about 2.5.1
 assembler language routine 3.2.8
 where coded in option string 2.5.1.2
 program interruption
 exponent-overflow exception
 OVERFL subroutine 3.2.7
 qualifying data APPENDIX1.2.2
 sample condition handler for 3.1.4.3
 exponent-underflow exception
 qualifying data APPENDIX1.2.2
 fixed-point divide exception
 DVCHK subroutine 3.2.7
 qualifying data APPENDIX1.2.2
 fixed-point overflow exception

Lang Env V1R5 Fortran Migration Guide
Index

¦ Copyright IBM Corp. 1995
INDEX - 11

 OVERFL subroutine 3.2.7
 program mask bit allows 3.2.6
 qualifying data APPENDIX1.2.2
 sample condition handler for 3.1.4.2 to 3.1.4.2.2
 floating-point divide exception
 DVCHK subroutine 3.2.7
 qualifying data APPENDIX1.2.2
 square-root exception
 qualifying data APPENDIX1.2.3
 sample condition handler for 3.1.4.1
 unnormalized-operand exception
 qualifying data APPENDIX1.2.2
 program mask
 fixed-point overflow exception enabled 3.2.6
 promote action 3.1.1.4.1 3.1.1.4.2
 PRTUNIT run-time option 3.2.3
 Q
 q_data
 See qualifying data (q_data)
 q_data descriptor
 format of APPENDIX1.2.5
 needed by Fortran functions 3.1.3.3
 QDCH1 function 3.1.3.2 APPENDIX1.1.8
 QDCH255 function 3.1.3.2 APPENDIX1.1.8
 QDCH31 function 3.1.3.2 APPENDIX1.1.8
 QDCH6 function 3.1.3.2 APPENDIX1.1.8
 QDCH62 function 3.1.3.2 APPENDIX1.1.8
 QDCH8 function 3.1.3.2 APPENDIX1.1.8
 QDCX16 function 3.1.3.2 APPENDIX1.1.8
 QDCX32 function 3.1.3.2 APPENDIX1.1.8
 QDCX8 function 3.1.3.2 APPENDIX1.1.8
 QDFETCH callable service 3.1.3.1 APPENDIX1.1.3
 QDINT1 function 3.1.3.2 APPENDIX1.1.8
 QDINT2 function 3.1.3.2 APPENDIX1.1.8
 QDINT4 function 3.1.3.2 APPENDIX1.1.8
 QDINT8 function 3.1.3.2 APPENDIX1.1.8
 QDLEN function 3.1.3.3 APPENDIX1.1.4
 QDLOC function 3.1.3.3 APPENDIX1.1.5
 QDR16 function 3.1.3.2 APPENDIX1.1.8
 QDR4 function 3.1.3.2 APPENDIX1.1.8
 QDR8 function 3.1.3.2 APPENDIX1.1.8
 QDSTORE callable service 3.1.3.1 APPENDIX1.1.6
 QDTYPE function 3.1.3.3 APPENDIX1.1.7
 QDTYPE_CHAR--data type value for character type APPENDIX1.1.7.1
 QDTYPE_CHARACTER--data type value for character type APPENDIX1.1.7.1
 QDTYPE_COMPLEX--data type value for complex type APPENDIX1.1.7.1
 QDTYPE_FAILURE--data type value for unknown type APPENDIX1.1.7.1
 QDTYPE_INT--data type value for integer type APPENDIX1.1.7.1
 QDTYPE_INTEGER--data type value for integer type APPENDIX1.1.7.1
 QDTYPE_REAL--data type value for real type APPENDIX1.1.7.1
 QDTYPE_UNSIGNED--data type value for unsigned type APPENDIX1.1.7.1
 QDUS1 function 3.1.3.2 APPENDIX1.1.8
 qualifying data (q_data)
 about 3.1.1.3
 AFHCQDSB--type declarations for qualifying data functions 3.1.3.2
 callable services
 QDFETCH--retrieve value 3.1.3.1 APPENDIX1.1.3
 QDSTORE--store value 3.1.3.1 APPENDIX1.1.6
 functions
 QDCH1--CHARACTER*1 value 3.1.3.2 APPENDIX1.1.8

Lang Env V1R5 Fortran Migration Guide
Index

¦ Copyright IBM Corp. 1995
INDEX - 12

 QDCH255--CHARACTER*255 value 3.1.3.2 APPENDIX1.1.8
 QDCH31--CHARACTER*31 value 3.1.3.2 APPENDIX1.1.8
 QDCH6--CHARACTER*6 value 3.1.3.2 APPENDIX1.1.8
 QDCH62--CHARACTER*62 value 3.1.3.2 APPENDIX1.1.8
 QDCH8--CHARACTER*8 value 3.1.3.2 APPENDIX1.1.8
 QDCX16--COMPLEX*16 value 3.1.3.2 APPENDIX1.1.8
 QDCX32--COMPLEX*32 value 3.1.3.2 APPENDIX1.1.8
 QDCX8--COMPLEX*8 value 3.1.3.2 APPENDIX1.1.8
 QDINT1--INTEGER*1 value 3.1.3.2 APPENDIX1.1.8
 QDINT2--INTEGER*2 value 3.1.3.2 APPENDIX1.1.8
 QDINT4--INTEGER*4 value 3.1.3.2 APPENDIX1.1.8
 QDINT8--INTEGER*8 value 3.1.3.2 APPENDIX1.1.8
 QDLEN--length 3.1.3.3 APPENDIX1.1.4
 QDLOC--address 3.1.3.3 APPENDIX1.1.5
 QDR16--REAL*16 value 3.1.3.2 APPENDIX1.1.8
 QDR4--REAL*4 value 3.1.3.2 APPENDIX1.1.8
 QDR8--REAL*8 value 3.1.3.2 APPENDIX1.1.8
 QDTYPE--data type 3.1.3.3 APPENDIX1.1.7
 QDUS1--UNSIGNED*1 value 3.1.3.2 APPENDIX1.1.8
 q_data descriptor
 format of APPENDIX1.2.5
 needed by Fortran functions 3.1.3.3
 q_data structure
 abend APPENDIX1.2.1
 arithmetic program interruptions APPENDIX1.2.2
 bit manipulation conditions APPENDIX1.2.4
 exponent-overflow exception APPENDIX1.2.2
 exponent-underflow exception APPENDIX1.2.2
 fixed-point divide exception APPENDIX1.2.2
 fixed-point overflow exception APPENDIX1.2.2
 floating-point divide exception APPENDIX1.2.2
 math conditions APPENDIX1.2.4
 square-root exception APPENDIX1.2.3
 unnormalized-operand exception APPENDIX1.2.2
 qualifying datum
 See qualifying data (q_data)
 R
 READ statement
 error message unit 3.2.3
 reassembling programs
 eliminating conflicting references 2.4.2 to 2.4.2.2
 See also conflicting references
 recompiling programs
 eliminating conflicting references 2.4.2 to 2.4.2.2
 See also conflicting references
 reentrant I/O library 1.1.4
 reentrant program
 Fortran with non-Fortran 1.3.2
 separate and link-edit
 AFHWRL cataloged procedure 2.1.2
 separate, link-edit, and run
 AFHWRLG cataloged procedure 2.1.2
 references to library routines
 duplicate names in Fortran and C libraries
 See conflicting references
 references, conflicting
 See conflicting references
 registering a user-written condition handler (CEEHDLR) 3.1.1.2
 removing library routines from load module 2.2
 RENT compile-time option

Lang Env V1R5 Fortran Migration Guide
Index

¦ Copyright IBM Corp. 1995
INDEX - 13

 reentrant program 1.3.2
 replacing library routines in load module 2.2
 resident routines
 CEE.V1R5M0.SCEELKED and CEE.V1R5M0.SAFHFORT data sets 2.1.1
 resolving conflicting library routine references
 See conflicting references
 responses requested by a user-written condition handler
 See actions requested by a user-written condition handler
 restricted source materials 1.2.2.4
 result_code
 values set by a condition handler 3.1.1.4.2
 resume action 3.1.1.4.1 3.1.1.4.2
 resume cursor 3.1.1.2
 resume with Fortran-specific correction action 3.1.1.4.1 3.1.1.4.2
 resume with new input value action 3.1.1.4.1 3.1.1.4.2
 resume with new output value action 3.1.1.4.1 3.1.1.4.2
 return codes
 ABTERMENC(RETCODE) run-time option 2.6.1 2.6.2
 detecting 2.6.2.1
 for unhandled conditions 2.6.2.3
 specifying in Fortran 2.6.2.2
 REWIND statement
 error message unit 3.2.3
 run-time environment, initializing
 assembler language routine 3.2.9 to 3.2.9.4
 VFEIN# callable service 3.2.9 to 3.2.9.4
 run-time error messages
 message numbers
 changed from VS FORTRAN 3.2.1
 impact on IOSTAT specifier values 3.2.2
 Language Environment to VS FORTRAN mapping APPENDIX1.3.2
 VS FORTRAN to Language Environment mapping APPENDIX1.3.1
 message texts 3.2.1
 run-time errors, handling 3.1 to 3.1.4.4.2
 See also condition handling model
 Fortran-specific services for 3.1.3 to 3.1.3.4
 See also qualifying data (q_data), callable services
 See also qualifying data (q_data), functions
 in Fortran routines
 exponent-overflow exception 3.1.4.3
 fixed-point overflow exception 3.1.4.2 to 3.1.4.2.2
 invalid character in numeric field 3.1.4.4 to 3.1.4.4.2
 square-root exception 3.1.4.1
 run-time library interfaces, internal 1.2.2.5
 run-time library source materials, restricted 1.2.2.4
 run-time options 2.5 to 2.5.3
 AFHVLPRM--default values, VS FORTRAN 2.5.3
 CEEUOPT--default values 2.5.3
 CEEXOPT macro 2.5.3
 coding the option string 2.5.1 to 2.5.1.2
 default values 2.5.3
 list of 2.5.2
 USRHDLR--register user-written condition handler 3.1.1.4.2 3.1.1.5
 VSF2PARM macro, VS FORTRAN 2.5.3
 running your program
 library used for
 CEE.V1R5M0.SCEERUN 2.1.1
 load module compatibility 1.1.4
 S
 SAFHFORT data set

Lang Env V1R5 Fortran Migration Guide
Index

¦ Copyright IBM Corp. 1995
INDEX - 14

 description 2.1.1
 resolving conflicting library routine references 2.4.3.1
 See also conflicting references
 SCEELKED data set
 description 2.1.1
 duplicate names in Fortran and C libraries
 See conflicting references
 SCEERUN data set
 description 2.1.1
 specifying under TSO 2.1.3
 SCEESAMP data set
 AFHCQDSB--type declarations for qualifying data functions 3.1.3.2
 AFHWNCH--conflicting references removal tool 2.4.4.1
 AFHWRLK--library module removal tool 2.2
 symbolic feedback code files
 CEEFORCT--for common conditions 3.1.1.3.2
 FORFORCT--for Fortran conditions 3.1.1.3.2
 SDUMP callable service
 output to the message file 3.2.3
 self-contained load modules
 compatibility 1.1.4
 self-contained load modules (link mode)
 availability of 1.2.2.6
 separate and link-edit (AFHWRL) 2.1.2
 separate, link-edit, and run (AFHWRLG) 2.1.2
 set resume point (CEE3SRP) 3.1.1.2
 severity of a condition 3.1.1.3
 signaling a condition 3.1.1.1
 signature CSECT, Fortran (CEESG007) 2.3 to 2.3.2
 SIN intrinsic function
 duplicate name in Fortran and C libraries
 See also conflicting references
 as a conflicting reference 2.4.1
 unique, alternate name 2.4.2
 SINH intrinsic function
 duplicate name in Fortran and C libraries
 See also conflicting references
 as a conflicting reference 2.4.1
 unique, alternate name 2.4.2
 source materials, restricted 1.2.2.4
 SQRT intrinsic function
 duplicate name in Fortran and C libraries
 See also conflicting references
 as a conflicting reference 2.4.1
 unique, alternate name 2.4.2
 square-root exception
 qualifying data APPENDIX1.2.3
 sample condition handler for 3.1.4.1
 stack frame 3.1.1.2
 static debug 1.2.2.7
 STEPLIB ddname
 CEE.V1R5M0.SCEERUN data set and 2.1.1
 specifying under TSO 2.1.3
 STOP statement
 return code set by 2.6.2.2
 symbolic feedback code
 See also feedback code
 about 3.1.1.3.2
 CEE0CE--resume with new input value 3.1.1.4.1
 CEE0CF--resume with new output value 3.1.1.4.1

Lang Env V1R5 Fortran Migration Guide
Index

¦ Copyright IBM Corp. 1995
INDEX - 15

 FOR0070--resume with Fortran-specific correction 3.1.1.4.1
 symbolic feedback code files
 about 3.1.1.3.2
 CEEFORCT--for common conditions 3.1.1.3.2
 FORFORCT--for Fortran conditions 3.1.1.3.2
 SYS1.VSF2FORT data set
 CEE.V1R5M0.SCEELKED and CEE.V1R5M0.SAFHFORT data sets 2.1.1
 SYS1.VSF2LOAD data set
 CEE.V1R5M0.SCEERUN data set 2.1.1
 SYSLIB ddname
 for linkage editor
 CEE.V1R5M0.SAFHFORT data set 2.1.1
 CEE.V1R5M0.SCEELKED data set 2.1.1
 SYSRCS callable service
 user return code set by 2.6.2.2
 SYSRCX callable service
 return code set by 2.6.2.2
 system completion (abend) codes
 See completion (abend) codes
 system link list
 CEE.V1R5M0.SCEERUN data set and 2.1.1
 T
 TAN intrinsic function
 duplicate name in Fortran and C libraries
 See also conflicting references
 as a conflicting reference 2.4.1
 unique, alternate name 2.4.2
 TANH intrinsic function
 duplicate name in Fortran and C libraries
 See also conflicting references
 as a conflicting reference 2.4.1
 unique, alternate name 2.4.2
 termination with completion (abend) code
 ABTERMENC(ABEND) run-time option 2.6.1 2.6.3
 CEEBXITA assembler user exit 2.6.3
 termination with return code
 ABTERMENC(RETCODE) run-time option 2.6.1
 termination, abnormal
 ABTERMENC(ABEND) run-time option 2.6.1 2.6.3
 CEEBXITA assembler user exit 2.6.3
 termination, normal
 ABTERMENC(RETCODE) run-time option 2.6.1
 texts of run-time error messages 3.2.1
 TRACE statement
 static debug 1.2.2.7
 transient routines
 availability under TSO 2.1.3
 CEE.V1R5M0.SCEERUN data set 2.1.1
 TSO
 invoking interface validation exit 2.4.3.2.2
 specifying run-time libraries 2.1.3
 U
 unhandled condition 3.1.1.5
 unnormalized-operand exception
 qualifying data APPENDIX1.2.2
 unregistering a user-written condition handler (CEEHDLU) 3.1.1.2
 unsupported VS FORTRAN facilities 1.1.3 1.2.1 to 1.2.2.7
 user completion (abend) codes
 See completion (abend) codes
 user-written condition handler

Lang Env V1R5 Fortran Migration Guide
Index

¦ Copyright IBM Corp. 1995
INDEX - 16

 about 3.1.1.2
 actions 3.1.1.4.1
 Fortran declarations for 3.1.1.4.2
 Fortran examples of 3.1.4 to 3.1.4.4.2
 Fortran-specific services for writing 3.1.3 to 3.1.3.4
 writing 3.1.1.4 to 3.1.1.4.2
 USRHDLR run-time option 3.1.1.4.2 3.1.1.5
 V
 vector instruction operands, misaligned 3.2.5
 VFEIN# callable service
 initializing run-time environment 3.2.9 to 3.2.9.4
 VM, Fortran support on 1.1.3
 VS FORTRAN
 alternative mathematical routines 1.2.2.3
 automatic error correction 3.1.2.3 APPENDIX1.4
 duplicate names in Fortran and C libraries
 See conflicting references
 error correction 3.1.2.3 APPENDIX1.4
 error message numbers
 Language Environment to VS FORTRAN mapping APPENDIX1.3.2
 VS FORTRAN to Language Environment mapping APPENDIX1.3.1
 error option table (AFBUOPT), VS FORTRAN 3.1.2.1
 extended error handling facility 3.1.2 to 3.1.2.3
 incompatibilities, summary of 1.1.3 1.2.1
 library routines
 removing from load module 2.2
 load module compatibility 1.1.4
 mathematical routines, alternative 1.2.2.3
 object module compatibility 1.1.2
 unsupported facilities 1.1.3 1.2.1 to 1.2.2.7
 VSCOM# callable service
 initializing run-time environment 3.2.9 to 3.2.9.4
 VSF2FORT data set
 CEE.V1R5M0.SCEELKED and CEE.V1R5M0.SAFHFORT data sets 2.1.1
 VSF2LOAD data set
 CEE.V1R5M0.SCEERUN data set 2.1.1
 VSF2PARM macro, VS FORTRAN 2.5.3
 W
 WRITE statement and the message file 3.2.3

Lang Env V1R5 Fortran Migration Guide
Index

¦ Copyright IBM Corp. 1995
INDEX - 17

 BACK_2 We'd Like to Hear from You
IBM Language Environment for MVS & VM Fortran Run-Time Migration Guide Release 5

 Publication No. SC26-8499-00

Please use one of the following ways to send us your comments about this book:

� Mail--Print and use the Readers' Comments form on the next page. To print the form, select Print or Copy from the Services
 pull-down menu. Enter COMMENTS as the topic to be printed or copied. Mail the completed form to:

 IBM Corporation, Department J58
 P.O. Box 49023
 San Jose, California 95161-9023
 U.S.A.

 If you are sending the form from a country other than the United States, give it to your local IBM branch office or IBM
 representative for mailing.

� Fax--Print and use the Readers' Comments form on the next page and fax it to this U.S. number: 800-426-7773. To print the form,
 follow the instructions under "Mail."

� Electronic mail--Use one of the following network IDs

 - IBMMail: USIB4WMS at IBMMAIL
 - Internet: COMMENTS at VNET.IBM.COM

 Be sure to include the following with your comments:

 - Title and publication number of this book
 - Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the information is presented. To request additional
 publications, or to comment on other IBM information or the function of IBM products, please give your comments to your IBM
 representative or to your IBM authorized remarketer.

IBM may use or distribute your comments without obligation.

Lang Env V1R5 Fortran Migration Guide
We'd Like to Hear from You

¦ Copyright IBM Corp. 1995
BACK_2 - 1

 COMMENTS Readers' Comments
IBM Language Environment for MVS & VM Fortran Run-Time Migration Guide Release 5

 Publication No. SC26-8499-00

How satisfied are you with the information in this book?

 Legend: 1 Very satisfied
 2 Satisfied
 3 Neutral
 4 Dissatisfied
 5 Very dissatisfied

Please circle the number that corresponds to the level of your satisfaction.

 Technically accurate 1 2 3 4 5
 Complete 1 2 3 4 5
 Easy to find 1 2 3 4 5
 Easy to understand 1 2 3 4 5
 Well organized 1 2 3 4 5
 Applicable to your tasks 1 2 3 4 5
 Grammatically correct and consistent 1 2 3 4 5
 Graphically well designed 1 2 3 4 5
 Overall satisfaction 1 2 3 4 5

Please tell us how we can improve this book:

May we contact you to discuss your comments? Yes No

 Name ___
 Company or Organization ___
 Address ___

 Phone No. ___

Lang Env V1R5 Fortran Migration Guide
Readers' Comments

¦ Copyright IBM Corp. 1995
COMMENTS - 1

