
 COVER Book Cover
 --
 Systems Application Architecture

 Common Programming Interface
 FORTRAN Reference

 Document Number SC26-4357-02

 File Number S370-40

 --

SAA CPI FORTRAN Reference
Book Cover

¦ Copyright IBM Corp. 1987, 1990
COVER - 1

 TITLE Title Page
 Systems Application Architecture
 Common Programming Interface
 FORTRAN Reference

 Document Number SC26-4357-02

SAA CPI FORTRAN Reference
Title Page

¦ Copyright IBM Corp. 1987, 1990
TITLE - 1

 EDITION Edition Notice
 Third Edition (September 1990)

 This edition replaces and makes obsolete the previous edition,
 SC26-4357-1.

 This edition applies to IBM's Systems Application Architecture FORTRAN
 and to the following:

 VS FORTRAN Version 2 Release 4, Program Number 5668-806
¦ IBM FORTRAN/400, Program Number 5730-FT1
 IBM FORTRAN/2, Program Number 6280185

 and to all subsequent releases and modifications until otherwise
 indicated in new editions. Consult the latest edition of the
 applicable IBM system bibliography for current product information.

 Specific changes are indicated by a vertical bar to the left of the
 change. Editorial changes that have no technical significance are not
 noted. For a detailed list of changes, see "Summary of Changes" in
 topic CHANGES.

 Order publications through your IBM representative or the IBM branch
 office serving your locality. Publications are not stocked at the
 address given below.

 A form for reader's comments appears at the back of this publication.
 If the form has been removed, address your comments to: IBM
 Corporation, Programming Publishing, P.O. Box 49023, San Jose,
 California, U.S.A. 95161-9023.

 When you send information to IBM, you grant IBM a non-exclusive right
 to use or distribute the information in any way it believes
 appropriate without incurring any obligation to you.

 ¦ Copyright International Business Machines Corporation 1987, 1990.
 All rights reserved.
 Note to U.S. Government Users -- Documentation related to restricted
 rights -- Use, duplication or disclosure is subject to restrictions
 set forth in GSA ADP Schedule Contract with IBM Corp.

SAA CPI FORTRAN Reference
Edition Notice

¦ Copyright IBM Corp. 1987, 1990
EDITION - 1

 PREFACE Special Notices
 References in this publication to IBM products, programs or services do
 not imply that IBM intends to make these available in all countries in
 which IBM operates.

 Any reference to an IBM licensed program or other IBM product in this
 publication is not intended to state or imply that only IBM's program or
 other product may be used. Any functionally equivalent program which does
 not infringe any of IBM's intellectual property rights may be used instead
 of the IBM product. Evaluation and verification of operation in
 conjunction with other products, except those expressly designated by IBM,
 is the user's responsibility.

 IBM may have patents or pending patent applications covering the subject
 matter in this document. The furnishing of this document does not give
 you any license to these patents. You can send license inquiries, in
 writing, to the IBM Director of Commercial Relations, IBM Corporation,
 Purchase, NY 10577.

 The following terms, denoted by an asterisk (*) on their first occurrences
 in this publication, are trademarks of the IBM Corporation in the United
 States and/or other countries:

 AD/Cycle OS/2
 FORTRAN/2 OS/400
 FORTRAN/400 RPG
 IBM SAA
 MVS Systems Application Architecture
 Operating System/2 VM
 Operating System/400

SAA CPI FORTRAN Reference
Special Notices

¦ Copyright IBM Corp. 1987, 1990
PREFACE - 1

 CONTENTS Table of Contents
 COVER Book Cover
 TITLE Title Page
 EDITION Edition Notice
 PREFACE Special Notices
 CONTENTS Table of Contents
 1.0 Chapter 1. Introduction
 1.1 Who Should Read This Book
 1.2 What the SAA Solution Is
 1.2.1 Supported Environments
 1.2.2 Common Programming Interface
 1.3 How to Use This Book
 1.3.1 Relationship to Products
 1.3.2 How Product Implementations Are Designated
 1.3.3 How to Read the Syntax Diagrams
 1.4 A Note about Examples
 1.5 Related Documentation
 1.5.1 For the SAA Solution
 1.5.2 For Implementing Products
 1.5.2.1 VS FORTRAN Version 2 Publications
 1.5.2.2 FORTRAN/400 Publications
 1.5.2.3 FORTRAN/2 Publications
 1.6 Industry Standards
 1.7 Interface Definition Table
 2.0 Chapter 2. Characters, Names, Lines, Statements, and Execution Sequence
 2.1 Characters
 2.2 Names
 2.2.1 Scope of a Name
 2.3 Lines
 2.4 Statements
 2.5 Statement Labels
 2.6 Order of Statements and Comment Lines
 2.7 Normal Execution Sequence and Transfer of Control
 3.0 Chapter 3. Data Types and Constants
 3.1 The Data Types
 3.2 How Type Is Determined
 3.3 INTEGER*2 Type
 3.4 INTEGER*4 Type
 3.5 REAL*4 Type
 3.5.1 Forms of a Real Constant
 3.6 REAL*8 (Double Precision) Type
 3.6.1 Forms of a Double Precision Constant
 3.7 COMPLEX*8 Type
 3.8 COMPLEX*16 Type
 3.9 LOGICAL*1 Type
 3.10 LOGICAL*4 Type
 3.11 CHARACTER Type
 4.0 Chapter 4. Variables, Arrays, and Character Substrings
 4.1 Variables
 4.2 Arrays
 4.2.1 Array Declarators
 4.2.2 Kinds of Array Declarators and Arrays
 4.2.3 Dimensions of an Array
 4.2.4 Size of an Array
 4.2.5 Array Elements
 4.2.6 Arrangement of Arrays in Storage
 4.3 Character Substrings
 4.4 Definition Status
 4.5 Reference
 4.6 Association

SAA CPI FORTRAN Reference
Table of Contents

¦ Copyright IBM Corp. 1987, 1990
CONTENTS - 1

 5.0 Chapter 5. Expressions
 5.1 Arithmetic Expressions
 5.1.1 Arithmetic Constant Expressions
 5.1.2 Data Type of an Arithmetic Expression
 5.2 Character Expressions
 5.2.1 Character Constant Expressions
 5.3 Relational Expressions
 5.3.1 Arithmetic Relational Expressions
 5.3.2 Character Relational Expressions
 5.4 Logical Expressions
 5.4.1 Value of a Logical Expression
 5.4.2 Logical Constant Expressions
 5.4.3 Precedence of Operators
 6.0 Chapter 6. Specification Statements
 6.1 DIMENSION Statement
 6.2 EQUIVALENCE Statement
 6.3 COMMON Statement
 6.3.1 Common Association
 6.3.2 Common Block Storage Sequence
 6.3.3 Size of a Common Block
 6.3.4 Differences between Named Common Blocks and Blank Common Blocks
 6.3.5 Restriction on Common and Equivalence
 6.4 INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, and CHARACTER Type Statements
 6.5 IMPLICIT Statement
 6.6 PARAMETER Statement
 6.7 EXTERNAL Statement
 6.8 INTRINSIC Statement
 6.9 SAVE Statement
 7.0 Chapter 7. DATA Statement
 8.0 Chapter 8. Assignment Statements
 8.1 Arithmetic Assignment Statement
 8.2 Logical Assignment Statement
 8.3 Statement Label Assignment (ASSIGN) Statement
 8.4 Character Assignment Statement
 9.0 Chapter 9. Control Statements
 9.1 Unconditional GO TO Statement
 9.2 Computed GO TO Statement
 9.3 Assigned GO TO Statement
 9.4 Arithmetic IF Statement
 9.5 Logical IF Statement
 9.6 IF Construct--Block IF, ELSE IF, ELSE, and END IF Statements
 9.7 DO Statement
 9.7.1 Range of a DO Loop
 9.7.2 Active and Inactive DO Loops
 9.7.3 Execution of a DO Statement
 9.7.4 Loop Control Processing
 9.7.5 Execution of the Range
 9.7.6 Terminal Statement Execution
 9.7.7 Incrementation Processing
 9.8 CONTINUE Statement
 9.9 STOP Statement
 9.10 PAUSE Statement
 9.11 END Statement
 10.0 Chapter 10. Program Units and Procedures
 10.1 Relationships among Program Units and Procedures
 10.2 PROGRAM Statement--Main Program
 10.3 Functions
 10.3.1 Function Reference
 10.3.2 Statement Function Statement
 10.3.3 FUNCTION Statement--Function Subprogram (External Function)

SAA CPI FORTRAN Reference
Table of Contents

¦ Copyright IBM Corp. 1987, 1990
CONTENTS - 2

 10.4 SUBROUTINE Statement
 10.5 CALL Statement
 10.6 ENTRY Statement
 10.7 RETURN Statement
 10.8 Arguments
 10.8.1 Association of Arguments
 10.8.2 Length of Character Arguments
 10.8.3 Variables As Dummy Arguments
 10.8.4 Arrays As Dummy Arguments
 10.8.5 Procedures As Dummy Arguments
 10.8.6 Asterisks As Dummy Arguments
 10.9 BLOCK DATA Statement--Block Data Subprogram
 11.0 Chapter 11. Input/Output Statements
 11.1 Records
 11.1.1 Formatted Records
 11.1.2 Unformatted Records
 11.1.3 Endfile Records
 11.2 Files
 11.2.1 External Files
 11.2.2 External File Access--Sequential or Direct
 11.2.3 Internal Files
 11.3 Units
 11.3.1 Connection of a Unit
 11.4 READ, WRITE, and PRINT Statements
 11.4.1 Categories of READ, WRITE, and PRINT Statements
 11.4.2 Execution of READ, WRITE, and PRINT Statements
 11.4.3 File Position before and after Data Transfer
 11.4.4 Implied-DO List in a READ, WRITE, or PRINT Statement
 11.4.5 Examples of READ, WRITE, and PRINT Statements
 11.5 OPEN Statement
 11.6 CLOSE Statement
 11.7 INQUIRE Statement
 11.8 BACKSPACE, ENDFILE, and REWIND Statements
 12.0 Chapter 12. Input/Output Formatting
 12.1 Format-Directed Formatting
 12.1.1 Format Specification
 12.1.2 FORMAT Statement
 12.1.3 Character Format Specification
 12.2 Interaction between an Input/Output List and a Format Specification
 12.3 Editing
 12.3.1 / (Slash) Editing
 12.3.2 : (Colon) Editing
 12.3.3 A (Character) Editing
 12.3.4 Apostrophe Editing
 12.3.5 BN (Blank Null) and BZ (Blank Zero) Editing
 12.3.6 E (Real with Exponent) and D (Double Precision) Editing
 12.3.7 F (Real without Exponent) Editing
 12.3.8 G (General) Editing
 12.3.9 H Editing
 12.3.10 I (Integer) Editing
 12.3.11 L (Logical) Editing
 12.3.12 P (Scale Factor) Editing
 12.3.13 S, SP, and SS (Sign Control) Editing
 12.3.14 T, TL, TR, and X (Positional) Editing
 12.3.15 Z (Hexadecimal) Editing
 12.4 List-Directed Formatting
 12.4.1 List-Directed Input
 12.4.2 List-Directed Output
 13.0 Chapter 13. INCLUDE Compiler Directive
 A.0 Appendix A. Intrinsic Functions

SAA CPI FORTRAN Reference
Table of Contents

¦ Copyright IBM Corp. 1987, 1990
CONTENTS - 3

 B.0 Appendix B. Compiler Considerations
 CHANGES Summary of Changes
 INDEX Index

SAA CPI FORTRAN Reference
Table of Contents

¦ Copyright IBM Corp. 1987, 1990
CONTENTS - 4

 1.0 Chapter 1. Introduction
 This introductory section:

 � Identifies the book's purpose and audienc
 � Gives a brief overview of the Systems Application Architecture* (SAA*
 solution
 � Explains how to use the book

 Subtopics
 1.1 Who Should Read This Book
 1.2 What the SAA Solution Is
 1.3 How to Use This Book
 1.4 A Note about Examples
 1.5 Related Documentation
 1.6 Industry Standards
 1.7 Interface Definition Table

SAA CPI FORTRAN Reference
Chapter 1. Introduction

¦ Copyright IBM Corp. 1987, 1990
1.0 - 1

 1.1 Who Should Read This Book

 This book defines the SAA FORTRAN interface. It is intended for
 programmers who want to write applications that adhere to this definition.

 This book is a reference rather than a tutorial. It assumes you are
 already familiar with FORTRAN programming concepts.

SAA CPI FORTRAN Reference
Who Should Read This Book

¦ Copyright IBM Corp. 1987, 1990
1.1 - 1

 1.2 What the SAA Solution Is

 The SAA solution is based on a set of software interfaces, conventions and
 protocols that provide a framework for designing and developing
 applications.

 The SAA solution:

 � Defines a common programming interface that you can use to develo
 applications that can be integrated with each other, and transported
 to run in multiple SAA environments

 � Defines common communications support that you can use to connec
 applications, systems, networks, and devices

 � Defines a common user access that you can use to achieve consistenc
 in panel layout and user interaction techniques

 � Offers some applications and application development tools written b
 IBM*.

 Subtopics
 1.2.1 Supported Environments
 1.2.2 Common Programming Interface

SAA CPI FORTRAN Reference
What the SAA Solution Is

¦ Copyright IBM Corp. 1987, 1990
1.2 - 1

 1.2.1 Supported Environments

 Several combinations of IBM hardware and software have been selected as
 SAA environments. These are environments in which IBM will manage the
 availability of support for applicable SAA elements, and the conformance
 of those elements to SAA specifications. The SAA environments are the
 following:

 � MVS

 - TSO/E
 - CICS
 - IMS

 � VM*/CM

 � Operating System/400* (OS/400*

 � Operating System/2* (OS/2*

SAA CPI FORTRAN Reference
Supported Environments

¦ Copyright IBM Corp. 1987, 1990
1.2.1 - 1

 1.2.2 Common Programming Interface

 As its name implies, the common programming interface (CPI) provides
 languages, commands, and calls that programmers can use to develop
 applications which take advantage of SAA consistency. These applications
 can be easily integrated and transported across the supported
 environments.

 The components of the interface currently fall into two general
 categories:

 � Language

 Application Generator
 C
 COBOL
 FORTRAN
 PL/I
 Procedures Language
 RPG*

 � Service

 Communications Interface
 Database Interface
 Dialog Interface
 Presentation Interface
 Query Interface
 Repository Interface.

 The CPI is defined by this and the other CPI reference books. The CPI is
 not in itself a product or a piece of code. But--as a definition--it does
 establish and control how IBM products are being implemented, and it
 establishes a common base across the applicable SAA environments.

 Thus, when you want to create an application that can be used in more than
 one environment, you can stay within the boundaries of the CPI and obtain
 easier portability. (Naturally, the design of such applications should be
 done with portability in mind as well.)

 A list of SAA books to help you can be found under "Related Documentation"
 in topic 1.5 and on the back cover of this book.

SAA CPI FORTRAN Reference
Common Programming Interface

¦ Copyright IBM Corp. 1987, 1990
1.2.2 - 1

 1.3 How to Use This Book

 Subtopics
 1.3.1 Relationship to Products
 1.3.2 How Product Implementations Are Designated
 1.3.3 How to Read the Syntax Diagrams

SAA CPI FORTRAN Reference
How to Use This Book

¦ Copyright IBM Corp. 1987, 1990
1.3 - 1

 1.3.1 Relationship to Products

 The SAA FORTRAN interface defines the elements that are consistent across
 the applicable SAA environments. Preparing and running programs requires
 the use of a FORTRAN product that implements the interface on one of these
 systems.

 For the FORTRAN interface, these products are:

 � VS FORTRAN Version 2 Release 4 (5668-806) on MVS and V
¦� IBM FORTRAN/400* (5730-FT1) on Operating System/40
 � IBM FORTRAN/2* (6280185) on Operating System/

 These products have their own books, and you will need to use those books
 in addition to this one. This book defines the interface elements that
 are common across the environments. The product books describe any
 additional elements, and--more importantly--explain how to prepare and run
 a program in that particular environment.

 See "Related Documentation" in topic 1.5 for a list of those books.

SAA CPI FORTRAN Reference
Relationship to Products

¦ Copyright IBM Corp. 1987, 1990
1.3.1 - 1

 1.3.2 How Product Implementations Are Designated

 Because the SAA solution is still evolving, complete and consistent
 products may not be available yet on all the applicable systems. Some
 interface elements may not be implemented everywhere. Others may be
 implemented, but differ slightly in their syntax or semantics (how they
 are coded or how they behave at run time).

 These conditions are identified in this book in two ways:

 � A system checklist precedes each interface element. If the interfac
 element is implemented or announced on a particular system, that
 column is marked with an X. If it is not, that column is blank.

 For the SAA FORTRAN interface, all of the interface elements are
 implemented or announced for the four applicable systems:

 +--------------------------------+
 ¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
 ¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 � The FORTRAN interface definition is printed in black ink. If th
 implementation of an interface element in an operating environment
 differs from the SAA definition in its syntax or semantics, text is
 printed in green--as is this sentence.

SAA CPI FORTRAN Reference
How Product Implementations Are Designated

¦ Copyright IBM Corp. 1987, 1990
1.3.2 - 1

 1.3.3 How to Read the Syntax Diagrams

 Throughout this book, syntax is described using the structure defined
 below.

 � Read the syntax diagrams from left to right, from top to bottom
 following the path of the line.

 The --- symbol indicates the beginning of a statement.

 The --- symbol indicates that the statement syntax is continued on
 the next line.

 The --- symbol indicates that a statement is continued from the
 previous line.

 The --- � symbol indicates the end of a statement.

 Diagrams of syntactical units other than complete statements start
 with the --- symbol and end with the --- symbol.

 � Required items appear on the horizontal line (the main path)

 ---STATEMENT-------required_item------------------------------------- �

 � Optional items appear below the main path

 ---STATEMENT--- �
 +-optional_item-+

 � If you can choose from two or more items, they appear vertically, in
 stack.

 If you must choose one of the items, one item of the stack appears on
 the main path.

 ---STATEMENT------required_choice1----------------------------------- �
 +--required_choice2--+

 If choosing one of the items is optional, the entire stack appears
 below the main path.

 ---STATEMENT--- �
 +--optional_choice1--¦
 +--optional_choice2--+

 � An arrow returning to the left above the main line indicates an ite
 that can be repeated.

 +------------------+
 � ¦
 ---STATEMENT-----repeatable_item------------------------------------- �

 A repeat arrow above a stack indicates that you can repeat the items

SAA CPI FORTRAN Reference
How to Read the Syntax Diagrams

¦ Copyright IBM Corp. 1987, 1990
1.3.3 - 1

 in the stack. Where a comma is included in the repeat symbol, it must
 be used between repeated items.

 � Keywords appear in uppercase (for example, EQUIVALENCE). They must be
 spelled exactly as shown.

 � Lowercase letters (for example array_element_name) represent
 user-supplied names or values. If one of these terms ends in _list,
 it specifies a list of the terms, where a list is a nonempty sequence
 of the terms separated by commas. For example, the term name_list
 specifies a list of the term name.

 � If parentheses are shown, you must enter them as part of the syntax

 � Items within brackets ([]) are optional. An ellipsis (...) followin
 an item indicates that the item may be repeated.

 The following example of a fictitious statement illustrates how the syntax
 is used:

 +--+
 ¦ ¦
 ¦ +--,--+ ¦
 ¦ � ¦ ¦
 ¦ --EXAMPLE--char_constant----a-----------------e-----name_list-------- � ¦
 ¦ +-b-+ +-c-----¦ ¦
 ¦ +-(-d-)-+ ¦
 ¦ ¦
 +--+

 In the fictitious statement EXAMPLE you would:

 � Use the keyword EXAMPLE.

 � Substitute a value for char_constant.

 � Substitute a value for a or b, but not both.

 � Substitute a value for c, a value for d, or no value. If you
 substitute a value for d, you must include the parentheses.

 � Substitute at least one value for e. If you substitute more than one
 value, you must put a comma between each.

 � Substitute the value of at least one name for name_list.

SAA CPI FORTRAN Reference
How to Read the Syntax Diagrams

¦ Copyright IBM Corp. 1987, 1990
1.3.3 - 2

 1.4 A Note about Examples

 Examples in this book help explain elements of the SAA FORTRAN language.
 For this purpose they are coded in a simple style. They do not attempt to
 conserve storage, check for errors, achieve fast execution, or demonstrate
 all possible uses of a language element.

SAA CPI FORTRAN Reference
A Note about Examples

¦ Copyright IBM Corp. 1987, 1990
1.4 - 1

 1.5 Related Documentation

 Subtopics
 1.5.1 For the SAA Solution
 1.5.2 For Implementing Products

SAA CPI FORTRAN Reference
Related Documentation

¦ Copyright IBM Corp. 1987, 1990
1.5 - 1

 1.5.1 For the SAA Solution

 An introduction to the SAA solution in general can be found in SAA: An
 Overview, GC26-4341.

 An introduction to the common programming interface can be found in Common
 Programming Interface: Summary, GC26-4675.

 More detailed information on the components of the common programming
 interface is available in the following SAA manuals (including this one):

 Application Generator Reference, SC26-4355
 C Reference--Level 2, SC09-1308
 COBOL Reference, SC26-4354
 Communications Reference, SC26-4399
 Database Reference, SC26-4348
 Dialog Reference, SC26-4356
 FORTRAN Reference, SC26-4357
 PL/I Reference, SC26-4381
 Presentation Reference, SC26-4359
 Procedures Language Reference, SC26-4358
¦ Procedures Language Level 2 Reference, SC24-5549
 Query Reference, SC26-4349
 Repository Reference, SC26-4684
 RPG Reference, SC09-1286.

 General programming advice may be found in Writing Applications: A Design
 Guide, SC26-4362. An introduction to the use of the AD/Cycle* application
 development tools can be found in AD/Cycle Concepts, GC26-4531.

 A definition of the common user access can be found in Common User Access:
 Advanced Interface Design Guide, SC26-4582, and Common User Access: Basic
 Interface Design Guide, SC26-4583.

 More information on the common communications support can be found in
 Common Communications Support: Summary, GC31-6810.

 Ordering Information: Contact your local IBM branch office for
 information on how to order the above publications. They also can be
 obtained through an authorized IBM dealer. The entire set of SAA
 publications can be ordered by specifying the bill-of-forms number
 SBOF-1240.

SAA CPI FORTRAN Reference
For the SAA Solution

¦ Copyright IBM Corp. 1987, 1990
1.5.1 - 1

 1.5.2 For Implementing Products

 Subtopics
 1.5.2.1 VS FORTRAN Version 2 Publications
 1.5.2.2 FORTRAN/400 Publications
 1.5.2.3 FORTRAN/2 Publications

SAA CPI FORTRAN Reference
For Implementing Products

¦ Copyright IBM Corp. 1987, 1990
1.5.2 - 1

 1.5.2.1 VS FORTRAN Version 2 Publications

 VS FORTRAN Version 2 Language and Library Reference, SC26-4221
 VS FORTRAN Version 2 Programming Guide, SC26-4222

SAA CPI FORTRAN Reference
VS FORTRAN Version 2 Publications

¦ Copyright IBM Corp. 1987, 1990
1.5.2.1 - 1

¦1.5.2.2 FORTRAN/400 Publications

¦ IBM FORTRAN/400 Language Reference, SC21-9844
¦ IBM FORTRAN/400 User's Guide, SC21-9845

SAA CPI FORTRAN Reference
FORTRAN/400 Publications

¦ Copyright IBM Corp. 1987, 1990
1.5.2.2 - 1

 1.5.2.3 FORTRAN/2 Publications

 IBM FORTRAN/2 Fundamentals
 IBM FORTRAN/2 Compile, Link, and Run
 IBM FORTRAN/2 Language Reference

SAA CPI FORTRAN Reference
FORTRAN/2 Publications

¦ Copyright IBM Corp. 1987, 1990
1.5.2.3 - 1

 1.6 Industry Standards

 Systems Application Architecture FORTRAN is designed according to the
 specifications of the following industry standards as understood and
 interpreted by IBM as of September, 1987:

 � American National Standard Programming Language FORTRAN, ANS
 X3.9-1978 (also known as 1977 ANS FORTRAN)

 � International Organization for Standardization ISO 1539-198
 Programming Languages-FORTRAN. This standard specifies the same level
 of FORTRAN as 1977 ANS FORTRAN. In this book, references to 1977 ANS
 FORTRAN are references to both standards.

 � American National Standard Coded Character Set--7-bit America
 Standard Code for Information Interchange, ANSI X3.4-1986 (also known
 as ASCII).

 � American National Standard Binary Floating-Point Arithmetic, ANSI/IEE
 754-1985, with the following differences:

 - Rounds to nearest mode only.
 - No rounding precision mode.
 - No trapping (signaling) NaNs (not a number).
 - No user traps.
 - Exception status flags are not supported.

 The bit-manipulation intrinsic functions are based on those described in
 Industrial Computer System FORTRAN Procedures for Executive Functions,
 Process Input/Output, and Bit Manipulation, ANSI/ISA-S61.1.

SAA CPI FORTRAN Reference
Industry Standards

¦ Copyright IBM Corp. 1987, 1990
1.6 - 1

 1.7 Interface Definition Table

 The table below lists the language elements currently in the FORTRAN
 interface for Systems Application Architecture.

¦The table indicates that all systems have an IBM licensed program
¦announced or available that implements the language elements.

 On MVS and VM, the implementing product is VS FORTRAN Version 2 Release 4
¦(5668-806). On Operating System/400, the implementing product is IBM
¦FORTRAN/400 (5730-FT1). On Operating System/2, the implementing product
 is IBM FORTRAN/2 (6280185).

 +--+
 ¦ Table 1. Major Elements of the FORTRAN Interface ¦
 +--¦
 ¦ Interface Element ¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +---------------------------------------+-------+-------+--------+-------¦
 ¦ All elements of 1977 ANS FORTRAN ¦ X ¦ X ¦ X ¦ X ¦
 ¦ ¦ ¦ ¦ ¦ ¦
 +---------------------------------------+-------+-------+--------+-------¦
 ¦ IBM extensions: ¦ ¦ ¦ ¦ ¦
 +---------------------------------------+-------+-------+--------+-------¦
 ¦ Case-insensitive source ¦ X ¦ X ¦ X ¦ X ¦
 +---------------------------------------+-------+-------+--------+-------¦
 ¦ 31-character names ¦ X ¦ X ¦ X ¦ X ¦
 +---------------------------------------+-------+-------+--------+-------¦
 ¦ Underscore character (_) in names ¦ X ¦ X ¦ X ¦ X ¦
 +---------------------------------------+-------+-------+--------+-------¦
 ¦ INTEGER*2 data type ¦ X ¦ X ¦ X ¦ X ¦
 +---------------------------------------+-------+-------+--------+-------¦
 ¦ COMPLEX*16 data type ¦ X ¦ X ¦ X ¦ X ¦
 +---------------------------------------+-------+-------+--------+-------¦
 ¦ LOGICAL*1 data type ¦ X ¦ X ¦ X ¦ X ¦
 +---------------------------------------+-------+-------+--------+-------¦
 ¦ Optional length specification for ¦ X ¦ X ¦ X ¦ X ¦
 ¦ INTEGER, REAL, COMPLEX, ¦ ¦ ¦ ¦ ¦
 ¦ and LOGICAL ¦ ¦ ¦ ¦ ¦
 +---------------------------------------+-------+-------+--------+-------¦
 ¦ EQUIVALENCE allows association of ¦ X ¦ X ¦ X ¦ X ¦
 ¦ character and noncharacter items ¦ ¦ ¦ ¦ ¦
 +---------------------------------------+-------+-------+--------+-------¦
 ¦ Data initialization in type ¦ X ¦ X ¦ X ¦ X ¦
 ¦ statements ¦ ¦ ¦ ¦ ¦
 +---------------------------------------+-------+-------+--------+-------¦
 ¦ COMMON allows character and non- ¦ X ¦ X ¦ X ¦ X ¦
 ¦ character items in same block ¦ ¦ ¦ ¦ ¦
 +---------------------------------------+-------+-------+--------+-------¦
 ¦ IMPLICIT NONE form of the IMPLICIT ¦ X ¦ X ¦ X ¦ X ¦
 ¦ statement ¦ ¦ ¦ ¦ ¦
 +---------------------------------------+-------+-------+--------+-------¦
 ¦ Z edit descriptor ¦ X ¦ X ¦ X ¦ X ¦
 +---------------------------------------+-------+-------+--------+-------¦
 ¦ INCLUDE compiler directive ¦ X ¦ X ¦ X ¦ X ¦
 +---------------------------------------+-------+-------+--------+-------¦
 ¦ CONJG, HFIX, and IMAG intrinsic ¦ X ¦ X ¦ X ¦ X ¦
 ¦ functions ¦ ¦ ¦ ¦ ¦
 +---------------------------------------+-------+-------+--------+-------¦
 ¦ Bit-manipulation intrinsic functions ¦ X ¦ X ¦ X ¦ X ¦
 +---------------------------------------+-------+-------+--------+-------¦

SAA CPI FORTRAN Reference
Interface Definition Table

¦ Copyright IBM Corp. 1987, 1990
1.7 - 1

 +--+

SAA CPI FORTRAN Reference
Interface Definition Table

¦ Copyright IBM Corp. 1987, 1990
1.7 - 2

 2.0 Chapter 2. Characters, Names, Lines, Statements, and Execution Sequence
 This chapter describes:

 � Character
 � Name
 � Line
 � Statement
 � Statement label
 � Order of statements and comment line
 � Normal execution sequence and transfer of control

 Subtopics
 2.1 Characters
 2.2 Names
 2.3 Lines
 2.4 Statements
 2.5 Statement Labels
 2.6 Order of Statements and Comment Lines
 2.7 Normal Execution Sequence and Transfer of Control

SAA CPI FORTRAN Reference
Chapter 2. Characters, Names, Lines, Statements, and Execution Sequence

¦ Copyright IBM Corp. 1987, 1990
2.0 - 1

 2.1 Characters

 The FORTRAN character set consists of letters, digits, and special
 characters:

 +--+
 ¦ Letters ¦ Digits ¦ Special Characters ¦
 +----------------------------+--------+------------------------------------¦
 ¦ Uppercase Lowercase ¦ ¦ ¦
 ¦ Letters Letters ¦ ¦ Characters Names of Characters ¦
 ¦ ¦ ¦ ¦
 ¦ A N a n ¦ 0 ¦ Blank ¦
 ¦ B O b o ¦ 1 ¦ = Equals (equal sign) ¦
 ¦ C P c p ¦ 2 ¦ + Plus (plus sign) ¦
 ¦ D Q d q ¦ 3 ¦ - Minus (minus sign) ¦
 ¦ E R e r ¦ 4 ¦ * Asterisk ¦
 ¦ F S f s ¦ 5 ¦ / Slash ¦
 ¦ G T g t ¦ 6 ¦ (Left parenthesis ¦
 ¦ H U h u ¦ 7 ¦) Right parenthesis ¦
 ¦ I V i v ¦ 8 ¦ , Comma ¦
 ¦ J W j w ¦ 9 ¦ . Decimal point (period) ¦
 ¦ K X k x ¦ ¦ $ Currency symbol ¦
 ¦ L Y l y ¦ ¦ ' Apostrophe ¦
 ¦ M Z m z ¦ ¦ : Colon ¦
 ¦ ¦ ¦ _ Underscore ¦
 ¦ ¦ ¦ ¦
 +--+

 An alphanumeric character is a letter or a digit.

 In statements, lowercase letters are equivalent to their uppercase
 counterparts, except within:

 � Character constant
 � H and apostrophe edit descriptors

 In statements, blanks are significant only in:

 � Character constant
 � H and apostrophe edit descriptor
 � The count of characters permitted in a statement

 You may use blanks anywhere else within a program unit to make it more
 readable.

 The characters have an order known as a collating sequence, which is
 system-dependent. The collating sequence depends on the system's coded
 character set: EBCDIC on MVS, VM, and OS/400, or ASCII on OS/2.

 On OS/2, the carriage return, the line feed, and the end-of-file
 characters must not be used as part of a character constant, an H edit
 descriptor, an apostrophe edit descriptor, or a comment.

SAA CPI FORTRAN Reference
Characters

¦ Copyright IBM Corp. 1987, 1990
2.1 - 1

 2.2 Names

 A name is a sequence of letters, digits, or underscores, the first of
 which must be a letter. A name identifies:

 � A main program, external function, subroutine, block data subprogram
 or common block. The maximum length of these names is 7 characters.

 � A variable, array, constant, argument, or statement function. Th
 maximum length of these names is 31 characters.

 (In 1977 ANS FORTRAN, the maximum length of any name is 6 characters.)

 Examples of Names:

 XPos
 shell
 MAX0
 TWENTY_FIVE
 LongerThanSix

 Subtopics
 2.2.1 Scope of a Name

SAA CPI FORTRAN Reference
Names

¦ Copyright IBM Corp. 1987, 1990
2.2 - 1

 2.2.1 Scope of a Name

 Each name in a program unit has a scope. That scope is either global to
 an executable program or local to a program unit, with the following
 exceptions:

 � The name of a common block in a program unit may also be the name o
 an array, a statement function, a dummy procedure, or a variable (but
 not a variable name that is also an external function name in a
 function subprogram).

 � In a function subprogram, at least one function name (on the FUNCTIO
 or ENTRY statement) must also be the name of a variable in that
 function subprogram.

 Names with global scope are the name of the main program, the names of all
 subprograms, and the names of common blocks. All of these names have the
 scope of an executable program.

 Names with local scope are:

 � Names of variables, arrays, constants, statement functions, dumm
 procedures, and intrinsic functions. These names have a scope of a
 program unit. (A name that is a dummy argument is classified as a
 variable, array, or dummy procedure).

 � Names of variables that appear as dummy arguments in a statemen
 function statement. These names have a scope of that statement.

 � Names of variables that appear as the DO-variable of an implied-D
 list in a DATA statement. These names have a scope of the implied-DO
 list.

SAA CPI FORTRAN Reference
Scope of a Name

¦ Copyright IBM Corp. 1987, 1990
2.2.1 - 1

 2.3 Lines

 A line is a sequence of 72 characters. The character positions in a line
 are called columns and are numbered consecutively 1 through 72.

 There are three kinds of lines:

 � A comment line does not affect the executable program and may be used
 to provide documentation. It may have either of the following forms:

 - C or * in column 1 and, optionally, any characters permitted in a
 character constant (see page 3.11) in columns 2 through 72.
 - Blanks in columns 1 through 72.

 � An initial line is the first line of a statement. It is any line that
 is not a comment line and that contains blanks or a statement label in
 columns 1 through 5 and a blank or zero in column 6.

 � A continuation line is a line that continues a statement beyond its
 initial line. It contains blanks in columns 1 though 5, and any
 character from the FORTRAN character set other than blank or zero in
 column 6. A statement may have as many as 19 continuation lines. The
 END statement is the only statement that must not be continued.

SAA CPI FORTRAN Reference
Lines

¦ Copyright IBM Corp. 1987, 1990
2.3 - 1

 2.4 Statements

 Statements are used to form program units. Each statement is written in
 columns 7 through 72 of an initial line and as many as 19 continuation
 lines. Thus, a statement has a maximum of 1320 characters (20 lines x 66
 characters).

 Each statement is classified as executable or nonexecutable.

 +---+
 ¦ Table 2. Systems Application Architecture FORTRAN Statements ¦
 +---¦
 ¦ Statement ¦ Statement ¦ Executable or Nonexecutable ¦
 ¦ ¦ Group ¦ ¦
 +---------------------------------+----------------+--------------------------------¦
 ¦ Arithmetic assignment ¦ Assignment ¦ Executable - specify actions ¦
 ¦ Logical assignment ¦ ¦ ¦
 ¦ Statement label assignment ¦ ¦ ¦
 ¦ (ASSIGN) ¦ ¦ ¦
 ¦ Character assignment ¦ ¦ ¦
 +---------------------------------+----------------+--------------------------------¦
 ¦ DIMENSION ¦ Specification ¦ Nonexecutable - specify the ¦
 ¦ EQUIVALENCE ¦ ¦ characteristics and ¦
 ¦ COMMON ¦ ¦ arrangement of data ¦
 ¦ Type: INTEGER, REAL, ¦ ¦ ¦
 ¦ DOUBLE PRECISION, COMPLEX, ¦ ¦ ¦
 ¦ LOGICAL, CHARACTER ¦ ¦ ¦
 ¦ IMPLICIT ¦ ¦ ¦
 ¦ PARAMETER ¦ ¦ ¦
 ¦ EXTERNAL ¦ ¦ ¦
 ¦ INTRINSIC ¦ ¦ ¦
 ¦ SAVE ¦ ¦ ¦
 +---------------------------------+----------------+--------------------------------¦
 ¦ DATA ¦ DATA ¦ Nonexecutable - specifies the ¦
 ¦ ¦ ¦ initial values of data ¦
 +---------------------------------+----------------+--------------------------------¦
 ¦ Unconditional GO TO ¦ Control ¦ Executable - specify actions ¦
 ¦ Computed GO TO ¦ ¦ ¦
 ¦ Assigned GO TO ¦ ¦ ¦
 ¦ Arithmetic IF ¦ ¦ ¦
 ¦ Logical IF ¦ ¦ ¦
 ¦ Block IF, ELSE IF, ELSE, END IF ¦ ¦ ¦
 ¦ DO ¦ ¦ ¦
 ¦ CONTINUE ¦ ¦ ¦
 ¦ STOP ¦ ¦ ¦
 ¦ PAUSE ¦ ¦ ¦
 ¦ END ¦ ¦ ¦
 ¦ CALL ¦ ¦ ¦
 ¦ RETURN ¦ ¦ ¦
 +---------------------------------+----------------+--------------------------------¦
 ¦ PROGRAM ¦ Program unit ¦ Nonexecutable - classify ¦
 ¦ FUNCTION ¦ and procedure ¦ program units, specify ¦
 ¦ Statement function ¦ ¦ statement functions, and ¦
 ¦ SUBROUTINE ¦ ¦ specify entry points within ¦
 ¦ ENTRY ¦ ¦ subprograms ¦
 ¦ BLOCK DATA ¦ ¦ ¦
 +---------------------------------+----------------+--------------------------------¦
 ¦ READ ¦ Input/output ¦ Executable - specify actions ¦
 ¦ WRITE ¦ ¦ ¦
 ¦ PRINT ¦ ¦ ¦

SAA CPI FORTRAN Reference
Statements

¦ Copyright IBM Corp. 1987, 1990
2.4 - 1

 ¦ OPEN ¦ ¦ ¦
 ¦ CLOSE ¦ ¦ ¦
 ¦ INQUIRE ¦ ¦ ¦
 ¦ BACKSPACE ¦ ¦ ¦
 ¦ ENDFILE ¦ ¦ ¦
 ¦ REWIND ¦ ¦ ¦
 +---------------------------------+----------------+--------------------------------¦
 ¦ FORMAT ¦ FORMAT ¦ Nonexecutable - contains ¦
 ¦ ¦ ¦ editing information ¦
 +---+

SAA CPI FORTRAN Reference
Statements

¦ Copyright IBM Corp. 1987, 1990
2.4 - 2

 2.5 Statement Labels

 A statement label is one to five digits, one of which must be nonzero. A
 statement is labeled by placing a statement label anywhere in columns 1
 through 5 of its initial line.

 The same label must not be given to more than one statement in a program
 unit. Blanks and leading zeros are not significant in distinguishing
 between statement labels. Any statement may be labeled, but only
 executable statements and FORMAT statements may be referred to by the use
 of statement labels. The statement making the reference and the statement
 being referenced must be in the same program unit.

SAA CPI FORTRAN Reference
Statement Labels

¦ Copyright IBM Corp. 1987, 1990
2.5 - 1

 2.6 Order of Statements and Comment Lines

 The required order of statements and comment lines in a program unit is
 shown in the diagram below. In the diagram:

 � Statements and comment lines above a horizontal line must preced
 those below the line. For example, PARAMETER statements must precede
 DATA, statement function, executable, and END statements, and must
 follow PROGRAM, FUNCTION, SUBROUTINE, BLOCK DATA, and IMPLICIT NONE
 statements.

 � Vertical lines separate statements and comment lines that may b
 interspersed. For example, PARAMETER statements may be interspersed
 with comment lines and with FORMAT, ENTRY, IMPLICIT, and other
 specification statements.

 +--+
 ¦ Table 3. Order of Statements and Comment Lines ¦
 +--¦
 ¦ ¦ PROGRAM, FUNCTION, SUBROUTINE, or ¦
 ¦ ¦ BLOCK DATA statement ¦
 ¦ +--¦
 ¦ ¦ ¦ IMPLICIT NONE statement(1) ¦
 ¦ ¦ +-----------------------------------¦
 ¦ ¦ ¦ ¦ IMPLICIT ¦
 ¦ ¦ ¦ ¦ statements ¦
 ¦ ¦ ¦ PARAMETER +-----------------¦
 ¦ Comment ¦ ¦ statements(4) ¦ Other ¦
 ¦ lines(2) ¦ FORMAT ¦ ¦ specification ¦
 ¦ ¦ and ENTRY(3) ¦ ¦ statements(4) ¦
 ¦ ¦ statements +-----------------+-----------------¦
 ¦ ¦ ¦ ¦ Statement ¦
 ¦ ¦ ¦ ¦ function ¦
 ¦ ¦ ¦ DATA ¦ statements(5) ¦
 ¦ ¦ ¦ statements +-----------------¦
 ¦ ¦ ¦ ¦ Executable ¦
 ¦ ¦ ¦ ¦ statements ¦
 +--¦
 ¦ END statement ¦
 +--+

 Notes:

 1. The IMPLICIT NONE statement, if used, must be the only IMPLICIT
 statement in a program unit.

 2. Comment lines may appear anywhere in a program unit before the END
 statement, even:

 � Before a program unit's first statement
 � Between an initial line and its first continuation line
 � Between two continuation lines.

 3. An ENTRY statement must not appear between a block IF statement and
 its corresponding END IF statement, or between a DO statement and the
 terminal statement of its DO loop.

 4. Any specification statement that specifies the type of a constant's
 name must precede the PARAMETER statement that defines the name. A

SAA CPI FORTRAN Reference
Order of Statements and Comment Lines

¦ Copyright IBM Corp. 1987, 1990
2.6 - 1

 PARAMETER statement that defines a constant's name must precede any
 use of the name.

 5. A statement function may reference another statement function that
 precedes it, but not one that follows it.

SAA CPI FORTRAN Reference
Order of Statements and Comment Lines

¦ Copyright IBM Corp. 1987, 1990
2.6 - 2

 2.7 Normal Execution Sequence and Transfer of Control

 Normal execution sequence is the execution of executable statements in the
 order in which they appear in a program unit. The normal execution
 sequence begins with the first executable statement in a main program.
 The normal execution sequence is not affected by nonexecutable statements,
 or by comment lines.

 A transfer of control is an alteration of the normal execution sequence.
 Statements that may be used to control the execution sequence are:

 � Control statement
 � The terminal statement of a DO loo
 � Input/output statements that contain an error specifier or end-of-fil
 specifier.

 When an external procedure is referenced, execution continues with the
 first executable statement following the FUNCTION, SUBROUTINE, or ENTRY
 statement in the referenced procedure.

 In this book, any description of the sequence of events in a specific
 transfer of control assumes that no event, such as the occurrence of an
 error or of a STOP statement, changes that normal sequence.

SAA CPI FORTRAN Reference
Normal Execution Sequence and Transfer of Control

¦ Copyright IBM Corp. 1987, 1990
2.7 - 1

 3.0 Chapter 3. Data Types and Constants

 A data type (or type) is a set of values and a length. Each variable,
 array, constant, expression, and function has a data type.

 This chapter describes:

 � How type is determined
 � Each type and its permitted values
 � Any necessary internal representation detail (usually only the lengt
 of the type).
 � The form of constants for each type. (Se "PARAMETER Statement" in
 topic 6.6 for a description of named constants.)

 Subtopics
 3.1 The Data Types
 3.2 How Type Is Determined
 3.3 INTEGER*2 Type
 3.4 INTEGER*4 Type
 3.5 REAL*4 Type
 3.6 REAL*8 (Double Precision) Type
 3.7 COMPLEX*8 Type
 3.8 COMPLEX*16 Type
 3.9 LOGICAL*1 Type
 3.10 LOGICAL*4 Type
 3.11 CHARACTER Type

SAA CPI FORTRAN Reference
Chapter 3. Data Types and Constants

¦ Copyright IBM Corp. 1987, 1990
3.0 - 1

 3.1 The Data Types

 The nine data types are: (1)

 INTEGER*2
 INTEGER*4
 REAL*4
 REAL*8
 COMPLEX*8
 COMPLEX*16
 LOGICAL*1
 LOGICAL*4
 CHARACTER

 In this book, integer refers to INTEGER*2 or INTEGER*4, real refers to
 REAL*4 or REAL*8 (REAL*8 is the same as double precision), complex refers
 to COMPLEX*8 or COMPLEX*16, logical refers to LOGICAL*1 or LOGICAL*4, and
 character refers to CHARACTER.

 (1) The form type*length is an abbreviation derived from the
 type statements. INTEGER*2, for example, has the same
 meaning as integer of length 2.

SAA CPI FORTRAN Reference
The Data Types

¦ Copyright IBM Corp. 1987, 1990
3.1 - 1

 3.2 How Type Is Determined

 Names and constants have type.

 The type of a name is determined in either of two ways:

 � Explicitly, by a type statement (INTEGER, REAL, DOUBLE PRECISION
 COMPLEX, LOGICAL, or CHARACTER) or, for external functions only, by
 either a type statement or a FUNCTION statement.

 � Implicitly, by the first letter of the name

 - By default (that is, in the absence of an IMPLICIT statement), if
 the first letter of the name is I, J, K, L, M, or N, the type is
 INTEGER*4. If the first letter of the name is any other letter,
 the type is REAL*4.
 - To change, confirm, or void this default typing you may use the
 IMPLICIT statement.

 The type of a constant is determined by the form of the constant. The
 discussions of types in the rest of this chapter describe the form of a
 constant for each type.

SAA CPI FORTRAN Reference
How Type Is Determined

¦ Copyright IBM Corp. 1987, 1990
3.2 - 1

 3.3 INTEGER*2 Type

 Type INTEGER*2 is used for exact representations of integer values.

 Length: 2 bytes.

 Range of values: -32768 to 32767.

 Form of constant: There are no constants (without names) of this type.
 Note that the PARAMETER statement may be used to specify named constants
 of this type.

SAA CPI FORTRAN Reference
INTEGER*2 Type

¦ Copyright IBM Corp. 1987, 1990
3.3 - 1

 3.4 INTEGER*4 Type

 Type INTEGER*4 is used for exact representations of integer values.

 Length: 4 bytes.

 Range of values: -2147483647 to 2147483647.

 Form of constant:

 +---+
 ¦ ¦
 ¦ +-------+ ¦
 ¦ � ¦ ¦
 ¦ -------------digit--- � ¦
 ¦ +- + -¦ ¦
 ¦ +- - -+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 Examples of INTEGER*4 Constants

 25
 +483
 -111545

SAA CPI FORTRAN Reference
INTEGER*4 Type

¦ Copyright IBM Corp. 1987, 1990
3.4 - 1

 3.5 REAL*4 Type

 Type REAL*4 is used for approximations of real numbers.

 Length: 4 bytes.

 Approximate range of values:

 � On MVS and VM

 - 10(-78) to 10(75)
 - 0
 - -10(-78) to -10(75)

 Precision: values have a precision of 21 to 24 bits (about six decimal
 digits).

¦� On OS/400 and OS/2

 - Normalized:
 - 1.2 x 10(-38) to 3.4 x 10(38)
 - 0
 - -1.2 x 10(-38) to -3.4 x 10(38)
 - Denormalized:
 - 1.4 x 10(-45) to 1.2 x 10(-38)
 - -1.4 x 10(-45) to -1.2 x 10(-38)
 - NaN (not a number)
 - Positive infinity
 - Negative infinity.

 Precision: normalized values have a precision of 24 bits (about seven
 decimal digits) and denormalized values may be represented with as
 little as one bit of precision.

 Subtopics
 3.5.1 Forms of a Real Constant

SAA CPI FORTRAN Reference
REAL*4 Type

¦ Copyright IBM Corp. 1987, 1990
3.5 - 1

 3.5.1 Forms of a Real Constant

 The forms of a real constant are:

 +---+
 ¦ ¦
 ¦ +-------+ ¦
 ¦ � ¦ ¦
 ¦ -------------digit----real_exponent---------------------------------- � ¦
 ¦ +- + -¦ ¦
 ¦ +- - -+ ¦
 ¦ ¦
 ¦ +-------+ ¦
 ¦ � ¦ ¦
 ¦ -------------digit----.-- � ¦
 ¦ +- + -¦ ¦ +-------+ ¦ ¦ ¦ ¦
 ¦ +- - -+ ¦ � ¦ ¦ +--real_exponent--+ ¦
 ¦ +---digit---+ ¦
 ¦ ¦
 ¦ +-------+ ¦
 ¦ � ¦ ¦
 ¦ ---------------------------.----digit-------------------------------- � ¦
 ¦ +- + -¦ ¦ +-------+ ¦ ¦ ¦ ¦
 ¦ +- - -+ ¦ � ¦ ¦ +--real_exponent--+ ¦
 ¦ +---digit---+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 The form of real_exponent (a real exponent) is:

 +--+
 ¦ ¦
 ¦ +-------+ ¦
 ¦ � ¦ ¦
 ¦ -----E--------------digit--- ¦
 ¦ +-e-+ +- + -¦ ¦
 ¦ +- - -+ ¦
 ¦ ¦
 ¦ ¦
 +--+

 The real exponent indicates the power of ten by which the value of the
 real constant without the exponent is multiplied to obtain the value of
 the real constant with the exponent.

 The system approximates real constants, just as the real type is used for
 approximations of real numbers. FORTRAN products on computers with
 different implementations of real (floating-point) arithmetic, as in the
¦case of VS FORTRAN, FORTRAN/400, and FORTRAN/2, have different
 floating-point approximations for the same real number.

 Examples of Real Constants

 +--+
 ¦ 3.14159 ¦ ¦
 +------------+---¦
 ¦ -.618034 ¦ ¦
 +------------+---¦
 ¦ 7.0e3 ¦ That is, 7.0 x 10(3) = 7000.0 ¦

SAA CPI FORTRAN Reference
Forms of a Real Constant

¦ Copyright IBM Corp. 1987, 1990
3.5.1 - 1

 +------------+---¦
 ¦ 9761.25E+1 ¦ That is, 9761.25 x 10(1) = 97612.5 ¦
 +------------+---¦
 ¦ 7e-03 ¦ That is, 7.0 x 10(-3) = 0.007 ¦
 +------------+---¦
 ¦ 744E5 ¦ That is, 744.0 x 10(5) = 74400000.0 ¦
 +--+

SAA CPI FORTRAN Reference
Forms of a Real Constant

¦ Copyright IBM Corp. 1987, 1990
3.5.1 - 2

 3.6 REAL*8 (Double Precision) Type

 Type REAL*8, also known as type double precision, is used for
 approximations of real numbers.

 Length: 8 bytes.

 Approximate range of values:

 � On MVS and VM

 - 10(-78) to 10(75)
 - 0
 - -10(-78) to -10(75)

 Precision: values have a precision of 53 to 56 bits (about 16 decimal
 digits).

¦� On OS/400 and OS/2

 - Normalized:
 - 2.23 x 10(-308) to 1.79 x 10(308)
 - 0
 - -2.23 x 10(-308) to -1.79 x 10(308)
 - Denormalized:
 - 4.94 x 10(-324) to 2.23 x 10(-308)
 - -4.94 x 10(-324) to -2.23 x 10(-308)
 - NaN (not a number)
 - Positive infinity
 - Negative infinity.

 Precision: normalized values have a precision of 52 bits (about 16
 decimal digits) and denormalized values may be represented with as
 little as one bit of precision.

 Subtopics
 3.6.1 Forms of a Double Precision Constant

SAA CPI FORTRAN Reference
REAL*8 (Double Precision) Type

¦ Copyright IBM Corp. 1987, 1990
3.6 - 1

 3.6.1 Forms of a Double Precision Constant

 The forms of a double precision constant are:

 +---+
 ¦ ¦
 ¦ +-------+ ¦
 ¦ � ¦ ¦
 ¦ -------------digit----.-----------------double_exponent-------------- � ¦
 ¦ +- + -¦ ¦ +-------+ ¦ ¦
 ¦ +- - -+ ¦ � ¦ ¦ ¦
 ¦ +---digit---+ ¦
 ¦ ¦
 ¦ +-------+ ¦
 ¦ � ¦ ¦
 ¦ ---------------------------.----digit----double_exponent------------- � ¦
 ¦ +- + -¦ ¦ +-------+ ¦ ¦
 ¦ +- - -+ ¦ � ¦ ¦ ¦
 ¦ +---digit---+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 The form of double_exponent (a double precision exponent) is:

 +---+
 ¦ ¦
 ¦ +-------+ ¦
 ¦ � ¦ ¦
 ¦ -----D--------------digit--- � ¦
 ¦ +-d-+ +- + -¦ ¦
 ¦ +- - -+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 The double precision exponent indicates the power of ten by which the
 value of the double precision constant without the exponent is multiplied
 to obtain the value of the double precision constant with the exponent.

 The system approximates double precision constants, just as the double
 precision type is used for approximations of real numbers. FORTRAN
 products on computers with different implementations of real
¦(floating-point) arithmetic, as in the case of VS FORTRAN, FORTRAN/400,
 and FORTRAN/2, have different floating-point approximations for the same
 real number.

 Examples of Double Precision Constants

 +--+
 ¦ 7.9D0 ¦ That is, 7.9 x 10(0) = 7.9 ¦
 +----------+---¦
 ¦ 7.9d+03 ¦ That is, 7.9 x 10(3) = 7900.0 ¦
 +----------+---¦
 ¦ 7D03 ¦ That is, 7.0 x 10(3) = 7000.0 ¦
 +----------+---¦
 ¦ 20d-3 ¦ That is, 20.0 x 10(-3) = .02 ¦
 +--+

SAA CPI FORTRAN Reference
Forms of a Double Precision Constant

¦ Copyright IBM Corp. 1987, 1990
3.6.1 - 1

 3.7 COMPLEX*8 Type

 Type COMPLEX*8 is an approximation to the value of a complex number. The
 representation of a complex value is in the form of an ordered pair of
 real values. The first of the pair represents the real part of the
 complex value and the second represents the imaginary part of the complex
 value.

 Length: 8 bytes.

 Range of values: each part has the range of the REAL*4 type. See page
 3.5.

 Form of constant:

 +---+
 ¦ ¦
 ¦ ---(-----integer_constant-----,-----integer_constant-----)----------- � ¦
 ¦ +--real_constant-----+ +--real_constant-----+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 Examples of COMPLEX*8 Constants

 (1, 1)
 (.707, -0.707)
 (-1, 2.)
 (-1.5E10, 2.6e-5)

SAA CPI FORTRAN Reference
COMPLEX*8 Type

¦ Copyright IBM Corp. 1987, 1990
3.7 - 1

 3.8 COMPLEX*16 Type

 Type COMPLEX*16 is an approximation to the value of a complex number. The
 representation of a complex value is in the form of an ordered pair of
 double precision values. The first of the pair represents the real part
 of the complex value, and the second represents the imaginary part of the
 complex value.

 Length: 16 bytes.

 Range of values: each part has the range of the REAL*8 type. See page
 3.6.

 Forms of constant:

 +---+
 ¦ ¦
 ¦ --(-double_precision_constant--,-----integer_constant-------------)-- � ¦
 ¦ +--real_constant--------------¦ ¦
 ¦ +--double_precision_constant--+ ¦
 ¦ ¦
 ¦ --(----integer_constant--------------,--double_precision_constant-)-- � ¦
 ¦ +--real_constant--------------¦ ¦
 ¦ +--double_precision_constant--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 Examples of COMPLEX*16 Constants

 (1, 4.4D8)
 (-5.5D3, -0.446)
 (3.7d10, 8.6d5)

SAA CPI FORTRAN Reference
COMPLEX*16 Type

¦ Copyright IBM Corp. 1987, 1990
3.8 - 1

 3.9 LOGICAL*1 Type

 Type LOGICAL*1 is an exact representation of the values true and false.

 Length: 1 byte.

 Range of values: true and false.

 Form of constant: There are no constants (without names) of this type.
 Note that the PARAMETER statement may be used to specify named constants
 of this type.

SAA CPI FORTRAN Reference
LOGICAL*1 Type

¦ Copyright IBM Corp. 1987, 1990
3.9 - 1

 3.10 LOGICAL*4 Type

 Type LOGICAL*4 is an exact representation of the values true and false.

 Length: 4 bytes.

 Range of values: true and false.

 Form of constant: .TRUE. (for the value true) or .FALSE. (for the value
 false).

SAA CPI FORTRAN Reference
LOGICAL*4 Type

¦ Copyright IBM Corp. 1987, 1990
3.10 - 1

 3.11 CHARACTER Type

 Type CHARACTER is a string of characters.

 Length: 1 to 32767 bytes. The length of a character datum is the number
 of characters in the string. Each character in the string has a character
 position that is numbered consecutively 1, 2, 3, and so forth. The number
 indicates the sequential position of a character in the string, beginning
 at the left and proceeding to the right.

 Range of values: The string may consist of any characters in the FORTRAN
 character set.

 Form of constant: an apostrophe followed by a nonempty string of
 characters followed by an apostrophe. The delimiting apostrophes are not
 part of the data represented by the constant. Blanks between the
 delimiting apostrophes are significant. An apostrophe within the
 character constant is indicated by two consecutive apostrophes with no
 intervening blanks.

 The length of a character constant is the number of characters between the
 delimiting apostrophes, except that each pair of consecutive apostrophes
 counts as a single character. The delimiting apostrophes are not counted.
 The length of a character constant must be greater than zero.

 Examples of Character Constants

 +--+
 ¦ Constant ¦ Length ¦
 +-----------------------------------+------------------------------------¦
 ¦ 'Systems Application Architecture ¦ 40 ¦
 ¦ FORTRAN' ¦ ¦
 +-----------------------------------+------------------------------------¦
 ¦ ' ' ¦ 1 ¦
 +-----------------------------------+------------------------------------¦
 ¦ 'The time is 1 o''clock' ¦ 21 ¦
 +--+

SAA CPI FORTRAN Reference
CHARACTER Type

¦ Copyright IBM Corp. 1987, 1990
3.11 - 1

 4.0 Chapter 4. Variables, Arrays, and Character Substrings
 This chapter describes:

 � Variable
 � Array
 � Character substring
 � Definition status of variables, array elements, and characte
 substrings
 � Variable, array element, and character substring reference
 � Association

 Subtopics
 4.1 Variables
 4.2 Arrays
 4.3 Character Substrings
 4.4 Definition Status
 4.5 Reference
 4.6 Association

SAA CPI FORTRAN Reference
Chapter 4. Variables, Arrays, and Character Substrings

¦ Copyright IBM Corp. 1987, 1990
4.0 - 1

 4.1 Variables

 A variable has a name, a type, a length, and a value that may change
 during program execution. The type of a variable is determined by the
 type of its name.

 Note that an array element is not the same as a variable, as it is in some
 other programming languages.

SAA CPI FORTRAN Reference
Variables

¦ Copyright IBM Corp. 1987, 1990
4.1 - 1

 4.2 Arrays

 An array has a name, a type, and a sequence of values. Each element of an
 array has an identical length and a value that may change during program
 execution. The type of an array is determined by the type of its name.

 Subtopics
 4.2.1 Array Declarators
 4.2.2 Kinds of Array Declarators and Arrays
 4.2.3 Dimensions of an Array
 4.2.4 Size of an Array
 4.2.5 Array Elements
 4.2.6 Arrangement of Arrays in Storage

SAA CPI FORTRAN Reference
Arrays

¦ Copyright IBM Corp. 1987, 1990
4.2 - 1

 4.2.1 Array Declarators

 An array declarator declares the name and size of an array. Every array
 must be declared, and no array may have more than one array declarator for
 the same name. An array declarator may appear in a DIMENSION, COMMON, or
 type statement. The form of an array declarator is:

 +---+
 ¦ ¦
 ¦ ---array_name--(--dimension_declarator_list--)----------------------- � ¦
 ¦ ¦
 ¦ ¦
 +---+

 array_name
 is a name called the array name. Each array element has the type and
 length associated with this name.

 dimension_declarator
 A dimension declarator declares the lower and upper bounds of a
 dimension. Each dimension requires one dimension declarator. The
 minimum number of dimensions (and therefore dimension declarators) is
 one and the maximum is seven. The form of a dimension declarator is:

 +---+
 ¦ ¦
 ¦ ------------------------------------upper_dimension_bound------------ � ¦
 ¦ +--lower_dimension_bound--:--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 lower_dimension_bound
 is an INTEGER*4 arithmetic expression, called a dimension bound
 expression. If this expression is not specified, a value of 1 is
 assumed.

 upper_dimension_bound
 is one of the following:

 � A dimension bound expression whose value must be greater than
 or equal to the value of the lower dimension bound
 � An asterisk if the dimension is the last dimension in an
 assumed-size array declarator.

 A dimension bound expression must not contain a function or array
 element reference. Integer variables may appear in dimension bound
 expressions only in adjustable array declarators.

SAA CPI FORTRAN Reference
Array Declarators

¦ Copyright IBM Corp. 1987, 1990
4.2.1 - 1

 4.2.2 Kinds of Array Declarators and Arrays

 There are three kinds of array declarators:

 � A constant array declarator is one in which every dimension bound
 expression is an integer constant expression.

 � An adjustable array declarator is one in which at least one of the
 dimension bound expressions contains at least one integer variable
 name. Any variable name so used must appear either in a common block
 or in the same dummy argument list that contains the array name. An
 adjustable array declarator declares an adjustable array and its
 dimensions are called adjustable dimensions.

 � An assumed-size array declarator is one in which the upper dimension
 bound of the last dimension is an asterisk.

 There are two kinds of arrays:

 � An actual array is one that is declared with a constant array
 declarator and whose name is not a dummy argument. This kind of array
 may be declared in a DIMENSION statement, a COMMON statement, or a
 type statement.

 � A dummy array is one that may be declared with constant, adjustable,
 or assumed-size array declarators and whose name must be a dummy
 argument. This kind of array may be declared in a DIMENSION statement
 or a type statement.

 Examples of Adjustable and Assumed-Size Array Declarators

 subroutine SCRFCN(screen,width,lines,nops,op_codes)
 integer width,lines,nops,op_codes
 character*1 screen(1:width,0:lines-1)
 dimension op_codes(*)

SAA CPI FORTRAN Reference
Kinds of Array Declarators and Arrays

¦ Copyright IBM Corp. 1987, 1990
4.2.2 - 1

 4.2.3 Dimensions of an Array

 The size of a dimension is the value of the upper dimension bound, minus
 the value of the lower dimension bound, plus one. The size of a dimension
 that has an upper dimension bound of an asterisk is not specified.

 The number and size of dimensions in one array declarator may be different
 from the number and size of dimensions in another array declarator that is
 associated by common, equivalence, or argument association.

SAA CPI FORTRAN Reference
Dimensions of an Array

¦ Copyright IBM Corp. 1987, 1990
4.2.3 - 1

 4.2.4 Size of an Array

 The size of an array (that is, the number of elements in an array) is
 equal to the product of the sizes of its dimensions.

SAA CPI FORTRAN Reference
Size of an Array

¦ Copyright IBM Corp. 1987, 1990
4.2.4 - 1

 4.2.5 Array Elements

 An array is made up of array elements. An array element is identified by
 an array element name, whose form is:

 +---+
 ¦ ¦
 ¦ ---array_name--(--integer_expr_list--)------------------------------- � ¦
 ¦ ¦
 ¦ ¦
 +---+

 array_name
 is a name.

 integer_expr
 is an integer expression called a subscript expression.

 The number of subscript expressions must be equal to the number of
 dimensions in the array.

 The value of each subscript expression must be greater than or equal to
 the corresponding lower dimension bound declared for the array. The value
 of each subscript expression must not exceed the corresponding upper
 dimension bound declared for the array. If the upper dimension bound is
 an asterisk, the value of the corresponding subscript expression must be
 such that the subscript value does not exceed the size of the actual
 array.

 The subscript value determines which element of the array is identified by
 the array element name. The subscript value depends on the values of the
 subscript expressions and on the dimensions of the array. See
 "Arrangement of Arrays in Storage" in topic 4.2.6 for an example.

SAA CPI FORTRAN Reference
Array Elements

¦ Copyright IBM Corp. 1987, 1990
4.2.5 - 1

 4.2.6 Arrangement of Arrays in Storage

 Array elements are stored in ascending storage units in column-major
 order, as in the following example of a two-dimensional array declared by
 array declarator C(3,0:1):

 +--+
 ¦ ¦ Array ¦ ¦
 ¦ ¦ Element ¦ Subscript ¦
 ¦ ¦ Name ¦ Value ¦
 +-----------------------+------------------------+-----------------------¦
 ¦ ¦ ¦ ¦
 ¦ Lowest storage unit-- ¦ C(1,0) ¦ 1 ¦
 ¦ ¦ C(2,0) ¦ 2 ¦
 ¦ ¦ C(3,0) ¦ 3 ¦
 ¦ ¦ C(1,1) ¦ 4 ¦
 ¦ ¦ C(2,1) ¦ 5 ¦
 ¦ Highest storage unit--¦ C(3,1) ¦ 6 ¦
 ¦ ¦ ¦ ¦
 +--+

SAA CPI FORTRAN Reference
Arrangement of Arrays in Storage

¦ Copyright IBM Corp. 1987, 1990
4.2.6 - 1

 4.3 Character Substrings

 A character substring is a contiguous portion of a character string. A
 character substring is identified by a substring name, whose form is:

 +--+
 ¦ ¦
 ¦ -----variable_name----------(-----------------------:-----------------------)------------- � ¦
 ¦ +--array_element_name--+ +--integer_expr1--+ +--integer_expr2--+ ¦
 ¦ ¦
 ¦ ¦
 +--+

 variable_name
 is the name of a character variable.

 array_element_name
 is the name of a character array element.

 integer_expr1 and integer_expr2
 specify the leftmost character position and rightmost character
 position, respectively, of the substring. Each is an expression
 called a substring expression, which is any integer expression.

 The values of integer_expr1 and integer_expr2 must be such that:

 1 = integer_expr1 = integer_expr2 = length

 where length is the length of the character variable or character
 array element. If integer_expr1 is omitted, a value of 1 is implied.
 If integer_expr2 is omitted, a value of length is implied.

 Example of a Character Substring Name: See "Examples of Character
 Assignment Statements" in topic 8.4.

SAA CPI FORTRAN Reference
Character Substrings

¦ Copyright IBM Corp. 1987, 1990
4.3 - 1

 4.4 Definition Status

 At any given time during the execution of a program, the definition status
 of each variable, array element, or character substring is either defined
 or undefined:

 � If defined, it has a value. The value does not change until the
 variable, array element, or character substring becomes undefined or
 until it is redefined with a different value.

 � If undefined, it does not have a predictable value.

 A character variable, character array element, or character substring is
 defined if each of its substrings of length 1 is defined. A complex
 variable or complex array element is defined if each of its parts is
 defined.

 A variable, array element, or character substring must be defined at the
 time its value is required. A value may be assigned (thus causing
 definition) by:

 � An assignment statement

 � An input statement. Each variable, array element, or characte
 substring in the input list becomes defined at the time it is assigned
 a value.

 � A specifier in an input/output statement

 � A DO statement. The DO variable becomes defined

 � An implied-DO list. The implied-DO variable becomes defined

 � A DATA statement. Initial values are provided

 � An ASSIGN statement

 � Association. Totally-associated variables of the same type, arra
 elements of the same type, or character substrings become defined when
 any one is defined. (Association is total when there is one-for-one
 storage mapping.)

 A variable, array element, or character substring may become undefined as
 follows:

 � All are undefined at the beginning of program execution except fo
 those specified in DATA statements.

 � When a variable, array element, or character substring become
 defined, all associated variables, array elements, and character
 substrings of different type become undefined. (Complex and character
 types are special cases, as already described.)

 � An ASSIGN statement causes the specified variable to become undefine
 as an integer.

 � If a reference to a function does not need to be evaluated t
 determine the value of the expression in which it appears, then any
 variables, array elements, and character substrings in common blocks,
 and any arguments, that the function would have defined, become

SAA CPI FORTRAN Reference
Definition Status

¦ Copyright IBM Corp. 1987, 1990
4.4 - 1

 undefined.

 � A RETURN or END statement causes all variables, array elements, an
 character substrings in the subprogram to become undefined except for
 the following:

 - Those in a blank common block

 - Those initially defined that neither were redefined nor became
 undefined

 - Those specified by SAVE statements

 - Those specified in a named common block that appears in at least
 one other program unit that is either directly or indirectly
 referencing the subprogram.

 � An error or end-of-file condition during an input statement causes al
 of the variables, array elements, and character substrings specified
 in the input list to become undefined.

 � A direct access input statement that specifies a record that was no
 previously written causes all of the variables, array elements, and
 character substrings in the input list to become undefined.

 � The INQUIRE statement may cause some variables, array elements, o
 substrings to become undefined. See "INQUIRE Statement" in
 topic 11.7.

SAA CPI FORTRAN Reference
Definition Status

¦ Copyright IBM Corp. 1987, 1990
4.4 - 2

 4.5 Reference

 A variable, array element, or character substring reference is the
 appearance of a variable name, array element name, or character substring
 name in a statement in a context requiring the value of the variable,
 array element, or character substring to be used during program execution.
 When a reference is executed, the current value of the variable, array
 element, or character substring is available. Definition of a variable,
 array element, or character substring is not considered a reference.

SAA CPI FORTRAN Reference
Reference

¦ Copyright IBM Corp. 1987, 1990
4.5 - 1

 4.6 Association

 Association exists if the same data item may be identified by different
 names in the same program unit, or by the same name or different names in
 different program units of the same executable program. The kinds of
 association are:

 � Equivalence association (see page 6.2)
 � Common association (see page 6.3.1)
 � Entry association (see page 10.3.3)
 � Argument association (see page 10.8.1).

SAA CPI FORTRAN Reference
Association

¦ Copyright IBM Corp. 1987, 1990
4.6 - 1

 5.0 Chapter 5. Expressions
 An expression, when evaluated, produces a value. This chapter describes
 the four kinds of expressions:

 � Arithmetic expression
 � Character expression
 � Relational expression
 � Logical expressions

 Subtopics
 5.1 Arithmetic Expressions
 5.2 Character Expressions
 5.3 Relational Expressions
 5.4 Logical Expressions

SAA CPI FORTRAN Reference
Chapter 5. Expressions

¦ Copyright IBM Corp. 1987, 1990
5.0 - 1

 5.1 Arithmetic Expressions

 An arithmetic expression, when evaluated, produces a numeric value. The
 form of an arithmetic expression is:

 +---+
 ¦ ¦
 ¦ ------------------------------arith_term----------------------------- � ¦
 ¦ +------------------- + -¦ ¦
 ¦ +--arith_expr--+ +- - -+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 The form of arith_term is:

 +---+
 ¦ ¦
 ¦ ------------------------------arith_factor--------------------------- � ¦
 ¦ +--arith_term-----/-----+ ¦
 ¦ +--*--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 The form of arith_factor is:

 +---+
 ¦ ¦
 ¦ ---arith_primary--- � ¦
 ¦ +--**--arith_factor--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 arith_primary (called a primary) is one of the following:

 � An unsigned arithmetic constan
 � The name of an arithmetic constan
 � The name of an arithmetic variabl
 � The name of an arithmetic array elemen
 � An arithmetic function referenc
 � An arithmetic expression enclosed in parentheses

 The arithmetic operators are:

 +--+
 ¦ Arithmetic ¦ ¦ ¦
 ¦ Operator ¦ Representing ¦ Precedence ¦
 +-----------------------+------------------------+-----------------------¦
 ¦ ** ¦ Exponentiation ¦ Highest ¦
 +-----------------------+------------------------+-----------------------¦
 ¦ * ¦ Multiplication ¦ Intermediate ¦
 +-----------------------+------------------------+-----------------------¦
 ¦ / ¦ Division ¦ Intermediate ¦
 +-----------------------+------------------------+-----------------------¦
 ¦ + ¦ Addition or identity ¦ Lowest ¦
 +-----------------------+------------------------+-----------------------¦
 ¦ - ¦ Subtraction or ¦ Lowest ¦

SAA CPI FORTRAN Reference
Arithmetic Expressions

¦ Copyright IBM Corp. 1987, 1990
5.1 - 1

 ¦ ¦ negation ¦ ¦
 +--+

 In evaluating an arithmetic expression containing two or more addition or
 subtraction operators, the terms are evaluated from left to right. For
 example, 2+3+4 is evaluated the same as (2+3)+4.

 In evaluating a term containing two or more multiplication or division
 operators, the factors are evaluated from left to right. For example,
 2*3*4 is evaluated the same as (2*3)*4.

 In evaluating a factor containing two or more exponentiation operators,
 the primaries are combined from right to left. For example, 2**3**4 is
 evaluated the same as 2**(3**4).

 In evaluating an arithmetic expression containing two or more operators
 having different precedence, the precedence of the operators determines
 the order of evaluation. For example, in the expression -A**3, the
 exponentiation operator (**) has precedence over the negation operator
 (-). Therefore, the operands of the exponentiation operator are combined
 to form an expression that is used as the operand of the negation
 operator. Evaluation of the expression is the same as evaluation of the
 expression -(A**3).

 Note that these formation rules do not permit expressions containing two
 consecutive arithmetic operators, such as A**-B or A*-B. However,
 expressions such as A**(-B) and A*(-B) are permitted.

 Subtopics
 5.1.1 Arithmetic Constant Expressions
 5.1.2 Data Type of an Arithmetic Expression

SAA CPI FORTRAN Reference
Arithmetic Expressions

¦ Copyright IBM Corp. 1987, 1990
5.1 - 2

 5.1.1 Arithmetic Constant Expressions

 An arithmetic constant expression is an arithmetic expression in which
 each primary is an arithmetic constant, the name of an arithmetic
 constant, or an arithmetic constant expression enclosed in parentheses.
 Exponentiation is permitted only if the exponent is of type integer.

 An integer constant expression is an arithmetic constant expression in
 which each constant or name of a constant is of type integer.

SAA CPI FORTRAN Reference
Arithmetic Constant Expressions

¦ Copyright IBM Corp. 1987, 1990
5.1.1 - 1

 5.1.2 Data Type of an Arithmetic Expression

 Because the identity and negation operators operate on a single operand,
 the type of the resulting value is the same as the type of the operand.

 When an arithmetic operator acts upon a pair of operands of the same type,
 the resulting value has that type. If the operands are of different
 types, the resulting value has the higher-ranking type, with the exception
 noted:

 +--+
 ¦ Rank ¦ Data Type ¦
 +---------+--¦
 ¦ ¦ ¦
 ¦ Highest ¦ COMPLEX*16 ¦
 ¦ ¦ COMPLEX*8 (See note.) ¦
 ¦ ¦ REAL*8 (See note.) ¦
 ¦ ¦ REAL*4 ¦
 ¦ ¦ INTEGER*4 ¦
 ¦ Lowest ¦ INTEGER*2 ¦
 ¦ ¦ ¦
 +--+

 Note: If one operand is of type COMPLEX*8 and the other is of type
 REAL*8, the result is of type COMPLEX*16.

 For example, addition of a COMPLEX*8 value and a REAL*4 value produces a
 result of type COMPLEX*8.

 Examples of Arithmetic Expressions

 +--+
 ¦ Arithmetic ¦ Fully Parenthesized Equivalent ¦
 ¦ Expression ¦ ¦
 +------------------+---¦
 ¦ -b**2/2.0 ¦ -((b**2)/2.0) ¦
 +------------------+---¦
 ¦ i**j**2 ¦ i**(j**2) ¦
 +------------------+---¦
 ¦ a/b**2 - c ¦ (a/(b**2)) - c ¦
 +--+

SAA CPI FORTRAN Reference
Data Type of an Arithmetic Expression

¦ Copyright IBM Corp. 1987, 1990
5.1.2 - 1

 5.2 Character Expressions

 A character expression, when evaluated, produces a result of type
 character. The form of a character expression is:

 +---+
 ¦ ¦
 ¦ ------------------------char_primary--------------------------------- � ¦
 ¦ +--char_expr--//--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 char_primary (called a character primary) is one of the following:

 � A character constan
 � The name of a character constan
 � The name of a character variabl
 � The name of a character array elemen
 � The name of a character substrin
 � A character function referenc
 � A character expression enclosed in parentheses

 The only character operator is //, representing concatenation.

 In a character expression containing one or more concatenation operators,
 the primaries are joined, thereby forming one string whose length is equal
 to the sum of the lengths of the individual primaries. For example, 'AB'
 // 'CD' // 'EF' is evaluated to 'ABCDEF'. The length of the resulting
 string is six.

 Parentheses have no effect on the value of a character expression.

 Except in a character assignment statement, a character expression must
 not involve concatenation of an operand whose length specifier is an
 asterisk in parentheses (indicating inherited length) unless the operand
 is the name of a constant.

 Subtopics
 5.2.1 Character Constant Expressions

SAA CPI FORTRAN Reference
Character Expressions

¦ Copyright IBM Corp. 1987, 1990
5.2 - 1

 5.2.1 Character Constant Expressions

 A character constant expression is a character expression in which each
 character primary is a character constant, the name of a character
 constant, or a character constant expression enclosed in parentheses.

 Example of a Character Expression

 character*3 fname,lname
 data fname,lname /'Big','Ben'/
 * Next line prints Big Ben
 print *,fname // ' ' // lname

SAA CPI FORTRAN Reference
Character Constant Expressions

¦ Copyright IBM Corp. 1987, 1990
5.2.1 - 1

 5.3 Relational Expressions

 A relational expression, when evaluated, produces a result of type
 logical. A relational expression may appear only within a logical
 expression. A relational expression may be an arithmetic relational
 expression or a character relational expression.

 Subtopics
 5.3.1 Arithmetic Relational Expressions
 5.3.2 Character Relational Expressions

SAA CPI FORTRAN Reference
Relational Expressions

¦ Copyright IBM Corp. 1987, 1990
5.3 - 1

 5.3.1 Arithmetic Relational Expressions

 An arithmetic relational expression compares the values of two arithmetic
 expressions. Its form is:

 +---+
 ¦ ¦
 ¦ ---arith_expr1---relational_operator---arith_expr2------------------- � ¦
 ¦ ¦
 ¦ ¦
 +---+

 arith_expr1
 arith_expr2
 are each an arithmetic expression.

 relational_operator
 is any of the following:

 Relational
 Operator Representing
 .LT. Less than
 .LE. Less than or equal to
 .EQ. Equal to
 .NE. Not equal to
 .GT. Greater than
 .GE. Greater than or equal to

 If either arith_expr1 or arith_expr2 is of type complex, only the
 relational operator .EQ. or .NE. may be specified.

 If arith_expr1 and arith_expr2 are of different data types, the value of
 the relational expression is the value of the expression:

 ((arith_expr1) - (arith_expr2)) relational_operator 0

 where 0 is of the same type as the expression ((arith_expr1) -
 (arith_expr2)).

 On OS/2, if the value of either arith_expr1 or arith_expr2 is a NaN (not a
 number), the value of the relational expression is false.

¦On OS/400, if the value of either arith_expr1 or arith_expr2 is a NaN (not
¦a number), the value of the relational expression is undefined.

 Example of an Arithmetic Relational Expression

 if (e .gt. emax) emax = e

SAA CPI FORTRAN Reference
Arithmetic Relational Expressions

¦ Copyright IBM Corp. 1987, 1990
5.3.1 - 1

 5.3.2 Character Relational Expressions

 A character relational expression compares the values of two character
 expressions. Its form is:

 +---+
 ¦ ¦
 ¦ ---char_expr1---relational_operator---char_expr2--------------------- � ¦
 ¦ ¦
 ¦ ¦
 +---+

 char_expr1
 char_expr2
 are each a character expression.

 relational_operator
 is any of the relational operators described under "Arithmetic
 Relational Expressions" in topic 5.3.1.

 For operators other than .EQ. and .NE., the system-dependent collating
¦sequence (determined by the EBCDIC coded character set on MVS, VM, and
¦OS/400, and the ASCII coded character set on OS/2) is used in interpreting
 a character relational expression. The character expression whose value
 is lower in the collating sequence, when evaluated from left to right, is
 considered to be less than the other. The lexical intrinsic functions
 (LGE, LGT, LLE, and LLT), which convert character strings to ASCII prior
 to comparing them, may be used to compare character strings in ASCII
 order.

 If the two character expressions are of unequal length, the shorter one is
 considered to be extended on the right with blanks to the length of the
 longer one.

 Example of a Character Relational Expression

 if (chr .gt. '0' .and. chr .le. '9') chr_type = digit

SAA CPI FORTRAN Reference
Character Relational Expressions

¦ Copyright IBM Corp. 1987, 1990
5.3.2 - 1

 5.4 Logical Expressions

 A logical expression, when evaluated, produces a result of type logical.
 The form of a logical expression is:

 +---+
 ¦ ¦
 ¦ -------------------------------------logical_disjunct---------------- � ¦
 ¦ +--logical_expr-----.EQV.------+ ¦
 ¦ +--.NEQV.--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 The form of a logical_disjunct is:

 +---+
 ¦ ¦
 ¦ ---------------------------------logical_term------------------------ � ¦
 ¦ +--logical_disjunct--.OR.--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 The form of a logical_term is:

 +---+
 ¦ ¦
 ¦ ------------------------------logical_factor------------------------- � ¦
 ¦ +--logical_term--.AND.--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 The form of a logical_factor is:

 +---+
 ¦ ¦
 ¦ ----------------logical_primary-------------------------------------- � ¦
 ¦ +--.NOT.--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 logical_primary (called a logical primary) is one of the following:

 � A logical constan
 � The name of a logical constan
 � The name of a logical variabl
 � The name of a logical array elemen
 � A logical function referenc
 � A relational expressio
 � A logical expression enclosed in parentheses

 The logical operators are:

 +--+
 ¦ Logical ¦ ¦ ¦
 ¦ Operator ¦ Representing ¦ Precedence ¦

SAA CPI FORTRAN Reference
Logical Expressions

¦ Copyright IBM Corp. 1987, 1990
5.4 - 1

 +----------+----------------------+--------------------------------------¦
 ¦ .NOT. ¦ Logical negation ¦ Highest ¦
 +----------+----------------------+--------------------------------------¦
 ¦ .AND. ¦ Logical conjunction ¦ Higher ¦
 +----------+----------------------+--------------------------------------¦
 ¦ .OR. ¦ Logical inclusive ¦ Intermediate ¦
 ¦ ¦ disjunction ¦ ¦
 +----------+----------------------+--------------------------------------¦
 ¦ .EQV. ¦ Logical equivalence ¦ Lowest ¦
 +----------+----------------------+--------------------------------------¦
 ¦ .NEQV. ¦ Logical ¦ Lowest ¦
 ¦ ¦ nonequivalence ¦ ¦
 +--+

 In evaluating a logical expression containing two or more operators having
 different precedence, the precedence of the operators determines the order
 of evaluation. For example, evaluation of the expression A .OR. B .AND. C
 is the same as evaluation of the expression A .OR. (B .AND. C).

 Subtopics
 5.4.1 Value of a Logical Expression
 5.4.2 Logical Constant Expressions
 5.4.3 Precedence of Operators

SAA CPI FORTRAN Reference
Logical Expressions

¦ Copyright IBM Corp. 1987, 1990
5.4 - 2

 5.4.1 Value of a Logical Expression

 Assume that x[1] and x[2] represent logical values. Then, if the value of
 x[1] is true, the value of .NOT.x[1] is false; if the value of x[1] is
 false, the value of .NOT.x[1] is true. Use the following truth table to
 determine the values of other logical expressions:

 +--+
 ¦ x[1] ¦ x[2] ¦ ¦ x[1].AND.x[2] ¦ x[1].OR.x[2] ¦ x[1].EQV.x[2] ¦ x[1].NEQV.x[2] ¦
 +-------+-------+---+-------------------+-------------------+-------------------+------------------¦
 ¦ False ¦ False ¦ ¦ False ¦ False ¦ True ¦ False ¦
 +-------+-------+---+-------------------+-------------------+-------------------+------------------¦
 ¦ False ¦ True ¦ ¦ False ¦ True ¦ False ¦ True ¦
 +-------+-------+---+-------------------+-------------------+-------------------+------------------¦
 ¦ True ¦ False ¦ ¦ False ¦ True ¦ False ¦ True ¦
 +-------+-------+---+-------------------+-------------------+-------------------+------------------¦
 ¦ True ¦ True ¦ ¦ True ¦ True ¦ True ¦ False ¦
 +--+

 Sometimes a logical expression does not have to be completely evaluated in
 order to have its value determined. Consider the following logical
 expression (assume that LFCT is a function of type logical):

 A .lt. B .or. LFCT(Z)

 If A is less than B, then the function reference does not have to be
 evaluated to determine that this expression is true.

SAA CPI FORTRAN Reference
Value of a Logical Expression

¦ Copyright IBM Corp. 1987, 1990
5.4.1 - 1

 5.4.2 Logical Constant Expressions

 A logical constant expression is a logical expression in which each
 primary is a logical constant, the name of a logical constant, a
 relational expression in which each primary is a constant expression, or a
 logical constant expression enclosed in parentheses.

SAA CPI FORTRAN Reference
Logical Constant Expressions

¦ Copyright IBM Corp. 1987, 1990
5.4.2 - 1

 5.4.3 Precedence of Operators

 A logical expression may contain more than one kind of operator. When it
 does, the expression is evaluated from left to right, according to the
 following precedence among operators:

 +--+
 ¦ Operator ¦ Precedence ¦
 +-----------------------+--¦
 ¦ Arithmetic ¦ Highest ¦
 +-----------------------+--¦
 ¦ Character ¦ ¦
 +-----------------------+--¦
 ¦ Relational ¦ ¦
 +-----------------------+--¦
 ¦ Logical ¦ Lowest ¦
 +--+

 For example, the logical expression:

 L .or. A + B .ge. C

 where L is of type logical, and A, B, and C are of type real, is evaluated
 the same as the logical expression:

 L .or. ((A + B) .ge. C)

SAA CPI FORTRAN Reference
Precedence of Operators

¦ Copyright IBM Corp. 1987, 1990
5.4.3 - 1

 6.0 Chapter 6. Specification Statements
 Specification statements are nonexecutable statements that describe the
 characteristics and arrangement of data.

 This chapter describes the specification statements:

 � DIMENSIO
 � EQUIVALENC
 � COMMO
 � Type: INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, and CHARACTE
 � IMPLICI
 � PARAMETE
 � EXTERNA
 � INTRINSI
 � SAVE

 Within a program unit, a name must not appear more than once in the same
 kind of specification statement, with these exceptions: a name in an
 EQUIVALENCE statement may appear more than once in the same or in
 different EQUIVALENCE statements, and a common block name may appear more
 than once in the same or in different COMMON statements.

 Subtopics
 6.1 DIMENSION Statement
 6.2 EQUIVALENCE Statement
 6.3 COMMON Statement
 6.4 INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, and CHARACTER Type Statements
 6.5 IMPLICIT Statement
 6.6 PARAMETER Statement
 6.7 EXTERNAL Statement
 6.8 INTRINSIC Statement
 6.9 SAVE Statement

SAA CPI FORTRAN Reference
Chapter 6. Specification Statements

¦ Copyright IBM Corp. 1987, 1990
6.0 - 1

 6.1 DIMENSION Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---DIMENSION---array_declarator_list--------------------------------- � ¦
 ¦ ¦
 ¦ ¦
 +---+

 array_declarator
 is an array declarator.

 The DIMENSION statement specifies the names and dimension declarators of
 arrays. See "Arrays" starting on page 4.2 for a description of arrays and
 an example of the DIMENSION statement.

SAA CPI FORTRAN Reference
DIMENSION Statement

¦ Copyright IBM Corp. 1987, 1990
6.1 - 1

 6.2 EQUIVALENCE Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ +--------------,-------------+ ¦
 ¦ ¦ +-----------+ ¦ ¦
 ¦ � � ¦ ¦ ¦
 ¦ ---EQUIVALENCE---(--name-----,--name-----)--------------------------- � ¦
 ¦ ¦
 ¦ ¦
 +---+

 name
 is one of the following:

 � A variable name that is not also a function name (that is, the
 return value of a function is not specified)
 � An array name
 � An array element name in which the subscript expressions are
 integer constant expressions
 � A character substring name in which the substring expressions are
 integer constant expressions.

 name must not be a dummy argument name.

 The EQUIVALENCE statement specifies that two or more variables, arrays,
 array elements, or character substrings in a program unit are to share the
 same storage.

 All items named within a pair of parentheses have the same first storage
 unit and are therefore associated. This is called equivalence
 association, and it may cause the association of other items as well.
 (See "Example 2 of an EQUIVALENCE Statement.") Specifying an array name
 for name has the same effect as specifying an array element name that
 identifies the first element of the array.

 Associated items may be of different data types. If so, the EQUIVALENCE
 statement does not cause type conversion.

 The lengths of associated items are not required to be the same.

 An EQUIVALENCE statement cannot cause the storage sequences of two
 different common blocks to be associated.

 Example 1 of an EQUIVALENCE Statement

 double precision A(3)
 real B(5)
 equivalence (A,B(3))

 The preceding statements associate storage units as follows:

SAA CPI FORTRAN Reference
EQUIVALENCE Statement

¦ Copyright IBM Corp. 1987, 1990
6.2 - 1

 +--+
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦
 +---------+--¦
 ¦ Array ¦ ¦-----A(1)----¦-----A(2)----¦-----A(3)----¦ ¦
 ¦ A: ¦ ¦
 +---------+--¦
 ¦ Array ¦ ¦-B(1)-¦-B(2)-¦-B(3)-¦-B(4)-¦-B(5)-¦ ¦
 ¦ B: ¦ ¦
 +--+

 Example 2 of an EQUIVALENCE Statement: This example shows how association
 of two items may result in further association. The statements:

 character A*4,B*4,C(2)*3
 equivalence (A,C(1)),(B,C(2))

 associate storage units as follows:

 +--+
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦
 +---------+--¦
 ¦ Variable¦ ¦-------------A-------------¦ ¦
 ¦ A: ¦ ¦
 +---------+--¦
 ¦ Variable¦ ¦-------------B-------------¦ ¦
 ¦ B: ¦ ¦
 +---------+--¦
 ¦ Array ¦ ¦--------C(1)--------¦--------C(2)--------¦ ¦
 ¦ C: ¦ ¦
 +--+

 Because A and B are associated with C, A and B become associated with each
 other.

SAA CPI FORTRAN Reference
EQUIVALENCE Statement

¦ Copyright IBM Corp. 1987, 1990
6.2 - 2

 6.3 COMMON Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---COMMON-------------------------------name_list-------------------- ¦
 ¦ +-/-----------------------/-+ ¦
 ¦ +-common_block_name-+ ¦
 ¦ ¦
 ¦ -- � ¦
 ¦ ¦ +--+ ¦ ¦
 ¦ ¦ � ¦ ¦ ¦
 ¦ +---------/-----------------------/-name_list---+ ¦
 ¦ + , + +-common_block_name-+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 common_block_name
 is a common block name.

 name
 is a variable name, array name, or array declarator. None of these
 names may be used as a dummy argument name or a function name.

 The COMMON statement specifies common blocks and their contents. A common
 block is a storage area that can be shared by two or more program units,
 allowing them to define and reference the same data and to share storage
 units.

 A common block may be given a name. If common_block_name is specified,
 all variables and arrays specified by the following name_list are declared
 to be in that named common block. If common_block_name is omitted, all
 variables and arrays specified by the following name_list are in a blank
 common block.

 Within a program unit, a common block name may appear more than once in
 the same or in different COMMON statements. Each successive appearance of
 the same common block name continues the common block specified by that
 name.

 The variables and arrays in a common block may have different data types.

 Subtopics
 6.3.1 Common Association
 6.3.2 Common Block Storage Sequence
 6.3.3 Size of a Common Block
 6.3.4 Differences between Named Common Blocks and Blank Common Blocks
 6.3.5 Restriction on Common and Equivalence

SAA CPI FORTRAN Reference
COMMON Statement

¦ Copyright IBM Corp. 1987, 1990
6.3 - 1

 6.3.1 Common Association

 Within an executable program, all named common blocks with the same name
 have the same first storage unit. Within an executable program there can
 be one blank common block, and all program units that refer to blank
 common refer to the same first storage unit. This results in the
 association of variables and arrays in different program units.

 Because association is by storage unit, variables and arrays in a common
 block may have different names and types in different program units.
 Furthermore, a name that is used for a variable in one program unit may be
 used for an array in another program unit.

SAA CPI FORTRAN Reference
Common Association

¦ Copyright IBM Corp. 1987, 1990
6.3.1 - 1

 6.3.2 Common Block Storage Sequence

 Variables and arrays within a common block are assigned storage units in
 the order that their names appear within the COMMON statement.

 A common block may be extended by using an EQUIVALENCE statement, but only
 by adding beyond the last entry, not before the first entry. For example,
 the statements:

 common /X/ A,B
 real C(2)
 equivalence (B,C)

 specify common block X as follows:

 +--+
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦¦
 +---------+--¦
 ¦ Variable¦ ¦---------A---------¦ ¦
 ¦ A: ¦ ¦
 +---------+--¦
 ¦ Variable¦ ¦---------B---------¦ ¦
 ¦ B: ¦ ¦
 +---------+--¦
 ¦ Array ¦ ¦--------C(1)-------¦--------C(2)-------¦¦
 ¦ C: ¦ ¦
 +--+

SAA CPI FORTRAN Reference
Common Block Storage Sequence

¦ Copyright IBM Corp. 1987, 1990
6.3.2 - 1

 6.3.3 Size of a Common Block

 The size of a common block is equal to the number of bytes of storage
 needed to hold all the variables and arrays in the common block, including
 any extensions resulting from equivalence association.

SAA CPI FORTRAN Reference
Size of a Common Block

¦ Copyright IBM Corp. 1987, 1990
6.3.3 - 1

 6.3.4 Differences between Named Common Blocks and Blank Common Blocks

 The differences between named common blocks and blank common blocks are:

 � Within an executable program, there may be more than one named commo
 block but only one blank common block.

 � In all program units of an executable program, named common blocks o
 the same name must have the same size, but blank common blocks may
 have different sizes. (If blank common blocks are specified with
 different sizes in different program units, the length of the longest
 becomes the length of the one blank common block in the executable
 program.)

 � Variables and array elements in a named common block may be initiall
 defined by using the DATA statement in a block data subprogram.
 Variables and array elements in a blank common block cannot be
 initially defined.

SAA CPI FORTRAN Reference
Differences between Named Common Blocks and Blank Common Blocks

¦ Copyright IBM Corp. 1987, 1990
6.3.4 - 1

 6.3.5 Restriction on Common and Equivalence

 An EQUIVALENCE statement cannot cause the storage sequences of two
 different common blocks to become associated.

 Example of a COMMON Statement

 integer month,day,year
 common /date/ month,day,year

SAA CPI FORTRAN Reference
Restriction on Common and Equivalence

¦ Copyright IBM Corp. 1987, 1990
6.3.5 - 1

 6.4 INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, and CHARACTER Type Statements

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---type_spec--- ¦
 ¦ +-char_sep-+ ¦
 ¦ ¦
 ¦ +--------------------------------,--------------------------------+ ¦
 ¦ � ¦ ¦
 ¦ -----name--- � ¦
 ¦ +-array_declarator-+ +-*-char_len-+ +-/--initial_value_list--/-+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 type_spec
 specifies a data type and is one of the following:

 INTEGER*2
 INTEGER[*4]
 REAL[*4]
 REAL*8
 DOUBLE PRECISION
 COMPLEX[*8]
 COMPLEX*16
 LOGICAL*1
 LOGICAL[*4]
 CHARACTER[*char_len]

 char_sep
 is a comma (,) and may be specified when type_spec is
 CHARACTER[*char_len].

 name
 is a variable name, array name, name of a constant, or function name.
 The name must not be the name of a main program, subroutine
 subprogram, or block data subprogram.

 array_declarator
 is an array declarator.

 char_len
 specifies the length of items of type character. When char_len
 appears immediately after a name or array_declarator, it overrides any
 char_len specified after the word CHARACTER. char_len is one of the
 following:

 � An unsigned integer constant in the range 1 through 32767,
 inclusive.
 � An integer constant expression enclosed in parentheses and having
 the value 1 through 32767, inclusive.
 � An asterisk in parentheses. (See "PARAMETER Statement" in
 topic 6.6.)

SAA CPI FORTRAN Reference
INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, and CHARACTER Type Statements

¦ Copyright IBM Corp. 1987, 1990
6.4 - 1

 If char_len is not specified, a value of 1 is assumed.

 initial_value
 provides an initial value for the variable or array specified by the
 immediately-preceding name or array declarator. This occurs just like
 in the DATA statement (see page 7.0).

 A type statement overrides or confirms implicit typing, and may specify
 dimension information and initial values.

 The appearance of a variable name, array name, name of a constant,
 external function name, or statement function in a type statement
 specifies the data type for that name for all appearances in the program
 unit. A type statement may confirm the data type of a specific intrinsic
 function name, but it is not required to do so. Appearance of a generic
 intrinsic function name is not sufficient, by itself, to remove the
 generic properties from the intrinsic function.

 Examples of Type Statements

 real*8 x_pos(10),y_pos(10)
 logical first / .true. /
 character*(*) message_text

SAA CPI FORTRAN Reference
INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, and CHARACTER Type Statements

¦ Copyright IBM Corp. 1987, 1990
6.4 - 2

 6.5 IMPLICIT Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ +---------------,--------------+ ¦
 ¦ � ¦ ¦
 ¦ ---IMPLICIT-----type_spec--(--range_list--)-------------------------- � ¦
 ¦ ¦ ¦ ¦
 ¦ +--NONE----------------------------+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 type_spec
 specifies a data type and is described on page 6.4.

 range
 is either a single letter or a range of letters in alphabetic order.
 A range of letters has the form letter[1]-letter[2], where letter[1]
 is the first letter in the range and letter[2] is the last letter in
 the range. Specifying a range of letters has the same effect as
 specifying a list of all letters in that range.

 The IMPLICIT statement changes or confirms default implicit typing, or,
 with the form IMPLICIT NONE specified, voids implicit typing altogether.
 See "How Type Is Determined" in topic 3.2 for a discussion of implicit
 typing.

 All names that begin with the letter or letters specified by range, and
 for which a type is not explicitly specified, are given the type specified
 by the immediately-preceding type_spec. The same letter may be specified
 only once in all the IMPLICIT statements in a program unit.

 If the form IMPLICIT NONE is specified, type statements must be used to
 specify data types. If the form IMPLICIT NONE is specified, it must be
 the only IMPLICIT statement in a program unit.

 An IMPLICIT statement does not change the data type of an intrinsic
 function.

 Example of an IMPLICIT Statement

 implicit integer (a), complex (q, x-z)

SAA CPI FORTRAN Reference
IMPLICIT Statement

¦ Copyright IBM Corp. 1987, 1990
6.5 - 1

 6.6 PARAMETER Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ +------------------,------------------+ ¦
 ¦ � ¦ ¦
 ¦ ---PARAMETER---(-----constant_name-- = --constant_expr-----)--------- � ¦
 ¦ ¦
 ¦ ¦
 +---+

 constant_name
 is a name called the name of a constant.

 constant_expr
 is an arithmetic constant expression, character constant expression,
 or logical constant expression.

 The PARAMETER statement specifies names for constants. A named constant
 is defined with the value of constant_expr in accordance with the rules
 for assignment statements. See Chapter 8, "Assignment Statements"
 starting on page 8.0.

 If constant_expr contains the name of a constant, the name must have been
 defined in the same or a previous PARAMETER statement.

 The name of a constant must not be defined more than once in a program
 unit.

 The name of a constant must not be part of a format specification, and it
 must not be used to form part of another constant, such as a complex
 constant.

 If the data type of the name of a constant was not specified explicitly,
 it is determined implicitly before the constant is defined (for example,
 before the possible conversion of the constant expression). After the
 constant is defined, the data type of the name cannot be respecified.

 If the name of a constant of type character has a length specifier of an
 asterisk in parentheses, the constant assumes (inherits) the length of its
 corresponding constant expression in a PARAMETER statement.

 Examples of PARAMETER Statements

 character*6 today
 real pi
 parameter (today = 'Friday')
 parameter (pi = 3.14159)

SAA CPI FORTRAN Reference
PARAMETER Statement

¦ Copyright IBM Corp. 1987, 1990
6.6 - 1

 6.7 EXTERNAL Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---EXTERNAL---name_list-- � ¦
 ¦ ¦
 ¦ ¦
 +---+

 name
 is the name of an external procedure or block data subprogram.

 The EXTERNAL statement identifies a name as an external procedure so that
 the name can be used as an actual argument.

 An external procedure name must appear in an EXTERNAL statement in any
 program unit that uses the name as an actual argument.

 If an intrinsic function name appears in an EXTERNAL statement in a
 program unit, the name is the name of an external procedure. Therefore,
 an intrinsic function of the same name cannot be invoked from that program
 unit.

 Example of an EXTERNAL Statement: See page 10.8.5.

SAA CPI FORTRAN Reference
EXTERNAL Statement

¦ Copyright IBM Corp. 1987, 1990
6.7 - 1

 6.8 INTRINSIC Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---INTRINSIC---name_list--- � ¦
 ¦ ¦
 ¦ ¦
 +---+

 name
 is the name of an intrinsic function described in Appendix A,
 "Intrinsic Functions."

 The INTRINSIC statement identifies a name as an intrinsic function and
 permits the specific names of intrinsic functions to be used as actual
 arguments.

 If an intrinsic function name is used as an actual argument in a program
 unit, it must appear in an INTRINSIC statement in that program unit. The
 intrinsic function names that must not be used as actual arguments are
 those for the following:

 � Type conversion: INT, IFIX, IDINT, HFIX, REAL, FLOAT, SNGL, DREAL
 DBLE, CMPLX, DCMPLX, ICHAR, CHAR

 � Lexical relationships: LGE, LGT, LLE, LL

 � Choosing largest and smallest values: MAX, MAX0, AMAX1, DMAX1, AMAX0
 MAX1, MIN, MIN0, AMIN1, DMIN1, AMIN0, MIN1

 � Bit-manipulation: IOR, IAND, NOT, IEOR, ISHFT, BTEST, IBSET, IBCLR

 A generic function named in an INTRINSIC statement keeps its generic
 property.

 A name must not appear in both an EXTERNAL and an INTRINSIC statement in
 the same program unit.

 Example of an INTRINSIC Statement

 intrinsic sin
 .
 .
 c Pass intrinsic function name to subroutine
 call doit(0.5,sin,x)

SAA CPI FORTRAN Reference
INTRINSIC Statement

¦ Copyright IBM Corp. 1987, 1990
6.8 - 1

 6.9 SAVE Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---SAVE-- � ¦
 ¦ ¦ +---------------,---------------+ ¦ ¦
 ¦ ¦ � ¦ ¦ ¦
 ¦ +------variable_name----------------+ ¦
 ¦ +--array_name---------------¦ ¦
 ¦ +--/--common_block_name--/--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 variable_name
 array_name
 common_block_name
 is the name of a variable, array, or named common block. Dummy
 argument names, procedure names, and the names of variables and arrays
 in a common block are not permitted.

 The SAVE statement specifies the names of variables, arrays, and named
 common blocks whose definition status is to be retained after control
 returns from the subprogram in which the variables, arrays, and named
 common blocks are defined.

 Note: In Systems Application Architecture FORTRAN, the SAVE statement is
 syntax-checked during compilation but has no effect during execution
 because the definition status of variables, arrays, and named common
 blocks is always retained.

 A SAVE statement without a list is treated as though it contains the names
 of all allowable items in the program unit.

 Within a function or subroutine subprogram, a variable or array whose name
 is specified in a SAVE statement does not become undefined as a result of
 the execution of a RETURN or END statement in the subprogram. However, a
 variable or array in a common block may become undefined or redefined in
 another program unit, even though the common block is specified in a SAVE
 statement.

SAA CPI FORTRAN Reference
SAVE Statement

¦ Copyright IBM Corp. 1987, 1990
6.9 - 1

 7.0 Chapter 7. DATA Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ +--+ ¦
 ¦ � +--,--+ ¦ ¦
 ¦ ---DATA-----data_name_list--/--initial_value_list--/----------------- � ¦
 ¦ ¦
 ¦ ¦
 +---+

 data_name
 is any of the following:

 � A variable name
 � An array name
 � An array element name in which the subscript expressions are
 integer constant expressions
 � A character substring name in which the substring expressions are
 integer constant expressions
 � An implied-DO list.

 initial_value
 has the form:

 +---+
 ¦ ¦
 ¦ ------------------constant--- � ¦
 ¦ +--r--*--+ +--constant_name--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 r
 is a nonzero, unsigned, integer constant or the name of such a
 constant. The form r*constant or r*constant_name is equivalent to
 r successive appearances of the constant or name of constant.

 The DATA statement is a nonexecutable statement that provides initial
 values for variables, array elements, and character substrings.

 Each data_name_list must specify the same number of items as its
 corresponding initial_value_list. There is a one-to-one correspondence
 between the items in these two lists such that the first data_name
 corresponds to the first initial_value, the second data_name corresponds
 to the second initial_value, and so forth. This correspondence
 establishes the initial value of each data_name.

 Specifying an array name as a data_name is the same as specifying a list
 of all the elements in the array in the order they are stored.

 The data type of each data_name and the data type of its corresponding
 initial_value must agree if either is of type logical or character. For

SAA CPI FORTRAN Reference
Chapter 7. DATA Statement

¦ Copyright IBM Corp. 1987, 1990
7.0 - 1

 type character, definition proceeds according to the rules for character
 assignment statements. (See "Character Assignment Statement" in
 topic 8.4.) If a data_name is of type integer, real, or complex, its
 corresponding initial_value need not agree in type, although it must be
 one of the types in that group (integer, real, or complex); if the types
 do not agree, the initial_value is converted.

 To provide an initial value for a variable, array element, or character
 substring in a named common block, the DATA statement must be in a block
 data subprogram.

 A DATA statement cannot provide an initial value for:

 � A dummy argumen
 � A variable, array element, or character substring in a blank commo
 block, including a variable, array element, or character substring
 that is associated with a variable, array element, or character
 substring in a blank common block
 � A variable in a function subprogram whose name is the same as that o
 the function subprogram or an entry in the function subprogram.

 A variable, array element, or character substring must not be initialized
 more than once in an executable program. If two or more variables, array
 elements, or character substrings are associated, only one may be
 initialized in a DATA statement.

 An implied-DO list may be used in a DATA statement to initialize the
 elements of an array. Its form is:

 +---+
 ¦ ¦
 ¦ ---(--do_object_list--,--variable_name-- = -------------------------- ¦
 ¦ ¦
 ¦ ----integer_expr1--,--integer_expr2------------------------)---------- � ¦
 ¦ +-,--integer_expr3-+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 do_object
 is an array element name, character substring name, or implied-DO
 list.

 variable_name
 is the name of an INTEGER*4 variable called the implied-DO variable.

 integer_expr1
 integer_expr2
 integer_expr3
 are each an INTEGER*4 constant expression, except that the expression
 may contain implied-DO variables of other implied-DO lists that have
 this implied-DO list within their ranges.

 The range of an implied-DO list is the list do_object_list. The iteration
 count and the values of the implied-DO variable are established from
 integer_expr1, integer_expr2, and integer_expr3, the same as for a DO
 statement, except that the iteration count must be positive. (See
 "Execution of a DO Statement" in topic 9.7.3.) When the implied-DO list
 is executed, the items in the do_object_list are specified once for each
 iteration of the implied-DO list, with the appropriate substitution of

SAA CPI FORTRAN Reference
Chapter 7. DATA Statement

¦ Copyright IBM Corp. 1987, 1990
7.0 - 2

 values for any occurrence of the implied-DO variable.

 Each subscript expression in the do_object_list must be an integer
 constant expression, except that the expression may contain implied-DO
 variables of implied-DO lists that have the subscript expression within
 their ranges.

 Examples of DATA Statements

 integer z(100),even_odd(0:9)
 logical first_time
 data first_time / .true. /
 data z / 100* 0 /
 C Implied-DO list
 data (even_odd(j),j=0,8,2) / 5 * 0 /
 + ,(even_odd(j),j=1,9,2) / 5 * 1 /

SAA CPI FORTRAN Reference
Chapter 7. DATA Statement

¦ Copyright IBM Corp. 1987, 1990
7.0 - 3

 8.0 Chapter 8. Assignment Statements
 Assignment statements are executable statements that assign values to
 variables, array elements, or character substrings.

 This chapter describes the four kinds of assignment statements:

 � Arithmetic assignment statement
 � Logical assignment statement
 � Statement label (ASSIGN) assignment statement
 � Character assignment statements

 Subtopics
 8.1 Arithmetic Assignment Statement
 8.2 Logical Assignment Statement
 8.3 Statement Label Assignment (ASSIGN) Statement
 8.4 Character Assignment Statement

SAA CPI FORTRAN Reference
Chapter 8. Assignment Statements

¦ Copyright IBM Corp. 1987, 1990
8.0 - 1

 8.1 Arithmetic Assignment Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ------variable_name---------- = --arith_expr------------------------- � ¦
 ¦ +--array_element_name--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 variable_name
 array_element_name
 is the name of a variable or array element of type integer, real, or
 complex.

 arith_expr
 is an arithmetic expression.

 The arithmetic assignment statement evaluates arith_expr, converts the
 resulting value to the type of the variable or the array element, and
 assigns that value to the variable or array element.

 Examples of Arithmetic Assignment Statements

 esq = p**2 + m**2
 root(1) = (-b + sqrt(b**2 - 4.0*a*c))/(2.0*a)

SAA CPI FORTRAN Reference
Arithmetic Assignment Statement

¦ Copyright IBM Corp. 1987, 1990
8.1 - 1

 8.2 Logical Assignment Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ------variable_name---------- = --logical_expr----------------------- � ¦
 ¦ +--array_element_name--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 variable_name
 array_element_name
 is the name of a variable or array element of type logical.

 logical_expr
 is a logical expression.

 The logical assignment statement evaluates logical_expr and assigns the
 resulting value to the variable or the array element.

 Example of a Logical Assignment Statement

 logical inside
 .
 .
 real r,rmin,rmax
 inside = (r .ge. rmin) .and. (r .le. rmax)

SAA CPI FORTRAN Reference
Logical Assignment Statement

¦ Copyright IBM Corp. 1987, 1990
8.2 - 1

 8.3 Statement Label Assignment (ASSIGN) Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---ASSIGN---stmt_label---TO---variable_name-------------------------- � ¦
 ¦ ¦
 ¦ ¦
 +---+

 stmt_label
 specifies the statement label of an executable statement or a FORMAT
 statement.

 variable_name
 is the name of an INTEGER*4 variable.

 The ASSIGN statement assigns a statement label to the variable.

 A variable must be defined with a statement label value when referenced in
 an assigned GO TO statement or as a format identifier in an input/output
 statement. While defined with a statement label value, the variable must
 not be referenced in any other way.

 Use of an ASSIGN statement is the only way to define a variable with a
 statement label value.

 An integer variable defined with a statement label value may be redefined
 by another ASSIGN statement or with an integer value.

 Example of a Statement Label Assignment (ASSIGN) Statement: See "Example
 of an Assigned GO TO Statement" in topic 9.3.

SAA CPI FORTRAN Reference
Statement Label Assignment (ASSIGN) Statement

¦ Copyright IBM Corp. 1987, 1990
8.3 - 1

 8.4 Character Assignment Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ------variable_name---------- = --char_expr-------------------------- � ¦
 ¦ +--array_element_name--¦ ¦
 ¦ +--substring_name------+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 variable_name
 array_element_name
 substring_name
 is the name of a character variable, character array element, or
 character substring.

 char_expr
 is a character expression.

 The character assignment statement evaluates char_expr and assigns the
 resulting value to the character variable, character array element, or
 character substring.

 None of the character positions being defined in the character variable,
 character array element, or character substring may be referenced by the
 character expression.

 If the length of the character variable, character array element, or
 character substring is greater than the length of the character
 expression, the character expression is extended to the right with blanks
 until the lengths are equal, and then assigned. If the length of the
 character variable, character array element, or character substring is
 less, the character expression is truncated on the right to match the
 length of the character variable, character array element, or character
 substring, and then assigned.

 Only as much of the character expression need be defined as is necessary
 to define the character variable, character array element, or character
 substring. For example:

 character Scott*4, Dick*8
 Scott = Dick

 This assignment of Dick to Scott requires that the substring Dick(1:4) be
 defined. The rest of Dick, Dick(5:8), does not have to be defined.

 If substring_name is specified, the character expression is assigned only
 to the character substring identified by that substring_name. The
 definition status of other character substrings does not change.

 Examples of Character Assignment Statements

SAA CPI FORTRAN Reference
Character Assignment Statement

¦ Copyright IBM Corp. 1987, 1990
8.4 - 1

 character*80 line, ch*1, seq*8
 .
 .
 ch = line(1:1)
 seq = line(73:80)

SAA CPI FORTRAN Reference
Character Assignment Statement

¦ Copyright IBM Corp. 1987, 1990
8.4 - 2

 9.0 Chapter 9. Control Statements
 Control statements are executable statements that control the execution
 sequence of a program.

 This chapter describes all the control statements except for CALL and
 RETURN (which are described in Chapter 10, "Program Units and
 Procedures"). The control statements described in this chapter are:

 � Unconditional GO T
 � Computed GO T
 � Assigned GO T
 � Arithmetic I
 � Logical I
 � Block IF, ELSE IF, ELSE, and END IF (grouped in an IF construct
 � D
 � CONTINU
 � STO
 � PAUS
 � END

 Subtopics
 9.1 Unconditional GO TO Statement
 9.2 Computed GO TO Statement
 9.3 Assigned GO TO Statement
 9.4 Arithmetic IF Statement
 9.5 Logical IF Statement
 9.6 IF Construct--Block IF, ELSE IF, ELSE, and END IF Statements
 9.7 DO Statement
 9.8 CONTINUE Statement
 9.9 STOP Statement
 9.10 PAUSE Statement
 9.11 END Statement

SAA CPI FORTRAN Reference
Chapter 9. Control Statements

¦ Copyright IBM Corp. 1987, 1990
9.0 - 1

 9.1 Unconditional GO TO Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---GO--TO---stmt_label--- � ¦
 ¦ ¦
 ¦ ¦
 +---+

 stmt_label
 is the statement label of an executable statement.

 The unconditional GO TO statement transfers control to the statement
 identified by stmt_label.

SAA CPI FORTRAN Reference
Unconditional GO TO Statement

¦ Copyright IBM Corp. 1987, 1990
9.1 - 1

 9.2 Computed GO TO Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---GO--TO--(--stmt_label_list--)-----------integer_expr-------------- � ¦
 ¦ +--,--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 stmt_label
 is the statement label of an executable statement. The same statement
 label may appear more than once in stmt_label_list.

 integer_expr
 is an integer expression.

 The computed GO TO statement evaluates integer_expr, uses the resulting
 value as an index into stmt_label_list, and transfers control to the
 statement whose statement label is identified by that index. For example,
 if the value of integer_expr is 4, control transfers to the statement
 whose statement label is fourth in the stmt_label_list.

 If the value of integer_expr is less than one or greater than the number
 of statement labels in the list, execution of the GO TO statement has no
 effect (like a CONTINUE statement).

 Example of a Computed GO TO Statement

 integer next
 .
 .
 go to (100,200) next
 10 print *,'Execution transfers here if NEXT does not equal 1 or 2'
 .
 .
 100 print *,'Execution transfers here if NEXT = 1'
 .
 .
 200 print *,'Execution transfers here if NEXT = 2'

SAA CPI FORTRAN Reference
Computed GO TO Statement

¦ Copyright IBM Corp. 1987, 1990
9.2 - 1

 9.3 Assigned GO TO Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---GO--TO--variable_name--- � ¦
 ¦ +---------(--stmt_label_list--)--+ ¦
 ¦ +-,-+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 variable_name
 is a variable name of type INTEGER*4.

 stmt_label
 is the statement label of an executable statement. The same statement
 label may appear more than once in stmt_label_list.

 The assigned GO TO statement transfers control to the statement identified
 by a statement label. At the time the assigned GO TO statement is
 executed, the variable specified by variable_name must be defined with the
 value of a statement label. This definition must be made with an ASSIGN
 statement in the same program unit as the assigned GO TO statement.

 If stmt_label_list is present, the statement label assigned to the
 variable specified by variable_name must be one of the statement labels in
 the list.

 Example of an Assigned GO TO Statement

 integer return_label
 .
 .
 c Assign the return label and "call" the local procedure
 assign 100 to return_label
 goto 9000
 100 continue
 .
 .
 9000 continue
 c A "local" procedure.
 .
 .
 goto return_label

SAA CPI FORTRAN Reference
Assigned GO TO Statement

¦ Copyright IBM Corp. 1987, 1990
9.3 - 1

 9.4 Arithmetic IF Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ --IF--(--arith_expr--)--stmt_label1--,--stmt_label2--,--stmt_label3-- � ¦
 ¦ ¦
 ¦ ¦
 +---+

 arith_expr
 is an integer or real expression.

 stmt_label1
 stmt_label2
 stmt_label3
 are statement labels of executable statements. The same statement
 label may appear more than once among the three statement labels.

 The arithmetic IF statement evaluates arith_expr and transfers control to
 the statement identified by stmt_label1, stmt_label2, or stmt_label3,
 depending on whether the value of arith_expr is less than zero, zero, or
 greater than zero, respectively.

¦On OS/400 and OS/2, the value of arith_expr must not be a NaN (not a
¦number).

 Example of an Arithmetic IF Statement

 if (k-100) 10,20,30
 10 print *,'K is less than 100.'
 go to 40
 20 print *,'K equals 100.'
 go to 40
 30 print *,'K is greater than 100.'
 40 continue

SAA CPI FORTRAN Reference
Arithmetic IF Statement

¦ Copyright IBM Corp. 1987, 1990
9.4 - 1

 9.5 Logical IF Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---IF---(---logical_expr---)---stmt---------------------------------- � ¦
 ¦ ¦
 ¦ ¦
 +---+

 logical_expr
 is a logical expression.

 stmt
 is any unlabeled executable statement except DO, block IF, ELSE IF,
 ELSE, END IF, END, or another logical IF.

 The logical IF statement evaluates logical_expr and uses the resulting
 value to determine whether stmt is processed. If the value of
 logical_expr is true, stmt is executed. If the value of logical_expr is
 false, stmt is not executed and the IF statement has no effect (like a
 CONTINUE statement).

 Execution of a function reference in logical_expr may change the values of
 data items in stmt.

 Example of a Logical IF Statement

 if (err.ne.0) call error(err)

SAA CPI FORTRAN Reference
Logical IF Statement

¦ Copyright IBM Corp. 1987, 1990
9.5 - 1

 9.6 IF Construct--Block IF, ELSE IF, ELSE, and END IF Statements

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +--+
 ¦ ¦
 ¦ IF (logical_expr) THEN ¦
 ¦ ¦
 ¦ [stmt_block] ¦
 ¦ ¦
 ¦ [ELSE IF (logical_expr) THEN ¦
 ¦ ¦
 ¦ [stmt_block]]... ¦
 ¦ ¦
 ¦ [ELSE ¦
 ¦ ¦
 ¦ [stmt_block]] ¦
 ¦ ¦
 ¦ END IF ¦
 ¦ ¦
 ¦ ¦
 +--+

 logical_expr
 is a logical expression.

 stmt_block
 is a statement block consisting of zero or more executable statements.

 The IF construct controls the execution sequence. It is made up of a
 block IF statement, an END IF statement, and, optionally, ELSE IF, ELSE,
 and other executable statements. The box above shows the statements in an
 IF construct in their required sequence.

 The logical expressions in an IF construct are evaluated in the order of
 their appearance until a true value, an ELSE statement, or an END IF
 statement is found:

 � If a true value or an ELSE statement is found, the statement bloc
 immediately following is executed, and the execution of the IF
 construct is complete. The logical expressions in any remaining ELSE
 IF statements of the IF construct are not evaluated.

 � If an END IF statement is found, no statement blocks execute, and th
 execution of the IF construct is complete.

 Transfer of control into an IF construct from outside it is not permitted.
 Transfer of control within an IF construct is permitted within statement
 blocks, but is not permitted between statement blocks or to an ELSE IF or
 ELSE statement.

 IF constructs may be nested, that is, any of the statement blocks may
 contain IF constructs.

 Example of an IF Construct

SAA CPI FORTRAN Reference
IF Construct--Block IF, ELSE IF, ELSE, and END IF Statements

¦ Copyright IBM Corp. 1987, 1990
9.6 - 1

 c Get a record (containing a command) from the terminal
 100 continue
 .
 .
 c Process the command
 if (cmd .eq. 'retry') then
 if (limit .gt. five) then
 c Print retry limit exceeded
 .
 .
 call stop
 else
 call retry
 end if
 else if (cmd .eq. 'stop') then
 call stop
 else if (cmd .eq. 'abort') then
 call abort
 else
 go to 100
 end if

SAA CPI FORTRAN Reference
IF Construct--Block IF, ELSE IF, ELSE, and END IF Statements

¦ Copyright IBM Corp. 1987, 1990
9.6 - 2

 9.7 DO Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +--+
 ¦ ¦
 ¦ ---DO--stmt_label-------variable_name-- = --arith_expr1--,--arith_expr2-------------------- � ¦
 ¦ +-,-+ +-,--arith_expr3-+ ¦
 ¦ ¦
 ¦ ¦
 +--+

 stmt_label
 is the statement label of the terminal statement, which is the
 executable statement at the end of the DO loop.

 variable_name
 is the name of an integer or real variable called the DO variable.

 arith_expr1
 arith_expr2
 arith_expr3
 are each an integer or real expression.

 The DO statement specifies a loop, called a DO loop.

 The terminal statement must follow the DO statement and must not be any of
 the following statements: unconditional GO TO, assigned GO TO, arithmetic
 IF, block IF, ELSE IF, ELSE, END IF, RETURN, STOP, END, or DO.

 Subtopics
 9.7.1 Range of a DO Loop
 9.7.2 Active and Inactive DO Loops
 9.7.3 Execution of a DO Statement
 9.7.4 Loop Control Processing
 9.7.5 Execution of the Range
 9.7.6 Terminal Statement Execution
 9.7.7 Incrementation Processing

SAA CPI FORTRAN Reference
DO Statement

¦ Copyright IBM Corp. 1987, 1990
9.7 - 1

 9.7.1 Range of a DO Loop

 The range of a DO loop consists of all the executable statements following
 the DO statement, up to and including the terminal statement. Concerning
 the range:

 � If a DO statement appears within the range of a DO loop (that is, i
 nested), the range of the nested DO loop must be entirely within the
 range of the outer DO loop.

 � DO loops may share a terminal statement

 � If a DO statement appears within a statement block of an IF construct
 the range of the DO loop must be contained entirely within that
 statement block.

 � If an IF construct appears within the range of a DO loop, no part o
 the construct may appear outside the range.

 � Transfer of control into the range of a DO loop from outside the rang
 is not permitted.

 � Transfer of control to a shared terminal statement may only be don
 from the innermost sharing DO loop.

SAA CPI FORTRAN Reference
Range of a DO Loop

¦ Copyright IBM Corp. 1987, 1990
9.7.1 - 1

 9.7.2 Active and Inactive DO Loops

 A DO loop is either active or inactive. Initially inactive, a DO loop
 becomes active only when its DO statement is executed. Once active, the
 DO loop becomes inactive only when:

 � Its iteration count becomes zero

 � A RETURN statement is executed within the range of the DO loop

 � Control is transferred to a statement in the same program unit bu
 outside the range of the DO loop.

 � A subroutine invoked from within the DO loop returns, via an alternat
 return specifier, to a statement that is outside the range of the DO
 loop.

 � A STOP statement is executed or execution is terminated for any othe
 reason.

 When a DO loop becomes inactive, the DO variable keeps the last value
 assigned to it.

SAA CPI FORTRAN Reference
Active and Inactive DO Loops

¦ Copyright IBM Corp. 1987, 1990
9.7.2 - 1

 9.7.3 Execution of a DO Statement

 1. The initial parameter, m[1], the terminal parameter, m[2], and the
 incrementation parameter, m[3] are established by evaluating
 arith_expr1, arith_expr2, and arith_expr3, respectively. Evaluation
 includes, if necessary, conversion to the type of the DO variable. If
 arith_expr3 is not specified, m[3] has a value of 1. m[3] must not
 have a value of zero.

 2. The DO variable becomes defined with the value of the initial
 parameter (m[1]).

 3. The iteration count is established and is the value of the expression:

 MAX (INT ((m[2] - m[1] + m[3]) / m[3]), 0)

 Note that the iteration count is 0 whenever:

 m[1] > m[2] and m[3] > 0, or
 m[1] < m[2] and m[3] < 0

 At the completion of execution of the DO statement, loop control
 processing begins.

SAA CPI FORTRAN Reference
Execution of a DO Statement

¦ Copyright IBM Corp. 1987, 1990
9.7.3 - 1

 9.7.4 Loop Control Processing

 Loop control processing determines if further execution of the range of
 the DO loop is required. The iteration count is tested. If the count is
 not zero, execution of the first statement in the range of the DO loop
 begins. If the iteration count is zero, the DO loop becomes inactive.
 If, as a result, all of the DO loops sharing the terminal statement of
 this DO loop are inactive, normal execution continues with the execution
 of the next executable statement following the terminal statement.
 However, if some of the DO loops sharing the terminal statement are
 active, execution continues with incrementation processing.

SAA CPI FORTRAN Reference
Loop Control Processing

¦ Copyright IBM Corp. 1987, 1990
9.7.4 - 1

 9.7.5 Execution of the Range

 Statements in the range of the DO loop are executed until reaching the
 terminal statement. Except by incrementation processing, the DO variable
 may neither be redefined nor become undefined during execution of the
 range of the DO loop.

SAA CPI FORTRAN Reference
Execution of the Range

¦ Copyright IBM Corp. 1987, 1990
9.7.5 - 1

 9.7.6 Terminal Statement Execution

 Execution of the terminal statement occurs as a result of the normal
 execution sequence, or as a result of transfer of control, subject to the
 restriction that transfer of control into the range of a DO loop from
 outside the range is not permitted. Unless execution of the terminal
 statement results in a transfer of control, execution then continues with
 incrementation processing.

SAA CPI FORTRAN Reference
Terminal Statement Execution

¦ Copyright IBM Corp. 1987, 1990
9.7.6 - 1

 9.7.7 Incrementation Processing

 1. The DO variable, the iteration count, and the incrementation parameter
 (m[3]) of the active DO loop whose DO statement was most recently
 executed, are selected for processing.

 2. The value of the DO variable is incremented by the value of m[3].

 3. The iteration count is decremented by 1.

 4. Execution continues with loop control processing of the same DO loop
 whose iteration count was decremented.

 Examples of DO Statements

 do 20 i = 2, 5
 earliest(i) = 0.0
 do 10 j = 1, i-1
 if (network(j,i) .ne. 0.0)
 x earliest(i) = max(network(j,i)+earliest(j), earliest(i))
 10 continue
 20 continue

SAA CPI FORTRAN Reference
Incrementation Processing

¦ Copyright IBM Corp. 1987, 1990
9.7.7 - 1

 9.8 CONTINUE Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---CONTINUE-- � ¦
 ¦ ¦
 ¦ ¦
 +---+

 The CONTINUE statement has no effect.

SAA CPI FORTRAN Reference
CONTINUE Statement

¦ Copyright IBM Corp. 1987, 1990
9.8 - 1

 9.9 STOP Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---STOP-- � ¦
 ¦ +--char_constant--¦ ¦
 ¦ +--digit_string---+ ¦
 ¦ ¦
 +---+

 char_constant
 is a character constant of 1 through 72 characters.

 digit_string
 is a string of 1 through 5 digits.

 The STOP statement stops the execution of a program and displays
 char_constant or digit_string, if specified, to the user.

 Examples of STOP Statements

 STOP 'Abnormal Termination'
 STOP 15

SAA CPI FORTRAN Reference
STOP Statement

¦ Copyright IBM Corp. 1987, 1990
9.9 - 1

 9.10 PAUSE Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---PAUSE--- � ¦
 ¦ +--char_constant--¦ ¦
 ¦ +--digit_string---+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 char_constant
 is a character constant of 1 through 72 characters.

 digit_string
 is a string of 1 through 5 digits.

 The PAUSE statement suspends the execution of a program and displays
 char_constant or digit_string, if specified, to the user. When the user
 intervenes, execution resumes as though a CONTINUE statement were
 executed.

 Examples of PAUSE Statements

 PAUSE 'Insert a diskette into the default drive.'
 PAUSE 10

SAA CPI FORTRAN Reference
PAUSE Statement

¦ Copyright IBM Corp. 1987, 1990
9.10 - 1

 9.11 END Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---END--- � ¦
 ¦ ¦
 ¦ ¦
 +---+

 The END statement is the final statement in a program unit. It is the
 only required statement.

 The END statement in a main program terminates execution of the executable
 program. The END statement in a function or subroutine subprogram has the
 same effect as a RETURN statement.

SAA CPI FORTRAN Reference
END Statement

¦ Copyright IBM Corp. 1987, 1990
9.11 - 1

 10.0 Chapter 10. Program Units and Procedures
 This chapter describes:

 � Relationships among program units and procedure
 � Functions and subroutine
 � Argument
 � The PROGRAM, FUNCTION, statement function, SUBROUTINE, CALL, ENTRY
 RETURN, and BLOCK DATA statements.

 Subtopics
 10.1 Relationships among Program Units and Procedures
 10.2 PROGRAM Statement--Main Program
 10.3 Functions
 10.4 SUBROUTINE Statement
 10.5 CALL Statement
 10.6 ENTRY Statement
 10.7 RETURN Statement
 10.8 Arguments
 10.9 BLOCK DATA Statement--Block Data Subprogram

SAA CPI FORTRAN Reference
Chapter 10. Program Units and Procedures

¦ Copyright IBM Corp. 1987, 1990
10.0 - 1

 10.1 Relationships among Program Units and Procedures

 A program unit is a sequence of statements and optional comment lines,
 with the final statement being an END statement. An executable program is
 a collection of program units consisting of one main program and zero or
 more subprograms.

 Program unit relationships are illustrated in Figure 1.

 A procedure may be invoked by a program unit to perform a particular
 activity. When a procedure reference is made, the referenced procedure is
 executed.

 Procedure relationships are illustrated in Figure 2.

 Recursion is not permitted. That is, a program unit must not invoke
 itself, either directly or indirectly (via a program unit that it
 invokes).

 +---+
 ¦ ¦
 ¦ ¦
 ¦ Program unit ¦
 ¦ ¦ ¦
 ¦ +---------------------------------+ ¦
 ¦ ¦ ¦ ¦
 ¦ Main Program Subprogram ¦
 ¦ (may start with a ¦ ¦
 ¦ PROGRAM statement) +---------------------------------+ ¦
 ¦ ¦ ¦ ¦
 ¦ Procedure Block data subprogram ¦
 ¦ subprogram (starts with a ¦
 ¦ ¦ BLOCK DATA statement) ¦
 ¦ +---------------------------------+ ¦
 ¦ ¦ ¦ ¦
 ¦ Function subprogram Subroutine subprogram ¦
 ¦ (starts with a (starts with a ¦
 ¦ FUNCTION statement) SUBROUTINE statement) ¦
 ¦ ¦
 +---+
 Figure 1. Program Unit Relationships

 +---+
 ¦ ¦
 ¦ ¦
 ¦ Procedure ¦
 ¦ ¦ ¦
 ¦ +---------------------------------+ ¦
 ¦ ¦ ¦ ¦ ¦
 ¦ Intrinsic Statement External ¦
 ¦ function function procedure ¦
 ¦ ¦ ¦
 ¦ +-----------------------------+ ¦
 ¦ ¦ ¦ ¦
 ¦ External function or Subroutine or ¦
 ¦ function subprogram subroutine subprogram ¦
 ¦ (starts with a (starts with a ¦
 ¦ FUNCTION statement) SUBROUTINE statement) ¦
 ¦ ¦
 +---+

SAA CPI FORTRAN Reference
Relationships among Program Units and Procedures

¦ Copyright IBM Corp. 1987, 1990
10.1 - 1

 Figure 2. Procedure Relationships

SAA CPI FORTRAN Reference
Relationships among Program Units and Procedures

¦ Copyright IBM Corp. 1987, 1990
10.1 - 2

 10.2 PROGRAM Statement--Main Program

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---PROGRAM---name-- � ¦
 ¦ ¦
 ¦ ¦
 +---+

 name
 is the name of a main program.

 The PROGRAM statement specifies that a program unit is a main program.
 The PROGRAM statement is optional. A main program is the program unit
 that receives control from the system when the executable program is
 invoked at run time. A main program may contain any statement except
 BLOCK DATA, FUNCTION, SUBROUTINE, ENTRY, or RETURN.

 Example of a PROGRAM Statement

 PROGRAM SCALE

SAA CPI FORTRAN Reference
PROGRAM Statement--Main Program

¦ Copyright IBM Corp. 1987, 1990
10.2 - 1

 10.3 Functions

 A function is a procedure that is invoked by its name or one of its entry
 names in a function reference and that returns a value to the point of
 reference. The three kinds of functions are intrinsic functions (see
 Appendix A, "Intrinsic Functions"), statement functions, and external
 functions (or function subprograms).

 Subtopics
 10.3.1 Function Reference
 10.3.2 Statement Function Statement
 10.3.3 FUNCTION Statement--Function Subprogram (External Function)

SAA CPI FORTRAN Reference
Functions

¦ Copyright IBM Corp. 1987, 1990
10.3 - 1

 10.3.1 Function Reference

 A function reference is used as a primary in an expression to invoke a
 function. The form of a function reference is:

 +---+
 ¦ ¦
 ¦ ---name--(------------------------------)---------------------------- � ¦
 ¦ +--actual_argument_list--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 name
 is the name of an external function, an entry in an external function,
 a statement function, or an intrinsic function.

 actual_argument
 is an actual argument, described on page 10.8.

 Execution of a function reference results in the following:

 1. Actual arguments that are expressions are evaluated.
 2. Actual arguments are associated with their corresponding dummy
 arguments.
 3. The referenced function is executed.
 4. The value of the function (called the function value) is available to
 the referencing expression.

 Execution of a function reference must not alter the value of any other
 data item within the statement in which the function reference appears.
 However, execution of a function reference in the expression of a logical
 IF statement is permitted to affect data items in the statement that is
 executed when the value of the expression is true.

 See "Examples of Statement Function Statements" in topic 10.3.2 and
 "Example of a FUNCTION Statement" in topic 10.3.3 for examples of function
 references.

SAA CPI FORTRAN Reference
Function Reference

¦ Copyright IBM Corp. 1987, 1990
10.3.1 - 1

 10.3.2 Statement Function Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---name--(-----------------------------)-- = --expr------------------ � ¦
 ¦ +--dummy_argument_list--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 name
 is the name of this statement function.

 dummy_argument
 is a statement function dummy argument. See page 10.8 for a
 description of dummy arguments.

 expr
 is an expression.

 A statement function is a single-statement function that is internal to
 the program unit in which it is defined. It is defined by a statement
 function statement and invoked by a function reference.

 name determines the data type of the value returned from the statement
 function. If the data type of name does not match that of expr, the value
 of expr is converted to the type of name.

 An external function reference in expr must not cause a dummy_argument of
 the statement function to become undefined or redefined.

 The name of a statement function of type character must not have a length
 specifier of an asterisk in parentheses.

 Examples of Statement Function Statements

 parameter (pi = 3.14159)
 real area,circum,r,radius
 C Define statement functions AREA and CIRCUM.
 area(r) = pi * (r**2)
 circum(r) = 2 * pi * r
 .
 .
 C Reference the statement functions.
 print *,'The area is: ',area(radius)
 print *,'The circumference is: ',circum(radius)

SAA CPI FORTRAN Reference
Statement Function Statement

¦ Copyright IBM Corp. 1987, 1990
10.3.2 - 1

 10.3.3 FUNCTION Statement--Function Subprogram (External Function)

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---------------FUNCTION--name--(-----------------------------)------- � ¦
 ¦ +--type--+ +--dummy_argument_list--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 type
 explicitly specifies the data type of the value that the function
 subprogram returns. type may be INTEGER, REAL, DOUBLE PRECISION,
 COMPLEX, LOGICAL, or CHARACTER[*char_len], where char_len is the
 length specification of the result of the character function.
 char_len may have any of the forms permitted in a CHARACTER type
 statement (see page 6.4), except that an integer constant expression
 must not include the name of a constant. The default is 1. The
 length associated with the function name in the function reference
 must be the same as char_len.

 See "How Type Is Determined" in topic 3.2 for information on implicit
 typing.

 name
 is the name of this function subprogram. name may appear in a type
 statement, but in no other nonexecutable statement.

 dummy_argument
 is a dummy argument, described on page 10.8.

 A FUNCTION statement specifies that a program unit is a function
 subprogram. A function subprogram, or external function, is a program
 unit that specifies a function. A function subprogram is invoked by a
 function reference and returns a value to the invoking program unit. For
 the purpose of returning the function value, the function name and any
 entry names are considered to be variable names, and you must assign a
 value to one of those names during every execution of the function.

 The first statement of a function subprogram must be a FUNCTION statement.
 A function subprogram may contain any statement except PROGRAM,
 SUBROUTINE, and BLOCK DATA.

 The variable whose name is the name of the function is associated with any
 variables whose names are also entry names. This is called entry
 association. The definition of any one of them becomes the definition of
 all the associated variables having that same type, and is the value of
 the function no matter at which entry point it was entered. Such
 variables are not required to be of the same type unless the type is
 character, but the variable whose name is used to reference the function
 must be in a defined state when a RETURN or END statement is executed in
 the subprogram. An associated variable of a different type must not
 become defined during the execution of the function reference.

SAA CPI FORTRAN Reference
FUNCTION Statement--Function Subprogram (External Function)

¦ Copyright IBM Corp. 1987, 1990
10.3.3 - 1

 Example of a FUNCTION Statement

 +--+
 ¦ Main Program ¦ Function Subprogram ¦
 +---+--¦
 ¦ ¦ ¦
 ¦ program main ¦ c Dummy args are A, B, and C ¦
 ¦ c Actual args are X2, X1, X0 ¦ real function quad(a,b,c) ¦
 ¦ real root,x2,x1,x0 ¦ real a,b,c ¦
 ¦ . ¦ quad = (-b + sqrt(b**2-4*a*c)) / (2*a) ¦
 ¦ . ¦ return ¦
 ¦ c 2*(x**2) + 4.5*x + 1 ¦ end ¦
 ¦ x2 = 2.0 ¦ ¦
 ¦ x1 = 4.5 ¦ ¦
 ¦ x0 = 1.0 ¦ ¦
 ¦ c Reference function sub. ¦ ¦
 ¦ root = quad(x2,x1,x0) ¦ ¦
 ¦ . ¦ ¦
 ¦ . ¦ ¦
 ¦ ¦ ¦
 +--+

SAA CPI FORTRAN Reference
FUNCTION Statement--Function Subprogram (External Function)

¦ Copyright IBM Corp. 1987, 1990
10.3.3 - 2

 10.4 SUBROUTINE Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---SUBROUTINE---name--- � ¦
 ¦ +--(-----------------------------)--+ ¦
 ¦ +--dummy_argument_list--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 name
 is the name of this subroutine subprogram.

 dummy_argument
 is a dummy argument, described on page 10.8.

 The SUBROUTINE statement specifies that a program unit is a subroutine
 subprogram. A subroutine subprogram, or subroutine, is a program unit
 that is invoked by its name or one of its entry names in a CALL statement.
 A subroutine subprogram may contain any statement except PROGRAM,
 FUNCTION, and BLOCK DATA.

 Example of a SUBROUTINE Statement

 subroutine fit(j,e,b)

SAA CPI FORTRAN Reference
SUBROUTINE Statement

¦ Copyright IBM Corp. 1987, 1990
10.4 - 1

 10.5 CALL Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---CALL---name--- � ¦
 ¦ +--(------------------------------)--+ ¦
 ¦ +--actual_argument_list--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 name
 is the name of a subroutine or an entry in a subroutine.

 actual_argument
 is an actual argument, described on page 10.8.

 The CALL statement:

 1. Evaluates actual arguments that are expressions
 2. Associates actual arguments with their corresponding dummy arguments
 3. Invokes the specified subroutine.

 When the subroutine has processed, control returns from the subroutine.

 Example of a CALL Statement

 call fit(k,e,q)

SAA CPI FORTRAN Reference
CALL Statement

¦ Copyright IBM Corp. 1987, 1990
10.5 - 1

 10.6 ENTRY Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---ENTRY---name-- � ¦
 ¦ +--(-----------------------------)--+ ¦
 ¦ +--dummy_argument_list--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 name
 is the name of an entry in a function subprogram or subroutine
 subprogram and is called an entry name.

 dummy_argument
 is a dummy argument, described on page 10.8.

 The ENTRY statement establishes an alternate entry point. A function
 subprogram or subroutine subprogram has a primary entry point that is
 established via the SUBROUTINE or FUNCTION statement.

 In a function subprogram, name identifies an external function and may be
 referenced (invoked) as an external function. In a subroutine subprogram,
 name identifies a subroutine and may be referenced as a subroutine. When
 the reference is made, execution begins with the first executable
 statement following the ENTRY statement.

 The name of an entry in a function subprogram must appear as a variable
 name in the function subprogram and must be defined upon exit from the
 subprogram.

 In a function subprogram, name may appear in a type statement. In a
 function subprogram, name may be used as a variable name if the variable
 does not precede the ENTRY statement.

 If an entry name in a function subprogram is of type character, all entry
 names in the subprogram and the name of the subprogram must be of type
 character. If the length specifier of an entry named in the function
 subprogram or the name of the subprogram itself is an asterisk in
 parentheses (indicating inherited length), all entry names and the
 subprogram name must have a length specifier of an asterisk in
 parentheses; otherwise, all such names must have a length specification of
 the same integer value.

 A name in dummy_argument_list must not also appear:

 � In an executable statement preceding the ENTRY statement unless i
 also appears in a FUNCTION, SUBROUTINE, or ENTRY statement that
 precedes the executable statement

 � In the expression of a statement function statement unless the name i
 also a dummy argument of the statement function, appears in a FUNCTION

SAA CPI FORTRAN Reference
ENTRY Statement

¦ Copyright IBM Corp. 1987, 1990
10.6 - 1

 or SUBROUTINE statement, or appears in an ENTRY statement that
 precedes the statement function statement.

 The number of dummy arguments and their data types in the
 dummy_argument_list of this ENTRY statement, of other ENTRY statements,
 and of the primary entry point, may differ.

 Example of an ENTRY Statement

 real function vol(rds,hgt)
 parameter (pi = 3.14159)
 real rds,hgt
 a(rds) = pi * rds**2
 vol= a(rds) * hgt
 return
 entry area(rds)
 area = a(rds)
 return
 end

SAA CPI FORTRAN Reference
ENTRY Statement

¦ Copyright IBM Corp. 1987, 1990
10.6 - 2

 10.7 RETURN Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---RETURN-- � ¦
 ¦ +--integer_expr--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 integer_expr
 is an integer expression.

 The RETURN statement:

 � In a function subprogram, ends the execution of the subprogram an
 transfers control back to the referencing statement. The value of the
 function is available to the referencing program unit.

 � In a subroutine subprogram, ends the execution of the subprogram an
 transfers control to the first executable statement after the CALL
 statement or to an alternate return point, if one is specified.

 integer_expr may be specified in a subroutine subprogram only, not a
 function subprogram, and it specifies an alternate return point. Letting
 m be the value of integer_expr, if 1 = m = the number of asterisks in the
 SUBROUTINE or ENTRY statement, the mth asterisk in the dummy argument list
 is selected. Control then returns to the invoking program unit at the
 statement whose statement label is specified in the mth alternate return
 specifier in the CALL statement. For example, if the value of m is 5, the
 fifth asterisk in the dummy argument list is selected, and control returns
 to the statement whose statement label is specified in the fifth alternate
 return specifier in the CALL statement.

 If integer_expr is omitted or if its value (m) is not in the range one
 through the number of asterisks in the SUBROUTINE or ENTRY statement, a
 normal return is executed. Control returns to the invoking program unit
 at the statement following the CALL statement.

SAA CPI FORTRAN Reference
RETURN Statement

¦ Copyright IBM Corp. 1987, 1990
10.7 - 1

 10.8 Arguments

 An actual argument appears in the argument list of a procedure reference.
 An actual argument may be one of the following:

 � An expression, excluding a character expression involvin
 concatenation of an operand whose length specifier is an asterisk in
 parentheses (indicating inherited length)
 � An array nam
 � An intrinsic function name except for those listed under "INTRINSIC
 Statement" in topic 6.8
 � An external procedure nam
 � A dummy procedure nam
 � If the actual argument is in a CALL statement, an alternate return
 specifier, having the form *stmt_label, where stmt_label is the
 statement label of an executable statement.

 A dummy argument appears in the argument list of a procedure. A dummy
 argument is specified in a statement function statement, FUNCTION
 statement, SUBROUTINE statement, or ENTRY statement. Statement functions,
 function subprograms, and subroutine subprograms use dummy arguments to
 indicate the types of actual arguments and whether each argument is a
 single value, array of values, procedure, or statement label. A dummy
 argument is classified as one of the following:

 � A variable nam
 � An array name (except in statement functions
 � A procedure name (except in statement functions
 � An asterisk (in subroutines only, to indicate an alternate retur
 point).

 A given name may appear only once in a dummy argument list.

 A dummy argument name must not be used in an EQUIVALENCE, DATA, PARAMETER,
 SAVE, or INTRINSIC statement. A dummy argument name must not be the same
 as the procedure name appearing in a FUNCTION, SUBROUTINE, ENTRY, or
 statement function statement in the same program unit.

 A character dummy argument of inherited length must not be used as an
 operand for concatenation, except in a character assignment statement.

 See "Example of a FUNCTION Statement" in topic 10.3.3 for an example of
 arguments.

 Subtopics
 10.8.1 Association of Arguments
 10.8.2 Length of Character Arguments
 10.8.3 Variables As Dummy Arguments
 10.8.4 Arrays As Dummy Arguments
 10.8.5 Procedures As Dummy Arguments
 10.8.6 Asterisks As Dummy Arguments

SAA CPI FORTRAN Reference
Arguments

¦ Copyright IBM Corp. 1987, 1990
10.8 - 1

 10.8.1 Association of Arguments

 Actual arguments are associated with dummy arguments when a function or
 subroutine is referenced (invoked). The first actual argument becomes
 associated with the first dummy argument, the second actual argument with
 the second dummy argument, and so forth. Argument association within a
 program unit terminates at the execution of a RETURN or END statement in
 the program unit. There is no retention of argument association between
 one reference of a subprogram and the next reference of the subprogram.

 Actual arguments must agree in number, order, and type with their
 corresponding dummy arguments, except for two cases: a subroutine name
 has no type and must be associated with a dummy procedure name, and an
 alternate return specifier has no type and must be associated with an
 asterisk.

 Argument association may be carried through more than one level of
 procedure reference.

 If a subprogram reference causes a dummy argument in the referenced
 subprogram to become associated with another dummy argument in the
 referenced subprogram, neither dummy argument may become defined during
 execution of that subprogram. For example, if a subroutine is headed by:

 subroutine XYZ (A,B)

 and is referenced by:

 call XYZ (C,C)

 then the dummy arguments A and B each become associated with the same
 actual argument C and therefore with each other. Neither A nor B may
 become defined during this execution of subroutine XYZ or by any
 procedures referenced by XYZ.

 If a subprogram reference causes a dummy argument to become associated
 with a data item in a common block in the referenced subprogram or in a
 subprogram referenced by the referenced subprogram, neither the dummy
 argument nor the data item in the common block may become defined within
 the subprogram or within a subprogram referenced by the referenced
 subprogram.

SAA CPI FORTRAN Reference
Association of Arguments

¦ Copyright IBM Corp. 1987, 1990
10.8.1 - 1

 10.8.2 Length of Character Arguments

 If arguments are of type character, the lengths of the actual arguments
 must be greater than or equal to the lengths of the dummy arguments. If
 an actual argument is longer, only the leftmost characters are associated
 with the dummy argument.

 If a dummy argument has a length specifier of an asterisk in parentheses,
 the length of the dummy argument is "inherited" from the actual argument.
 The length is inherited because it is specified outside the program unit
 containing the dummy argument. If the associated actual argument is an
 array name, the length inherited by the dummy argument is the length of an
 array element in the associated actual argument array.

SAA CPI FORTRAN Reference
Length of Character Arguments

¦ Copyright IBM Corp. 1987, 1990
10.8.2 - 1

 10.8.3 Variables As Dummy Arguments

 A dummy argument that is a variable name must be associated with an actual
 argument that is an expression.

 A dummy argument that is a variable name may be defined within a
 subprogram if the associated actual argument is a variable name, array
 element name, or character substring name. A dummy argument that is a
 variable name must not be redefined within a subprogram if the associated
 actual argument is a constant, name of a constant, function reference,
 expression involving operators, or expression enclosed in parentheses.

SAA CPI FORTRAN Reference
Variables As Dummy Arguments

¦ Copyright IBM Corp. 1987, 1990
10.8.3 - 1

 10.8.4 Arrays As Dummy Arguments

 A dummy argument that is an array name must be associated with an actual
 argument that is an array name, an array element name, or an array element
 substring name. The number and size of the dimensions may differ.

 If the actual argument is a noncharacter array name, the size of the dummy
 argument must not exceed the size of the actual argument and each actual
 array element is associated with the dummy array element of the same
 subscript value.

 If the actual argument is a noncharacter array element name with a
 subscript value as, the size of the dummy argument array must not exceed
 the size of the actual argument array plus one minus as and the dummy
 argument array element with a subscript value of ds becomes associated
 with the actual argument array element that has a subscript value of as +
 ds - 1.

 If the actual argument is a character array name, character array element
 name, or array element substring name and begins at character storage unit
 acu of an array, character storage unit dcu of an associated dummy
 argument array becomes associated with character storge unit acu + dcu - 1
 of the actual argument array.

SAA CPI FORTRAN Reference
Arrays As Dummy Arguments

¦ Copyright IBM Corp. 1987, 1990
10.8.4 - 1

 10.8.5 Procedures As Dummy Arguments

 A dummy argument that is a procedure is called a dummy procedure. A dummy
 procedure may only be associated with an actual argument that is an
 intrinsic function, external function, subroutine, or another dummy
 procedure.

 The following example illustrates the use of a dummy procedure:

 subroutine roots
 external neg
 .
 .
 x = quad(a,b,c,neg)
 .
 .
 return
 end

 function quad(a,b,c,funct)
 .
 .
 val = funct(a,b,c)
 .
 .
 return
 end

 function neg(a,b,c)
 .
 .
 return
 end

SAA CPI FORTRAN Reference
Procedures As Dummy Arguments

¦ Copyright IBM Corp. 1987, 1990
10.8.5 - 1

 10.8.6 Asterisks As Dummy Arguments

 A dummy argument that is an asterisk may appear only in the dummy argument
 list of a SUBROUTINE statement or an ENTRY statement in a subroutine
 subprogram. The corresponding actual argument must be an alternate return
 specifier.

SAA CPI FORTRAN Reference
Asterisks As Dummy Arguments

¦ Copyright IBM Corp. 1987, 1990
10.8.6 - 1

 10.9 BLOCK DATA Statement--Block Data Subprogram

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---BLOCK--DATA--- � ¦
 ¦ +--name--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 name
 is the name of this block data subprogram.

 The BLOCK DATA statement specifies that a program unit is a block data
 subprogram. A block data subprogram is a program unit that provides
 initial values for variables and array elements in named common blocks.
 The only other statements that may appear in a block data subprogram are
 DIMENSION, EQUIVALENCE, COMMON, type, IMPLICIT, PARAMETER, SAVE, DATA, and
 END. Comment lines are permitted.

 More than one block data subprogram is permitted in an executable program,
 but only one may be unnamed. More than one named common block may be
 initialized in a block data subprogram. Restrictions on common blocks in
 block data subprograms are:

 � All items in a named common block must appear in the COMMON statemen
 even though they are not all initialized.

 � The same named common block must not be referenced in two differen
 block data subprograms.

 � Only items in named common blocks may be initialized in block dat
 subprograms.

SAA CPI FORTRAN Reference
BLOCK DATA Statement--Block Data Subprogram

¦ Copyright IBM Corp. 1987, 1990
10.9 - 1

 11.0 Chapter 11. Input/Output Statements
 This chapter describes:

 � Record
 � File
 � Unit
 � The input/output statements: READ, WRITE, PRINT, OPEN, CLOSE, INQUIRE
 BACKSPACE, ENDFILE, and REWIND.

 Subtopics
 11.1 Records
 11.2 Files
 11.3 Units
 11.4 READ, WRITE, and PRINT Statements
 11.5 OPEN Statement
 11.6 CLOSE Statement
 11.7 INQUIRE Statement
 11.8 BACKSPACE, ENDFILE, and REWIND Statements

SAA CPI FORTRAN Reference
Chapter 11. Input/Output Statements

¦ Copyright IBM Corp. 1987, 1990
11.0 - 1

 11.1 Records

 A record is a sequence of characters or a sequence of values. The three
 kinds of records are formatted, unformatted, and endfile.

 Subtopics
 11.1.1 Formatted Records
 11.1.2 Unformatted Records
 11.1.3 Endfile Records

SAA CPI FORTRAN Reference
Records

¦ Copyright IBM Corp. 1987, 1990
11.1 - 1

 11.1.1 Formatted Records

 A formatted record is a sequence of characters. When a formatted record
 is read, data values represented by characters are converted to internal
 form. When a formatted record is written, the data to be written is
 converted from internal form to characters.

 If a formatted record is printed, (2) the first character of the record
 determines vertical spacing and is not printed. The remaining characters
 of the record, if any, are printed beginning at the left margin. Vertical
 spacing is as follows:

 +--+
 ¦ First ¦ ¦
 ¦ Character ¦ Vertical Spacing before Printing ¦
 ¦ of Record ¦ ¦
 +--------------+---¦
 ¦ Blank ¦ One line ¦
 +--------------+---¦
 ¦ 0 ¦ Two lines ¦
 +--------------+---¦
 ¦ 1 ¦ To first line of next page ¦
 +--------------+---¦
 ¦ + ¦ No advance ¦
 +--+

 (2) Printing may be performed on a printer or on some other
 device.

SAA CPI FORTRAN Reference
Formatted Records

¦ Copyright IBM Corp. 1987, 1990
11.1.1 - 1

 11.1.2 Unformatted Records

 An unformatted record is a sequence of values in a system-dependent form
 and may contain both character and noncharacter data or may contain no
 data. The values are in their internal form and are not converted in any
 way when read or written.

SAA CPI FORTRAN Reference
Unformatted Records

¦ Copyright IBM Corp. 1987, 1990
11.1.2 - 1

 11.1.3 Endfile Records

 An endfile record is the last record of a file. It is written by an
 ENDFILE statement and has no length.

SAA CPI FORTRAN Reference
Endfile Records

¦ Copyright IBM Corp. 1987, 1990
11.1.3 - 1

 11.2 Files

 A file is a sequence of records. The two kinds of files are external and
 internal. Access to an external file may be sequential or direct.

 Subtopics
 11.2.1 External Files
 11.2.2 External File Access--Sequential or Direct
 11.2.3 Internal Files

SAA CPI FORTRAN Reference
Files

¦ Copyright IBM Corp. 1987, 1990
11.2 - 1

 11.2.1 External Files

 An external file is a file stored on an input/output device such as a
 disk, tape, or terminal.

 An external file is said to exist for a program if it is available to the
 program for reading or was created within the program. Creating an
 external file causes it to exist when it did not previously. Deleting an
 external file ends its existence. An external file may exist but contain
 no records, if none were written yet. All input/output statements may
 refer to external files that exist. All input/output statements except
 READ may refer to external files that do not exist.

 An external file may have a name. The name is system-dependent.

 The position of an external file is usually established by the preceding
 input/output operation. An external file may be positioned to:

 � An initial point, which is the position just before the first record.

 � A terminal point, which is the position just after the last record.

 � A current record, when the file is positioned within a record.
 Otherwise, there is no current record.

 � A preceding record, which is the record just before the current file
 position. A preceding record does not exist when the file is
 positioned at its initial point or at the first record of the file.

 � A next record, which is the record just after the current file
 position. The next record does not exist when the file is positioned
 at the terminal point or in the last record of the file.

 � An indeterminate position after an error

SAA CPI FORTRAN Reference
External Files

¦ Copyright IBM Corp. 1987, 1990
11.2.1 - 1

 11.2.2 External File Access--Sequential or Direct

 The two methods of accessing the records of an external file are
 sequential and direct. The method is determined when the file is
 connected to a unit.

 A file connected for sequential access contains records in the order they
 were written. The records must be either all formatted or all
 unformatted, except that the last record of the file must be an endfile
 record. The records must not be read or written by direct access
 input/output statements during the time the file is connected for
 sequential access.

 The records of a file connected for direct access may be read or written
 in any order. The records must be either all formatted or all
 unformatted, except that the last record of the file may be an endfile
 record if the file may also be connected for sequential access. In this
 case, however, the endfile record is not considered to be part of the file
 while the file is connected for direct access. The records must not be
 read or written by sequential access input/output statements during the
 time the file is connected for direct access, or read or written using
 list-directed formatting.

 Each record in a file connected for direct access has a record number,
 which identifies its order in the file. The record number is an integer
 value that must be specified when the record is read or written. Records
 are numbered sequentially. The first record is number 1. Records need
 not be read or written in the order of their record numbers. For example,
 records 9, 5, and 11 can be written in that order without writing the
 intermediate records.

 All records in a file connected for direct access must have the same
 length, which is specified when the file is connected.

 Records in a file connected for direct access cannot be deleted but can be
 rewritten with a new value. A record cannot be read unless it was first
 written.

SAA CPI FORTRAN Reference
External File Access--Sequential or Direct

¦ Copyright IBM Corp. 1987, 1990
11.2.2 - 1

 11.2.3 Internal Files

 An internal file is a character variable, character array, character array
 element, or character substring.

 If an internal file is a character variable, character array element, or
 character substring, the file consists of one record with a length equal
 to that of the variable, array element, or substring. If an internal file
 is a character array, each element of the array is a record of the file,
 with each record having the same length.

 Reading and writing records is accomplished only by sequential-access
 formatted input/output statements that do not specify list-directed
 formatting. READ, WRITE, and PRINT are the only input/output statements
 that may specify an internal file.

 If a WRITE statement writes less than an entire record, blanks fill the
 remainder of the record.

 An internal file always exists.

 A variable, array element, or character substring that is a record of an
 internal file may become defined or undefined by means other than an
 output statement. For example, it may become defined by a character
 assignment statement.

SAA CPI FORTRAN Reference
Internal Files

¦ Copyright IBM Corp. 1987, 1990
11.2.3 - 1

 11.3 Units

 A unit is a means of referring to an external file. Programs refer to
 external files by the unit numbers specified in unit specifiers in
 input/output statements. See page 11.4 for the form of a unit specifier.

 Subtopics
 11.3.1 Connection of a Unit

SAA CPI FORTRAN Reference
Units

¦ Copyright IBM Corp. 1987, 1990
11.3 - 1

 11.3.1 Connection of a Unit

 The association of a unit with an external file is called a connection.
 Connection must occur before the records of the file may be read or
 written. Connection may occur by preconnection, which is prior to program
 execution, or by an OPEN statement. See the publications for your FORTRAN
 product for more information about preconnection.

 A file may be connected and not exist. An example is a preconnected new
 file.

 All input/output statements except OPEN, CLOSE, and INQUIRE must specify
 units that are connected to an external file.

 The CLOSE statement disconnects a file from a unit. The file may be
 connected again within the same executable program to the same unit or to
 a different unit, and the unit may be connected again within the same
 executable program to the same file or to a different file.

SAA CPI FORTRAN Reference
Connection of a Unit

¦ Copyright IBM Corp. 1987, 1990
11.3.1 - 1

 11.4 READ, WRITE, and PRINT Statements

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---READ-----format--- � ¦
 ¦ ¦ +--,--io_item_list--+ ¦ ¦
 ¦ +--(--io_control_list--)----------------------+ ¦
 ¦ +--io_item_list--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 +---+
 ¦ ¦
 ¦ ---WRITE--(--io_control_list--)-------------------------------------- � ¦
 ¦ +--io_item_list--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 +---+
 ¦ ¦
 ¦ ---PRINT--format--- � ¦
 ¦ +--,--io_item_list--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 format
 is a format identifier, described below under FMT=format.

 io_item
 is an input/output list item. An input/output list specifies the data
 to be transferred. An input/output list item may be:

 � A variable name.
 � An array element name.
 � A character substring name.
 � An array name. The array is treated as if all of its elements
 were specified in the order they are arranged in storage.
 � In an output list only, any other expression except a character
 expression involving concatenation of an operand whose length
 specifier is an asterisk in parentheses (indicating inherited
 length) unless the operand is the name of a constant.
 � An implied-DO list, described on page 11.4.4.

 io_control_list
 is a list that must contain one unit specifier and may also contain
 one of each of the other permitted specifiers. The permitted
 specifiers are:

SAA CPI FORTRAN Reference
READ, WRITE, and PRINT Statements

¦ Copyright IBM Corp. 1987, 1990
11.4 - 1

 [UNIT=]u
 is a unit specifier, which specifies the unit to be used in the
 input/output operation. u is an external unit identifier or
 internal file identifier.

 An external unit identifier refers to an external file. It is one
 of the following:

 � An INTEGER*4 expression whose value is in the range zero
 through 99, inclusive.
 � An asterisk, identifying an installation-defined unit that is
 preconnected for formatted sequential access. Note: Although
 other input/output statements also allow a unit specifier,
 only the READ, WRITE, and PRINT statements allow its value to
 be an asterisk.

 An internal file identifier refers to an internal file. It is the
 name of a character variable, character array, character array
 element, or character substring.

 If the optional characters UNIT= are omitted, u must be the first
 item in io_control_list.

 [FMT=]format
 is a format specifier, which specifies the format to be used in
 the input/output operation. format is a format identifier, which
 may be:

 � The statement label of a FORMAT statement. (The FORMAT
 statement is described on page 12.1.2.)
 � The name of an INTEGER*4 variable that was assigned the
 statement label of a FORMAT statement.
 � The name of a character array. (See "Character Format
 Specification" in topic 12.1.3 for more information.)
 � Any character expression except one involving concatenation of
 an operand whose length specifier is an asterisk in
 parentheses (indicating inherited length) unless the operand
 is the name of a constant. (See "Character Format
 Specification" in topic 12.1.3 for more information.)
 � An asterisk, specifying list-directed formatting.
 (List-directed formatting is described on page 12.4.)

 If the optional characters FMT= are omitted, format must be the
 second item in io_control_list and the first item must be the unit
 specifier with UNIT= omitted.

 REC=integer_expr
 is a record specifier, which specifies the number of the record to
 be read or written in a file connected for direct access.
 integer_expr is an integer expression whose value is positive. A
 record specifier is not permitted if formatting is list-directed,
 if the unit specifier specifies an internal file, or if an
 end-of-file specifier is specified.

 IOSTAT=ios
 is an input/output status specifier, which specifies the status of
 the input/output operation. ios is the name of a variable or
 array element of type INTEGER*4. When the input/output statement
 containing this specifier finishes execution, ios is defined with:

SAA CPI FORTRAN Reference
READ, WRITE, and PRINT Statements

¦ Copyright IBM Corp. 1987, 1990
11.4 - 2

 � (For a READ statement only) a negative value if an end-of-file
 specifier is specified, an end-of-file condition was
 encountered, and no error occurred during execution of the
 READ statement.

 � A zero value if the input/output operation completed without
 any errors.

 � A positive value if an error occurred during the input/output
 operation and an error specifier is specified. The meaning of
 a positive value is system-dependent.

 ERR=stmt_label
 is an error specifier, which specifies a statement label at which
 execution is to continue when an error occurs during the execution
 of the input/output statement.

 END=stmt_label
 is an end-of-file specifier, which specifies a statement label at
 which execution is to continue when an endfile record is
 encountered while reading from a file and no error occurred. This
 specifier may only be specified in a READ statement that refers to
 a unit connected for sequential access. If an end-of-file
 specifier is specified, a record specifier is not permitted.

 A READ statement without io_control_list specified specifies the same unit
 as a READ statement with io_control_list specified in which the external
 unit identifier is an asterisk.

 Subtopics
 11.4.1 Categories of READ, WRITE, and PRINT Statements
 11.4.2 Execution of READ, WRITE, and PRINT Statements
 11.4.3 File Position before and after Data Transfer
 11.4.4 Implied-DO List in a READ, WRITE, or PRINT Statement
 11.4.5 Examples of READ, WRITE, and PRINT Statements

SAA CPI FORTRAN Reference
READ, WRITE, and PRINT Statements

¦ Copyright IBM Corp. 1987, 1990
11.4 - 3

 11.4.1 Categories of READ, WRITE, and PRINT Statements

 A READ or WRITE statement may be a formatted input/output statement or an
 unformatted input/output statement. The PRINT statement is a formatted
 input/output statement.

 A formatted input/output statement contains a format identifier and
 transfers data with editing (conversion) occurring between the internal
 form of the data and the character representation of that data in records.
 The two methods of formatting are:

 � Format-directed formatting, where editing is controlled by edi
 descriptors in a format specification. Format specifications are
 described on page 12.1.1.

 � List-directed formatting, where editing is controlled by the types an
 lengths of the data being read or written. List-directed formatting
 is described on page 12.4.

 If a formatted READ, WRITE, or PRINT statement has an asterisk as a
 format identifier, the statement is a list-directed input/output
 statement, and a record specifier must not be present.

 An unformatted input/output statement does not contain a format identifier
 and transfers data without performing editing.

 A READ or WRITE statement is a direct access input/output statement if it
 contains a record specifier, or a sequential access input/output statement
 if it does not contain a record specifier.

SAA CPI FORTRAN Reference
Categories of READ, WRITE, and PRINT Statements

¦ Copyright IBM Corp. 1987, 1990
11.4.1 - 1

 11.4.2 Execution of READ, WRITE, and PRINT Statements

 The READ statement reads data from an external file to internal storage or
 from an internal file to internal storage. Values are transferred from
 the file to the data items specified by the input list (io_item_list), if
 one is specified.

 The WRITE and PRINT statements write data from internal storage to an
 external file or from internal storage to an internal file. Values are
 transferred to the file from the data items specified by the output list
 (io_item_list) and format specification, if they are specified. Execution
 of a WRITE or PRINT statement for a file that does not exist creates the
 file, unless an error occurs.

SAA CPI FORTRAN Reference
Execution of READ, WRITE, and PRINT Statements

¦ Copyright IBM Corp. 1987, 1990
11.4.2 - 1

 11.4.3 File Position before and after Data Transfer

 The positioning of a file prior to data transfer depends on the method of
 access:

 � Sequential access for an external file: On input, the file i
 positioned at the beginning of the next record. This record becomes
 the current record. On output, a new record is created and becomes
 the last record of the file.

 Sequential access for an internal file: The file is positioned at the
 beginning of the first record of the file. This record becomes the
 current record.

 � Direct access: The file is positioned at the beginning of the recor
 specified by the record specifier. This record becomes the current
 record.

 After data transfer, the file is positioned:

 � Beyond the endfile record if an end-of-file condition exists as
 result of reading an endfile record.

 � Beyond the last record read or written if no error or end-of-fil
 condition exists. That last record becomes the preceding record. A
 record written on a file connected for sequential access becomes the
 last record of the file.

 If a file is positioned beyond the endfile record, execution of a READ,
 WRITE, PRINT, or ENDFILE statement is not permitted. However, a BACKSPACE
 or REWIND statement may be used to reposition the file.

 If an error occurs, the position of an external file is indeterminate.

SAA CPI FORTRAN Reference
File Position before and after Data Transfer

¦ Copyright IBM Corp. 1987, 1990
11.4.3 - 1

 11.4.4 Implied-DO List in a READ, WRITE, or PRINT Statement

 An implied-DO list may be used in a READ, WRITE, or PRINT statement to
 specify the data to be transferred. Its form is:

 +--+
 ¦ ¦
 ¦ --(-do_object_list--,--variable_name-- = --arith_expr1--,--arith_expr2--------------------)- � ¦
 ¦ +-,--arith_expr3-+ ¦
 ¦ ¦
 ¦ ¦
 +--+

 do_object
 is an input/output list item (see page 11.4).

 variable_name
 arith_expr1
 arith_expr2
 arith_expr3
 are as specified for the DO statement (see page 9.7).

 The range of an implied-DO list is the list do_object_list. The iteration
 count and the values of the DO variable are established from arith_expr1,
 arith_expr2, and arith_expr3, the same as for a DO statement. (See
 "Execution of a DO Statement" in topic 9.7.3.) When the implied-DO list
 is executed, the items in the do_object_list are specified once for each
 iteration of the implied-DO list, with the appropriate substitution of
 values for any occurrence of the DO variable.

 In a READ statement, the DO variable or an associated data item must not
 appear as an input list item in the do_object_list, but may be read in the
 same READ statement outside of the implied-DO list. For example:

 read(3,150) isize,(jinx(i),i=1,isize)
 150 format(10i7)

 In the example, the value of ISIZE is read with the same READ statement
 but outside of the implied-DO list of which it is a part. One element of
 the array JINX is defined with each iteration of the implied-DO list.

SAA CPI FORTRAN Reference
Implied-DO List in a READ, WRITE, or PRINT Statement

¦ Copyright IBM Corp. 1987, 1990
11.4.4 - 1

 11.4.5 Examples of READ, WRITE, and PRINT Statements

 Example of Formatted READ and WRITE Statements

 integer length,width,depth
 character*8 chr_time
 .
 .
 read(10,200) length,width,depth
 200 format(i5,i10,i10)
 write(*,'(a,a)') 'The time is:',chr_time(1:8)

 Example of Unformatted READ and WRITE Statements

 integer data_unit,size,a(1000),buffer(2000)
 .
 .
 read(unit=data_unit) size,(a(j),j=1,size)
 write(20) buffer

SAA CPI FORTRAN Reference
Examples of READ, WRITE, and PRINT Statements

¦ Copyright IBM Corp. 1987, 1990
11.4.5 - 1

 11.5 OPEN Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---OPEN--(--open_list--)--- � ¦
 ¦ ¦
 ¦ ¦
 +---+

 open_list
 is a list that must contain one unit specifier (UNIT=u) and may also
 contain one of each of the other permitted specifiers. The permitted
 specifiers are:

 [UNIT=]u
 is a unit specifier in which u must be an external unit identifier
 whose value is not an asterisk. External unit identifiers are
 described on page 11.4. If the optional characters UNIT= are
 omitted, u must be the first item in open_list.

 IOSTAT=ios
 is an input/output status specifier, described on page 11.4.

 ERR=stmt_label
 is an error specifier, described on page 11.4.

 FILE=char_expr
 is a file specifier, which specifies the name of the file to be
 connected to the specified unit. char_expr is a character
 expression whose value, when any trailing blanks are removed, is
 the system-dependent name of the file. If the file specifier is
 omitted, the unit becomes connected to a system-determined file.

 STATUS=char_expr
 specifies the status of the file when it is opened. char_expr is
 a character expression whose value, when any trailing blanks are
 removed, is one of the following:

 � OLD, to connect an existing file to a unit. If OLD is
 specified, a file specifier must be specified.
 � NEW, to create a new file and connect it to a unit. If NEW is
 specified, a file specifier must be specified.
 � SCRATCH, to create and connect a new file that will be deleted
 when it is disconnected. SCRATCH must not be specified with a
 named file (that is, FILE=char_expr must be omitted).
 � UNKNOWN, to connect an existing file, or to create and connect
 a new file. If the file exists it is connected as OLD. If
 the file does not exist it is connected as NEW.

 UNKNOWN is the default.

 ACCESS=char_expr
 specifies the access method for the connection of the file.

SAA CPI FORTRAN Reference
OPEN Statement

¦ Copyright IBM Corp. 1987, 1990
11.5 - 1

 char_expr is a character expression whose value, when any trailing
 blanks are removed, is either SEQUENTIAL or DIRECT. SEQUENTIAL is
 the default.

 FORM=char_expr
 specifies whether the file is connected for formatted or
 unformatted input/output. char_expr is a character expression
 whose value, when any trailing blanks are removed, is either
 FORMATTED or UNFORMATTED. If the file is being connected for
 sequential access, FORMATTED is the default. If the file is being
 connected for direct access, UNFORMATTED is the default.

 RECL=integer_expr
 specifies the length of each record in a file being connected for
 direct access. integer_expr is an INTEGER*4 expression whose
 value must be positive. This specifier must be omitted when a
 file is being connected for sequential access.

 BLANK=char_expr
 controls the default interpretation of blanks when using a format
 specification. char_expr is a character expression whose value,
 when any trailing blanks are removed, is either NULL or ZERO. See
 "BN (Blank Null) and BZ (Blank Zero) Editing" in topic 12.3.5 for
 descriptions of NULL and ZERO.

 The OPEN statement may be used to connect an existing external file to a
 unit, create an external file that is preconnected, create an external
 file and connect it to a unit, or change certain specifiers of a
 connection between an external file and a unit.

 If a unit is connected to a file that exists, execution of an OPEN
 statement for that unit is permitted. If the file specifier is not
 included in the OPEN statement, the file to be connected to the unit is
 the same as the file to which the unit is connected.

 If the file to be connected to the unit does not exist, but is the same as
 the file to which the unit is preconnected, the properties specified by
 the OPEN statement become a part of the connection.

 If the file to be connected to the unit is not the same as the file to
 which the unit is connected, the effect is as if a CLOSE statement without
 a STATUS=char_expr specifier had been executed for the unit immediately
 prior to the execution of the OPEN statement.

 If the file to be connected to the unit is the same as the file to which
 the unit is connected, only the BLANK=char_expr specifier may have a value
 different from the one currently in effect. Execution of the OPEN
 statement causes the new value of the BLANK=char_expr specifier to be in
 effect. The position of the file is unaffected.

 If a file is connected to a unit, execution of an OPEN statement on that
 file and a different unit is not permitted.

 Example of an OPEN Statement

 character*20 fname
 fname = 'input.dat'
 open(unit=8,file=fname,status='new',form='formatted')

 In the example, the value of character variable FNAME is system-dependent.

SAA CPI FORTRAN Reference
OPEN Statement

¦ Copyright IBM Corp. 1987, 1990
11.5 - 2

 11.6 CLOSE Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---CLOSE--(--close_list--)--- � ¦
 ¦ ¦
 ¦ ¦
 +---+

 close_list
 is a list that must contain one unit specifier (UNIT=u) and may also
 contain one of each of the other permitted specifiers. The permitted
 specifiers are:

 [UNIT=]u
 is a unit specifier in which u must be an external unit identifier
 whose value is not an asterisk. External unit identifiers are
 described on page 11.4. If the optional characters UNIT= are
 omitted, u must be the first item in close_list.

 IOSTAT=ios
 is an input/output status specifier, described on page 11.4.

 ERR=stmt_label
 is an error specifier, described on page 11.4.

 STATUS=char_expr
 specifies the disposition of the file after it is closed.
 char_expr is a character expression whose value, when any trailing
 blanks are removed, is either KEEP or DELETE.

 � If KEEP is specified for a file that exists, the file will
 continue to exist after the execution of the CLOSE statement.
 If KEEP is specified for a file that does not exist, the file
 will not exist after the execution of the CLOSE statement.
 KEEP must not be specified for a file whose status prior to
 execution of the CLOSE statement is SCRATCH.

 � If DELETE is specified, the file will not exist after
 execution of the CLOSE statement.

 The default is DELETE if the file status prior to execution of the
 CLOSE statement is SCRATCH; otherwise it is KEEP.

 The CLOSE statement disconnects an external file from a unit.

 At termination of execution of an executable program for reasons other
 than an error condition, all units that are connected are closed. Each
 unit is closed with status KEEP unless the file status prior to
 termination of execution was SCRATCH, in which case the unit is closed
 with status DELETE. Note that the effect is as though a CLOSE statement
 without a STATUS=char_expr specifier were executed on each connected unit.

SAA CPI FORTRAN Reference
CLOSE Statement

¦ Copyright IBM Corp. 1987, 1990
11.6 - 1

 Examples of CLOSE Statements

 close(15)
 close(unit=16,status='delete')

SAA CPI FORTRAN Reference
CLOSE Statement

¦ Copyright IBM Corp. 1987, 1990
11.6 - 2

 11.7 INQUIRE Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---INQUIRE---(--inquiry_list--)-------------------------------------- � ¦
 ¦ ¦
 ¦ ¦
 +---+

 inquiry_list
 is a list of inquiry specifiers. In an INQUIRE-by-file statement,
 inquiry_list must contain one file specifier (FILE=char_expr), must
 not contain a unit specifier (UNIT=u), and may contain at most one of
 each of the other inquiry specifiers. In an INQUIRE-by-unit
 statement, inquiry_list must contain one unit specifier, must not
 contain a file specifier, and may contain at most one of each of the
 other inquiry specifiers. The inquiry specifiers are:

 FILE=char_expr
 is a file specifier, and specifies the name of the file about
 which an INQUIRE-by-file statement is inquiring. char_expr is a
 character expression whose value, when any trailing blanks are
 removed, is the system-dependent name of the file. The named file
 does not have to exist nor does it have to be associated with a
 unit.

 [UNIT=]u
 is a unit specifier, and specifies the unit about which an
 INQUIRE-by-unit statement is inquiring. u must be an external
 unit identifier whose value is not an asterisk. External unit
 identifiers are described on page 11.4. If the optional
 characters UNIT= are omitted, u must be the first item in
 inquiry_list.

 IOSTAT=ios
 is an input/output status specifier, described on page 11.4.

 ERR=stmt_label
 is an error specifier, described on page 11.4. The INQUIRE
 statement does not cause any error conditions.

 EXIST=ex
 indicates whether a file or unit exists. ex is a logical variable
 or logical array element that is assigned the value true or false.
 For an INQUIRE-by-file statement, the value true is assigned if
 the file specified by FILE=char_expr exists, or the value false is
 assigned if the file does not exist. For an INQUIRE-by-unit
 statement, the value true is assigned if the unit specified by
 UNIT=u exists, or the value false is assigned if the unit does not
 exist.

 OPENED=od
 indicates whether a file or unit is connected. od is a logical

SAA CPI FORTRAN Reference
INQUIRE Statement

¦ Copyright IBM Corp. 1987, 1990
11.7 - 1

 variable or logical array element that is assigned the value true
 or false. For an INQUIRE-by-file statement, the value true is
 assigned if the file specified by FILE=char_expr is connected to a
 unit, or the value false is assigned if the file is not connected
 to a unit. For an INQUIRE-by-unit statement, the value true is
 assigned if the unit specified by UNIT=u is connected to a file,
 or the value false is assigned if the unit is not connected to a
 file.

 NUMBER=num
 indicates the external unit identifier currently associated with
 the file. num is an INTEGER*4 variable or array element that is
 assigned the value of the external unit identifier of the unit
 that is currently connected to the file. If there is no unit
 connected to the file, num becomes undefined.

 NAMED=nmd
 indicates whether the file has a name. nmd is a logical variable
 or logical array element that is assigned the value true if the
 file has a name, or the value false if the file does not have a
 name.

 NAME=fn
 indicates the name of the file. fn is a character variable or
 character array element that is assigned the value of the name of
 the file if the file has a name, or becomes undefined if the file
 does not have a name.

 ACCESS=char_expr
 indicates whether the file is connected for sequential access or
 direct access. char_expr is a character variable or character
 array element that is assigned the value SEQUENTIAL if the file is
 connected for sequential access, or the value DIRECT if the file
 is connected for direct access. If there is no connection,
 char_expr becomes undefined.

 SEQUENTIAL=seq
 indicates whether the file can be accessed sequentially. seq is a
 character variable or character array element that is assigned the
 value YES if the file can be accessed sequentially, the value NO
 if the file cannot be accessed sequentially, or the value UNKNOWN
 if it cannot be determined.

 DIRECT=dir
 indicates whether the file can be accessed directly. dir is a
 character variable or character array element that is assigned the
 value YES if the file can be accessed directly, the value NO if
 the file cannot be accessed directly, or the value UNKNOWN if it
 cannot be determined.

 FORM=char_expr
 indicates whether the file is connected for formatted or
 unformatted input/output. char_expr is a character variable or
 character array element that is assigned the value FORMATTED if
 the file is connected for formatted input/output, or the value
 UNFORMATTED if the file is connected for unformatted input/output.
 If there is no connection, char_expr becomes undefined.

 FORMATTED=fmt
 indicates whether the file can be connected for formatted

SAA CPI FORTRAN Reference
INQUIRE Statement

¦ Copyright IBM Corp. 1987, 1990
11.7 - 2

 input/output. fmt is a character variable or character array
 element that is assigned the value YES if the file can be
 connected for formatted input/output, the value NO if the file
 cannot be connected for formatted input/output, or the value
 UNKNOWN if it cannot be determined.

 UNFORMATTED=unf
 indicates whether the file can be connected for unformatted
 input/output. fmt is a character variable or character array
 element that is assigned the value YES if the file can be
 connected for unformatted input/output, the value NO if the file
 cannot be connected for unformatted input/output, or the value
 UNKNOWN if it cannot be determined.

 RECL=rcl
 indicates the record length of a file connected for direct access.
 rcl is an INTEGER*4 variable or array element that is assigned the
 value of the record length. If there is no connection or if the
 connection is not for direct access, rcl becomes undefined.

 NEXTREC=nr
 indicates where the next record may be read or written on a file
 connected for direct access. nr is an INTEGER*4 variable or array
 element that is assigned the value n + 1, where n is the record
 number of the last record read or written on the file connected
 for direct access. If the file is connected but no records were
 read or written since the connection, nr is assigned the value 1.
 If the file is not connected for direct access or if the position
 of the file cannot be determined because of a previous error, nr
 becomes undefined.

 BLANK=char_expr
 indicates the default treatment of blanks for a file connected for
 formatted input/output. char_expr is a character variable or
 character array element that is assigned the value NULL if all
 blanks in numeric input fields are ignored (as in BN editing), or
 the value ZERO if all nonleading blanks are interpreted as zeros
 (as in BZ editing). If there is no connection, or if the
 connection is not for formatted input/output, char_expr becomes
 undefined.

 The INQUIRE statement obtains information about:

 � The properties of an external file. When used for this purpose th
 file specifier (FILE=char_expr) must be specified and the statement is
 called an INQUIRE-by-file statement.
 � An external file's association with a particular unit. When used fo
 this purpose the unit specifier (UNIT=u) must be specified and the
 statement is called an INQUIRE-by-unit statement.

 An INQUIRE statement may be executed before, while, and after a file is
 associated with a unit. Any values assigned as the result of an INQUIRE
 statement are values that are current at the time the statement is
 executed.

 An INQUIRE-by-file statement defines the inquiry_list variables and array
 elements as follows:

 � Variables or array elements specified by NAMED nmd, NAME=fn,

SAA CPI FORTRAN Reference
INQUIRE Statement

¦ Copyright IBM Corp. 1987, 1990
11.7 - 3

 SEQUENTIAL=seq, DIRECT=dir, FORMATTED=fmt, and UNFORMATTED=unf become
 defined only if the value of char_expr is the name of a file that
 exists; otherwise, the variables or array elements become undefined.

 � A variable or array element specified by NUMBER num becomes defined
 only if a variable or array element specified by OPENED=od becomes
 defined with the value true.

 � Variables or array elements specified by ACCESS char_expr,
 FORM=char_expr, RECL=rcl, NEXTREC=nr, and BLANK=char_expr become
 defined only if a variable or array element specified by OPENED=od
 becomes defined with the value true.

 An INQUIRE-by-unit statement defines the inquiry_list variables and array
 elements specified by NUMBER=num, NAMED=nmd, NAME=fn, ACCESS=char_expr,
 SEQUENTIAL=seq, DIRECT=dir, FORM=char_expr, FORMATTED=fmt,
 UNFORMATTED=unf, RECL=rcl, NEXTREC=nr, and BLANK=char_expr only if the
 specified unit exists and if a file is connected to the unit; otherwise,
 the variables or array elements become undefined.

 If an error occurs during execution of an INQUIRE statement, all of the
 inquiry_list variables and array elements become undefined, except the one
 specified by IOSTAT=ios.

 The inquiry_list variables or array elements specified by EXIST=ex and
 OPENED=od always become defined unless an error occurs.

 Example of an INQUIRE Statement

 inquire(file=file1,exist=f_ex,opened=f_od,number=f_num)

SAA CPI FORTRAN Reference
INQUIRE Statement

¦ Copyright IBM Corp. 1987, 1990
11.7 - 4

 11.8 BACKSPACE, ENDFILE, and REWIND Statements

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---BACKSPACE-----u--- � ¦
 ¦ +--(--position_list--)--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 +---+
 ¦ ¦
 ¦ ---ENDFILE-----u--- � ¦
 ¦ +--(--position_list--)--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 +---+
 ¦ ¦
 ¦ ---REWIND-----u-- � ¦
 ¦ +--(--position_list--)--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 u
 is an external unit identifier, described on page 11.4. The value of
 u must not be an asterisk.

 position_list
 is a list that must contain one unit specifier (UNIT=u) and may also
 contain one of each of the other permitted specifiers. The permitted
 specifiers are:

 [UNIT=]u
 is a unit specifier in which u must be an external unit identifier
 whose value is not an asterisk. External unit identifiers are
 described on page 11.4. If the optional characters UNIT= are
 omitted, u must be the first item in position_list.

 IOSTAT=ios
 is an input/output status specifier, described on page 11.4.

 ERR=stmt_label
 is an error specifier, described on page 11.4.

 External files connected for sequential access may be positioned using
 BACKSPACE, ENDFILE, and REWIND statements, with the following effects:

 � BACKSPACE positions a file connected to a specified unit before th
 preceding record. If there is no preceding record, the file position
 does not change. If the preceding record is the endfile record, the

SAA CPI FORTRAN Reference
BACKSPACE, ENDFILE, and REWIND Statements

¦ Copyright IBM Corp. 1987, 1990
11.8 - 1

 file is positioned before the endfile record. Backspacing over
 records that were written using list-directed formatting is not
 permitted.

 � ENDFILE writes an endfile record as the next record of a file. Thi
 record becomes the last record in the file.

 � REWIND positions a file at its initial point

 Examples of BACKSPACE, ENDFILE, and REWIND Statements

 backspace 15
 backspace (unit=15,err=99)
 endfile 12
 endfile (iostat=ioss,unit=11)
 rewind 9

SAA CPI FORTRAN Reference
BACKSPACE, ENDFILE, and REWIND Statements

¦ Copyright IBM Corp. 1987, 1990
11.8 - 2

 12.0 Chapter 12. Input/Output Formatting
 Formatted READ, WRITE, and PRINT statements use formatting information to
 direct the editing (conversion) between internal data representations and
 character representations in formatted records (see "Formatted Records" in
 topic 11.1.1). This chapter describes the two methods of formatting:

 � Format-directed formattin
 � List-directed formatting

 Subtopics
 12.1 Format-Directed Formatting
 12.2 Interaction between an Input/Output List and a Format Specification
 12.3 Editing
 12.4 List-Directed Formatting

SAA CPI FORTRAN Reference
Chapter 12. Input/Output Formatting

¦ Copyright IBM Corp. 1987, 1990
12.0 - 1

 12.1 Format-Directed Formatting

 With format-directed formatting, editing is controlled by edit descriptors
 in a format specification. A format specification is specified in a
 FORMAT statement or as the value of a character array or character
 expression in a READ, WRITE, or PRINT statement.

 Subtopics
 12.1.1 Format Specification
 12.1.2 FORMAT Statement
 12.1.3 Character Format Specification

SAA CPI FORTRAN Reference
Format-Directed Formatting

¦ Copyright IBM Corp. 1987, 1990
12.1 - 1

 12.1.1 Format Specification

 A format specification (format_spec) has the form:

 +---+
 ¦ ¦
 ¦ ---(--------------------------)-------------------------------------- � ¦
 ¦ +--format_item_list--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 A format_item has any of the following forms:

 +---+
 ¦ ¦
 ¦ ------------data_edit_desc--- � ¦
 ¦ +--r--+ ¦
 ¦ ¦
 ¦ ---control_edit_desc--- � ¦
 ¦ ¦
 ¦ ------------(--format_item_list--)----------------------------------- � ¦
 ¦ +--r--+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 r
 is an unsigned, nonzero, integer constant called a repeat
 specification. The default is 1.

 data_edit_desc
 is a data (or repeatable) edit descriptor. The forms are:

 +--+
 ¦ ¦ ¦ See ¦
 ¦ Forms ¦ Use ¦ Page ¦
 +-----------------+------------------------------------+-----------------¦
 ¦ ¦ Edits character values ¦ 12.3.3 ¦
 ¦ A ¦ ¦ ¦
 ¦ Aw ¦ ¦ ¦
 ¦ ¦ ¦ ¦
 +-----------------+------------------------------------+-----------------¦
 ¦ ¦ Edits real and complex numbers ¦ 12.3.6 ¦
 ¦ Ew.d ¦ with exponents ¦ ¦
 ¦ Ew.dEe ¦ ¦ ¦
 ¦ Dw.d ¦ ¦ ¦
 ¦ ¦ ¦ ¦
 +-----------------+------------------------------------+-----------------¦
 ¦ Fw.d ¦ Edits real and complex numbers ¦ 12.3.7 ¦
 ¦ ¦ without exponents ¦ ¦
 +-----------------+------------------------------------+-----------------¦
 ¦ ¦ Edits real and complex numbers, ¦ 12.3.8 ¦
 ¦ Gw.d ¦ with the output format adapting to ¦ ¦
 ¦ Gw.dEe ¦ the magnitude of the number ¦ ¦
 ¦ ¦ ¦ ¦
 +-----------------+------------------------------------+-----------------¦
 ¦ ¦ Edits integer numbers ¦ 12.3.10 ¦
 ¦ Iw ¦ ¦ ¦
 ¦ Iw.m ¦ ¦ ¦

SAA CPI FORTRAN Reference
Format Specification

¦ Copyright IBM Corp. 1987, 1990
12.1.1 - 1

 ¦ ¦ ¦ ¦
 +-----------------+------------------------------------+-----------------¦
 ¦ Lw ¦ Edits logical values ¦ 12.3.11 ¦
 +-----------------+------------------------------------+-----------------¦
 ¦ Zw ¦ Edits hexadecimal values ¦ 12.3.15 ¦
 +--+

 control_edit_desc
 is a control (or nonrepeatable) edit descriptor. The forms are:

 +--+
 ¦ ¦ ¦ See ¦
 ¦ Forms ¦ Use ¦ Page ¦
 +-----------------+------------------------------------+-----------------¦
 ¦ / ¦ Specifies the end of data transfer ¦ 12.3.1 ¦
 ¦ ¦ on the current record ¦ ¦
 +-----------------+------------------------------------+-----------------¦
 ¦ : ¦ Specifies the end of format ¦ 12.3.2 ¦
 ¦ ¦ control if there are no more items ¦ ¦
 ¦ ¦ in the input/output list ¦ ¦
 +-----------------+------------------------------------+-----------------¦
 ¦ 'h' ¦ Specifies a character string (h) ¦ 12.3.4 ¦
 ¦ ¦ for output ¦ ¦
 +-----------------+------------------------------------+-----------------¦
 ¦ BN ¦ Specifies that blanks in numeric ¦ 12.3.5 ¦
 ¦ ¦ input fields are to be ignored ¦ ¦
 +-----------------+------------------------------------+-----------------¦
 ¦ BZ ¦ Specifies that nonleading blanks ¦ 12.3.5 ¦
 ¦ ¦ in numeric input fields are to be ¦ ¦
 ¦ ¦ interpreted as zeros ¦ ¦
 +-----------------+------------------------------------+-----------------¦
 ¦ nHh ¦ Specifies a character string for ¦ 12.3.9 ¦
 ¦ ¦ output ¦ ¦
 +-----------------+------------------------------------+-----------------¦
 ¦ kP ¦ Specifies a scale factor ¦ 12.3.12 ¦
 +-----------------+------------------------------------+-----------------¦
 ¦ ¦ Specifies that plus signs are not ¦ 12.3.13 ¦
 ¦ S ¦ to be written ¦ ¦
 ¦ SS ¦ ¦ ¦
 ¦ ¦ ¦ ¦
 +-----------------+------------------------------------+-----------------¦
 ¦ SP ¦ Specifies that plus signs are to ¦ 12.3.13 ¦
 ¦ ¦ be written ¦ ¦
 +-----------------+------------------------------------+-----------------¦
 ¦ Tc ¦ Specifies the absolute position in ¦ 12.3.14 ¦
 ¦ ¦ a record from which, or to which, ¦ ¦
 ¦ ¦ the next character is transferred ¦ ¦
 +-----------------+------------------------------------+-----------------¦
 ¦ TLc ¦ Specifies the relative position ¦ 12.3.14 ¦
 ¦ ¦ (backward from the current ¦ ¦
 ¦ ¦ position in a record) from which, ¦ ¦
 ¦ ¦ or to which, the next character is ¦ ¦
 ¦ ¦ transferred ¦ ¦
 +-----------------+------------------------------------+-----------------¦
 ¦ TRc ¦ Specifies the relative position ¦ 12.3.14 ¦
 ¦ ¦ (forward from the current position ¦ ¦
 ¦ ¦ in a record) from which, or to ¦ ¦
 ¦ ¦ which, the next character is ¦ ¦
 ¦ ¦ transferred ¦ ¦
 +-----------------+------------------------------------+-----------------¦

SAA CPI FORTRAN Reference
Format Specification

¦ Copyright IBM Corp. 1987, 1990
12.1.1 - 2

 ¦ nX ¦ Specifies the relative position ¦ 12.3.14 ¦
 ¦ ¦ (forward from the current position ¦ ¦
 ¦ ¦ in a record) from which, or to ¦ ¦
 ¦ ¦ which, the next character is ¦ ¦
 ¦ ¦ transferred ¦ ¦
 +--+

 Commas separate edit descriptors. However, you may omit the comma between
 a P edit descriptor and an F, E, D, or G edit descriptor immediately
 following it; before or after a slash edit descriptor; and before or after
 a colon edit descriptor.

SAA CPI FORTRAN Reference
Format Specification

¦ Copyright IBM Corp. 1987, 1990
12.1.1 - 3

 12.1.2 FORMAT Statement

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---FORMAT--format_spec--- � ¦
 ¦ ¦
 ¦ ¦
 +---+

 format_spec
 is described on page 12.1.1.

 The FORMAT statement specifies a format specification. When a format
 identifier (page 11.4) in a formatted READ, WRITE, or PRINT statement is a
 statement label or a statement label assigned to a variable name, the
 statement label identifies a FORMAT statement.

 The FORMAT statement must have a statement label.

 Examples of FORMAT Statements

 990 format(i5, 2f10.2)
 880 format(i5, f10.2, i5)

SAA CPI FORTRAN Reference
FORMAT Statement

¦ Copyright IBM Corp. 1987, 1990
12.1.2 - 1

 12.1.3 Character Format Specification

 When a format identifier (page 11.4) in a formatted READ, WRITE, or PRINT
 statement is a character array name or character expression, the value of
 the array or expression is a character format specification. Such a
 format specification has the form format_spec, described on page 12.1.1.

 If the format identifier is a character array element name, the format
 specification must be completely contained within the array element. If
 the format identifier is a character array name, the format specification
 may continue beyond the first element into following consecutive elements.

 Blanks may precede the format specification. Character data may follow
 the right parenthesis that ends the format specification, with no effect
 on the format specification.

 Example of a Character Format Specification

 character*18 charvar
 .
 .
 charvar = '(f10.2, i5, f10.2)'
 write(*,charvar) solid, liquid, gas

SAA CPI FORTRAN Reference
Character Format Specification

¦ Copyright IBM Corp. 1987, 1990
12.1.3 - 1

 12.2 Interaction between an Input/Output List and a Format Specification

 The beginning of format-directed formatting initiates format control.
 Each action of format control depends on the next edit descriptor
 contained in the format specification and the next item in the
 input/output list, if one exists.

 If an input/output list specifies at least one item, at least one data
 (repeatable) edit descriptor must exist in the format specification. Note
 that an empty format specification (parentheses only) may be used only if
 there are no items in the input/output list. In this case one input
 record is skipped or one output record containing no characters is
 written.

 A format specification is interpreted from left to right except when a
 repeat specification (r) is present. A format item preceded by a repeat
 specification is processed as a list of r format specifications or edit
 descriptors identical to the format specification or edit descriptor
 without the repeat specification.

 To each data (repeatable) edit descriptor interpreted in a format
 specification, there corresponds one item specified by the input/output
 list, except that a list item of type complex requires the interpretation
 of two F, E, D, or G edit descriptors. To each control (nonrepeatable)
 edit descriptor there is no corresponding item specified by the
 input/output list, and format control communicates information directly
 with the record.

 Format control operates as follows:

 1. If a data (repeatable) edit descriptor is encountered, format control
 processes an input/output list item if there is one, or terminates if
 the list is empty. If the list item processed is type complex, two F,
 E, D, or G edit descriptors are processed.

 2. If a colon edit descriptor is encountered, format control processes an
 input/output list item if there is one, or terminates if the list is
 empty.

 3. If a control (nonrepeatable) edit descriptor other than a colon is
 encountered, format control processes an input/output list item.

 4. If the end of the format specification is reached, format control
 terminates if the input/output list is empty, or reverts to the
 beginning of the format specification terminated by the last preceding
 right parenthesis. Concerning reversion:

 � The reused portion of the format specification must contain at
 least one data (repeatable) edit descriptor.

 � If reversion is to a parenthesis that is preceded by a repeat
 specification, the repeat specification is reused.

 � Reversion, of itself, has no effect on the scale factor; on the S,
 SP, or SS edit descriptors; or on the BN or BZ edit descriptors.

 � If format control reverts, the file is positioned in a manner
 identical to the way it is positioned when a slash edit descriptor
 is processed.

SAA CPI FORTRAN Reference
Interaction between an Input/Output List and a Format Specification

¦ Copyright IBM Corp. 1987, 1990
12.2 - 1

 During a read operation, any unprocessed characters of the record are
 skipped whenever the next record is read.

SAA CPI FORTRAN Reference
Interaction between an Input/Output List and a Format Specification

¦ Copyright IBM Corp. 1987, 1990
12.2 - 2

 12.3 Editing

 Editing is performed on fields. A field is the part of a record that is
 read on input or written on output when format control processes one I, F,
 E, D, G, L, A, Z, H, or apostrophe edit descriptor. The field width is
 the size of the field in characters.

 The I, F, E, D, and G edit descriptors are collectively called numeric
 edit descriptors and are used to format integer, real, and complex data.
 The general rules that apply to these edit descriptors are:

 � On input

 - Leading blanks are not significant. The interpretation of other
 blanks is controlled by the BLANK=char_expr specifier in the OPEN
 statement and the BN and BZ edit descriptors. A field of all
 blanks is considered to be zero. Plus signs are optional.

 - With F, E, D, and G editing, a decimal point appearing in the
 input field overrides the portion of an edit descriptor that
 specifies the decimal point location. The field may have more
 digits than can be represented internally.

 � On output

 - Characters are right-justified inside the field. Leading blanks
 are supplied if the editing process produces fewer characters than
 the field width. If the number of characters is greater than the
 field width, the entire field is filled with asterisks.

 - A negative value is prefixed with a minus sign. By default, a
 positive or zero value is unsigned; however, it may be prefixed
 with a plus sign, as controlled by the S, SP, and SS edit
 descriptors.

¦ - On OS/400 and OS/2, a NaN (not a number) is indicated by question
 marks, plus infinity is indicated by plus signs, and minus
 infinity is indicated by minus signs.

 Complex Editing: A complex value is a pair of separate real components.
 Therefore, complex editing is specified by a pair of F, E, D, or G edit
 descriptors. The first edit descriptor edits the real part of the number,
 and the second edit descriptor edits the imaginary part of the number.
 The two edit descriptors may be the same or different. One or more
 control (nonrepeatable) edit descriptors may appear between the two edit
 descriptors, but no data (repeatable) edit descriptors may appear between
 them.

 Subtopics
 12.3.1 / (Slash) Editing
 12.3.2 : (Colon) Editing
 12.3.3 A (Character) Editing
 12.3.4 Apostrophe Editing
 12.3.5 BN (Blank Null) and BZ (Blank Zero) Editing
 12.3.6 E (Real with Exponent) and D (Double Precision) Editing
 12.3.7 F (Real without Exponent) Editing
 12.3.8 G (General) Editing
 12.3.9 H Editing
 12.3.10 I (Integer) Editing
 12.3.11 L (Logical) Editing

SAA CPI FORTRAN Reference
Editing

¦ Copyright IBM Corp. 1987, 1990
12.3 - 1

 12.3.12 P (Scale Factor) Editing
 12.3.13 S, SP, and SS (Sign Control) Editing
 12.3.14 T, TL, TR, and X (Positional) Editing
 12.3.15 Z (Hexadecimal) Editing

SAA CPI FORTRAN Reference
Editing

¦ Copyright IBM Corp. 1987, 1990
12.3 - 2

 12.3.1 / (Slash) Editing

 Form:

 /

 The slash edit descriptor indicates the end of data transfer on the
 current record.

 On input, when a file is connected for sequential access, the file is
 positioned at the beginning of the next record for each slash edit
 descriptor.

 On output, when a file is connected for sequential access, a new record is
 created and the file is positioned to write at the start of the next
 record for each slash edit descriptor.

 On input or output, when a file is connected for direct access, for each
 slash edit descriptor the record number increases by one, and the file is
 positioned at the beginning of the record that has that record number.

 Examples of Slash Editing on Input

 500 format(f6.2 / 2f6.2)
 100 format(i4 / i4 / i4)

SAA CPI FORTRAN Reference
/ (Slash) Editing

¦ Copyright IBM Corp. 1987, 1990
12.3.1 - 1

 12.3.2 : (Colon) Editing

 Form:

 :

 The colon edit descriptor terminates format control (which is discussed on
 page 12.2) if there are no more items in the input/output list. If there
 are more items in the input/output list when the colon is encountered, the
 colon is ignored.

 Example of Colon Editing

 10 format(3(:'Array Value',f10.5)/)

SAA CPI FORTRAN Reference
: (Colon) Editing

¦ Copyright IBM Corp. 1987, 1990
12.3.2 - 1

 12.3.3 A (Character) Editing

 Forms:

 A
 Aw

 where:

 w is an unsigned, nonzero, integer constant that specifies the width of
 the character field, including blanks. If w is not specified, the width
 of the character field is the length of the corresponding input/output
 list item.

 The A edit descriptor directs the editing of character values. The A edit
 descriptor must correspond to an input/output list item of type character.

 On input, if w is greater than or equal to the length (call it len) of the
 input/output list item, the rightmost len characters are taken from the
 input field. If the specified field width is less than len, the w
 characters are left-justified, with len-w trailing blanks added.

 On output, if w is greater than len, the output field consists of w-len
 blanks followed by the len characters from the internal representation.
 If w is less than or equal to len, the output field consists of the
 leftmost w characters from the internal representation.

SAA CPI FORTRAN Reference
A (Character) Editing

¦ Copyright IBM Corp. 1987, 1990
12.3.3 - 1

 12.3.4 Apostrophe Editing

 Form:

 Same as a character constant (see page 3.11).

 The apostrophe edit descriptor specifies a character string in an output
 format specification. The width of the output field is the length of the
 character constant.

 Examples of Apostrophe Editing

 50 format('The value is -- ',i2)
 10 format(i2,'o''clock')
 write(*,'(i2,''o''''clock'')') itime

SAA CPI FORTRAN Reference
Apostrophe Editing

¦ Copyright IBM Corp. 1987, 1990
12.3.4 - 1

 12.3.5 BN (Blank Null) and BZ (Blank Zero) Editing

 Forms:

 BN
 BZ

 The BN and BZ edit descriptors control the interpretation of nonleading
 blanks by subsequently-processed I, F, E, D, and G edit descriptors. BN
 and BZ have effect only on input.

 BN specifies that blanks in numeric input fields are to be ignored, and
 remaining characters are to be interpreted as though right-justified. A
 field of all blanks has a value of zero.

 BZ specifies that nonleading blanks in numeric input fields are to be
 interpreted as zeros.

 The initial setting for blank interpretation is determined by the OPEN
 statement and its BLANK=char_expr specifier. (See page 11.5 for syntax.)
 The initial setting is determined as follows:

 � If OPEN is not specified, blank interpretation is system-dependent

 � If OPEN is specified but BLANK char_expr is not, blank interpretation
 is the same as if BN editing were specified.

 � If OPEN is specified and BLANK char_expr is specified, blank
 interpretation is the same as if BN editing were specified if the
 value of char_expr is NULL, or the same as if BZ editing were
 specified if the value of char_expr is ZERO.

 The initial setting for blank interpretation takes effect at the start of
 execution of a formatted READ statement and stays in effect until a BN or
 BZ edit descriptor is encountered or until format control terminates.
 Whenever a BN or BZ edit descriptor is encountered, the new setting stays
 in effect until another BN or BZ edit descriptor is encountered, or until
 format control terminates.

SAA CPI FORTRAN Reference
BN (Blank Null) and BZ (Blank Zero) Editing

¦ Copyright IBM Corp. 1987, 1990
12.3.5 - 1

 12.3.6 E (Real with Exponent) and D (Double Precision) Editing

 Forms:

 Ew.d
 Ew.dEe
 Dw.d

 where:

 w is an unsigned, nonzero, integer constant that specifies the width of
 the character field.
 d is an unsigned integer constant that specifies the number of fraction
 digits to the right of the decimal point.
 e is an unsigned, nonzero, integer constant that specifies the number of
 digits in the output exponent field. e has no effect on input.

 The E and D edit descriptors direct editing between real and complex
 numbers in internal form and their character representations with
 exponents. An E or D edit descriptor must correspond to an input/output
 list item of type real, or to either part of an input/output list item of
 type complex.

 The form of the input field is the same as for F editing.

 The form of the output field for a scale factor of 0 is:

 +---+
 ¦ ¦
 ¦ ---------------------.--digit_string--decimal_exponent--------------- � ¦
 ¦ +- + -¦ +--0--+ ¦
 ¦ +- - -+ ¦
 ¦ ¦
 ¦ ¦
 +---+

 digit_string
 is a digit string whose length is the d most significant digits of the
 value after rounding.

 decimal_exponent
 is a decimal exponent of one of the following forms (z is a digit):

 +--+
 ¦ Edit Descriptor ¦ Absolute Value of ¦ Form of Exponent ¦
 ¦ ¦ Exponent ¦ ¦
 +-----------------------+------------------------+-----------------------¦
 ¦ Ew.d ¦ |decimal_exponent| = ¦ E±z[1]z[2] ¦
 ¦ ¦ 99 ¦ ¦
 +-----------------------+------------------------+-----------------------¦
 ¦ Ew.d ¦ 99 < ¦ ±z[1]z[2]z[3] ¦
 ¦ ¦ |decimal_exponent| = ¦ ¦
 ¦ ¦ 999 ¦ ¦
 +-----------------------+------------------------+-----------------------¦
 ¦ Ew.dEe ¦ |decimal_exponent| = ¦ E±z[1]z[2]...z[e] ¦
 ¦ ¦ (10(e)) - 1 ¦ ¦
 +-----------------------+------------------------+-----------------------¦
 ¦ Dw.d ¦ |decimal_exponent| = ¦ D±z[1]z[2] ¦
 ¦ ¦ 99 ¦ ¦
 +-----------------------+------------------------+-----------------------¦

SAA CPI FORTRAN Reference
E (Real with Exponent) and D (Double Precision) Editing

¦ Copyright IBM Corp. 1987, 1990
12.3.6 - 1

 ¦ Dw.d ¦ 99 < ¦ ±z[1]z[2]z[3] ¦
 ¦ ¦ |decimal_exponent| = ¦ ¦
 ¦ ¦ 999 ¦ ¦
 +--+

 The scale factor (k; see page 12.3.12) controls decimal normalization. If
 -d < k= 0, the output field contains |k| leading zeros and d - |k|
 significant digits after the decimal point. If 0 < k < d + 2, the output
 field contains k significant digits to the left of the decimal point and d
 - k + 1 significant digits to the right of the decimal point. Other
 values of k are not permitted.

 See page 12.3 for general information about numeric editing.

 Examples of E and D Editing on Input: (Assume BN editing is in effect for
 blank interpretation.)

 +--+
 ¦ Input ¦ Format ¦ Value ¦
 +---------+---------+--¦
 ¦ 12.34 ¦ e8.4 ¦ 12.34 ¦
 +---------+---------+--¦
 ¦ .1234e2 ¦ e8.4 ¦ 12.34 ¦
 +---------+---------+--¦
 ¦ 2.e10 ¦ e12.6E1 ¦ 2.e10 ¦
 +--+

 Examples of E and D Editing on Output

 +--+
 ¦ Value ¦ Format ¦ Output ¦
 +---------+---------+--¦
 ¦ 1234.56 ¦ e10.3 ¦ 0.123e+04 ¦
 +---------+---------+--¦
 ¦ 1234.56 ¦ d10.3 ¦ 0.123d+04 ¦
 +--+

SAA CPI FORTRAN Reference
E (Real with Exponent) and D (Double Precision) Editing

¦ Copyright IBM Corp. 1987, 1990
12.3.6 - 2

 12.3.7 F (Real without Exponent) Editing

 Form:

 Fw.d

 where:

 w is an unsigned, nonzero, integer constant that specifies the width of
 the character field.
 d is an unsigned integer constant that specifies the number of fraction
 digits to the right of the decimal point.

 The F edit descriptor directs editing between real and complex numbers in
 internal form and their character representations without exponents.

 The F edit descriptor must correspond to an input/output list item of type
 real, or to either part of an input/output list item of type complex.

 The input field for the F edit descriptor consists of, in order:

 1. An optional sign.
 2. A string of digits optionally containing a decimal point. If the
 decimal point is present, it overrides the d specified in the edit
 descriptor. If the decimal point is omitted, the rightmost d digits
 of the string are interpreted as following the decimal point and
 leading blanks are converted to zeros if necessary.
 3. Optionally, an exponent, having one of the forms:
 � A signed integer constant.
 � E or D followed by zero or more blanks, followed by an optionally
 signed integer constant. E and D are processed identically.

 The output field for the F edit descriptor consists of, in order:

 1. Blanks if necessary
 2. A minus sign if the internal value is negative, or an optional plus
 sign if the internal value is zero or positive
 3. A string of digits that contains a decimal point and represents the
 magnitude of the internal value, as modified by the scale factor in
 effect and rounded to d fractional digits.

 See page 12.3 for general information about numeric editing.

 Examples of F Editing on Input: (Assume BN editing is in effect for blank
 interpretation.)

 +--+
 ¦ Input ¦ Format ¦ Value ¦
 +---------+---------+--¦
 ¦ -100 ¦ f6.2 ¦ -1.0 ¦
 +---------+---------+--¦
 ¦ 2.9 ¦ f6.2 ¦ 2.9 ¦
 +---------+---------+--¦
 ¦ 4.e+2 ¦ f6.2 ¦ 400.0 ¦
 +--+

 Examples of F Editing on Output

 +--+
 ¦ Value ¦ Format ¦ Output ¦

SAA CPI FORTRAN Reference
F (Real without Exponent) Editing

¦ Copyright IBM Corp. 1987, 1990
12.3.7 - 1

 +---------+---------+--¦
 ¦ +1.2 ¦ f8.4 ¦ 1.2000 ¦
 +---------+---------+--¦
 ¦ .12345 ¦ f8.3 ¦ 0.123 ¦
 +--+

SAA CPI FORTRAN Reference
F (Real without Exponent) Editing

¦ Copyright IBM Corp. 1987, 1990
12.3.7 - 2

 12.3.8 G (General) Editing

 Forms:

 Gw.d
 Gw.dEe

 where:

 w is an unsigned, nonzero, integer constant that specifies the width of
 the character field.
 d is an unsigned integer constant that specifies the number of fraction
 digits to the right of the decimal point.
 e is an unsigned, nonzero, integer constant that specifies the number of
 digits in the output exponent field.

 The G edit descriptor is like the E and F edit descriptors except that the
 output format adapts to the magnitude of the number being edited. Thus
 the G edit descriptor provides a choice of output formats without
 requiring the magnitude of the numbers to be known ahead of time.

 The G edit descriptor must correspond to an input/output list item of type
 real, or to either part of an input/output list item of type complex.

 G input editing is the same as for F editing.

 On output, the number is converted using either E or F editing, depending
 on the number. The field is padded with blanks on the right as necessary.
 Letting N be the magnitude of the number, editing is as follows:

 � If N < 0.1 or N = 10 d):

 - Gw.d editing is the same as Ew.d editing
 - Gw.dEe editing is the same as Ew.dEe editing.

 � If N = 0.1 and N < 10 d):

 - Gw.d editing is the same as Fw'.d' editing, where w' = w - 4 and
 d' = d - log[10]N
 - Gw.dEe editing is the same as Fw'.d' editing, where w' = w - (e +
 2) and d' = d' - log[10]N.

 See page 12.3 for general information about numeric editing.

 Examples of G Editing on Output

 +--+
 ¦ Value ¦ Format ¦ Output ¦
 +---------+---------+--¦
 ¦ 1234.56 ¦ g12.5 ¦ 1234.6 ¦
 +---------+---------+--¦
 ¦ 123456. ¦ g12.5 ¦ 0.12346e+06 ¦
 +--+

SAA CPI FORTRAN Reference
G (General) Editing

¦ Copyright IBM Corp. 1987, 1990
12.3.8 - 1

 12.3.9 H Editing

 Form:

 nHh

 where:

 n is an unsigned, nonzero, integer constant that specifies the number of
 characters following the H, which make up the output field. Blanks are
 included in the count of characters.
 h is a string of any of the characters permitted in a character constant
 (see page 3.11).

 The H edit descriptor specifies a character string and its length in an
 output format specification.

 If an H edit descriptor occurs within a character constant and includes an
 apostrophe, the apostrophe must be represented by two consecutive
 apostrophes, which are counted as one character in specifying n.

 The H edit descriptor must not be used on input.

 Examples of H Editing

 50 format(16hThe value is -- ,i2)
 10 format(i2,7ho'clock)
 write(*,'(i2,7ho''clock)') itime

SAA CPI FORTRAN Reference
H Editing

¦ Copyright IBM Corp. 1987, 1990
12.3.9 - 1

 12.3.10 I (Integer) Editing

 Forms:

 Iw
 Iw.m

 where:

 w is an unsigned, nonzero, integer constant that specifies the width of
 the character field, including blanks and the optional sign.
 m is an unsigned integer constant that specifies the minimum number of
 digits to be written. m must have a value that is less than or equal to
 w. m is useful on output only and has no effect on input.

 The I edit descriptor directs editing between integers in internal form
 and character representations of integers. The corresponding input/output
 list item must be of type integer.

 The input field for the I edit descriptor must be an optionally signed
 integer constant, unless it is all blanks (which is considered to be
 zero).

 The output field for the I edit descriptor consists of, in order:

 1. Zero or more leading blanks
 2. A minus sign if the internal value is negative, or an optional plus
 sign if the internal value is zero or positive
 3. The magnitude in the form of:

 � If m is not specified, an unsigned integer constant without
 leading zeros.

 � If m is specified, an unsigned integer constant of at least m
 digits and, if necessary, with leading zeros. If the internal
 value and m are both zero, blanks are written.

 See page 12.3 for general information about numeric editing.

 Examples of I Editing on Input: (Assume BN editing is in effect for blank
 interpretation.)

 +--+
 ¦ Input ¦ Format ¦ Value ¦
 +---------+---------+--¦
 ¦ -123 ¦ i6 ¦ -123 ¦
 +---------+---------+--¦
 ¦ 123456 ¦ i7.5 ¦ 123456 ¦
 +---------+---------+--¦
 ¦ 1234 ¦ i4 ¦ 1234 ¦
 +--+

 Examples of I Editing on Output

 +--+
 ¦ Value ¦ Format ¦ Output ¦
 +---------+---------+--¦
 ¦ -12 ¦ i7.6 ¦ -000012 ¦
 +---------+---------+--¦

SAA CPI FORTRAN Reference
I (Integer) Editing

¦ Copyright IBM Corp. 1987, 1990
12.3.10 - 1

 ¦ 12345 ¦ i5 ¦ 12345 ¦
 +--+

SAA CPI FORTRAN Reference
I (Integer) Editing

¦ Copyright IBM Corp. 1987, 1990
12.3.10 - 2

 12.3.11 L (Logical) Editing

 Form:

 Lw

 where:

 w is an unsigned, nonzero, integer constant that specifies the width of
 the character field, including blanks.

 The L edit descriptor directs editing between logical values in internal
 form and their character representations. The L edit descriptor must
 correspond to an input/output list item of type logical.

 The input field consists of optional blanks, followed by an optional
 decimal point, followed by a T for true or an F for false. Any characters
 following the T or F are accepted on input but are not acted upon;
 therefore, the strings .TRUE. and .FALSE. are acceptable input forms.

 The output field consists of T or F preceded by w-1 blanks.

 Examples of L Editing on Input

 +--+
 ¦ Input ¦ Format ¦ Value ¦
 +---------+---------+--¦
 ¦ t ¦ L4 ¦ true ¦
 +---------+---------+--¦
 ¦ .false. ¦ L7 ¦ false ¦
 +--+

 Examples of L Editing on Output

 +--+
 ¦ Value ¦ Format ¦ Output ¦
 +---------+---------+--¦
 ¦ true ¦ L4 ¦ T ¦
 +---------+---------+--¦
 ¦ false ¦ L1 ¦ F ¦
 +--+

SAA CPI FORTRAN Reference
L (Logical) Editing

¦ Copyright IBM Corp. 1987, 1990
12.3.11 - 1

 12.3.12 P (Scale Factor) Editing

 Form:

 kP

 where:

 k is the scale factor, an optionally-signed integer constant representing
 a power of ten.

 The scale factor, k, applies to all subsequently-processed F, E, D, and G
 edit descriptors until another scale factor is encountered or until format
 control terminates. The value of k is zero at the beginning of execution
 of each input/output statement.

 On input, when an input field using an F, E, D, or G edit descriptor
 contains an exponent, the scale factor is ignored. Otherwise, the
 internal value equals the external value multiplied by 10(-k).

 On output:

 � With F editing, the external value equals the internal valu
 multiplied by 10(k).

 � With E and D editing, the external decimal field is multiplied b
 10(k). The exponent is then reduced by k.

 � With G editing, fields are not affected by the scale factor unles
 they are outside the range that permits the use of F editing. If the
 use of E editing is required, the scale factor has the same effect as
 with E output editing.

 Examples of P Editing on Input

 +--+
 ¦ Input ¦ Format ¦ Value ¦
 +----------+----------+--¦
¦¦ 98.765 ¦ 3pf8.6 ¦ 0.098765 ¦
 +----------+----------+--¦
 ¦ 98.765 ¦ -3pf8.6 ¦ 98765. ¦
 +----------+----------+--¦
 ¦ .98765e+2¦ 3pf10.5 ¦ .98765e+2 ¦
 +--+

 Examples of P Editing on Output

 +--+
 ¦ Value ¦ Format ¦ Output ¦
 +----------+----------+--¦
 ¦ 12.34 ¦ 2pf7.2 ¦ 1234.00 ¦
 +----------+----------+--¦
 ¦ 12.34 ¦ -2pf6.4 ¦ 0.1234 ¦
 +----------+----------+--¦
 ¦ 12.34 ¦ 2pe10.3 ¦ 12.34e+00 ¦
 +--+

SAA CPI FORTRAN Reference
P (Scale Factor) Editing

¦ Copyright IBM Corp. 1987, 1990
12.3.12 - 1

 12.3.13 S, SP, and SS (Sign Control) Editing

 Forms:

 S
 SP
 SS

 The S, SP, and SS edit descriptors control the output of plus signs by all
 subsequently-processed I, F, E, D, and G edit descriptors until another S,
 SP, or SS edit descriptor is encountered or until format control
 terminates.

 S and SS specify that plus signs are not to be written. (They produce
 identical results.) SP specifies that plus signs are to be written.

SAA CPI FORTRAN Reference
S, SP, and SS (Sign Control) Editing

¦ Copyright IBM Corp. 1987, 1990
12.3.13 - 1

 12.3.14 T, TL, TR, and X (Positional) Editing

 Forms:

 Tc
 TLc
 TRc
 nX

 where:

 c is an unsigned, nonzero, integer constant.
 n is an unsigned, nonzero, integer constant.

 The T, TL, TR, and X edit descriptors specify the position at which the
 transfer of the next character to or from a record is to start. This
 position is:

 � For c, the cth character position

 � For T c, c characters backward from the current position. If the
 value of c is greater than or equal to the current position, then the
 next character accessed is position one of the record.

 � For T c, c characters forward from the current position.

 � For nX, n characters forward from the current position.

 The TR and X edit descriptors give identical results.

 On input, a TR or X edit descriptor may specify a position beyond the last
 character of the record if no characters are transferred from that
 position.

 On output, a T, TL, TR, or X edit descriptor does not by itself cause
 characters to be transferred. If characters are transferred to positions
 at or after the position specified by the edit descriptor, positions
 skipped and not previously filled are filled with blanks. The result is
 the same as if the entire record were initially filled with blanks.

 On output, a T, TL, TR, or X edit descriptor may result in repositioning
 such that subsequent editing with other edit descriptors causes character
 replacement.

 Examples of T, TL, and X Editing on Input

 150 format(i4,t30,i4)
 200 format(f6.2,5x,5(i4,TL4))

 Examples of T, TL, TR, and X Editing on Output

 50 format('Column 1',5x,'Column 14',tr2,'Column 25')
 100 format('aaaaa',TL2,'bbbbb',5X,'ccccc',T10,'ddddd')

SAA CPI FORTRAN Reference
T, TL, TR, and X (Positional) Editing

¦ Copyright IBM Corp. 1987, 1990
12.3.14 - 1

 12.3.15 Z (Hexadecimal) Editing

 Form:

 Zw

 where:

 w is an unsigned, nonzero, integer constant that specifies the width of
 the character field, including blanks.

 The Z edit descriptor directs editing between values of any type in
 internal form and their hexadecimal representation. (A hexadecimal digit
 is one of 0-9 or A-F.)

 On input, w hexadecimal digits are edited and form the internal
 representation for the value of the input list item. The hexadecimal
 digits in the input field correspond to the rightmost hexadecimal digits
 of the internal representation of the value assigned to the input list
 item.

 The output field contains w hexadecimal digits, including leading zeros.
 The digits in the output field correspond to the rightmost w hexadecimal
 digits of the internal representation.

 Note that the editing of character data for input or output does not imply
 blank padding as it does for A editing.

 Examples of Z Editing on Input

 +--+
 ¦ Input ¦ Format ¦ Value ¦
 +----------+----------+--¦
 ¦ 0C ¦ z2 ¦ 12 ¦
 +----------+----------+--¦
 ¦ 7fff ¦ z4 ¦ 32767 ¦
 +--+

 Examples of Z Editing on Output

 +--+
 ¦ Value ¦ Format ¦ Output ¦
 +----------+----------+--¦
 ¦ 12 ¦ z4 ¦ 000C ¦
 +----------+----------+--¦
 ¦ -1 ¦ z8 ¦ FFFFFFFF ¦
 +--+

SAA CPI FORTRAN Reference
Z (Hexadecimal) Editing

¦ Copyright IBM Corp. 1987, 1990
12.3.15 - 1

 12.4 List-Directed Formatting

 With list-directed formatting, editing is controlled by the types and
 lengths of the data being read or written. An asterisk format identifier
 specifies list-directed formatting. For example:

 write(6,*) total1, total2

 The characters in a formatted record processed under list-directed
 formatting constitute a sequence of values separated by value separators:

 � A value has the form of a constant or null value
 � A value separator is a comma, slash, or blank. A comma or slash may
 be preceded and followed by one or more blanks. Blanks in
 list-directed input records are significant.

 Subtopics
 12.4.1 List-Directed Input
 12.4.2 List-Directed Output

SAA CPI FORTRAN Reference
List-Directed Formatting

¦ Copyright IBM Corp. 1987, 1990
12.4 - 1

 12.4.1 List-Directed Input

 Input list items in a list-directed READ statement are defined by
 corresponding values in records. The form of each input value must be
 acceptable for the type of the input list item. An input value is any of
 the following:

 � A value having the form of

 - constant
 - r*constant, where r is an unsigned, nonzero, integer constant.
 This form is equivalent to r successive appearances of the
 constant.

 constant is an integer, real, double precision, complex, logical, or
 character constant.

 � A null value, represented by

 - Two successive commas, with zero or more intervening blanks
 - A comma followed by a slash, with zero or more intervening blanks
 - An initial comma in the record, preceded by zero or more blanks.

 More than one null value may be represented by the form r*, where r is
 an unsigned integer constant. This form is equivalent to r successive
 null values.

 A character value may be continued in as many records as required.

 The end of a record:

 � Has the same effect as a blank unless the blank is within a characte
 value
 � Does not cause insertion of a blank or any other character in
 character value
 � Must not separate two apostrophes representing an apostrophe

 Two or more consecutive blanks are treated as a single blank unless the
 blanks are within a character value.

 A null value has no effect on the definition status of the corresponding
 input list item.

 A slash marks the end of the input list, and list-directed formatting is
 terminated. If additional items remain in the input list when a slash is
 encountered, it is as if null values had been specified for those items.

SAA CPI FORTRAN Reference
List-Directed Input

¦ Copyright IBM Corp. 1987, 1990
12.4.1 - 1

 12.4.2 List-Directed Output

 List-directed WRITE and PRINT statements produce values in the order they
 appear in an output list. Values are written in a form that is reasonable
 for the data type of each output list item.

 Logical values are written as T for the value true and F for the value
 false.

 Character values are written as if the A edit descriptor were in effect.
 Character values written with list-directed output formatting cannot be
 read with list-directed input formatting because apostrophes are not
 written.

 Slashes, as value separators, and null values are not written.

SAA CPI FORTRAN Reference
List-Directed Output

¦ Copyright IBM Corp. 1987, 1990
12.4.2 - 1

 13.0 Chapter 13. INCLUDE Compiler Directive

 +--------------------------------+
¦¦ MVS ¦ VM ¦ OS/400 ¦ OS/2 ¦
 +-------+-------+--------+-------¦
¦¦ X ¦ X ¦ X ¦ X ¦
 +--------------------------------+

 +---+
 ¦ ¦
 ¦ ---INCLUDE--char_constant-- � ¦
 ¦ ¦
 ¦ ¦
 +---+

 char_constant
 is a character constant whose value, after trailing blanks have been
 removed, is a system-dependent file specifier naming the file to be
 included.

 INCLUDE is a compiler directive. It directs the compiler to read source
 statements from an included file, which is a file different from the one
 containing the INCLUDE compiler directive.

 When the compiler encounters an INCLUDE compiler directive, it suspends
 processing of the current file and continues with the first line of the
 included file. When the compiler reaches the end of the included file, it
 continues processing with the line following the INCLUDE compiler
 directive.

 An INCLUDE compiler directive may appear anywhere in a FORTRAN source
 file.

 An INCLUDE compiler directive must not be continued.

 An included file may contain comment lines and complete FORTRAN
 statements, but must not contain other INCLUDE compiler directives.

SAA CPI FORTRAN Reference
Chapter 13. INCLUDE Compiler Directive

¦ Copyright IBM Corp. 1987, 1990
13.0 - 1

 A.0 Appendix A. Intrinsic Functions

 Intrinsic functions are supplied by the FORTRAN processor. This appendix
 describes the intrinsic functions in Systems Application Architecture
 FORTRAN.

 Some intrinsic functions may be referenced by a specific name, some by a
 generic name, and some by both. A specific name requires a specific
 argument type and produces a result of a specific type. A generic name
 does not require a specific argument type and usually produces a result of
 the same type as that of the argument. Generic names simplify the
 referencing of intrinsic functions.

 +--+
 ¦ Intrinsic ¦ ¦ ¦ Definition ¦ No. of Argu- ¦ Type of ¦
 ¦ Function ¦ Generic Name ¦ Specific Name ¦ (See Notes) ¦ ments ¦ Argument ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Conversion to ¦ INT ¦ -- ¦ y = sgn(x) � ¦ 1 ¦ INTEGER*4 ¦ INTEGER*4 ¦
 ¦ type integer ¦ ¦ INT ¦ [|x|] ¦ ¦ REAL*4 REAL*4 ¦ INTEGER*4 ¦
 ¦ ¦ ¦ IFIX ¦ ¦ ¦ REAL*8 ¦ INTEGER*4 ¦
 ¦ ¦ ¦ IDINT ¦ ¦ ¦ COMPLEX*8 ¦ INTEGER*4 ¦
 ¦ ¦ ¦ -- ¦ ¦ ¦ ¦ INTEGER*4 ¦
 ¦ ¦ ¦ ¦ y = sgn ¦ ¦ ------------ ¦ ¦
 ¦ ¦ ------- ¦ ------- ¦ (re(z)) � ¦ ¦ ¦ ------------ ¦
 ¦ ¦ ¦ ¦ [|re(z)|] ¦ ¦ REAL*4 ¦ ¦
 ¦ ¦ ¦ HFIX ¦ ¦ ¦ ¦ INTEGER*2 ¦
 ¦ ¦ ¦ ¦ ---------------¦----- ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ y = sgn(x) � ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ [|x|] ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Conversion to ¦ REAL ¦ REAL FLOAT -- ¦ y = x ¦ 1 ¦ INTEGER*4 ¦ REAL*4 REAL*4 ¦
 ¦ type real ¦ ¦ SNGL -- DREAL ¦ ¦ ¦ INTEGER*4 ¦ REAL*4 REAL*4 ¦
 ¦ ¦ ¦ ¦ ¦ ¦ REAL*4 REAL*8 ¦ REAL*4 REAL*8 ¦
 ¦ ¦ ¦ ¦ ¦ ¦ COMPLEX*8 ¦ ¦
 ¦ ¦ ¦ ¦ y = re(z) ¦ ¦ COMPLEX*16 ¦ ¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Conversion to ¦ DBLE ¦ -- ¦ ¦ 1 ¦ INTEGER*4 ¦ REAL*8 REAL*8 ¦
 ¦ type double ¦ ¦ -- ¦ ¦ ¦ REAL*4 REAL*8 ¦ REAL*8 REAL*8 ¦
 ¦ precision ¦ ¦ -- ¦ ¦ ¦ COMPLEX*8 ¦ ¦
 ¦ ¦ ¦ -- ¦ y = re(z) ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Conversion to ¦ CMPLX ¦ -- ¦ y = x + i0, ¦ 1 or 2 ¦ INTEGER*4 ¦ COMPLEX*8 ¦
 ¦ type complex ¦ ¦ -- ¦ one argument ¦ ¦ REAL*4 REAL*8 ¦ COMPLEX*8 ¦
 ¦ ¦ ¦ -- ¦ y = x[1] + ¦ ¦ COMPLEX*8 ¦ COMPLEX*8 ¦
 ¦ ¦ ¦ -- ¦ ix[2], two ¦ ¦ ¦ COMPLEX*8 ¦
 ¦ ¦ ¦ ¦ arguments ¦ ¦ ------------ ¦ ¦
 ¦ ¦ ------- ¦ ------- ¦ ¦ ¦ ¦ ------------ ¦
 ¦ ¦ ¦ ¦ y = z ¦ ¦ REAL*8 ¦ ¦
 ¦ ¦ ¦ DCMPLX ¦ ¦ ¦ ¦ COMPLEX*16 ¦
 ¦ ¦ ¦ ¦ ---------------¦----- ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ y = x + i0, ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ one argument ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ y = x[1] + ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ix[2], two ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ arguments ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Truncation ¦ AINT ¦ AINT DINT ¦ y = sgn(x) � ¦ 1 ¦ REAL*4 REAL*8 ¦ REAL*4 REAL*8 ¦

SAA CPI FORTRAN Reference
Appendix A. Intrinsic Functions

¦ Copyright IBM Corp. 1987, 1990
A.0 - 1

 ¦ ¦ ¦ ¦ [|x|] ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Nearest whole ¦ ANINT ¦ ANINT DNINT ¦ y = sgn(x) � ¦ 1 ¦ REAL*4 REAL*8 ¦ REAL*4 REAL*8 ¦
 ¦ number ¦ ¦ ¦ [|x+.5|], x = ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ 0 ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ y = sgn(x) � ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ [|x-.5|], x < ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ 0 ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Nearest ¦ NINT ¦ NINT IDNINT ¦ y = sgn(x) � ¦ 1 ¦ REAL*4 REAL*8 ¦ INTEGER*4 ¦
 ¦ integer ¦ ¦ ¦ [|x+.5|], x = ¦ ¦ ¦ INTEGER*4 ¦
 ¦ ¦ ¦ ¦ 0 ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ y = sgn(x) � ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ [|x-.5|], x < ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ 0 ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Absolute value ¦ ABS ¦ IABS ABS DABS ¦ y = |x| ¦ 1 ¦ INTEGER*4 ¦ INTEGER*4 ¦
 ¦ ¦ ¦ CABS CDABS ¦ ¦ ¦ REAL*4 REAL*8 ¦ REAL*4 REAL*8 ¦
 ¦ ¦ ¦ ¦ ¦ ¦ COMPLEX*8 ¦ REAL*4 REAL*8 ¦
 ¦ ¦ ¦ ¦ 'y = |z| = ¦ ¦ COMPLEX*16 ¦ ¦
 ¦ ¦ ¦ ¦ (re(z)' sup 2 ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ' + im(z)' sup ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ 2 ')' sup ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ <1/2> ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Remaindering ¦ MOD ¦ MOD AMOD DMOD ¦ y = x[1] - ¦ 2 ¦ INTEGER*4 ¦ INTEGER*4 ¦
 ¦ ¦ ¦ ¦ [x[1]/x[2]] � ¦ ¦ REAL*4 REAL*8 ¦ REAL*4 REAL*8 ¦
 ¦ ¦ ¦ ¦ x[2] ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Transfer of ¦ SIGN ¦ ISIGN SIGN ¦ y = sgn(x[2]) ¦ 2 ¦ INTEGER*4 ¦ INTEGER*4 ¦
 ¦ sign ¦ ¦ DSIGN ¦ � |x[1]| ¦ ¦ REAL*4 REAL*8 ¦ REAL*4 REAL*8 ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Positive ¦ DIM ¦ IDIM DIM DDIM ¦ y = x[1] - ¦ 2 ¦ INTEGER*4 ¦ INTEGER*4 ¦
 ¦ difference ¦ ¦ ¦ x[2], x[1] > ¦ ¦ REAL*4 REAL*8 ¦ REAL*4 REAL*8 ¦
 ¦ ¦ ¦ ¦ x[2] ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ y = 0, x[1] ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ = x[2] ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Double ¦ ¦ DPROD ¦ y = x[1] � ¦ 2 ¦ REAL*4 ¦ REAL*8 ¦
 ¦ precision ¦ ¦ ¦ x[2] ¦ ¦ ¦ ¦
 ¦ product ¦ ¦ ¦ ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Choosing ¦ MAX ¦ MAX0 AMAX1 ¦ y = max(x[1], ¦ = 2 ¦ INTEGER*4 ¦ INTEGER*4 ¦
 ¦ largest value ¦ ¦ DMAX1 ¦ . . . x[n]) ¦ ¦ REAL*4 REAL*8 ¦ REAL*4 REAL*8 ¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ------- ¦ ¦ ¦ ------------ ¦ ------------ ¦
 ¦ ¦ ------- ¦ ¦ ¦ ¦ ¦ ¦
 ¦ ¦ ¦ AMAX0 MAX1 ¦ ¦ ¦ INTEGER*4 ¦ REAL*4 ¦
 ¦ ¦ ¦ ¦ ¦ ¦ REAL*4 ¦ INTEGER*4 ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Choosing ¦ MIN ¦ MIN0 AMIN1 ¦ y = min(x[1], ¦ = 2 ¦ INTEGER*4 ¦ INTEGER*4 ¦
 ¦ smallest value ¦ ¦ DMIN1 ¦ . . . x[n]) ¦ ¦ REAL*4 REAL*8 ¦ REAL*4 REAL*8 ¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ------- ¦ ¦ ¦ ------------ ¦ ------------ ¦
 ¦ ¦ ------- ¦ ¦ ¦ ¦ ¦ ¦
 ¦ ¦ ¦ AMIN0 MIN1 ¦ ¦ ¦ INTEGER*4 ¦ REAL*4 ¦
 ¦ ¦ ¦ ¦ ¦ ¦ REAL*4 ¦ INTEGER*4 ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Imaginary part ¦ IMAG ¦ AIMAG DIMAG ¦ y = im(z) ¦ 1 ¦ COMPLEX*8 ¦ REAL*4 REAL*8 ¦
 ¦ of a complex ¦ ¦ ¦ ¦ ¦ COMPLEX*16 ¦ ¦

SAA CPI FORTRAN Reference
Appendix A. Intrinsic Functions

¦ Copyright IBM Corp. 1987, 1990
A.0 - 2

 ¦ argument ¦ ¦ ¦ ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Complex ¦ CONJG ¦ CONJG DCONJG ¦ y = z(*) ¦ 1 ¦ COMPLEX*8 ¦ COMPLEX*8 ¦
 ¦ conjugate ¦ ¦ ¦ if z = a + ¦ ¦ COMPLEX*16 ¦ COMPLEX*16 ¦
 ¦ ¦ ¦ ¦ ib, then z(*) ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ = a - ib ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Square root ¦ SQRT ¦ SQRT DSQRT ¦ 'y = x' sup ¦ 1 ¦ REAL*4 REAL*8 ¦ REAL*4 REAL*8 ¦
 ¦ ¦ ¦ CSQRT CDSQRT ¦ <1/2> ¦ ¦ COMPLEX*8 ¦ COMPLEX*8 ¦
 ¦ ¦ ¦ ¦ ¦ ¦ COMPLEX*16 ¦ COMPLEX*16 ¦
 ¦ ¦ ¦ ¦ 'y = z' sup ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ <1/2> ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Exponential ¦ EXP ¦ EXP DEXP CEXP ¦ 'y = e' sup x ¦ 1 ¦ REAL*4 REAL*8 ¦ REAL*4 REAL*8 ¦
 ¦ ¦ ¦ CDEXP ¦ ¦ ¦ COMPLEX*8 ¦ COMPLEX*8 ¦
 ¦ ¦ ¦ ¦ ¦ ¦ COMPLEX*16 ¦ COMPLEX*16 ¦
 ¦ ¦ ¦ ¦ 'y = e' sup z ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Natural ¦ LOG ¦ ALOG DLOG CLOG ¦ y = log[e](x), ¦ 1 ¦ REAL*4 REAL*8 ¦ REAL*4 REAL*8 ¦
 ¦ logarithm ¦ ¦ CDLOG ¦ x > 0 ¦ ¦ COMPLEX*8 ¦ COMPLEX*8 ¦
 ¦ ¦ ¦ ¦ ¦ ¦ COMPLEX*16 ¦ COMPLEX*16 ¦
 ¦ ¦ ¦ ¦ y = log[e](z), ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ z &ne. 0 + i0 ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Common ¦ LOG10 ¦ ALOG10 DLOG10 ¦ y = log[10]x, ¦ 1 ¦ REAL*4 REAL*8 ¦ REAL*4 REAL*8 ¦
 ¦ logarithm ¦ ¦ ¦ x > 0 ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Sine ¦ SIN ¦ SIN DSIN CSIN ¦ y = sin(x) ¦ 1 ¦ REAL*4 REAL*8 ¦ REAL*4 REAL*8 ¦
 ¦ ¦ ¦ CDSIN ¦ ¦ ¦ COMPLEX*8 ¦ COMPLEX*8 ¦
 ¦ ¦ ¦ ¦ y = sin(z) ¦ ¦ COMPLEX*16 ¦ COMPLEX*16 ¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Cosine ¦ COS ¦ COS DCOS CCOS ¦ y = cos(x) ¦ 1 ¦ REAL*4 REAL*8 ¦ REAL*4 REAL*8 ¦
 ¦ ¦ ¦ CDCOS ¦ ¦ ¦ COMPLEX*8 ¦ COMPLEX*8 ¦
 ¦ ¦ ¦ ¦ y = cos(z) ¦ ¦ COMPLEX*16 ¦ COMPLEX*16 ¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Tangent ¦ TAN ¦ TAN DTAN ¦ y = tan(x) ¦ 1 ¦ REAL*4 REAL*8 ¦ REAL*4 REAL*8 ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Arcsine ¦ ASIN ¦ ASIN DASIN ¦ y = arcsin(x) ¦ 1 ¦ REAL*4 REAL*8 ¦ REAL*4 REAL*8 ¦
 ¦ ¦ ¦ ¦ |x| = 1, - ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ &pi./2 = y = ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ &pi./2 ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Arccosine ¦ ACOS ¦ ACOS DACOS ¦ y = arccos(x) ¦ 1 ¦ REAL*4 REAL*8 ¦ REAL*4 REAL*8 ¦
 ¦ ¦ ¦ ¦ |x| = 1, 0 = ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ y = &pi. ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Arctangent ¦ ATAN ¦ ATAN DATAN ¦ y = arctan(x) ¦ 1 ¦ REAL*4 REAL*8 ¦ REAL*4 REAL*8 ¦
 ¦ ¦ ¦ ¦ - &pi./2 = ¦ ¦ ¦ ¦
 ¦ ¦ ------- ¦ ------- ¦ y = &pi./2 ¦ ¦ ------------ ¦ ------------ ¦
 ¦ ¦ ¦ ¦ ¦ ----- ¦ ¦ ¦
 ¦ ¦ ATAN2 ¦ ATAN2 DATAN2 ¦ ---------------¦----- ¦ REAL*4 REAL*8 ¦ REAL*4 REAL*8 ¦
 ¦ ¦ ¦ ¦ ¦ 2 ¦ ¦ ¦
 ¦ ¦ ¦ ¦ Computes angle ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ y such that ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ' sin y = x' ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ sub 2 '/(x' ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ sub 1 '' sup 2 ¦ ¦ ¦ ¦

SAA CPI FORTRAN Reference
Appendix A. Intrinsic Functions

¦ Copyright IBM Corp. 1987, 1990
A.0 - 3

 ¦ ¦ ¦ ¦ '+ x' sub 2 '' ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ sup 2 ')' sup ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ <1/2> ',' ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ' cos y = x' ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ sub 1 '/(x' ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ sub 1 '' sup 2 ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ '+ x' sub 2 '' ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ sup 2 ')' sup ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ <1/2> ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ x[1] &ne. 0 ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ and x[2] &ne. ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ 0 ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ -&pi. < y = ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ &pi. ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Hyperbolic ¦ SINH ¦ SINH DSINH ¦ 'y = ' <'e' ¦ 1 ¦ REAL*4 REAL*8 ¦ REAL*4 REAL*8 ¦
 ¦ sine ¦ ¦ ¦ sup 'x' - 'e' ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ sup <- 'x'>> ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ over 2 ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ |x| < ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ 175.366 ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Hyperbolic ¦ COSH ¦ COSH DCOSH ¦ 'y = ' <'e' ¦ 1 ¦ REAL*4 REAL*8 ¦ REAL*4 REAL*8 ¦
 ¦ cosine ¦ ¦ ¦ sup 'x' + 'e' ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ sup <- 'x'>> ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ over 2 ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ |x| < ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ 175.366 ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Hyperbolic ¦ TANH ¦ TANH DTANH ¦ 'y = ' <'e' ¦ 1 ¦ REAL*4 REAL*8 ¦ REAL*4 REAL*8 ¦
 ¦ tangent ¦ ¦ ¦ sup 'x' - 'e' ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ sup <- 'x'>> ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ over <'e' sup ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ 'x' + 'e' sup ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ <- 'x'>> ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Conversion to ¦ ¦ ICHAR ¦ Position of x ¦ 1 ¦ CHARACTER*1 ¦ INTEGER*4 ¦
 ¦ type integer ¦ ¦ ¦ in the ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ collating ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ sequence ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Conversion to ¦ ¦ CHAR ¦ Character ¦ 1 ¦ INTEGER*4 ¦ CHARACTER*1 ¦
 ¦ type character ¦ ¦ ¦ corresponding ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ to ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ position of ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ x in the ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ collating ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ sequence ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Length ¦ ¦ LEN ¦ Length of x ¦ 1 ¦ CHARACTER ¦ INTEGER*4 ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Index of a ¦ ¦ INDEX ¦ Location of ¦ 2 ¦ CHARACTER ¦ INTEGER*4 ¦
 ¦ substring ¦ ¦ ¦ substring x[2] ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ in string ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ x[1] ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Lexically ¦ ¦ LGE ¦ x[1] = x[2] ¦ 2 ¦ CHARACTER ¦ LOGICAL*4 ¦
 ¦ greater than ¦ ¦ ¦ Comparison ¦ ¦ ¦ ¦
 ¦ or equal ¦ ¦ ¦ is ASCII ¦ ¦ ¦ ¦

SAA CPI FORTRAN Reference
Appendix A. Intrinsic Functions

¦ Copyright IBM Corp. 1987, 1990
A.0 - 4

 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Lexically ¦ ¦ LGT ¦ x[1] > x[2] ¦ 2 ¦ CHARACTER ¦ LOGICAL*4 ¦
 ¦ greater than ¦ ¦ ¦ Comparison ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ is ASCII ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Lexically less ¦ ¦ LLE ¦ x[1] = x[2] ¦ 2 ¦ CHARACTER ¦ LOGICAL*4 ¦
 ¦ than or equal ¦ ¦ ¦ Comparison ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ is ASCII ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Lexically less ¦ ¦ LLT ¦ x[1] < x[2] ¦ 2 ¦ CHARACTER ¦ LOGICAL*4 ¦
 ¦ than ¦ ¦ ¦ Comparison ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ is ASCII ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Inclusive or ¦ ¦ IOR ¦ y = ¦ 2 ¦ INTEGER*4 ¦ INTEGER*4 ¦
 ¦ ¦ ¦ ¦ or(x[1],x[2]) ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Logical ¦ ¦ IAND ¦ y = ¦ 2 ¦ INTEGER*4 ¦ INTEGER*4 ¦
 ¦ product ¦ ¦ ¦ and(x[1],x[2]) ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Logical ¦ ¦ NOT ¦ y = not(x[1]) ¦ 1 ¦ INTEGER*4 ¦ INTEGER*4 ¦
 ¦ complement ¦ ¦ ¦ ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Exclusive or ¦ ¦ IEOR ¦ y = ¦ 2 ¦ INTEGER*4 ¦ INTEGER*4 ¦
 ¦ ¦ ¦ ¦ xor(x[1],x[2]) ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Shift ¦ ¦ ISHFT ¦ x[1] is ¦ 2 ¦ INTEGER*4 ¦ INTEGER*4 ¦
 ¦ operations ¦ ¦ ¦ shifted by ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ x[2] bits to ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ right ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ if x[2] < 0 ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ or to left if ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ x[2] > 0, ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ where |x[2]| ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ = 32 ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Bit test ¦ ¦ BTEST ¦ y = true if ¦ 2 ¦ INTEGER*4 ¦ LOGICAL*4 ¦
 ¦ ¦ ¦ ¦ bit x[2] of ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ x[1] = 1 or ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ false if bit ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ x[2] of x[1] = ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ 0 ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Bit set ¦ ¦ IBSET ¦ y = ¦ 2 ¦ INTEGER*4 ¦ INTEGER*4 ¦
 ¦ ¦ ¦ ¦ bitset(x[1],x[2¦) ¦ ¦ ¦
 ¦ ¦ ¦ ¦ sets bit x[2] ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ of x[1] to 1 ¦ ¦ ¦ ¦
 +----------------+----------------+----------------+----------------+----------------+----------------+----------------¦
 ¦ Bit clear ¦ ¦ IBCLR ¦ y = ¦ 2 ¦ INTEGER*4 ¦ INTEGER*4 ¦
 ¦ ¦ ¦ ¦ bitclear(x[1],x¦2]) ¦ ¦ ¦
 ¦ ¦ ¦ ¦ sets bit x[2] ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ of x[1] to 0 ¦ ¦ ¦ ¦
 +--+

 Notes about Definitions:

 Definitions use familiar mathematical function names, which have their
 mathematical meanings or are defined below.

 The bits in bit-manipulation function BTEST, IBSET, and IBCLR are numbered

SAA CPI FORTRAN Reference
Appendix A. Intrinsic Functions

¦ Copyright IBM Corp. 1987, 1990
A.0 - 5

 from right to left, beginning at zero.

 The result of a function of type complex is the principal value.

 Meanings of symbols:

 x denotes a single argument.
 x[i] denotes the i-th argument when a function accepts more than one
 argument.
 [x] denotes the integer part of the number x.
 sgn(x) is +1 if x = 0 or -1 if x < 0.
 y denotes a function result.
 z denotes a complex argument.

SAA CPI FORTRAN Reference
Appendix A. Intrinsic Functions

¦ Copyright IBM Corp. 1987, 1990
A.0 - 6

 B.0 Appendix B. Compiler Considerations

 The following compiler options affect your program's conformance to
 Systems Application Architecture:

 � For MVS and VM (VS FORTRAN Version 2)

 Use the OCSTATUS execution option.

¦� For OS/400 (FORTRAN/400)

¦ Do not use the *F66, *SHORTI, and *NOSAVE compiler options.

 � For OS/2 (FORTRAN/2)

¦ Do not use the /F and /I compiler options.

SAA CPI FORTRAN Reference
Appendix B. Compiler Considerations

¦ Copyright IBM Corp. 1987, 1990
B.0 - 1

 CHANGES Summary of Changes
 This edition adds IBM FORTRAN/400 (Program Number 5730-FT1) as the product
 which implements SAA CPI FORTRAN in the OS/400 environment. Text that
 describes the new FORTRAN/400 support is indicated by a vertical bar to
 the left of the changes.

 In addition, minor technical and editorial changes have been made
 throughout.

SAA CPI FORTRAN Reference
Summary of Changes

¦ Copyright IBM Corp. 1987, 1990
CHANGES - 1

 A
 A (character) editing 12.3.3
 ABS intrinsic function A.0
 ACOS intrinsic function A.0
 actual argument 10.8
 specifying procedure name as 6.7
 actual array 4.2.2
 adjustable array 4.2.2
 declarator 4.2.2
 adjustable dimension 4.2.2
 AIMAG intrinsic function A.0
 AINT intrinsic function A.0
 alphanumeric character 2.1
 alternate entry point 10.6
 alternate return
 point 10.7
 specifier 10.7 10.8
 .AND. operator 5.4
 ANINT intrinsic function A.0
 apostrophe editing 12.3.4
 arguments 10.8 to 10.8.6
 arithmetic assignment statement 8.1
 arithmetic constant
 COMPLEX*16 3.8
 COMPLEX*8 3.7
 double precision 3.6.1
 integer 3.4
 real 3.5.1
 arithmetic constant expression 5.1.1
 arithmetic expression 5.1
 arithmetic IF statement 9.4
 arithmetic operators 5.1
 arithmetic relational expression 5.3.1
 array 4.2 to 4.2.6
 as dummy argument 10.8.4
 array declarator 4.2.1
 array element 4.2.5
 ASCII coded character set
 determines collating sequence 2.1
 ASIN intrinsic function A.0
 ASSIGN statement 8.3
 assigned GO TO statement 9.3
 assignment statements 8.1 to 8.4
 association 4.6
 argument 10.8.1
 common 6.3.1
 entry 10.3.3
 equivalence 6.2
 assumed-size array declarator 4.2.2
 asterisk as dummy argument 10.8.6
 ATAN intrinsic function A.0
 ATAN2 intrinsic function A.0
 B
 BACKSPACE statement 11.8
 bit-manipulation intrinsic functions A.0
 blank (BN and BZ) editing 12.3.5
 blank character, significance of 2.1
 blank common block 6.3
 blank editing 12.3.5
 blank interpretation during formatting

SAA CPI FORTRAN Reference
Index

¦ Copyright IBM Corp. 1987, 1990
INDEX - 1

 inquiring about default 11.7
 setting 12.3.5
 BLOCK DATA statement 10.9
 block data subprogram 10.9
 block IF statement 9.6
 BN (blank null) editing 12.3.5
 bound, dimension 4.2.1
 BTEST intrinsic function A.0
 BZ (blank zero) editing 12.3.5
 C
 CALL statement 10.5
 CHAR intrinsic function A.0
 character
 assignment statement 8.4
 constant 3.11
 constant expression 5.2.1
 data type 3.11
 editing 12.3.3
 expression 5.2
 format specification 12.1.3
 relational expression 5.3.2
 set 2.1
 substring 4.3
 CHARACTER type statement 6.4
 CLOSE statement 11.6
 CMPLX intrinsic function A.0
 collating sequence 2.1
 colon (:) editing 12.3.2
 column-major order 4.2.6
 columns 2.3
 comment line 2.3
 order within program unit 2.6
 common block 6.3 to 6.3.5
 COMMON statement 6.3
 communicating between program units
 using arguments 10.8
 using common blocks 6.3
 compiler considerations B.0
 compiler directive, INCLUDE 13.0
 complex constant
 *16 3.8
 *8 3.7
 complex editing 12.3
 COMPLEX type statement 6.4
 COMPLEX*16 type 3.8
 COMPLEX*8 type 3.7
 computed GO TO statement 9.2
 CONJG intrinsic function A.0
 connection, file/unit 11.3.1
 inquiring about 11.7
 constant
 arithmetic
 COMPLEX*16 3.8
 COMPLEX*8 3.7
 double precision 3.6.1
 integer 3.4
 real 3.5.1
 character 3.11
 how data type determined 3.2
 logical 3.10

SAA CPI FORTRAN Reference
Index

¦ Copyright IBM Corp. 1987, 1990
INDEX - 2

 constant array declarator 4.2.2
 constant expression
 arithmetic 5.1.1
 character 5.2.1
 integer 5.1.1
 logical 5.4.2
 constant, named 6.6
 construct, IF 9.6
 continuation line 2.3
 CONTINUE statement 9.8
 control (nonrepeatable) edit descriptors, list of 12.1.1
 control statements, list of 2.4
 control, blank and zero 12.3.5
 control, format 12.2
 control, transfer of 2.7
 conversion rules, data type 5.1.2
 COS intrinsic function A.0
 COSH intrinsic function A.0
 current record 11.2.1
 D
 D (double precision) editing 12.3.6
 data (repeatable) edit descriptors, list of 12.1.1
 DATA statement 7.0
 data type 3.0 to 3.11
 data type conversion rules 5.1.2
 DBLE intrinsic function A.0
 DCONJG intrinsic function A.0
 declarator, array 4.2.1
 kinds of 4.2.2
 declarator, dimension 4.2.1
 default typing 3.2
 defined status 4.4
 definition status 4.4
 denormalized values, range of
 for REAL*4 type 3.5
 for REAL*8 type 3.6
 descriptors, edit
 control (nonrepeatable), list of 12.1.1
 data (repeatable), list of 12.1.1
 numeric 12.3
 digit 2.1
 DIM intrinsic function A.0
 DIMAG intrinsic function A.0
 dimension bound expression 4.2.1
 dimension declarator 4.2.1
 DIMENSION statement 6.1
 dimensions 4.2.1 to 4.2.4
 direct access 11.2.2
 direct access input/output statement 11.4.1
 directive, INCLUDE compiler 13.0
 disconnection, file/unit 11.3.1
 DO loop 9.7
 DO statement 9.7
 double precision constant 3.6.1
 double precision data type 3.6
 double precision editing 12.3.6
 DOUBLE PRECISION type statement 6.4
 DPROD intrinsic function A.0
 dummy argument 10.8
 array as 10.8.4

SAA CPI FORTRAN Reference
Index

¦ Copyright IBM Corp. 1987, 1990
INDEX - 3

 asterisk as 10.8.6
 procedure as 10.8.5
 statement function 10.3.2
 variable as 10.8.3
 dummy array 4.2.2
 dummy procedure 10.8.5
 E
 E (real with exponent) editing 12.3.6
 EBCDIC coded character set
 determines collating sequence 2.1
 edit descriptors 12.1
 control (nonrepeatable), list of 12.1.1
 data (repeatable), list of 12.1.1
 numeric 12.3
 editing 12.3
 : (colon) 12.3.2
 / (slash) 12.3.1
 A (character) 12.3.3
 apostrophe 12.3.4
 BN (blank null) 12.3.5
 BZ (blank zero) 12.3.5
 complex 12.3
 D (double precision) 12.3.6
 E (real with exponent) 12.3.6
 F (real without exponent) 12.3.7
 G (general) 12.3.8
 H (character) 12.3.9
 I (integer) 12.3.10
 L (logical) 12.3.11
 P (scale factor) 12.3.12
 S (sign control) 12.3.13
 SP (sign control) 12.3.13
 SS (sign control) 12.3.13
 T (positional) 12.3.14
 TL (positional) 12.3.14
 TR (positional) 12.3.14
 X (positional) 12.3.14
 Z (hexadecimal) 12.3.15
 ELSE IF statement 9.6
 ELSE statement 9.6
 END IF statement 9.6
 END statement 9.11
 continuation restriction 2.3
 end-of-file specifier 11.4
 endfile record 11.1.3
 ENDFILE statement 11.8
 entry association 10.3.3
 entry name 10.6
 ENTRY statement 10.6
 restriction on order 2.6
 .EQ. operator 5.3.1
 equivalence
 association 6.2
 restriction on common and 6.3.5
 EQUIVALENCE statement 6.2
 .EQV. operator 5.4
 error specifier 11.4
 executable program 10.1
 executable statements, list of 2.4
 execution sequence, normal 2.7

SAA CPI FORTRAN Reference
Index

¦ Copyright IBM Corp. 1987, 1990
INDEX - 4

 existence, file
 inquiring about 11.7
 of external file 11.2.1
 of internal file 11.2.3
 EXP intrinsic function A.0
 explicit typing 3.2
 exponent
 double precision 3.6.1
 real 3.5.1
 expression
 arithmetic 5.1
 character 5.2
 dimension bound 4.2.1
 logical 5.4
 relational 5.3
 subscript 4.2.5
 substring 4.3
 external file 11.2.1
 external function 10.3.3
 external procedure 10.1
 EXTERNAL statement 6.7
 external unit identifier 11.4
 inquiring about 11.7
 F
 F (real without exponent) editing 12.3.7
 factor, scale 12.3.12
 field 12.3
 field width 12.3
 file 11.2
 file existence 11.2.1
 of external file 11.2.1
 of internal file 11.2.3
 file position 11.2.1
 after BACKSPACE, ENDFILE, or REWIND statement 11.8
 before and after data transfer 11.4.3
 file positioning statements 11.8
 file specifier 11.5
 format codes
 See edit descriptors
 format control 12.2
 format identifier 11.4
 format specification 12.1.1
 character 12.1.3
 in FORMAT statement 12.1.2
 interaction with input/output list 12.2
 format specifier 11.4
 FORMAT statement 12.1.2
 format-directed formatting 12.1 to 12.3.15
 formatted input/output statement 11.4.1
 formatted record 11.1.1
 formatting
 format-directed 12.1 to 12.3.15
 list-directed 12.4 to 12.4.2
 function 10.3
 external 10.3.3
 intrinsic A.0
 statement 10.3.2
 function reference 10.3.1
 FUNCTION statement 10.3.3
 function subprogram 10.3.3

SAA CPI FORTRAN Reference
Index

¦ Copyright IBM Corp. 1987, 1990
INDEX - 5

 function value 10.3.1
 G
 G (general) editing 12.3.8
 .GE. operator 5.3.1
 general (G) editing 12.3.8
 generic name of intrinsic function A.0
 global scope 2.2.1
 GO TO statements 9.1 to 9.3
 .GT. operator 5.3.1
 H
 H editing 12.3.9
 hexadecimal (Z) editing 12.3.15
 HFIX intrinsic function A.0
 I
 I (integer) editing 12.3.10
 IAND intrinsic function A.0
 IBCLR intrinsic function A.0
 IBSET intrinsic function A.0
 ICHAR intrinsic function A.0
 identifier
 external unit 11.4
 inquiring about 11.7
 format 11.4
 internal file 11.4
 IEOR intrinsic function A.0
 IF construct 9.6
 IF statement
 arithmetic 9.4
 block 9.6
 logical 9.5
 IMAG intrinsic function A.0
 IMPLICIT statement 6.5
 implicit typing 3.2
 implied-DO list
 in a DATA statement 7.0
 in a READ, WRITE, or PRINT statement 11.4.4
 implied-DO variable 7.0
 INCLUDE compiler directive 13.0
 incrementation processing 9.7.7
 indeterminate file position 11.2.1
 INDEX intrinsic function A.0
 infinity
 as a REAL*4 value 3.5
 as a REAL*8 value 3.6
 how indicated with numeric output editing 12.3
 inherited length
 by a dummy argument 10.8.2
 by a named constant 6.6
 initial line 2.3
 initial point of a file 11.2.1
 initial value, declaring 7.0
 input/output list 11.4
 interaction with format specification 12.2
 input/output statement categories 11.4.1
 input/output statements, list of 2.4
 input/output status specifier 11.4
 INQUIRE statement 11.7
 inquiry specifier 11.7
 INT intrinsic function A.0
 integer (I) editing 12.3.10

SAA CPI FORTRAN Reference
Index

¦ Copyright IBM Corp. 1987, 1990
INDEX - 6

 integer constant 3.4
 expression 5.1.1
 INTEGER type statement 6.4
 INTEGER*2 type 3.3
 INTEGER*4 type 3.4
 internal file 11.2.3
 internal file identifier 11.4
 intrinsic functions A.0
 name in INTRINSIC statement 6.8
 INTRINSIC statement 6.8
 IOR intrinsic function A.0
 ISHFT intrinsic function A.0
 iteration count 9.7.3
 in implied-DO list of a DATA statement 7.0
 in implied-DO list of a READ, WRITE, or PRINT statement 11.4.4
 L
 L (logical) editing 12.3.11
 label, statement 2.5
 .LE. operator 5.3.1
 LEN intrinsic function A.0
 length
 See also data type
 inherited
 by a dummy argument 10.8.2
 by a named constant 6.6
 specification in FUNCTION statement 10.3.3
 specification in type statement 6.4
 letter 2.1
 LGE intrinsic function A.0
 LGT intrinsic function A.0
 line 2.3
 list
 input/output 11.4
 list-directed formatting 12.4 to 12.4.2
 list-directed input/output statement 11.4.1
 LLE intrinsic function A.0
 LLT intrinsic function A.0
 local scope 2.2.1
 LOG intrinsic function A.0
 LOG10 intrinsic function A.0
 logical (L) editing 12.3.11
 logical assignment statement 8.2
 logical constant 3.10
 expression 5.4.2
 logical expression 5.4
 logical IF statement 9.5
 logical operators 5.4
 LOGICAL type statement 6.4
 LOGICAL*1 type 3.9
 LOGICAL*4 type 3.10
 loop control processing 9.7.4
 lower dimension bound 4.2.1
 lowercase-uppercase letter equivalence 2.1
 .LT. operator 5.3.1
 M
 main program 10.2
 MAX intrinsic function A.0
 MIN intrinsic function A.0
 MOD intrinsic function A.0
 N

SAA CPI FORTRAN Reference
Index

¦ Copyright IBM Corp. 1987, 1990
INDEX - 7

 name 2.2
 array 4.2.1
 array element 4.2.5
 common block 6.3
 determining type of 3.2
 entry 10.6
 file 11.2.1
 generic function A.0
 of a constant 6.6
 restriction in specification statements 6.0
 scope of 2.2.1
 specific function A.0
 substring 4.3
 variable 4.1
 named common block 6.3
 NaN (not a number)
 arithmetic IF restriction 9.4
 arithmetic relational expression restriction 5.3.1
 as a REAL*4 value 3.5
 as a REAL*8 value 3.6
 how indicated with numeric output editing 12.3
 .NE. operator 5.3.1
 .NEQV. operator 5.4
 next record 11.2.1
 NINT intrinsic function A.0
 nonexecutable statements, list of 2.4
 nonrepeatable (control) edit descriptors, list of 12.1.1
 normal execution sequence 2.7
 normalized values, range of
 for REAL*4 type 3.5
 for REAL*8 type 3.6
 .NOT. operator 5.4
 NOT intrinsic function A.0
 null (BN) editing, blank 12.3.5
 numeric edit descriptors 12.3
 O
 OPEN statement 11.5
 operators
 arithmetic 5.1
 character 5.2
 logical 5.4
 precedence among each other 5.4.3
 relational 5.3.1
 options, compiler and execution B.0
 .OR. operator 5.4
 order of statements and comment lines 2.6
 ordering, array element 4.2.6
 output, list-directed 12.4.2
 P
 P (scale factor) editing 12.3.12
 PARAMETER statement 6.6
 restriction on order 2.6
 PAUSE statement 9.10
 position, file 11.2.1
 after BACKSPACE, ENDFILE, or REWIND statement 11.8
 before and after data transfer 11.4.3
 positional (T, TL, TR, and X) editing 12.3.14
 positioning statements, file 11.8
 precedence
 of all operators 5.4.3

SAA CPI FORTRAN Reference
Index

¦ Copyright IBM Corp. 1987, 1990
INDEX - 8

 of arithmetic operators 5.1
 of logical operators 5.4
 preceding record 11.2.1
 precision
 of REAL*4 values 3.5
 of REAL*8 values 3.6
 preconnection, file/unit 11.3.1
 primary
 arithmetic 5.1
 character 5.2
 logical 5.4
 PRINT statement 11.4
 procedure 10.1
 dummy 10.8.5
 external 10.1
 procedure reference 10.1
 procedure subprogram 10.1
 PROGRAM statement 10.2
 program unit 10.1
 program, executable 10.1
 R
 range
 of a DO loop 9.7.1
 READ statement 11.4
 real constant 3.5.1
 real editing
 E (with exponent) 12.3.6
 F (without exponent) 12.3.7
 G (general) 12.3.8
 REAL intrinsic function A.0
 REAL type statement 6.4
 REAL*4 type 3.5
 REAL*8 type 3.6
 record 11.1
 record number 11.2.2
 in NEXTREC specifier of INQUIRE statement 11.7
 in record specifier 11.4
 record specifier 11.4
 recursion not permitted 10.1
 reference
 function 10.3.1
 variable, array element, or character substring 4.5
 relational
 expression 5.3
 operators 5.3.1
 repeat specification 12.1.1 12.2
 repeatable (data) edit descriptors, list of 12.1.1
 RETURN statement 10.7
 return, alternate
 point 10.7
 specifier 10.8
 REWIND statement 11.8
 S
 S (sign control) editing 12.3.13
 SAVE statement 6.9
 scale factor 12.3.12
 scope of a name 2.2.1
 separator, value 12.4
 sequence, collating 2.1
 sequence, normal execution 2.7

SAA CPI FORTRAN Reference
Index

¦ Copyright IBM Corp. 1987, 1990
INDEX - 9

 sequence, storage
 array 4.2.6
 common block 6.3.2
 sequential access 11.2.2
 sequential access input/output statement 11.4.1
 sharing storage
 using common blocks 6.3
 using equivalence 6.2
 sign control (S, SP, and SS) editing 12.3.13
 SIGN intrinsic function A.0
 SIN intrinsic function A.0
 SINH intrinsic function A.0
 size
 of a common block 6.3.3
 of a dimension 4.2.3
 of an array 4.2.4
 slash (/) editing 12.3.1
 SP (sign control) editing 12.3.13
 special character 2.1
 specific name of intrinsic function A.0
 specification statements, list of 2.4
 specification, format 12.1.1
 character 12.1.3
 specification, length 6.4
 specification, repeat 12.1.1
 SQRT intrinsic function A.0
 SS (sign control) editing 12.3.13
 statement
 categories 2.4
 input/output categories 11.4.1
 order 2.6
 rules 2.4
 statement function 10.3.2
 statement function dummy argument 10.3.2
 statement label 2.5
 statement label assignment (ASSIGN) statement 8.3
 STOP statement 9.9
 storage sequence
 array 4.2.6
 common block 6.3.2
 storage sharing
 using common blocks 6.3
 using equivalence 6.2
 subprogram
 block data 10.9
 function 10.3.3
 procedure 10.1
 subroutine 10.4
 subroutine 10.4
 SUBROUTINE statement 10.4
 subroutine subprogram 10.4
 subscript
 expression 4.2.5
 value 4.2.5
 substring, character 4.3
 symbolic name
 See name
 T
 T (positional) editing 12.3.14
 TAN intrinsic function A.0

SAA CPI FORTRAN Reference
Index

¦ Copyright IBM Corp. 1987, 1990
INDEX - 10

 TANH intrinsic function A.0
 terminal point of a file 11.2.1
 terminal statement of a DO loop 9.7
 TL (positional) editing 12.3.14
 TR (positional) editing 12.3.14
 transfer of control 2.7
 into the range of a DO loop 9.7.1
 type conversion rules, data 5.1.2
 type statements 6.4
 type, data 3.0 to 3.11
 U
 unconditional GO TO statement 9.1
 undefined status 4.4
 unformatted input/output statement 11.4.1
 unformatted record 11.1.2
 unit 11.3
 identifier, external 11.4
 inquiring about 11.7
 specifier 11.4
 upper dimension bound 4.2.1
 uppercase-lowercase letter equivalence 2.1
 V
 value separator 12.4
 variable 4.1
 W
 width, field 12.3
 WRITE statement 11.4
 X
 X (positional) editing 12.3.14
 Z
 Z (hexadecimal) editing 12.3.15
 zero (BZ) editing, blank 12.3.5

SAA CPI FORTRAN Reference
Index

¦ Copyright IBM Corp. 1987, 1990
INDEX - 11

