<|ll

7/08S

C/CH++

Programming Guide

000000000000

<|ll

7/08S

C/CH++

Programming Guide

000000000000

Note!
FBefore using this information and the product it supports, be sure to read the information in|“Notices” on page 893

Fourth Edition (September 2002)

This edition applies to Version 1 Release 4 of z/OS C/C++ (5694-A01), Version 1 Release 4 of z/0S.e™ (5655-G52),
and to all subsequent releases until otherwise indicated in new editions. This edition replaces SC09-4765-02 . Make
sure that you use the correct edition for the level of the program listed above. Also, ensure that you apply all
necessary PTFs for the program.

Order publications through your IBM® representative or the IBM branch office serving your location. Publications are
not stocked at the address below. You can also browse the books on the World Wide Web by clicking on "The
Library” link on the z/OS™ home page. The web address for this page is
http://www.ibm.com/servers/eserver/zseries/zos/bkserv

IBM welcomes your comments. You can send your comments using any one of the following methods:
* Internet: mhvrcfs@us.ibm.com

Be sure to include your e-mail address if you want a reply.
* By regular mail to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384

2455 South Road

Poughkeepsie, NY 12601-5400

United States of America

Include the title and order number of this book, and the page number or topic related to your comment. When you
send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2002. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Part 1. Introduction .1
Chapter 1. About This Document . 3
Who should use this document .3
A note about examples . 3
How to read syntax diagrams . .3

Symbols. .3
Syntax items . .4
Syntax examples . .4
z/OS C/C++ and related publrcatrons . . 6
Hardcopy Documents . 10
Softcopy documents . 11
Softcopy examples .11
z/OS C/C++ on the World W|de Web 11
Where to find more information . . 12
Accessing z/OS licensed documents on the Internet . 12
Using LookAt to look up message explanations . 12
Chapter 2. About IBM z/OS C/C++ 15
Changes for z/OS V1R4 15
The C/C++ compilers 15
The C language 15
The C++ language . 16
Common features of the z/OS C and C++ compllers . 16
z/OS C Compiler specific features . 17
z/OS C++ Compiler specific features . 18
Class libraries . 18
IBM Open Class lerary Source 19
Utilities . e e e 19
The Debug TooI . 19
IBM C/C++ Productivity Tools for OS/390 . 20
z/OS Language Environment. . 20
z/OS Language Environment downward compat|b|I|ty .21
About prelinking, linking, and binding . . 22
Notes on the prelinking process. 23
File format considerations . . 23
The Program Management binder . . 23
z/OS UNIX System Services (z/OS UNIX) . 24
z/OS C/C++ Applications with z/OS UNIX C/C++ functrons . 26
Input and output e . 26
I/O interfaces . 26
File types 27
Additional I/O features . . .27
The System Programming C faC|I|ty . 28
Interaction with other IBM products 28
Additional features of z/OS C/C++. . 30

Part 2. Input and Output . 33
Chapter 3. Introduction to C and C++ Input and Output . 35
Types of C and C++ Input and Output . . 35

Text Streams e . 35

© Copyright IBM Corp. 1996, 2002

iv

Binary Streams.
Record I/O

Chapter 4. Understanding Models of C 1/0
The Record Model for C I/O .
Record Formats .
The Byte Stream Model for C I/O
Mapping the C Types of 1/O to the Byte Stream Model

Chapter 5. Using the Standard C++ Library I/O Stream Classes
Advantages to Using the C++ 1/O Stream Classes .

Predefined Streams for C++ .

How C++ I/O Streams Relate to C Streams

Mixing the Standard C++ I/O Stream Classes, USL I/O Stream Class lerary,

and C 1/O .
Specifying File Attrlbutes

Chapter 6. Opening Files
Prototypes of functions .
Categories of 1/0 . .
Specifying What Kind of File to Use .
OS Files . .
HFS Files.
VSAM data sets
Terminal Files .
Memory Files and Hlperspace Memory Flles
CICS Data Queues
z/OS Language Environment Message F|Ie
How to Specify RECFM, LRECL, and BLKSIZE .
fopen() Defaults .o
DDnames.
How z/OS C/C++ Determlnes What Klnd of F|Ie to Open
MAP 0010: Under TSO, MVS Batch, IMS — POSIX(ON)
MAP 0020: Under TSO, MVS Batch, IMS — POSIX(OFF) .
MAP 0030: Under CICS Ce e

Chapter 7. Buffering of C Streams

Chapter 8. Using ASA Text Files
Example of Writing to an ASA File .
CCNGAS1 ..

ASA File Control

Chapter 9. z/OS C Support for the Double- Byte Character Set
Opening Files - Ce
Reading Streams and Flles
Writing Streams and Files .

Writing Text Streams.

Writing Binary Streams .
Flushing Buffers .

Flushing Text Streams .

Flushing Binary Streams

ungetwc() Considerations .
Setting Positions within Files .

Repositioning within Text Streams .

Repositioning within Binary Streams .

z/0OS V1R4.0 C/C++ Programming Guide

. 36
. 36

. 37
. 37
. 37
. 46
. 46

. 49
. 49
. 49
. 50

. 50
. 50

. 53
. 53
. 55
. 56
. 56
. 56
. 56
. 56
. 57
. 58
. 58
. 58
. 60
. 62
. 63
. 64
. 68
.71

. 73

. 75
. 75
. 75
. 76

.79
. 80
. 80
. 81
. 82
. 83
. 83
. 83
. 84
. 84
. 85
. 85
. 85

ungetwc() Considerations .
Closing Files.
Manipulating Wide Character Array Functlons

Chapter 10. Using C and C++ Standard Streams and Redirection
Default Open Modes.
Interleaving the Standard Streams wrth sync wrth stdro()
Interleaving the Standard Streams without sync_with_stdio() .
Redirecting Standard Streams .
Redirecting Streams from the Command L|ne
Using the Redirection Symbols .
Assigning the Standard Streams
Using the freopen() Library Function . .
Redirecting Streams with the MSGFILE Optron .
MSGFILE Considerations . . .
Redirecting Streams under z/OS
Under MVS Batch.
Under TSO
Under IMS
Under CICS .
Passing C and C++ Standard Streams Across a system() CaII
Passing Binary Streams
Passing Text Streams
Passing Record 1/0O Streams
Using Global Standard Streams .
Command Line Redirection .
Direct Assignment .
freopen(). . .
MSGFILE() Run- Trme Optron .
fclose() .
File Position and Vrsrble Data .
C++ 1/O Stream Library

Chapter 11. Performing OS 1/O Operations
Opening Files . Ce e
Using fopen() or freopen()
Generation Data Group 1/O .
Regular and Extended Partitioned Data Sets
Partitioned and Sequential Concatenated Data Sets.
In-stream Data Sets
SYSOUT Data Sets.
Tapes .
Multivolume Data Sets
Striped Data Sets
Other Devices.
fopen() and freopen() Parameters
Buffering.
Multiple Buffenng
DCB (Data Control Block) Attrrbutes
Reading from Files . .o
Reading from Binary Files
Reading from Text Files .
Reading from Record I/O Files
Writing to Files
Writing to Binary Flles
Writing to Text Files.

. 85
. 86
. 86

. 87
. 88
. 89
. 90
. 92
. 92
. 93
. 94
. 94
. 94
. 94
. 96
. 96
. 97
. 98
. 98
. 98
. 99
.. 99
. 101
. 102
. 103
. 104
. 104
. 105
. 105
. 105
. 105

. 107
. 107
. 107
. 110
. 114
. 115
. 117
. 117
. 118
. 118
. 119
. 119
. 120
. 123
. 124
. 125
. 127
. 127
. 128
. 128
. 129
. 129
. 130

Contents

\Y

Writing to Record /O Files133

Flushing Buffers P RS X
Updating Existing Records e RCXC
Reading Updated Records133
Writing New Records .134
ungetc() Considerations .13

Repositioning within Files .136
ungetc() Considerations e136
How Long fgetpos() and ftell() Values Last e K Y 4
Using fseek() and ftell() in Binary Files. . . . T V4
Using fseek() and ftell() in Text Files (ASA and Non ASA)138
Using fseek() and ftell() in Record Files e R i
Porting Old C Code That Uses fseek() or ftell() e 0139

Closing Files S Coe e ... 139

Renaming and Removmg Flles 7 14

fldata() Behavior. .140

Chapter 12. Performing UNIX File System I/0O Operations 143

Creating Files. O
Regular Files . . . 7 X
Link and Symbolic Lmk F|Ies v
Directory Files. .. .14
Character Special Files .14
FIFOFiles14

Opening Files. . . . O
Using fopen() or freopen() 153

Reading from HFS Files e

Opening and Reading from HFS Dlrectory F|Ies e ke

Writingto HFS Files .149

Flushing Records . . . e 1510

Setting Positions within F|Ies e 1510

ClosingFiles .. .150

Deleting Files. .151

Pipel/lO T KX
Using Unnamed Plpes T KX
Using Named Pipes .152
Character Special Filel/lo156

Low-Level zZZOS UNIXI/O .156

Example of HFS I/O Functions 156
CCNGHF3 .. .157
CCNGHF4160

fldata() Behavior P ¢ 4

File Tagging and Conver5|on C e e1le3

Access Control Lists (ACLs)le4

Chapter 13. Performing VSAM 1/O Operations 167

VSAM Types (Data Set Organization)1l67
Access Method Services.168

Choosing VSAM Data Set Types.168
Keys, RBAs and RRNs . . . e {0
Summary of VSAM 1/O Operatlons e

Opening VSAM DataSets .173
Using fopen() or freopen()173
Buffering. . . T Y 4

Record I/O in VSAM e
RRDS Record Structure .77

Vi z/OS V1R4.0 C/C++ Programming Guide

Reading Record I/O Files
Writing to Record 1/O Files .
Updating Record 1/O Files
Deleting Records .
Repositioning within Record I/O F|Ies .
Flushing Buffers . . .
Summary of VSAM Record I/O Operatlons .
VSAM Record Level Sharing .
Error Reporting
Text and Binary I/O in VSAM .
Reading from Text and Binary 1/0O F|Ies

Writing to and Updating Text and Binary 1/O Files.

Deleting Records in Text and Binary 1/O Files .
Repositioning within Text and Binary 1/O Files .
Flushing Buffers .
Summary of VSAM Text I/O Operat|ons
Summary of VSAM Binary 1/0 Operatlons
Closing VSAM Data Sets. .
VSAM Return Codes .
VSAM Examples.
KSDS Example .
RRDS Example .
fldata() Behavior .

Chapter 14. Performing Terminal I/O Operations
Opening Files . e
Using fopen() and freopen()
Buffering. .
Reading from Flles
Reading from Binary Files
Reading from Text Files .
Reading from Record I/O Files
Writing to Files
Writing to Binary Flles
Writing to Text Files.
Writing to Record 1/O Files .
Flushing Records
Text Streams .
Binary Streams
Record 1/0 .
Repositioning within F|Ies
Closing Files .
fldata() Behavior .

Chapter 15. Performing Memory File and Hiperspace /O Operations

Using Hiperspace Operations .

Opening Files .
Using fopen() or freopen()
Simulating Partitioned Data Sets .
Buffering.

Reading from Flles

Writing to Files

Flushing Records .
ungetc() Considerations .

Repositioning within Files

Closing Files .

. 178
. 179
. 180
. 181
. 181
. 183
. 184
. 184
. 186
. 186
. 186
. 186
. 187
. 187
. 189
. 189
. 190
. 191
. 192
. 192
. 192
. 200
. 203

. 205
. 205
. 205
. 207
. 208
. 208
. 209
. 209
. 209
. 210
. 210
211
211
211
211
. 212
. 212
. 212
. 212

215

. 215
. 216
. 216
. 220
. 222
. 223
. 224
. 224
. 224
. 225
. 225

Vii

Performance Tips . 225
Removing Memory Files . . 226
fldata() Behavior . . 226
Example Program . 227

CCNGMF3 . . 227

CCNGMF4 . . 228
Chapter 16. Performing CICS I/O Operations . 229
Chapter 17. Language Environment Message File Operations . 231
Opening Files . . 231
Reading from Files . . 231
Writing to Files . 231
Flushing Buffers . . 232
Repositioning within Files . 232
Closing Files . . 232
Chapter 18. Debugging I/O Programs . 233
Using the __amrc Structure. . 233

CCNGDI1 . 235
Using the __amrc2 Structure . 236
Using _ last_op Codes . 237
Using the SIGIOERR Signal . 240

CCNGDI2 .o . 240

Part 3. Interlanguage Calls with z/OS C/C++ . 243
Chapter 19. Using Linkage Specifications in C or C++ . 245
Syntax for Linkage in C or C++ . 245

Syntax for Linkage in C . . 245

Syntax for Linkage in C++ . 246
Kinds of Linkage used by C or C++ Interlanguage Programs . 246
Using Linkage Specifications in C++ e . 248
Chapter 20. Combining C or C++ and Assembler . 251
Establishing the z/OS C/C++ Environment . 251
Specifying Linkage for C or C++ to Assembler . . 251
Parameter List for OS Linkage. . . 252
XPLINK Assembler . . 253
Using Standard Macros . . 255

Non-XPLINK Assembler Prolog . 255

Non-XPLINK Assembler Epilog . 256

XPLINK Assembler Prolog . . 256

XPLINK Assembler Epilog . . 257

Accessing Automatic Memory in the Non XPLINK Stack . . 257
Calling C Code from Assembler — C Example. . 258

CCNGCA4 . . 258

CCNGCA2 . . 259

CCNGCAS5 . . 259
Calling Run-Time Library Routmes from Assembler — C++ Example . 260

CCNGCA1 . . 260

CCNGCA2 . . 260

CCNGCA3 . . . 261
Register Content at Entry to a Non XPLINK ASM Routrne Usrng OS Irnkage 261
Register Content at Exit from a Non-XPLINK ASM Routine to z/OS C/C++ 261
Retaining the C Environment Using Preinitialization . . 262

viii

z/OS V1R4.0 C/C++ Programming Guide

Setting Up the Interface for Preinitializable Programs 263

Preinitializing a C Program 267
Multiple Preinitialization Compat|b|llty Interface C Enwronments e
Using the Service Vector and Associated Routines 277
Part 4. Coding: Advanced Topics e e e e e e e e oo .. 283
Chapter 21. Building and Usmg Dynamlc Link Libraries (DLLS) 285
Support for DLLs. 2t < 1)
DLL Conceptsand Terms .286
Loadinga DLL . . . 2 s T
Loading a DLL ImpI|C|tIy 2 S 4
Loading a DLL Explicitly288
Managing the Use of DLLs When Runnrng DLL Applrcatrons 290
Loading DLLs.o e e 29
Sharing DLLs 0292
Freeing DLLs e e e 292
Creating a DLL or a DLL Applrcat|on C e e 292
Building a Simple DLL. .29
Writing Your C Codeo 0292
Writing Your C++ Code .293
Compiling Your Code .29
Binding Your Code 24 |
Building a Simple DLL Applrcatron e e e oo oo 296
Creating and Using DLLs .297
DLL Restrictions . . . C e e e o298
Improving Performance 0o
Chapter 22. Building Complex DLLS303
Rules for Compiling Source Code304
XPLINK Applications .304
Non-XPLINK Applications . . . e304
Compatibility Issues Between DLL and Non DLL Code < (0 4
Pointer Assignment. .309
Function Pointers . . . < (o
DLL Function Pointer Call in Non DLL Code T X I
C Example T X
Non-DLL Function Pornter CaII in DLL(CBA) Code T 7
Non-DLL Function Pointer Call in DLL Code. 316
Function Pointer Comparison in Non-DLL Code 317
Function Pointer Comparison in DLL Code 320
Using DLLs That Call Each Other322
Chapter 23. Using Threads in z/0OS UNIX Applications 329
Models and Requirements .329
Functions .. .32
CreatingaThread .329
Synchronization Primitives330
Thread-specific Data .33
Signals . . . G 1153
Generating a Slgnal I X163
Thread Cancellation .337
Cleanup for Threads338
Behaviors and Restrictions in z/OS UNIX Applrcatrons R C 1 1)
Using Threads with MVS Files. 339
Thread-Scoped Functions340

Contents IX

X

Unsafe Thread Functions

Fetched Functions and Writable Statlcs
MTF and z/OS UNIX Threading
Thread Queuing Function

Thread Scheduling .

iconv() Family of Functions .

Chapter 24. Reentrancy in z/OS C/C++
Natural or Constructed Reentrancy .

Limitations of Constructed Reentrancy for C Programs.

Controlling External Static in C Programs.
Controlling Writable Strings . .
Controlling the Memory Area in C++
Controlling Where String Literals Exist in C++ Code
CCNGRE2 . Co
Using Writable Static in Assembler Code
CCNGRES3 .
CCNGRE4 .

Chapter 25. Using the Decimal Data Type in C
Declaring Decimal Types. .
Declaring Fixed-Point Decimal Constants
Declaring Decimal Variables
Defining Decimal-Related Constants
Using Operators .
Arithmetic Operators
Assignment Operators.
Unary Operators .
Cast Operator.
Summary of Operators Used Wrth Decrmal Types
Converting Decimal Types . .o
Converting Decimal Types to Decrmal Types
Converting Decimal Types to and from Integer Types

Converting Decimal Types to and from Floating Types .

Calling Functions .
Using Library Functions .

Using Variable Arguments wrth Decrmal Types
Formatting Input and Output Operations .
Validating Values.

Fix Sign . .
Decimal Absolute VaIue .
Programming Example

CCNGDCs3 .

Output from Programmlng Example One

CCNGDC4 . .

Output from Programmlng Example Two .
Decimal Exception Handling .

System Programming Calls Restrrctrons .

printf() and scanf() Restrictions

Additional Considerations

Error Messages .

Chapter 26. Using the Decimal Data Type in C++

The IBinaryCodedDecimal Class .

Header File and Constants for IBlnaryCodedDecrmaI
Constants Defined in idecimal.hpp

z/OS V1R4.0 C/C++ Programming Guide

. 340
. 340
. 341
. 341
. 341
. 341

. 343
. 344
. 344
. 344
. 345
. 346
. 347
. 347
. 347
. 348
. 349

. 351
. 351
. 352
. 352
. 353
. 353
. 354
. 357
. 357
. 358
. 358
. 358
. 358
. 360
. 361
. 362
. 362
. 362
. 362
. 363
. 363
. 364
. 365
. 365
. 366
. 367
. 367
. 367
. 368
. 368
. 368
. 369

. 371
. 371
. 371
. 371

Constructing IBinaryCodedDecimal Objects .
IBinaryCodedDecimal Input and Output
Arithmetic Operators for IBinaryCodedDecimal .
Relational Operators
Equality Operators .
Converting IBmaryCodedDemmaI Objects

An IBinaryCodedDecimal Object to an IBmaryCodedDemmaI Object.

Number of Digits in an IBinaryCodedDecimal Object
Precision of a IBinaryCodedDecimal Object .
IBinaryCodedDecimal Object Exceptions .
The Decimal Class .

Header File for the Decimal Class

Constructing Decimal Objects .

Decimal Class Input and Output .

Operators for Decimal Class

Converting Decimal Objects.

Number of Digits in an Decimal Object

Precision of a Decimal Object .

Decimal Object Exceptions .

Chapter 27. Handling Exceptions, Error Conditions, and Signals
Handling C Software Exceptions under C++.
Handling Hardware Exceptions under C++ .
Tracebacks under C++

CCNGCHL1 .

CCNGCH2 .
Handling Signals with POSIX(OFF) Usmg S|gnal() and ralse()
Handling Signals Using Language Environment Callable Services.
Handling Signals Using z/OS UNIX with POSIX(ON)
Asynchronous Signal Delivery under z/OS UNIX .
C Signal Handling Features under z/OS C/C++

Establishing a Signal Handler . .

Enabling a Signal

Interrupting a Program

Raising a Signal . .

Identifying Hardware and Software Slgnals .

SIGABND Considerations

SIGIOERR Considerations .

Default Handling of Signals .

MAP 0040: Summary of C Error Handhng
Example of C Signal Handling under z/OS C or z/OS C++

Chapter 28. Optimizing Code
Input/Output Considerations
When Accessing MVS Data Sets
When Accessing HFS Files .
When Using the C++ I/O Stream L|brar|es
Using Library Extensions.
Programming Recommendations .
Using Variables .
Passing Function Arguments
Coding Expressions
Coding Conversions
Arithmetic Considerations
Using Loops and Control Constructs
Choosing a Data Type.

. 372
. 372
. 372
. 372
. 372
. 372
. 373
. 373
. 374
. 374
. 374
. 374
. 374
. 375
. 375
. 376
. 377
. 377
. 377

. 379
. 379
. 380
. 380
. 381
. 383
. 384
. 384
. 385
. 387
. 388
. 388
. 389
. 389
. 389
. 389
. 392
. 392
. 392

396

. 398

. 399
. 399
. 399
. 401
. 402
. 402
. 403
. 403
. 404
. 404
. 405
. 405
. 405
. 406

Contents

Xi

Using Built-In Library Functions and Macros. 407

Using pragmas to Improve Performance 409
Compiler Options to Improve Performance410
Using the OPTIMIZE Option410
Inlining . . . e 24
Additional Comprler Optrons that Affect Performance415
Memory Optimization .417
Using XPLINK. . . . e 4
When You Should Not Use XPLINK e <
Compile Time Considerations418
Programmer Tips .. .41
System Programmer Tips420
Chapter 29. Optimizing Your C/C++ Code with Interprocedural Analysrs 421
Types of Procedural Analysis L. o421
Compiler Processing Flow .422
Regular Compiler Execution422
Compiler Execution with IPA423
Invoking IPA from the c89 Utility430
Controlling IPA Execution . . . T X
Specifying Compiler Options Wrth IPA T X
Specifying Pragmas under IPA432
Effects of IPA on Your Program432
Restrictions. .433
Locale SupportoA433
Date and Time Stamps Wrthrn IPA Objects A Y
Chapter 30. Network Communications under UNIX System Services . . . 435
Understanding z/OS UNIX Sockets and Internetworking 435
The Basics of Network Communication 436
Transport Protocols for Sockets436
What Is a Socket? . . . Y R Y4
z/OS UNIX Socket Fam|lres Y A 1
z/OS UNIX Socket TypesA438
Guidelines for Using Socket Types439
Addressing within Sockets439
The Conversation .442
The Server Perspective .442
The Client Perspective .444
A Typical TCP Socket Session.444
A Typical UDP Socket Session445
A Typical Datagram Socket Session. 446
Locating the ServersPort .446
Network Application Example447
Using Common INET .452
Compiling and Binding .453
Using TCP/IP APIs 454
Restrictions for Using MVS TCP/IP API Wlth z/OS UNIX455
Using z/OS UNIX SocketsA456
Compiling under MVS Batch for Berkeley Sockets e LY
Compiling under MVS Batch for X/Open Sockets. 458
Understanding The X/Open Transport Interface (XTI) 460
Transport endpoints460
Transport providers for X/Open Transport Interface 460
General Restrictions for zZZOSUNIX.460

Xii z/OS V1R4.0 C/C++ Programming Guide

Chapter 31. Interprocess Communication Using zZZOS UNIX 463

Message Queues .463
Semaphores .. .464
Shared Memory .. .44
Memory Mapping . . e {7
TSO Commands from aSheII T 1615
Chapter 32. Structuring a Program That Uses C++ Templates (Y4
Template Terms . . . e 151
Generating Template Functlons e 163
Class Template Example.469
Using the TEMPINC Option. . . . T e
Organizing Source Code for the TEMPINC Optlon e
Instantiating the Functions471
Using the NOTEMPINC Option . . . N
Organizing Source Code for the NOTEMPINC Optlon Y)
Using TEMPINC or NOTEMPINC475
Example of a Multipurpose Header File . . . N i 4
Example of Source Code with Multipurpose Header F|IeA476
TEMPINC Considerations for Shared Libraries. 476
Using the TEMPLATEREGISTRY Option . . . e Y 4
Converting a TEMPINC Example Into TEMPLATEREGISTRY Y
Recompiling Parts of Your Program After Making Source Changes 478
Chapter 33. Using Environment Variables T A°
Working with Environment Variables485
Naming Conventions 486
Environment Variables Specific to the z/OS C/C++ lerary I £ Y
_CEE_DMPTARG .. .4a87
_CEE_ENVFILE. .A488
_CEE_HEAP_MANAGERA488
_CEE_RUNOPTS48
_EDC_ADD ERRNO2.489
_EDC_ANSI_OPEN_DEFAULT489
_EDC BYTE_SEEK .489
_EDC CLEAR_SCREEN.49
EDC COMPAT«40
_EDC_ERRNO_DIAG.49
_EDC_GLOBAL_STREAMS49
_EDC_IP_CACHE_ENTRIES49
_EDC_RRDS_HIDE_KEY49
_EDC_STOR_INCREMENT.493
_EDC_STOR_INITIAL. .493
_EDC_ZERO RECLEN .493
Example. L .00 49
CCNGEV1, 49
CCNGEV249
Part 5. z/OS C/C++ Environments497
Chapter 34. Using the System Programming C Facilities e oo 499
Using Functions in the System Programming C Environment 500
System Programming C Facility Considerations and Restrictons 501
Creating Freestanding Applications502
Creating Modules without CEESTARTb5o3
Including an Alternative Initialization Routine under z/OS503

Contents Xii

Xiv

Initializing a Freestanding Application without Language Environment. .

Initializing a Freestanding Application Using C Functions .
Setting up a C Environment with Preallocated Stack and Heap.
Determining ISA requirements . .
Building Freestanding Applications to Run under z/OS
Parts Used for Freestanding Applications.
Creating System Exit Routines .
Building System Exit Routines under z/OS
An Example of a System Exit .
Creating and Using Persistent C Envrronments
Building Applications That Use Persistent C Envrronments
An Example of Persistent C Environments .
Developing Services in the Service Routine Envrronment
Using Application Service Routine Control Flow
Understanding the Stub Perspective
Establishing a Server Environment .
Initiating a Server Request .
Accepting a Request for Service .
Returning Control from Service .
Constructing User-Server Stub Routines .
Building User-Server Environments .
Tailoring the System Programming C Envrronment
Generating Abends .
Getting Storage .
Getting Page-Aligned Storage
Freeing Storage .
Loading a Module
Deleting a Module .
Including a Run-Time Message Frle
Additional Library Routines .
Summary of Application Types.

Chapter 35. Library Functions for System Programming C
_ xhotc() — Set Up a Persistent C Environment (No L|brary)
Format
Description .
Returned Value
Example . . .
__xhotl() — Set Up a Persrstent C Envrronment (Wrth Lrbrary) .
__xhott() — Terminate a Persistent C Environment . .
__xhotu() — Run a Function in a Persistent C Environment .
__xregs() — Get Registers on Entry
__xsacc() — Accept Request for Service .
__xsrve() — Return Control from Service .
_ xusr() - _ xusr2() — Get Address of User Word
__24malc() — Allocate Storage below 16MB Line
__4kmalc() — Allocate Page-Aligned Storage .

Chapter 36. Using Run-Time User EXxits

Using Run-Time User Exits in z/OS Language Envrronment
Understanding the Basics .
PL/I and C/370 Compatibility
User Exits Supported under z/OS Language Envrronment
Order of Processing of User Exits
Using Installation-Wide or Application- Specmc User EX|ts
Using the Assembler User Exit

z/OS V1R4.0 C/C++ Programming Guide

. 503
. 504
. 504
. 505
. 505
. 507
. 508
. 509
. 509
. 512
. 513
. 513
. 517
. 518
. 524
. 533
. 533
. 534
. 534
. 534
. 534
. 535
. 535
. 536
. 537
. 538
. 539
. 539
. 540
. 541
. 541

. 543
. 543
. 543
. 543
. 543
. 544
. 544
. 544
. 545
. 545
. 546
. 546
. 547
. 547
. 547

. 549
. 549
. 549
. 549
. 550
. 550
. 551
. 552

Using Sample Assembler User Exitsb5b2

Assembler User Exit Interface54
Parameter Values in the Assembler User Exrtbb8
PL/I and C/370 Compatibilityb562
High Level Language User Exit Interface. 563
Chapter 37. Using The z/OS C MultiTasking Facility 567
Organizing a Program with MTFb67
Ensuring Computational Independence 568
Running a C Program without MTF 569
Running a C Program with MTF570
Running a C Program with One Parallel Functron .o570
Running a C Program with Two Different Parallel Funct|ons B Y 4
z/OS C with Multiple Instances of the Same Parallel Function 573
Designing and Coding Applications for MTF.575
Step 1: Identifying Computationally-Independent Code575
Step 2: Creating Parallel Functions575
Step 3: Inserting Calls to Parallel Functions. 579
Changing an ApplicatontoUse MTFb579
Compiling and Linking Programs ThatUse MTF 584
Creating the Main Task Program Load Module. 584
Creating the Parallel Functions Load Module585
Specifying the Linkage-Editor Option586
Modifying Run-Time Optionsb586
Running Programs That Use MTF586
STEPLIB DD Statement586
DD Statements for Standard Streams T 1< Y 4
Example of JCL et
Debugging Programs That Use MTF .o . e e587
Avoiding Undesirable Results when Using MTFbg7
Part 6. Programming with Other Products 1o X
Chapter 38. Using the Customer Information Control System (CICS) 593
Developing C and C++ Programs for the CICS Environment. 593
Preparing CICS for Use with z/OS Language Environment 593
Designing and Coding for CICS ebv4
Using the CICS Command-Level Interface 1V
Using Input and Outputo0bo8
Using z/OS C/C++ Library Support e600
Storage Management . . . e 0
Using Interlanguage Support602
Exception Handling. . . . e603
MAP 0050: Error Handling in CICS o o107
Example of Error Handling in CICS604
ABEND Codes and Error Messages under z/OS C/C++607
Coding Hints and Tips. . . . T (04
Translating and Compiling for Reentrancy0608
Translating . . . I o 0 <}
Translating Example I ¢ 0 <}
Compiling613
Sample JCL to Translate and Comp|le .o613
Prelinking and Linking All Object Modules614
Defining and Running the CICS Program. 615
Program Processing . . T S K5
Link Considerations for C Programs . e615

Contents XV

CSD Considerations .
Sample JCL to Install z/OS C/C++ Appllcatron Programs .

Chapter 39. Using Cross System Product (CSP)
Common Data Types . . A
Passing Control .
Running CSP under MVS
Calling CSP Applications from z/OS C
Examples
Calling z/OS C from CSP
Examples
Running under CICS Control
Examples

Chapter 40. Using Data Window Services (DWS)

CCNGDW2.
Example .

CCNGDWL1.

Chapter 41. Using DB2 Universal Database
C++ Example
CCNGDB1 .
CCNGDB?2 .
C Example . .
CCNGDB4 .

Chapter 42. Using Graphical Data Drsplay Manager (GDDM)
Example . .o .
CCNGGD1 .
CCNGGD?2 .

Chapter 43. Using the Information Management System (IMS)
Handling Errors . - Ce e e e
Other Considerations .

Examples

Chapter 44. Using the Interactive System Productrvrty Facrlrty (ISPF)

Examples
CCNGIS1
CCNGIS2
CCNGIS3
CCNGIS4
CCNGIS5
CCNGIS6
CCNGIS7
CCNGIS8
CCNGIS9 .
CCNGISA .
CCNGISB .

Chapter 45. Using the Query Management Facrlrty (QMF)
Example . . - o .o
CCNGQML1.
CCNGQM2.
CCNGQM3.

XVi z/OS V1R4.0 C/C++ Programming Guide

. 616
. 616

. 617
. 617
. 617
. 618
. 618
. 618
. 621
. 621
. 625
. 625

. 631
. 631
. 632
. 632

. 633
. 633
. 633
. 634
. 636
. 636

. 639
. 639
. 640
. 642

. 645
. 645
. 646
. 647

655

. 655
. 656
. 656
. 657
. 657
. 658
. 658
. 659
. 659
. 659
. 660
. 660

. 661
. 661
. 661
. 664
. 665

Part 7. Internationalization: Locales and Character Sets06069

Chapter 46. Introduction to Locale . e Y4
Internationalization in Programming Languages e s
Elements of Internationalization . . . N Y 4
z/0OS C/C++ Support for Internatronalrzatron e Y
Locales and Localization. .672
Locale-Sensitive Interfaces672
Chapter 47. Buildinga Locale675
Limitations of Enhanced ASCII.675
Using the charmap File .676
The CHARMAP Section .681
The CHARSETID Section683
Locale Source Files. .68
LC_ CTYPECategory .687
LC_COLLATE Category .69
LC_MONETARY Category697
LC_NUMERIC Category .700
LC_TIME Category .. .701
LC_MESSAGES Category703
LC_TOD Category « « «704
LC_SYNTAX Category .706
Method Files . . . C e e e 108
Using the localedef Ut|||ty Y 4 v
Locale Naming Conventions712
Chapter 48. Customizing a Locale Y 2
Using the Customized Locale Y 22
Referring Explicitly to a Customized Locale Y 24
CCNGCL1 Y 21
Referring Implicitly to a Customlzed Locale e e e T2y
CCNGCL2 s T2
Chapter 49. Customizing a Time Zone T29
Using the TZ or _TZ Environment Variable to Specrfy Trme Zone T 71
Relationship Between TZor _TZand LC TOD. 730
Chapter 50. Definition of S370 C, SAA C, and POSIX C Locales 731
Differences between SAA C and POSIX C Locales 737
CCNGDL1o Ta3
Chapter 51. Code Set Conversion Utilities Ce e e s T39
The genxIt Utility. .739
The iconv Utility Y 41
Code Conversion Functrons e £ 10]
Code Set Converters Supplied. . . . Y £ 10
Universal Coded Character Set Converters . eT763
Codeset Conversion UsingUCs-2 769
UCMAP Source Format .769
Chapter 52. Coded Character Set Considerations with Locale Functions 773
Variant Character Detail . . . Y A <
Mappings of 13 PPCS Variant Characters .o e
Mappings of Hex Encoding of 13 PPCS Variant Characters T74
Alternate Code Points. .775

Contents XVii

Coding without Locale Support by Using a Hybrid Coded Character Set . 775
CCNGCCL1 . Ce . 776
Writing Code Using a Hybrld Coded Character Set . . 777
Converting Hybrid Code . 777

Coded Character Set Independence in Developrng Applrcatrons L 7T7
Coded Character Set in Source Code and Header Files . 779
Converting Coded Character Sets at Compile Time . . 782

Writing Source Code in Coded Character Set IBM-1047 . 787

Exporting Source Code to Other Sites . . 787

Converting Existing Work . 788

Considerations With Other Products and Tools . 789

Chapter 53. Bidirectional Language Support . 791

Bidirectional Languages 791
Overview of the Layout Functlons . 792
Using the Layout Functions . . 795
CCNGBID1. . 799

Part 8. Appendixes . 801

Appendix A. POSIX Character Set . 803

Appendix B. Mapping Variant Characters for z/OS C/C++ . 807

Displaying Hexadecimal Values . 807
Example . . 808
CCNGMV1 . . 808

Using pragma Filetag To Specrfy Code Page in C . 810

Displaying Square Brackets When Using ISPF. . 810
CCNGMV?2 . . . 811
Using The CCNGMV?2 Macro . . 811

Procedure for Mapping on 3279 . . 812

Appendix C. z/OS C/C++ Code Point Mappings . 813

Appendix D. Locales Supplied with z/OS C/C++ . 815

Compiled Locales Coe e . 815

Locale Source Files. . 828

Appendix E. Charmap Files Supplied with z/OS C/C++ . 833

Appendix F. Examples of Charmap and Locale Definition Source . 837

Charmap File . . 837

Locale Definition Source F|Ie . 844

Locale Method Source File . . 849

Appendix G. Converting Code from Coded Character Set IBM-1047 . 851

CCNGHC1 . e e e . 851

Appendix H. Additional Examples . 861

Memory Management . . . 861
CCNGMIT . . 861
CCNGMI2 . . . 862

Calling MVS WTO routrnes from C . . 871
CCNGWTL. . 872
CCNGWT2. . . 873

Listing Partitioned Data Set Members . . 873

XViii

z/OS V1R4.0 C/C++ Programming Guide

CCNGIP1
CCNGIP2

Appendix I. Using Built-In Functions

Appendix J. Application Considerations for z/OS UNIX C/C++
Relationship to DB2 Universal Database . -
Application Programming Environments Not Supported
Support for the Curses Library.

Appendix K. External Variables
ermo . Ce
daylight .

getdate_err.

h_errno .

__locl

locl

loc2

locs

optarg.

opterr .

optind .

optopt.

signgam .

stdin

stderr .

stdout.

t_errno

timezone.

tzname

Appendix L. Accessibility
Using assistive technologies .
Keyboard navigation of the user mterface.

Notices . .
Programming mterface mformatlon .
Trademarks.
Standards .

Glossary

Bibliography

z/OS .

z/OS C/C++ .
z/OS Language Enwronment .
Assembler .

COBOL .

PL/

VS FORTRAN.

CICS .

DB2

IMS/ESA.

QMF . .

DFSMS .

Contents

. 874
. 879

. 881

. 885
. 885
. 885
. 885

. 887
. 887
. 887
. 888
. 888
. 888
. 888
. 888
. 888
. 888
. 889
. 889
. 889
. 889
. 889
. 889
. 889
. 889
. 889
. 890

. 891
. 891
. 891

. 893
. 894
. 894
. 895

. 897

. 925
. 925
. 925
. 925
. 926
. 926
. 926
. 926
. 926
. 926
. 927
. 927
. 927

XiX

INDEX99

XX z/OS V1R4.0 C/C++ Programming Guide

Part 1. Introduction

© Copyright IBM Corp. 1996, 2002

2 z/OS V1R4.0 C/C++ Programming Guide

Chapter 1. About This Document

This document provides information about implementing programs that are written
in C and C++. It contains advanced guidelines and information for developing C and
C++ programs to run under z/OS and z/OS.e. References to z/OS in the document
refer to both z/OS and z/OS.e.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line (]) to
the left of the change.

You may notice changes in the style and structure of some of the contents in this
document; for example, headings that use uppercase for the first letter of initial
words only, and procedures that have a different look and format. The changes are
ongoing improvements to the consistency and retrievability of information in our
documents.

Who should use this document

To use this document, or any other documents in the library of z/OS C/C++
publications, you must have a working knowledge of the C/C++ programming
language. In addition, you must have knowledge of the z/OS operating system, and
where appropriate, the related products.

A note about examples

Examples that illustrate the use of the z/OS C/C++ compiler use a simple style.
They are instructional examples, and do not attempt to minimize run time, conserve
storage, or check for errors. The examples do not demonstrate all the uses of C
and C++ language constructs. Some examples are only code fragments and will not
compile without additional code.

Examples that illustrate the use of the z/OS C/C++ compiler and the IBM Open
Class® Library use a simple style. They are instructional examples, and do not
attempt to minimize run time, conserve storage, or check for errors. The examples
do not demonstrate all the uses of C++ language constructs or IBM Open Class
Library. Some examples are only code fragments and will not compile without
additional code.

How to read syntax diagrams

Symbols

This section describes how to read syntax diagrams. It defines syntax diagram
symbols, items that may be contained within the diagrams (keywords, variables,
delimiters, operators, fragment references, operands) and provides syntax examples
that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments) that
comprise a command statement. They are read from left to right and from top to
bottom, following the main path of the horizontal line.

The following symbols may be displayed in syntax diagrams:

Symbol Definition

© Copyright IBM Corp. 1996, 2002 3

> Indicates the beginning of the syntax diagram.

—> Indicates that the syntax diagram is continued to the next line.
> Indicates that the syntax is continued from the previous line.
—>< Indicates the end of the syntax diagram.

Syntax items

Syntax diagrams contain many different items. Syntax items include:

Keywords - a command name or any other literal information.

Variables - variables are italicized, appear in lowercase and represent the name

of values you can supply.

Delimiters - delimiters indicate the start or end of keywords, variables, or
operators. For example, a left parenthesis is a delimiter.

Operators - operators include add (+), subtract (-), multiply (*), divide (/), equal
(=), and other mathematical operations that may need to be performed.

Fragment references - a part of a syntax diagram, separated from the diagram to

show greater detail.

Separators - a separator separates keywords, variables or operators. For
example, a comma (,) is a separator.

Keywords, variables, and operators may be displayed as required, optional, or
default. Fragments, separators, and delimiters may be displayed as required or

optional.

Item type Definition

Required Required items are displayed on the main path of the horizontal
line.

Optional Optional items are displayed below the main path of the horizontal
line.

Default Default items are displayed above the main path of the horizontal

Syntax examples

line.

The following table provides syntax examples.

Table 1. Syntax examples

Item

Syntax example

Required item.

v
A

»>—KEYWORD—required_item

Required items appear on the main path of the horizontal
line. You must specify these items.

Required choice.

A required choice (two or more items) appears in a
vertical stack on the main path of the horizontal line. You

v
A

»—KEYWORD—[requi red_choicel
required_choi ce2—|

must choose one of the items in the stack.

4 7/0S V1R4.0 C/C++ Programming Guide

Table 1. Syntax examples (continued)

Iltem

Syntax example

Optional item.

Optional items appear below the main path of the
horizontal line.

»>—KEYWORD
l—opti onal_i tem—|

Optional choice.

A optional choice (two or more items) appear in a vertical
stack below the main path of the horizontal line. You may
choose one of the items in the stack.

\4
A

»>—KEYWORD
i:opti onal_choi cel:‘
optional_choice2

Default.

Default items appear above the main path of the
horizontal line. The remaining items (required or optional)
appear on (required) or below (optional) the main path of
the horizontal line. The following example displays a
default with optional items.

default choicel
[eefault_choicel)

»>—KEYWORD
i:opti onal_choi ceZ:‘
optional_choice3

Variable.

Variables appear in lowercase italics. They represent
names or values.

»»—KEYWORD—variable

\4
A

Repeatable item.

An arrow returning to the left above the main path of the
horizontal line indicates an item that can be repeated.

An arrow returning to the left above a group of repeatable
items indicates that one of the items can be selected, or a
single item can be repeated.

\é
A

»»—KEYWORD——repeatable_item

Fragment.

The - fragment |- symbol indicates that a labelled group
is described below the main syntax diagram. Syntax is
occasionally broken into fragments if the inclusion of the
fragment would overly complicate the main syntax
diagram.

»—KEYNORD—| fragment i

fragment:

}—|:, required_choicel
,default_choice
,required_choice2 l_ _l

,optional_choi ceJ

Chapter 1. About This Document

5

z/OS C/C++ and related publications

This section summarizes the content of the z/OS C/C++ publications and shows
where to find related information in other publications.

Table 2. z/OS C/C++ Publications

Document Title and Number Key Sections/Chapters in the Document
z/OS C/C++ Programming Guide) Guidance information for:
SC09-476§ e C/C++ input and output

» Debugging z/OS C programs that use input/output

» Using linkage specifications in C++

* Combining C and assembler

» Creating and using DLLs

 Using threads in z/OS UNIX® applications

* Reentrancy

» Using the decimal data type in C and C++

» Handling exceptions, error conditions, and signals

* Optimizing code

» Optimizing your C/C++ code with Interprocedural Analysis

» Network communications under z/OS UNIX

* Interprocess communications using z/OS UNIX

e Structuring a program that uses C++ templates

» Using environment variables

= Using System Programming C facilities

» Library functions for the System Programming C facilities

» Using run-time user exits

» Using the z/OS C multitasking facility

 Using other IBM products with z/OS C/C++ (CICS®, CSP, DWS, DB2®,
GDDM®, IMS™, ISPF, QMF™)

¢ Internationalization: locales and character sets, code set conversion utilities,
mapping variant characters

* POSIX character set

» Code point mappings

» Locales supplied with z/OS C/C++

» Charmap files supplied with z/OS C/C++

» Examples of charmap and locale definition source files

» Converting code from coded character set IBM-1047

* Using built-in functions

» Programming considerations for z/OS UNIX C/C++

[z/0S C/C++ User’s Guide, SC09-4767|| Guidance information for:

* z/OS C/C++ examples

» Compiler options

» Binder options and control statements

* Specifying z/OS Language Environment® run-time options

* Compiling, IPA Linking, binding, and running z/OS C/C++ programs

= Utilities (Object Library, DLL Rename, CXXFILT, DSECT Conversion, Code
Set and Locale, ar and make, BPXBATCH)

» Diagnosing problems

» Cataloged procedures and REXX EXECs supplied by IBM

6 z/0S V1R4.0 C/C++ Programming Guide

Table 2. z/OS C/C++ Publications (continued)

>

Document Title and Number

ey Sections/Chapters in the Document

C/C++ Language Reference|
SC09-481

Reference information for:

* The C and C++ languages

* Lexical elements of z/OS C and z/OS C++
» Declarations, expressions, and operators
* Implicit type conversions

* Functions and statements

* Preprocessor directives

» Compiler pre-defined macros

* C++ classes, class members, and friends
» C++ overloading, special member functions, and inheritance
» C++ templates and exception handling

* z/OS C and z/OS C++ compatibility

[z/0S C/C++ Messages, GC09-4819|

Provides error messages and return codes for the compiler, utilities, and 1BM
Open Class Library. For the C/C++ run-time library messages, refer to
[Language Environment Run-Time Messages, SA22-7566)|

7/0S C/C++ Run-Time Librar)}
Reference, SA22-7821|

Reference information for:
* Header files

* Feature test macros
 Library functions

[z/0S C Curses, SA22-7820)

Reference information for:

» Curses concepts

» Key data types

* General rules for characters, renditions, and window properties
* General rules of operations and operating modes

* Use of macros

* Restrictions on block-mode terminals

* Curses functional interface

» Contents of headers

* The terminfo database

2/0S C/C++ Compiler and Run-Time|
Migration Guide, GC09-4913|

Guidance and reference information for:

* Common migration questions

» Application executable program compatibility
» Source program compatibility

* Input and output operations compatibility

» Class library migration considerations

* Changes between releases of z/OS

« C/370™ to current compiler migration

» Other migration considerations

IBM Open Class Library User’s Guide)
SC09-4811

Guidance information for:

» Using the Complex Math Class Library: Review of complex numbers,
header files, constructing complex objects, mathematical operators for
complex, friend functions for complex, handling complex mathematics errors

» Using the I/O Stream Class Library: Introduction, getting started, advanced
topics, and manipulators

» Using the Collection Class Library: Overview, instantiating and using,
element and key functions, tailoring a collection implementation,
polymorphic use of collections, support for notifications, exception handling,
problem solving, compatibility with previous releases, thread safety

» Using the Application Support Class Library: Introduction, String classes,
Exception and Trace classes, Date and Time classes, controlling threads
and protecting data, the IBM Open Class notification framework, Binary
Coded (Packed) Decimal classes, text and internationalization framework,
testing

Chapter 1. About This Document 7

Table 2. z/OS C/C++ Publications (continued)

Document Title and Number

K

ey Sections/Chapters in the Document

IBM Open Class Library Reference,)

Vol. 1, SC09-4812)|

Reference information for:

» Complex Math Class Library

» |/O Stream Class Library

» Collection Class Library

» Appication Support Class Library

Debug Tool User’s Guide and

Reference, SC09-2137|

Guidance and reference information for:

* Preparing to debug programs

» Debugging programs

» Using Debug Tool in different environments
» Language-specific information

» Debug Tool reference

Standard C++ Library Reference,
available on the z/OS C/C++ library
page on the World Wide Web

The documentation, which is available at
http://www.ibm.com/software/ad/c390/czos/czosdocs.html, covers using the
following three main components of the Standard C++ Library to write portable
C/C++code that complies with the 1SO standards:

* ISO Standard C Library

* |ISO Standard C++ Library

» Standard Template Library (C++)

The 1SO Standard C++ library consists of 51 required headers. These 51 C++
library headers (along with the additional 18 Standard C headers) constitute a

hosted implementation of the C++ library. Of these 51 headers, 13 constitute
the Standard Template Library, or STL.

IBM Open Class Transition Guide,
available on the z/OS C/C++ library
page on the World Wide Web

The documentation, which is available at
http://www.ibm.com/software/ad/c390/czos/czosdocs.html, explains the
various options to application owners and users for migrating from the 1BM
Open Class library to the Standard C++ Library.

APAR and BOOKS files (Shipped with
Program materials)

Partitioned data set CBC.SCCNDOC on the product tape contains the
members, APAR and BOOKS, which provide additional information for using
the z/OS C/C++ licensed program, including:

* Isolating reportable problems

» Keywords

* Preparing an Authorized Program Analysis Report (APAR)

* Problem identification worksheet

* Maintenance on z/OS

» Late changes to z/OS C/C++ publications

Note: For complete and detailed information on linking and running with z/OS Language Environment and using the
z/0S Language Environment run-time options, refer to|z/OS Language Environment Programming Guide, SA22-7561}
For complete and detailed information on using interlanguage calls, refer to [z/0S Language Environment Writing|

[Interlanguage Communication Applications, SA22-7563)

The following table lists the z/OS C/C++ and related publications. The table groups
the publications according to the tasks they describe.

Table 3. Publications by Task

Tasks

Documents

Planning, preparing, and migrating to z/OS * [z/0S c/C++ Compiler and Run-Time Migration Guide, GC09-4913]

C/C++

* [z/0S Language Environment Customization, SA22-7564|
* [2/0S Language Environment Run-Time Migration Guide)
GA22-7565

« [z/0S UNIX System Services Planning, GA22-7800|

* [z/0S and z/0S.e Planning for Installation, GA22-7504]

8 2z/0S V1R4.0 C/C++ Programming Guide

Table 3. Publications by Task (continued)

Tasks

Documents

Installing

» z/OS Program Directory

7/0S and z/0S.e Planning for Installation, GA22-7504)
z/OS Language Environment Customization, SA22-7564|

Coding programs

z/0OS C/C++ Run-Time Library Reference, SA22-7821|

C/C++ Language Reference, SC09-4815|

z/0OS C/C++ Programming Guide, SC09-4765|

z/OS Language Environment Concepts Guide, SA22-7567|

z/OS Language Environment Programming Guide, SA22-7561|
z/0OS Language Environment Programming Reference, SA22-7562|
IBM Open Class Library User’s Guide, SC09-4811|

IBM Open Class Library Reference, Vol. 1, SC09-4812]

Coding and binding programs with
interlanguage calls

7/0S C/C++ Programming Guide, SC09-4765|

C/C++ Language Reference, SC09-4815]|

z/OS Language Environment Programming Guide, SA22-7561]
z/0S Language Environment Writing Interlanguage Communication|
Applications, SA22-7563

7z/0S MV'S Program Management: User’s Guide and Reference)
SA22-7643

2z/0S MVS Program Management: Advanced Facilities, SA22-7644)

Compiling, binding, and running programs

2/0S C/C++ User’s Guide, SC09-4767|

z/OS Language Environment Programming Guide, SA22-7561]
z/OS Language Environment Debugging Guide, GA22-7560]

z/0S MVS Program Management: User’s Guide and Reference)
SA22-7643

2z/0S MVS Program Management: Advanced Facilities, SA22-7644)

Compiling and binding applications in the z/OS
UNIX environment

z/0S C/C++ User’s Guide, SC09-4767|

z/0S UNIX System Services User’s Guide, SA22-7801]

z/0S UNIX System Services Command Reference, SA22-7802|
z/0S MVS Program Management: User’s Guide and Reference)
SA22-7643

2/0S MVS Program Management: Advanced Facilities, SA22-7644)

Debugging programs

README file

Debug Tool User’s Guide and Reference, SC09-2137|

2/0S C/C++ User’s Guide, SC09-4767|

7/0S C/C++ Messages, GC09-4819|

7/0S C/C++ Programming Guide, SC09-4765|

z/OS Language Environment Programming Guide, SA22-7561]
z/0S Language Environment Debugging Guide, GA22-7560|
7/OS Language Environment Run-Time Messages, SA22-7566|
z/0S UNIX System Services Messages and Codes, SA22-7807|
z/0S UNIX System Services User’s Guide, SA22-7801|

z/0S UNIX System Services Command Reference, SA22-7802|
z/0S UNIX System Services Programming Tools, SA22-7805|
z/0OS Messages Database, available on the z/OS Library page on
the World Wide Web
(http://www.ibm.com/servers/eserver/zseries/zos/bkserv)

Using shells and utilities in the z/OS UNIX
environment

z/0OS C/C++ User’s Guide, SC09-4767|
z/OS UNIX System Services Command Reference, SA22-7802|
z/0S UNIX System Services Messages and Codes, SA22-7807|

Using sockets library functions in the z/0OS
UNIX environment

|z/0S C/C++ Run-Time Library Reference, SA22-7821|

Using the ISO Standard C++ Library to write
portable C/C++ code that complies with ISO
standards

Standard C++ Library Reference, available on the z/OS C/C++
library page on the World Wide Web
(http://www.ibm.com/software/ad/c390/czos/czosdocs.html)

Chapter 1. About This Document 9

Table 3. Publications by Task (continued)

Tasks

Documents

Migrating from the IBM Open Class Library to
the C++ Standard Library

IBM Open Class Transition Guide, available on the z/OS C/C++
library page on the World Wide
Web (http://www.ibm.com/software/ad/c390/czos/czosdocs.html)

Porting a UNIX Application to z/OS

z/0S UNIX System Services Porting Guide

This guide contains useful information about supported header files
and C functions, sockets in z/OS UNIX, process management,
compiler optimization tips, and suggestions for improving the
application’s performance after it has been ported. The Porting
Guide is available as a PDF file which you can download, or as
web pages which you can browse, at the following web address:
http://www-
1.ibm.com/servers/eserver/zseries/zos/unix/bpxalpor.html

Working in the z/OS UNIX System Services
Parallel Environment

7/0S UNIX System Services Parallel Environment: Operation and

Use, SA22-7810|

7/0S UNIX System Services Parallel Environment: MPI
Programming and Subroutine Reference, SA22-7812|

Performing diagnosis and submitting an
Authorized Program Analysis Report (APAR)

|z/0S C/C++ User’s Guide, SC09-4767|
CBC.SCCNDOC(APAR) on z/OS C/C++ product tape

Tuning Large C/C++ Applications on z/OS
UNIX System Services

IBM Redbook called Tuning Large C/C++ Applications on z/OS
UNIX System Services, which is available at:
http://www.redbooks.ibm.com/abstracts/sg245606.html

C/C++ Applications on OS/390 UNIX

IBM Redbook called C/C++ Applications on OS/390 UNIX, which is
available at:
http://www.redbooks.ibm.com/abstracts/sg245992.html

Performance considerations for XPLINK

IBM Redbook called XPLink: OS/390® Extra Performance Linkage,
which is available at:
http://www.redbooks.ibm.com/abstracts/sg245991.html

Note: For information on using the prelinker, see the appendix on prelinking and linking z/OS C/C++ programs in
[z/0S C/C++ User’s Guidd As of 0S/390 Version 2 Release 4, this appendix contains information that was previously
in the chapter on prelinking and linking z/OS C/C++ programs in [z/0S C/C++ User’s Guidg} It also contains prelinker

information that was previously in [z/Z0S C/C++ Programming Guide,

Hardcopy Documents

As of z/OS V1R4, the following z/OS C/C++ documents are available in hardcopy:

« [z/0S C/C++ User’s Guide, SC09-4767|

+ |2/0S C/C++ Messages, GC09-4819)

* |z/0S C Curses, SA22-7820|

* |2/0S C/C++ Compiler and Run-Time Migration Guide, GC09-4913)

« |Debug Tool User’s Guide and Reference, SC09-2137|

You can purchase these documents on their own, or as part of a set. You receive

[z/0S C/C++ Compiler and Run-Time Migration Guide, GC09-4913| at no charge.

Feature code 8009 includes the remaining documents.

10 z/0S V1R4.0 C/C++ Programming Guide

Softcopy documents

The z/OS C/C++ publications are supplied in PDF and BookMaster® formats on the
following CD: z/OS Collection, SK3T-4269. They are also available at the following
Web site:

http://www.ibm.com/software/ad/c390/czos/czosdocs.html

To read a PDF file, use the Adobe Acrobat Reader. If you do not have the Adobe
Acrobat Reader, you can download it for free from the Adobe Web site:

http://www.adobe.com

To read a file in BookManager® format, use BookManager READ/MVS Version 1
Release 3 (5695-046) or the Library Reader™ for DOS, 0S/2® or Windows®
supplied on the CD-ROMs containing BookManager documents.

If your system has BookManager Read installed, you can enter the command
BOOKMGR to start BookManager and display a list of documents available to you.
If you know the name of the document that you want to view, you can use the
OPEN command to open the document directly.

Note: If your workstation does not have graphics capability, BookManager Read
cannot correctly display some characters, such as arrows and brackets.

You can also browse the documents on the World Wide Web by clicking on "The
Library" link on the z/OS home page. The web address for this page is:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv

Softcopy examples

Most of the larger examples in the following documents are available in
machine-readable form:

+ |C/C++ Language Reference, SC09-4815|

* |2/0S C/C++ User’s Guide, SC09-4767|

* |z/0S C/C++ Programming Guide, SC09-4765

« |IBM Open Class Library User’s Guide, SC09-4811

In the following documents, a label on an example indicates that the example is
distributed in softcopy. The label is the name of a member in the data sets
CBC.SCCNSAM or the directory /usr/1pp/ioclib/sample. The labels have the form
CCNxyyy or CLBxyyy, where x refers to a publication:

« R and X refer to|C/C++ Language Reference, SC09-4815|

* G refers to |2/0S C/C++ Programming Guide, SC09-4765

* U refers to|z/0OS C/C++ User’s Guide, SC09-4767

Examples labelled as CCNxyyy appear in |C/C++ Language Reference, IE/OS C/C+:|
Programming Guidg, and|z/0OS C/C++ User’s Guidd Examples labelled as CLBXxyyy
appear in the |z/0S C/C++ User's Guidg Additional IBM Open Class samples are
provided as softcopy only. They can be found in the /usr/1pp/ioclib/sample
directory.

z/OS C/C++ on the World Wide Web

Additional information on z/OS C/C++ is available on the World Wide Web on the
z/OS C/C++ home page at:

http://www.ibm.com/software/ad/c390/czos

Chapter 1. About This Document 11

This page contains late-breaking information about the z/OS C/C++ product,
including the compiler, the class libraries, and utilities. It also contains a tutorial on
the source level interactive debugger. There are links to other useful information,
such as the z/OS C/C++ information library and the libraries of other z/OS elements
that are available on the Web. The z/OS C/C++ home page also contains samples
that you can download, and links to other related Web sites.

Where to find more information

Please see [z/0S Information Roadmap|for an overview of the documentation
associated with z/OS, including the documentation available for z/OS Language
Environment.

Accessing z/OS licensed documents on the Internet

z/OS licensed documentation is available on the Internet in PDF format at the IBM
Resource Link™ Web site at:

[http://www.ibm.com/servers/resourcelink|

Licensed documents are available only to customers with a z/OS license. Access to
these documents requires an IBM Resource Link user ID and password, and a key
code. With your z/OS order you received a Memo to Licensees, (GI10-0671), that
includes this key code.

To obtain your IBM Resource Link user ID and password, log on to:
[http://www.ibm.com/servers/resourcelink|

To register for access to the z/OS licensed documents:
1. Sign in to Resource Link using your Resource Link user ID and password.
2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/OS licensed documents unless you have registered
for access to them and received an e-mail confirmation informing you that
your request has been processed.

Printed licensed documents are not available from IBM.

You can use the PDF format on either z/OS Licensed Product Library CD-ROM or
IBM Resource Link to print licensed documents.

Using LookAt to look up message explanations

12

LookAt is an online facility that allows you to look up explanations for most
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most
cases LookAt goes directly to the message explanation.

You can access LookAt from the Internet at:
[rttp://www.ibm.com/eserver/zseries/zos/bkserv/lookat/|

or from anywhere in z/OS where you can access a TSO/E command line (for
example, TSO/E prompt, ISPF, z/0S UNIX System Services running OMVS). You
can also download code from the z/OS Collection (SK3T-4269) and the LookAt Web
site that will allow you to access LookAt from a handheld computer (Palm Pilot VIIx
suggested).

z/OS V1R4.0 C/C++ Programming Guide

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

To use LookAt as a TSO/E command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO/E from a disk on your z/0S
Collection (SK3T-4269) or from the News section on the LookAt Web site.

Some messages have information in more than one document. For those
messages, LookAt displays a list of documents in which the message appears.

Chapter 1. About This Document 13

14 z/0S V1R4.0 C/C++ Programming Guide

Chapter 2. About IBM z/OS C/C++

The C/C++ feature of the IBM z/OS licensed program provides support for C and
C++ application development on the z/OS platform. The C/C++ feature is based on
the C/C++ for MVS/ESA™ product.

z/0OS C/C++ includes:

» A C compiler (referred to as the z/OS C compiler)

* A C++ compiler (referred to as the z/OS C++ compiler)

» Support for the Standard C++ Library

» Application Support Class and Collection Class Library source

* A mainframe interactive Debug Tool (optional)

» Performance Analyzer host component, which supports the IBM C/C++
Productivity Tools for OS/390 product

* A set of utilities for C/C++ application development

IBM offers the C language on other platforms, such as the AIX®, OS/400®,
VM/ESA®, and VSE/ESA™ operating systems. The AIX and OS/400 operating
systems also offer the C++ language.

Changes for z/OS V1R4

Note: The z/OS V1R4 C/C++ compiler is functionally equivalent to the z/OS V1R2
C/C++ compiler. This section describes the changes that are specific to the
z/0OS V1R4 Language Environment.

For z/OS V1R4, Language Environment provides the following:
* Internet Protocol Version 6 (IPv6)

Support for IPv6 is described in the chapter "Network Communications under
UNIX System Services”.

* G11N White Paper Currency Support
This support provides additional country suport by locales.
* Enhanced Pthread Quiesce

Information is added on SIGTHSTOP and SIGTHCONT in the chapter "Handling
Exceptions, Error Conditions, and Signals”.

* 7/0S.e
Information is added to include Language Environment support in z/OS.e.

The C/C++ compilers

The following sections describe the C and C++ languages and the z/OS C/C++
compilers.

The C language

The C language is a general purpose, versatile, and functional programming
language that allows a programmer to create applications quickly and easily. C
provides high-level control statements and data types as do other structured
programming languages. It also provides many of the benefits of a low-level
language.

© Copyright IBM Corp. 1996, 2002 15

The C++ language

The C++ language is based on the C language and includes all of the advantages
of C listed above. In addition, C++ also supports object-oriented concepts, type
genericity or templates, and an extensive library. For a detailed description of the
differences between z/OS C++ and z/OS C, refer to the [C/C++ Languaged

The C++ language introduces classes, which are user-defined data types that may
contain data definitions and function definitions. You can use classes from
established class libraries, develop your own classes, or derive new classes from
existing classes by adding data descriptions and functions. New classes can inherit
properties from one or more classes. Not only do classes describe the data types
and functions available, but they can also hide (encapsulate) the implementation
details from user programs. An object is an instance of a class.

The C++ language also provides templates and other features that include access
control to data and functions, and better type checking and exception handling. It
also supports polymorphism and the overloading of operators.

Common features of the z/OS C and C++ compilers

16

The C and C++ compilers, when used with z/OS Language Environment, offer
many features to help your work:

» Optimization support:

— Algorithms to take advantage of the S/390® architecture to get better
optimization for speed and use of computer resources through the OPTIMIZE
and IPA compiler options.

— The OPTIMIZE compiler option, which instructs the compiler to optimize the
machine instructions it generates to produce faster-running object code, which
improves application performance at run time.

— Interprocedural Analysis (IPA), to perform optimizations across compilation
units, thereby optimizing application performance at run time.

* DLLs (dynamic link libraries) to share parts among applications or parts of
applications, and dynamically link to exported variables and functions at run time.

DLLs allow a function reference or a variable reference in one executable to use
a definition located in another executable at run time. You can use both
load-on-reference and load-on-demand DLLs. When your program refers to a
function or variable which resides in a DLL, z/0OS C/C++ generates code to load
the DLL and access the functions and variables within it. This is called
load-on-reference. Alternatively, your program can use z/OS C library functions to
load a DLL and look up the address of functions and variables within it. This is
called load-on-demand. Your application code explicitly controls load-on-demand
DLLs at the source level.

You can use DLLs to split applications into smaller modules and improve system
memory usage. DLLs also offer more flexibility for building, packaging, and
redistributing applications.

* Full program reentrancy

With reentrancy, many users can simultaneously run a program. A reentrant
program uses less storage if it is stored in the LPA (link pack area) or ELPA
(extended link pack area) and simultaneously run by multiple users. It also
reduces processor I/O when the program starts up, and improves program
performance by reducing the transfer of data to auxiliary storage. z/OS C
programmers can design programs that are naturally reentrant. For those
programs that are not naturally reentrant, C programmers can use constructed

z/OS V1R4.0 C/C++ Programming Guide

reentrancy. To do this, compile programs with the RENT option and use the
program management binder supplied with z/OS or the z/OS Language
Environment prelinker and program management binder. The z/OS C++ compiler
always ensures that C++ programs are reentrant.

INLINE compiler option
Additional optimization capabilities are available with the INLINE compiler option.

Locale-based internationalization support derived from IEEE POSIX 1003.2-1992
standard. Also derived from X/Open CAE Specification, System Interface
Definitions, Issue 4 and Issue 4 Version 2. This allows programmers to use
locales to specify language/country characteristics for their applications.

The ability to call and be called by other languages such as assembler, COBOL,
PL/1, compiled Java™, and Fortran, to enable programmers to integrate z/OS
C/C++ code with existing applications.

Exploitation of z/OS and z/OS UNIX technology.

z/OS UNIX is an IBM implementation of the open operating system environment,
as defined in the XPG4 and POSIX standards.

Support for the following standards at the system level:

— A subset of the extended multibyte and wide character functions as defined by
Programming Language C Amendment 1. This is ISO/IEC
9899:1990/Amendment 1:1994(E)

— ISO/IEC 9945-1:1990(E)/IEEE POSIX 1003.1-1990
— A subset of IEEE POSIX 1003.1a, Draft 6, July 1991
— IEEE Portable Operating System Interface (POSIX) Part 2, P1003.2

— A subset of IEEE POSIX 1003.4a, Draft 6, February 1992 (the IEEE POSIX
committee has renumbered POSIX.4a to POSIX.1c)

— X/Open CAE Specification, System Interfaces and Headers, Issue 4 Version 2

— A subset of IEEE 754-1985 (R1990) IEEE Standard for Binary Floating-Point
Arithmetic (ANSI), as applicable to the S/390 environment.

— X/Open CAE Specification, Network Services, Issue 4
Year 2000 support
Support for the Euro currency

z/OS C Compiler specific features

In addition to the features common to z/OS C and C++, the z/OS C compiler
provides you with the following capabilities:

The ability to write portable code that supports the following standards:

All elements of the 1ISO standard /ISO/IEC 9899:1990 (E)

ANSI/ISO 9899:1990[1992] (formerly ANSI X3.159-1989 C)

X/Open Specification Programming Language Issue 3, Common Usage C
FIPS-160

System programming capabilities, which allow you to use z/OS C in place of
assembler

Extensions of the standard definitions of the C language to provide programmers
with support for the z/OS environment, such as fixed-point (packed) decimal data
support

Chapter 2. About IBM z/OS C/C++ 17

z/OS C++ Compiler specific features

In addition to the features common to z/OS C and C++, the z/OS C++ compiler
supports the International Standard for the C++ Programming Language (ISO/IEC
14882:1998) specification.

Class libraries

z/OS V1R2 C/C++ provides the following class libraries, which are all thread-safe:

» Standard C++ Library, including the Standard Template Library (STL), and other
library features of ISO C++ 1998

* IBM Open Class Library for z/OS V1R2
* IBM Open Class Library for 0S/390 V2R10

* UNIX Systems Laboratories C++ Language System Release (USL) I/O Stream
and Complex Mathematics Class Libraries

Refer to |z/0S C/C++ Compiler and Run-Time Migration Guide, GC09-4913 and [IBM
|Open Class Library User’s Guide, SC09-4811| for more details on the components
of these libraries.

For new code and enhancements to existing applications, the Standard C++ Library
should be used. The Standard C++ Library includes the following:

» Stream classes for performing input and output (I/O) operations

* The Standard Template Library (STL) which is composed of C++ template-based
algorithms, container classes, iterators, localization objects, and the string class

As of z/OS V1R2, an upgraded level of IOC is included, which is consistent with
that shipped in VisualAge C++ for AIX V5.0. This is intended to ease porting from
AIX, but is not intended for use in new development. Support will be withdrawn in a
future release.

The z/OS V1R2 IBM Open Class Library includes:

* The Application Support Class Library which provides the basic abstractions that
are needed during the creation of most C++ applications, including String, Date,
Time, and Decimal. The Application Support Class Library corresponds to the
IOC member in the data sets.

* The Collection Class Library implements a wide variety of classical data
structures such as stack, tree, list, hash table, and so on. The Collection Class
Library provides developers with a consistent set of building blocks from which
they can derive application objects. The library design exploits features of the
C++ language such as exception handling and template support. The Collection
Class Library corresponds to the COLL member in the data sets.

The OS/390 V2R10 IBM Open Class Library and USL class libraries include the
following:

* The USL I/O Stream Class Library (corresponds to the IOSTREAM member in
the data sets)

* The USL Complex Mathematics Class Library (corresponds to the COMPLEX
member in the data sets)

* The Application Support Class Library (corresponds to the APPSUPP member in
the data sets)

* The Collection Class Library (corresponds to the COLLECT member in the data
sets)

18 z/0S V1R4.0 C/C++ Programming Guide

Note: Retroactive to OS/390 Version 1 Release 3, the IBM Open Class Library is

licensed with the base operating system. This enables applications to use
this library at run time without having to license the z/OS C/C++ compiler
features or to use the DLL Rename Utility.

IBM Open Class Library Source

The IBM Open Class Library Source consists of the following:

Application Support Class Library source code
Collection Class Library source code

Utilities

The z/OS C/C++ compilers provide the following utilities:

The CXXFILT utility to map z/OS C++ mangled names to the original source.

The DSECT Conversion Utility to convert descriptive assembler DSECTSs into
z/OS C/C++ data structures.

The localedef utility to read the locale definition file and produce a locale object
that the locale-specific library functions can use.

The makedepend utility to derive all dependencies in the source code and write
these into the makefile for the make command to determine which source files to
recompile, whenever a dependency has changed. This frees the user from
manually monitoring such changes in the source code.

z/OS Language Environment provides the following utilities:

The Object Library Utility (C370LIB) to update partitioned data set (PDS and
PDSE) libraries of object modules and Interprocedural Analysis (IPA) object
modules.

The DLL Rename Utility to make selected DLLs a unique component of the
applications with which they are packaged. The DLL Rename Utility does not
support XPLINK.

The prelinker which combines object modules that comprise a z/OS C/C++
application, to produce a single object module. The prelinker supports only object
and extended object format input files, and does not support GOFF.

The Debug Tool

z/OS C/C++ supports program development by using the Debug Tool. This
optionally available tool allows you to debug applications in their native host
environment, such as CICS/ESA®, IMS/ESA®, DB2, and so on. The Debug Tool
provides the following support and function:

Step mode
Breakpoints
Monitor

Frequency analysis
Dynamic patching

You can record the debug session in a log file, and replay the session. You can also
use the Debug Tool to help capture test cases for future program validation, or to
further isolate a problem within an application.

You can specify either data sets or hierarchical file system (HFS) files as source
files.

Chapter 2. About IBM z/OS C/C++ 19

Note: You can also use the dbx shell command to debug programs, as described in
[z/0S UNIX System Services Command Reference}

For further information, see ['IBM C/C++ Productivity Tools for 0S/390’}

IBM C/C++ Productivity Tools for OS/390

With the IBM C/C++ Productivity Tools for OS/390 product, you can expand your

z/OS application development environment out to the workstation, while remaining

close to your familiar host environment. IBM C/C++ Productivity Tools for OS/390

includes the following workstation-based tools to increase your productivity and

code quality:

* A Performance Analyzer to help you analyze, understand, and tune your C and
C++ applications for improved performance

» A Distributed Debugger that allows you to debug C or C++ programs from the
convenience of the workstation

» A workstation-based editor to improve the productivity of your C and C++ source
entry

» Advanced online help, with full text search and hypertext topics as well as
printable, viewable, and searchable Portable Document Format (PDF) documents

In addition, IBM C/C++ Productivity Tools for OS/390 includes the following host
components:

* Debug Tool
* Host Performance Analyzer

Use the Performance Analyzer on your workstation to graphically display and
analyze a profile of the execution of your host z/OS C or C++ application. Use this
information to time and tune your code so that you can increase the performance of
your application.

Use the Distributed Debugger to debug your z/OS C or C++ application remotely
from your workstation. Set a break point with the simple click of the mouse. Use the
windowing capabilities of your workstation to view multiple segments of your source
and your storage, while monitoring a variable at the same time.

Use the workstation-based editor to quickly develop C and C++ application code
that runs on z/OS. Context-sensitive help information is available to you when you
need it.

References to Performance Analyzer in this document refer to the IBM OS/390
Performance Analyzer included in the C/C++ Productivity Tools for OS/390 product.

z/OS Language Environment

20

z/0OS C/C++ exploits the C/C++ run-time environment and library of run-time
services available with z/OS Language Environment (formerly OS/390 Language
Environment, Language Environment for MVS™ & VM, Language Environment/370
and LE/370).

z/OS Language Environment consists of four language-specific run-time libraries,
and Base Routines and Common Services, as shown below. z/OS Language

z/OS V1R4.0 C/C++ Programming Guide

Environment establishes a common run-time environment and common run-time
services for language products, user programs, and other products.

C/C++
Language
Specific
Library

COBOL
Language
Specific
Library

PL/I
Language
Specific
Library

FORTRAN
Language
Specific
Library

Language Environment Base Routines and Common Services

Figure 1. Libraries in z/OS Language Environment

The common execution environment is composed of data items and services that
are included in library routines available to an application that runs in the
environment. The z/OS Language Environment provides a variety of services:

» Services that satisfy basic requirements common to most applications. These
include support for the initialization and termination of applications, allocation of
storage, interlanguage communication (ILC), and condition handling.

» Extended services that are often needed by applications. z/OS C/C++ contains
these functions within a library of callable routines, and include interfaces to
operating system functions and a variety of other commonly used functions.

* Run-time options that help in the execution, performance, and diagnosis of your
application.

» Access to operating system services; z/OS UNIX services are available to an
application programmer or program through the z/OS C/C++ language bindings.

* Access to language-specific library routines, such as the z/OS C/C++ library
functions.

Note: The z/OS Language Environment runtime option TRAP(ON) should be set
when using z/OS C/C++. Refer to the |z/0S Language Environment
[Programming Reference for details on the z/OS Language Environment
runtime options.

z/OS Language Environment downward compatibility

z/OS Language Environment provides downward compatibility support. Assuming
that you have met the required programming guidelines and restrictions, described
in the [z/0S Language Environment Programming Guidg, this support enables you
to develop applications on higher release levels of z/OS for use on platforms that
are running lower release levels of z/OS or 0S/390. In C and C++, downward
compatibility support is provided through the C/C++ TARGET compiler option. See
[z/0S C/C++ User’s Guidg for details on this compiler option.

For example, a company may use z/OS V1R4 with Language Environment on a
development system where applications are coded, link-edited, and tested, while
using any supported lower release of OS/390 or z/OS Language Environment on
their production systems where the finished application modules are used.

Chapter 2. About IBM z/OS C/C++ 21

Downward compatibility support is not the roll-back of new function to prior releases
of the operating system. Applications developed that exploit the downward
compatibility support must not use any Language Environment function that is
unavailable on the lower release of OS/390 or z/OS where the application will be
used.

The downward compatibility support includes toleration PTFs for lower releases of
0S/390 or z/OS to assist in diagnosing applications that do not meet the
programming requirements for this support. (Specific PTF numbers can be found in
the PSP buckets.)

The downward compatibility support provided by z/OS Language Environment and
by the toleration PTFs does not change Language Environment's upward
compatibility. That is, applications coded and link-edited with one release of OS/390
or z/OS Language Environment will continue to run on later releases of OS/390 or
z/OS Language Environment without the need to recompile or re-link edit the
application, independent of the downward compatibility support.

Downward compatibility is supported in earlier releases of OS/390 C/C++ (from
Version 2 Release 6), but in OS/390 V2R6, the user is required to copy header files
and link-edit SYSLIB data sets from the deployment release of OS/390. Starting with
0S/390 Version 2 Release 10, the current level header files and SYSLIB can be
used (the user no longer has to copy header files and SYSLIB data sets from the
deployment release).

About prelinking, linking, and binding

22

When describing the process to build an application, this document refers to the
bind step.

Normally the Program Management Binder is used to perform the bind step.
However, in many cases the prelink and link steps can be used in place of the bind
step. When they cannot be substituted, and the Program Management binder alone
must be used, it will be stated. For more information on the bind, prelink, and link
steps, refer to|z/0OS C/C++ User’s Guideg

The terms bind and link have multiple meanings.
» With respect to building an application:

In both instances, the program management binder is performing the actual

processing of converting the object file(s) into the application executable module.

Obiject files with longname symbols, reentrant writable static symbols, and

DLL-style function calls require additional processing to build global data for the

application.

The term link refers to the case where the binder does not perform this additional

processing, due to one of the following:

— The processing is not required, because none of the object files in the
application use constructed reentrancy, use long names, are DLL or are C++.

— The processing is handled by executing the prelinker step before running the
binder.

The term bind refers to the case where the binder is required to perform this
processing.

» With respect to executing code in an application:

z/OS V1R4.0 C/C++ Programming Guide

The Tinkage definition refers to the program call linkage between program
functions and methods. This includes the passing of control and parameters.
Refer to [C/C++ Language Referenced for more information on linkage
specification.

Some platforms have a single linkage convention. S/390 has a number of linkage
conventions, including standard operating system linkage, Extra Performance
Linkage (XPLINK), and different non-XPLINK linkage conventions for C and C++.

Notes on the prelinking process

Note that you cannot use the prelinker if you are using the XPLINK or GOFF compiler
options. Also, IBM recommends using the binder without the prelinker whenever
possible.

Prior to OS/390 V2R4 C/C++, the [z/0S C/C++ User’s Guidg showed how to use the
prelinker and linkage editor. Sections throughout the book discussed concepts of
prelinking and linking. The prelinker was designed to process long names and
support constructed reentrancy in earlier versions of the C complier on the MVS
and OS/390 operating systems. The prelinker, shipped with the z/OS C/C++
run-time library, provides output that is compatible with the linkage editor, that is
shipped with the binder.

The binder is designed to include the function of the prelinker, the linkage editor, the
loader, and a number of APIs to manipulate the program object. Thus, the binder is
a superset of the linkage editor. Its functionality provides a high level of compatibility
with the prelinker and linkage editor, but provides additional functionality in some
areas. Generally, the terms binding and linking are interchangeable. For more
information on the compatibility between the binder, and the linker and prelinker,
see [z/0S DFSMS Program Management]

Updates to the prelinking, linkage-editing, and loading functions that are performed
by the binder are delivered through the binder. If you use the prelinker shipped with
the z/OS C/C++ run-time library and the linkage editor (supplied through the binder)
you have to apply the latest maintenance for the run-time library as well as the
binder.

If you still need to use the prelinker and linkage editor, see |[z/0S C/C++ User’s|

(Guidd

File format considerations

You can use the binder in place of the prelinker and linkage editor but there are
exceptions, which are file format considerations. For further information, on when
you cannot use the binder, see the chapter about binding z/OS C/C++ programs in
the [z/0S C/C++ User’s Guidel

The Program Management binder

The binder provided with z/OS combines the object modules, load modules, and
program objects comprising an application. It produces a single z/OS output
program object or load module that you can load for execution. The binder supports
all C and C++ code, provided that you store the output program in a PDSE
(Partitioned Data Set Extended) member or an HFS file.

If you cannot use a PDSE member or HFS file, and your program contains C++
code, or C code that is compiled with any of the RENT, LONGNAME, DLL or IPA compiler

Chapter 2. About IBM z/OS C/C++ 23

options, you must use the prelinker. C and C++ code compiled with the GOFF or
XPLINK compiler options cannot be processed by the prelinker.

Using the binder without using the prelinker has the following advantages:
» Faster rebinds when recompiling and rebinding a few of your source files

* Rebinding at the single compile unit level of granularity (except when you use the
IPA compile-time option)
* Input of object modules, load modules, and program objects

* Improved long name support:
— Long names do not get converted into prelinker generated names
— Long names appear in the binder maps, enabling full cross-referencing
— Variables do not disappear after prelink
— Fewer steps in the process of producing your executable program

Using the binder without using the prelinker has the following disadvantage:

* Long name maximum symbol length:
— Long names currently processed by the binder are limited to 1024 characters.
The prelinker supports up to (32 K - 1) characters. IBM intends to bring the
binder limit in line with the prelinker in a future release.

The prelinker provided with z/OS Language Environment combines the object
modules comprising a z/OS C/C++ application and produces a single object
module. You can link-edit the object module into a load module (which is stored in a
PDS), or bind it into a load module or a program object (which is stored in a PDS,
PDSE, or HFS file).

Note: For further information on the binder, refer to the DFSMS home page at
http://www.ibm.com/storage/software/sms/smshome.htm.

z/OS UNIX System Services (z/OS UNIX)

24

z/OS UNIX provides capabilities under z/OS to make it easier to implement or port
applications in an open, distributed environment. z/OS UNIX Services are available
to z/OS C/C++ application programs through the C/C++ language bindings available
with z/OS Language Environment.

Together, the zZ/OS UNIX System Services, z/OS Language Environment, and z/OS
C/C++ compilers provide an application programming interface that supports
industry standards.

z/0OS UNIX provides support for both existing z/OS applications and new z/OS
UNIX applications through the following:

* C programming language support as defined by ISO C
» C++ programming language support as defined by ISO C++

* C language bindings as defined in the IEEE 1003.1 and 1003.2 standards;
subsets of the draft 1003.1a and 1003.4a standards; X/Open CAE Specification:
System Interfaces and Headers, Issue 4, Version 2, which provides standard
interfaces for better source code portability with other conforming systems; and
X/Open CAE Specification, Network Services, Issue 4, which defines the X/Open
UNIX descriptions of sockets and X/Open Transport Interface (XTI)

» z/0OS UNIX Extensions that provide z/OS-specific support beyond the defined
standards

e The z/OS UNIX Shell and Utilities feature, which provides:

z/OS V1R4.0 C/C++ Programming Guide

— A shell, based on the Korn Shell and compatible with the Bourne Shell
— A shell, tcsh, based on the C shell, csh

— Tools and utilities that support the X/Open Single UNIX Specification, also
known as X/Open Portability Guide (XPG) Version 4, Issue 2, and provide
z/OS support. The following is a partial list of utilities that are included:

ar

BPXBATCH

c89

dbx

gencat

iconv

lex

localedef

make

yacc

Creates and maintains library archives

Allows you to submit batch jobs that run shell commands,
scripts, or z/OS C/C++ executable files in HFS files from a
shell session

Compiles, assembles, and binds z/OS UNIX C/C++ and
assembler applications

Provides an environment to debug and run programs

Merges the message text source files message file (usually
*.msg) into a formatted message catalog file (usually *.cat)

Converts characters from one code set to another

Automatically writes large parts of a lexical analyzer based on
a description that is supplied by the programmer

Creates a compiled locale object

Helps you manage projects containing a set of interdependent
files, such as a program with many z/OS source and object
files, keeping all such files up to date with one another

Allows you to write compilers and other programs that parse
input according to strict grammar rules

— Support for other utilities such as:

c++

mkcatdefs

runcat

dspcat
dspmsg

Compiles, assembles, and binds z/OS UNIX C++ applications

Preprocesses a message source file for input to the gencat
utility

Invokes mkcatdefs and pipes the message catalog source
data (the output from mkcatdefs) to gencat

Displays all or part of a message catalog

Displays a selected message from a message catalog

The z/OS UNIX Debugger feature, which provides the dbx interactive symbolic
debugger for z/OS UNIX applications

Access to a hierarchical file system (HFS), with support for the POSIX.1 and

XPG4 standards

z/0OS C/C++ /O routines, which support using HFS files, standard z/OS data
sets, or a mixture of both

Application threads (with support for a subset of POSIX.4a)
Support for z/OS C/C++ DLLs

z/OS UNIX offers program portability across multivendor operating systems, with
support for POSIX.1, POSIX.1a (draft 6), POSIX.2, POSIX.4a (draft 6), and
XPG4.2.

For application developers who have worked with other UNIX environments, the
z/OS UNIX Shell and Utilities are a familiar environment for C/C++ application
development. If you are familiar with existing MVS development environments, you

Chapter 2. About IBM z/OS C/C++ 25

may find that the z/OS UNIX environment can enhance your productivity. Refer to
[z/0S UNIX System Services User’s Guide|for more information on the Shell and
Utilities.

z/OS C/C++ Applications with z/OS UNIX C/C++ functions

All z/OS UNIX C functions are available at all times. In some situations, you must
specify the POSIX(ON) run-time option. This is required for the POSIX.4a threading
functions, and the system() and signal handling functions where the behavior is
different between POSIX/XPG4 and 1SO. Refer to [z/0S C/C++ Run-Time Library|
for more information about requirements for each function.

You can invoke a z/OS C/C++ program that uses z/OS UNIX C functions using the
following methods:

* Directly from a shell.

* From another program, or from a shell, using one of the exec family of functions,
or the BPXBATCH utility from TSO or MVS batch.

* Using the POSIX system() call.

» Directly through TSO or MVS batch without the use of the intermediate
BPXBATCH utility. In some cases, you may require the POSIX(ON) run-time
option.

Input and output

I/O interfaces

The C/C++ run-time library that supports the z/OS C/C++ compiler supports
different input and output (I/O) interfaces, file types, and access methods. The
Standard C++ Library provides additional support.

The C/C++ run-time library supports the following 1/O interfaces:

C Stream 1/O
This is the default and the ISO-defined I/O method. This method processes
all input and output on a per-character basis.

Record I/O
The library can also process your input and output by record. A record is a
set of data that is treated as a unit. It can also process VSAM data sets by
record. Record I/O is a z/OS C/C++ extension to the ISO standard.

TCP/IP Sockets 1/0
z/OS UNIX provides support for an enhanced version of an
industry-accepted protocol for client/server communication that is known as
sockets. A set of C language functions provides support for z/OS UNIX
sockets. z/OS UNIX sockets correspond closely to the sockets used by
UNIX applications that use the Berkeley Software Distribution (BSD) 4.3
standard (also known as OE sockets). The slightly different interface of the
X/Open CAE Specification, Networking Services, Issue 4, is supplied as an
additional choice. This interface is known as X/Open Sockets.

The z/OS UNIX socket application program interface (API) provides support
for both UNIX domain sockets and Internet domain sockets. UNIX domain
sockets, or local sockets, allow interprocess communication within z/OS,
independent of TCP/IP. Local sockets behave like traditional UNIX sockets

26 z/0S V1R4.0 C/C++ Programming Guide

File types

and allow processes to communicate with one another on a single system.
With Internet sockets, application programs can communicate with each
other in the network using TCP/IP.

In addition, the Standard C++ Library provides stream classes, which support
formatted 1/0 in C++. You can code sophisticated 1/O statements easily and clearly,
and define input and output for your own data types. This helps improve the
maintainability of programs that use input and output.

In addition to conventional files, such as sequential files and partitioned data sets,
the C/C++ run-time library supports the following file types:

Virtual Storage Access Method (VSAM) Data Sets

z/OS C/C++ has native support for three types of VSAM data organization:

* Key-sequenced data sets (KSDS). Use KSDS to access a record through
a key within the record. A key is one or more consecutive characters that
are taken from a data record that identifies the record.

* Entry-sequenced data sets (ESDS). Use ESDS to access data in the
order it was created (or in reverse order).
* Relative-record data sets (RRDS). Use RRDS for data in which each

item has a particular number (for example, a telephone system where a
record is associated with each telephone number).

For more information on how to perform 1/O operations on these VSAM file
types, see [Chapter 13, “Performing VSAM I/O Operations” on page 167|

Hierarchical File System Files

z/OS C/C++ recognizes Hierarchical File System (HFS) file names. The
name specified on the fopen() or freopen() call has to conform to certain
rules (described in[z/OS C/C++ Programming Guidd). You can create
regular HFS files, special character HFS files, or FIFO HFS files. You can
also create links or directories.

Memory Files

Memory files are temporary files that reside in memory. For improved
performance, you can direct input and output to memory files rather than to
devices. Since memory files reside in main storage and only exist while the
program is executing, you primarily use them as work files. You can access
memory files across load modules through calls to non-POSIX system()
and C fetch(); they exist for the life of the root program. Standard streams
can be redirected to memory files on a non-POSIX system() call using
command line redirection.

Hiperspace " Expanded Storage

Large memory files can be placed in Hiperspace expanded storage to free
up some of your home address space for other uses. Hiperspace expanded
storage or high performance space is a range of up to 2 GB of contiguous
virtual storage space. A program can use this storage as a buffer

(1 gigabyte(GB) = 23° bytes).

Additional 1/O features

z/OS C/C++ provides additional 1/0 support through the following features:

Chapter 2. About IBM z/OS C/C++ 27

» Large file support, which enables 1/O to and from hierarchical file system (HFS)
files that are larger than 2 GB (for more information on large file support in the
Standard C++ Library, see z/0S C/C++ V1R2 Standard C++ Library Features at
the following Web site:

http://www.ibm.com/software/ad/c390/czos/czosdocs.html
» User error handling for serious 1/O failures (SIGIOERR)

* Improved sequential data access performance through enablement of the
DFSMS/MVS® support for 31-bit sequential data buffers and sequential data
striping on extended format data sets

* Full support of PDSEs on z/OS (including support for multiple members opened
for write)

* Overlapped 1/0O support under z/OS (NCP, BUFNO)
* Multibyte character I/O functions
» Fixed-point (packed) decimal data type support in formatted I/O functions

» Support for multiple volume data sets that span more than one volume of DASD
or tape

» Support for Generation Data Group 1/0

The System Programming C facility

The System Programming C (SPC) facility allows you to build applications that
require no dynamic loading of z/OS Language Environment libraries. It also allows
you to tailor your application for better utilization of the the low-level services
available on your operating system. SPC offers a number of advantages:

* You can develop applications that can be executed in a customized environment
rather than with z/OS Language Environment services. Note that if you do not
use z/OS Language Environment services, only some built-in functions and a
limited set of C/C++ run-time library functions are available to you.

* You can substitute the z/OS C language in place of assembler language when
writing system exit routines, by using the interfaces that are provided by SPC.

* SPC lets you develop applications featuring a user-controlled environment, in
which a z/OS C environment is created once and used repeatedly for C function
execution from other languages.

* You can utilize co-routines, by using a two-stack model to write application
service routines. In this model, the application calls on the service routine to
perform services independent of the user. The application is then suspended
when control is returned to the user application.

Interaction with other IBM products

28

When you use z/OS C/C++, you can write programs that utilize the power of other
IBM products and subsystems:

* Cross System Product (CSP)

Cross System Product/Application Development (CSP/AD) is an application
generator that provides ways to interactively define, test, and generate
application programs to improve productivity in application development. Cross
System Product/Application Execution (CSP/AE) takes the generated program
and executes it in a production environment.

Note: You cannot compile CSP applications with the z/OS C++ compiler.

However, your z/OS C++ program can use interlanguage calls (ILC) to call
z/OS C programs that access CSP.

z/OS V1R4.0 C/C++ Programming Guide

* Customer Information Control System (CICS)

You can use the CICS/ESA Command-Level Interface to write C/C++ application
programs. The CICS Command-Level Interface provides data, job, and task
management facilities that are normally provided by the operating system.

Note: Code preprocessed with CICS/ESA versions prior to V4R1 is not
supported for z/OS C++ applications. z/OS C++ code preprocessed on
CICS/ESA V4R1 cannot run under CICS/ESA V3R3.

+ DB2 Universal Database™ (UDB) for z/OS

DB2 programs manage data that is stored in relational databases. You can
access the data by using a structured set of queries that are written in Structured
Query Language (SQL).

A DB2 program uses SQL statements that are embedded in the application
program. The SQL translator (DB2 preprocessor) translates the embedded SQL
into host language statements, which are then compiled by the z/OS C/C++
compilers.

Note: Alternatively, use the SQL compiler option to compile a DB2 program
without using the DB2 preprocessor.

The DB2 program processes requests, then returns control to the application

program.

* Data Window Services (DWS)

The Data Window Services (DWS) part of the Callable Services Library allows
your C or C++ program to manipulate temporary data objects that are known as
TEMPSPACE and VSAM linear data sets.

* Information Management System (IMS)

The Information Management System/Enterprise Systems Architecture (IMS/ESA)
product provides support for hierarchical databases.

* Interactive System Productivity Facility (ISPF)

z/OS C/C++ provides access to the Interactive System Productivity Facility
(ISPF) Dialog Management Services. A dialog is the interaction between a user
and a computer. The dialog interface contains display, variable, message, and
dialog services as well as other facilities that are used to write interactive
applications.

* Graphical Data Display Manager (GDDM)

GDDM provides a comprehensive set of functions to display and print
applications most effectively:

— A windowing system that the user can tailor to display selected information
— Support for presentation and keyboard interaction
— Comprehensive graphics support
— Fonts (including support for the double-byte character set)
— Business image support
— Saving and restoring graphic pictures
— Support for many types of display terminals, printers, and plotters
* Query Management Facility (QMF)

z/OS C supports the Query Management Facility (QMF), a query and report
writing facility, which allows you to write applications through a callable interface.
You can create applications to perform a variety of tasks, such as data entry,
query building, administration aids, and report analysis.

» z/OS Java Support

Chapter 2. About IBM z/OS C/C++ 29

The Java language supports the Java Native Interface (JNI) for making calls to

and from C/C++. These calls do not use ILC support but rather the Java defined
interface JNI. Java code, which has been compiled using the High Performance
Compiler for Java (HPCJ), will support the NI interface. Calls to C or C++ do not
distinguish between compiled Java and interpreted Java.

Additional features of z/OS C/C++

Feature

Description

long long Data Type

The z/OS C/C++ compiler supports long long as a native data type when the compiler
option LANGLVL (LONGLONG) is turned on. This option is turned on by default by the
compiler option LANGLVL (EXTENDED) .

Multibyte Character Support

z/0OS C/C++ supports multibyte characters for those national languages such as
Japanese whose characters cannot be represented by a single byte.

Wide Character Support

Multibyte characters can be normalized by z/OS C library functions and encoded in
units of one length. These normalized characters are called wide characters.
Conversions between multibyte and wide characters can be performed by string
conversion functions such as wcstombs (), mbstowcs (), wesrtombs (), and mbsrtowcs(),
as well as the family of wide-character I/O functions. Wide-character data can be
represented by the wchar_t data type.

Extended Precision
Floating-Point Numbers

z/0OS C/C++ provides three S/390 floating-point number data types: single precision (32
bits), declared as float; double precision (64 bits), declared as double; and extended
precision (128 bits), declared as Tong double.

Extended precision floating-point numbers give greater accuracy to mathematical
calculations.

As of Release 6, z/0OS C/C++ also supports IEEE 754 floating-point representation. By
default, float, double, and Tong double values are represented in IBM S/390 floating
point format. However, the IEEE 754 floating-point representation is used if you specify
the FLOAT(IEEE754) compile option. For details on this support, see the description of
the FLOAT option in|z/OS C/C++ User’s Guide]

Command Line Redirection

You can redirect the standard streams stdin, stderr, and stdout from the command
line or when calling programs using the system() function.

National Language Support

z/OS C/C++ provides message text in either American English or Japanese. You can
dynamically switch between these two languages.

Locale Definition Support

z/OS C/C++ provides a locale definition utility that supports the creation of separate
files of internationalization data, or locales. Locales can be used at run time to
customize the behavior of an application to national language, culture, and coded
character set (code page) requirements. Locale-sensitive library functions, such as
isdigit(), use this information.

Coded Character Set (Code
Page) Support

The z/OS C/C++ compiler can compile C/C++ source written in different EBCDIC code
pages. In addition, the iconv utility converts data or source from one code page to
another.

Selected Built-in Library
Functions

Selected library functions, such as string and character functions, are built into the
compiler to improve performance execution. Built-in functions are compiled into the
executable, and no calls to the library are generated.

Multi-threading

Threads are efficient in applications that allow them to take advantage of any
underlying parallelism available in the host environment. This underlying parallelism in
the host can be exploited either by forking a process and creating a new address
space, or by using multiple threads within a single process. For more information, refer
to the [Chapter 23, “Using Threads in z/OS UNIX Applications” on page 329

30

z/OS V1R4.0 C/C++ Programming Guide

Feature

Description

Multitasking Facility (MTF)

Multitasking is a mode of operation where your program performs two or more tasks at
the same time. z/OS C provides a set of library functions that perform multitasking.
These functions are known as the Multitasking Facility (MTF). MTF uses the
multitasking capabilities of z/OS to allow a single z/OS C application program to use
more than one processor of a multiprocessing system simultaneously.

Note: XPLINK is not supported in an MTF environment. You can also use threads to
perform multitasking with or without XPLINK, as described in the [Chapter 23, “Using|
[Threads in z/OS UNIX Applications” on page 329

Packed Structures and
Unions

z/OS C provides support for packed structures and unions. Structures and unions may
be packed to reduce the storage requirements of an z/OS C program or to define
structures that are laid out according to COBOL or PL/I structure layout rules.

Fixed-point (Packed)
Decimal Data

z/OS C supports fixed-point (packed) decimal as a native data type for use in business
applications. The packed data type is similar to the COBOL data type COMP-3 or the PL/I
data type FIXED DEC, with up to 31 digits of precision.

The Application Support Class Library provides the Binary Coded Decimal Class for
C++ programs.

Long Name Support

For portability, external names can be mixed case and up to 1024 characters in length.
For C++, the limit applies to the mangled version of the name.

System Calls

You can call commands or executable modules using the system() function under
z/0OS, z/OS UNIX, and TSO. You can also use the system() function to call EXECs on
z/OS and TSO, or Shell scripts using z/OS UNIX.

Exploitation of ESA

Support for z/OS, IMS/ESA, Hiperspace expanded storage, and CICS/ESA allows you
to exploit the features of the ESA.

Exploitation of hardware

Use the ARCHITECTURE compiler option to select the minimum level of machine
architecture on which your program will run. ARCH(2) instructs the compiler to generate
faster instruction sequences that are available only on newer machines. ARCH(3) also
generates these faster instruction sequences and enables support for IEEE 754 Binary
Floating-Point instructions. Code compiled with ARCH(2) runs on G2, G3, G4, and 2003
processors and code compiled with ARCH(3) runs on a G5 or G6 processor, and
follow-on models.

Use the TUNE compiler option to optimize your application for a specific machine
architecture. TUNE impacts performance only; it does not impact the processor model on
which you will be able to run your application. TUNE(3) optimizes your application for the
newer G4, G5, and G6 processors. TUNE(2) optimizes your application for other
architectures. For more information, refer to the ARCHITECTURE and TUNE compiler
information in|z/0S C/C++ User’s Guide|

Built-in Functions for
Floating-Point and Other
Hardware Instructions

Use built-in functions for floating-point and other hardware instructions that are
otherwise inaccessible to C/C++ programs. Refer to[Appendix I, “Using Built-In|
|[Functions” on page 881}

Chapter 2. About IBM z/OS Cc/C++ 31

32 2/0S V1R4.0 C/C++ Programming Guide

Part 2. Input and Output

This part describes the models of input and output available with IBM z/OS C/C++.

The C run-time functions are available if the corresponding C header files are used.
C I/O can be used by C++ when the C run-time library functions are used.

The following references provide a complete description and examples of 1/O
streams:

« [Chapter 3, “Introduction to C and C++ Input and Output” on page 35
[Chapter 4, “Understanding Models of C I/O” on page 37|

« [Chapter 5, “Using the Standard C++ Library I/O Stream Classes” on page 49
» |Chapter 6, “Opening Files” on page 53
» |Chapter 7, “Buffering of C Streams” on page 73|
* |Chapter 8, “Using ASA Text Files” on page 75
* |Chapter 9, “z/OS C Support for the Double-Byte Character Set” on page 79|

* |Chapter 10, “Using C and C++ Standard Streams and Redirection” on page 87|
* |Chapter 11, “Performing OS 1/O Operations” on page 107
* [Chapter 12, “Performing UNIX File System I/O Operations” on page 143|
» |Chapter 13, “Performing VSAM 1/O Operations” on page 167
* |Chapter 14, “Performing Terminal I1/O Operations” on page 205|

« [Chapter 15, “Performing Memory File and Hiperspace I/O Operations” on|
page 215|

[Chapter 16, “Performing CICS I/O Operations” on page 229

[Chapter 17, “Language Environment Message File Operations” on page 231
[Chapter 18, “Debugging 1/0 Programs” on page 233

© Copyright IBM Corp. 1996, 2002 33

34 2/0S V1R4.0 C/C++ Programming Guide

Chapter 3. Introduction to C and C++ Input and Output

This chapter provides you with a general introduction to C and C++ input and
output (I/0). Three types of C and C++ input and output are discussed in this
chapter:

* [text streams
* |pinary streams
* Jrecord /O

Types of C and C++ Input and Output

Text Streams

A stream is a flow of data elements that are transmitted or intended for transmission
in a defined format. A record is a set of data elements treated as a unit, and a file
(or data set) is a nhamed set of records that is stored or processed as a unit.

The z/OS C/C++ compiler supports three types of input and output: text streams,
binary streams, and record I/O. Text and binary streams are both ANSI standards;
record I/O is an extension for z/OS C. Record I/O is not supported by either the
USL I/O Stream Class Library or the Standard C++ I/O stream classes.

Note: If you have written data in one of these three types and try to read it as
another type (for example, reading a binary file in text mode), you may not
get the behavior that you expect.

Text streams contain printable characters and, depending on the type of file, control
characters. Text streams are organized into lines. Each line ends with a control
character, usually a new-line. The last record in a text file may or may not end with
a control character, depending on what kind of file you are using. Text files
recognize the following control characters:

\a Alarm.
\b Backspace.
\f Form feed.

\n New-line.

\r Carriage return.

\t Horizontal tab character.
\v Vertical tab character.

\x0E DBCS shift-out character. Indicates the beginning of a DBCS string, if
>MB_CUR_MAX 1 in the definition of the locale that is in effect. For more
information about MBCURMAX, see [Chapter 9, “z/OS C Support for the|
[Double-Byte Character Set” on page 79

\x0F DBCS shift-in character. Indicates the end of a DBCS string, if
>MB_CUR_MAX 1 in the definition of the locale that is in effect. For more
information about MBCURMAX, see [Chapter 9, “z/OS C Support for the]
[Double-Byte Character Set” on page 79

Control characters behave differently in terminal files (see |[Chapter 14, “Performing
Terminal /0O Operations” on page 205) and ASA files (see [Chapter 8, “Using AS
Text Files” on page 75).

© Copyright IBM Corp. 1996, 2002 35

Binary Streams

Record 1/0

Binary streams contain a sequence of bytes. For binary streams, the library does
not translate any characters on input or output. It treats them as a continuous
stream of bytes, and ignores any record boundaries. When data is written out to a
record-oriented file, it fills one record before it starts filling the next. HFS streams
follow the binary model, regardless of whether they are opened for text, binary, or
record I/O. You can simulate record I/O by using new-line characters as record
boundaries.

Record I/O is an extension to the ISO standard. For files opened in recordz/OS
C/C++ format, reads and writes one record at a time. If you try to write more data to
a record than the record can hold, the data is truncated. Forz/OS

C/C++fread() fwrite() record I/O, allows only the use of and to
readfprintf () fscanf()getc() and write to files. Any other functions (such as , ,
,putc() and) will fail. For record-oriented files, records do not change size when
you update them. If the new record has fewer characters than the original record,
the new data fills the first n characters, where n is the number of characters of the
new data. The record will remain the same size, and the old characters (those after
n) are left unchanged. A subsequent update begins at the next boundary. For
example, if you have the string ""abcdefgh:

z/OS C/C++ record I/O is binary. That is, it does not interpret any of the data in a
record file and therefore does not recognize control characters. The only exception
is for file categories that do not support records, suchz/OS C/C++ as the
Hierarchical File System (also known as POSIX I/O). For these files, uses new-line
characters as record boundaries.

36 z/0S V1R4.0 C/C++ Programming Guide

Chapter 4. Understanding Models of C 1/O

This chapter describes z/OS C/C++ support for the major models of C 1/O:
* The record model
* The byte stream model

The next chapter (Chapter 5, “Using the Standard C++ Library /0O Stream Classes’|
|0n page 49[) describes a third major model, the object-oriented model.

The Record Model for C I/O

Almost all the kinds of I/O that z/OS C/C++ supports use this model. The only ones
that do not are HFS, memory file, and Hiperspace 1/0.

The record model consists of the following:
* A record, which is the unit of data transmitted to and from a program.

e A block, which is the unit of data transmitted to and from a device. Each block
may contain one or more records.

In the record model of 1/O, records and blocks have the following attributes:

RECFM Specifies the format of the data or how the data is organized on the
physical device.

LRECL Specifies the length of logical records (as opposed to physical
ones). Variable length records include a count field that is normally
not available to the programmer.

BLKSIZE Specifies the length of physical records (blocks on the physical
device).

Record Formats

Use the RECFM attribute to specify the record format. The records in a file using the
record model have one of the following formats:

» Fixed-length (F)
» Variable-length (V)
* Undefined-length (U)

Note: z/OS C/C++ does not support Format-D files.

These formats support the following additional options for RECFM:

A Specifies that the file contains ASA control characters.

B Specifies that a file is blocked. A blocked file can have more than one
record in each block.

M Specifies that the file contains machine control characters.

S Specifies that a file is either in standard format (if it is fixed) or spanned (if it

is variable). In a standard file, every block must be full before another one
starts. In a spanned file, a record can be longer than a block. If it is, the
record is divided into segments and stored in consecutive blocks.

The record formats and the additional options associated with them are discussed
in the following sections.

© Copyright IBM Corp. 1996, 2002 37

38

Not all the 1/0O categories (listed in[Table 5 on page 55) support all of these
attributes. Depending on what category you are using, z/OS C/C++ ignores or
simulates attributes that do not apply. For more information, on the record formats
and the options supported for each 1/0 category, see|Chapter 6, “Opening Files” on|

Fixed-Format Records
Record Format (RECFM)

These are the formats you can specify for RECFM if you want to use a fixed-format
file:

F Fixed-length, unblocked

FA Fixed-length, ASA print-control characters
FB Fixed-length, blocked

FM Fixed-length, machine print-control codes
FS Fixed-length, unblocked, standard

FBA Fixed-length, blocked, ASA print-control characters

FBM Fixed-length, blocked, machine print-control codes

FBS Fixed-length, blocked, standard

FSA Fixed-length, unblocked, standard, ASA print-control characters

FSM Fixed-length, unblocked, standard, machine print-control codes

FBSM Fixed-length, blocked, standard, machine print-control codes

FBSA Fixed-length, blocked, standard, ASA print-control characters.

Note: In general, all references in this guide to files with record format FB also refer

to FBM and FBA. The specific behavior of ASA files (such as FBA) is explained
in [Chapter 8, “Using ASA Text Files” on page 75}

Attention: z/OS C/C++ distinguishes between FB and FBS formats, because an FBS
file contains no embedded short blocks (the last block may be short).
FBS files give you much better performance. The use of standard (S)
blocks optimizes the sequential processing of a file on a direct-access
device. With a standard format file, the file pointer can be directly
repositioned by calculating the exact position in that file of a given
record rather than reading through the entire file.

If the records are FB, some blocks may contain fewer records than others, as shown
in [Figure 2 on page 39|

z/OS V1R4.0 C/C++ Programming Guide

F-Format FB-Format FBS-Format

Block Block
| | | |
Record I Record Record Record Record Record Record
Record I Record Record I Record Record Record
Record I Record Record Record Record Record Record
Record I Record Record I Record Record Record
=

Record Record Record Record Record Record I

Figure 2. Blocking Fixed-Length Records

Mapping C Types to Fixed Format: ~ The following formats are discussed in this
section:

Binary

Text (non-ASA)
Text (ASA)
Record

Binary
On binary input and output, data flows over record boundaries. Because all
fixed-format records must be full, z/ZOS C/C++ completes any incomplete
output record by padding it with nulls (*\0') when you close the file.
Incomplete blocks are not padded. On input, nulls are visible and are
treated as data.

For example, if record length is set to 10 and you are writing 25 characters
of data, z/OS C/C++ will write two full records, each containing 10
characters, and then an incomplete record containing 5 characters. If you
then close the file, z/OS C/C++ will complete the last record with 5 nulls. If
you open the file for reading, z/OS C/C++ will read the records in order.
z/OS C/C++ will not strip off the nulls at the end of the last record.

Text (non-ASA)
When writing in a text stream, you indicate the end of the data for a record
by writing a new-line ('\n') or carriage return (‘\r') to the stream. In a
fixed-format file, the new-line or carriage return will not appear in the
external file, and the record will be padded with blanks from the position of
the new-line or carriage return to LRECL. (A carriage return is considered the
same as a new-line because the '\r' is not written to the file.)

Chapter 4. Understanding Models of C /0 39

40

For example, if you have set LRECL to 10, and you write the string "ABC\n" to
a fixed-format text file, z/OS C/C++ will write this to the physical file:

A|B|C

A record containing only a new-line is written to the file as LRECL blanks.

When reading in a text stream, the 1/O functions place a new-line character
(\n") in the buffer to indicate the end of data for the record. In a fixed-format
file, the new-line character is placed at the start of the blank padding at the
end of the data.

For example, if your file position points to the start of the following record in
a fixed-format file opened as a text stream

A|lB|C

file pointer

and you call fgets() to read the line of text, fgets() places the string
"ABC\n" in your input buffer.

Attention: Any blanks written immediately before a new-line or carriage
return will be considered blank padding when the record is read
back from the file. You cannot change the padding character.

When you are updating a fixed-format file opened as a text stream, you can
update the amount of data in a record. The maximum length of the updated
data is LRECL bytes plus the new-line character; the minimum length is zero
data bytes plus the new-line character. Writing new data into an existing
record replaces the old data. If the new data is longer or shorter than the
old data, the number of blank padding characters in the record in the
external file is changed. When you extend a record, thereby writing over the
old new-line, there will be a new-line character implied after the new
characters. For instance, if you were to overwrite the record mentioned in
the previous example with the string "123456", the records in the physical
file would then look like this:

file pointer

The blanks at the end of the record imply a new-line at position 7. You can
see this new-line by calling fflush() and then performing a read. The
implied new-line is the first character returned from this read.

A fixed record can hold only LRECL characters. If you try to write more than
that, z/OS C/C++ truncates the data unless you are using a standard

z/OS V1R4.0 C/C++ Programming Guide

stream or a terminal file. In this case, the output is split across multiple
records. If truncation occurs, z/OS C/C++ raises SIGIOERR and sets both
errno and the error flag.

Text (ASA)

For ASA files, the first character of each record is reserved for the ASA
control character that represents a new-line, a carriage return, or a form
feed. This control character represents what should happen before the
record is written.

Table 4. C Control to ASA Characters

C Control Character ASA Character Description

\n v skip one line

\n\n 0 skip two lines

\n\n\n - skip three lines

\f "1 new page

\r 4! overstrike
A control character that ends a logical record is represented at the
beginning of the following record in the external file. Since the ASA control
character is in the first byte of each record, a record can hold only LRECL - 1
bytes of data. As with non-ASA text files described above, z/OS C/C++
adds blank padding to complete any record shorter than LRECL - 1 when it
writes the record to the file. On input, z/OS C/C++ removes all trailing
blanks. For example, if LRECL is 10, and you enter the string:

\nABC\nDEF
the record in the physical file will look like this:
Al B|C
On input, this string is read as follows:
\nABC\nDEF

You can lengthen and shorten records the same way as you can for
non-ASA files. For more information about ASA, refer to|Chapter 8, “Using|
IASA Text Files” on page 75|

Record

As with fixed-format text files, a record can hold LRECL characters. Every
call to fwrite() is considered to be writing a full record. If you write fewer
than LRECL characters, z/OS C/C++ completes the record with enough nulls
to make it LRECL characters long. If you try to write more than that, z/OS
C/C++ truncates the data.

Variable-Format Records
In a file with variable-length records, each record may be a different length. The

variable length formats permit both variable-length records and variable-length
blocks. The first 4 bytes of each block are reserved for the Block Descriptor Word
(BDW); the first 4 bytes of each record are reserved for the Record Descriptor Word

Chapter 4. Understanding Models of C 110 41

42

(RDW), or, if you are using spanned files, the Segment Descriptor Word (SDW).
lllustrations of variable-length records are shown in|Figure 3 on page 43

Once you have set the LRECL for a variable-format file, you can write up to LRECL
minus 4 characters in each record. z/OS C/C++ does not let you see RDWS,
BDWs, or SDWs when you open a file as variable-format. To see the RDWSs or
SDWs and BDWs, open the variable file as undefined-format, as described in
fUndefined-Format Records” on page 44}

The value of LRECL must be greater than 4 to accommodate the RDW or SDW. The
value of BLKSIZE must be greater than or equal to the value of LRECL plus 4. You
should not use a BLKSIZE greater than LRECL plus 4 for an unblocked data set.
Doing so results in buffers that are larger than they need to be. The largest amount
of data that any one record can hold is LRECL bytes minus 4.

For striped data sets, a block is padded out to its full BLKSIZE. This makes
specifying an unnecessarily large BLKSIZE very inefficient.

Record Format (RECFM): You can specify the following formats for
variable-length records:

v Variable-length, unblocked

VA Variable-length, ASA print control characters, unblocked

VB Variable-length, blocked

VM Variable-length, machine print-control codes, unblocked

VS Variable-length, unblocked, spanned

VBA Variable-length, blocked, ASA print control characters

VBM Variable-length, blocked, machine print-control codes

VBS Variable-length, blocked, spanned

VSA Variable-length, spanned, ASA print control characters

VSM Variable-length, spanned, machine print-control codes

VBSA Variable-length, blocked, spanned, ASA print control characters
VBSM Variable-length, blocked, spanned, machine print-control codes
Note: In general, all references in this guide to files with record format VB also refer

to VBM and VBA. The specific behavior of ASA files (such as VBA) is explained
in [Chapter 8, “Using ASA Text Files” on page 75}

V-format signifies unblocked variable-length records. Each record is treated as a
block containing only one record.

VB-format signifies blocked variable-length records. Each block contains as many
complete records as it can accommodate.

Spanned Records: A spanned record is opened using both V and S in the format
specifier. A spanned record is a variable-length record in which the length of the
record can exceed the size of a block. If it does, the record is divided into segments
and accommodated in two or more consecutive blocks. The use of spanned records
allows you to select a block size, independent of record length, that will combine
optimum use of auxiliary storage with the maximum efficiency of transmission.

z/OS V1R4.0 C/C++ Programming Guide

VS-format specifies that each block contains only one record or segment of a
record. The first 4 bytes of a block describe the block control information. The
second 4 bytes contain record or segment control information, including an
indication of whether the record is complete or is a first, intermediate, or last
segment.

VBS-format differs from VS-format in that each block in VBS-format contains as many
complete records or segments as it can accommodate, while each block in
VS-format contains at most one record per block.

V-format:
C1|C2 Record 1 I Cc1|c2 Record 2 I c1|c2
VB-format:
| Block |
C1|C2 Record 1 c2 Record 2 C1|C2 Record 3
VS-format: [Spanned Record
Record 1 Record 2 Record 2
C1jc2 (entire) cilc2 (first segment) cilc2 (next segment)
VBS-format:
— Spanned Record |
Record 1 Record 2 Record 2
C1jc2 (entire) (first segment) cilc2 (last segment) c2 Record 3

C1: Block control information
C2: Record or segment control information

Figure 3. Variable-Length Records on z/0S

Mapping C Types to Variable Format:

Binary
On input and output, data flows over record boundaries. Any record will
hold up to LRECL minus 4 characters of data. If you try to write more than
that, your data will go to the next record, after the RDW or SDW. You will
not be able to see the descriptor words when you read the file.

Note: If you need to see the BDWs, RDWSs, or SDWSs, you can open and
read a V-format file as a U-format file. See [‘Undefined-Format|
[Records” on page 44] for more information.

z/0OS C/C++ never creates empty binary records for files opened in
V-format. See [‘Writing to Binary Files” on page 129 for more information. An
empty binary record is one that contains only an RDW, which is 4 bytes
long. On input, empty records are ignored.

Chapter 4. Understanding Models of C /0 43

44

Text (non-ASA)

Record boundaries are used in the physical file to represent the position of
the new-line character. You can indicate the end of a record by including a
new-line or carriage return character in your data. In variable-format files,
z/OS C/C++ treats the carriage return character as if it were a new-line.
z/OS C/C++ does not write either of these characters to the physical file;
instead, it creates a record boundary. When you read the file back,
boundaries are read as new-lines.

If a record only contains a new-line character, the default behavior of z/OS
C/C++ is to write a record containing a single blank to the file. Therefore,
the string " \n" is treated the same way as the string "\n"; both are read
back as "\n". All other blanks in your output are read back as is. Any empty
(zero-length) record is ignored on input. However, if the environment
variable _EDC_ZERO_RECLEN was set to Y at the time the file was opened, a
single new-line is written to the file as an empty record, and a single blank
represents " \n". On input, an empty record is treated as a single new-line
and is not ignored.

After a record has been written to a file, you cannot change its length. If
you try to shorten a logical record by writing a new, smaller amount of data
into it, the C /O library will add blank characters until the record is full.
Writing more data to a record than it can hold causes your data to be
truncated unless you are writing to a standard stream or a terminal file. In
this case, your output is split across multiple records. If truncation occurs,
z/OS C/C++ raises SIGIOERR and sets both errno and the error flag.

Note: If you did not explicitly set the EDC_ZERO RECLEN environment
variable when you opened the file, you can update a record that
contains a single blank to contain a non-blank character, thereby
lengthening the logical record from '\n' to 'x\n'), where x is the
non-blank character.

Text (ASA)

z/OS C/C++ treats variable-format ASA text files similarly to the way it treats
fixed-format ones. Empty records are always ignored in ASA variable-format
files; for a record to be recognized, it must contain at least one character as
the ASA control character.

For more information about ASA, refer to [Chapter 8, “Using ASA Text Files’|

Each call to fwrite() creates a record that must be shorter than or equal to
the size established by LRECL. If you try to write more than LRECL bytes on
one call to fwrite(), zZOS C/C++ will truncate your data. z/OS C/C++ never
creates empty records using record I/O. On input, empty records are
ignored unless you have set the EDC_ZERO RECLEN environment variable to
Y. In this case, empty records are treated as records with length 0.

If your application sets EDC_ZERO RECLEN to Y, bear in mind that fread()
returns back 0 bytes read, but does not set errno, and that both feof() and
ferror() return 0 as well.

Undefined-Format Records

Everything in an undefined-format file is treated as data, including control
characters and record boundaries. Blocks in undefined-format records are
variable-length; each block is considered a record.

z/OS V1R4.0 C/C++ Programming Guide

It is impossible to have an empty record. Whatever you specify for LRECL has no
effect on your data, but the value of LRECL must be less than or equal to the value
you specify for BLKSIZE. Regardless of what you specify, z/OS C/C++ sets LRECL to
zero when it creates an undefined-format file.

Reading a file in U-format enables you to read an entire block at once.

Record Format (RECFM): You can specify the following formats for
undefined-length records:

u Undefined-length
UA Undefined-length, ASA print control characters
UM Undefined-length, machine print-control codes

U, UA, and UM formats permit the processing of records that do not conform to F- and
V-formats. The operating system treats each block as a record; your program must
perform any additional blocking or deblocking.

You can read any file in U-format. This is useful if, for example, you want to see the
BDWs and RDWs of a file that you have written in V-format.

Mapping C Types to Undefined Format:

Binary
When you are writing to an undefined-format file, binary data fills a block
and then begins a new block.

Text (non-ASA)
Record boundaries (that is, block boundaries) are used in the physical file
to represent the position of the new-line character. You can indicate the end
of a record by including a new-line or carriage return character in your data.
In undefined-format files, z/OS C/C++ treats the carriage return character
as if it were a new-line. z/OS C/C++ does not write either of these
characters to the physical file; instead, it creates a record boundary. When
you read the file back, these boundaries are read as new-lines.

If a record contains only a new-line character, z/OS C/C++ writes a record
containing a single blank to the file regardless of the setting of the
_EDC_ZERO_RECLEN environment variable. Therefore, the string ' \n' (a
single blank followed by a new-line character) is treated the same way as
"\n'; both are written out as a single blank. On input, both are read as
"\n'. All other blank characters are written and read as you intended.

After a record has been written to a file, you cannot change its length. If
you try to shorten a logical record by writing a new, smaller amount of data
into it, the C /O library adds blank characters until the record is full. Writing
more data to a record than it can hold will cause your data to be truncated
unless you are writing to a standard stream or a terminal file. In these
cases, your output is split across multiple records. If truncation occurs, z/OS
C/C++ raises SIGIOERR and sets both errno and the error flag.

Note: You can update a record that contains a single blank to contain a
non-blank character, thereby lengthening the logical record from '\n'
to 'x\n'), where x is the non-blank character.

Text (ASA)
For a record to be recognized, it must contain at least one character as the
ASA control character.

Chapter 4. Understanding Models of C 110 45

Record

For more information about ASA, refer to [Chapter 8, “Using ASA Text Files’|

Each call to fwrite() creates a record that must be shorter than or equal to
the size established by BLKSIZE. If you try to write more than BLKSIZE bytes
on one call to fwrite(), z/OS C/C++ truncates your data.

The Byte Stream Model for C I/0O

The byte stream model differs from the record 1/O model. In the byte stream model,
a file is just a stream of bytes, with no record boundaries. New-line characters
written to the stream appear in the external file.

46

If the file is opened in binary mode, any new-line characters previously written to
the file are visible on input. z/OS C/C++ memory file /O and Hiperspace memory
file I/O are based on the byte stream model (see|Chapter 15, “Performing Memory|

[File and Hiperspace 1/0 Operations” on page 215 for more information).

Hierarchical File System (HFS) I/O, defined by POSIX, is also based on the byte
stream model. Refer to [Chapter 12, “Performing UNIX File System /0O Operations’]

for information about I/O with HFS.
Mapping the C Types of I/O to the Byte Stream Model

Binary

Text

Record

In the byte stream model, files opened in binary mode do not contain any
record boundaries. Data is written as is to the file.

The byte stream model does not support ASA. New-lines, carriage returns,
and other control characters are written as-is to the file.

If record 1/O is supported by the kind of file you are using, z/OS C/C++
simulates it by treating new-line characters as record boundaries. New-lines
are not treated as part of the record. A record written out with a new-line
inside it is not read back as it was written, because z/OS C/C++ treats the
new-line as a record boundary instead of data.

HFS files support record 1/O, but memory files do not.

As with all other record I/O, you can use only fread() and fwrite() to read
from and write to files. Each call to fwrite() inserts a new-line in the byte
stream; each call to fread() strips it off. For example, if you use one
fwrite() statement to write the string ABC and the next to write DEF, the
byte stream will look like this:

There are no limitations on lengthening and shortening records. If you then
rewind the file and write new data into it, z/OS C/C++ will replace the old
data. For example, if you used the rewind() function on the stream in the
previous example and then called fwrite() to place the string 12345 into it,

z/OS V1R4.0 C/C++ Programming Guide

the stream would look like this:

If you are using files with this model, do not use new-line characters in your
output. If you do, they will create extra record boundaries. If you are unsure
about the data being written or are writing numeric data, use binary instead
of text to avoid writing a byte that has the hex value of a new-line.

Chapter 4. Understanding Models of C 110 47

48 7/0S V1R4.0 C/C++ Programming Guide

Chapter 5. Using the Standard C++ Library I/O Stream Classes

The object-oriented model for input and output (I/O) is a set of classes and header
files that are provided by the Standard C++ Library. These classes implement and
manage the stream buffers and the data held in the buffer. Stream buffers hold data
sent to the program (input) and from the program (output), enabling the program to
manipulate and format the data.

There are two base classes, ios and streambuf, from which all other I/O stream
classes are derived. The ios class and its derivative classes are used to implement
formatting of I/O and maintain error state information of stream buffers implemented
with the streambuf class.

There are two shipped versions of the 1/0 stream classes:

* The Unix Systems Laboratories C++ Language System Release (USL) I/O
Stream Class Library is declared in the iostream.h header file, and is shipped
with the IBM Open Class Library. This version does not support ASCII and large
files. For more information, see [IBM Open Class Library User’'s Guidd and |IBM
[Open Class Library Reference, Vol. 1}

* The Standard C++ I/O stream classes are declared in the iostream header file,
and are shipped with the Language Environment. This version supports ASCII
and large files. For more information, see Standard C++ Library Reference. This
discusses the Standard C++ Library and the Standard Template Library (STL)
implemented in the z/OS C++ compiler. It can be found at
http://www.ibm.com/software/ad/c390/czos/czosdocs.html.

The 1/O stream classes use OBJMODEL(COMPAT). They cannot be used with
other classes that use OBIJMODEL(IBM), within the same inheritance hierarchy. For
more information, see the section about OBJMODEL in |z/0S C/C++ User’s Guide|

This chapter includes the following topics:

+ |Advantages to using the C++ I/O Stream Library|
« |Predefined Streams for C++

+ [How C++ /O Streams Relate to C Streams|

« [Specifying File Attributes|

Advantages to Using the C++ I/O Stream Classes

Although input and output are implemented with streams for both C and C++, the
C++ 1/0O stream classes provide the same facilities for input and output as C
stdio.h. The I/O stream classes in the Standard C++ Library have the following
advantages:

* The input (>>) operator and output (<<) operator are typesafe. These operators
are easier to use than scanf() and printf().

* You can overload the input and output operators to define input and output for
your own types and classes. This makes input and output across types, including
your own, uniform.

Predefined Streams for C++

z/OS C++ provides the following predefined streams:

cin The standard input stream

© Copyright IBM Corp. 1996, 2002 49

cout The standard output stream

cerr The standard error stream, unit-buffered such that characters sent to this
stream are flushed on each output operation

clog The buffered error stream

All predefined streams are tied to cout. When you use cin, cerr, or clog, cout gets
flushed sending the contents of cout to the ultimate consumer.

z/OS C standard streams create all /O to 1/O streams:

* Input to cin comes from stdin (unless cin is redirected)

* cout output goes to stdout (unless cout is redirected)

e cerr output goes to stderr (unit-buffered) (unless cerr is redirected)
* clog output goes to stderr (unless clog is redirected)

When redirecting or intercepting a C standard stream, the corresponding C++
standard stream becomes redirected. This applies unless you redirect an 1/O
stream. See [Chapter 10, “Using C and C++ Standard Streams and Redirection” on|
|Qage 87| for more information.

How C++ I/O Streams Relate to C Streams

The USL I/O Stream Class Library file 1/0 is implemented in terms of z/OS C file
I/O, and is buffered from it. The only exception cerr is unit buffered (ios::unitbuf
is set). A filebuf object is associated with each ifstream, ofstream, and fstream
object. When the filebuf is flushed, it writes to the underlying C stream, which has
its own buffer. The filebuf object follows every fwrite() to the underlying C
stream with an fflush().

Mixing the Standard C++ I/O Stream Classes, USL I/O Stream Class
Library, and C 1/O

It is not recommended to mix the usage of the Standard C++ 1/O stream classes,
USL I/O Stream Class Library, and C I/O. The USL I/O Stream Library uses a
separate buffer so you would need to flush the buffer after each call to cout by
either setting unitbuf or sync_with_stdio(). You should avoid switching between
the formatted extraction functions of the C++ 1/O stream classes and C stdio library
functions whenever possible. You should also avoid avoid switching between
versions of these classes.

For more information on mixing the 1/0 stream classes refer to ['Interleaving the|
Standard Streams with sync with stdio()” on page 89|and |“Interleaving the|
Standard Streams without sync_with_stdio()” on page 9d.

Specifying File Attributes

50

The fstream, ifstream, and ofstream classes specialize stream input and output
for files.

For z/OS C++, overloaded fstream, ifstream, and ofstream constructors, and
open() member functions, with an additional parameter, are provided so you can
specify z/OS C fopen() mode values. You can use this additional parameter to
specify any z/OS C fopen() mode value except type=record. If you choose to use

z/OS V1R4.0 C/C++ Programming Guide

a constructor without this additional parameter, you will get the default z/OS C
fopen() file characteristics. [Table 7 on page 61 describes the default fopen()
characteristics.

Chapter 5. Using the Standard C++ Library /O Stream Classes 51

52 2/0S V1R4.0 C/C++ Programming Guide

Chapter 6. Opening Files

This chapter describes how to open I/O files. You can open files using the Standard
C fopen() and freopen() library functions. Alternatively, if you want to use the C++
I/O stream classes, you can use the constructors for the ifstream, ofstream or
fstream classes, or the open() member functions of the filebuf, ifstream,
ofstream or fstream classes.

To open a file stream with a previously opened HFS file descriptor, use the
fdopen() function.

To open files with HFS low-level I/O, use the open() function. For more information
about opening HFS files, see [Chapter 12, “Performing UNIX File System 1/Q
[Operations” on page 143,

Prototypes of functions

The prototypes of these functions are:

C Library Functions:
FILE =xfopen(const char *filename, const char xmode);

FILE =freopen(const char xfilename, const char *mode, FILE *stream);

FILE =fdopen(int filedes, char *mode);

USL I/O Stream Library functions:

// ifstream constructor
ifstream(const charx fname, int mode=ios::in,
int prot=filebuf::openprot);

// ifstream constructor; z/0S C++ extension
ifstream(const char* fname, const charx fattr,
int mode=ios::in, int prot=filebuf::openprot);

// ifstream::open()
void open(const charx fname, int mode=ios::in,
int prot=filebuf::openprot);

// z/0S C++ extension
void open(const char* fname, const charx fattr,
int mode=ios::in, int prot=filebuf::openprot);

// ofstream constructor
ofstream(const char* fname, int mode=ios::out,
int prot=filebuf::openprot);

// ofstream constructor; z/0S C++ extension
ofstream(const char* fname, const char* fattr,
int mode=ios::out, int prot=filebuf::openprot);

// ofstream::open()
void open(const charx fname, int mode=ios::out,
int prot=filebuf::openprot);
// z/0S C++ extension
void open(const char* fname, const charx fattr,
int mode=ios::out, int prot=filebuf::openprot);

// fstream constructor

© Copyright IBM Corp. 1996, 2002 53

54

fstream(const charx fname, int mode,
int prot=filebuf::openprot);

// fstream constructor; z/0S C++ extension
fstream(const charx fname, const char* fattr,
int mode, int prot=filebuf::openprot);

// fstream::open()
void open(const charx fname, int mode,
int prot=filebuf::openprot);

// z/0S C++ extension
void open(const char* fname, const charx fattr,
int mode, int prot=filebuf::openprot);

// filebuf::open()
filebuf* open(const char* fname, int mode,
int prot=filebuf::openprot);

// z/0S C++ extension
filebuf* open(const char* fname, const charx fattr,
int mode, int prot=filebuf::openprot);

Standard C++ I/O stream functions:

// z/0S C++ Standard Library ifstream constructor
ifstream(const char *, jos_base::openmode, const char * _A)

// z/0S C++ Standard Library ifstream::open
void ifstream::open(const char *, ios_base::openmode, const char * _A)
void ifstream::open(const char *, jos_base::open_mode, const char * _A)

// z/0S C++ Standard Library ofstream constructor
ofstream(const char *, jos_base::openmode, const char * _A)

// z/0S C++ Standard Library ofstream::open
void ofstream::open(const char *, ios_base::openmode, const char * _A)
void ofstream::open(const char *, jos_base::open_mode, const char * _A)

// z/0S C++ Standard Library fstream constructor
fstream(const char *, ios_base::openmode, const char * _A)

// z/0S C++ Standard Library fstream::open
void fstream::open(const char *, ios_base::openmode, const char * _A)
void fstream::open(const char *, jos_base::open_mode, const char * _A)

// C++ Standard Library filebuf::open
filebuf::open(const char *, ios_base::openmode, const char * _A)
filebuf::open(const char *, ios_base::open_mode, const char * A)

For more detailed information about 1/0O streaming see the following:
7/0S C/C++ Run-Time Library Reference|discusses the C 1/O stream functions.

» Standard C++ Library Reference discusses the Standard C++ 1/O stream
classes. It can be found at
http://www.ibm.com/software/ad/c390/czos/czosdocs.html.

« |IBM Open Class Library User’s Guide and [IBM Open Class Library Reference)

\ol. 1| discuss the Unix Systems Laboratories C++ Language System Release

(USL) I/O Stream Library.

z/OS V1R4.0 C/C++ Programming Guide

Categories of I/O

The following table lists the categories of I/O that z/OS C/C++ supports and points
to the section where each category is described.

Table 5. Kinds of I/O Supported by z/OS C/C++

Type of I/O

Suggested Uses and Supported Devices M

bdel

Pa

ge

Os I/0

Used for dealing with the following kinds of files:
* Generation data group

* MVS sequential DASD files

* Regular and extended partitioned data sets
* Tapes

* Printers

* Punch data sets

» Card reader data sets

* MVS inline JCL data sets

* MVS spool data sets

» Striped data sets

» Optical readers

Record

107

Hierarchical File
System (HFS) 1/0

Used under z/OS UNIX System Services (z/OS
UNIX) to support HFS data sets, and access the
byte-oriented HFS files according to POSIX .1
and XPG 4.2 interfaces. This increases the
portability of applications written on UNIX-based
systems to z/OS C/C++ systems.

Byte
stream

VSAM 1/O

Used for working with VSAM data sets.
Supports direct access to records by key,
relative record number, or relative byte address.
Supports entry-sequenced, relative record, and
key-sequenced data sets.

Record

=
(2}
J

Terminal 1/0O

Used to perform interactive input and output
operations with a terminal.

Record

Memory Files

Used for applications requiring temporary 1/O
files without the overhead of system data sets.
Fast and efficient.

Byte
stream

N N
5 o
(6)] (6]

Hiperspace
Memory Files

Used to deal with memory files as large as 2
gigabytes.

Byte
stream

&
[y
6]

CICS Data Queues

Used under the Customer Information Control
System (CICS). CICS data queues are
automatically selected under CICS for the
standard streams stdout and stderr for C, or
cout and cerr for C++. The CICS I/O
commands are supported through the Command
Level interface. The standard stream stdin
under C (or cin under C++) is treated as an
empty file under CICS.

Record

N
N
©

z/OS Language
Environment
Message File

Used when you are running with z/OS Language
Environment. The message file is automatically
selected for stderr under z/OS Language
Environment. For C++, automatic selection is of
cerr.

Record

231

Chapter 6. Opening Files

55

The following table lists the environments that z/OS C/C++ supports, and which
categories of 1/0 work in which environment.

Table 6. I/O Categories and Environments That Support Them

Type of I/O MVS IMS online | TSO TSO batch | CICS
batch
OS I/0 Yes Yes Yes Yes No
HFS 1/0 Yes Yes Yes Yes No
VSAM I/O Yes Yes Yes Yes No
Terminal 1/O No No Yes No No
Memory Files Yes Yes Yes Yes Yes
Hiperspace Memory Files Yes Yes Yes Yes No
CICS Data Queues No No No No Yes
z/OS Language Environment | Yes Yes Yes Yes No
Message File
Note: MVS batch includes IMS batch. TSO is interactive. TSO batch indicates an
environment set up by a batch call to IKJEFTO1. Programs run in such an environment
behave more like a TSO interactive program than an MVS batch program.

Specifying What Kind of File to Use

OS Files

HFS Files

This section discusses:

» the kinds of files you can use

* how to specify RECFM, LRECL, and BLKSIZE
* how to specify DDnames

z/OS C/C++ treats a file as an OS file, provided that it is not a CICS data queue, or
an HFS, VSAM, memory, terminal, or Hiperspace file.

When you are running under MVS, TSO (batch and interactive), or IMS, z/OS
C/C++ recognizes an HFS 1/O file as such if the name specified on the fopen() or
freopen() call conforms to certain rules. These rules are described in[‘How z/OS

[C/C++ Determines What Kind of File to Open” on page 63}

VSAM data sets

Terminal Files

z/OS C/C++ recognizes a VSAM data set if the file exists and has been defined as
a VSAM cluster before the call to fopen().

When you are running with the run-time option POSIX(0FF) under interactive TSO,
z/0OS C/C++ associates streams to the terminal. You can also call fopen() to open
the terminal directly if you are running under TSO (interactive or batch), and either
the file name you specify begins with an asterisk (*), or the ddname has been
allocated with a DSN of *,

When running with POSIX(ON), z/OS C/C++ associates streams to the terminal
under TSO and a shell if the file name you have specified fits one of the following
criteria:

56 2/0S V1R4.0 C/C++ Programming Guide

* Under TSO (interactive and batch) , the name must begin with the sequence
//*, or the ddname must have been allocated with a DSN of *.

* Under a shell , the name specified on fopen() or freopen() must be the
character string returned by ttyname().

Interactive IMS and CICS behave differently from what is described here. For more
information about terminal files with interactive IMS and CICS see |Chapter 10,|
|“Using C and C++ Standard Streams and Redirection” on page 87}

If you are running with POSIX(ON) outside a shell, you must use the regular z/OS
C/C++ 1/O functions for terminal 1/O. If you are running with POSIX(ON) from a shell,
you can use the regular z/OS C/C++ I/O functions or the POSIX low-level functions
(such as read()) for terminal I/O.

Memory Files and Hiperspace Memory Files

You can use regular memory files on all the systems that z/OS C/C++ supports. To
create one, specify type=memory on the fopen() or freopen() call that creates the
file. A memory file, once created, exists until either of the following happens:

* You explicitly remove it with remove () or c1rmemf ()
* The root program is terminated

While a memory file exists, you can just use another fopen() or freopen() that
specifies the memory file’s name; you do not have to specify type=memory. For
example:

CCNGOF1

/* this example shows how fopen() may be used with memory files =/
#include <stdio.h>

char text[3], *result;

FILE * fp;

int main(void)

fp = fopen("a.b", "w, type=memory"); /* Opens a memory file */

fprintf(fp, "%d\n",10); /* Writes to the file =/
fclose(fp); /* Closes the file */
fp = fopen("a.b", "r"); /* Reopens the same */
/* file (already */
/* a memory file) */

if ((result=fgets(text,3,fp)) !=NULL) /* Retrieves results =*/
printf("value retrieved is %s\n",result);
fclose(fp); /* Closes the file */

return(0);
}
Figure 4. Memory File Example

A valid memory file name will match current file restrictions on a real file. Thus, a
memory file name that is classified as HFS can have more characters than can one
classified as an MVS file name.

If you are not running under CICS, you can open a Hiperspace memory file as
follows:

fp = fopen("a.b", "w, type=memory(hiperspace)");

Chapter 6. Opening Files 57

If you specify hiperspace and you are running in a CICS environment, z/OS C/C++
opens a regular memory file. If you are running with the run-time options POSIX(ON)
and TRAP(OFF), specifying hiperspace has no effect; z/OS C/C++ will open a regular
memory file. You must specify TRAP(ON) to be able to create Hiperspace files.

CICS Data Queues

A CICS transient data queue is a pathway to a single predefined destination. The
destination can be a ddname, another transient data queue, a VSAM file, a
terminal, or another CICS environment. The CICS system administrator defines the
queues that are active during execution of CICS. All users who direct data to a
given queue will be placing data in the same location, in order of occurrence.

You cannot use fopen() or freopen() to specify this kind of 1/O. It is the category
selected automatically when you call any ANSI functions that reference stdout and
stderr under CICS. If you reference either of these in a C or C++ program under
CICS, z/OS C/C++ attempts to open the CESO (stdout) or CESE (stderr) queue. If
you want to write to any other queue, you should use the CICS-provided interface.

z/OS Language Environment Message File

The z/OS Language Environment message file is managed by z/OS Language
Environment and may not be directly opened or closed with fopen(), freopen() or
fclose() within a C or C++ application. In z/OS Language Environment, output
from stderr is directed to the z/OS Language Environment message file by default.
You can use freopen() and fclose() to manage stderr, or you can redirect it to
another destination. There are application writer interfaces (AWIs) that enable you
to access the z/OS Language Environment message file directly. These are
documented in [z/0S Language Environment Programming Guidd,

See [Chapter 17, “Language Environment Message File Operations” on page 231| for
more information on z/OS Language Environment message files.

How to Specify RECFM, LRECL, and BLKSIZE

58

For OS files and terminal files, the values of RECFM, LRECL, and BLKSIZE are
significant. When you open a file, z/OS C/C++ searches for the RECFM, LRECL, and
BLKSIZE values in the following places:

1. The fopen() or freopen() statement that opens the file
2. The DD statement (described in['DDnames” on page 62)
3. The values set in the existing file

4. The default values for fopen() or freopen().

When you call fopen() and specify a write mode (w, wbh, w+, wh+, w+b) for an
existing file, z/OS C/C++ uses the default values for fopen() if:

» the data set is opened by the data set name or

» the data set is opened by ddname and the DD statement does not have any
attributes filled in.

These defaults are listed in[Table 7 on page 61} To force z/OS C/C++ to use
existing attributes when you are opening a file, specify recfm=+ on the fopen() or
freopen() call.

recfm==* is valid only for existing DASD data sets. It is ignored in all other cases.

z/OS V1R4.0 C/C++ Programming Guide

Notes:

1.

When specifying a ddname on fopen() or freopen() you should be aware of
the following when opening the ddname using one of the write modes:

If the ddname is allocated to an already existing file and that ddname has not
yet been opened, then the DD statement will not contain the recfm, Trecl, or
blksize. That information is not filled in until the ddname is opened for the first
time. If the first open uses one of the write modes (w,wb, w+, wb+, w+b) and
recfm=* is not specified, then the existing file attributes are not considered.
Therefore, since the DD statement has not yet been filled in, the fopen()
defaults are used.

If the ddname is allocated at the same time the file is created, then the DD

statement will contain the same recfm, Trecl, and blksize specified for the
file. If the first open uses one of the write modes (w, wb, w+, wb+, w+b) and
recfm=* is not specified, then z/OS C/C++ picks up the existing file attributes
from the DD statement since they were placed there at the time of allocation.

You can specify the record format in

The RECFM parameter of the JCL DD statement under MVS
The RECFM parameter of the ALLOCATE statement under TSO

The _ recfm field of the _ dyn_t structure passed to the dynalloc() library
function under MVS

The RECFM parameter on the call to the fopen() or freopen() library function

The _ S99TXTPP text unit field on an SVC99 parameter list passed to the svc99()
library function under MVS

The ISPF data set utility under MVS

Certain categories of I/O may ignore or simulate some attributes such as BLKSIZE or
RECFM that are not physically supported on the device. [Table 5 on page 55| lists all
the categories of I/O that z/OS C/C++ supports and directs you to where you can
find more information about them.

You can specify the logical record length in

The LRECL parameter of the JCL DD statement under MVS
The LRECL parameter of the ALLOCATE statement under TSO

The _Trecl field of the _ dyn_t structure passed to the dynalloc() library
function under MVS

The LRECL parameter on the call to the fopen() or freopen() library function

The _ S99TXTPP text unit field on an SVC99 parameter list passed to the svc99()
library function under MVS

The ISPF data set utility

If you are creating a file and you do not select a record size, z/OS C/C++ uses a
default. See I“fopen() Defaults” on page 60| for details on how defaults are
calculated.

You can specify the block size in

The BLKSIZE parameter of the JCL DD statement
The BLKSIZE parameter of the ALLOCATE statement under TSO

The _ blksize field of the _ dyn_t structure passed to the dynalloc() library
function under MVS

The BLKSIZE parameter on a call to the fopen() or freopen() library function

Chapter 6. Opening Files 59

fopen() Defaults

60

e The _ S99TXTPP text unit field on an SVC99 parameter list passed to the svc99()
library function under MVS

* The ISPF data set utility

If you are creating a file and do not select a block size, z/OS C/C++ uses a default.
The defaults are listed in [Table 7 on page 61|

You cannot specify a file attribute more than once on a call to fopen() or freopen().
If you do, the function call fails. If the file attributes specified on the call to fopen()
differ from the actual file attributes, fopen() usually fails. However, fopen() does
not fail if:

* The file is opened for w, w+, wb, or wb+, and the file is neither an existing PDS or
PDSE nor an existing file opened by a ddname that specifies DISP=MOD. In such
instances, fopen() attributes override the actual file attributes. However, if
recfm=+ is specified on the fopen(), any attributes that are not specified either on
the fopen() or for the ddname will be retrieved from the existing file. If the final
combination of attributes is invalid, the fopen() will fail.

* The file is opened for reading (r or rb) with recfm=U. Any other specified
attributes should be compatible with those of the existing data set.

In calls to fopen(), the LRECL, BLKSIZE, and RECFM parameters are optional. (If you
are opening a file for read or append, any attributes that you specify must match
the existing attributes.)

If you do not specify file attributes for fopen() (or for an I/O stream object), you get
the following defaults.

RECFM Defaults
If recfm is not specified in a fopen() call for an output binary file, recfm defaults to:

* recfm=VB for spool (printer) files
* recfm=FB otherwise

If recfm is not specified in a fopen() call for an output text file, recfm defaults to:

* recfm=F if EDC_ANSI_OPEN DEFAULT is set to Y and no LRECL or BLKSIZE specified.
In this case, LRECL and BLKSIZE are both defaulted to 254.

* recfm=VBA for spool (printer) files.
* recfm=U for terminal files.

* recfm=VB for MVS files.

* recfm=VB for all other OS files.

If recfm is not specified for a record 1/O file, you will get the default of recfm=VB.

LRECL and BLKSIZE defaults

The following table shows the defaults for LRECL and BLKSIZE when z/OS C/C++ is
creating a file, not appending or updating it. The table assumes that z/OS C/C++
has already processed any information from the fopen() statement or ddname. The
defaults provide a basis for fopen() to select values for unspecified attributes when
you create a file.

z/OS V1R4.0 C/C++ Programming Guide

Table 7. fopen() Defaults for LRECL and BLKSIZE when Creating OS Files

Irecl specified? blksize specified? @RECFM LRECL BLKSIZE
no no All F 80 80
AllFB 80 maximum integral multiple of

80 less than or equal to max

All'V, VB, minimum of 1028 or max—4 max

VS, or
VBS
All U 0 max
yes no All F Irecl Irecl
All FB Irecl maximum integral multiple of
Irecl less than or equal to max
All vV Irecl Irecl+4
All U 0 Irecl
no yes All F or blksize blksize
FB
All V, VB, minimum of 1028 or blksize—-4 blksize
VS, or
VBS
All U 0 blksize

Note: “All” includes the standard (S) specifier for fixed formats, the ASA (A) specifier, and the machine control
character (M) specifier.

In the preceding table, the value max represents the maximum block size for the
device. These are the current default maximum block sizes for several devices that
z/0OS C/C++ supports:

Device Block Size
DASD 6144
3203 Printer 132

3211 Printer 132

4245 Printer 132

2540 Reader 80

2540 Punch 80

2501 Reader 80

3890 Document Processor 80

TAPE 32760

For more information about specific default block sizes, as returned by the DEVTYPE
macro, refer to [z/0S DFSMS: Using Data Sets|

For DASD files that do not have recfm=U, if you specify blksize=0 on the call to
fopen() or freopen() and you have DFP Release 3.1 or higher, the system
determines the optimal block size for your file. If you do not have the correct level
of DFP or you specify blksize=0 for a ddname instead of specifying it on the
fopen() or freopen() call, zZOS C/C++ behaves as if you had not specified the
blksize parameter at all.

Chapter 6. Opening Files 61

DDnames

For information about block sizes for different categories of 1/0, see the chapters
listed in|Table 5 on page 55|

You do not have to specify the LRECL and BLKSIZE attributes; however, it is possible
to have conflicting attributes when you do specify them. The restrictions are:

* For aV file, the LRECL must be greater than 4 bytes and must be at least 4 bytes
smaller than the BLKSIZE.

* For an F file, the LRECL must be equal to the BLKSIZE, and must be at least 1.

* For an FB file, the BLKSIZE must be an integer multiple of the LRECL.

* For a U file, the LRECL must be less than or equal to the BLKSIZE and must be
greater than or equal to 0. The BLKSIZE must be at least 1.

* In spanned files, the LRECL and the BLKSIZE attributes must be greater than 4.

 If you specify LRECL=X, the BLKSIZE attribute must be less than or equal to the
maximum block size allowed on the device.

To determine the maximum LRECL and BLKSIZE values for the various file types and
devices available on your operating system, refer to the chapters listed in
_on page 55

DD names are specified by prefixing the DD name with DD:. All the following forms
of the prefix are supported:

* DD:

e dd:

» dD:

« Dd:

The DD statement enables you to write C source programs that are independent of
the files and input/output devices they will use. You can modify the parameters of a
file (such as LRECL, BLKSIZE, and RECFM) or process different files without
recompiling your program.

How to Create a DDname Under MVS Batch
To create a ddname under MVS batch, you must write a JCL DD statement.
For the C file PARTS.INSTOCK, you would write a JCL DD statement similar to
the following:

//STOCK DD DSN=PARTS.INSTOCK, . . .

HFS files can be allocated with a DD card. For example:

//STOCK DD PATH='/u/parts.instock',
// PATHOPTS=(OWRONLY,0CREAT,0TRUNC) ,
// PATHMODE=(SIRWXU, SIRWXO0, SIRWXG)

When defining DD, do not use DD ... FREE=CLOSE for unallocating DD
statements. The C library may close files to perform some file operations
such as freopen(), and the DD statement will be unallocated.

For more information on writing DD statements, refer to the JCL manuals
listed in|z/OS Information Roadmap,

How to Create a DDname Under TSO
To create a ddname under TSO, you must write an ALLOCATE command. For
the declaration shown above for the C file STOCK, you should write a TSO
ALLOCATE statement similar to the following:

62 2/0S V1R4.0 C/C++ Programming Guide

ALLOCATE FILE(STOCK) DATASET('PARTS.INSTOCK')

You can also allocate HFS files with TSO ALLOCATE commands. For
example:

ALLOC FI(stock) PATH('/used/parts.stock') PATHOPTS(OWRONLY,OCREAT)
PATHMODE (s1irwxu,sirwxo,sirwxg)

See |z/0S Information Roadmapfor more information on TSO ALLOCATE.

How to Create a DDname In Source Code
You can also use the z/OS C/C++ library functions svc99() and dynalloc()
to allocate ddnames. See [z/0S C/C++ Run-Time Library Reference|for
more information about these functions.

You do not always need to describe the characteristics of the data in files both
within the program and outside it. There are, in fact, advantages to describing the
characteristics of your data in only one place.

Opening a file by ddname may require the merging of information internal and
external to the program. If any conflict is detected that will prevent the opening of a
file, fopen() returns a NULL pointer to indicate that the file cannot be opened. See
[z/0S C/C++ Run-Time Library Reference| for more information on fopen().

If DISP=MOD is specified on a DD statement and if the file is opened in w or wb mode,
the DISP=MOD causes the file to be opened in append mode rather than in write
mode.

Note: You can open a ddname only with fopen() or freopen(). open() does not
interpret ddnames as such.

How z/OS C/C++ Determines What Kind of File to Open

This section describes the criteria that z/OS C/C++ uses to determine what kind of
file it is opening. z/OS C/C++ goes through the categories listed in[Table 5 on

page 55(in the order that follows. If a category applies to a file, z/OS C/C++ stops
searching.

Note: Files cannot be opened under CICS when you have specified the POSIX(ON)
run-time option.

The following chart shows how z/OS C/C++ determines what type of file to open

under TSO, MVS batch, and interactive IMS with POSIX(ON). For information on the
types of files shown in the chart see the appropriate chapter in the 1/0 section.

Chapter 6. Opening Files 63

MAP 0010: Under TSO, MVS Batch, IMS — POSIX(ON)
001

Is type=memory specified?
Yes No

002

Does the name begin with // but NOT ///?
Yes No

003
Continue at|Step 017 on page 65|

004
Continue at[Step 008

005

Is hiperspace specified?
Yes No

z/OS C/C++ opens a regular memory file.

007
z/OS C/C++ opens a memory file in Hiperspace.

008

Is the next character an asterisk?
Yes No

Is name of form DDname?
Yes No

010

Does the name specified match that of an existing memory file?
Yes No

011
z/OS C/C++ opens an OS file.

012
z/0OS C/C++ opens the existing memory file.

64 2/0S V1R4.0 C/C++ Programming Guide

MAP 0010 (continued)

013

Continue to |Step 032 on page 66|

014

Are you running under TSO interactive?
Yes No
015

z/OS C/C++ removes the asterisk from the name unless the asterisk is the
only character, and proceeds to |Step 028 on page 66l

016
z/OS C/C++ opens a terminal file.

017

Is the name of the form *DD:ddname or DD:ddname?
Yes No

018

Does the name specified match that of an existing memory file?
Yes No

019
z/OS C/C++ opens an HFS file.

020
z/0OS C/C++ opens the existing memory file.

021

Does ddname exist?
Yes No

022

Does a memory file exist?
Yes No

023
z/0OS C/C++ opens an HFS file called either *DD:ddname or DD:ddname.

024
z/OS C/C++ opens the existing memory file.

Chapter 6. Opening Files 65

MAP 0010 (continued)
025

Is a path specified in ddname?
Yes No

026
z/0OS C/C++ opens an OS file.

027
z/OS C/C++ opens an HFS file.

028

Is the name of the form *DD:ddname or DD:ddname?
Yes No

029

Does the name specified match that of an existing memory file?
Yes No

030
z/OS C/C++ opens an OS file.

031
z/OS C/C++ opens the existing memory file.

032

Does ddname exist?
Yes No

033

Does a memory file exist?

Yes No
034
ERROR
035

z/OS C/C++ opens the existing memory file.

036

Is a path specified in ddname?
Yes No

037
z/0OS C/C++ opens an OS file.

66 2z/0S V1R4.0 C/C++ Programming Guide

MAP 0010 (continued)

038
z/0OS C/C++ opens an HFS file.

The following chart shows how z/OS C/C++ determines what type of file to open
under TSO, MVS batch, and interactive IMS with POSIX(OFF). For information on the
types of files shown in the chart see the appropriate chapter in the 1/0 section.

Chapter 6. Opening Files 67

MAP 0020: Under TSO, MVS Batch, IMS — POSIX(OFF)
001

Is type=memory specified?
Yes No

002

Does the name begin with // but NOT ///?
Yes No

003
Continue at|Step 017 on page 69}

004
Continue at[Step 008

005

Is hiperspace specified?
Yes No

z/OS C/C++ opens a regular memory file.

007
z/OS C/C++ opens a memory file in Hiperspace.

008

Is the next character an asterisk?
Yes No

Is name of form DDname?
Yes No

010

Does the name specified match that of an existing memory file?
Yes No

011
z/OS C/C++ opens an OS file.

012
z/0OS C/C++ opens the existing memory file.

68 2/0S V1R4.0 C/C++ Programming Guide

MAP 0020 (continued)

013
Continue at [Step 021

014

Are you running under TSO interactive?
Yes No

015

z/OS C/C++ removes the asterisk from the name unless the asterisk is the
only character, and proceeds to [Step 017

016
z/OS C/C++ opens a terminal file.

017

Is the name of the form *DD:ddname or DD:ddname?
Yes No

018

Does the name specified match that of an existing memory file?
Yes No

019
z/OS C/C++ opens an OS file.

020
z/0OS C/C++ opens the existing memory file.

021

Does ddname exist?
Yes No

022

Does a memory file exist?

Yes No
023
ERROR
024

z/OS C/C++ opens the existing memory file.

Chapter 6. Opening Files 69

MAP 0020 (continued)
025

Is a path specified in ddname?
Yes No

026
z/0OS C/C++ opens an OS file.

027
z/OS C/C++ opens an HFS file.

The following chart shows how z/OS C/C++ determines what type of file to open
under CICS. For information on the types of files shown in the chart see the
appropriate chapter in the I/O section.

70 z/0S V1R4.0 C/C++ Programming Guide

MAP 0030: Under CICS
001

Is type=memory specified?
Yes No

002

Does the name specified match that of an existing memory file?
Yes No

003
The fopen() call fails.

004
z/0OS C/C++ opens that memory file.

005

Is hiperspace specified?
Yes No

z/OS C/C++ opens the specified memory file.

007
The fopen() call ignores the hiperspace specification and opens the memory file.

Chapter 6. Opening Files 71

MAP 0030 (continued)

72 2z/0S V1R4.0 C/C++ Programming Guide

Chapter 7. Buffering of C Streams

This chapter describes buffering modes used by z/OS C/C++ library functions
available to control buffering and methods of flushing buffers.

z/0OS C/C++ uses buffers to map C 1/O to system-level I/O. When z/OS C/C++
performs I/O operations, it uses one of the following buffering modes:

* Line buffering - characters are transmitted to the system as a block when a
new-line character is encountered. Line buffering is meaningful only for text
streams and HFS files.

* Full buffering - characters are transmitted to the system as a block when a buffer
is filled.

* No buffering - characters are transmitted to the system as they are written. Only
regular memory files and HFS files support the no buffering mode.

The buffer mode affects the way the buffer is flushed. You can use the setvbuf()
and setbuf () library functions to control buffering, but you cannot change the
buffering mode after an 1/0O operation has used the buffer, as all read, write, and
reposition operations do. In some circumstances, repositioning alters the contents of
the buffer. It is strongly recommended that you only use setbuf() and setvbuf()
before any 1/0, to conform with ANSI, and to avoid any dependency on the current
implementation. If you use setvbuf(), z/OS C/C++ may or may not accept your
buffer for its internal use. For a hiperspace memory file, if the size of the buffer
specified to setvbuf() is 8K or more, it will affect the number of hiperspace blocks
read or written on each call to the operating system; the size is rounded down to
the nearest multiple of 4K.

Full buffering is the default except in the following cases:

» If you are using an interactive terminal, z/OS C/C++ uses line buffering.
* If you are running under CICS, z/OS C/C++ also uses line buffering.

* stderr is line-buffered by default.

* If you are using a memory file, z/OS C/C++ does not use any buffering.

For terminals, because 1/0O is always unblocked, line buffering is equivalent to full
buffering.

For record 1/O files, buffering is meaningful only for blocked files or for record 1/0
HFS files using full buffering. For unblocked files, the buffer is full after every write
and is therefore written immediately, leaving nothing to flush. For blocked files or
fully-buffered HFS files, however, the buffer can contain one or more records that
have not been flushed and that require a flush operation for them to go to the
system.

You can flush buffers to the system in several different ways.
 If you are using full buffering, z/OS C/C++ automatically flushes a buffer when it
is filled.

» If you are using line buffering for a text file or an HFS file, z/OS C/C++ flushes a
buffer when you complete it with a control character. Except for HFS files,
specifying line buffering for a record 1/O or binary file has no effect; z/OS C/C++
treats the file as if you had specified full buffering.

» z/0OS C/C++ flushes buffers to the system when you close a file or end a
program.

© Copyright IBM Corp. 1996, 2002 73

» z/OS C/C++ flushes buffers to the system when you call the fflush() library
function, with the following restrictions:

— Afile opened in text mode does not flush data if a record has not been
completed with a new-line.

— Afile opened in fixed format does not flush incomplete records to the file.

— An FBS file does not flush out a short block unless it is a DISK file opened
without the NOSEEK parameter.

» All streams are flushed across non-POSIX system() calls. Streams are not
flushed across POSIX system() calls. For a POSIX system call, we recommend
that you do a fflush() before the system() call.

If you are reading a record that another user is writing to at the same time, you can
see the new data if you call fflush() to refresh the contents of the input buffer.

Note: This is not supported for VSAM files.

You may not see output if a program that is using input and output fails, and the
error handling routines cannot close all the open files.

74 z/0S V1R4.0 C/C++ Programming Guide

Chapter 8. Using ASA Text Files

This chapter describes the American Standards Association (ASA) text files, the
control characters used in ASA files, how z/OS C/C++ translates the control
characters, and how z/OS C/C++ treats ASA files during input and output. The first
column of each record in an ASA file contains a control character (' ', '0', '-', '1', or
'+) when it appears in the external medium.

z/OS C/C++ translates control characters in ASA files opened for text processing
(r, w, a, rt, wt, a+ functions). On input, z/OS C/C++ translates ASA characters

to sequences of control characters, as shown in[Table § On output, z/OS C/C++
performs the reverse translation. The following sequences of control characters are
translated, and the resultant ASA character becomes the first character of the

following record:

Table 8. C Control to ASA Characters Translation Table

C Control Character ASA Character Description
Sequence

\n v skip one line
\n\n 0’ skip two lines
\n\n\n skip three lines
\f 1 new page

\r '+’ overstrike

If you are writing to the first record or byte of the file and the output data does not
start with a translatable sequence of C control characters, the ' ' ASA control
character is written to the file before the specified data.

z/OS C/C++ does not translate or verify control characters when you open an ASA
file for binary or record 1/O.

Example of Writing to an ASA File

CCNGAS1

© Copyright IBM Corp. 1996, 2002

/* this example shows how to write to an ASA file */

#include <stdio.h>
#define MAX_LEN 80

int main(void) {
FILE *fp;
int i;
char s[MAX_LEN+1];

Figure 5. ASA Example (Part 1 of 2)

75

}

fp = fopen("asa.file", "w, recfm=fba");

if (fp != NULL) {
fputs("\n\nabcdef\f\r345\n\n", fp);
fputs ("\n\n9034\n", fp);
fclose(fp);

return(0);

}

fp = fopen("asa.file", "r");

for (i = 0; i < 5; i++) {
fscanf(fp, "%s", s[0]);
printf("string = %s\n",s);

}

Figure 5. ASA Example (Part 2 of 2)

This program writes five records to the file asa.file, as follows:
Oabcdef

1

+345

9034

Note that the last record is 9034. The last single \n' does not create a record with a
single control character (' '). If this same file is opened for read, and the getc()
function is called to read the file 1 byte at a time, the same characters as those that
were written out by fputs() in the first program are read.

ASA File Control

ASA files are treated as follows:

76

If the first record written does not begin with a control character, then a single
new-line is written and then followed by data; that is, the ASA character defaults
to a space when none is specified.

In ASA files, control characters are treated the same way that they are treated in
other text files, with the following exceptions:

\f' — form feed
Defines a record boundary and determines the ASA character of the
following record. Refer to [Table 8 on page 75|

\n' — new-line
Does either of these:
— Define a record boundary and determines the ASA character of the
following record (see translation table above).

— Modify the preceding ASA character if the current position is directly
after an ASA character of ' ' or '0' (see translation table above).

\r' — carriage return
Defines a record boundary and determines the ASA character of the
following record (see translation table above).

Records are terminated by writing a new-line ('\n'), carriage return ('\r'), or
form feed ('\f') character.

* An ASA character can be updated to any other ASA character.

Updates made to any of the C control characters that make up an ASA character
cause the ASA character to change.

z/OS V1R4.0 C/C++ Programming Guide

If the file is positioned directly after a ' ' or '0' ASA character, writing a "\n'
character changes the ASA character to a '0' or '-' respectively. However, if the
ASA character is a '-', '1' or '+', the '\n' truncates the record (that is, it adds blank
padding to the end of the record), and causes the following record's ASA
character to be written as a ' '. Writing a '\f' or '\r' terminates the record and
start a new one, but writing a normal data character simply overwrites the first
data character of the record.

* You cannot overwrite the ASA character with a normal data character. The
position at the start of a record (at the ASA character) is the logical end of the
previous record. If you write normal data there, you are writing to the end of the
previous record. z/OS C/C++ truncates data for the following files, except when
they are standard streams:

— Variable-format files
— Undefined-format files
— Fixed-format files in which the previous record is full of data

When truncation occurs, z/OS C/C++ raises SIGIOERR and sets both errno and
the error flag.

* Even when you update an ASA control character, seeking to a previously
recorded position still succeeds. If the recorded position was at a control
character that no longer exists (because of an update), the reposition is to the
next character. Often, this is the first data character of the record. For example, if
you have the following string:
you have saved the position of the third new-line. If you then update the ASA

\n\n\nHELLO WORLD

x = ftell()

character to a form feed ('\f'), the logical ASA position x no longer exists:
\fHELLO WORLD

If you call fseek() with the logical position x, it repositions to the next valid
character, which is the letter 'H':

\fHELLO WORLD

fseek() to pos x

» If you try to shorten a record when you are updating it, z/OS C/C++ adds enough
blank padding to fill the record.

* The ASA character can represent up to three new-lines, which can increase the
logical record length by 1 or 2 bytes.

» Extending a fixed logical record on update implies that the logical end of the line
follows the last written non-blank character.

» If an undefined text record is updated, the length of the physical records does not
change. If the replacement record is:

Chapter 8. Using ASA Text Files 77

78

— Longer - data characters beyond the record boundary are truncated. At the
point of truncation, the User error flag is set and SIGIOERR is raised (if the
signal is not set up to be ignored). Truncation continues until you do one of
these:

1. Write a new-line character, carriage return, or form feed to complete the
current record

2. Close the file explicitly or implicitly at termination
3. Reposition to another position in the file.
— Shorter - the blank character is used to overwrite the rest of the record.

If you close an ASA file that has a new-line as its last character, z/OS C/C++
does not write the new-line to the physical file. The next time you read from the
file or update it, z/OS C/C++ returns the new-line to the end of the file. An
exception to this rule happens when you write only a new-line to a new file. In
this case, z/OS C/C++ does not truncate the new-line; it writes a single blank to
the file. On input, however, you will read two new-lines.

Using ASA format to read a file that contains zero-length records results in
undefined behavior.

You may have trouble updating a file if two ASA characters are next to each
other in the file. For example, if there is a single-byte record (containing only an
ASA character) immediately followed by the ASA character of the next record,
you are positioned at or within the first ASA character. If you then write a
sequence of '\n' characters intended to update both ASA characters, the '\n's
will be absorbed by the first ASA character before overflowing to the next record.
This absorption may affect the crossing of record boundaries and cause
truncation or corruption of data.

At least one normal intervening data character (for example, a space) is required
between '\n' and '\n' to differentiate record boundaries.

Note: Be careful when you update an ASA file with data containing more than
one consecutive new-line: the result of the update depends on how the
original ASA records were structured.

If you are writing data to a non-blocked file without intervening flush or reposition
requests, each record is written to the system on completion (that is, when a
"\n', "\r' or '\f' character is written or when the file is closed).

If you are writing data to a blocked file without intervening flush or reposition
requests, and the file is opened in full buffering mode, the block is written to the
system on completion of the record that fills the block. If the blocked file is line
buffered, each record is written to the system on completion.

If you are writing data to a spanned file without intervening flush or reposition
requests, and the record spans multiple blocks, each block is written to the
system once it is full and the user writes an additional byte of data.

If a flush occurs while an ASA character indicating more than one new-line is
being updated, the remaining new-lines will be discarded and a read will continue
at the first data character. For example, if '\n\n\n"' is updated to be '\n\n' and
a flush occurs, then a '0" will be written out in the ASA character position.

z/OS V1R4.0 C/C++ Programming Guide

Chapter 9. z/OS C Support for the Double-Byte Character Set

The number of characters in some languages such as Japanese or Korean is larger
than 256, the number of distinct values that can be encoded in a single byte. The
characters in such languages are represented in computers by a sequence of
bytes, and are called multibyte characters. This chapter explains how the z/OS C
compiler supports multibyte characters.

Note: The z/OS C++ compiler does not have native support for multibyte
characters. The support described here is what z/OS C provides; for C++,
you can take advantage of this support by using interlanguage calls to C
code. Please refer to [Chapter 19, “Using Linkage Specifications in C or C++

on page 245 for more information.

The z/OS C compiler supports the IBM EBCDIC encoding of multibyte characters,
in which each natural language character is uniquely represented by one to four

bytes. The number of bytes that encode a single character depends on the global
shift state information. If a stream is in initial shift state, one multibyte character is
represented by a byte or sequence of bytes that has the following characteristics:

|t starts with the byte containing the shift-out (0x0e) character.

* The shift-out character is followed by 2 bytes that encode the value of the
character.

* These bytes may be followed by a byte containing the shift-in (0x0f) character.

If the sequence of bytes ends with the shift-in character, the state remains initial,
making this sequence represent a 4-byte multibyte character. Multibyte characters
of various lengths can be normalized by the set of z/OS C library functions and
encoded in units of one length. Such normalized characters are called wide
characters; in z/OS C they are represented by two bytes. Conversions between
multibyte format and wide character format can be performed by string conversion
functions such as wcstombs (), mbstowcs (), wesrtombs (), and mbsrtowcs (), as well
by the family of the wide character 1/O functions. MB_CUR_MAX is defined in the
std1ib.h header file. Depending on its value, either of the following happens:

* When MB_CUR_MAX is 1, all bytes are considered single-byte characters; shift-out
and shift-in characters are treated as data as well.

* When MB_CUR_MAX is 4:

— On input, the wide character 1/O functions read the multibyte character from
the streams, and convert them to the wide characters.

— On output, they convert wide characters to multibyte characters and write
them to the output streams.

Both binary and text streams have orientation. Streams opened with type=record
do not. There are three possible orientations of a stream:

Non-oriented
A stream that has been associated with an open file before any operation
other than setbuf() or setvbuf() is performed. Subsequent operations on a
non-oriented stream change the orientation of the stream. You can use the
setbuf() and setvbuf() functions only on a non-oriented stream. When you
use these functions, the stream remains non-oriented. When you perform
one of the wide character input/output operations on a non-oriented stream,

© Copyright IBM Corp. 1996, 2002 79

the stream becomes wide-oriented. When you perform one of the byte
input/output operations on a non-oriented stream, the stream becomes
byte-oriented.

Wide-oriented
A stream on which any wide character input/output functions are
guaranteed to operate correctly. Conceptually, wide-oriented streams are
sequences of wide characters. The external file associated with a
wide-oriented stream is a sequence of multibyte characters. Using byte 1/0
functions on a wide-oriented stream results in undefined behavior. A stream
opened for record 1/O cannot be wide-oriented.

Byte-oriented
A stream on which any byte input/output functions are guaranteed to
operate properly. Using wide character I/O functions on a byte input/output
stream results in undefined behavior. Byte-oriented streams have minimal
support for multibyte characters.

Calls to the clearerr(), feof(), ferror(), fflush(), fgetpos(), or ftel1()
functions do not change the orientation.

Once you have established a stream’s orientation, the only way to change it is to
make a successful call to the freopen() function, which removes a stream’s
orientation.

The wchar.h header file declares the WEOF macro and the functions that support
wide character input and output. The macro expands to a constant expression of
type wint_t. Certain functions return WEOF type when the end-of-file is reached on
the stream.

Note: The behavior of the wide character I/O functions is affected by the LC_CTYPE
category of the current locale, and the setting of MB_CUR_MAX. Wide-character
input and output should be performed under the same LC_CTYPE setting. If
you change the setting between when you read from a file and when you
write to it, or vice versa, you may get undefined behavior. If you change it
back to the original setting, however, you will get the behavior that is
documented. See the introduction of this chapter for a discussion of the
effects of MB_CUR_MAX.

Opening Files

You can use the fopen() or freopen() library functions to open 1/O files that contain
multibyte characters. You do not need to specify any special parameters on these
functions for wide character 1/O.

Reading Streams and Files

Wide character input functions read multibyte characters from the stream and
convert them to wide characters. The conversion process is performed in the same
way that the mbrtowc () function performs conversions.

The following z/OS C library functions support wide character input:
o fgetwc()

o fgetws()

e getwc()

e getwchar()

80 2/0S V1R4.0 C/C++ Programming Guide

e swscanf()

In addition, the following byte-oriented functions support handling multibyte
characters by providing conversion specifiers to handle the wchar_t data type:

e scanf()
e fscanf()
e sscanf()

All other byte-oriented input functions treat input as single-byte.

For a detailed description of unformatted and formatted 1/O functions, refer to the
lz/0S C/C++ Run-Time Library Reference,

The wide-character input/output functions maintain global shift state for multibyte
character streams they read or write. For each multibyte character they read,
wide-character input functions change global shift state as the mbrtowc () function
would do. Similarly, for each multibyte character they write, wide-character output
functions change global shift state as the wcrtomb() function would do.

When you are using wide-oriented input functions, multibyte characters are
converted to wide characters according to the current shift state. Invalid double-byte
character sequences cause conversion errors on input. As z/OS C uses
wide-oriented functions to read a stream, it updates the shift state when it
encounters shift-out and shift-in characters. Wide-oriented functions always read
complete multibyte characters. Byte-oriented functions do not check for complete
multibyte characters, nor do they maintain information about the shift state.
Therefore, they should not be used to read multibyte streams.

For binary streams, no validation is performed to ensure that records start or end in
initial shift state. For text streams, however, all records must start and end in initial
shift state.

Writing Streams and Files

Wide character output functions convert wide characters to multibyte characters and
write the result to the stream. The conversion process is performed in the same
way that the wertomb () function performs conversions.

The following z/OS C functions support wide character output:
o fputwc()

o fputws()

e swprintf()

o vswprintf()

* putwc()

e putwchar()

In addition, the following byte-oriented functions support handling multibyte
characters by providing conversion specifiers to handle the wchar_t data type:

o printf()
e fprintf()
o sprintf()

Chapter 9. z/OS C Support for the Double-Byte Character Set 81

All other output functions do not support the wchar_t data type. However, all of the
output functions support multibyte character output for text streams if MB_CUR_MAX is
4,

For a detailed description of unformatted and formatted I/O functions, refer to the
z/OS C/C++ Run-Time Library Reference.

Writing Text Streams

82

When you are using wide-oriented output functions, wide characters are converted
to multibyte characters. For text streams, all records must start and end in initial
shift state. The wide-character functions add shift-out and shift-in characters as they
are needed. When the file is closed, a shift-out character may be added to
complete the file in initial shift state.

When you are using byte-oriented functions to write out multibyte data, z/OS C
starts each record in initial shift state and makes sure you complete each record in
initial shift state before moving to the next record. When a string starts with a
shift-out, all data written is treated as multibyte, not single-byte. This means that
you cannot write a single-byte control character (such as a new-line) until you
complete the multibyte string with a shift-in character.

Attempting to write a second shift-out character before a shift-in is not allowed.
z/OS C truncates the second shift-out and raises SIGIOERR if SIGIOERR is not set to
SIG_IGN.

When you write a shift-in character to an incomplete multibyte character, z/OS C
completes the multibyte character with a padding character (0xfe) before it writes
the shift-in. The padding character is not counted as an output character in the total
returned by the output function; you will never get a return code indicating that you
wrote more characters than you provided. If z/OS C adds a padding character,
however, it does raise SIGIOERR, if SIGIOERR is not set to SIG_IGN.

Control characters written before the shift-in are treated as multibyte data and are
not interpreted or validated.

When you close the file, z/OS C ensures that the file ends in initial shift state. This
may require adding a shift-in and possibly a padding character to complete the last
multibyte character, if it is not already complete. If padding is needed in this case,
z/OS C does not raise SIGIOERR.

Multibyte characters are never split across record boundaries. In addition, all
records end and start in initial shift state. When a shift-out is written to the file,
either directly or indirectly by wide-oriented functions, z/OS C calculates the
maximum number of complete multibyte characters that can be contained in the
record with the accompanying shift-in. If multibyte output (including any required
shift-out and shift-in characters) does not fit within the current record, the behavior
depends on what type of file it is (a memory file has no record boundaries and so
never has this particular problem). For a standard stream or terminal file, data is
wrapped from one record to the next. Shift characters may be added to ensure that
the first record ends in initial shift state and that the second record starts in the
required shift state.

For files that are not standard streams, terminal files, or memory files, any attempt
to write data that does not fit into the current record results in data truncation. In
such a case, the output function returns an error code, raises SIGIOERR, and sets

z/OS V1R4.0 C/C++ Programming Guide

errno and the error flag. Truncation continues until initial state is reached and a
new-line is written to the file. An entire multibyte stream may be truncated, including
the shift-out and shift-in, if there are not at least two bytes in the record. For a
wide-oriented stream, truncation stops when a wchar_t new-line character is written
out.

Updating a wide-oriented file or a file containing multibyte characters is strongly
discouraged, because your update may overwrite part of a multibyte string or
character, thereby invalidating subsequent data. For example, you could
inadvertently add data that overwrites a shift-out. The data after the shift-out is
meaningless when it is treated in initial shift state. Appending new data to the end
of the file is safe.

Writing Binary Streams

When you are using wide-oriented output functions, wide characters are converted
to multibyte characters. No validation is performed to ensure that records start or
end in initial shift state. When the file is closed, any appends are completed with a
shift-in character, if it is needed to end the stream in initial shift state. If you are

updating a record when the stream is closed, the stream is flushed. See
H

uffers’l for more information.

Byte-oriented output functions do not interpret binary data. If you use them for
writing multibyte data, ensure that your data is correct and ends in initial shift state.

Updating a wide-oriented file or a file containing multibyte characters is strongly
discouraged, because your update may overwrite part of a multibyte string or
character, thereby invalidating subsequent data. For example, you could
inadvertently add data that overwrites a shift-out. The data after the shift-out is
meaningless when it is treated in initial shift state. Appending new data to the end
of the file is safe for a wide-oriented file.

If you update a record after you call fgetpos(), the shift state may change. Using
the fpos_t value with the fsetpos() function may cause the shift state to be set
incorrectly.

Flushing Buffers

You can use the library function fflush() to flush streams to the system. For more
information about fflush(), see the |z/OS C/C++ Run-Time Library Reference}

The action taken by the fflush() library function depends on the buffering mode
associated with the stream and the type of stream. If you call one z/OS C program
from another z/OS C program by using the ANSI system() function, all open
streams are flushed before control is passed to the callee. A call to the POSIX
system() function does not flush any streams to the system. For a POSIX system
call, we recommend that you do a fflush() before the system call.

Flushing Text Streams

When you call fflush() after updating a text stream, fflush() calculates your
current shift state. If you are not in initial shift state, z/OS C looks forward in the
record to see whether a shift-in character occurs before the end of the record or
any shift-out. If not, z/OS C adds a shift-in to the data if it will not overwrite a
shift-out character. The shift-in is placed such that there are complete multibyte
characters between it and the shift-out that took the data out of initial state. z/OS C

Chapter 9. z/OS C Support for the Double-Byte Character Set 83

may accomplish this by skipping over the next byte in order to leave an even
number of bytes between the shift-out and the added shift-in.

Updating a wide-oriented or byte-oriented multibyte stream is strongly discouraged.
In a byte-oriented stream, you may have written only half of a multibyte character
when you call fflush(). In such a case, z/OS C adds a padding byte before the
shift-out. For both wide-oriented and byte-oriented streams, the addition of any shift
or padding character does not move the current file position.

Calling fflush() has no effect on the current record when you are writing new data
to a wide-oriented or byte-oriented multibyte stream, because the record is
incomplete.

Flushing Binary Streams

In a wide-oriented stream, calling fflush() causes z/OS C to add a shift-in
character if the stream does not already end in initial shift state. In a byte-oriented
stream, calling fflush() causes no special behavior beyond what a call to fflush()
usually does.

ungetwc() Considerations

84

ungetwc () pushes wide characters back onto the input stream for binary and text
files. You can use it to push one wide character onto the ungetwc () buffer. Never
use ungetc() on a wide-oriented file. After you call ungetwc (), calling fflush()
backs up the file position by one wide character and clears the pushed-back wide
character from the stream. Backing up by one wide character skips over shift
characters and backs up to the start of the previous character (whether single-byte
or double-byte). For text files, z/OS C counts the new-lines added to the records as
single-byte characters when it calculates the file position. For example, if you have
the following stream: you can run the following code fragment:

fp
fgetwc (fp); /* Returns X'00C1' (the hexadecimal */
/* wchar representation of A) */
fgetwc (fp); /* Returns X'00C2' (the hexadecimal */
/* wchar representation of B) */
fgetwc (fp); /* Returns X'7FFE' (the hexadecimal */
/* wchar representation of the DBCS */
/* character) between the SO and SI */

/* characters; leaves file position at C =*/
ungetwc('Z',fp); /* Logically inserts Z before SI character =/

fflush(fp); /* Backs up one wchar, Teaving position at */
/* beginning of X'7FFE' DBCS char */
/* and DBCS state in double-byte mode; */
/* clears Z from the logical stream */

Figure 6. ungetwc() Example

You can set the EDC_COMPAT environment variable before you open the file, so that
fflush() ignores any character pushed back with ungetwc() or ungetc(), and leaves

z/OS V1R4.0 C/C++ Programming Guide

the file position where it was when ungetwc() or ungetc() was first issued. Any
characters pushed back are still cleared. For more information about _EDC_COMPAT,
see [Chapter 33, “Using Environment Variables” on page 479|

Setting Positions within Files

The following conditions apply to text streams and binary streams.

Repositioning within Text Streams

When you use the fseek() or fsetpos() function to reposition within files, z/OS C
recalculates the shift state.

If you update a record after a successful call to the fseek() function or the
fsetpos() function, a partial multibyte character can be overwritten. Calling a wide
character function for data after the written character can result in undefined
behavior.

Use the fseek() or fsetpos() functions to reposition only to the start of a multibyte
character. If you reposition to the middle of a multibyte character, undefined
behavior can occur.

Repositioning within Binary Streams

When you are working with a wide-oriented file, keep in mind the state of the file
position that you are repositioning to. If you call ftel1(), you can seek with
SEEK_SET and the state will be reset correctly. You cannot use such an ftell()
value across a program boundary unless the stream has been marked
wide-oriented. A seek specifying a relative offset (SEEK_CUR or SEEK_END) will change
the state to initial state. Using relative offsets is strongly discouraged, because you
may be seeking to a point that is not in initial state, or you may end up in the
middle of a multibyte character, causing wide-oriented functions to give you
undefined behavior. These functions expect you to be at the beginning or end of a
multibyte character in the correct state. Using your own offset with SEEK_SET also
does the same. For a wide-oriented file, the number of valid bytes or records that
ftel1() supports is cut in half.

When you use the fsetpos() function to reposition within a file, the shift state is set
to the state saved by the function. Use this function to reposition to a wide
character that is not in the initial state.

ungetwc() Considerations

For text files, the library functions fgetpos() and ftel1() take into account the
character you have pushed back onto the input stream with ungetwc(), and move
the file position back by one wide character. The starting position for an fseek() call
with a whence value of SEEK_CUR also takes into account this pushed-back wide
character. Backing up one wide character means backing up either a single-byte
character or a multibyte character, depending on the type of the preceding
character. The implicit new-lines at the end of each record are counted as wide
characters.

For binary files, the library functions fgetpos() and ftell() also take into account
the character you have pushed back onto the input stream with ungetwc (), and
adjust the file position accordingly. However, the ungetwc () must push back the
same type of character just read by fgetwc(), so that ftel1() and fgetpos() can
save the state correctly. An fseek() with an offset of SEEK_CUR also accounts for the

Chapter 9. z/OS C Support for the Double-Byte Character Set 85

pushed-back character. Again, the ungetwc() must unget the same type of
character for this to work properly. If the ungetwc() pushes back a character in the
opposite state, you will get undefined behavior.

You can make only one call to ungetwc (). If the current logical file position is
already at or before the first wchar in the file, a call to ftel1() or fgetpos() after
ungetwc () fails.

When you are using fseek() with a whence value of SEEK_CUR, the starting point for
the reposition also accounts for the presence of ungetwc() characters and
compensates as ftell() and fgetpos() do. Specifying a relative offset other than 0
is not supported and results in undefined behavior.

You can set the EDC_COMPAT environment variable to specify that ungetwc() should
not affect fgetpos() or fseek(). (It will still affect fte11().) If the environment
variable is set, fgetpos() and fseek() ignore any pushed-back wide character. See
[Chapter 33, “Using Environment Variables” on page 479 for more information about
_EDC_COMPAT.

If a repositioning operation fails, z/OS C attempts to restore the original file position
by treating the operation as a call to fflush(). It does not account for the presence
of ungetwc () characters, which are lost.

Closing Files

z/OS C expects files to end in initial shift state. For binary byte-oriented files, you
must ensure that the ending state of the file is initial state. Failure to do so results
in undefined behavior if you reaccess the file again. For wide-oriented streams and
byte-oriented text streams, z/OS C tracks new data that you add. If necessary, z/0S
C adds a padding byte to complete any incomplete multibyte character and a
shift-in to end the file in initial state.

Manipulating Wide Character Array Functions

In order to manipulate wide character arrays in your program, the following
functions can be used:

Table 9. Manipulating wide character arrays

Function Purpose

wmememp () Compare wide character

wmemchr () Locate wide character

wmemcpy () Copy wide character

wmemmove () Move wide character

wmemset () Set wide character

wcrtomb () Convert a wide character to a multibyte
character

wescat () Append to wide-character string

weschr() Search for wide-character substring

wescmp () Compare wide-character strings

For more information about these functions, refer to the (z/0S C/C++ Run-Time|
[Library Referencé,

86 2/0S V1R4.0 C/C++ Programming Guide

Chapter 10. Using C and C++ Standard Streams and

Redirection

The standard streams are declared in the C header file stdio.h or in the C++
header files iostream.h or iostream.[Table 10| below shows the C standard streams
and the functions that use them, as well as the C++ standard streams and the
operators typically used to perform 1/O with them.

By default, the standard streams are opened implicitly the first time they are
referenced. You do not have to declare them or call their open() member functions
to open them. For example, with no preceding declaration or open() call, the
following statement writes the decimal number n to the cout stream.

cout << n << endl;

For more detailed information about 1/0 streaming see the following:

z/0S C/C++ Run-Time Library Reference|discusses the C 1/O stream functions.

e Standard C++ Library Reference discusses the Standard C++ 1/O stream
classes. It can be found at
http://www.ibm.com/software/ad/c390/czos/czosdocs.html.

(USL) I/O Stream Class Library.

Table 10. Standard C and C++ streams

* |IBM Open Class Library User’s Guidg and |IBM Open Class Library Reference)

Vol. 1| discuss the Unix Systems Laboratories C++ Language System Release

C standard streams and their related functions

its diagnostic messages. z/OS C/C++ uses stderr
to collect error messages about exceptions that
occur.

Name of Purpose Functions that use it
stream
stdin The input device from which your C program getchar()
usually retrieves its data. scanf()
gets()
stdout The output device to which your C program printf()
normally directs its output. puts()
putchar()
stderr The output device to which your C program directs | perror()

C++ standard streams and the operators typically used with them

Name of
stream

Purpose

Common usage

cin

The object from which your C++ program usually
retrieves its data. In z/OS C++, input from cin
comes from stdin by default.

>> the input (extraction)
operator

cout

The object to which your C++ program normally
directs its output. In zZ/OS C++, output to cout
goes to stdout by default.

<<, the output (insertion)
operator

cerr

The object to which your C++ program normally
directs its diagnostic messages. In z/OS C++,
output to cerr goes to stderr by default. cerr is
unbuffered, so each character is flushed as you
write it.

<<, the output (insertion)
operator

© Copyright IBM Corp. 1996, 2002

87

Table 10. Standard C and C++ streams (continued)

clog Another object intended for error messages. In <<, the output (insertion)
z/OS C++, output to clog goes to stderr by operator
default. Unlike cerr, clog is buffered.

On I/O operations requiring a file pointer, you can use stdin, stdout, or stderr in
the same manner as you would any other file pointer.

If you are running with POSIX(ON), standard streams are opened during initialization
of the process, before the application receives control. With POSIX (OFF), the default
behavior is for the C standard streams to open automatically on first reference. You
do not have to call fopen() to open them. For example:

printf("%d\n",n);

with no preceding fopen() statement writes the decimal number n to the stdout
stream.

By default, stdin interprets the character sequence /+* as indicating that the end of
the file has been reached. See [Chapter 14, “Performing Terminal 1/O Operations” on|
page 205 for more information.

Default Open Modes

88

The default open modes for the C standard streams are:
stdin r
stdout w

stderr w

Where the streams go depends on what kind of environment you are running under.
These are the defaults:

* Under interactive TSO, all three standard streams go to the terminal.
* Under MVS batch, TSO batch, and IMS (batch and interactive):
— stdin goes to dd:sysin. If dd:sysin does not exist, all read operations from
stdin will fail.

— stdout goes first to dd:sysprint. If dd:sysprint does not exist, stdout looks
for dd:systerm and then dd:syserr. If neither of these files exists, z/OS C/C++
opens a sysout=+ data set and sends the stdout stream to it.

— stderr will go to the z/OS Language Environment message file.

* Under CICS, stdout and stderr are assigned to transient data queues, allocated
during CICS initialization. The CICS standard streams can be redirected only to
or from memory files. You can do this by using freopen().

* Under z/OS UNIX, if you are running in one of the z/OS UNIX shells, the shell
controls redirection. See [z/0S UNIX System Services User’s Guidd and|z/OS|
[UNIX System Services Command Reference for information.

You can also redirect the standard streams to other files. See |[Redirecting Standard|

and sections following.

z/OS V1R4.0 C/C++ Programming Guide

Interleaving the Standard Streams with sync_with_stdio()

The sync_with_stdio() function allows you to interleave C standard streams with
standard streams from either the Standard C++ Library or the USL I/O Stream
Class Library. A call to sync_with_stdio() does the following:

e cin, cout, cerr, and clog are initialized with stdiobuf objects associated with
stdin, stdout, and stderr.

* The flags unitbuf and stdio are set for cout, cerr, and clog.

This ensures that subsequent standard streams may be mixed on a per-character

basis. However, a run-time performance penalty is incurred to ensure this
synchronization.

//

// Example of interleaving USL I/0 with sync_with_stdio()
//

// tsyncws.cxx

#include <stdio.h>

#include <fstream.h>

int main() {
jos::sync_with_stdio();
cout << "object: to show that sync_with_stdio() allows interleaving\n "
" standard input and output on a per character basis\n" << endl;

printf("line 1 ");

cout << "rest of line 1\n";
cout << "line 2 ";

printf("rest of Tine 2\n\n");

char string1[80]
char string2[80] = "";
char string3[80] = "";
char* rc = NULL;

cout << "type the following 2 Tines:\n"
"hello world, here I am\n"
"again\n" << endl;

cin.get(stringl[0]);
stringl[1] = getchar();
cin.get(stringl[2]);

cout << "\nstringl[0] is \'" << stringl[0] << "\'\n"
<< "stringl[1l] is \'" << stringl[1] << "\'\n"
<< "stringl[2] is \'" << stringl[2] << "\'\n" << endl;

cin >> &stringl[3];
rc gets(string2); // note: reads to end of Tine, so
cin >> string3; // this line waits for more input

cout << "\nstringl is \"" << stringl << "\"\n"
<< "string2 is \"" << string2 << "\"\n"
<< "string3 is \"" << string3 << "\"\n" << flush;

Figure 7. Interleaving I/O with sync_with_stdio() (Part 1 of 2)

Chapter 10. Using C and C++ Standard Streams and Redirection

89

// sample output (with user input shown underlined):

//
// object: to show that sync_with stdio() allows interleaving
// standard input and output on a per character basis
//

// line 1 rest of Tine 1
// line 2 rest of line 2

// type the following 2 Tines:
// hello world, here I am
// again

// hello world, here I am

// stringl[0] is 'h'
// stringl[1] is 'e'
// stringl[2] is '1'

// again
// stringl is "hello"

// string2 is "world, here I am
// string3 is "again"

Figure 7. Interleaving I/O with sync_with_stdio() (Part 2 of 2)

Interleaving the Standard Streams without sync_with_stdio()

90

Output can be interleaved without sync_with_stdio(), since the C++ standard
streams are based on z/OS C I/O. That is, cout can be interleaved with stdout, and
clog can be interleaved with stderr. This is done by explicitly flushing cout or cTog
before calling the z/OS C output function. Results of attempting to interleave these
streams without explicitly flushing, are undefined. Output to cerr doesn’t have to be
explicitly flushed, since cerr is unit-buffered.

Input to cin may be interleaved with input to stdin, without sync_with_stdio(), on

a line-by-line basis. Results of attempting to interleave on a per-character basis are
undefined.

z/OS V1R4.0 C/C++ Programming Guide

// Example of interleaving I/0 without sync_with_stdio()
//

// tsyncwos.cxx

#include <stdio.h>

#include <fstream.h>

int main() {
cout << "object: to illustrate interleaving input and output\n
" without sync_with_stdio()\n" << endl;

printf("interleaving output ");
cout << "works with an (end of line 1) \n" << flush;
cout << "explicit flush of cout " << flush;
printf("(end of line 2)\n\n");

char stringl[80] = "";
char string2[80] = "";
char string3[80] = "";

char* rc = NULL;

cout << "type the following 3 Tines:\n"
"interleaving input\n"
"on a per-line basis\n"
"is supported\n" << endl;

cin.getline(stringl, 80);
rc = gets(string2);
cin.getline(string3, 80);

cout << "\nstringl is \"" << stringl << "\"\n"
<< "string2 is \"" << string2 << "\"\n"
<< "string3 is \"" << string3 << "\"\n" << endl;
// The endl manipulator inserts a newline
// character and calls flush().

char charl = '\0';
char char2 "\0';
char char3 = '\0';

cout << "type the following 2 Tines:\n"
"results of interleaving input on a per-\n"
"character basis are not defined\n" << endl;

cin >> charl;

char2 = (char) getchar();

cin >> char3;

cout << "\ncharl s \'" << charl << "\'\n"

<< "char2 is \'" << char2 << "\'\n"
<< "char3 is \'" << char3 << "\'\n" << flush;

Figure 8. Interleaving I/0 without sync_with_stdio() (Part 1 of 2)

Chapter 10. Using C and C++ Standard Streams and Redirection

91

// sample output (with user input shown underlined):

//

// object: to illustrate interleaving input and output
// without sync_with_stdio()

//

// interleaving output works with an (end of Tine 1)
// explicit flush of cout (end of line 2)
/1

// type the following 3 Tines:
// interleaving input

// on a per-line basis

// is supported

// interleaving-input
// on a per-line basis
// is supported

// stringl is "interleaving input"
// string2 is "on a per-line basis"
// string3 is "is supported"

// type the following 2 Tines:
// results of interleaving input on a per-
// character basis are not defined

// results of interleaving input on a per-
// character basis are not defined

// charl is 'r'
// char2 is 'c'
// char3 is 'e'

Figure 8. Interleaving I/O without sync_with_stdio() (Part 2 of 2)

Redirecting Standard Streams

This section describes redirection of standard streams:
* From the command line

* By assignment

* With freopen()

* With the MSGFILE run-time option

Note that, C++ standard streams are implemented in terms of C standard streams.
Therefore, cin, cout, cerr, and clog are implicitly redirected when the
corresponding C standard streams are redirected. These streams can be redirected
by assignment, as described in|“Assigning the Standard Streams” on page 94[If
freopen() is applied to a C standard stream, creating a binary stream or one with
"type=record", then behavior of the related stream is undefined.

Redirecting Streams from the Command Line
To redirect a standard stream to a file from the command line, invoke your program
by entering the following:
1. Program name

2. Any parameters your program requires (these may be specified before and after
the redirection)

92 2/0S V1R4.0 C/C++ Programming Guide

3. Aredirection symbol followed by the name of the file that is to be used in place
of the standard stream

Note: If you specify a redirection in a system() call, after system() returns, the
streams are redirected back to those at the time of the system() call.

Using the Redirection Symbols

The following table lists the redirection symbols supported by z/OS C/C++ (when
not running under one of the z/OS UNIX shells) for redirection of C standard
streams from the command line or from a system() call. 0, 1, and 2 represent
stdin, stdout, and stderr, respectively.

Table 11. z/OS C/C++ Redirection Symbols

Symbol Description

<fn associates the file specified as fn with stdin; reopens fnin mode r.
0<fn associates the file specified as fn with stdin; reopens fn in mode r.
>fn associates the file specified as fn with stdout; reopens fnin mode w.
1>fn associates the file specified as fn with stdout; reopens fnin mode w.
>>fn associates the file specified as fn with stdout; reopens fnin mode a.
2>fn associates the file specified as fn with stderr; reopens fnin mode w.
2>>fn associates the file specified as fn with stderr; reopens fn in mode a.
2>8&1 associate stderr with stdout; same file and mode.

1>&2 associate stdout with stderr; same file and mode.

Notes:

1. If you use the NOREDIR option on a #pragma runopts directive, or the NOREDIR
compile-time option, you cannot redirect standard streams on the command line
using the preceding list of symbols.

2. If you want to pass one of the redirection symbols as an argument, you can
enclose it in double quotation marks. For example, the following passes the
string "here are the args including a <" to prog and redirects stdout to
redirl output a.

prog "here are args including a <" >"redirl output a"

3. TSO (batch and online) and MVS batch support command line arguments. CICS
and IMS do not.

4. When two options specifying redirection conflict with each other, or when you
redirect a standard stream more than once, the redirection fails. If you do the
latter, you will get an abend. For example, if you specify

2>41

and then

1>8&2
z/OS C/C++ uses the first redirection and ignores any subsequent ones. If you
specify

>a.out

and then
1>&2

Chapter 10. Using C and C++ Standard Streams and Redirection 93

the redirection fails and the program abends.

5. Afailed attempt to redirect a standard stream causes your program to fail in
initialization.

Assigning the Standard Streams

This method of redirecting streams is known as direct assignment. You can redirect
a C standard stream by assigning a valid file pointer to it, as follows:

FILE *stream;

stream = fopen("new.file", "w+");

stdout = stream;

You must ensure that the streams are appropriate; for example, do not assign a
stream opened for w to stdin. Doing so would cause a function such as getchar()
called for the stream to fail, because getchar() expects a stream to be opened for
read access.

Similarly, you can redirect a standard stream under C++ by assignment:

ofstream myfile("myfile.data");
cout = myfile;

Again, you must ensure that the assigned stream is appropriate; for example, do
not assign an fstream opened for ios::out only to cin. This will cause a
subsequent read operation to fail.

Using the freopen() Library Function

You can use the freopen() C library function to redirect C standard streams in alll
environments.

Redirecting Streams with the MSGFILE Option

You can redirect stderr by specifying a ddname on the MSGFILE run-time option and
not redirecting stderr elsewhere (such as on the command line). The default
ddname for the z/OS Language Environment MSGFILE is SYSOUT. See[z/09
[Language Environment Programming Guidg for more information on MSGFILE.

MSGFILE Considerations

z/OS C/C++ makes a distinction between types of error output according to whether
the output is directed to the MSGFILE, to stderr, or to stdout:

Table 12. Output Destinations under z/OS C/C++

Destination of
Output Type of Message Produced by

MSGFILE output

Default Destination
MSGFILE ddname

z/OS Language z/OS Language
Environment Environment
messages (CEExxxx) conditions

z/0OS C/C++ language z/OS C/C++
messages (EDCxxxx) unhandled conditions

MSGFILE ddname

stderr messages perror() messages Issued by a call, for MSGFILE ddname *

94

(EDCxxxx)

example, to: perror()

User output sent
explicitly to stderr

z/OS V1R4.0 C/C++ Programming Guide

Issued by a call to MSGFILE ddname
fprintf()

Table 12. Output Destinations under z/OS C/C++ (continued)

Destination of
Output

Type of Message

Produced by

Default Destination

stdout messages

User output sent
explicitly to stdout

Issued by a call, for
example, to: printf()

stdout 2

All stderr output is by default sent to the MSGFILE destination, while stdout output
is sent to its own destination. When stderr is redirected to stdout, both share the
stdout destination. When stdout is redirected to stderr, both share the stderr

destination.

If you specified one of the DDs used in the stdout open search order as the DD for
the MSGFILE option, then that DD will be ignored in the stdout open search.

describes the destination of output to stderr and stdout after redirection
has occurred. Whenever stdout and stderr share a common destination, the
output is interleaved. The default case is the one where stdout and stderr have

not been redirected.

Table 13. z/OS C/C++ Interleaved Output

stderr not
redirected

stderr redirected to
destination other
than stdout

stderr redirected to
stdout

stdout not
redirected

stdout to itself stderr
to MSGFILE

stdout to itself stderr
to its other destination

Both to stdout

stdout redirected to
destination other
than stderr

stdout to its other
destination stderr to
MSGFILE

stdout to its other
destination stderr to
its other destination

Both to the new
stdout destination

stdout redirected to
stderr

z/OS C/C++ routes error output as follows:
* MSGFILE output

Both to MSGFILE

Both to the new
stderr destination

stdout to stderr
stderr to stdout

— zI/OS Language Environment messages (messages prefixed with CEE)
— Language messages (messages prefixed with EDC)

* stderr output

— perror messages (messages prefixed with EDC and issued by a call to

perror())

— Output explicitly sent to stderr (for example, by a call to fprintf())

By default, z/OS C/C++ sends all stderr output to the MSGFILE destination and
stdout output to its own destination. You can change this by using z/OS C/C++
redirection, which enables you to redirect stdout and stderr to a ddname, file
name, or each other. Unless you have redirected stderr, it always uses the
MSGFILE destination. When you redirect stderr to stdout, stderr and stdout
share the stdout destination. When you redirect stdout to stderr, they share the

stderr destination.

1. When you are using one of the z/OS UNIX shells, stderr will go to file descriptor 2, which is typically the terminal. See

|Chapter 17, “Language Environment Message File Operations” on page 231 for more information about z/OS Language

Environment message files.

2. When you are using one of the z/OS UNIX shells, stdout will go to file descriptor 1, which is typically the terminal.

Chapter 10. Using C and C++ Standard Streams and Redirection

95

Redirecting Streams under z/OS

This section describes how to redirect C standard streams under MVS batch and
under TSO.

Under MVS Batch

96

You can redirect standard streams in the following ways:

* From the freopen() library function call

* On the PARM parameter of the EXEC used to invoke your C or C++ program
» Using DD statements

Because the topic of JCL statements goes beyond the scope of this book, only
simple examples will be shown here.

Using the PARM Parameter of the EXEC Statement

The following example shows an excerpt taken from a job stream. It demonstrates

both the redirection of stdout using the PARM parameter of the EXEC statement, and

the way to redirect to a fully qualified data set. You can use the redirection symbols
described in|Table 11 on page 93

Suppose you have a program called BATCHPGM. with 1 required parameter 'DEBUG'.
The output from BATCHPGM is to be directed to a sequential data set called
'"MAINT.LOG.LISTING'. You can use the following JCL statements:

//J0Bname JOB...
//STEPO1 EXEC PGM=BATCHPGM,PARM='DEBUG >''MAINT.LOG.LISTING"'"'

The following JCL redirects output to an unqualified data set using the same
program name, parameter and output data set as the example above:

//STEPO1 EXEC PGM=BATCHPGM,PARM='DEBUG >LOG.LISTING'

If your userid were TSOU812, stdout would be sent to TSOU812.L0G.LISTING.

Using DD Statements
When you use DD statements to redirect standard streams, the standard streams
will be associated with ddnames as follows:

¢ stdin will be associated with the SYSIN ddname. If SYSIN is not defined, no
characters can be read in from stdin.

* stdout will be associated with the SYSPRINT ddname. If SYSPRINT is not defined,
the C library will try to associate stdout with SYSTERM, and if SYSTERM is also not
defined, the C library will try to associate stdout with SYSERR. If any of the above
DD statements are used as the MSGFILE DD, then that DD statement will not be
considered for use as the stdout DD.

» stderr will be associated with the MSGFILE, which defaults to SYSOUT. See
|Language Environment Programming Guidel for more information on MSGFILE.
 If you are running with the run-time option POSIX(ON), you can redirect standard

streams with ddnames only for MVS data sets, not for HFS files.

 |If the ddname for stdout is not allocated to a device or data set, it is dynamically
allocated to the terminal in an interactive environment or to SYSOUT=* in an MVS
batch environment.

z/OS V1R4.0 C/C++ Programming Guide

Under TSO

The following table summarizes the association of streams with ddnames:

Table 14. Association of Standard Streams with ddnames

Standard stream fdname Alternate ddname
stdin SYSIN none
stdout SYSPRINT SYSTERM, SYSERR
stderr DD associated with MSGFILE None

The following MVS example shows an excerpt taken from a job stream
demonstrating the redirection of the three standard streams by using ddnames.

In the example, your program name is MONITOR and the input to MONITOR is to be
retrieved from a sequential data set called 'SAFETY.CHEM.LIST'. The output of
MONITOR is to be directed to a partitioned data set member called
"YEAREND.ACTION(CHEM) ', and any errors generated by MONITOR are to be written to
a sequential data set called 'YEAREND.MONITOR.ERRLIST'. To redirect the standard
streams using DD statements you could use the following JCL statements:

//J0Bname JOB...

//STEPO1 EXEC PGM=MONITOR,PARM="'MSGFILE(SYSERR)/"
//SYSIN DD DSN=SAFETY.CHEM.LIST,DISP=0LD
//SYSERR DD DSN=YEAREND.MONITOR.ERRLIST,DISP=MOD

//SYSPRINT DD DSN=YEAREND.ACTION(CHEM),DISP=0LD

The following example shows how to get stdout and stderr to share the same file
where: the program name is HOCKEY and the input to HOCKEY is to be retrieved from
a sequential data set called 'HOCKEY.PLAYER.LIST'. The output of HOCKEY is to be
directed to a sequential data set called "HOCKEY.OUTPUT' and any errors generated
by HOCKEY are also to be written to the sequential data set '"HOCKEY.OUTPUT'. You
could use the following JCL statements:

//J0Bname JOB...
//STEPO1 EXEC PGM=HOCKEY,PARM='/ 2>&1'
//SYSIN DD DSN=HOCKEY.PLAYER.LIST,DISP=SHR

//SYSPRINT DD DSN=HOCKEY.OUTPUT,DISP=(OLD),DCB=...
stderr shares stdout because of the 2>&1 redirection statement.

If you want to redirect to an HFS file, you can modify the above examples to use
the PATH and PATHOPT options described in[‘DDnames” on page 62}

You can redirect standard streams in the following ways:
» From the freopen() library function call

* From the command line

» Using the parameter list in a CALL command

From the Command Line

The following example illustrates the redirection of stdin under TSO. The program
in this example is called BUILD and it has 2 required parameters, 'PLAN' and
"JOHNSTON'. The input to BUILD is to be retrieved from a partitioned data set
member called 'CONDO(SPRING)'. To redirect stdin in this example under TSO you
can use the following command:

Chapter 10. Using C and C++ Standard Streams and Redirection 97

Under IMS

Under CICS

BUILD PLAN JOHNSTON <'CONDO(SPRING)'

Notes:

1. If the data set name is not enclosed in quotation marks, your user prefix will be
appended to the data set name specified.

2. If you specify a redirection in a system() call, after system() returns, the
streams are redirected back to those at the time of the system() call.

Using the Parameter List in a CALL Command
You can also redirect the output to a file with a ddname in TSO by specifying the
output file in the parameter list like the following:

CALL 'PREFIX.PROGRAM' '>DD:QUTFILE'

The ddname can be created by an ALLOCATE command.

Under IMS online and batch, you can redirect the C standard streams in any of the
following ways:

» with direct assignment
 with the freopen() function
* with ddnames

For details on ddnames, see [‘Using DD Statements” on page 96|

There are several ways to redirect C standard streams under CICS:

* You can assign a memory file to the stream (for example, stdout=myfile).
* You can use freopen() to open a standard stream as a memory file.

* You can use CICS facilities to direct where the stream output goes.

If you assign a file pointer to a stream or use freopen() on it, you will not be able
to use C functions to direct the information outside or elsewhere in the CICS
environment. Once access to a CICS transient data queue has been removed,
either by a call to freopen() or fclose(), or by the assignment of another file
pointer to the stream, z/OS C/C++ does not provide a way to regain access. Once
C functions have lost access to the transient data queues, you must use the
CICS-provided facilities to regain it.

CICS provides a facility that enables you to direct where a given transient data
queue, the default standard stream implementation, will go, but you must configure
this facility before a CICS cold start.

Passing C and C++ Standard Streams Across a system() Call

A system() call occurs when one z/OS C/C++ program calls another z/OS C/C++
program by using the ANSI system() function, which z/OS C/C++ uses if you are
not running with POSIX(ON). Standard streams are inherited across calls to the ANSI
system() function. With a POSIX system() function, file descriptors 0, 1, and 2 will
be mapped to standard streams stdin, stdout and stderr in the child process. The
behavior of these streams is similar to binary streams called with the ANSI system()
function.

Inheritance includes any redirection of the stream as well as the open mode of the
stream. For example, if program A reopens stdout as "A.B" for "wb" and then calls

98 2/0S V1R4.0 C/C++ Programming Guide

program B, program B inherits the definition of stdout. If program B reopens stdout
as "C.D" for "ab" and then uses system() to call program C, program C inherits
stdout opened to "C.D" for append. Once control returns to the calling program, the
definitions of the standard streams from the time of the system() call are restored.
For example, when program B finally returns control to program A, stdout is
restored to "A.B" opened for "wb".

The file position and the amount of data that is visible in the called and calling
programs depend on whether the standard streams are opened for binary, text, or
record 1/0O.

The behavior of the C standard streams across a system() call indicates the
behavior of all standard streams since they are implemented in terms of the C
standard streams.

Passing Binary Streams

If the standard stream being passed across a system() call is opened in binary
mode, any reads or writes issued in the called program occur at the next byte in the
file. On return, the position of the file is wherever the called program is positioned.
This includes any possible repositions made by the called program if the file is
enabled for positioning. Because output to binary files is done byte by byte, all
bytes are written to stdout and stderr in the order they are written. This is shown
in the following example:

printf("123");

printf("456");

system("CHILD"); ------ > int main(void) { putc('7',stdout);}

printf("89");

The output from this example is:
123456789

Memory files are always opened in binary mode, even if you specify text. Any
standard streams redirected to memory files and passed across system() calls will
be treated as binary files. HFS files are also treated as binary files, because they
do not contain any real record boundaries. Memory files are not passed across calls
to the POSIX system() function.

If freopen() is applied to a C standard stream, thereby creating a binary stream,
then the results of 1/0 to the associated standard stream across a system() call are
undefined.

Passing Text Streams

If the C standard stream being passed across a system() call is opened in text
mode (the default), the file position in the called program is placed at the next
record boundary, if it is not already at the start of a record. Any data in the current
record that is unread is skipped. Here is an example:

Chapter 10. Using C and C++ Standard Streams and Redirection 99

INPUT FILE ROOT C PROGRAM CHILD PROGRAM

---------- int main() { int main() {
abcdefghijklm char c[4]; char d[2];
nopqrstuvwxyz c[0] = getchar(); d[0] = getchar();
0123456789ABC c[1] = getchar(); d[1] = getchar();
DEFGHIJKLMNOP system("CHILD"); printf("%.2s\n",
c[2] = getchar(); d);
c[3] = getchar(); }

printf("%.4s\n",c);

OUTPUT
no ---> from the child
abo1 ---> from root

When you write to a spanned file, the file position moves to the beginning of the
next record, if that record exists. If not, the position moves to the end of the
incomplete record.

For non-spanned standard streams opened for output, if the caller has created a
text record missing an ending control character, the last record is hidden from the
called program. The called program can append new data if the stream is open in
append mode. Any appends made by the called program will be after the last
record that was complete at the time of the system() call.

When the called program terminates, it completes any new unfinished text record
with a new-line; the addition of the new-line does not move the file position. Once
any incomplete record is completed, the file position moves to the next record
boundary, if it is not already on a record boundary or at EOF.

When control returns to the original caller, any incomplete record hidden at the time
of the system() call is restored to the end of the file. If the called program is at EOF
when it is terminated and the caller was within an incomplete record at the time of
the system() call, the position upon return is restored to the original record offset at
the time of the system() call. This position is usually the end of the incomplete
record. Generally, if the caller is writing to a standard stream and does not complete
the last record before it calls system(), writes continue to add to the last record
when control returns to the caller. For example:

printf("test");

printf("abc");

system("hello"); ------ > int main(void) { printf("hello world\n");}
printf("def\n");

The output from this example is as follows:

test
hello world
abcdef

If stdout had been opened for "w+" in this example, and a reposition had been

made to the character 'b' before the system() call, upon return, the incomplete
record "abc" would have been restored and the position would have been at the
'b'. The subsequent write of def would have performed an update to give test

hello world adef.

C++ Standard Streams Considerations
The following sections are considerations for C++ standard streams.

100 2z/0S V1R4.0 C/C++ Programming Guide

Output with sync_with_stdio(): When a standard output stream is open in text
mode (the default), and sync_with_stdio() has been called, the output across a
system() call behaves the same as a C standard stream:

» If the parent program writes a newline character, the line will be flushed before
the child program is invoked;

» Otherwise, the output from the parent will be held in a buffer until the child
returns.

Output without sync_with_stdio(): When a standard output stream is open in
text mode, and sync_with_stdio() has not been called, the behavior is as follows:

 If the parent program writes a newline character, and explicitly flushes it, the line
will be written out before the child program is invoked;

e Otherwise, the behavior is undefined.

Input with sync_with_stdio(): When cin is open in text mode (the default), and
sync_with_stdio() has been called, the input across a system() call behaves the
same as stdin:

» The child program begins reading at the next record boundary, that is, unread
data in the current record in the parent is hidden.

* When the child program returns, the parent program begins reading at the next
record boundary, that is, unread data in the current record in the child is lost.

Input without sync_with_stdio(): When cin is open in text mode, and
sync_with_stdio() has not been called, the behavior is as follows:

* The parent program must either not read from cin before calling the child, or
must read to the end of a complete record.

» The child program begins reading at the next record boundary, that is, unread
data in the current record in the parent is hidden.

* When the child program returns, the parent program begins reading at the next
record boundary, that is, unread data in the current record in the child is lost.

 If the parent program read only part of a record before calling the child, the
behavior upon returning from the child is undefined.

Passing Record I/0O Streams

For record 1/0O, all reads and writes made by the called program occur at the next
record boundary. Since complete records are always read and written, there is no
change in the file position across a system() call boundary.

In the following example, stdout is a variable-length record I/O file.

fwrite("test",1,4,stdout);

fwrite("abc",1,3,stdout);

system("hello"); ------ > int main(void) {

fwrite("def",1,3,stdout); fwrite("hello world",1,11,stdout)
}

The output from this code fragment is as follows:

test

abc

hello world
def

Chapter 10. Using C and C++ Standard Streams and Redirection 101

If freopen() is applied to a C standard stream, creating a stream with
"type=record", then behavior of the associated I/0O stream is undefined across a
system() call.

Using Global Standard Streams

In the default inheritance model, the behavior of C standard streams is such that a
child main() function cannot affect the standard streams of the parent. The child
can use the parent’s definition or redirect a standard stream to a new location, but
when control returns to the parent, the standard stream reverts back to the
definition of the parent. In the global model, the C standard streams, stdin, stdout,
and stderr, can be redirected to a different location while running in a child main()
function and have that redirection stay in effect when control returns to the parent.
You can use the _[EDC_GLOBAL_STREAMS environment variable to set standard
stream behavior to the global model. For more information, see

I EDC_GLOBAL_STREAMS’” on page 491}

highlights the standard stream behavior differences between the default
inheritance model and the global model.

Table 15. Standard Stream Behavior Differences

Behavior Default Inheritance Model Gllobal Model
POSIX(OFF) Standard streams are opened automatically on (Same)
first reference.
POSIX(ON) Standard streams are opened during initialization | Not supported.
of the process, before the application receives
control.
default open modes As currently described in ['Default Open Modes” on|| (Same)
bage &g
default locations As currently described in this chapter. (Same)
command line redirection | Changes the location for the main being called Changes the location for the entire C
and subsequent child programs. environment.
direct assignment Affects the current main and subsequent child Affects the current main only. This
programs. definition is not passed on to a
subsequent child program. The child
gets the current global definition, if
there is one defined.
freopen() Changes location for the main from which it is Changes location for the entire C
called and affects any subsequent child programs. | environment.
MSGFILE() run-time Redirects stderr for the main being invoked and | (Same)
option affects any subsequent child programs. When

control returns to a parent program, stderr reverts
back to the definition of the parent. If stderr is
also redirected on the command line, that
redirection takes precedence.

fclose() Closes the standard stream in current main only. | Closes the standard stream for the
entire C environment. The standard
stream cannot be global anymore.
Only direct assignment can be used
to use the standard stream, and that
would only be for the main in which it
is assigned.

102 2/0S V1R4.0 C/C++ Programming Guide

Table 15. Standard Stream Behavior Differences (continued)

Behavior

Default Inheritance Model Global Model

file position and visible
data

As currently described in this chapter. File position and visible data across
mains are as if there were only one
main. No special processing occurs
during the ANSI system() call. The
standard streams are left untouched.
When either entering or returning
from a child program, reading or
writing to the standard streams begin
where previously left off,

C++ 1/O Stream

cin defaults to stdin (Same)
cout defaults to stdout

cerr defaults to stderr (unbuffered)
clog defaults to stderr (buffered)

Notes:

1. The following environments do not allow global standard stream behavior as an
option:
* POSIX(ON)
« CICS
« SPC

2. You must identify the behavior of the standard streams to the C run-time library
before initialization of the first C main in the environment. The default behavior
uses the inheritance model. Once you set the standard stream behavior, it
cannot be changed. Attempts to change the behavior after the first C main has
been initialized are ignored.

3. The value of the environment variable, when queried, does not necessarily
reflect the standard stream behavior being used. This is because the value of
the environment variable can be changed after the standard stream behavior
has been set.

4. The behaviors described in |Tab|e 15 on page 102| only apply to the standard
streams that use the global behavior.

Command Line Redirection

In the C standard stream global model, command line redirection of the standard
streams is supported, but has much different behavior than the C standard stream
inheritance model.

The most important difference is that when redirection is done at system() call time,
the redirection takes effect for the entire C environment. When the child program
terminates, the standard stream definitions do not revert back to what they were
before the system() call.

Redirection of any of the standard streams, except when stderr is redirected to
stdout or vice versa, causes the standard stream to be flushed. This is because an
freopen() is done under the covers, which first closes the stream before reopening
it. Since the standard stream is global, the close causes the flush.

Redirecting stderr to stdout, or stdout to stderr, does not flush the redirected

stream. Any data in the buffer remains there until the stream is redirected again, to
something other than stdout or stderr. Only then is the buffer flushed.

Chapter 10. Using C and C++ Standard Streams and Redirecton 103

Consider the following example:

#include <stdio.h>

#include <stdlib.h>

main() {
int rc;
printf("line 1\n");
printf("line 2");
fprintf(stderr,"line 3\n");
fprintf(stderr,"1ine 4");
rc=system("PGM=CHILD,PARM="'/ >stdout.file 2>&1;'")
printf("line 5\n");
fprintf(stderr,"Tine 6\n");

Figure 9. PARENT.C

#include <stdio.h>
main() {
printf("line 7\n");
fprintf(stderr,"line 8\n");
stderr = freopen("stderr.file","w",stderr);
printf("line 9\n");
fprintf(stderr,"Tine 10\n");

Figure 10. CHILD.C

When run from TSO terminal using the following command:
parent ENVAR(_EDC_GLOBAL_STREAMS=7)/

the output will be as follows:

(terminal) stdout.file stderr.file
line 1 line 7 line 10
line 3 line 8 line 6

line 2 line 9

line 4 line 5

Attention: If the stdout or stderr stream has data in its buffer and it is redirected
to stderr or stdout, then the data is lost if stdout or stderr is not redirected again.

Note: If either stdout or stderr is using global behavior, but not both, then any
redirection of stdout or stderr to stderr or stdout is ignored.

Direct Assignment

freopen()

You can directly assign the C standard streams in any main program. This
assignment does not have any effect on the global standard stream. No flush is
done and the new definition is not passed on to a child program nor back to a
parent program. Once you directly assign a standard stream, there is no way to
re-associate it with the global standard stream.

When you use freopen() to redirect a standard stream, the stream is closed,
causing a flush, and then redirected. The new definition affects all C mains currently
using the global stream.

104 2/0S V1R4.0 C/C++ Programming Guide

MSGFILE() Run-Time Option

The MSGFILE() run-time option redirects the stderr stream similar to command line
redirection. However, this redirection is controlled by the Common Execution Library
and does not apply to all C mains in the environment. When control returns to a
parent program, stderr reverts back to the definition of the parent.

fclose()
When a global standard stream is closed, only direct assignment can be used to
begin using the standard stream again. That use would only be for the main
performing the direct assignment. There is no way to get back global behavior for
the standard stream that was closed.

File Position and Visible Data

The file position and amount of visible data in the called and calling program is as if
there is only one program. There is no data hidden from a called program. A child
program continues where the parent program left off. This is true for all types of 1/O:
binary, text, and record.

C++ 1/0O Stream Library

Since cin, cout, cerr and clog are initially based on stdin, stdout and stderr, they
continue to be in the global model. For example, if stdout is redirected using
freopen() in a child program, then both stdout and cout retain that redirection
when control returns to the parent.

Chapter 10. Using C and C++ Standard Streams and Redirecton 105

106 z/0S V1R4.0 C/C++ Programming Guide

Chapter 11. Performing OS I/O Operations

This chapter describes using OS 1/O , which includes support for the following:
* Regular sequential DASD (including striped data sets)

» Partitioned DASD (PDS and PDSE)

* Tapes

e SYSOUT

* Printers

* In-stream JCL

Note: z/OS C/C++ does not support BDAM or ISAM data sets.

OS 1/O supports text, binary, and record /O, in three record formats: fixed (F),
variable (V), and undefined (U). For information about using wide-character 1/0 with
z/OS C/C++, see |Chapter 9, “z/OS C Support for the Double-Byte Character Set” on|

This chapter describes C 1/O stream functions as they can be used within C++
programs. If you want to use the C++ |/O stream classes instead, see IEhapter 5,|
|"Using the Standard C++ Library 1/0 Stream Classes” on page 49| for general
information. For more detailed information about 1/0 streaming see the following:

e Standard C++ Library Reference discusses the Standard C++ 1/O stream
classes. It can be found at
http://www.ibm.com/software/ad/c390/czos/czosdocs.html.

+ |IBM Open Class Library User’s Guidd and |IBM Open Class Library Reference)

\ol. 1|discuss the Unix Systems Laboratories C++ Language System Release
(USL) I/O Stream Library.

Opening Files

To open an OS file, you can use the Standard C functions fopen() or freopen().
These are described in general terms in [z/0S C/C++ Run-Time Library Reference,
Details about them specific to all z/OS C/C++ 1/O are discussed in the "Opening
Files” section. This section describes considerations for using fopen() and
freopen() with OS files.

Using fopen() or freopen()

When you open a file using fopen() or freopen(), you must specify the file name (a
data set name) or a ddname.

Using a Data Set Name

Files are opened with a call to fopen() or freopen() in the format
fopen("filename", "mode"). The following diagram shows the syntax for the
filename argument on your fopen() or freopen() call:

© Copyright IBM Corp. 1996, 2002 107

108

> Y qualifier ><
|_//_| |_'_| |_(member-)_l |_'_|

—[+ :l—number—
0.

—[& ualifier
&

Note: The single quotation marks in the filename syntax diagram must be matched;

if you use one, you must use the other.

A sample construct is:

‘qualifierl.qualifier2(member)'

Specifying these slashes indicates that the filename refers to a non-POSIX file
or data set.

qualifier

Each qualifier is a 1- to 8-character name. These characters may be
alphanumeric, national ($, #, @), the hyphen, or the character X'C0'". The first
character should be either alphabetic or national. Do not use hyphens in names
for RACF-protected data sets.

You can join qualifiers with periods. The maximum length of a data set name is
as follows:

* Generally, 44 characters, including periods.
» For a generation data group, 35 characters, including periods.

These numbers do not include a member name or GDG number and
accompanying parentheses.

Specifying one or two ampersands before a single qualifier opens a temporary
data set. Multiple qualifiers are not valid after ampersands, because the system
generates additional qualifiers. Opening two temporary data sets with the same
name creates two distinct files. If you open a second temporary data set using
the same name as the first, you get a distinct data set. For example, the
following statements open two temporary data sets:

fp = fopen("//&8myfile","wb+");

p2 = fopen("//88myfile", "wb+");

You cannot fully qualify a temporary data set name. The file is created at open
time and is empty. When you close a temporary data set, the system removes
it.

(member)

If you specify a member, the data set you are opening must be a PDS or a
PDSE. For more information about PDSs and PDSEs, see
|Extended Partitioned Data Sets” on page 114l For members, the member name
(including trailing blanks) can be up to 8 characters long. A member name
cannot begin with leading blanks. The characters in a member name may be
alphanumeric, national ($, #, @), the hyphen, or the character X'CO". The first
character should be either alphabetic or national.

+number
—-number

z/0OS V1R4.0 C/C++ Programming Guide

0 You specify a Generation Data Group (GDG) by using a plus (+) or minus (=) to
precede the version number, or by using a 0. For more information about
GDGs, see [‘Generation Data Group 1/0” on page 110}

The Resource Access Control Facility (RACF) expects the data set name to have a
high-level qualifier that is defined to RACF. RACF uses the entire data set name
when it protects a tape data set.

When you enclose a name in single quotation marks, the name is fully qualified.
The file opened is the one specified by the name inside the quotation marks. If the
name is not fully qualified, z/OS C/C++ does one of the following:

» If your system does not use RACF, z/OS C/C++ does not add a high-level
qualifier to the name you specified.

* If you are running under TSO (batch or interactive), z/OS C/C++ appends the
TSO user prefix to the front of the name. For example, the statement
fopen("a.b","w"); opens a data set tsoid.A.B, where tsoid is the user prefix. If
the name is fully qualified, z/OS C/C++ does not append a user prefix. You can
set the user prefix by using the TSO PROFILE command with the PREFIX
parameter.

» If you are running under z/OS batch or IMS (batch or online), z/OS C/C++
appends the RACF user ID to the front of the name.

If you want your code to be portable between the VM/CMS and z/OS systems and
between memory files and disk files, use a name of the format namel.name2, where
namel and nameZ2 are up to 8 characters and are delimited by a period, or use a
ddname. You can also add a member name.

For example, the following piece of code can run under Language Environment for
VM and z/OS Language Environment;

FILE *stream;

stream = fopen("parts.instock", "r");

Using a DDname
The DD statement enables you to write C or C++ source programs that are

independent of the files and input/output devices they use. You can modify the
parameters of a file or process different files without recompiling your program.

Use ddnames if you want to use non-DASD devices.

If you specify DISP=MOD on a DD statement and w or wb mode on the fopen() call,
z/OS C/C++ treats the file as if you had opened it in append mode instead of write
mode.

To open a file by ddname under z/OS batch, you must define the ddname first. You
can do this in any of the following ways:

* In batch (z/OS, TSO, or IMS), you can write a JCL DD statement. For the
declaration shown above for the C or C++ file PARTS.INSTOCK, you write a JCL DD
statement similar to the following:

//STOCK DD DSN=USERID.PARTS.INSTOCK,DISP=SHR
When defining DD, do not use DD ... FREE=CLOSE for unallocating DD

statements. The C library may close files to perform some file operations such as
freopen(), and the DD statement will be unallocated.

Chapter 11. Performing OS 1/0 Operations 109

If you use SPACE=RLSE on a DD statement, z/OS C/C++ releases space only if all

of the following are true:

— The file is open in w, wb, a, or ab mode

— It is not simultaneously open for read

— No positioning functions (fseek(), ftel1(), rewind(), fgetpos(), fsetpos())
have been performed.

For more information on writing DD statements, refer to the job control language
(JCL) manuals listed in [z/OS Information Roadmap}

* Under TSO (interactive and batch), you can issue an ALLOCATE command. The DD
definition shown above for the C file STOCK has an equivalent TSO ALLOCATE
command, as follows:

ALLOCATE FILE(STOCK) DATASET(PARTS.INSTOCK) SHR

See z/0OS Information Roadmag for manuals containing information on TSO
ALLOCATE.

* In the z/OS environment, you can use the svc99() or dynalloc() library functions
to define ddnames. For information about these functions, refer to |z/0S C/C+

[Run-Time Library Referencel

DCB Parameter: The DCB (data control block) parameter of the DD statement
allows you to describe the characteristics of the data in a file and the way it will be
processed at run time. The other parameters of the DD statement deal chiefly with
the identity, location, and disposition of the file. The DCB parameter specifies
information required for the processing of the records themselves. The
subparameters of the DCB parameter are described in [z/Z0S MVS JCL User’s Guidd,

The DCB parameter contains subparameters that describe:

* The organization of the file and how it will be accessed. Parameters supplied on
fopen() override those specified in DCB.

» Device-dependent information such as the recording technique for magnetic tape
or the line spacing for a printer (for example: CODE, DEN, FUNC, MODE, OPTCD=J,
PRTSP, STACK, SPACE, UNIT and TRTCH subparameters).

* The data set format (for example: BLKSIZE, LRECL, and RECFM subparameters).

You cannot use the DCB parameter to override information already established for
the file in your C or C++ program (by the file attributes declared and the other
attributes that are implied by them). DCB subparameters that attempt to change
information already supplied by fopen() or freopen() are ignored.

An example of the DCB parameter is:
DCB=(RECFM=FB,BLKSIZE=400,LRECL=40)

It specifies that fixed-length records, 40 bytes in length, are to be grouped in a
block 400 bytes long. You can copy attributes from another data set by either
setting the DCB parameter to DCB=(dsname) or using the SVC 99 services provided
by the svc99() and dynalloc() library functions.

Generation Data Group 1/0O

110

A Generation Data Group (GDG) is a group of related cataloged data sets. Each
data set within a generation data group is called a generation data set. Generation
data sets have sequentially ordered absolute and relative names that represent
their age. The absolute generation name is the representation used by the catalog
management routines in the catalog. The relative name is a signed integer used to

z/OS V1R4.0 C/C++ Programming Guide

refer to the latest (0), the next to the latest (-1), and so forth, generation. The
relative number can also be used to catalog a hew generation (+1). For more
information on GDGs, see [zZ0S DFSMS: Using Data Sets|

If you want to open a generation data set by data set name with fopen() or
freopen(), you will require a model. This model specifies parameters for the group,
including the maximum number of generations (the generation index). You can
define such a model by using the Access Method Services DEFINE command. For
more information on the DEFINE command, see [z/0S DFSMS Access Method|
|Services for Cata/ogsl. Note also that fopen() does not support a DCB= parameter. If
you want to change the parameters, alter the JCL that describes the model and
open it in w mode.

z/OS uses an absolute generation and version number to catalog each generation.
The generation and version numbers are in the form GxxxxVyy, where xxxx is an
unsigned 4-digit decimal generation number (0001 through 9999) and yy is an
unsigned 2-digit decimal version number (00 through 99). For example:

* A.B.C.G0001VO0O is generation data set 1, version 0, in generation data group
A.B.C.

* A.B.C.G0O009VO01 is generation data set 9, version 1, in generation data group
A.B.C.

The number of generations kept depends on the size of the generation index.
When you open a GDG by relative number, z/OS C/C++ returns the relative
generation in the __dsname field of the structure returned by the fldata() function.
You cannot use the rename() library function to rename GDGs by relative
generation number; rename GDG data sets by using their absolute names.

The following example defines a GDG. The fopen() fails because it tries to change
the RECFM of the data set.

Chapter 11. Performing OS 1/0 Operations 111

CCNGOS1
This example is valid only for C:

/27y
//* This example demonstrates GDG I/0
/27y
//* Create GDG model MYGDG.MODEL and GDG name MYGDG

] mmm m e e e e
//MODEL EXEC PGM=IDCAMS

//DD1 DD DSN=userid.MYGDG.MODEL,DISP=(NEW,CATLG),

// UNIT=SYSDA,SPACE=(TRK,(0)),

// DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB)

//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE GDG -
(NAME (userid.MYGDG) -
EMPTY -
SCRATCH -
LIMIT(255))
/*
J] Fm m e m e e e e e e
//* Create GDG data set MYGDG(+1)
/27y
//DATASET EXEC PGM=IEFBR14
//0D1 DD DSN=userid.MYGDG(+1),DISP=(NEW,CATLG),
// SPACE=(CYL,(1,1)),UNIT=SYSDA,
// DCB=userid.MYGDG.MODEL

//SYSPRINT DD SYSOUT=+
//SYSIN DD DUMMY

//* Compile, Tink, and run an inlined C program.

//* This program attempts to open the GDG data set MYGDG(+1) but
//* should fail as it is opening the data set with a RECFM that is
//* different from that of the GDG model (F versus FB).

/27y
//C EXEC EDCCLG,
// CPARM="NOSEQ,NOMARGINS'

//COMPILE.SYSIN DD DATA,DLM='/>'
#include <stdio.h>
#include <errno.h>

int main(void)

{
FILE *fp;
fp = fopen("MYGDG(+1)", "a,recfm=F");
if (fp == NULL)
{
printf("Error...Unable to open file\n");
printf("errno ... %d\n",errno);
perror("perror ... ");
1
printf("Finished\n");
}
/>

Figure 11. Generation Data Group Example for C

112 z/0S V1R4.0 C/C++ Programming Guide

CCNGOS2
This example is valid for C++:

/27y
//* This example demonstrates GDG I/0
/27y
//* Create GDG model MYGDG.MODEL and GDG name MYGDG

] mmmm e e e e e
//MODEL EXEC PGM=IDCAMS

//DD1 DD DSN=userid.MYGDG.MODEL,DISP=(NEW,CATLG),

// UNIT=SYSDA,SPACE=(TRK, (0)),

// DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB)

//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE GDG -

(NAME (userid.MYGDG) -

EMPTY -

SCRATCH -

LIMIT(255))
/*
J] Fmm o m m e e e e e e
//* Create GDG data set MYGDG(+1)
/27y
//DATASET EXEC PGM=IEFBR14
//DD1 DD DSN=userid.MYGDG(+1),DISP=(NEW,CATLG),
// SPACE=(CYL, (1,1)),UNIT=SYSDA,
// DCB=userid.MYGDG.MODEL

//SYSPRINT DD SYSOUT=#
//SYSIN DD DUMMY

//* Compile, bind, and run an inlined C++ program.

//* This program attempts to open the GDG data set MYGDG(+1) but
//* should fail as it is opening the data set with a RECFM that is
//* different from that of the GDG model (F versus FB).

L
/1%

//DOCLG1 EXEC CBCCBG,

// CPARM="NOSEQ,NOMARGINS'

//COMPILE.SYSIN DD DATA,DLM='<>'
#include <stdio.h>

#include <errno.h>

int main(void)

{
FILE *fp;
fp = fopen("MYGDG(+1)", "a,recfm=F");
if (fp == NULL)
{
printf("Error...Unable to open file\n");
printf("errno ... %d\n",errno);
perror("perror ... ");
1
printf("Finished\n");
1
<>

Figure 12. Generation Data Group Example for C++

A relative number used in the JCL refers to the same generation throughout a job.
The (+1) used in the example above exists for the life of the entire job and not just
the step, so that fopen()’s reference to (+1) did not create another new data set
but accessed the same data set as in previous steps.

Chapter 11. Performing OS 1/0 Operations 113

Note: You cannot use fopen() to create another generation data set because
fopen() does not fully support the DCB parameter.

Regular and Extended Partitioned Data Sets

114

Partitioned data sets (PDS) and partitioned data sets extended (PDSE) are DASD
data sets divided into sections known as members. Each member can be accessed
individually by its unique 1- to 8-character name.

PDSEs are similar to PDSs, but contain a number of enhancements.

Table 16. PDSE and PDS Differences

PDSE Characteristics PDS Characteristics
Data set has a 123-extent limit Data set has a 16-extent limit
Directory is open-ended and indexed by Fixed-size directory is searched sequentially

member name; faster to search directory

PDSEs are device-independent: records are |Block sizes are device-dependent
reblockable

Uses dynamic space allocation and Must use IEBCOPY COMPRESS to reclaim
reclamation space

Supports creation of more than one member | Supports creation of only one member at a
at a time* time

Note: *z/OS C/C++ allows you to open two separate members of a PDSE for writing at the
same time. However, you cannot open a single member for writing more than once.

You specify a member by enclosing its name in parentheses and placing it after the
data set name. For example, the following JCL refers to member A of the data set
MY .DATA:

//MYDD DD DSN=userid.MY.DATA(A),DISP=SHR

You can specify members on calls to fopen() and freopen(). You can specify
members when you are opening a data set by its data set name or by a ddname.
When you use a ddname and a member name, the definition of the ddname must
not also specify a member. For example, using the DD statement above, the
following will fail:

fp = fopen("dd:MYDD(B)","r");

You cannot open a PDS or PDSE member using the modes a, ab, a+, a+b, w+, wtb,
or wbh+. If you want to perform the equivalent of the w+ or wb+ mode, you must first
open the file as w or wb, write to it, and then close it. Then you can perform updates
by reopening the file in r+ or rb+ mode. You can use the C library functions ftell()
or fgetpos() to obtain file positions for later updates to the member. Normally,
opening a file in r+ or rb+ mode enables you to extend a file by writing to the end;
however, with these modes you cannot extend a member. To do so, you must copy
the contents of the old member plus any extensions to a new member. You can
remove the old member by using the remove() function and then rename the new
member to the old name by using rename().

All members have identical attributes for RECFM, LRECL, and BLKSIZE. For PDSs, you
cannot add a member with different attributes or specify a RECFM of FBS, FBSA, or
FBSM. z/OS C/C++ verifies any attributes you specify.

For PDSEs, z/OS C/C++ checks to make sure that any attributes you specify are
compatible with those of the existing data set. Compatible attributes are those that

z/OS V1R4.0 C/C++ Programming Guide

specify the same record format (F, V, or U) and the same LRECL. Compatibility of
attributes enables you to choose whether to specify blocked or unblocked format,
because PDSEs reblock all the records. For example, you can create a PDSE as FB
LRECL=40 BLKSIZE=80, and later open it for read as FB LRECL=40 BLKSIZE=1600 or F
LRECL=40 BLKSIZE=40. The LRECL cannot change, and the BLKSIZE must be
compatible with the RECFM and LRECL. Also, you cannot change the basic format of
the PDSE from F to V or vice versa. If the PDS or PDSE already exists, you do not
need to specify any attributes, because z/OS C/C++ uses the previously existing
ones as its defaults.

At the start of each partitioned data set is its directory, a series of records that
contain the member names and starting locations for each member within the data
set. You can access the directory by specifying the PDS or PDSE name without
specifying a member. You can open the directory only for read; update and write
modes are not allowed. The only RECFM that you can specify for reading the
directory is RECFM=U. However, you do not need to specify the RECFM, because z/OS
C/C++ uses U as the default.

[z/0S DFSMS: Using Data Setd contains more detailed explanations about how to
use PDSs and PDSEs.

Partitioned and Sequential Concatenated Data Sets

There are two forms of concatenated data sets: partitioned and sequential. You can
open concatenated data sets only by ddname, and only for read or update.
Specifying any of the write, or append modes fails. As with PDS members, you
cannot extend a concatenated data set.

Partitioned concatenation consists of specifying multiple PDSs or PDSEs under
one ddname. When you access the concatenation, it acts as one large PDS or
PDSE, from which you can access any member. If two or more partitioned data sets
in the concatenation contain a member with the same name, using the
concatenation ddname to specify that member refers to the first member with that
name found in the entire concatenation. You cannot use the ddname to access
subsequent members. For example, if you have a PDS named PDS1, with members
A, B, and C, and a second PDS named PDS2, with members C, D, and E, and you
concatenate the two data sets as follows:

//MYDD DD userid.PDS1,DISP=SHR
// DD userid.PDS2,DISP=SHR

and perform the following:

fp = fopen("DD:MYDD(C)","r");
fp2 = fopen("DD:MYDD(D)","r");

the first call to fopen() finds member C from PDS1, even though there is also a
member C in PDS2. The second call finds member D from PDS2, because PDS2 is the
first PDS in the concatenation that contains this member. The member C in PDS2 is
inaccessible.

When you are concatenating partitioned data sets, be aware of the DCB attributes
for them. The concatenation is treated as a single data set with the following
attributes:

* RECFM= the RECFM of the first data set in the concatenation

» LRECL= the LRECL of the first data set in the concatenation

* BLKSIZE= the largest BLKSIZE of any data set in the concatenation

Chapter 11. Performing OS 1/0 Operations 115

These are the rules for compatible concatenations:

Table 17. Rules for Possible Concatenations

RECFM of first
data set RECFM of subsequent data sets LRECL of subsequent data sets
RECFM=F RECFM=F Same as that of first one
RECFM=FB RECFM=F or RECFM=FB Same as that of first one
RECFM=V RECFM=V Less than or equal to that of first
one
RECFM=VS RECFM=V or RECFM=VS Less than or equal to that of first
one
RECFM=VB RECFM=V or RECFM=VB Less than or equal to that of first
one
RECFM=VBS RECFM=V, RECFM=VB, Less than or equal to that of first
RECFM=VS, or RECFM=VBS one
RECFM=U RECFM=U or RECFM=F (see note
below)
Note: You can use a data set in V-format, but when you read it, you will see all of the
BDWs and RDWs or SDWs with the data.

If the first data set is in ASA format, all subsequent data sets must be ASA as well.
The preceding rules apply to ASA files if you add an A to the RECFMs specified.

If you do not follow these rules, undefined behavior occurs. For example, trying to
read a fixed-format member as RECFM=V could cause an exception or abend.

Repositioning is supported as it is for regular PDSs and PDSEs. If you try to read
the directory, you will be able to read only the first one.

Sequential concatenation consists of treating multiple sequential data sets or
partitioned data set members as one long sequential data set. For example,
//MYDD DD userid.PDS1(A),DISP=SHR

// DD userid.PDS2(E),DISP=SHR
// DD userid.DATA,DISP=SHR

creates a concatenation that contains two members and a regular sequential data
set. You can read or update all of these in order. In partitioned concatenations, you
can read only one member at a time.

z/OS C/C++ does not support concatenating data sets that do not have compatible
DCB attributes. The rules for compatibility are the same as those for partitioned
concatenations.

If all the data sets in the concatenation support repositioning, you can reposition
within a concatenation by using the functions fseek(), ftel1(), fgetpos(),
fsetpos(), and rewind(). If the first one does not, all of the repositioning functions
except rewind() fail for the entire concatenation. If the first data set supports
repositioning but a subsequent one does not, you must specify the noseek
parameter on the fopen() or freopen() call. If you do not, fopen() or freopen()
opens the file successfully; however, an error occurs when the read position gets to
the data set that does not support repositioning.

116 z/0S V1R4.0 C/C++ Programming Guide

In-stream Data Sets

An in-stream data set is a data set contained within a set of JCL statements.
In-stream data sets (also called inline data sets) begin with a DD * or DD DATA
statement. These DD statements can have any valid ddname, including SYSIN. If you
omit a DD statement before the input data, the system provides a DD * statement
with the ddname of SYSIN. This example shows you how to indicate an in-stream
data set:

//MYDD DD =

record 1

record 2

record 3

/*

The // at the beginning of the data set starts in column 1. The statement
fopen("DD:MYDD","rb"); opens a data set with Trec1=80, b1ksize=80, and
recfm=FB. In this example, the delimiter indicating the end of the data set is /*. In
some cases, your data may contain this string. For example, if you are using C
source code that contains comments, z/OS C/C++ treats the beginning of the first
comment as the end of the in-stream data set. To avoid this occurrence, you can
change the delimiter by specifying DLM=nn, where nn is a two-character delimiter, on
the DD statement that identifies the file. For example:

//MYDD DD *,DLM=¢¢

#include <stdio.h>

/* Hello, world program */

int main() {printf("Hello, world\n"); }

ee

For more information about in-stream data sets, see|z/0S MVS JCL User’s Guidel

To open an in-stream data set, call the fopen() or freopen() library function and
specify the ddname of the data set. You can open an in-stream data set only for
reading. Specifying any of the update, write, or append modes fails. Once you have
opened an in-stream data set, you cannot acquire or change the file position except
by rewinding. This means that calls to the fseek(), ftel1(), fgetpos(), and
fsetpos() for in-stream data sets fail. Calling rewind() causes z/OS C/C++ to
reopen the file, leaving the file position at the beginning.

You can concatenate regular sequential data sets and in-stream data sets. If you do

s0, note the following:

 If the first data set is in-stream, you cannot acquire or change the file position for
the entire concatenation.

» If the first data set is not in-stream and supports repositioning, you must specify
the noseek parameter on the fopen() or freopen() call that opens the
concatenation. If you do not, fopen() or freopen() opens the file successfully;
however, an error occurs when the read position gets to the in-stream.

¢ The in-stream data set is treated as FB 80 and the concatenation rules for
sequential concatenation apply.

SYSOUT Data Sets

You can specify a SYSOUT data set by using the SYSOUT parameter on a DD
statement. z/OS C/C++ supports opening SYSOUT data sets in two ways:

1. Specifying a ddname that has the SYSOUT parameter. For information about
defining ddnames, see |“Using a DDname” on page 1094.

2. Specifying a data set name of * on a call to fopen() or freopen() while you are
running under z/OS batch or IMS online or batch.

Chapter 11. Performing OS 1/0 Operations 117

Tapes

On a DD statement, you specify SYSOUT=x, where x is the output class. If the class
matches the JOB statement MSGCLASS, the output appears with the job log. You can
specify a SYSOUT data set and get the job MSGCLASS by specifying SYSOUT==. If you
want to create a job stream within your program, you can specify INTRDR on the DD
statement. This sends your SYSOUT data set to the internal reader to be read as an
input job stream. For example,

//MYDD DD SYSOUT=(A,INTRDR)

For more details about the SYSOUT parameter, refer to|z/0S MVS JCL User's Guide,

You can specify DCB attributes for a SYSOUT data set on a DD statement or a call to
fopen() or freopen(). If you do not, z/OS C/C++ uses the following defaults:

Binary or Record 1/0
RECFM=VB LRECL=137 BLKSIZE=882

Text I/O
RECFM=VBA LRECL=137 BLKSIZE=882

z/OS C/C++ supports standard label (SL) tapes. If you are creating tape files, you
can only open them by ddname. z/OS C/C++ provides support for opening tapes in
read, write, or append mode, but not update. When you open a tape for read or
append, any data set control block (DCB) characteristics you specify must match
those of the existing data set exactly. The repositioning functions are available only
when you have opened a tape for read. For tapes opened for write or append,
calling rewind() has no effect; calls to any of the other repositioning functions fail.
To open a tape file for write, you must open it by ddname.

Opening FBS-format tape files with append-only mode is not supported.

When you open a tape file for output, the data set name you specify in the JCL
must match the data set name specified in the tape label, even if the existing tape
file is empty. If this is not the case, you must either change the JCL to specify the
correct data set name or write to another tape file, or reinitialize the tape to remove
the tape label and the data. You can use IEBGENER with the following JCL to create
an empty tape file before passing it to the subsequent steps:

//ALLOC EXEC PGM=IEBGENER
//SYSUT1 DD =*

/*

//SYSUT2 DD DSN=name-of-QUTPUT-tape-file,UNIT=xxxx,LABEL=(x,SL),
// DISP=(NEW,PASS), (DCB=LRECL=xx,BLKSIZE=xx,RECFM=xx),

// VOL=SER=xxx

//SYSIN DD DUMMY
//SYSPRINT DD SYSOUT=+

Note: For tapes, the value for UNIT= can be TAPE or CART.

Because the C library does not create tape files, you can append only to a tape file
that already exists. Attempting to append to a file that does not already exist on a
tape will cause an error. You can create an empty data set on a tape by using the
utility TEBGENER.

Multivolume Data Sets

z/OS C/C++ supports data sets that span more than one volume of DASD or tape.
To open a multivolume data set for write, you must open it by ddname.

118 z/0S V1R4.0 C/C++ Programming Guide

[Guide|

You can open multivolume tape data sets only for read or write. Opening them for
update or append is not supported.

You can open multivolume DASD data sets for read, write, or update, but not for
append. If you open one in r+ or rb+ mode, you can read and update the file, but
you cannot extend the data set.

The repositioning functions are available only when you have opened a multivolume
data set for read. For multivolume data sets opened for write, calling rewind() has
no effect; calls to any of the other repositioning functions fail. Here is an example of
a multivolume data set declaration:

//MYDD DD DSNAME=TEST.TWO,DISP=(NEW,CATLG),
// VOLUME=(, ,,3,SER=(333001,333002,333003)),
// SPACE=(TRK, (9,10)),UNIT=(3390,P)

This creates a data set that may span up to three volumes. For more information
about the VOLUME parameter on DD statements, refer to|z/0S MVS JCL User’s|

Striped Data Sets

Other Devices

A striped data set is a special data set organization introduced with DFSMS Version
1 Release 1.0. Striping spreads a data set over a specified number of volumes
such that I/O parallelism can be exploited. Unlike a multivolume data set in which
physical record n follows record n-1, a striped data set has physical records n and
n-1 on separate volumes. This enables asynchronous I/O to perform parallel
operations, making requests for multiple reads and writes faster. Striped data sets
also facilitate repositioning once the relative block number is known. z/OS C/C++
exploits this capability when it uses fseek() to reposition. This can result in
substantial savings for applications that use ftel1() and fseek() with data sets that
have RECFMs of V, U, and FB (not FBS). data sets. When a data set is striped, an
fseek() can seek directly to the specified block just as an fsetpos() or rewind()
can. For a normal data set with the aforementioned RECFMs, z/OS C/C++ has to
read forward or rewind the data set to get to the desired position. Depending on
how large the data set is, this can be quite inefficient compared to a direct
reposition. Note that for such data sets, striping pads blocks to their maximum size.
Therefore, you may be wasting space if you have short records.

If your system has DFSMS Version 1 Release 1.0 and higher, you may not be able
to use striped data sets. This is because there is a hardware requirement by
DFSMS that all volumes of a striped data set be attached to ESCON channels.
Contact your system administrator for details on whether striped data sets are
available on your system and how to specify them.

z/0OS C/C++ supports several other devices for input and output. You can open
these devices only by ddname. The following table lists a number of these devices
and tells you which record formats are valid for them.

Table 18. Other Devices Supported for Input and Output

Device Valid open modes Repositioning? fldata()__device
Printer w, wb, a, ab No __ PRINTER
Card reader r, rb rewind() only _ OTHER
Card punch w, wb, a, ab No _ OTHER

Chapter 11. Performing OS 1/0 Operations 119

Table 18. Other Devices Supported for Input and Output (continued)

Device Valid open modes Repositioning? fldata()__device
Optical reader r, rb rewind() only __OTHER
DUMMY data set r, rb, r+, rb+, r+b, w, |rewind() only __bDumMmy

wb, w+, wb+ w+b, a,
ab, a+, ab+, a+b

Note: For all devices above that support open modes a or ab, the modes are treated as if
you had specified w or wb.

None of the devices listed above can be opened for update except the DUMMY data
set.

z/OS C/C++ queries each device to find out its maximum BLKSIZE.

The DUMMY data set is not truly a device, although z/OS C/C++ treats it as one. To
use the DUMMY data set, specify DD DUMMY in your JCL. On input, the DUMMY data set
always returns EOF; on output, it is always successful. This is the way to specify a
DUMMY data set:

//MYDD DD DUMMY

For more information on DUMMY data sets, see [z/70S MVS JCL User’s Guidg,

fopen() and freopen() Parameters

120

The following table lists the parameters that are available on the fopen() and
freopen() functions, tells you which ones are allowed and applicable for OS 1/O,
and lists the option values that are valid for the applicable ones. Detailed
descriptions of these options follow the table.

Table 19. Parameters for the fopen() and freopen() Functions for z/0S OS I/O

Parameter Allowed? Applicable? Nptes

recfm= Yes Yes Any of the 27 record formats available
under z/OS C/C++, plus * and A are valid.

Trecl= Yes Yes 0, any positive integer up to 32760, or X is
valid. See the parameter list below.

blksize= Yes Yes 0 or any positive integer up to 32760 is
valid.

space= Yes Yes Valid only if you are opening a new data set
by its data set name. See the parameter list
below.

type= Yes Yes May be omitted. If you do specify it,
type=record is the only valid value.

acc= Yes No Not used for OS /0.

password= Yes No Not used for OS 1/0.

asis Yes No Used to specify mixed-case file names. Not
recommended.

byteseek Yes Yes Used for binary files to specify that the

seeking functions should use relative byte
offsets instead of encoded offsets.

noseek Yes Yes Used to disable seeking functions for
improved performance.

z/0OS V1R4.0 C/C++ Programming Guide

Table 19. Parameters for the fopen() and freopen() Functions for z/0S OS I/O (continued)

Parameter Allowed? Applicable? Nptes
0S Yes No Ignored.
recfm=

z/OS C/C++ allows you to specify any of the 27 possible RECFM types (listed in
I'Fixed-Format Records” on page 38, |“Variable-Format Records” on page 41|,
and ['Undefined-Format Records” on page 44), as well as the z/OS C/C++
RECFMs * and A.

When you are opening an existing file for read or append (or for write, if you
have specified DISP=MOD), any RECFM that you specify must match that of the
existing file, except that you may specify recfm=U to open any file for read, and
you may specify recfm=FBS for a file created as recfm=FB. Specifying recfm=FBS
indicates to z/OS C/C++ that there are no short blocks within the file. If there
are, undefined behavior results.

For variable-format OS files, the RDW, SDW, and BDW contain the length of
the record, segment, and block as well as their own lengths. If you open a file
for read with recfm=U, z/OS C/C++ treats each physical block as an
undefined-format record. For files created with recfm=V, z/OS C/C++ does not
strip off block descriptor words (BDWSs) or record descriptor words (RDWSs), and
for blocked files, it does not deblock records. Using recfm=U is helpful for
viewing variable-format files or seeing how records are blocked in the file.

When you are opening an existing PDS or PDSE for write and you specify a
RECFM, it must be compatible with the RECFM of the existing data set. FS and FBS
formats are invalid for PDS members. For PDSs, you must use exactly the
same RECFM. For PDSESs, you may choose to change the blocked attribute (B),
because PDSEs perform their own blocking. If you want to read a PDS or
PDSE directory and you specify a RECFM, it must be recfm=U.

Specifying recfm=A indicates that the file contains ASA control characters. If you
are opening an existing file and you specify that ASA characters exist
(>recfm=A) when they do not, the call to fopen() or freopen() fails. If you create
a file by opening it for write or append, the A attribute is added to the default
RECFM. For more information about ASA, see [Chapter 8, “Using ASA Text Files’|

Specifying recfm=+ causes z/OS C/C++ to fill in any attributes that you do not
specify, taking the attributes from the existing data set. This is useful if you want
to create a new version of a data set with the same attributes as the previous
version. If you open a data set for write and the data set does not exist, z/OS
C/C++ uses the default attributes specified in ['fopen() Defaults” on page 60}
This parameter has no effect when you are opening for read or append, and
when you use it for non-DASD files.

Trecl=and blksize=
The LRECL that you specify on the fopen() call defines the maximum record
length that the C library allows. Records longer than the maximum record length
are not written to the file. The first 4 bytes of each block and the first 4 bytes of
each record of variable-format files are used for control information. For more
information, see[*Variable-Format Records” on page 41|,

The maximum LRECL supported for fixed, undefined, or variable-blocked-
spanned format sequential disk files is 32760. For other variable-length format
disk files the maximum LRECL is 32756. Sequential disk files for any format have
a maximum BLKSIZE of 32760. The record length can be any size when opening

Chapter 11. Performing OS 1/O Operations 121

a spanned file and specifying 1rec1=X. You can now specify 1rec1=X on the
fopen() or freopen() call for spanned files. If you are updating an existing file,
the file must have been originally opened with Trec1=X for the open to succeed.
Trec1=X is useful only for text and record I/O.

When you are opening an existing file for read or append (or for write, if you
have specified DISP=MOD), any LRECL or BLKSIZE that you specify must match
that of the existing file, except when you open an F or FB format file on a disk
device without specifying the noseek parameter. In this case, you can specify
the S attribute to indicate to z/OS C/C++ that the file has no imbedded short
blocks. Files without short blocks improve z/OS C/C++'’s performance.

When you are opening an existing PDS or PDSE for write and you specify an
LRECL or BLKSIZE, it must be compatible with the LRECL or BLKSIZE of the
existing data set. For PDSs, you must use exactly the same values. For
PDSEs, the LRECL must be the same, but the BLKSIZE may be different if you
have changed the blocking attribute as described under the RECFM parameter
above. You can change the blocking attribute, because PDSEs perform their
own blocking. The BLKSIZE you choose should be compatible with the RECFM
and LRECL. When you open the directory of a PDS or PDSE, do not specify
LRECL or BLKSIZE; z/OS C/C++ uses the defaults. See[Table 20 on page 126|for
more information.

space=(units, (primary,secondary,directory))
This keyword enables you to specify the space parameters for the allocation of
a z/OS data set. It applies only to z/OS data sets that you open by filename
and do not already exist. If you open a data set by ddname, this parameter has
no effect. You cannot specify any whitespace inside the value for the space
keyword. You must specify at least one value with this parameter. Any
parameter that you specify will be validated for syntax. If that validation fails,
then the fopen() or freopen() will fail even if the parameter would have been
ignored.

The supported values for units are as follows:
* Any positive integer indicating BLKSIZE

* CYL (mixed case)

* TRK (mixed case)

The primary quantity, the secondary quantity, and the directory quantity all must
be positive integers.

If you specify values only for units and primary, you do not have to specify the
inside set of parentheses. You can use a comma to indicate a quantity is to
take the default value. For example:

space=(cy1,(100,,10)) - default secondary value

space=(trk, (100,,)) - default secondary and directory value
space=(500, (100,)) - default secondary, no directory

You can specify only the values indicated on this parameter. If you specify any
other values, fopen() or freopen() fails.

Any values not specified are omitted on the allocation. These values are filled
by the system during SVC 99 processing.

type=
You can omit this parameter. If you specify it, the only valid value for OS /O is
type=record, which opens a file for record /0.

122 2/0S V1R4.0 C/C++ Programming Guide

acc=

This parameter is not valid for OS I/O. If you specify it, z/OS C/C++ ignores it.

password=

This parameter is not valid for OS I/O. If you specify it, zZOS C/C++ ignores it.

asis

If you use this parameter, z/OS C/C++ does not convert your file names to
upper case. The use of the asis parameter is strongly discouraged, because
most of the 1/0 services used by z/OS C/C++ require uppercase file names.

byteseek

When you specify this parameter and open a file in binary mode, all
repositioning functions (such as fseek() and ftel1()) use relative byte offsets
from the beginning of the file instead of encoded offsets. In previous releases of
z/OS C/C++, byteseeking was performed only for fixed format binary files. To
have the byteseek parameter set as the default for all your calls to fopen() or
freopen(), you can set the environment variable EDC BYTE _SEEK to Y. See
[Chapter 33, “Using Environment Variables” on page 479 for more information.

noseek

0S

Specifying this parameter on the fopen() call disables the repositioning
functions ftel1(), fseek(), fgetpos(), and fsetpos() for as long as the file is
open. When you have specified NOSEEK and have opened a disk file for read
only, the only repositioning function allowed on the file is rewind(), if the device
supports rewinding. Otherwise, a call to rewind() sets errno and raises
SIGIOERR, if SIGIOERR is not set to SIG_IGN. Calls to ftell(), fseek(),
fsetpos(), or fgetpos() return EOF, set errno, and set the stream error flag on.

The use of the noseek parameter may improve performance when you are
reading and writing data sets.

Note: If you specify the NOSEEK parameter when you open a file for writing, you
must specify NOSEEK on any subsequent fopen() call that simultaneously
opens the file for reading; otherwise, you will get undefined behavior.

If you specify this parameter, z/OS C/C++ ignores it.

Buffering

z/0OS C/C++ uses buffers to map C 1/O to system-level I/O.

When z/OS C/C++ performs /O operations, it uses one of the following buffering
modes:

Line buffering — characters are transmitted to the system when a new-line
character is encountered. Line buffering is meaningless for binary and record 1/0O

files.

Full buffering — characters are transmitted to the system when a buffer is filled.

C/C++ provides a third buffering mode, unbuffered I/O, which is not supported for
OS files.

You can use the setvbuf() and setbuf() library functions to set the buffering mode
before you perform any 1/O operation to the file. setvbuf() fails if you specify
unbuffered 1/0. It also fails if you try to specify line buffering for an FBS data set
opened in text mode, where the device does not support repositioning. This failure

Chapter 11. Performing OS 1/O Operations 123

happens because z/OS C/C++ cannot deliver records at line boundaries without
violating FBS format. Do not try to change the buffering mode after you have
performed any I/O operation to the file.

For all files except stderr, full buffering is the default, but you can use setvbuf() to
specify line buffering. For binary files, record I/O files, and unblocked text files, a
block is written out as soon as it is full, regardless of whether you have specified
line buffering or full buffering. Line buffering is different from full buffering only for
blocked text files.

Multiple Buffering

124

Multiple buffering (or asynchronous 1/O) is supported for z/OS data sets. Multiple
buffering is not supported for a data set opened for read at the same time that
another file pointer has it opened for write or append. When you open files for
multiple buffering, blocks are read into buffers before they are needed, eliminating
the delay caused by waiting for 1/0 to complete. Multiple buffering may make 1/0
less efficient if you are seeking within or writing to a file, because seeking or writing
may discard blocks that were read into buffers but never used.

To specify multiple buffering, code either the NCP=xx or BUFNO=yy subparameter of
the DCB parameter on the JCL DD statement (or allocation), where xx is an integer
number between 02 and 99, and yy is an integer number normally between 02 and
255. Whether z/OS C/C++ uses NCP or BUFNO depends on whether you are using
BSAM or QSAM, respectively. NCP is supported under BSAM; BUFNO is supported
under QSAM. BSAM and QSAM are documented in|z/OS DFSMS: Using Datal

If you specify noseek, z/OS C/C++ uses QSAM if possible. If Z/OS C/C++ is
using BSAM and you specify a value for BUFNO, z/OS C/C++ maps this value to NCP.
If z/OS C/C++ is using QSAM and you specify a value for NCP, z/OS C/C++ maps
this value to BUFNO.

If you specify both NCP and BUFNO, z/OS C/C++ takes the greater of the two values,
up to the maximum for the applicable value. For example, if you specify a BUFNO of
120 and you are using BSAM, which uses NCP instead, z/OS C/C++ will use NCP=99.

If you do not specify either, z/OS C/C++ defaults to single buffering, except in the

following cases, where z/OS C/C++ uses the system’s default BUFNO and performs

multiple buffering for both reading and writing:

» If you open a device that does not support repositioning, and specify read-only or
write-only mode (r, rb, w, wb, a, ab).

* If you specify the NOSEEK parameter on the call to fopen() or freopen(), and
specify read-only or write-only mode. When you specify NOSEEK, you get multiple
buffering for both reads and writes.

Here is an example of how to specify BUFNO:
//DD5 DD DSNAME=TORONTO.BLUEJAYS,DISP=SHR,DCB=(BUFN0=5)

You may need to update code from previous releases that relies on z/OS C/C++
ignoring NCP or BUFNO parameters.

z/0OS V1R4.0 C/C++ Programming Guide

DCB (Data Control Block) Attributes

For OS files, the C run-time library creates a skeleton data control block (DCB) for
the file when you open it. File attributes are determined from the following sources
in this order:

1. The fopen() or freopen() function call
2. Attributes for a ddname specified previously (if you are opening by ddname)

3. Existing file attributes (if you specify recfm=* or you are opening an existing file
for read or append)

4. Defaults from fopen() or freopen() for creating a new file.

If you do not specify RECFM when you are creating a new file, z/OS C/C++ uses the
following defaults:

If recfm is not specified in a fopen() call for an output binary file, recfm defaults to:
* recfm=VB for spool (printer) files,
* recfm=FB otherwise.

If recfm is not specified in a fopen() call for an output text file, recfm defaults to:

» recfm=F if _EDC_ANSI_OPEN_DEFAULT is set to Y and no LRECL or BLKSIZE specified.
In this case, LRECL and BLKSIZE are both defaulted to 254.

* recfm=VBA for spool (printer) files.

* recfm=U for terminal files

* recfm=V if the LRECL or BLKSIZE is specified
* recfm=VB for all other OS files.

If recfm is not specified for a record I/O file, you will get the default of recfm=VB.

The following table shows the defaults for LRECL and BLKSIZE when the z/OS C/C++
compiler creates an OS file.

Chapter 11. Performing OS 1/O Operations 125

C OR C++
PROGRAM file *f;

f = fopen("dd:master","r, DATA CONTROL BOX
blksize=400, recfm=FB")

Record format FB
Block size 400
Record length 100
DD STATEMENT - ["/MASTER DD UNIT=3480, ——

VOLUME=SER=1791 > | Device type 3480

DSNAME-=LIST, - -

DCB=(..., ' Recording density 1600

RECFM=FB,

BLKSIZE=400,

LRECL=100)

TAPE LABEL
Record format=FB
Record length=100
Block size=400
Recording density=1600

Figure 13. How the Operating System Completes the DCB. Information from the C or C++
program overrides that from the DD statement and the tape label. Information from the DD
Statement overrides that from the data set label.

Table 20. fopen() Defaults for LRECL and BLKSIZE when Creating OS Files

Irecl specified? blksize specified? RECFM LRECL BLKSIZE
no no All F 80 80
All FB 80 maximum integral

multiple of 80 less
than or equal to max

All V, VB, VS, or VBS minimum of 1028 or max

max—4
AllU 0 max
yes no All F Irecl Irecl
All FB Irecl maximum integral
multiple of Irecl less
than or equal to max
All vV Irecl Irecl+4
All U 0 Irecl
no yes All F or FB blksize blksize
AllV, VB, VS, or VBS minimum of 1028 or blksize
blksize—4
All U 0 blksize

Note: All includes the standard (S) specifier for fixed formats, the ASA (A) specifier, and the machine control character
(M) specifier.

In[Table 20| the value max represents the maximum reasonable block size for the
device. These are the current default maximum block sizes for several devices that
z/OS C/C++ supports:

126 2/0S V1R4.0 C/C++ Programming Guide

Device Default Maximum Block Size

DASD 6144
3203 Printer 132
3211 Printer 132
4245 Printer 132
2540 Reader 80
2540 Punch 80
2501 Reader 80
3890 Document Processor 80
TAPE 32760

For more information about specific default block sizes as returned by the DEVTYPE
macro, refer to [z/0S DFSMS: Using Data Sets|

You can perform multiple buffering under z/OS. See [‘Multiple Buffering” on|
for details.

Reading from Files

You can use the following library functions to read from a file:
e fread()

o fgetc()

» fgets()

e fscanf()

* getc()

* gets()

+ getchar()

* scanf()

fread() is the only interface allowed for reading record I/O files. A read operation
directly after a write operation without an intervening call to fflush(), fsetpos(),
fseek(), or rewind() fails. zZOS C/C++ treats the following as read operations:

» Calls to read functions that request 0 bytes
* Read requests that fail because of a system error
» Calls to the ungetc() function

z/OS C/C++ does not consider a read to be at EOF until you try to read past the last
byte visible in the file. For example, in a file containing three bytes, the feof ()
function returns FALSE after three calls to fgetc(). Calling fgetc() one more time
causes feof() to return TRUE.

You can set up a SIGIOERR handler to catch read or write system errors. See the
debugging section in this book for more details.

Reading from Binary Files

z/OS C/C++ reads binary records in the order that they were written to the file. Any
null padding is visible and treated as data. Record boundaries are meaningless.

Chapter 11. Performing OS 1/O Operations 127

Reading from Text Files

For non-ASA variable text files, the default for z/OS C/C++ is to ignore any empty
physical records in the file. If a physical record contains a single blank, z/OS C/C++
reads in a logical record containing only a new-line. However, if the environment
variable EDC_ZERO_RECLEN was set to Y, z/OS C/C++ reads an empty physical
record as a logical record containing a new-line, and a physical record containing a
single blank as a logical record containing a blank and a new-line. z/OS C/C++
differentiates between empty records and records containing single blanks, and
does not ignore either of them. For more information about how z/OS C/C++ treats
empty records in variable format, see [‘Mapping C Types to Variable Format” on|
ﬂpage 43

For ASA variable text files, if a file was created without a control character as its
first byte, the first byte defaults to the ' ' character. When the file is read back, the
first character is read as a new-line.

On input, ASA characters are translated to the corresponding sequence of control
characters. For more information about using ASA files, refer to|Chapter 8, “Using|
IASA Text Files” on page 75|

For undefined format text files, reading a file causes a new-line character to be
inserted at the end of each record. On input, a record containing a single blank
character is considered an empty record and is translated to a new-line character.
Trailing blanks are preserved for each record.

For files opened in fixed text format, rightmost blanks are stripped off a record at
input, and a new-line character is placed in the logical record. This means that a
record consisting of a single new-line character is represented by a fixed-length
record made entirely of blanks.

Reading from Record 1/O Files

128

For files opened in record format, fread() is the only interface that supports
reading. Each time you call fread() for a record 1/O file, fread() reads one record.
If you call fread() with a request for less than a complete record, the requested
bytes are copied to your buffer, and the file position is set to the start of the next
record. If the request is for more bytes than are in the record, one record is read
and the position is set to the start of the next record. z/OS C/C++ does not strip any
blank characters or interpret any data.

fread() returns the number of items read successfully, so if you pass a size
argument equal to 1 and a count argument equal to the maximum expected length
of the record, fread() returns the length, in bytes, of the record read. If you pass a
size argument equal to the maximum expected length of the record, and a count
argument equal to 1, fread() returns either 0 or 1, indicating whether a record of
length size read. If a record is read successfully but is less than size bytes long,
fread() returns 0.

A failed read operation may lead to undefined behavior until you reposition
successfully.

z/0OS V1R4.0 C/C++ Programming Guide

Writing to Files

You can use the following library functions to write to a file:
o fwrite()

e printf()

o fprintf()
o vprintf()
o vfprintf()
* puts()

o fputc()

o fputs()

e putc()

e putchar()

fwrite() is the only interface allowed for writing to record I/O files. See
|C/C++ Run-Time Library Reference|for more information on these library functions.

A write operation directly after a read operation without an intervening call to
fflush(), fsetpos(), fseek(), or rewind() fails unless the read operation has
reached EOF. The file pointer does not reach EOF until after you have tried to read
past the last byte of the file.

z/OS C/C++ counts a call to a write function writing 0 bytes or a write request that
fails because of a system error as a write operation.

If you are updating a file and a system failure occurs, z/OS C/C++ tries to set the
file position to the end of the last record updated successfully. For a fully-buffered
file, this is at the end of the last record in a block. For a line-buffered file, this may
be any record in the current block. If you are writing new data at the time of a
system failure, z/OS C/C++ puts the file position at the end of the last block of the
file. In files opened for blocked output, you may lose data written by other writes to
that block before the system failure. The contents of a file after a system write
failure are indeterminate.

If one user opens a file for writing, and another later opens the same file for
reading, the user who is reading the file can check for records that may have been
written past the end of the file by the other user. If the file is a spanned variable text
file, the reader can read part of a spanned record and reach the end of the file
before reading in the last segment of the spanned record.

Writing to Binary Files

Data flows over record boundaries in binary files. Writes or updates past the end of
a record go to the next record. When you are writing to files and not making any
intervening calls to fflush(), blocks are written to the system as they are filled. If a
fixed record is incomplete when you close the file, z/OS C/C++ completes it with
nulls. You cannot change the length of existing records in a file by updating them.

If you are using variable binary files, note the following:

* On input and on update, records that have no length are ignored; you will not be
notified. On output, zero-length records are not written. However, in spanned
files, if the first segment of a record has been written to the system, and the user
flushes or closes the file, a zero-length last segment may be written to the file.

Chapter 11. Performing OS 1/O Operations 129

* If you are writing new data in a recfm=VB file, z/OS C/C++ may add a short
record at the end of a block, to fill the block out to the full block size.

» If your file is spanned, records are written up to length LRECL, spanning multiple
blocks if necessary. You can create a spanned file by specifying a RECFM
containing V and S on the fopen() call.

Writing to Text Files

z/OS C/C++ treats the control characters as follows when you are writing to a
non-ASA text file:

\a Alarm. Placed directly into the file; z/OS C/C++ does not interpret it.

\b Backspace. Placed directly into the file; z/OS C/C++ does not interpret it.

\f Form feed. Placed directly into the file; z/OS C/C++ does not interpret it.

\n New-line. Defines a record boundary; z/OS C/C++ does not place it in the
file.

\r Carriage return. Defines a record boundary; z/OS C/C++ does not place it
in the file. Treated like a new-line character.

\t Horizontal tab character. Placed directly into the file; z/OS C/C++ does not
interpret it.

\v Vertical tab character. Placed directly into the file; z/OS C/C++ does not
interpret it.

\x0E DBCS shift-out character. Indicates the beginning of a DBCS string, if

MB_CUR_MAX > 1. Placed into the file.

DBCS shift-in character. Indicates the end of a DBCS string, if MB_CUR_MAX
> 1. Placed into the file. See|Chapter 9, “z/OS C Support for the|
[Double-Byte Character Set” on page 79 for more information about
MB_CUR_MAX.

\XOF

The way z/OS C/C++ treats text files depends on whether they are in fixed,
variable, or undefined format, and whether they use ASA.

As with ASA files in other environments, the first character of each record is
reserved for the ASA control character that represents a new-line, a carriage return,
or a form feed.

Table 21. C Control to ASA Characters

130

C Control Character ASA Character Description
Sequence

\n skip one line
\n\n '0' skip two lines
\n\n\n skip three lines
\f 1 new page

\r "+ overstrike

See [Chapter 8, “Using ASA Text Files” on page 75| for more information.

Writing to Fixed-Format Text Files
Records in fixed-format files are all the same length. You complete each record with

a new-line or carriage return character. For fixed text files, the new-line character is
not written to the file. Blank padding is inserted to the LRECL of each record of the

z/0OS V1R4.0 C/C++ Programming Guide

block, and the block, when full, is written. For a more complete description of the
way fixed-format files are handled, see [‘Fixed-Format Records” on page 38}

A logical record can be shortened to be an empty record (containing just a new-line)
or extended to a record containing LRECL bytes of data plus a new-line. Because the
physical record represents the new-line position by using padding blanks, the
new-line position can be changed on an update as long as it is within the physical
record.

Note: Using ftel1() or fgetpos() values for positions that do not exist after you
have shortened records results in undefined behavior.

When you are updating a file, writing new data into an existing record replaces the
old data and, if the new data is longer or shorter than the old data, changes the
size of the logical record by changing the number of blank characters in the
physical record. When you extend a record, thereby writing over the old new-line, a
new-line character is implied after the last character of the update. Calling fflush()
flushes the data out to the file and inserts blank padding between the last data
character and the end of the record. Once you have called fflush(), you can call
any of the read functions, which begin reading at the new-line. Once the new-line is
read, reading continues at the beginning of the next record.

Writing to Variable-Format Text Files

In a file with variable-length records, each record may be a different length. The
variable length formats permit both variable-length records and variable-length
blocks. The first 4 bytes of each block are reserved for the Block Descriptor Word
(BDW); the first 4 bytes of each record are reserved for the Record Descriptor Word
(RDW).

For ASA and non-ASA, the '\n' (new-line) character implies a record boundary. On
output, the new-line is not written to the physical file; instead, it is assumed to follow
the data of the record.

If you have not set _EDC_ZERO_RECLEN, z/OS C/C++ writes out a record containing a
single blank character to represent a single new-line. On input, a record containing
a single blank character is considered an empty record and is translated to a
new-line character. Note that a single blank followed by a new-line is written out as
a single blank, and is treated as just a new-line on input. When _EDC_ZERO_RECLEN is
set, writing a record containing only a new-line results in a zero-length variable
record.

For more information about environment variables, refer to [Chapter 33, “Using|
[Environment Variables” on page 479} For more information about how z/OS C/C++
treats emiti/ records in variable format, see [‘Mapping C Types to Variable Format’]

Attempting to shorten a record on update by specifying less data before the
new-line causes the record to be padded with blanks to the original record size. For
spanned records, updating a record to a shorter length results in the same blank
padding to the original record length, over multiple blocks, if applicable.

Attempts to lengthen a record on update generally result in truncation. The
exception to this rule is extending an empty record to a 1-byte record when the
environment variable _EDC_ZERO_RECLEN is not set. Because the physical
representation for an empty record is a record containing one blank character, it is
possible to extend the logical record to a single non-blank character followed by a

Chapter 11. Performing OS 1/O Operations 131

132

new-line character. For standard streams, truncation in text files does not occur;
data is wrapped automatically to the next record as if you had added a new-line.

When you are writing data to a non-blocked file without intervening flush or
reposition requests, each record is written to the system when a new-line or
carriage return character is written or when the file is closed.

When you are writing data to a blocked file without intervening flush or reposition
requests, if the file is opened in full buffering mode, the block is written to the
system on completion of the record that fills the block. If the blocked file is line
buffered, each record is written to the system when it is completed. If you are using
full buffering for a VB format file, a write may not fill a block completely. The data
does not go to the system unless a block is full; you can complete the block with
another write. If the subsequent write contains more data than is needed to fill the
block, it flushes the current block to the system and starts writing your data to a
new block.

When you are writing data to a spanned file without intervening flush or reposition
requests, if the record spans multiple blocks, each block is written to the system
once it is full and the user writes an additional byte of data.

For ASA variable text files, if a file was created without a control character as its
first byte or record (after the RDW and BDW), the first byte defaults to the * *
character. When the file is read back, the first character is read as a new-line.

Writing to Undefined-Format Text Files

In an undefined-format file, there is only one record per block. Each record may be
a different length, up to a maximum length of BLKSIZE. Each record is completed
with a new-line or carriage return character. The new-line character is not written to
the physical file; it is assumed to follow the data of the record. However, if a record
contains only a new-line character, z/OS C/C++ writes a record containing a single
blank to the file to represent an empty record. On input, the blank is read in as a
new-line.

Once a record has been written, you cannot change its length. If you try to shorten
a logical record by updating it with a shorter record, z/OS C/C++ completes the
record with blank padding. If you try to lengthen a record by updating it with more
data than it can hold, z/OS C/C++ truncates the new data. The only instance in
which this does not happen is when you extend an empty record so that it contains
a single byte. Any data beyond the single byte is truncated.

Truncation Versus Splitting

If you try to write more data to a record than z/OS C/C++ allows, and the file you
are writing to is not one of the standard streams (the defaults, or those redirected
by freopen() or command-level redirection), output is cut off at the record boundary
and the remaining bytes are discarded. z/OS C/C++ does not count the discarded
characters as characters that have been written out successfully.

In all truncation cases, the SIGIOERR signal is raised if the action for SIGIOERR is not
SIG_IGN. The user error flag is set so that ferror() will return TRUE. For more
information about SIGIOERR, ferror(), and other I/O-related debugging tools, see
[Chapter 18, “Debugging /0 Programs” on page 233} z/OS C/C++ continues to
discard new output until you complete the current record by writing a new-line or
carriage return character, close the file, or change the file position.

z/0OS V1R4.0 C/C++ Programming Guide

If you are writing to one of the standard streams, attempting to write more data than
a record can hold results in the data being split across multiple records.

Writing to Record I/O Files

fwrite() is the only interface allowed for writing to a file opened for record 1/O.
Only one record is written at a time. If you attempt to write more new data than a
full record can hold or you try to update a record with more data than it currently
has, z/OS C/C++ truncates your output at the record boundary. When z/OS C/C++
performs a truncation, it sets errno and raises SIGIOERR, if SIGIOERR is not set to
SIG_IGN.

When you update a record, you can update less than the full record. The remaining
data that you do not update is left untouched in the file.

When you are writing new records to a fixed-record 1/O file, if you try to write a
short record, z/OS C/C++ pads the record with nulls out to LRECL.

At the completion of an fwrite(), the file position is at the start of the next record.
For new data, the block is flushed out to the system as soon as it is full.

Flushing Buffers

You can use the library function fflush() to flush streams to the system. For more
information about fflush(), see [z/0S C/C++ Run-Time Library Reference,

The action taken by the fflush() library function depends on the buffering mode
associated with the stream and the type of streams. If you call one z/OS C/C++
program from another z/OS C/C++ program by using the ANSI system() function,
all open streams are flushed before control is passed to the callee, and again
before control is returned to the caller. If you are running with POSIX(ON), a call to
the POSIX system() function does not flush any streams to the system.

Updating Existing Records

Calling fflush() while you are updating flushes the updates out to the system. If
you call fflush() when you are in the middle of updating a record, z/OS C/C++
writes the partially updated record out to the system. A subsequent write continues
to update the current record.

Reading Updated Records

If you have a file open for read at the same time that the file is open for write in the
same application, you will be able to see the new data if you call fflush() to
refresh the contents of the input buffer, as in the following example:

Chapter 11. Performing OS 1/0O Operations 133

CCNGOS3

/* this example demonstrates how updated records are read */

#include <stdio.h>
int main(void)

FILE = fp, * fp2;
int rc, rc2, rc3, rc4d;
fp = fopen("a.b","w+");

fprintf(fp,"first record");
fp2 = fopen("a.b","r"); /* Simultaneous Reader */

/* following gets EOF since fp has not completed first Tine

* of output so nothing will be flushed to file yet */
rc = fgetc(fp2);

printf("return code is %i\n", rc);

fputc('\n', fp); /* this will complete first line */
fflush(fp); /* ensures data is flushed to file */

rc2 = fgetc(fp2); /* this gets 'f' from first record */
printf("value is now %c\n", rc2);

rewind(fp);

fprintf(fp, "some updates\n");

rc3 = fgetc(fp2); /* gets 'i' ..doesn't know about update */
printf("value is now %c\n", rc3);

fflush(fp); /* ensure update makes it to file */
fflush(fp2); /* this updates reader's buffer =/

rcd = fgetc(fp2); /* gets 'm', 3rd char of updated record */
printf("value is now %c\n", rc4);

return(0);

Figure 14. Example of Reading Updated Records

Writing New Records
Writing new records is handled differently for:
e Binary streams
* Text streams
* Record I/0

Binary Streams
z/OS C/C++ treats line buffering and full buffering the same way for binary files.

If the file has a variable length or undefined record format, fflush() writes the
current record out. This may result in short records. In blocked files, this means that
the block is written to disk, and subsequent writes are to a new block. For fixed
files, no incomplete records are flushed.

For single-volume disk files in FBS format, fflush() flushes complete records in an
incomplete block out to the file. For all other types of FBS files, fflush() does not
flush an incomplete block out to the file.

134 2/0S V1R4.0 C/C++ Programming Guide

For files in FB format, fflush() always flushes out all complete records in the
current block. For sequential DASD files, new completed records are added to the
end of the flushed block if it is short. For non-DASD or non-sequential files, any
new record will start a new block.

Text Streams
¢ Line-Buffered Streams

fflush() has no effect on line-buffered text files, because z/OS C/C++ writes all
records to the system as they are completed. All incomplete new records remain
in the buffer.

* Fully Buffered Streams

Calling fflush() flushes all completed records in the buffer, that is, all records
ending with a new-line or carriage return (or form feed character, if you are using
ASA), to the system. z/OS C/C++ holds any incomplete record in the buffer until
you complete the record or close the file.

For ASA text files, if a flush occurs while an ASA character that indicates more than
one new-line is being updated, the remaining new-lines will be discarded and a
read will continue at the first data character. For example, if '\n\n\n' is updated to
be '"\n\n' and a flush occurs, then a '0" will be written out in the ASA character
position.

Record I/O
z/OS C/C++ treats line buffering and full buffering the same way for record 1/0. For

files in FB format, calling fflush() writes all records in the buffer to the system. For
single-volume disk files in FBS format, fflush() will flush complete records in an
incomplete block out to the file. For all other types of FBS files, fflush() will not
flush an incomplete block out to the file. For all other formats, calling fflush() has
no effect, because fwrite() has already written the records to disk.

ungetc() Considerations

ungetc() pushes characters back onto the input stream for binary and text files.
ungetc() handles only single-byte characters. You can use it to push back as many
as four characters onto the ungetc() buffer. For every character pushed back with
ungetc(), fflush() backs up the file position by one character and clears all the
pushed-back characters from the stream. Backing up the file position may end up
going across a record boundary. Remember that for text files, z/OS C/C++ counts
the new-lines added to the records as single-byte characters when it calculates the
file position.

file pointer

For example, given the stream you can run the following code fragment:

fgetc(fp); /* Returns A and puts the file position at */
/* the beginning of the character B */
ungetc('Z',fp); /* Logically inserts Z ahead of B */
fflush(fp); /* Moves the file position back by one to A, =/
/* removes Z from the logical stream */

Chapter 11. Performing OS 1/0O Operations 135

If you want fflush() to ignore ungetc() characters, you can set the EDC COMPAT
environment variable. See [Chapter 33, “Using Environment Variables” on page 479
for more information.

Repositioning within Files

You can use the following library functions to help you position within an OS file:
o fseek()

e ftell()

o fgetpos()

» fsetpos()

* rewind()

See [z/0S C/C++ Run-Time Library Reference for more information on these library
functions.

Opening a file with fopen() and specifying the NOSEEK parameter disables all of
these library functions except rewind(). A call to rewind() causes the file to be
reopened, unless the file is a non-disk file opened for write-only. In this case,
rewind() sets errno and raises SIGIOERR (if SIGIOERR is not set to SIG_IGN, which is
its default).

Calling any of these functions flushes all complete and updated records out to the
system. If a repositioning operation fails, z/OS C/C++ attempts to restore the
original file position and treats the operation as a call to fflush(), except that it
does not account for the presence of ungetc() or ungetwc() characters, which are
lost. After a successful repositioning operation, feof () always returns 0, even if the
position is just after the last byte of data in the file.

The fsetpos() and fgetpos() library functions are generally more efficient than ftell()
and fseek(). The fgetpos() function can encode the current position into a structure
that provides enough room to hold the system position as well as position data
specific to C or C++. The ftel1() function must encode the position into a single
word of storage, which it returns. This compaction forces fseek() to calculate
certain position information specific to C or C++ at the time of repositioning. For
variable-format binary files, you can choose to have ftel1() return relative byte
offsets. In previous releases, ftell() returned only encoded offsets, which
contained the relative block number. Since you cannot calculate the block number
from a relative byte offset in a variable-format file, fseek() may have to read
through the file to get to the new position. fsetpos() has system position
information available within the the fpos_t structure and can generally reposition
directly to the desired location.

You can use the ftell1() and fseek() functions to set the current position within all
types of files except for the following:

* Files on non-seekable devices (for example, printers)

* Files on tapes opened for write

» Partitioned data sets opened in w or wb mode.

ungetc() Considerations

136

For binary and text files, the library functions fgetpos() and ftel1() take into
account the number of characters you have pushed back onto the input stream with
ungetc(), and adjust the file position accordingly. ungetc() backs up the file position

z/0OS V1R4.0 C/C++ Programming Guide

by a single byte each time you call it. For text files, z/OS C/C++ counts the
new-lines added to the records as single-byte characters when it calculates the file
position.

If you make so many calls to ungetc() that the logical file position is before the
beginning of the file, the next call to ftel1() or fgetpos() fails.

When you are using fseek() with a whence value of SEEK_CUR, the starting point for
the reposition also accounts for the presence of ungetc() characters and
compensates as ftell() and fgetpos() do.

If you want fgetpos() and fseek() to ignore ungetc() characters, you can set the
EDC_COMPAT environment variable. See |[Chapter 33, “Using Environment Variables’]
on page 479 for details. ftel1() is not affected by the setting of EDC_COMPAT.

How Long fgetpos() and ftell() Values Last

As long as you do not re-create a file or shorten logical records, you can rely on the
values returned by ftel1() and fgetpos(), even across program boundaries and
calls to fclose(). (Calling fopen() or freopen() with any of the w modes re-creates
a file.) Using ftel1() and fgetpos() values that point to information deleted or
re-created results in undefined behavior. For more information about shortening
records, see[*Writing to Variable-Format Text Files” on page 131}

Using fseek() and ftell() in Binary Files

With binary files, ftel1() returns two types of positions:
* Relative byte offsets
* Encoded offsets

Relative Byte Offsets

You get byte offsets by default when you are seeking or positioning in fixed-format
binary files. You can also use byte offsets on a variable or undefined format file
opened in binary mode with the BYTESEEK parameter specified on the fopen() or
freopen() function call. You can specify BYTESEEK to be the default for fopen() calls
by setting the environment variable EDC_BYTE_SEEK to Y. See [Chapter 33, “Using|
[Environment Variables” on page 479|for information on how to set environment
variables.

You do not need to acquire an offset from ftel1() to seek to a relative position; you
may specify a relative offset to fseek() with a whence value of SEEK_SET. However,
you cannot specify a negative offset to fseek() when you have specified SEEK_SET,
because a negative offset would indicate a position before the beginning of the file.
Also, you cannot specify a negative offset with whence values of SEEK_CUR or
SEEK_END such that the resulting file position would be before the beginning of the
file. If you specify such an offset, fseek() fails.

If your file is not opened read-only, you can specify a position that is beyond the
current EOF. In such cases, a new end-of-file position is created; null characters are
automatically added between the old EOF and the new EOF.

fseek() support of byte offsets in variable-format files generally requires reading all
records from the whence value to the new position. The impact on performance is
greatest if you open an existing file for append in BYTESEEK mode and then call
ftel1(). In this case, ftel1() has to read from the beginning of the file to the
current position to calculate the required byte offset. Support for byteseeking is

Chapter 11. Performing OS 1/O Operations 137

intended to ease portability from other platforms. If you need better performance,
consider using ftell()-encoded offsets, discussed in the next section.

Encoded Offsets

If you do not specify the BYTESEEK parameter and you set the EDC BYTE SEEK
variable to N, any variable- or undefined-format binary file gets encoded offsets from
ftel1(). This keeps this release of z/OS C/C++ compatible with code generated by
old releases of C/370.

Encoded offsets are values representing the block number and the relative byte
within that block, all within one Tong int. Because z/OS C/C++ does not document
its encoding scheme, you cannot rely on any encoded offset not returned by
ftell(), except 0, which is the beginning of the file. This includes encoded offsets
that you adjust yourself (for example, with addition or subtraction). When you call
fseek () with the whence value SEEK_SET, you must use either 0 or an encoded offset
returned from ftell(). For whence values of SEEK_CUR and SEEK END, however, you
specify relative byte offsets. If you want to seek to a certain relative byte offset, you
can use SEEK_SET with an offset of 0 to rewind the file to the beginning, and then
you can use SEEK CUR to specify the desired relative byte offset.

In earlier releases, ftell() could determine position only for files with no more than
131,071 blocks. In the new design, this number increases depending on the block
size. From a maximum block size of 32,760, every time this number decreases by
half, the number of blocks that can be represented doubles.

If your file is not opened read-only, you can use SEEK_CUR or SEEK_END to specify a
position that is beyond the current EOF. In such cases, a new end-of-file position is
created; null characters are automatically added between the old EOF and the new
EOF. This does not apply to PDS members, as they cannot be extended. For
SEEK_SET, because you are restricted to using offsets returned by ftell(), any
offset that indicates a position outside the current file is invalid and causes fseek()
to fall.

Using fseek() and ftell() in Text Files (ASA and Non-ASA)

138

In text files, ftel1() produces only encoded offsets. It returns a Tong int, in which
the block number and the byte offset within the block are encoded. You cannot rely
on any encoded offset not returned by ftel1() except 0. This includes encoded
offsets that you adjust yourself (for example, with addition or subtraction).

When you call fseek() with the whence value SEEK_SET, you must use an encoded
offset returned from ftel1(). For whence values of SEEK _CUR and SEEK_END, however,
you specify relative byte offsets. If you want to seek to a certain relative byte offset,
you can use SEEK SET with an offset of 0 to rewind the file to the beginning, and
then you can use SEEK_CUR to specify the desired relative byte offset. z/OS C/C++
counts new-line characters and skips to the next record each time it reads one.

Unlike binary files you cannot specify offsets for SEEK_CUR and SEEK_END that set the
file position past the end of the file. Any offset that indicates a position outside the
current file is invalid and causes fseek() to fail.

In earlier releases, ftell() could determine position only for files with no more than
131071 blocks. In the new design, this number increases depending on the block
size. From a maximum block size of 32760, every time this number decreases by
half, the number of blocks that can be represented doubles.

z/0OS V1R4.0 C/C++ Programming Guide

Repositioning flushes all updates before changing position. An invalid call to

fseek() is now always treated as a flush. It flushes all updated records or all
complete new records in the block, and leaves the file position unchanged. If the
flush fails, any characters in the ungetc() buffer are lost. If a block contains an
incomplete new record, the block is saved and will be completed by another write or
by closing the file.

Using fseek() and ftell() in Record Files

For files opened with type=record, ftel1() returns relative record numbers. The
behavior of fseek() and ftel1() is similar to that when you use relative byte offsets
for binary files, except that the unit is a record rather than a byte. For example,

fseek(fp,-2,SEEK_CUR);

seeks backward two records from the current position.
fseek(fp,6,SEEK_SET);

seeks to relative record 6. You do not need to get an offset from ftell().
You cannot seek past the end or before the beginning of a file.

The first record of a file is relative record 0.

Porting Old C Code That Uses fseek() or ftell()

The encoding scheme used by ftell() in non-BYTESEEK mode in the z/OS C/C++
RTL is different from that used in the C/C++ run-time library prior to C/370 Release
2.2 and Language Environment prior to release 1.3.

 If your code obtains ftel1() values and passes them to fseek(), the change to
the encoding scheme should not affect your application. On the other hand, your
application may not work if you have saved encoded ftel1() values in a file and
your application reads in these encoded values to pass to fseek(). For
non-record I/O files, you can set the environment variable _EDC_COMPAT with the
ftel1() encoding set to tell z/OS C/C++ that you have old ftel1() values. Files
opened for record 1/0 do not support old ftel1() values saved across the
program boundary.

* In previous versions, the fseek() support for the ftel1() encoding scheme
inadvertently supported seeking from SEEK_SET with a byte offset up to 32K. This
is no longer be supported. Users of this support must change to BYTESEEK mode.
You can do this without changing your source code; just use the EDC BYTE_SEEK
environment variable.

Closing Files

Use the fclose() library function to close a file. z/OS C/C++ automatically closes
files on normal program termination and attempts to do so under abnormal program
termination or abend. See|z/0S C/C++ Run-Time Library Reference for more
information on this library function.

For files opened in fixed binary mode, incomplete records will be padded with null
characters when you close the file.

For files opened in variable binary mode, incomplete records are flushed to the
system. In a spanned file, closing a file can cause a zero-length segment to be
written. This segment will still be part of the non-zero-length record. For files
opened in undefined binary mode, any incomplete output is flushed on close.

Chapter 11. Performing OS 1/0O Operations 139

Closing files opened in text mode causes any incomplete new record to be
completed with a new-line character. All records not yet flushed to the file are
written out when the file is closed.

For files opened for record 1/O, closing causes all records not yet flushed to the file
to be written out.

When fclose() is used to close a stream associated with a z/OS data set, some
failures may be unrecoverable, and will result in an ABEND. These ABENDs may
include I/O ABENDs of the form x14 and x37. Control will not be returned to the
caller of fclose() to report the error. To process these types of errors, applications
need to use z/OS Language Environment condition handling to receive control (see
|z/OS Language Environment Programming Guidd), or register a signal handler for
SIGABND (see [Chapter 27, “Handling Exceptions, Error Conditions, and Signals” od

|page 37§|D.

Renaming and Removing Files

You can remove or rename a z/OS data set that has an uppercase filename by
using the remove() or rename() library functions, respectively. rename() and
remove () both accept data set names. rename() does not accept ddnames, but
remove () does. You can use remove() or rename() on individual members or entire
PDSs or PDSEs. If you use rename() for a member, you can change only the name
of the member, not the name of the entire data set. To rename both the member
and the data set, make two calls to rename(), one for the member and one for the
whole PDS or PDSE.

fldata() Behavior

140

The format of the fldata() function is as follows:

int fldata(FILE =file, char *filename,
fldata_t =*info);

The fldata() function is used to retrieve information about an open stream. The
name of the file is returned in filename and other information is returned in the
fldata_t structure, shown in the figure below. Values specific to this category of 1/0
are shown in the comment beside the structure element. Additional notes pertaining
to this category of I/O follow the figure.

For more information on the fldata() function, refer to(z/0S C/C++ Run-Time Library|

z/0OS V1R4.0 C/C++ Programming Guide

struct _ fileData {

}s

typedef struct _ fileData fldata_t;

unsigned int _ recfmF
__recfmV
__recfmU
__recfmS
__recfmBlk :
__recfmASA :
__recfmM

__dsorgP0

__dsorgPDSmem :
__dsorgPDSdir :

__dsorgPS

__dsorgConcat :

__dsorgMem :
__dsorgHiper
__dsorgTemp:
__dsorgVSAM:
__dsorgHFS :
__openmode :

__modeflag :

__dsorgPDSE:
__reserveZ :

__device_t __device;

unsigned long _ blksize,
__maxreclen;
unsigned short _ vsamtype;
unsigned long __ vsamkeylen;
unsigned long __ vsamRKP;
char * __dsname;
unsigned int _ reserved;

Figure 15. fldata() Structure

Notes:

1.

If you have opened the file by its data set name, filename is fully qualified,

N = s s s e e e

W W v W L W W B W B B oW oW oW o w ow W

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

s /%

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

N/A
N/A

N/A
N/A
one

of:

TEXT
BINARY
__RECORD
combination of:
READ

WRITE

always
always

always
always

APPEND
~_UPDATE

one of:

DISK
TAPE
PRINTER

DUMMY
__OTHER

N/A
N/A
N/A

off
of f

off
off

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

including quotation marks. If you have opened the file by ddname, filename is

dd:ddname, without any quotation marks. The ddname is uppercase. If you

specified a member on the fopen() or freopen() function call, the member is

returned as part of filename.

Any of the _ recfm bits may be set on for OS files.

The _ dsorgP0 bit will be set on only if you are reading a directory or member
of a partitioned data set, either regular or extended, regardless of whether the

member is specified on a DD statement or on the fopen() or freopen()

function call. The __dsorgPS bit will be set on for all other OS files.
The _ dsorgPDSE bit will be set when processing an extended partitioned data

set (PDSE).

Chapter 11. Performing OS 1/O Operations

141

142

10.

The _dsorgConcat bit will be set on for a concatenation of sequential data
sets, but not for a concatenation of partitioned data sets.

The __dsorgTemp bit will be set on only if the file was created using the
tmpfile() function.

The __blksize value may include BDW and RDWs.
The __maxreclen value may include the ASA character.

The _ recfm bits and the __blksize and __maxreclen values correspond to the
attributes of the open stream. They do not necessarily reflect the attributes of
the existing data set.

The __dsname field is filled in for __DISK files with the data set name. The
member name is added if the file is a member of a partitioned data set, either
regular or extended. The _ dsname value is uppercase unless the asis option
was specified on the fopen() or freopen() function call. The _ dsname field is
set to NULL for all other OS files.

z/0OS V1R4.0 C/C++ Programming Guide

Chapter 12. Performing UNIX File System I/O Operations

You can create the following HFS file types:
* Regular

* Link

» Directory

* Character special

* FIFO

The Single UNIX Specification defines another type of file called STREAMS. Even
though the system interfaces are provided, it is impossible to have a valid STREAMS
file descriptor. These interfaces will always return a return code of -1 with errno set
to indicate an error such as, EBADF, EINVAL, or ENOTTY.

HFS streams follow the binary model, regardless of whether they are opened for
text, binary, or record I/O. You can simulate record 1/O by using new-line characters
as record boundaries.

For information on the hierarchical file system and access to files within it from
other than the C or C++ language, see |z/OS UNIX System Services User’s Guidel
For an introduction to and description of the behavior of a POSIX-defined file
system, see Zlotnick, Fred, The POSIX.1 Standard: A Programmer’s
Guide,,Redwood City, CA: The Benjamin/Cummings Publishing Company, Inc.,
1991.

This chapter describes C 1/0O stream functions as they can be used within C++
programs. If you want to use the C++ I/O stream classes instead, see IEhapter 5,|
FUsing the Standard C++ Library 1/O Stream Classes” on page 49| for more general
information. For more detailed information about 1/0 streaming see the following:

» Standard C++ Library Reference discusses the Standard C++ 1/O stream

classes. It can be found at
http://www.ibm.com/software/ad/c390/czos/czosdocs.html.

« |IBM Open Class Library User’s Guide and |IBM Open Class Library Reference)
\ol. 1|discuss the Unix Systems Laboratories C++ Language System Release
(USL) I/O Stream Class Library.

For information about using wide-character 1/O with z/OS C/C++, see [Chapter 9]
['z/0S C Support for the Double-Byte Character Set” on page 79

Creating Files

You can use library functions to create the following types of HFS files.
* Regular Files

* Link and Symbolic Link Files

» Directory Files

* Character Special Files

* FIFO Files

Regular Files
Use any of the following C functions to create HFS regular files:
e creat()

© Copyright IBM Corp. 1996, 2002 143

» fopen()
» freopen()
* open()

For a description of these and other I/O functions, see |z/0S C/C++ Run-Tim¢
Library Referencd,

Link and Symbolic Link Files
Use either of the following C functions to create HFS link or symbolic link files:
e Tink()
e symlink()

Directory Files
Use the following C function to create an HFS directory file:
e mkdir()

Character Special Files
Use the following C function to create an HFS character special file:
* mknod()

You must have superuser authority to create a character special file.

Other functions used for character special files are:
e ptsname()

e grantpt()

e unlockpt()

e tcgetsid()

e ttyname()

* jsatty()
FIFO Files
Use the following C function to create an HFS FIFO file (named pipe):
e mkfifo()
To create an unnamed pipe, use the following C function:
* pipe()
Opening Files

This section discusses the use of the fopen() or freopen() library functions to open
Hierarchical File System (HFS) I/O files. You can also access HFS files using
low-level 1/0 open() function. See [‘Low-LeveI z/0S UNIX I/O” on page 156 for
information about low-level I/0, and|z/OS C/C++ Run-Time Library Reference]for
information about any of the functions listed above.

The name of an HFS file can include characters chosen from the complete set of
character values, except for null characters. If you want a portable filename, then
choose characters from the POSIX .1 portable filename character set.

144 2/0S V1R4.0 C/C++ Programming Guide

The complete pathname can begin with a slash and be followed by zero, one, or
more filenames, each separated by a slash. If a directory is included within the
pathname, it may have one or more trailing slashes. Multiple slashes following one
another are interpreted as one slash.

If your program is running under POSIX(ON), all valid POSIX names are passed asis
to the POSIX open function.

You can access either HFS files or MVS data sets from programs. Programs
accessing files or data sets can be executed with either the POSIX(OFF) or
POSIX(ON) run-time options. There are basic file naming rules that apply for HFS
files and MVS data sets. However, there are also special z/OS C/C++ naming
considerations that depend on how you execute your program.

The POSIX run-time option determines the type of z/0OS C/C++ services and I/O

available to your program. (See |z/OS C/C++ User’s Guide| for a discussion of the
z/OS UNIX programming environment and overview of binding z/OS UNIX C/C++
applications.)

Both the basic and special z/OS C/C++ file naming rules for HFS files are described
in the sections that follow. Examples are provided. All examples must be run with
the POSIX(ON) option. For information about MVS data sets, see [Chapter 11,
t'Performing OS I/O Operations” on page 107}

Using fopen() or freopen()
When you open a file with fopen() or freopen(), you must specify the file name (a
data-set name) or a ddname.

File Naming Considerations
Files are opened with a call to fopen() or freopen() in the format
fopen("filename", "mode").

HFS Files: The following is the format for the pathname argument on the fopen()
or freopen() function:

[
>p

|_ _| pathname ><
n /

dd: ddname
|—//—l |—DD:—I |—(—member'—)—“—|

The POSIX.1 standard defines pathname as the information that identifies a file. For
the z/OS UNIX implementation of the POSIX.1 standard, a pathname can be up to
1024 characters—including the null-terminating character. Optionally, it can begin
with a slash character (/) followed by directory names separated by slash
characters and a filename. For the pathname, each directory name or the filename
can be up to 255 characters long.

Note: Regardless of whether your program is run under z/OS UNIX or as a
traditional MVS application, if the pathname that you attempt to open using
fopen() or freopen() contains a slash character but does not begin with
exactly two slashes, an HFS file is opened. For example, if you code:

fopen("tradnsell/parts.order", "w+")
the HFS file tradnsell/parts.order from the working directory is opened.

Chapter 12. Performing UNIX File System I/O Operations 145

If you begin the pathname value with ./, the specified HFS file in the
working directory is opened:

fopen("./parts.order", "w+")

Likewise, if you begin the pathname value with /, the specified HFS file in
the root directory is opened:

fopen("/parts.order", "w+")

If you specify more than two consecutive slash characters anywhere in a pathname,
all but the first slash character is ignored, as in the following examples:

“//a.b" MVS data set prefix.a.b
"///a.b" HFS file /a.b
"////a.b" HFS file /a.b
"a/lllb.c" HFS file a/b.c
"/a.b" HFS file /a.b

“/a/l/b.c" HFS file /a/b.c

If you specify /dd:pathname or ./dd:pathname, a file named dd:pathname is opened
in the file system root directory or your working directory, respectively. For example,
if you code:

fopen("/dd:parder", "w+")
the file dd:parder is opened in the HFS root directory.
For HFS files, leading and trailing white spaces are significant.

Opening a File by Name
Which type of file (HFS or MVS data set) you open may depend on whether the
z/0OS C/C++ application program is running under POSIX(ON).

For an application program that is to be run under POSIX(ON), you can include in
your program statements similar to the following to open the HFS file parts.instock
for reading in the working directory:

FILE *stream;

stream = fopen("parts.instock", "r");

To open the MVS data set user-prefix.PARTS. INSTOCK for reading, include statements
similar to the following in your program:

FILE *stream;

stream = fopen("//parts.instock", "r");

For an application program that is to be run as a traditional z/OS C/C++ application
program, with POSIX(OFF), to open the MVS data set user-prefix.PARTS . INSTOCK for
reading, include statements similar to the following in your program:

FILE *stream;

stream = fopen("parts.instock", "r");

To open the HFS file parts.instock in the working directory for reading, include
statements similar to the following in your program:

146 2/0S V1R4.0 C/C++ Programming Guide

FILE *stream;

stream = fopen("./parts.instock", "r");

Opening a File by DDname
The DD statement enables you to write z/OS C/C++ source programs that are

independent of the files and 1/0O devices they will use. You can modify the
parameters of a file or process different files without recompiling your program.

When dd:ddname is specified to fopen() or freopen(), the z/OS C/C++ library looks
to find and resolve the data definition information for the filename to open. If the
data definition information points to an MVS data set, MVS data set naming rules
are followed. If an HFS file is indicated using the PATH parameter, a ddname is
resolved to the associated pathname.

Note: Use of the z/OS C/C++ fork() library function from an application program
under z/OS UNIX does not replicate the data definition information of the
parent process for the child process. Use of any of the exec() library
functions deallocates the data definition information for the application
process.

For the declaration just shown for the HFS file parts.instock, you should write a
JCL DD statement similar to the following:

//PSTOCK DD PATH='/u/parts.instock',...

For more information on writing DD statements, you should refer to the job control
language (JCL) manual |z/0S MVS JCL Reference

To open the file by DD name under TSO/E, you must write an ALLOCATE command.

For the declaration of an HFS file parts.instock, you should write a TSO/E
ALLOCATE command similar to the following:

ALLOCATE DDNAME(PSTOCK) PATH('/u/parts.instock')...

See [z/0S TSO/E Command Reference|for more information on TSO ALLOCATE.

fopen() and freopen() Parameters
The following table lists the parameters that are available on the fopen() and

freopen() functions, tells you which ones are useful for HFS I/O, and lists the
values that are valid for the applicable ones.

Table 22. Parameters for the fopen() and freopen() functions for HFS I/O

Parameter Allowed? Applicable? Nptes

recfm= Yes No HFS I/O uses a continuous stream of data
as its file format.

Trecl= Yes No HFS 1/0 uses a continuous stream of data
as its file format.

blksize= Yes No HFS 1/0 uses a continuous stream of data
as its file format.

space= Yes No Not used for HFS 1/0O.

type= Yes Yes May be omitted. If you do specify it,
type=record is the only valid value.

acc= Yes No Not used for HFS 1/0.

password= Yes No Not used for HFS 1/0O.

Chapter 12. Performing UNIX File System I/O Operations 147

148

Table 22. Parameters for the fopen() and freopen() functions for HFS I/O (continued)

Parameter Allowed? Applicable? Nptes

asis Yes No Not used for HFS 1/0.
byteseek Yes No Not used for HFS 1/0.
noseek Yes No Not used for HFS 1/0.
0S Yes No Not used for HFS I/O.
recfm=

Ignored for HFS 1/0.

Trecl=and blksize=
Ignored for HFS 1/0, except that Trec] affects the value returned in the
__maxreclen field of fldata() as described below.

acc=
Ignored for HFS 1/0.

password
Ignored for HFS 1/0.

space=
Ignored for HFS 1/0.

type=

The only valid value for this parameter under HFS is type=record. If you specify

this, your file follows the HFS record I/O rules:
1. One record is defined to be the data up to the next new-line character.

2. When an fread() is done the data will be copied into the user buffer as if
an fgets(buf, size_item*num items, stream) were issued. Data is read
into the user buffer up to the number of bytes specified on the fread(), or
until a new-line character or EOF is found. The new-line character is not

included.

3. When an fwrite() is done the data will be written from the user buffer with

a new-line character added by the RTL code. Data is written up to the
number of bytes specified on the fwrite(); the new-line is added by the
RTL and is not included in the return value from fwrite().

4. If you have specified an Trecl and type=record, fldata() of this stream will
return the Trecl you specified, in the _maxreclen field of the _ fileData
return structure of stdio.h. If you specified type=record but no 1recl, the

__maxreclen field will contain 1024.

If type=record is not in effect, fldata() of this stream will return O in the
__maxreclen field of the _ fileData return structure of stdio.h.

asis
Ignored for HFS 1/0.

byteseek
Ignored for HFS 1/0.

noseek
Ignored for HFS 1/0.

0S Ignored for HFS 1/0.

z/0OS V1R4.0 C/C++ Programming Guide

Reading from HFS Files

You can use the following library functions to read in information from HFS files:

fread()
fgets()
gets()
fgetc()
getc()
getchar()
scanf ()
fscanf()
read()
pread()

fread() is the only interface allowed for reading record I/O files. See |z/0S C/C+

|Run-Time Library Reference for more information on all of the above library

functions.

For z/0OS UNIX low-level I/O, you can use the read() and readv() function.

See ['Low-Level z/OS UNIX I/O” on page 156|

Opening and Reading from HFS Directory Files

To open an HFS directory, you can use the opendir() function.

You can use the following library functions to read from and position within HFS

directories:

readdir()
seekdir()
telldir()

To close a directory, use the closedir() function.

Writing to HFS Files

You can use the following library functions to write to HFS files:

fwrite()
printf()
fprintf()
vprintf()
viprintf()
puts()
fputs()
fputc()
putc()
putchar()
write()
pwrite()

Chapter 12. Performing UNIX File System 1/O Operations

149

furite() is the only interface allowed for writing to record I/O files. See [z/0S
|C/C++ Run-Time Library Reference|for more information on all of the above library
functions. For z/OS UNIX low-level I/0, you can use the write() and writev()
function.

Flushing Records

You can use the library function fflush() to flush streams to the system. For more
information about fflush(), see [z20S C/C++ Run-Time Library Reference,

The action taken by the fflush() library function depends on the buffering mode
associated with the stream and the type of streams. If you call one z/OS C/C++
program from another z/OS C/C++ program by using the ANSI system() function,
all open streams are flushed before control is passed to the callee, and again
before control is returned to the caller. A call to the POSIX system() function does
not flush any streams.

For HFS files, the fflush() function copies the data from the run-time buffer to the
file system. The fsync() function copies the data from the file system buffer to the
storage device.

Setting Positions within Files

You can use the following library functions to help you reposition within a regular
file:

o fseek()

o ftell()

o fgetpos()

» fsetpos()

* rewind()

e 1seek()

You can use the following library functions for 64 bit offset and file sizes.
o fseeko()
o ftello()

See |z/0S C/C++ Run-Time Library Reference| for more information on these library
functions.

Closing Files

You can use fclose(), freopen(), or close() to close a file. z/OS C/C++
automatically closes files on normal program termination, and attempts to do so
under abnormal program termination or abend. See [z/0S C/C++ Run-Time Library|

for more information on these library functions. For z/OS UNIX low-level

I/O, you can use the close() function. When you use any exec() or fork()
function, files defined as “marked to be closed” are closed before control is
returned.

150 2/0S V1R4.0 C/C++ Programming Guide

Deleting Files

Use the unlink() or remove() z/OS C/C++ function to delete the following types of
HFS files:

* Regular

* Character special
* FIFO

* Link files

Use the rmdir() z/OS C/C++ function to delete an HFS directory file. See
|C/C++ Run-Time Library Reference|for more information about these functions.

Pipe 1/0

POSIX.1 pipes represent an 1/0O channel that processes can use to communicate
with other processes. Pipes are conceptually like HFS files. One process can write
data into a pipe, and another process can read data from the pipe.

z/0OS UNIX C/C++ supports two types of POSIX.1-defined pipes: unnamed pipes
and named pipes (FIFO files).

An unnamed pipe is accessible only by the process that created the pipe and its
child processes. An unnamed pipe does not have to be opened before it can be
used. It is a temporary file that lasts only until the last file descriptor that references
it is closed. You can create an unnamed pipe by calling the pipe() function.

A named pipe can be used by independent processes and must be explicitly
opened and closed. Named pipes are also referred to as first-in, first-out (FIFO)
files, or FIFOs. You can create a named pipe by calling the mkfifo() function. If you
want to stream 1/O after a pipe() function, call the fdopen() function to build a
stream on one of the file descriptors returned by pipe(). If you want to stream 1/O
on a FIFO file, open the file with fdopen() together with one of fopen(), freopen(),
or open(). When the stream is built, you can then use Standard C I/O functions,
such as fgets() or printf(), to carry out input and output.

Using Unnamed Pipes

If your z/OS UNIX C/C++ application program forks processes that need to
communicate among themselves for work to be done, you can take advantage of
POSIX.1-defined unnamed pipes. If your application program’s processes need to
communicate with other processes that it did not fork, you should use the
POSIX.1-defined named pipe (FIFO special file) support. See [‘Using Named Pipes’|

on page 152| for more information.

When you code the pipe() function to create a pipe, you pass a pointer to a
two-element integer array where pipe() puts the file descriptors it creates. One
descriptor is for the input end of the pipe, and the other is for the output end of the
pipe. You can code your application so that one process writes data to the input
end of the pipe and another process reads from the output end on a first-in-first-out
basis. You can also build a stream on the pipe by using fdopen(), and use buffered
I/0O functions. The result is that you can communicate data between a parent
process and any of its child processes.

The opened pipe is assigned the two lowest-numbered file descriptors available.

Chapter 12. Performing UNIX File System I/O Operations 151

z/0OS UNIX provide no security checks for unnamed pipes, because such a pipe is
accessible only by the parent process that creates the pipe and any of the parent
process’s descendent processes. When the parent process ends, an unnamed pipe
created by the process can still be used, if needed, by any existing descendant
process that has an open file descriptor for the pipe.

Consider the following example, where you open a pipe, do a write operation, and
later do a read operation from the pipe.

CCNGHF1

/* this example shows how unnamed pipes may be used */

#include <unistd.h>
#include <stdio.h>
#include <errno.h>

int main() {

int ret_val;

int pfd[2];

char buff[32];

char stringl[]="String for pipe I/0";

ret val = pipe(pfd); /* Create pipe */
if (ret_val != 0) { /* Test for success */
printf("Unable to create a pipe; errno=%d\n",errno);

exit(1); /* Print error message and exit x/
1
if (fork() == 0) {
/* child program */
close(pfd[0]); /* close the read end */
ret_val = write(pfd[1],stringl,strlen(stringl)); /*Write to pipex/
if (ret_val != strlen(stringl)) {
printf("Write did not return expected value\n");
exit(2); /* Print error message and exit */
}
1
else {
/* parent program */
close(pfd[1]); /* close the write end of pipe */
ret_val = read(pfd[0],buff,strlen(stringl)); /* Read from pipe */
if (ret_val != strlen(stringl)) {
printf("Read did not return expected value\n");
exit(3); /* Print error message and exit =/

printf("parent read %s from the child program\n",buff);
}

exit(0);
1

Figure 16. Unnamed Pipes Example

For more information on the pipe() function and the file 1/O functions, see
|C/C++ Run-Time Library Referencel

Using Named Pipes

If the z/OS UNIX C/C++ application program you are developing requires its active
processes to communicate with other processes that are active but may not be from
the same program, code your application program to create a named pipe (FIFO
file). Named pipes allow transfer of data between processes in a FIFO manner and

152 2/0S V1R4.0 C/C++ Programming Guide

synchronization of process execution. Use of a named pipe allows processes to
communicate even though they do not know what processes are on the other end
of the pipe. Named pipes differ from standard unnamed pipes, created using the
pipe() function, in that they involve the creation of a real file that is available for 1/0
operations to properly authorized processes.

Within the application program, you create a named pipe by coding a mkfifo() or
mknod () function. You give the FIFO a name and an access mode when you create
it. If the access mode allows all users read and write access to the named pipe,
any process that knows its name can use it to send or receive data.

Processes can use the open() function to access named pipes and then use the
regular 1/O functions for files, such as read(), write(), and close(), when
manipulating named pipes. Buffered 1/0O functions can also be used to access and
manipulate named pipes. For more information on the mkfifo() and mknod()
functions and the file I/O functions, see|z/0S C/C++ Run-Time Library Reference

z/0OS UNIX does security checks on named pipes.

The following steps outline how to use a named pipe from z/OS UNIX C/C++

application programs:

1. Create a named pipe using the mkfifo() function. Only one of the processes
that use the named pipe needs to do this.

2. Access the named pipe using the appropriate 1/0 method.

3. Communicate through the pipe with another process using file I1/O functions:
a. Write data to the named pipe.
b. Read data from the named pipe.

4. Close the named pipe.

5. If the process created the named pipe and the named pipe is no longer needed,
remove that named pipe using the unlink() function.

A process running the following simple example program creates a new named pipe
with the file pathname pointed to by the path value coded in the mkfifo() function.
The access mode of the new named pipe is initialized from the mode value coded in
the mkfifo() function. The file permission bits of the mode argument are modified
by the process file creation mask.

As an example, a process running the following program code creates a child
process and then creates a named pipe called fifo.test. The child process then
writes a data string to the pipe file. The parent process reads from the pipe file and
verifies that the data string it reads is the expected one.

Note: The two processes are related and have agreed to communicate through the
named pipe. They need not be related, however. Other authorized users can
run the same program and patrticipate in (or interfere with) the process
communication.

Chapter 12. Performing UNIX File System /O Operations 153

CCNGHF2

/* this example shows how named pipes may be used */
#define _OPEN_SYS

#include <stdio.h>

#include <unistd.h>

#include <errno.h>

#include <fcntl.h>

#include <wait.h>

/*

* Sample use of mkfifo()

*

main()
{ /* start of program */

int flags, ret_value, c_status;
pid_t pid;

size_t n_elements;

char char_ptr[32];

char str[] = "string for fifo ";
char fifoname[] = "temp.fifo";
FILE *rd_stream,*wr_stream;

if ((mkfifo(fifoname,S_IRWXU)) != 0) {
printf("Unable to create a fifo; errno=%d\n",errno);
exit(1); /* Print error message and return */

}

if ((pid = fork()) < 0) {
perror("fork failed");
exit(2);

1

if (pid == (pid_t)0) { /* CHILD process */
/* issue fopen for write end of the fifo */
wr_stream = fopen(fifoname,"w");
if (wr_stream == (FILE *) NULL) {
printf("In child process\n");
printf("fopen returned a NULL, expected valid stream\n");
exit(100);

/* perform a write */
n_elements = fwrite(str,1,strien(str),wr_stream);
if (n_elements != (size_t) strlen(str)) {
printf("Fwrite returned %d, expected %d\n",
(int)n_elements,strien(str));
exit(101)}
}
exit(0); /* return success to parent */

}

Figure 17. Named Pipes Example (Part 1 of 3)

154 z/0S V1R4.0 C/C++ Programming Guide

else { /* PARENT process */

/* issue fopen for read */
rd_stream = fopen(fifoname,"r");
if (rd_stream == (FILE *) NULL) {

printf("In parent process\n");

printf("fopen returned a NULL, expected valid pointer\n");

exit(2);
}
/* get current flag settings of file */
if ((flags = fent1(fileno(rd_stream),F GETFL)) == -1) {
printf("fcntl returned -1 for %s\n",fifoname);
exit(3);
1
/* clear O _NONBLOCK and reset file flags */

flags &= (0_NONBLOCK);

if ((fent1(fileno(rd_stream),F_SETFL,flags)) == -1) {
printf("\nfcntl returned -1 for %s",fifoname);
exit(4);

}

/* try to read the string */
ret_value = fread(char_ptr,sizeof(char),strlen(str),rd_stream);
if (ret_value != strlen(str)) {

printf("\nFread did not read %d elements as expected ",

strien(str));

printf("\nret_value is %d ",ret_value);

exit(6);
1

if (strncmp(char_ptr,str,strien(str))) {
printf("\ncontents of char_ptr are %s ",

char_ptr);
printf("\ncontents of str are %s ",
str);
printf("\nThese should be equal");
exit(7);

}

ret_value = fclose(rd_stream);

if (ret_value != 0) {
printf("\nFclose failed for %s",fifoname);
printf("\nerrno is %d",errno);
exit(8);

Figure 17. Named Pipes Example (Part 2 of 3)

Chapter 12. Performing UNIX File System I/O Operations 155

ret_value = remove(fifoname);

if (ret_value != 0) {
printf("\nremove failed for %s",fifoname);
printf("\nerrno is %d",errno);
exit(9);

1

pid = wait(c_status);

if ((WIFEXITED(c_status) !=0) &&; (WEXITSTATUS(c_status) !=0)) {
printf("\nchild exited with code %d",WEXITSTATUS(c_ status));
exit(10);

} /* end of else clause */
printf("About to issue exit(0), \

processing completed successfully\n");
exit(0);

Figure 17. Named Pipes Example (Part 3 of 3)

Character Special File I/0O
A named pipe (FIFO file) is a type of character special file. Therefore, it obeys the
I/O rules for character special files rather than the rules for regular files:
* It cannot be opened in read/write mode. A process must open a named pipe in
either write-only or read-only mode.

* It must be opened in read mode by a process before it can be opened in write
mode by another process. Otherwise, the file is blocked from use for I/O by
processes. Blocked processes can cause an application program to hang.

A single process intending to access a named pipe can use an open() function
with 0_NONBLOCK to open the read end of the named pipe. It can then open the
named pipe in write mode.

Note: The fopen() function cannot be used to accomplish this.

Low-Level z/OS UNIX I/O

Low-level z/OS UNIX 1/O is the POSIX.1-defined I/O method. All input and output is
processed using the defined read(), readv(), write(), and writev() functions.

For application programmers used to a UNIX environment, z/OS UNIX behaves in
familiar and predictable ways. Standard UNIX programming practices for shared
resources, along with designing applications to respect locks put on files by multiple
threads running in a process, will ensure that data is handled predictably.

For a discussion of POSIX.1-defined low-level I/O and some of the practical
considerations to take into account when designing an application, see The
POSIX.1 Standard: A Programmer’s Guide, by Fred Zlotnick (Redwood City, CA:
The Benjamin/Cummings Publishing Company, Inc., 1991).

Example of HFS 1/0O Functions

The following example demonstrates the use of z/OS UNIX stream input/output by
writing streams to a file, reading the input lines, and replacing a line.

156 2/0S V1R4.0 C/C++ Programming Guide

CCNGHF3

/* this example uses HFS stream I/0 */

#define _OPEN_SYS

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>

#include <sys/types.h>

#undef _OPEN_SYS

FILE *stream;

char stringl[] = "A line of text."; /* NOTE: There are actually 16 */
char string2[] = "Find this line."; /* characters in each line of =%/
char string3[] = "Another stream."; /* text. The 16th is a null =/

*/

char string4[16]; /* terminator on each string. */
long position, strpos; /* Since the null character x/
int i, result, fd; /* is not being written to
int rc; /* the file, 15 is used as

/* the data stream length.
ssize_t x;
char buffer[16];

int main(void)

{
/* Write continuous streams to file =/

if ((stream = fopen("./myfile.data","wb"))==NULL) {
perror("Error opening file");
exit(0);

}

for(i=0; i<12;i++) {
int lenl = strlen(stringl);
rc = fwrite(stringl, 1, lenl, stream);
if (rc != Tenl) {
perror("fwrite failed");
printf("i = %d\n", i);
exit(99);

Figure 18. Example of HFS Stream Input and Output Functions (Part 1 of 3)

Chapter 12. Performing UNIX File System 1/O Operations

*/
*/

157

158

rc = fwrite(string2,1,sizeof(string2)-1,stream);

if (rc != sizeof(string2)-1) {
perror("fwrite failed");
exit(99);

1

for(i=0;i<12;i++) {
rc = fwrite(stringl,1,sizeof(stringl)-1,stream);

if (rc != sizeof(stringl)-1) {
perror("fwrite failed");
printf("i = %d\n", i);
exit(99);
}
}
fclose(stream);
/* Read data stream and search for location of string2. */
/* EOF is not set until an attempt is made to read past the */
/* end-of-file, thus the fread is at the end of the while loop */

stream = fopen("./myfile.data", "rb");

if ((position = ftell(stream)) == -1L)
perror("Error saving file position.");

rc = fread(string4, 1, sizeof(string2)-1, stream);
while(!feof(stream)) {
if (rc != sizeof(string2)-1) {

perror("fread failed");
exit(99);

if (strstr(string4,string2) != NULL) /* If string2 is found x/
strpos = position ; /* then save position. */

if ((position=ftell(stream)) == -1L)
perror("Error saving file position.");

rc = fread(string4, 1, sizeof(string2)-1, stream);

Figure 18. Example of HFS Stream Input and Output Functions (Part 2 of 3)

z/0OS V1R4.0 C/C++ Programming Guide

fclose(stream);
/* Replace Tine containing string2 with string3 =*/

fd = open("test.data",0_RDWR);
if (fd < 0){
perror("open failed\n");
x = write(fd,"a record",8);
if (x < 8){
perror("write failed\n");
rc = 1seek(fd,0,SEEK_SET);
x = read(fd,buffer,8);

if (x < 8){
perror("read failed\n");

printf("data read is %.8s\n",buffer);

close(fd);

Figure 18. Example of HFS Stream Input and Output Functions (Part 3 of 3)

To use 64 bhit offset and file sizes, you must make the following changes in your

code:

1. Change any variables used for offsets in fseek() or ftel1() that are int
or long to the off_t data type.

2. Define the LARGE_FILES 1 feature test macro.

3. Replace fseek()/ftel1() with fseeko()/ftello(). See|z/0S C/C++ Run-Tim¢g
[Library Reference| for descriptions of these functions.

4. Compile with the LANGLVL(LIBEXT) compiler option.

Note: These changes are compatible with your older files.

The following example provides the same function as CCNGHF3, but it uses 64 bit
offsets. The changed lines are marked in a bold font.

Chapter 12. Performing UNIX File System /O Operations 159

CCNGHF4

/* this example uses HFS stream I/0 and 64 bit offsets*/

#define _OPEN_SYS
#define _LARGE_FILES 1
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
#undef _OPEN_SYS

FILE *stream;

char stringl[]
char string2[]

char string3[] = "Another stream."; /* text. The 16th is a null

char string4[16]; /* terminator on each string.
off_t position,strpos; /* Since the null character
int i, result, fd; /* s not being written to
int rc; /* the file, 15 is used as

/* the data stream length.
ssize_t x;
char buffer[16];

int main(void)

{

/* Write continuous streams to file =/

if ((stream = fopen("./myfile.data","wb"))==NULL) {
perror("Error opening file");
exit(0);

}

for(i=0; i<12;i++) {
int lenl = strlen(stringl);
rc = fwrite(stringl, 1, lenl, stream);
if (rc != lenl) {
perror("fwrite failed");
printf("i = %d\n", i);
exit(99);

Figure 19. Example of HFS Stream Input and Output Functions (Part 1 of 3)

160 2/0S V1R4.0 C/C++ Programming Guide

"A Tine of text."; /* NOTE: There are actually 16 */
"Find this Tine."; /* characters in each line of */

*/
*/
*/
*/
*/
*/

rc = fwrite(string2,1,sizeof(string2)-1,stream);

if (rc != sizeof(string2)-1) {
perror("fwrite failed");
exit(99);

1

for(i=0;i<12;i++) {
rc = fwrite(stringl,1,sizeof(stringl)-1,stream);

if (rc != sizeof(stringl)-1) {
perror("fwrite failed");
printf("i = %d\n", i);
exit(99);
}
}
fclose(stream);
/* Read data stream and search for location of string2. */
/* EOF is not set until an attempt is made to read past the */
/* end-of-file, thus the fread is at the end of the while loop */

stream = fopen("./myfile.data", "rb");

if ((position=ftello(stream)) == -1LL)
perror("Error saving file position.");

rc = fread(string4, 1, sizeof(string2)-1, stream);
while(!feof(stream)) {
if (rc != sizeof(string2)-1) {
perror("fread failed");
exit(99);
}

if (strstr(string4,string2) != NULL) /* If string2 is found x/
strpos = position ; /* then save position. */

if ((position=ftello(stream)) == -1LL)
perror("Error saving file position.");

rc = fread(string4, 1, sizeof(string2)-1, stream);

Figure 19. Example of HFS Stream Input and Output Functions (Part 2 of 3)

Chapter 12. Performing UNIX File System /O Operations 161

fclose(stream);
/* Replace Tine containing string2 with string3 */

fd = open("test.data",0_RDWR);
if (fd < 0){
perror("open failed\n");
x = write(fd,"a record",8);
if (x < 8){

perror("write failed\n");

strpos = 1seek(fd,0OLL,SEEK_SET); /* Note off_t is 64bits with _LARGE_FILES */
/* set and the off_t variable */
/* needs a 64bit constant of OLL */

x = read(fd,buffer,8);

if (x < 8){
perror("read failed\n");

1
printf("data read is %.8s\n",buffer);

close(fd);

Figure 19. Example of HFS Stream Input and Output Functions (Part 3 of 3)

fldata() Behavior

The format of the fldata() function is as follows:
int fldata(FILE *file, char *filename,

fldata_t

*info);

The fldata() function is used to retrieve information about an open stream. The
name of the file is returned in filename and other information is returned in the
fldata_t structure, shown in the figure below. Values specific to this category of 1/0
are shown in the comment beside the structure element. Additional notes pertaining
to this category of I/O follow the figure.

For more information on the fldata() function, refer to|z/0S C/C++ Run-Time Library

162 2/0S V1R4.0 C/C++ Programming Guide

struct _ fileData {

unsigned int _ recfmF
__recfmV
__recfmU
__recfmS
__recfmBlk :
__recfmASA :
__recfmM
__dsorgP0
__dsorgPDSmem :
__dsorgPDSdir :
__dsorgPS
__dsorgConcat :
__dsorgMem :
__dsorgHiper
__dsorgTemp:
__dsorgVSAM:
__dsorgHFS :
__openmode :

__modeflag :

__dsorgPDSE:
__reserveZ :
__device_t __device;
unsigned long _ blksize,
__maxreclen;
unsigned short __ vsamtype;
unsigned long _ vsamkeylen;
unsigned long _ vsamRKP;
char * __dsname;
unsigned int _ reserved;
}s
typedef struct _ fileData fldata_t;

Figure 20. fldata() Structure

Notes:

N = s s s e e e

W W v W L W W B W B B oW oW oW o w ow W

~

—_
M

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

./*

/*
/*
/*
/*
/*
/*
/*
/*

always off

always off

always on

always off

always off

always off

always off

N/A -- always off

N/A -- always off

N/A -- always off

N/A -- always off

N/A -- always off

N/A -- always off

N/A -- always off

N/A -- always off

N/A -- always off

always on

one of:

__BINARY

—_RECORD

combination of:
READ

WRITE

~_APPEND

~_UPDATE
N/A -- always off

HFS

0

N/A
N/A
N/A

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

1. The filename is the same as specified on the fopen() or freopen() function call.
2. The __maxreclen value is O for regular I/O (binary). For record I/O the value is

Trecl or the default of 1024 when 1recl is not specified.

3. The __dsname value is the real POSIX pathname.

File Tagging and Conversion

In general, the file system knows the contents of a file only as a set of bytes.
Applications which create and process bytes in a file know whether these bytes

represent binary data, text (character) data, or a mixture of both. File tags are file
metadata fields which describe the contents of a file. Enhanced ASCII includes the

following file tag fields:

txtflag A flag indicating whether or not a file consists solely of character data
encoded by a single coded character set ID (CCSID).

file ccsid

A 16 bit field specifying the CCSID of characters in the file.

Chapter 12. Performing UNIX File System 1/O Operations

163

Applications can explicitly tag files via new open() or fcntl() options, or applications
can allow the logical file system (LFS) to tag new files on first write, fopen(). A new
environment variable, BPXK _CCSID, is used to assign a program CCSID to an
application, which LFS will use to tag new files on first write. LFS also uses the
program CCSID derived from BPXK_CCSID to set up auto-conversion of pure text
datastreams. LFS attempts to set up auto-conversion when:
» Auto-conversion is enabled for an application by the BPXK_AUTOCVT environment
variable

* The file txtflag flag is set indicating a pure text file
* The file and program CCSIDs do not match.

Automatic file conversion and file tagging include the following facilities:

e QPEN SYS FILE EXT feature test macro. For more information, see
[Run-Time Library Reference .

» _BPXK_AUTOCVT and BPXK CCSIDS environment variables. For more information,
see [Chapter 33, “Using Environment Variables” on page 479,

» 7/OS Language Environment FILETAG run-time option. For more information, see
[z/0S Language Environment Programming Reference}

e chattr() and __ fchattr() functions; F_SETTAG and F_CONTROL_CVT
arguments for the fcntl() function; options for the fopen(), popen(), stat(), fstat(),

and Istat() functions. For more information, see |z/0S C/C++ Run-Time Library|

eferencel

Access Control Lists (ACLS)

Access control lists (ACLs) enable you to control access to files and directories by
individual user (UID) and group (GID). ACLs are used in conjunction with
permission bits. You can create, modify, and delete ACLs using the following
functions:

* acl_create_entry()
* acl_delete_entry()
* acl_delete_fd()

* acl_delete file()
* acl_first_entry()
* acl_free()

* acl_from_text()

* acl_get_entry()

* acl_get fd()

* acl_get file()

e acl_init()

* acl_set fd()

* acl_set file()

* acl_sort()

* acl_to_text()

* acl_update_entry()
» acl_valid()

164 2/0S V1R4.0 C/C++ Programming Guide

For descriptions of these functions see|z/0S C/C++ Run-Time Library Referencel
For more information on using ACLs to protect file system resources see[z/09

UNIX System Services Planning|and (z/0S Security Server RACF Security|
Administrator’s Guide,

Chapter 12. Performing UNIX File System /O Operations 165

166 2/0S V1R4.0 C/C++ Programming Guide

Chapter 13. Performing VSAM I/O Operations

This chapter outlines the use of Virtual Storage Access Method (VSAM) data sets in
z/0OS C/C++. Three I/0O processing modes for VSAM data sets are available in z/0OS
C/C++:

* Record
e Text Stream
* Binary Stream

Because VSAM is a record-based access method, record mode is the logical
processing mode and is specified by coding the type=record keyword parameter on
the fopen() function call. z/OS C/C++ also provides limited support for VSAM text
streams and binary streams. Because of the record-based nature of VSAM, this
chapter is organized differently from the other chapters in this section. The focus of
this chapter is on record I/O, and only those aspects of text and binary 1/O that are
specific to VSAM are also discussed.

For more information about the facilities of VSAM, see the list of [DFSMS” on

bage 921

See |Chapter 9, “z/OS C Support for the Double-Byte Character Set” on page 79| for
information about using wide-character 1/0 with z/OS C/C++.

Notes:
1. This chapter describes C I/O as it can be used within C++ programs.

2. The C++ 1/O stream libraries cannot be used for VSAM 1/O because these do
not support the record processing mode (where type=record is specified).

VSAM Types (Data Set Organization)

There are three types of VSAM data sets supported by z/OS C/C++, all of which
are held on direct-access storage devices.

» Key-Sequenced Data Set (KSDS) is used when a record is accessed through a
key field within the record (for example, an employee directory file where the
employee number can be used to access the record). KSDS also supports
sequential access. Each record in a KSDS must have a unique key value.

* Entry-Sequenced Data Set (ESDS) is used for data that is primarily accessed in
the order it was created (or the reverse order). It supports direct access by
Relative Byte Address (RBA), and sequential access.

* Relative Record Data Set (RRDS) is used for data in which each item has a
particular number, and the relevant record is accessed by that number (for
example, a telephone system with a record associated with each number). It
supports direct access by Relative Record Number (RRN), and sequential
access.

In addition to the primary VSAM access described above, for KSDS and ESDS,
there is also direct access by one or more additional key fields within each record.
These additional keys can be unique or nonunique; they are called an alternate
index (AIX).

Note: VSAM Linear Data Sets are not supported in z/OS C/C++ 1/O.

© Copyright IBM Corp. 1996, 2002 167

Access Method Services

Access Method Services are generally known by the name IDCAMS on MVS. For
more information, see [z/0S DFSMS Access Method Services for Catalogs}

Before a VSAM data set is used for the first time, its structure is defined to the
system by the Access Method Services DEFINE CLUSTER command. This command
defines the type of VSAM data set, its structure, and the space it requires.

Before a VSAM alternate index is used for the first time, its structure is defined to
the system by the Access Method Services DEFINE ALTERNATEINDEX command. To
enable access to the base cluster records through the alternate index, use the
DEFINE PATH command. Finally, to build the alternate index, use the BLDINDEX
command.

When you have built the alternate index, you call fopen() and specify the PATH in
order to access the base cluster through the alternate index. Do not use fopen() to
access the alternate index itself.

Note: You cannot use the BLDINDEX command on an empty base cluster.

Choosing VSAM Data Set Types

168

When you plan your program, you must first decide the type of data set to use.
[Figure 21 on page 169|shows you the possibilities available with the types of VSAM
data sets.

z/0OS V1R4.0 C/C++ Programming Guide

The diagrams show how the information contained in the family tree below could be held in VSAM data sets of different types.
ANDREW M SMITH &
VALERIE SUZIE ANN MORGAN (1967)
| | | |
FRED (1969) ANDY (1970) SUZAN (1972) JANE (1975)

Key-Sequenced Data Set
Alternate Indexes

Data component By Birthdate (unique)
: 69
Prime > ANDY 70M [
Index — | 70
empty space
< 72
ANDY 4,—» FRED 69M <
FRED L
empty space
By sex (non-unique)

A A

JANE 5 JANE 75F

SUZAN
empty space “\
F

SUZAN 72F |4 Lo

\4

Entry-Sequenced Data Set

Relative byte addresses Alternate Indexes
canbeaccessedand Alphabetically by name
used as keys Data component (unique)
> < \
FRED 69M ‘—liw; ANDY
» ANDY 70M
<« ‘ FRED
» SUZAN 72F | 4 [—1 JANE
- < | 1
JANE 75F |§ [SUZAN

1

By sex (non-unique)

F
]
Relative Record Data Set
Relative record numbers Data component No Alternate Indexes
can be accessed and Slot 1 | FRED 69M
used as keys

ANDY 70M

empty space for 71

SUZAN 72F

empty space for 74

JANE 75F
empty space for 76

2
3
4
5 | empty space for 73
6
7
8

Each slot corresponds to ayear

Figure 21. Types and Advantages of VSAM Data Sets

When choosing the VSAM data set type, you should base your choice on the most
common sequence in which you require data. You should follow a procedure similar
to the one suggested below to help ensure a combination of data sets and indexes
that provide the function you require.

Chapter 13. Performing VSAM 1/O Operations 169

1. Determine the type of data and its primary access.
* sequentially — favors ESDS
* by key — favors KSDS
* by number — favors RRDS

2. Determine whether you require access through an alternate index path. These
are only supported on KSDS and ESDS. If you do, determine whether the
alternate index is to have unique or nonunique keys. You should keep in mind
that making an assumption that all future records will have unique keys may not
be practical, and an attempt to insert a record with a nonunique key in an index
that has been created for unique keys causes an error.

3. When you have determined the data sets and paths that you require, ensure
that the operations you have in mind are supported.

Keys, RBAs and RRNs

170

All VSAM data sets have keys associated with their records. For KSDS, KSDS AlX,
and ESDS AlX, the key is a defined field within the logical record. For ESDS, the
key is the relative byte address (RBA) of the record. For RRDS, the key is a relative
record number (RRN).

Keys for Indexed VSAM Data Sets
For KSDS, KSDS AIX, and ESDS AlX, keys are part of the logical records recorded

on the data set. For KSDS, the length and location of the keys are defined by the
DEFINE CLUSTER command of Access Method Services. For KSDS AIX and ESDS
AlX, the keys are defined by the DEFINE ALTERNATEINDEX command.

Relative Byte Addresses
Relative byte addresses enable you to access ESDS files directly. The RBAs are

unsigned long int fields, and their values are computed by VSAM.

Notes:

1. KSDS can also use RBAs. However, because the RBA of a KSDS record can
change if an insert, delete or update operation is performed elsewhere in the
file, it is not recommended.

2. You can call flocate() with RBA values in an RRDS cluster, but flocate() with
RBA values does not work across control intervals. Therefore, using RBAs with
RRDS clusters is not recommended. The RRDS access method does not
support RBAs. z/OS C/C++ supports the use of RBAs in an RRDS cluster by
translating the RBA value to an RRN. It does this by dividing the RBA value by
the LRECL.

3. Alternate indexes do not allow positioning by RBA.

The RBA value is stored in the C structure __amrc, which is defined in the C
<stdio.h> header file. You can access the field __amrc->_ RBA as shown in the
following example.

z/0OS V1R4.0 C/C++ Programming Guide

CCNGVS1

/* this example shows how to access the __amrc->_RBA field */
/* it assumes that an ESDS has already been defined, and has been */
/% assigned the ddname ESDSCLUS x/

#include <stdio.h>
#include <stdlib.h>

main() {
FILE *ESDSfile;
unsigned Tong myRBA;
char recbuff[100]="This is record one.";
int w_retcd;
int 1_retcd;
int r_retcd;

printf("calling fopen(\"dd:esdsclus\",\"rb+,type=record\");\n");
ESDSfile = fopen("dd:esdsclus", "rb+,type=record");
printf("fopen() returned 0X%.8x\n",ESDSfile);

if (ESDSfile==NULL) exit;

w_retcd = fwrite(recbuff, 1, sizeof(rechuff), ESDSfile);
printf("fwrite() returned %d\n",w_retcd);

if (w_retcd != sizeof(recbuff)) exit;

myRBA = __amrc->__ RBA;

1 retcd = flocate(ESDSfile, &myRBA, sizeof(myRBA), _ RBA EQ);
printf("flocate() returned %d\n",1_retcd);

if (1_retcd !=0) exit;

r_retcd = fread(recbuff, 1, sizeof(recbuff), ESDSfile);
printf("fread() returned %d\n",r_retcd);

if (1_retcd !=0) exit;

return(0);

Figure 22. VSAM Example

For more information about the __amrc structure, refer to |Chapter 18, “Debugging|
(/O Programs” on page 233|

Relative Record Numbers

Records in an RRDS are identified by a relative record number that starts at 1 and
is incremented by 1 for each succeeding record position. Only RRDS files support
accessing a record by its relative record number.

Summary of VSAM 1/O Operations

summarizes VSAM data set characteristics and the allowable /0O
operations on them.

Table 23. Summary of VSAM Data Set Characteristics and Allowable I/O Operations

KSDS ESDS RRDS
Record Length Variable. Length can |Variable. Length Fixed.
be changed by cannot be changed
update. by update.
Alternate index Allows access using | Allows access using | Not supported by
unique or nonunique |unique or nonunique |VSAM.
keys. keys.

Chapter 13. Performing VSAM 1/O Operations 171

172

Table 23. Summary of VSAM Data Set Characteristics and Allowable I/0

Operations (continued)

KSDS ESDS RRDS
Record Read The order is By entry sequence. By relative record
(Sequential) determined by the Reads proceed in key | number.

VSAM key sequence for the key

of reference.

Record Write (Direct)

Position determined
by the value in the

field designated as

the key.

Record written at the
end of the file.

By relative record
number.

Positioning for
Record Read

By key or by RBA
value. Positioning by
RBA value is not
recommended
because changes to
the file change the
RBA.

By RBA value.
Alternate index allows
use by key.

By relative record
number.

Delete (Record)

If not already in
correct position,
reposition the file;
read the record using
fread(); delete the
record using
fdelrec(). fread()
must immediately
precede fdelrec().

Not supported by
VSAM.

If not already in
correct position,
position the file; read
the record using
fread(); delete the
record using
fdelrec(). fread()
must immediately
precede fdelrec().

Update (Record)

If not already in
correct position,
reposition the file;
read the record using
fread(); update the
record using
fupdate(). fread()
must immediately
precede fupdate().

If not already in
correct position,
reposition the file;
read the record using
fread(); update the
record using
fupdate(). fread()
must immediately
precede fupdate().

If not already in
correct position,
reposition the file;
read the record using
fread(); update the
record using
fupdate(). fread()
must immediately
precede fupdate().

Empty the file

Define the file as
reusable using
DEFINE CLUSTER
definition, and then
open the data set in
write
("wb,type=record" or
"wb+, type=record")
mode. Not supported
for alternate indexes.

Define the file as
reusable using
DEFINE CLUSTER
definition, and then
open the data set in
write
("wb,type=record" or
"wb+,type=record")
mode. Not supported
for alternate indexes.

Define the file as
reusable using
DEFINE CLUSTER
definition, and then
open the data set in
write
("wb,type=record" or
"wb+,type=record")
mode.

Stream Read

Supported by z/OS
C/C++.

Supported by z/OS
C/C++.

Supported by z/OS
CI/C++.

Stream Write/Update

Not supported by
z/OS C/C++.

Supported by z/OS
C/C++.

Supported by z/OS
C/C++.

Stream Repositioning

Supported by z/OS
C/C++.

Supported by z/OS
C/C++.

Supported by z/OS
C/C++.

z/0OS V1R4.0 C/C++ Programming Guide

Opening VSAM Data Sets

To open a VSAM data set, use the Standard C library functions fopen() and
freopen() just as you would for opening non-VSAM data sets. The fopen() and
freopen() functions are described in|z/OS C/C++ Run-Time Library Reference

This section describes considerations for using fopen() and freopen() with VSAM
files. Remember that a VSAM file must exist and be defined as a VSAM cluster
before you call fopen().

Using fopen() or freopen()

This section covers using file names for MVS data sets, specifying fopen() and
freopen() keywords, and buffering.

File Names for MVS Data Sets: Using a Data Set Name

The following diagram shows the syntax for the filename argument on your fopen()
or freopen() call:

e

>> |_//_|] Y qualifier] <

The following is a sample construct:
'qualifierl.qualifier2'

Single quotation marks indicate that you are passing a fully-qualified data set
name, that is, one which includes the high-level qualifier. If you pass a data set

name without single quotation marks, the z/OS C/C++ compiler prefixes the
high-level qualifier (usually the user ID) to the name. See
['‘Performing OS 1/O Operations” on page 107| for information on fully qualified
data set names.

Il Specifying these slashes indicates that the file names refer to MVS data sets.

qualifier
Each qualifier is a 1- to 8-character name. These characters may be
alphanumeric, national ($, #, @), the hyphen, or the character \xC0. The first
character should be either alphabetic or national. Do not use hyphens in names
for RACF-protected data sets.

You can join qualifiers with periods. The maximum length of a data set name is
generally 44 characters, including periods.

To open a data set by its name, you can code something like the following in your
C or C++ program:

infile=fopen("VSAM.CLUSTER1", "ab+, type=record");

File Names for MVS Data Sets: Using a DDname
To access a cluster or path by ddname, you can write the required DD statement
and call fopen() as shown in the following example.

If your data set is VSAM.CLUSTER1, your C or C++ program refers to this data set by
the ddname CFILE, and you want exclusive control of the data set for update, you
can write the DD statement:

//CFILE DD DSNAME=VSAM.CLUSTER1,DISP=0LD

Chapter 13. Performing VSAM 1/O Operations 173

and code the following in your C or C++ source program:
#include <stdio.h>

FILE *infile;
main()

{
infile=fopen("DD:CFILE", "ab+, type=record");

)

To share your data set, use DISP=SHR on the DD statement. DISP=SHR is the default
for fopen() calls that use a data set name and specify any of the r,rb, rb+, and
r+b open modes.

Note: z/OS C/C++ does not check the value of shareoptions at fopen() time, and
does not provide support for read-integrity and write-integrity, as required to
share files under shareoptions 3 and 4.

For more information on shareoptions, see the information on DEFINE CLUSTER in
the books listed in[“DFSMS” on page 927|

Specifying fopen() and freopen() Keywords
The mode argument is a character string specifying the type of access requested
for the file.

The mode argument contains one positional parameter (access mode) followed by
keyword parameters. A description of these parameters, along with an explanation
of how they apply to VSAM data sets is given the following sections.

Specifying Access Mode: The access mode is specified by the positional
parameter of the fopen() function call. The possible record 1/0O and binary modes
you can specify are:

rb Open for reading. If the file is empty, fopen() fails.

wb Open for writing. If the cluster is defined as reusable, the existing
contents of the cluster are destroyed. If the cluster is defined as not
reusable (clusters with paths are, by definition, not reusable),
fopen() fails. However, if the cluster has been defined but not
loaded, this mode can be used to do the initial load of both
reusable and non reusable clusters.

ab Open for writing.
rb+ or r+b Open for reading, writing, and/or updating.

wb+ or w+b Open for reading, writing, and/or updating. If the cluster is defined
as reusable, the existing contents of the cluster are destroyed. If
the cluster is defined as not reusable (clusters with paths are, by
definition, not reusable), the fopen() fails. However, if the cluster
has been defined but not loaded, this mode can be used to do the
initial load of both reusable and non reusable clusters.

ab+ or atb Open for reading, writing, and/or updating.
For text files, you can specify the following modes: r, w, a, r+, w+, and a+.

Note: For KSDS, KSDS AIX and ESDS AlX in text and binary 1/O, the only valid
modes are r and rb, respectively.

174 2/0S V1R4.0 C/C++ Programming Guide

fopen() and freopen() Keywords
The following table lists the keywords that are available on the fopen() and

freopen() functions, tells you which ones are useful for VSAM 1/O, and lists the
values that are valid for the applicable ones.

Table 24. Keywords for the fopen() and freopen() Functions for VSAM Data Sets

Keyword Allowed? Applicable? Noptes

recfm= Yes No Ignored.

Trecl= Yes No Ignored.

blksize= Yes No Ignored.

space= Yes No Ignored.

type= Yes Yes May be omitted. If you do specify it,
type=record is the only valid value.

acc= Yes Yes Specifies the access direction for VSAM
data sets. Valid values are BWD and FWD.

password= Yes Yes Specifies the password for a VSAM data
set.

asis Yes No Enables the use of mixed-case file names.

Not supported for VSAM.

byteseek Yes Yes Used for binary stream files to specify that
the seeking functions should use relative
byte offsets instead of encoded offsets.
This is the default setting.

noseek Yes No Ignored.
0S Yes No Ignored.
ris= Yes Yes Indicates the VSAM RLS access mode in

which a VSAM file is to be opened.

Keyword Descriptions

recfm=
Any values passed into fopen() are ignored.

Irecl= and blksize=
These keywords are set to the maximum record size of the cluster as initialized
in the cluster definition. Any values passed into fopen() are ignored.

space=
This keyword is not supported under VSAM.

type=
If you use the type= keyword, the only valid value for VSAM data sets is
type=record. This opens a file for record 1/O.

acc=
For VSAM files opened with the keyword type=record, you can specify the
direction by using the acc=access_type keyword on the fopen() function call.
For text and binary files, the access direction is always forward. Attempts to
open a VSAM data set with acc=BWD for either binary or text stream I/O will fail.

The access_type can be one of the following:

FWD The acc=FWD keyword specifies that the file be processed in a forward
direction. When the file is opened, it will be positioned at the beginning
of the first physical record, and any subsequent read operations sets
the file position indicator to the beginning of the next record.

Chapter 13. Performing VSAM 1/O Operations 175

176

The default value for the access keyword is acc=FWD.

BWD The acc=BWD keyword specifies that the file be processed in a backward
direction. When the file is opened, it is positioned at the beginning of
the last physical record and any subsequent read operation sets the file
position indicator to the beginning of the preceding record.

You can change the direction of sequential processing (from forward to
backward or from backward to forward) by using the flocate() library function.
For more information about flocate(), see |“Repositioning within Record I/O|
[Files” on page 181}

Note: When opening paths, records with duplicate alternate index keys are
processed in order of arrival time (oldest to newest) regardless of the
current processing direction.

password=
VSAM facilities provide password protection for your data sets. You access a
data set that has password protection by specifying the password on the
password keyword parameter of the fopen() function call; the password resides
in the VSAM catalog entry for the named file. There can be more than one
password in the VSAM catalog entry; data sets can have different passwords
for different levels of authorization such as reading, writing, updating, inserting,
or deleting. For a complete description of password protection on VSAM files,
see the list of publications given on ['DFSMS” on page 927

The password keyword has the form:
password=nx

where x is a 1- to 8-character password, and n is the exact number of
characters in the password. The password can contain special characters such
as blanks and commas.

If a required password is not supplied, or if an incorrect password is given,
fopen() fails.
asis
This keyword is not supported for VSAM.
byteseek
When you specify this keyword and open a file in binary stream mode, fseek()

and ftell() use relative byte offsets from the beginning of the file. This is the
default setting.

noseek
This keyword is ignored for VSAM data sets.

oS
This keyword is ignored for VSAM data sets.

rls=
Indicates the VSAM RLS access mode in which a VSAM file is to be opened.
This keyword is ignored for non-VSAM files. The following values are valid:
* nri — No Read Integrity

e cr — Consistent Read

Note: When the RLS keyword is specified, DISP is changed to default to SHR
when dynamic allocation of the data set is performed. In the rare case
when a batch job must use RLS without sharing the data set with other

z/0OS V1R4.0 C/C++ Programming Guide

Buffering

tasks, DISP should be OLD. To set DISP to OLD, the application must
specify DISP=OLD in the DD statement and start the application using

JCL. You cannot specify DISP in the fopen() mode argument.

Full buffering is the default. You can specify line buffering, but z/OS C/C++ treats
line buffering as full buffering for VSAM data sets. Unbuffered 1/0O is not supported

under VSAM; if you specify it, your setvbuf () call fails.

To find out how to optimize VSAM performance by controlling the number of VSAM

buffers used for your data set, refer to[z/OS DFSMS Access Method Services foll

Record 1/0 in VSAM

This section describes how to use record 1/0 in VSAM. The following topics are

covered:

+ |[RRDS Record Structure|

[RRDS Record Structure]

[Reading Record 1/0 Files|

[Writing to Record 1/O Files]

+ |Updating Record /O Files|

[Deleting Records|

+ [Repositioning within Record 1/0 Files|

+ |Flushing Buffers|

* Summary of VSAM Record I/O Operations

+ |Reading from Text and Binary I/O Files|

« |Writing to and Updating Text and Binary 1/O Files|
« [Deleting Records in Text and Binary 1/O Fileg
« [Repositioning within Text and Binary 1/O Fileg
+ [Flushing Buffers|

* |[Summary of VSAM Text I/0O Operations|

* |Summary of VSAM Binary 1/0 Operationg

RRDS Record Structure

For RRDS files opened in record mode, z/OS C/C++ defines the following key
structure in the C header file <stdio.h>:
typedef struct {
Tong unsigned int _ fill,
__recnum; /* the RRN, starting at 1 =/
}__rrds_key_type;

In your source program, you can define an RRDS record structure as either:

struct {
__rrds_key_type rrds_key; [+ __fill value always 0 */
char data[MY_REC_SIZE];

} rrds_rec_0;

or:

Chapter 13. Performing VSAM /O Operations

177

struct {
__rrds_key_type rrds_key; [+ __fill value always 1 */
char *data;

} rrds_rec_1;

The z/OS C/C++ library recognizes which type of record structures you have used
by the value of rrds_key. fill. Zero indicates that the data is contiguous with
rrds_key and 1 indicates that a pointer to the data follows rrds_key.

Reading Record I/O Files

178

To read from a VSAM data set opened with type=record, use the Standard C
fread() library function. If you set the size argument to 1 and the count argument
to the maximum record size, fread() returns the number of bytes read successfully.
For more information on fread(), see |z/OS C/C++ Run-Time Library Referencel

fread() reads one record from the system from the current file position. Thus, if
you want to read a certain record, you can call flocate() to position the file pointer
to point to it; the subsequent call to fread() reads in that record.

If you use an fread() call to request more bytes than the record about to be read
contains, fread() reads the entire record and returns the number of bytes read. If
you use fread() to request fewer bytes than the record about to read contains,
fread() reads the number of bytes that you specified and returns your request.

z/0OS C/C++ VSAM Record I/O does not allow a read operation to immediately
follow a write operation without an intervening reposition. z/OS C/C++ treats the
following as read operations:

» Calls to read functions that request 0 bytes
* Read requests that fail because of a system error
» Calls to the ungetc() function

Calling fread() several times in succession, with no other operations on this file in
between, reads several records in sequence (sequential processing), which can be
forward or backward, depending on the access direction, as described in the
following.

* KSDS, KSDS AIX and ESDS AIX

The records are retrieved according to the sequence of the key of reference, or
in reverse key sequence.

Note: Records with duplicate alternate index keys are processed in order of
arrival time (oldest to newest) regardless of the current processing
direction.

+ ESDS

The records are retrieved according to the sequence they were written to the file
(entry sequence), or in reverse entry sequence.

* RRDS

The records are retrieved according to relative record number sequence or
reverse relative record number sequence.

When records are being read, RRNs without an associated record are ignored.
For example, if a file has relative records of 1, 2, and 5, the nonexistent records
3 and 4 are ignored.

By default, in record mode, fread() must be called with a pointer to an RRDS
record structure. The field _ rrds_key type. fill must be set to either 0 or 1

z/0OS V1R4.0 C/C++ Programming Guide

indicating the type of the structure, and the count argument must include the
length of the _ rrds_key type. fread() returns the RRN number in the _ recnum
field, and includes the length of the _ rrds_key type in the return value. You can
override these operations by setting the _EDC_RRDS_HIDE_KEY environment
variable to Y. Once this variable is set, fread() is called with a data buffer and
not an RRDS data structure. The return value of fread() is now only the length
of the data read. In this case, fread() cannot return the RRN. For information on

setting environment variables, see [Chapter 33, “Using Environment Variables” on|
page 479

Writing to Record 1/O Files

To write new records to a VSAM data set opened with type=record, use the
Standard C fwrite() library function. If you set size to 1 and count to the desired

record size, fwrite() returns the number of bytes written successfully. For more
information on fwrite() and the type=record parameter, see |z/0OS C/C+

[Run-Time Library Reference,

In general, C 1/0 does not allow a write operation to follow a read operation without
an intervening reposition or fflush(). z/OS C/C++ counts a call to a write function
writing 0 bytes or a write request that fails because of a system error as a write
operation. However, z/OS C/C++ VSAM record I/O allows a write to directly follow a
read. This feature has been provided for compatibility with earlier releases.

The process of writing to a data set for the first time is known as initial loading.
Using the fwrite() function, you can write to a new VSAM file in initial load mode
just as you would to a file not in initial load mode. Writing to a KSDS PATH or an
ESDS PATH in initial load mode is not supported.

If your fwrite() call does not try to write more bytes than the maximum record
size, fwrite() writes a record of the length you asked for and returns your request.
If your fwrite() call asks for more than the maximum record size, fwrite() writes
the maximum record size, sets errno, and returns the maximum record size. In
either case, the next call to fwrite() writes to the following record.

Note: If an fwrite() fails, you must reposition the file before you try to read or
write again.

* KSDS, KSDS AIX

Records are written to the cluster according to the value stored in the field
designated as the prime key.

You can load a KSDS in any key order but it is most efficient to perform the
fwrite() operations in key sequence.

 ESDS, ESDS AIX
Records are written to the end of the file.
* RRDS

Records are written according to the value stored in the relative record number
field.

fwrite() is called with the RRDS record structure.

By default, in record mode, fwrite() and fupdate() must be called with a pointer
to an RRDS record structure. The _ rrds_key type fields _ fill and _ recnum
must be set. _ fill is set to 0 or 1 to indicate the type of the structure. The
__recnum field specifies the RRN to write, and is required for fwrite() but not

Chapter 13. Performing VSAM 1/O Operations 179

fupdate(). The count argument must include the length of the _ rrds_key type.
fwrite() and fupdate() include the length of the _ rrds_key type in the return
value.

Updating Record 1/O Files

The fupdate() function, a z/OS C/C++ extension to the SAA C library, is used to
update records in a VSAM file. For more information on this function, see
C/C++ Run-Time Library Referencel

+ KSDS, ESDS, and RRDS
To update a record in a VSAM file, you must perform the following operations:

1. Open the VSAM file in update mode (rb+/r+b, wb+/w+b, or ab+/a+b specified
as the required positional parameter of the fopen() function call and
type=record).

2. If the file is not already positioned at the record you want to update,
reposition to that record.

3. Read in the record using fread().

Once the record you want to update has been read in, you must ensure that
no reading, writing, or repositioning operations are performed before
fupdate().

4. Make the necessary changes to the copy of the record in your buffer area.
5. Update the record from your local buffer area using the fupdate() function.

If an fupdate() fails, you must reposition using flocate() before trying to
read or write.

Notes:

1. If afile is opened in update mode, a read operation can result in the locking
of control intervals, depending on shareoptions specification of the VSAM
file. If after reading a record, you decide not to update it, you may need to
unlock a control interval by performing a file positioning operation to the same
record, such as an flocate() using the same key.

2. |If fupdate() wrote out a record the file position is the start of the next record.
If the fupdate() call did not write out a record, the file position remains the
same.

* KSDS and KSDS PATH

You can change the length of the record being updated. If your request does not
exceed the maximum record size of the file, fupdate() writes a record of the
length requested and returns the request. If your request exceeds the maximum
record size of the file, fupdate() writes a record that is the maximum record size,
sets errno, and returns the maximum record size.

You cannot change the prime key field of the record, and in KSDS AlX, you
cannot change the key of reference of the record.

« ESDS

You cannot change the length of the record being updated. If the size of the
record being updated is less than the current record size, fupdate() updates the
amount you specify and does not alter the data remaining in the record. If your
request exceeds the length of the record that was read, fupdate() writes a
record that is the length of the record that was read, sets errno, and returns the
length of the record that was read.

 ESDS PATH

You cannot change the length of the record being updated or the key of
reference of the record. If the size of the record being updated is less than the

180 z/0S V1R4.0 C/C++ Programming Guide

current record size, fupdate() updates the amount you specify and does not
alter the data remaining in the record. If your request exceeds the length of the
record that was read, fupdate() writes a record that is the length of the record
that was read, sets errno, and returns the length of the record that was read.

* RRDS
RRDS files have fixed record length. If you update the record with less than the
record size, only those characters specified are updated, and the remaining data
is not altered. If your request exceeds the record size of the file, fupdate() writes

a record that is the record size, sets errno, and returns the length of the record
that was read.

Deleting Records

To delete records, use the library function fdelrec(), a z/OS C/C++ extension to
the SAA C library. For more information on this function, see|z/0S C/C++ Run-Time|
Library Reference,

* KSDS, KSDS PATH, and RRDS

To delete records, you must perform the following operations:

1. Open the VSAM file in update mode (rb+/r+b, ab+/a+b, or wb+/w+b specified
as the required positional parameter of the fopen() function call and
type=record).

2. If the file is not already positioned at the record you want to delete, reposition
to that record.

3. Read the record using the fread() function.

Once the record you want to delete has been read in, you must ensure that
no reading, writing, or repositioning operations are performed before
fdelrec().

4. Delete the record using the fdelrec() function.

Note: If the data set was opened with an access mode of rb+ or r+b, a read
operation can result in the locking of control intervals, depending on
shareoptions specification of the VSAM file. If after reading a record, you
decide not to delete it, you may need to unlock a control interval by
performing a file-positioning operation to the same record, such as an
flocate() using the same key.

* ESDS and ESDS PATH
VSAM does not support deletion of records in ESDS files.

Repositioning within Record 1/O Files
You can use the following functions to locate a record within a VSAM data set:
e flocate()
e ftell() and fseek()
e fgetpos() and fsetpos()
* rewind()

flocate()

The flocate() C library function can be used to locate a specific record within a
VSAM data set given the key, relative byte address, or the relative record number.
The flocate() function also sets the access direction.

For comilete details on these library functions, see [z/0S C/C++ Run-Time Library|

Chapter 13. Performing VSAM 1/O Operations 181

182

The following flocate() parameters set the access direction to forward:
e _ KEY_FIRST (the key and key_len parameters are ignored)

« __KEY_EQ
+ _ KEY GE
« _RBA EQ

The following flocate() parameters all set the access direction to backward and are
only valid for record 1/O:

e KEY_LAST (the key and key_len parameters are ignored)
e KEY_EQ BWD
e RBA_EQ BWD

Note: The _RBA EQ and _ RBA EQ BWD parameters are not valid for paths and are
not recommended for KSDS and RRDS data sets.

You can use the rewind() library function instead of calling flocate() with
__KEY_FIRST.

* KSDS, KSDS AlX, and ESDS AIX

The key parameter of flocate() for the options __KEY_EQ, _ KEY_GE, and
__KEY_EQ BWD is a pointer to the key of reference of the data set. The key len
parameter is the key length as defined for the data set for a full key search, or
less than the defined key length for a generic key search (a partial key match).

For KSDSs, __RBA_EQ and ___RBA_EQ_BWD are supported, but are not
recommended.

Alternate indexes do not allow positioning by RBA.
« ESDS

The key parameter of flocate() is a pointer to an unsigned long integer
containing the specified RBA value. The key Ten parameter is 4, because RBAs
are unsigned long integers.

* RRDS

For _ KEY _EQ, _ KEY GE, and __KEY_EQ BWD, the key parameter of flocate() is a
pointer to an unsigned long integer containing the specified relative record
number. For __RBA_EQ and __RBA_EQ_BWD, the key parameter of flocate() is a
pointer to an unsigned long integer containing the specified RBA. However,
seeking to RBA values is not recommended, because it is not supported across
control intervals. The key_len parameter is 4, because RRNs and RBAs are
unsigned long integers.

fgetpos() and fsetpos()

fgetpos () is used to store the current file position and access direction. fsetpos()
is used to relocate to a file position stored by fgetpos() and restore the saved
access direction.

* KSDS

fgetpos() stores the RBA value. This RBA value may be invalidated by
subsequent insertions, deletions, or updates.

* KSDS AIX and ESDS AIX

fgetpos() and fsetpos() are not supported for PATHs.
* ESDS and RRDS

There are no special considerations.

z/0OS V1R4.0 C/C++ Programming Guide

ftell() and fseek()
ftel1() is used to store the current file position. fseek() is used to relocate to one
of the following:

» Afile position stored by ftell()

» A calculated record number (SEEK_SET)

» A position relative to the current position (SEEK_CUR)
« A position relative to the end of the file (SEEK_END).

ftel1() and fseek() offsets in record mode 1/O are relative record offsets. For
example, the following call moves the file position to the start of the previous
record:

fseek(fp, -1L, SEEK _CUR);

You cannot use fseek() to reposition to a file position before the beginning of the
file or to a position beyond the end of the file.

Note: In general, the performance of this method is inferior to flocate().

The access direction is unchanged by the repositioning.
* KSDS and RRDS
There are no special considerations.
* KSDS AIX and ESDS AIX
ftell() and fseek() are not supported.
+ ESDS
ftel1() is not supported.
* RRDS

fseek() seeks to a relative position in the file, and not to an RRN value. For
example, in a file consisting of RRNs 1, 3, 5 and 7, fseek(fp, 3L, SEEK SET);
followed by an fread() would read in RRN 7, which is at offset 3 in the file.

rewind()
The rewind() function repositions the file position to the beginning of the file, and
clears the error setting for the file.

rewind() does not reset the file access direction. For example, a call to flocate()
with __KEY_LAST sets the file pointer to the end of the file and sets the access
direction to backwards. A subsequent call to rewind() sets the file pointer to the
beginning of the file, but the access direction remains backwards.

Flushing Buffers

You can use the C library function fflush() to flush buffers. However, fflush()
writes nothing to the system, because all records have already been written there
by fwrite().

fflush() after a read operation does not refresh the contents of the buffer.

For more information on fflush(), see|z/OS C/C++ Run-Time Library Referencel

Chapter 13. Performing VSAM 1/O Operations 183

Summary of VSAM Record I/O Operations

Table 25. Summary of VSAM Record I/O Operations

KSDS ESDS RRDS PATH
fopen(), rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |[rb, rb+, ab, ab+, |[rb, rb+, ab, ab+
freopen() wb, wb+ (empty |wb, wb+ (empty |wb, wb+ (empty
cluster or reuse |cluster or reuse |cluster or reuse
specified for wb | specified for wb | specified for wb
& wh+) & wh+) & wh+)
furite() rb+, ab, ab+, wb, | rb+, ab, ab+, wb, | rb+, ab, ab+, wb, | rb+, ab, ab+
wh+ wh+ whb+
fread() rb, rb+, ab+, wb+ | rb, rb+, ab+, wb+ | rb, rb+, ab+, wb+ | rb, rb+, ab+
ftell() rb, rb+, ab, ab+, rb, rb+, ab, ab+,
wh, wb+ 3 wh, wbh+
fseek() rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb, rb+, ab, ab+,
wb, wb+ 3 wh, wh+ wh, wh+
fgetpos() rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb, rb+, ab, ab+,
wb, wb+ 4 whb, wb+ whb, wb+
fsetpos() rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb, rb+, ab, ab+,
wb, wb+ 4 wb, wb+ wb, wb+
flocate() rb, rb+, ab+, wb+ | rb, rb+, ab+, wb+ | rb, rb+, ab+, wb+ | rb, rb+, ab+
rewind() rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb, rb+, ab, ab+
wb, wb+ wb, wb+ wb, wb+
fflush() rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb, rb+, ab, ab+
wb, wbh+ wb, wbh+ wb, wbh+
fdelrec() rb+, ab+, wb+ rb+, ab+, wb+ rb+, ab+ (not
ESDS)
fupdate() rb+, ab+, wb+ rb+, ab+, wb+ rb+, ab+, wb+ rb+, ab+
ferror() rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb, rb+, ab, ab+
wb, wbh+ wb, wbh+ wb, wbh+
feof() rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb, rb+, ab, ab+
wb, wb+ wb, wb+ wb, wb+
clearerr() rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb, rb+, ab, ab+
wb, wb+ wb, wb+ wb, wb+
fclose() rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb, rb+, ab, ab+
wb, wb+ wb, wb+ wb, wb+
fldata() rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb, rb+, ab, ab+
wb, wb+ wb, wbh+ wb, wbh+

VSAM Record Level Sharing

VSAM Record Level Sharing (RLS) provides for the sharing of VSAM data at the

record level, using the locking and caching functions of the co
hardware. For more information on Record Level Sharing, see

Introductio

upling facilit
z/0OS DFSM.

3. The saved position is based on the relative position of the record within the data set. Subsequent insertions or deletions may

invalidate the saved position.

4. The saved position is based on the RBA of the record. Subsequent insertions, deletions or updates may invalidate the saved

position.

184

z/0OS V1R4.0 C/C++ Programming Guide

The C/C++ run-time library provides the following support for VSAM RLS:

+ Specification of RLS-related keywords in the mode string of fopen() and
freopen().

» Specification of RLS-related text unit key values in the __dyn_t structure, which is
used as input to the dynalloc() function.

* Provides the application with VSAM return and reason codes for VSAM I/O
errors.

» Performs implicit positioning for files opened for RLS access.

VSAM RLS has two read integrity file access modes. These modes tell VSAM the
level of locking to perform when records are accessed within a file that has not
been opened in update mode . The access modes are:

nri No Read Integrity indicates that requests performed by the application are
not to be serialized with updates or erases of the records by other calling
programs. VSAM accesses the records without obtaining a lock on the
record.

cr Consistent Read indicates that requests performed by the application are to
be serialized with updates or erases of the records by other calling
programs. VSAM obtains a share lock when accessing the record. This lock
is released once the record has been returned to the caller.

VSAM RLS locks records to support record integrity. An application may wait for an
exclusive record lock if another user has the record locked. The application is also
subject to new locking errors such as deadlock or timeout errors.

If the file has been opened in update mode , and RLS=CR is specified, VSAM also
serializes access to the records within the file. However, the type of serialization
differs from non-update mode in the following ways:

* A reposition within the file causes VSAM to obtain a share lock for the record.

e Aread of a record causes VSAM to obtain an exclusive lock for the record. The
lock is held until the record is updated in the file, or another record is read.

Notes:

1. When a file is opened, it is implicitly positioned to the first record to be
accessed.

2. You can also specify the RLS keyword on the JCL DD statement. When
specified on both the JCL DD statement and in the mode string on fopen() or
freopen(), the read integrity options specified in the mode string override those
specified on the JCL DD statement.

3. VSAM RLS access is supported for the 3 types of VSAM files that the C/C++
run-time library supports: Key-Sequenced (KSDS), Entry-Sequenced (ESDS),
and Relative Record (RRDS) data sets.

4. VSAM RLS functions require the use of a Coupling Facility. For more
information on using the Coupling Facility, see|z/0S DFSMS Introduction{, and
[z/0S Parallel Sysplex Overview}

5. In an environment where one thread opens and another thread issues record
management requests, VSAM RLS requires that record management requests
be issued from a thread whose Task Control Block (TCB) is subordinate to the
TCB of the thread which opened the file.

6. VSAM RLS does not support the following:
* Key range data sets
» Direct open of an AlIX cluster as a KSDS

Chapter 13. Performing VSAM 1/O Operations 185

e Access to individual components of a cluster
* OS Checkpoint and Restart

Error Reporting

Errors are reported through the __amrc structure and the SIGIOERR signal. The
following are additional considerations for error reporting in a VSAM RLS
application:

* VSAM RLS uses the SMSVSAM server address space. If a file open fails
because the server is not available, the C run-time library places the error return
code and error value in the __amrc structure, and returns a null file descriptor.
Record management requests return specific error return/reason codes, if the
SMSVSAM server is not available. The server address space is automatically
restarted. To recover from this type of error, an application should first close the
file to clean up the file status, and then open the file prior to attempting record
management requests. The close for the file returns a return code of 4, and an
error code of 170(X’AA’). This is the expected result. It is not an error.

= Opening a recoverable file for output is not supported. If you attempt to do so,
the open will fail with error return code 255 in the __amrc structure.

* Some of the VSAM errors, that are reported in the __amrc structure, are
situations from which an application can recover. These are problems that can
occur unpredictably in a sharing environment. Usually, the application can
recover by simply accessing another record. Examples of such errors are the
following:

— RC 8, 21(X’15’): Request cancelled as part of deadlock resolution.
— RC 8, 22(X’'16’): Request cancelled as part of timeout resolution.

— RC 8, 24(X’'18’): Request cancelled because transaction backout is pending
on the requested record.

— RC 8, 29(X'14’): Intra-luwid contention between threads under a given TCB.

The application can intercept errors by registering a condition handler for the
SIGIOERR condition. Within the condition handler, the application can examine
the information in the __amrc structure and determine how to recover from each
specific situation.

Refer to [z/70S DFSMS Macro Instructions for Data Setd for a complete list of
return and reason codes.

Text and Binary 1/0 in VSAM

Because VSAM is primarily record-based, this section only discusses those aspects
of text and binary 1/O that are specific to VSAM. For general information on text and
binary 1/0, refer to the respective sections in [Chapter 11, “Performing OS /0]

[Operations” on page 107}

Reading from Text and Binary 1/O Files

* RRDS

All the read functions support reading from text and binary RRDS files. fread() is
called with a character buffer instead of an RRDS record structure.

Writing to and Updating Text and Binary 1/O Files

186

* KSDS, KSDS AlX, and ESDS AlX

z/0OS V1R4.0 C/C++ Programming Guide

z/OS C/C++ VSAM support for streams does not provide for writing and updating
these types of data sets opened for text or binary stream I/O.

 ESDS

Writes are supported for ESDSs opened as binary or text streams. Updating data
in an ESDS stream cannot change the length of the record in the external file.
Therefore, in a binary stream:

— updates for less than the existing record length leave existing data beyond the
updated length unchanged,

— updates for longer than the existing record length flow over the record
boundary and update the start of the next record.

In text streams:

— updates that specify records shorter than the original record pad the updated
record to the existing record length with blanks;

— updates for longer than the existing record length result in truncation, unless
the original record contained only a new-line character, in which case it may
be updated to contain one byte of data plus a new-line character.

* RRDS
fwrite() is called with a character buffer instead of an RRDS record structure.

Records are treated as contiguous. Once the current record is filled, the next
record in the file is written to. For example, if the file consisted of only record 1,
record 5, and record 28, a write would complete record 1 and then go directly to
record 5.

Writing past the last record in the file is allowed, up to the maximum size of the
RRDS data set. For example, if the last record in the file is record 28, the next
record to be written is record 29.

Insertion of records is not supported. For example, in a file of records 1, 5, and
28, you cannot insert record 3 into the file.

Deleting Records in Text and Binary 1/O Files
fdelrec() is not supported for text and binary 1/0 in VSAM.

Repositioning within Text and Binary 1/O Files
You can use the following functions to locate a record within a VSAM data set:
e flocate()
e ftell() and fseek()
» fgetpos() and fsetpos()
* rewind()

For comilete details on these library functions, see |z/0S C/C++ Run-Time Library|

Reference

flocate()

The flocate() C library function can be used to reposition to the beginning of a
specific record within a VSAM data set given the key, relative byte address, or the
relative record number. For more information on this function, see
[Run-Time Library Reference,

The following flocate() parameters set the direction access to forward:
e _ KEY_FIRST (the key and key Ten parameters are ignored)
s KEY_EQ

Chapter 13. Performing VSAM 1/O Operations 187

188

« _ KEY GE
+ _ RBA EQ

The following flocate() parameters all set the access direction to backward and are
not valid for text and binary 1/0, because backwards access is not supported:

e _ KEY_LAST (the key and key_len parameters are ignored)

« _ KEY_EQ BWD

+ __ RBA _EQ BWD

You can use the rewind() library function instead of calling flocate() with
__KEY_FIRST.

* KSDS, KSDS AlX, and ESDS AlX

The key parameter of flocate() for the options _ KEY EQ and _ KEY GE is a
pointer to the key of reference of the data set. The key_Ten parameter is the key
length as defined for the data set for a full key search, or less than the defined
key length for a generic key search (a partial key match).

Alternate indexes do not allow positioning by RBA.

Note: The __RBA_EQ parameter is not valid for paths and is not recommended.
- ESDS

The key parameter of flocate() is a pointer to an unsigned long integer
containing the specified RBA value. The key len parameter is 4, because RBAs
are unsigned long integers.

* RRDS

For _ KEY _EQ and __KEY_GE, the key parameter of flocate() is a pointer to an
unsigned long integer containing the specified relative record number. For
__RBA_EQ, the key parameter of flocate() is a pointer to an unsigned long
integer containing the specified RBA. However, seeking to RBA values is not
recommended, because it is not supported across control intervals. The key Ten
parameter is 4, because RRNs and RBAs are unsigned long integers.

fgetpos() and fsetpos()
fgetpos () saves the access direction, an RBA value, and the file position, and
fsetpos () restores the saved access direction.

fgetpos () accounts for the presence of characters in the ungetc() buffer unless you
have set the EDC_COMPAT variable. See |[Chapter 33, “Using Environment Variables’|
or information about EDC_COMPAT. If ungetc() characters back the file
position up to before the start of the file, calls to fgetpos() fail.
» KSDS
fgetpos () stores the RBA value. This RBA value may be invalidated by
subsequent insertions, deletions or updates.
* KSDS PATH and ESDS PATH
fgetpos() and fsetpos() are not supported for PATHs.
« ESDS and RRDS

There are no special considerations.

ftell() and fseek()

Using fseek() to seek beyond the current end of file in a writable ESDS or RRDS
binary file results in the file being extended with nulls to the new position. An
incomplete last record is completed with nulls, records of length Trecl are added as
required, and the current record is filled with the remaining number of nulls and left

z/0OS V1R4.0 C/C++ Programming Guide

in the current buffer. This is supported for relative byte offset from SEEK_SET,
SEEK_CUR and SEEK_END. provides a summary of the fseek() and ftell()
parameters in binary and text.

Table 26. Summary of fseek() and ftell() parameters in text and binary

Type Mode ftel1() return fseek() SEEK_SET |SEEK_CUR SEEK_END
values
KSDS Binary relative byte offset | relative byte offset | relative byte offset | relative byte offset
Text not supported zero only relative byte offset | relative byte offset
ESDS Binary relative byte offset | relative byte offset | relative byte offset | relative byte offset
Text not supported zero only relative byte offset | relative byte offset
RRDS Binary encoded byte encoded byte relative byte offset | relative byte offset
offset offset
Text encoded byte encoded byte relative byte offset | relative byte offset
offset offset
PATH Binary not supported not supported not supported not supported
Text not supported not supported not supported not supported

Flushing Buffers

You can use the C library function fflush() to flush data.

For text files, calling fflush() to flush an update to a record causes the new data
to be written to the file.

If you call fflush() while you are updating, the updates are flushed out to VSAM.

For more information on fflush(), see |z/OS C/C++ Run-Time Library Referencel

Summary of VSAM Text I/O Operations

Table 27. Summary of VSAM Text I/O Operations

KSDS ESDS RRDS PATH

fopen(), r I, r+, a, at, w, r, r+, a, at, w, r
freopen() w+ (empty w+ (empty

cluster or reuse | cluster or reuse

specified for w & | specified for w &

wH+) wH+)
fwrite() r+, a, at, w, w+ |r+, a, a+, w, w+
fprintf() r+, a, at, w, w+ |r+, a, a+, w, w+
fputs() r+, a, a+, w, w+ |r+, a, a+, w, w+
fputc() r+, a, at, w, w+ |r+, a, a+, w, w+
putc() r+,a, a+, w, w+ |r+, a, a+, w, w+
viprintf() r+, a, at, w, w+ |r+, a, a+, w, w+
vprintf() r+, a, at, w, w+ |r+, a, a+, w, w+
fread() r I, r+, at+, w+ r, r+, a+, w+ r
fscanf() r I, r+, a+, w+ r, r+, a+, w+ r
fgets() r I, r+, a+, w+ r, r+, a+, w+ r
fgetc() r I, r+, at+, w+ r, r+, a+, w+ r

Chapter 13. Performing VSAM /O Operations

189

Table 27. Summary of VSAM Text I/O Operations (continued)

KSDS ESDS RRDS PATH

getc() r r, r+, at+, w+ r, r+, at+, w+ r

ungetc() r r, r+, a+, w+ r, r+, a+, W+ r

ftell() r,r+, a, at, w,

W+

fseek() r r,r+, a, at, w, r,r+, a, at, w,
w+ w+

fgetpos() r r, r+, a, a+, w, r, r+, a, at+, w,
w+ w+

fsetpos() r r, r+, a, a+, w, r, r+, a, at+, w,
w+ w+

flocate() r r, r+, at, w+ r, r+, at, w+ r

rewind() r r, r+, a, at+, w, r, r+, a, at+, w, r
w+ w+

fflush() r r, r+, a, a+, w, r, r+, a, at+, w, r
w+ w+

ferror() r r,r+, a, at, w, r,r+, a, at, w, r
w+ w+

fdelrec()

fupdate()

feof() r I, r+, a, a+, w, r, r+, a, a+, w, r
w+ w+

clearerr() r r, r+, a, at+, w, r,r+, a, at, w, r
w+ w+

fclose() r r, r+, a, a+, w, r, r+, a, a+, w, r
w+ w+

fldata() r rnr+,a, at, w, r,r+, a, at, w, r
w+ w+

Summary of VSAM Binary I/O Operations
Table 28. Summary of VSAM Binary I/0O Operations
KSDS ESDS RRDS PATH

fopen(), rb rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb

freopen() wb, wb+ (empty | wb, wb+ (empty
cluster or reuse | cluster or reuse
specified for wb | specified for wb
& wb+) & wb+)

furite() rb+, ab, ab+, wb, | rb+, ab, ab+, wb,
wh+ whb+

fprintf() rb+, ab, ab+, wb, | rb+, ab, ab+, wb,
wb+ wb+

fputs () rb+, ab, ab+, wb, | rb+, ab, ab+, wb,
whb+ whb+

fputc() rb+, ab, ab+, wb, | rb+, ab, ab+, wb,
wh+ wh+

190

z/0OS V1R4.0 C/C++ Programming Guide

Table 28. Summary of VSAM Binary I/0O Operations (continued)

KSDS ESDS RRDS PATH

putc() rb+, ab, ab+, wb, | rb+, ab, ab+, wb,
wh+ whb+

viprintf() rb+, ab, ab+, wb, | rb+, ab, ab+, wb,
wh+ whb+

vprintf() rb+, ab, ab+, wb, | rb+, ab, ab+, wb,
wb+ wb+

fread() rb rb, rb+, ab+, wb+ | rb, rb+, ab+, wb+|rb

fscanf() rb rb, rb+, ab+, wb+ | rb, rb+, ab+, wb+ | rb

fgets() rb rb, rb+, ab+, wb+ | rb, rb+, ab+, wb+|rb

fgetc() rb rb, rb+, ab+, wb+ | rb, rb+, ab+, wb+ |rb

getc() rb rb, rb+, ab+, wb+ | rb, rb+, ab+, wb+|rb

ungetc() rb rb, rb+, ab+, wb+ | rb, rb+, ab+, wb+ |rb

ftell() rb rb, rb+, ab, ab+, |rb, rb+, ab, ab+,
whb, wb+ wb, wb+

fseek() rb rb, rb+, ab, ab+, |rb, rb+, ab, ab+,
wb, wb+ wb, wb+

fgetpos() rb rb, rb+, ab, ab+, |rb, rb+, ab, ab+,
wb, wb+ wb, wb+

fsetpos() rb rb, rb+, ab, ab+, |rb, rb+, ab, ab+,
wb, wb+ whb, wb+

flocate() rb rb, rb+, ab+, wb+ | rb, rb+, ab+, wb+|rb

rewind() rb rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb
wb, wb+ wb, wbh+

fflush() rb rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb
wb, wb+ wb, wb+

ferror() rb rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb
wb, wb+ wb, wb+

fdelrec()

fupdate()

feof() rb rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb
wb, wb+ wb, wb+

clearerr() rb rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb
wb, wb+ wb, wb+

fclose() rb rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb
wb, wbh+ wb, wb+

fldata() rb rb, rb+, ab, ab+, |rb, rb+, ab, ab+, |rb
wb, wb+ wb, wb+

Closing VSAM Data Sets

To close a VSAM data set, use the Standard C fclose() library function as you
would for closing non-VSAM files. See |z/0S C/C++ Run-Time Library Referencd for
more details on the fclose() library function.

For ESDS binary files, if fclose() is called and there is a new record in the buffer
that is less than the maximum record size, this record is written to the file at its

Chapter 13. Performing VSAM 1/O Operations 191

current size. A new RRDS bhinary record that is incomplete when the file is closed is
filled with null characters to the record size.

A new ESDS or RRDS text record that is incomplete when the file is closed is
completed with a new-line.

VSAM Return Codes

When failing return codes are received from z/OS C/C++ VSAM I/O functions, you
can access the __amrc structure to help you diagnose errors. The __amrc_type
structure is defined in the header file stdio.h (when the compiler option

LANGLVL (LIBEXT) is used).

Note: The __ amrc struct is global and can be reset by another 1/0O operation (such
as printf()).

The following fields of the structure are important to VSAM users:

__amrc.__co de._ feedback._ rc
Stores the VSAM R15.

__amrc.__code. feedback. fdbk
Stores the VSAM error code or reason code.

__amrc._ RBA
Stores the RBA after some operations.

__amrc.__last_op
Stores a code for the last operation. The codes are defined in the header
file stdio.h.

__amrc.__rplfdbwd
Stores the feedback code from the IFGRPL control block.

For definitions of these return codes and feedback codes, refer to the publications
listed in['DFSMS” on page 927|

You can set up a SIGIOERR handler to catch read or write system errors. See
[Chapter 18, “Debugging 1/0 Programs” on page 233|for more information.

VSAM Examples

This section provides several examples of using 1/0 under VSAM.

KSDS Example

The example below shows two functions from an employee record entry system
with a mainline driver to process selected options (display, display next, update,
delete, create).

The update routine is an example of KSDS clusters, and the display routine is an
example of both KSDS clusters and alternate indexes.

For these examples, the clusters and alternate indexes should be defined as
follows:

* The KSDS cluster has a record size of 150 with a key length of 4 with offset O.
* The unique KSDS AIX has a key length of 20 with an offset of 10.
* The non-unique KSDS AIX has a key length of 40 with an offset of 30.

192 2/0S V1R4.0 C/C++ Programming Guide

The update routine is passed the following:
» data_ptr, which points to the information that is to be updated

* orig_data_ptr, which points to the information that was originally displayed using

the display option
» Afile pointer to the KSDS cluster

The display routine is passed the following:

« data_ptr, which points to the information that was entered on the screen for the

search query

* orig_data_ptr, which is returned with the information for the record to be
displayed if it exists

» File pointers for the primary cluster, unique alternate index and non-unique
alternate index

By definition, the primary key is unique and therefore the employee number was
chosen for this key. The user_id is also a unique key; therefore, it was chosen as
the unique alternate index key. The name field may not be unique; therefore, it was

chosen as the non-unigue alternate index key.
CCNGVS2

/* this example demonstrates the use of a KSDS file =/
/* part 1 of 2-other file is CCNGVS3 =*/

#include <stdio.h>
#include <string.h>

/* global definitions */

struct data_struct {
char emp_number[4];
char user_id[8];
char name[20];
char pers_info[37];

s

#define REC_SIZE 69
#define CLUS_KEY_SIZE 4
#define AIX_UNIQUE_KEY_SIZE 8

#define AIX_NONUNIQUE KEY SIZE 20

static void print_amrc() {
__amrc_type currErr = *__amrc; /* copy contents of __ amrc */

/* structure so that values */
/* don't get jumbled by printf */

%d\n", currErr._code._feedback.__rc);

%d\n", currErr._ code._feedback.__ fdbk);

%d\n", currErr._RBA);

%d\n", currErr._last_op);

printf("R15 value
printf("Reason code
printf("RBA
printf("Last op
return;

Figure 23. KSDS Example (Part 1 of 6)

Chapter 13. Performing VSAM /O Operations

193

194

/* update_emp_rec() function definition */

int update_emp rec (struct data struct *data_ptr,
struct data_struct xorig_data_ptr,
FILE *fp)

int rc;
char buffer[REC_SIZE+1];

/* Check to see if update will change primary key (emp_number) x/
if (memcmp(data_ptr->emp_number,orig_data_ptr->emp_number,4) != 0) {

/* Check to see if changed primary key exists */
rc = flocate(fp,&(data_ptr->emp_number),CLUS_KEY_SIZE, KEY_EQ);
if (rc == 0) {

print_amrc();
printf("Error: new employee number already exists\n");
return 10;

1
clearerr(fp);

/* Write out new record */
rc = fwrite(data_ptr,1,REC_SIZE,fp);
if (rc != REC_SIZE || ferror(fp)) {

print_amrc();

printf("Error: write with new employee number failed\n");

return 20;
}
/* Locate to old employee record so it can be deleted */
rc = flocate(fp,&(orig_data_ptr->emp_number),CLUS KEY SIZE,
__KEY_EQ);
if (rc !=0) {
print_amrc();
printf("Error: flocate to original employee number failed\n");
return 30;
1

rc = fread(buffer,1,REC_SIZE,fp);
if (rc != REC_SIZE || ferror(fp)) {
print_amrc();
printf("Error: reading old employee record failed\n");

return 40;
}
rc = fdelrec(fp);
if (rc 1= 0) {
print_amrc();
printf("Error: deleting old employee record failed\n");
return 50;
}

Figure 23. KSDS Example (Part 2 of 6)

z/0OS V1R4.0 C/C++ Programming Guide

} /* end of checking for change in primary key */

else { /* Locate to current employee record */
rc = flocate(fp,&(data_ptr->emp_number),CLUS _KEY SIZE, KEY EQ);
if (rc == 0) {
/* record exists, so update it */

rc = fread(buffer,1,REC_SIZE,fp);
if (rc != REC_SIZE || ferror(fp)) {
print_amrc();
printf("Error: reading old employee record failed\n");

return 60;
1
rc = fupdate(data_ptr,REC_SIZE,fp);
if (rc == 0) {
print_amrc();
printf("Error: updating new employee record failed\n");
return 70;
1

else { /* record doesn't exist so write out new record =/
clearerr(fp);
printf("Warning: record previously displayed no longer\n");
printf(" : exists, new record being created\n");
rc = fwrite(data_ptr,1,REC_SIZE,fp);
if (rc != REC_SIZE || ferror(fp)) {
print_amrc();
printf("Error: write with new employee number failed\n");

return 80;
1
1
1
return 0;
1
/* display_emp_rec() function definition */

int display_emp_rec (struct data_struct *data_ptr,
struct data_struct xorig data ptr,
FILE *clus_fp, FILE *aix_unique_fp,
FILE *aix_non_unique_fp)

int rc = 0;
char buffer[REC_SIZE+1];

/* Primary Key Search */
if (memcmp(data_ptr->emp_number, "\0\0\0\0", 4) != 0) {
rc = flocate(clus_fp,&(data_ptr->emp_number),CLUS KEY_ SIZE,
__KEY_EQ);
if (rc 1= 0) {
printf("Error: flocate with primary key failed\n");
return 10;

}

/* Read record for display */
rc = fread(orig_data_ptr,1,REC_SIZE,clus_fp);
if (rc != REC_SIZE |] ferror(clus_fp)) {

printf("Error: reading employee record failed\n");

return 15;

}

Figure 23. KSDS Example (Part 3 of 6)

Chapter 13. Performing VSAM 1/O Operations 195

/* Unique Alternate Index Search */
else if (data_ptr->user_id[0] != '\0') {
rc = flocate(aix_unique_fp,data_ptr->user_id,AIX UNIQUE KEY SIZE,
__KEY_EQ);
if (rc !=0) {
printf("Error: flocate with user id failed\n");
return 20;

}

/* Read record for display */
rc = fread(orig_data_ptr,1,REC_SIZE,aix_unique_fp);
if (rc != REC_SIZE |T ferror(aix_unique_fp)) {
printf("Error: reading employee record failed\n");
return 25;
}
}
/* Non-unique Alternate Index Search */
else if (data_ptr->name[0] !'= '\0') {
rc = flocate(aix_non_unique_fp,data_ptr->name,
AIX_NONUNIQUE_KEY_SIZE, KEY GE);

if (rc 1= 0) {
printf("Error: flocate with name failed\n");
return 30;
}
/* Read record for display */

rc = fread(orig_data_ptr,1,REC_SIZE,aix_non_unique_fp);
if (rc != REC_SIZE || ferror(aix_non_unique_fp)) {
printf("Error: reading employee record failed\n");

return 35;
1
1
else {
printf("Error: invalid search argument; valid search arguments\n"
" : are either employee number, user id, or name\n");
return 40;
1
/* display record data */

.4s\n", orig_data_ptr->emp_number);
.8s\n", orig_data_ptr->user_id);
.20s\n", orig_data_ptr->name);
.37s\n", orig_data_ptr->pers_info);

printf("Employee Number:
printf("Employee Userid:
printf("Employee Name:
printf("Employee Info:
return 0;

N o o° o

Figure 23. KSDS Example (Part 4 of 6)

196 2/0S V1R4.0 C/C++ Programming Guide

/* main() function definition */

int main() {

FILE* clus_fp;
FILE* aix_ufp;
FILE* aix_nufp;
int i;

struct data_struct bufl, buf2;

char data[3] [REC_SIZE+1] = {
" 1LARRY LARRY HI, I'M LARRY, "
" 2DARRYL1 DARRYL AND THIS IS MY BROTHER DARRYL, ",
" 3DARRYL2 DARRYL "
1

/* open file three ways */
clus_fp = fopen("dd:cluster", "rb+,type=record");
if (clus_fp == NULL) {

print_amrc();

printf("Error: fopen(\"dd:cluster\"...) failed\n");

return 5;
1
/* assume base cluster was loaded with at least one dummy record =/
/* so aix could be defined */

aix_ufp = fopen("dd:aixunig", "rb,type=record");
if (aix_ufp == NULL) {
print_amrc();
printf("Error: fopen(\"dd:aixunig\"...) failed\n");

return 10;
1
/* assume base cluster was loaded with at Teast one dummy record =*/
/* so aix could be defined */

aix_nufp = fopen("dd:aixnuniq", "rb,type=record");

if (aix_nufp == NULL) {
print_amrc();
printf("Error: fopen(\"dd:aixnunig\"...) failed\n");
return 15;

}

/* load sample records */
for (i = 03 i < 3; ++i) {
if (fwrite(data[i],1,REC_SIZE,clus_fp) != REC_SIZE) {
print_amrc();
printf("Error: fwrite(data[%d]...) failed\n", i);
return 66+i;

Figure 23. KSDS Example (Part 5 of 6)

Chapter 13. Performing VSAM 1/O Operations 197

/* display sample record by primary key */

memcpy (bufl.emp_number, " 1", 4);

if (display_emp_rec(&bufl, &buf2, clus_fp, aix_ufp, aix_nufp) != 0)
return 69;

/* display sample record by nonunique aix key */

memset (bufl.emp_number, '\0', 4);
bufl.user id[0] = '\0';

memcpy (bufl.name, "DARRYL ", 20);

if (display_emp_rec(&bufl, &buf2, clus_fp, aix_ufp, aix_nufp) != 0)
return 70;

/* display sample record by unique aix key */

memcpy (bufl.user_id, "DARRYL2 ", 8);
if (display_emp_rec(&bufl, &buf2, clus_fp, aix_ufp, aix_nufp) != 0)
return 71;

/* update record just read with new personal info */
memcpy (&bufl, &buf2, REC_SIZE);

memcpy (bufl.pers_info, "AND THIS IS MY OTHER BROTHER DARRYL. ", 37);
if (update_emp_rec(&bufl, &buf2, clus_fp) != 0) return 72;

/* display sample record by unique aix key */

if (display_emp_rec(&bufl, &buf2, clus_fp, aix_ufp, aix_nufp) != 0)
return 73;

return 0;

Figure 23. KSDS Example (Part 6 of 6)

The following JCL can be used to test the previous example.
CCNGVS3

//* this example illustrates the use of a KSDS file

//* part 2 of 2-other file is CCNGVS2

J] Hmm e m e e e -
//* Delete cluster, and AIX and PATH

//DELETEC EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=+
//SYSIN DD *
DELETE -
userid.KSDS.CLUSTER -
CLUSTER -
PURGE -
ERASE

Figure 24. KSDS Example (Part 1 of 3)

198 2/0S V1R4.0 C/C++ Programming Guide

//DEFINE EXEC PGM=IDCAMS

//VOLUME DD UNIT=SYSDA,DISP=SHR,VOL=SER=(XXXXXX)

//SYSPRINT DD SYSOUT=x
//SYSIN DD *
DEFINE CLUSTER -
(NAME (userid.KSDS.CLUSTER) -
FILE(VOLUME) -
VOL (XXXXXX) -
TRK(4 4) -
RECSZ(69 100) -
INDEXED -
NOREUSE -
KEYS(4 0) -
OWNER (userid)) -
DATA -
(NAME (userid.KSDS.DA)) -
INDEX -
(NAME (userid.KSDS.IX))

//REPRO EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
REPRO INDATASET (userid.DUMMY.DATA) -
OUTDATASET (userid.KSDS.CLUSTER)

//* Define unique AIX, define and build PATH

/2 gy

//DEFAIX EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=+
//SYSIN DD =
DEFINE AIX -
(NAME (userid.KSDS.UAIX) -
RECORDS (25) -
KEYS(8,4) -
VOL (XXXXXX) -
UNIQUEKEY -
RELATE (userid.KSDS.CLUSTER)) -
DATA -
(NAME (userid.KSDS.UAIXDA)) -
INDEX -
(NAME (userid.KSDS.UAIXIX))
DEFINE PATH -
(NAME (userid.KSDS.UPATH) -
PATHENTRY (userid.KSDS.UAIX))
BLDINDEX -
INDATASET (userid.KSDS.CLUSTER) -
OUTDATASET (userid.KSDS.UAIX)
/*

Figure 24. KSDS Example (Part 2 of 3)

Chapter 13. Performing VSAM /O Operations

199

RRDS Example

200

//DEFAIX EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=+
//SYSIN DD =
DEFINE AIX -
(NAME (userid.KSDS.NUAIX) -
RECORDS (25) -
KEYS (20, 12) -
VOL (XXXXXX) -
NONUNIQUEKEY -
RELATE (userid.KSDS.CLUSTER)) -
DATA -
(NAME (userid.KSDS.NUAIXDA)) -
INDEX -
(NAME (userid.KSDS.NUAIXIX))
DEFINE PATH -
(NAME (userid.KSDS.NUPATH) -
PATHENTRY (userid.KSDS.NUAIX))
BLDINDEX -
INDATASET (userid.KSDS.CLUSTER) -
OUTDATASET (userid.KSDS.NUAIX)

/*

J] m m e m m e e e e e e e
//* Run the testcase

27 gy
//GO EXEC PGM=CCNGVS2,REGION=5M

//STEPLIB DD DSN=userid.TEST.LOAD,DISP=SHR

// DD DSN=CEE.SCEERUN,DISP=SHR

//SYSPRINT DD SYSOUT=+

//SYSTERM DD SYSOUT=+

//SYSoUT DD SYSOUT=+

//PLIDUMP DD SYSOUT=*

//SYSABEND DD SYSOUT=+

//SYSUDUMP DD SYSOUT=+

//CLUSTER DD DSN=userid.KSDS.CLUSTER,DISP=SHR
//AIXUNIQ DD DSN=userid.KSDS.UPATH,DISP=SHR
//AIXNUNIQ DD DSN=userid.KSDS.NUPATH,DISP=SHR

//PRINTF EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
PRINT -
INDATASET (userid.KSDS.CLUSTER) CHAR
/*

Figure 24. KSDS Example (Part 3 of 3)

The following program illustrates the use of an RRDS file. It performs the following
operations:

1. Opens an RRDS file in record mode (the cluster must be defined)
Writes three records (RRN 2, RRN 10, and RRN 32)

Sets the file position to the first record

Reads the first record in the file

Deletes it

areDn

z/0OS V1R4.0 C/C++ Programming Guide

Locates the last record in the file and sets the access direction to backwards
Reads the record

Updates the record

Sets the EDC_RRDS HIDE KEY environment variable

10. Reads the next record in sequence (RRN 10) into a character string

CCNGVS4

© ® N o

/* this example illustrates the use of an RRDS file */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <env.h>

struct rrds_struct {
?Fds_key_type rrds_key;

char *xrrds_buf;
bs

typedef struct rrds_struct RRDS_STRUCT;

main() {

FILE *fileptr;

RRDS_STRUCT RRDSstruct;

RRDS_STRUCT *rrds_rec = &RRDSstruct;
char buffer1[80] =

"THIS IS THE FIRST RECORD IN THE FILE. I"
"T WILL BE WRITTEN AT RRN POSITION 2. "
char buffer2[80] =
"THIS IS THE SECOND RECORD IN THE FILE. I"
"T WILL BE WRITTEN AT RRN POSITION 10. ";
char buffer3[80] =
"THIS IS THE THIRD RECORD IN THE FILE. 1I"
"T WILL BE WRITTEN AT RRN POSITION 32. ";
char outputbuf[80];
unsigned long flocate_key = 0;

Figure 25. RRDS Example (Part 1 of 3)

Chapter 13. Performing VSAM 1/O Operations 201

/*| select RRDS record structure 2 by setting _ fill to 1 */
/* */
/*| 1. open an RRDS file record mode (the cluster must be defined) */
/*| 2. write three records (RRN 2, RRN 10, RRN 32) */
e */

fileptr = fopen("DD:RRDSFILE", "wb+,type=record");
if (fileptr == NULL) {

perror("fopen");

exit(99);
1
rrds_rec->rrds_key._recnum = 2;
rrds_rec->rrds_buf = bufferl;
fwrite(rrds_rec,1,88, fileptr);

rrds_rec->rrds_key.__recnum = 10;
rrds_rec->rrds_buf = buffer2;
fwrite(rrds_rec,1,88, fileptr);

rrds_rec->rrds_key. recnum = 32;
rrds_rec->rrds_buf = buffer3;
fwrite(rrds_rec,1,88, fileptr);

[m e e */
/x| 3. set file position to the first record */
/*| 4. read the first record in the file */
/*| 5. delete it */
/2y */

flocate(fileptr, &flocate key,; sizeof(unsigned Tong), _ KEY FIRST);

memset (outputbuf,0x00,80) ;
rrds_rec->rrds_buf = outputbuf;

fread(rrds_rec,1, 88, fileptr);
printf("The first record in the file (this will be deleted):\n");
printf("RRN %d: %s\n\n",rrds_rec->rrds_key. recnum,outputbuf);

fdelrec(fileptr);

Figure 25. RRDS Example (Part 2 of 3)

202 z/0S V1R4.0 C/C++ Programming Guide

/*| 6. lTocate last record in file and set access direction backwards*/

/*| 7. read the record */
/*| 8. update the record x/
S S S S S S S S Sy S S S IS Sy */

flocate(fileptr, &flocate key,; sizeof(unsigned Tong), _ KEY LAST);

memset (outputbuf,0x00,80) ;
rrds_rec->rrds_buf = outputbuf;

fread(rrds_rec,1, 88, fileptr);
printf("The last record in the file (this one will be updated):\n");
printf("RRN %d: %s\n\n",rrds_rec->rrds_key. recnum,outputbuf);

memset (outputbuf,0x00,80);
memcpy (outputbuf,"THIS IS THE UPDATED STRING... ",30);
fupdate(rrds_rec,88,fileptr);

[e m e e e e e */
/*| 9. set _EDC_RRDS_HIDE_KEY environment variable */
/*|10. read the next record in sequence (ie. RRN 10) into a */
/* + character string */
gy */

setenv("_EDC_RRDS_HIDE_KEY","Y",1);

memset (outputbuf,0x00,80);

fread(outputbuf, 1, 80, fileptr);

printf("The middle record in the file (read into char string):\n");
printf("%80s\n\n",outputbuf);

fclose(fileptr);

Figure 25. RRDS Example (Part 3 of 3)

fldata() Behavior

The format of the fldata() function is as follows:
int fldata(FILE *file, char =filename, fldata_ t *info);

The fldata() function is used to retrieve information about an open stream. The
name of the file is returned in filename and other information is returned in the
fldata_t structure, shown in the figure below. Values specific to this category of 1/0
are shown in the comment beside the structure element. Additional notes pertaining
to this category of I/O follow the figure.

For more information on the fldata() function, refer to|z/OS C/C++ Run-Time Library

Chapter 13. Performing VSAM 1/O Operations 203

struct _ fileData {

unsigned int _ recfmF 1, /* */
__recfmV 1, /* x/

_ recfmU 1, /* x/

_recfmS 1, /* always off */

__recfmBlk : 1, /* always off */

__recfmASA : 1, /* always off */

__recfmM 1, /* always off */

__dsorgP0 1, /= N/A -- always off */

__dsorgPDSmem : 1, /* N/A -- always off */

__dsorgPDSdir : 1, /* N/A -- always off */

__dsorgPS 1, /* N/A -- always off */

__dsorgConcat : 1, /* N/A -- always off */

__dsorgMem : 1, /* N/A -- always off */

__dsorgHiper : 1, /* N/A -- always off */

__dsorgTemp: 1, /* N/A -- always off */

__dsorgVSAM: 1, /* always on */

__dsorgHFS : 1, /* N/A -- always off */

__openmode : 2, /* one of: */

/* _TEXT */

/* __BINARY */

/* __RECORD */

__modeflag : 4, /* combination of: */

/* _READ */

/* _WRITE */

/* __APPEND */

/* __UPDATE */

__dsorgPDSE: 1, /* N/A -- always off */

__vsamRLS : 3, /* One of: */

/* __NORLS */

/* _RLS */

__reserve2 : 5; /x */

__device_t __device; /* __DISK */
unsigned long _ blksize, /* */
__maxreclen; /* */

unsigned short _ vsamtype; /* one of: */
/% _ESDS */

/* __KSDS */

/* __RRDS */

/* __ESDS_PATH */

/* __KSDS_PATH */

unsigned Tong _ vsamkeylen; /* */
unsigned long _ vsamRKP; /* */
char = __dsname; /* */
unsigned int _ reserved; /* */

bs
typedef struct _ fileData fldata_t;

Figure 26. fldata() Structure

Notes:

1. If you have opened the file by its data set name, the filename is fully qualified,
including quotation marks. If you have opened the file by ddname, filename is
dd:ddname, without any quotation marks. The ddname is uppercase.

2. The __dsname field is filled in with the data set name. The __dsname value is
uppercase unless the asis option was specified on the fopen() or freopen()
function call.

204 z/0S V1R4.0 C/C++ Programming Guide

Chapter 14. Performing Terminal I/O Operations

This chapter describes how to use input and output interactively with a terminal
(using TSO or z/OS UNIX).

Terminal 1/0 supports text, binary, and record 1/O, in undefined, variable and
fixed-length formats, except that ASA format is not valid for any text terminal files.

Note: You cannot use the z/OS C/C++ |/O functions for terminal I/O under either
IMS or CICS. Terminal 1/0O under CICS is supported through the CICS
command level interface.

This chapter describes C 1/O streams as they can be used within C++ programs. If
you want to use the C++ I/O stream classes instead, see|Chapter 5, “Using the|
|Standard C++ Library I/O Stream Classes” on page 49| for general information. For
more detailed information about 1/0 streaming see the following:

» Standard C++ Library Reference discusses the Standard C++ I/O stream
classes. It can be found at
http://www.ibm.com/software/ad/c390/czos/czosdocs.html.

« |IBM Open Class Library User’s Guide and [[BM Open Class Library Reference)

\Vol. 1|discuss the Unix Systems Laboratories C++ Language System Release
(USL) I/O Stream Class Library.

Opening Files

You can use the library functions fopen() or freopen() to open a file.

Using fopen() and freopen()

This section covers:

* Opening a file by data set name

* Opening a file by DD name

» fopen() and freopen() keywords

* Opening a terminal file under a shell

Opening a File by Data Set Name
Files are opened with a call to fopen() or freopen() in the format
fopen("filename", "mode"). The first character of the filename must be an asterisk

(*)-

z/0OS UNIX Considerations: If you have specified POSIX(ON),
fopen("+file.data","r"); does not open a terminal file. Instead, it opens a file
called *file.data in the HFS file system. To open a terminal file under POSIX, you
must specify two slashes before the asterisk, as follows:

fopen("//*file.data","r"):
Terminal files cannot be opened in update mode.

Terminal files opened in append mode are treated as if they were opened in write
mode.

Opening a File by DD Name

The data set name that is associated with the DD statement must be an asterisk(*).
For example:

© Copyright IBM Corp. 1996, 2002 205

206

TSO ALLOC f(ddname) DA(*)
fopen("dd:ddname", "mode");

fopen() and freopen() Keywords

The following table lists the keywords that are available on the fopen() and
freopen() functions, tells you which ones are useful for terminal I/O, and lists the
values that are valid for the applicable ones.

Table 29. Keywords for the fopen() and freopen() Functions for Terminal I/O

Parameter Allowed? Applicable? Nptes

recfm= Yes Yes F, V, U and additional keywords A, B, S,
M are the valid values. A, B, S, and M are
ignored.

Trecl= Yes Yes See below.

blksize= Yes Yes See below.

space= Yes No Has no effect for terminal 1/0O.

type= Yes Yes May be omitted. If you do specify it,
type=record is the only valid value.

acc= No No Not used for terminal I/O.

password= No No Not used for terminal I/O.

asis Yes No Has no effect for terminal 1/0.

byteseek Yes No Has no effect for terminal 1/0O.

noseek Yes No Has no effect for terminal 1/0.

0S Yes No Not used for terminal 1/O.

recfm=

z/OS C/C++ allows you to specify any of the 27 possible RECFM types (listed in
‘Fixed-Format Records” on page 38} [‘Variable-Format Records” on page 41|,
and [‘Undefined-Format Records” on page 44)). The default is recfm=U.

Any specification of ASA for the record format is ignored.

Trecl=and blksize=
The 1recl and blksize parameters allow you to set the record size and block
size, respectively.

The maximum limits on Trecl values are as follows:

32771 For input z/OS variable terminals (data length of 32767)
32767 For input z/OS fixed and undefined terminals

32770 For output z/OS variable terminals (data length of 32766)
32766 For output z/OS fixed and undefined terminals

In fixed and undefined terminal files, bTksize is always the size of 1recl. In
variable terminal files, blksize is always the size of 1recl plus 4 bytes. It is not
necessary to specify values for Trecl and blksize. If neither is specified, the
default values are used. The default Trecl sizes (not including the extra 4 bytes
in the Trecl of variable length types) are as follows:

» Screen width for output terminals

» 1000 for input z/OS text terminals

» 254 for all other input terminals

z/0OS V1R4.0 C/C++ Programming Guide

Buffering

space=
This parameter is accepted as an option for terminal 1/0, but it is ignored. It
does not generate an error.

type=
type=record specifies that the file is to be opened for sequential record I/O. The
file must be opened as a binary file.

acc=
This parameter is not valid for terminal 1/O. If you specify it, your fopen() call
fails.

password=
This parameter is not valid for terminal I/O. If you specify it, your fopen() call
fails.

asis
This parameter is accepted as an option for terminal 1/O, but it is ignored. It
does not generate an error.

byteseek
This parameter is accepted as an option for terminal 1/0, but it is ignored. It
does not generate an error.

noseek
This parameter is accepted as an option for terminal 1/0, but it is ignored. It
does not generate an error.

0S
This parameter is not valid for terminal 1/O. If you specify it, your fopen() call
fails.

When you perform input and output in an interactive mode with the terminal, all
standard streams and all files with * as the first character of their names are
associated with the terminal. Output goes to the screen; input comes from the
keyboard.

An input EOF can be generated by a /* if you open a stream in text mode. If you
open the stream in binary or record mode, you can generate an EOF by entering a
null string.

ASA characters are not interpreted in terminal 1/O.

Opening a Terminal File Under a Shell
Files are opened with a call to fopen() in the format fopen("/dev/tty", "mode").

z/0OS C/C++ uses buffers to map byte-level 1/0 (data stored in records and blocks)
to system-level C 1/O.

In terminal I/O, line buffering is always in effect.
The setvbuf() and setbuf() functions can be used to control buffering before any
read or write operation to the file. If you want to reset the buffering mode, you must

call setvbuf() or setbuf() before any other operation occurs on a file, because you
cannot change the buffering mode after an 1/0O operation to the file.

Chapter 14. Performing Terminal I/O Operations 207

Reading from Files

You can use the following library functions to read in information from terminal files:
e fread()

o fgets()

* gets()

« fgetc()

* getc()

e getchar()

e scanf()

e fscanf()

See [z/0S C/C++ Run-Time Library Reference for more information on these library
functions.

You can set up a SIGIOERR handler to catch read or write system errors. See
[Chapter 18, “Debugging 1/0 Programs” on page 233|for more information.

A call to the rewind() function clears unread input data in the terminal buffer so that
on the next read request, the system waits for more user input.

With z/OS Language Environment, an empty record is considered EOF in binary
mode or record mode. This remains in effect until a rewind() or clearerr() is
issued. When the rewind() is issued, the buffer is cleared and reading can
continue.

Under TSO, the virtual line size of the terminal is used to determine the line length.

When reading from the terminal and the RECFM has been set to be F (for example,
by an ALLOCATE under TSO) in binary or record mode, the input is padded with
blanks to the record length.

On input, all terminal files opened for output flush their output, no matter what type
of file they are and whether a record is complete or not. This includes fixed terminal
files that would normally withhold output until a record is completed, as well as text
records that normally wait until a new-line or carriage return. In all cases, the data
is placed into one line with a blank added to separate output from different terminal
files. Fixed terminal files do not pad the output with blanks when flushing this way.

Note: This flush is not the same as a call to fflush(), because fixed terminal files
do not have incomplete records and text terminal files do not output until the
new-line or carriage return. This flush occurs only when actual input is
required from the terminal. When data is still in the buffer, that data is read
without flushing output terminal files.

Reading from Binary Files

This discussion includes reading from fixed binary files and from variable or
undefined binary files.

Reading from Fixed Binary Files

* Any input that is smaller than the record length is padded with blanks to the
record length. The default record length is 254.

* The carriage return or new-line is not included as part of the data.

* An input line longer than the record length is returned to the calling program on
subsequent system reads.

208 z/0S V1R4.0 C/C++ Programming Guide

For example, suppose a program requests 30 bytes of user input from an input
fixed binary terminal with record length 25. The full 30 bytes of user input returns
to satisfy the request, so that you do not need to enter a second line of input.

An empty input line indicates EOF.

Reading from Variable or Undefined Binary Files
These files behave like fixed-length binary files, except that no padding is
performed if the input is smaller than the record length.

Reading from Text Files

This discussion includes reading from fixed text files and from variable or undefined
text files.

Reading from Fixed Text Files

The carriage return indicates the end of the record.

A new-line character is added as part of the data to indicate the end of an input
line.

If the input is larger than the record length, it is truncated to the record length.
The truncation causes SIGIOERR to be raised, if the default action for SIGIOERR is
not SIG_IGN.

When an input line is smaller than the record length, it is not padded with blanks.
The character sequence /* indicates that the end of the file has been reached.

Reading from Variable or Undefined Text Files
These files behave like fixed-length text files.

Reading from Record 1/O Files

This discussion includes reading from fixed record 1/O files and from variable or
undefined record /O files.

Reading from Fixed Record I/O Files

Records smaller than the record length are padded with blanks up to the record
length. The default record length is 254.

Input record terminal records have an implicit logical record boundary at the
record length if the input size exceeds the record length.

If you enter input data larger than the record length, each subsequent block of
record-length bytes from the user input satisfies successive read requests.

The carriage return or new-line is not included as part of the data.
An empty line indicates an EOF.

Reading from Variable or Undefined Record I/O Files
These files behave like fixed-length record files, except that no padding is
performed.

Writing to Files

You can use the following library functions to write to a terminal file:

fwrite()
printf()
fprintf()
vprintf()
viprintf()
puts()

Chapter 14. Performing Terminal I/O Operations 209

o fputs()

o fputc()

* putc()

* putchar()

See |z/0S C/C++ Run-Time Library Reference for more information on these library
functions.

If no record length is specified for the output terminal file, it defaults to the virtual
line size of the terminal.

On output, records are written one line at a time up to the record length. For all
output terminal files, records are not truncated. If you are printing a long string, it
wraps around to another line.

Writing to Binary Files
This discussion includes writing to fixed binary files and to variable or undefined
binary files.

Writing to Fixed Binary Files
* Output data is sent to the terminal when the last character of a record is written.

* When closing an output terminal, any unwritten data is padded to the record
length with blanks before it is flushed.

Writing to Variable or Undefined Binary Files
These files behave the same as fixed-length binary files, except that no padding
occurs for output that is smaller than the record length.

Writing to Text Files

The following control characters are supported:

\a Alarm. Causes the terminal to generate an audible beep.

\b Backspace. Backs up the output position by one byte. If you are at the start
of the record, you cannot back up to previous record, and backspace is
ignored.

\f Form feed. Sends any unwritten data to the terminal and clears the screen

if the environment variable _EDC_CLEAR_SCREEN is set. If the variable is not
set, the \f character is written to the screen.

\n New-line. Sends the preceding unwritten character to the terminal. If no
preceding data exists, it sends a single blank character.

\t Horizontal tab. Pads the output record with blanks up to the next tab stop
(set at eight characters).

\v Vertical tab. Placed in the output as is.

\r Carriage return. Treated as a new-line, sends preceding unwritten data to
the terminal.

Writing to Fixed Text Files

» Lines that are longer than the record length are not truncated. They are split
across multiple lines, each LRECL bytes long. Subsequent writes begin on a new
line.

210 2z/OS V1R4.0 C/C++ Programming Guide

» QOutput data is sent to the terminal when one character more than the record
length is written, or when a \r, \n, or \f character is written. In the case of \f,
output is displayed only if the EDC_CLEAR_SCREEN environment variable is set.

* No padding occurs on output when a record is smaller than the record length.

Writing to Variable or Undefined Text Files
These terminal files behave like fixed-length terminal files.

Writing to Record I/O Files

This discussion includes writing to fixed record 1/O files and to variable or undefined
record 1/O files.

Writing to Fixed Record I/O Files

* Any output record that is smaller than the record length is padded to the record
length with blanks, and trailing blanks are displayed.

» If a record is longer than the record length, all data is written to the terminal,
wrapping at the record length.

* Output data is sent to the terminal with every record write.

Writing to Variable or Undefined Record I/O Files
These files behave like fixed-length record files except that no padding occurs when
the output record is smaller than the record length.

Flushing Records

Text Streams

Binary Streams

The action taken by the fflush() library function depends on the file mode. The
fflush() function only flushes buffers in binary files with Variable or Undefined
record format.

If you call one z/OS C/C++ program from another z/OS C/C++ program by using
the ANSI system() function, all open streams are flushed before control is passed
to the callee, and again before control is returned to the caller. If you are running
with POSIX(ON), a call to the POSIX system() function does not flush any streams to
the system.

* Writing a new record:

Because a new-line character has not been encountered to indicate the
end-of-line, fflush() takes no action. The record is written as a new record
when one of the following takes place:

— A new-line character is written.

— The file is closed.

* Reading a record:
fflush() clears a previous ungetc() character.

* Writing a new record:

If the file is variable or undefined length in record format, fflush() causes the
current record to be written out, which in turn causes a new record to be created
for subsequent writes. If the file is of fixed record length, no action is taken.

* Reading a record:
fflush() clears a previous ungetc() character.

Chapter 14. Performing Terminal /O Operations 211

Record /O

» Writing a new record: fflush() takes no action.
* Reading a record: fflush() takes no action.

Repositioning within Files

In terminal 1/0, rewind() is the only positioning library function available. Using the
library functions fseek(), fgetpos(), fsetpos(), and ftell1() generates an error.

See [z/0S C/C++ Run-Time Library Reference for more information on these library
functions.

When an input terminal reaches an EOF, the rewind() function:
1. Clears the EOF condition.
2. Enables the terminal to read again.

You can also use rewind() when reading from the terminal to flush out your record
buffer for that stream.

Closing Files

Use the fclose() library function to close a file. z/OS C/C++ automatically closes
files on normal program termination and attempts to do so under abnormal program
termination or abend. When closing a fixed binary terminal, z/OS C/C++ pads the
last record with blanks if it is incomplete.

See |z/0S C/C++ Run-Time Library Reference for more information on this library
function.

fldata() Behavior

The format of the fldata() function is as follows:
int fldata(FILE =file, char =filename, fldata_t *info);

The fldata() function is used to retrieve information about an open stream. The
name of the file is returned in filename and other information is returned in the
fldata_t structure, shown in the figure below. Values specific to this category of 1/0
are shown in the comment beside the structure element. Additional notes pertaining
to this category of I/O follow the figure.

For more information on the fldata() function, refer to(z/0S C/C++ Run-Time Library|

212 z/0S V1R4.0 C/C++ Programming Guide

struct _ fileData {

1

typedef struct _ fileData fldata_t;

unsigned int _ recfmF
__recfmV
__recfmU
__recfmS
__recfmBlk :
__recfmASA :
__recfmM
__dsorgP0

__dsorgPDSmem :
__dsorgPDSdir :

__dsorgPS

__dsorgConcat :

__dsorgMem :
__dsorgHiper
__dsorgTemp:
__dsorgVSAM:
__dsorgHFS :
__openmode :

__modeflag :

__dsorgPDSE:

__reserveZ :
__device_t __device;
unsigned long _ blksize,

__maxreclen;
unsigned short __ vsamtype;
unsigned long _ vsamkeylen;
unsigned long _ vsamRKP;
char * __dsname;
unsigned int _ reserved;

Figure 27. fldata() Structure

Notes:

The filename value is dd:ddname if the file is opened by ddname; otherwise, the
value is *. The ddname is uppercase.

1.

Either __recfmF, __recfmV, or __recfmU will be set according to the recfm
parameter specified on the fopen() or freopen() function call.

N = s s s e e e

W W v W L W W B W B B oW oW oW o w ow W

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

./*

/*
/*
/*
/*
/*
/*
/*
/*

Chapter 14. Performing Terminal I/O Operations

always off
always off
always off
always off
N/A -- always off
N/A -- always off
N/A -- always off
N/A -- always off
N/A -- always off
N/A -- always off
N/A -- always off
N/A -- always off
N/A -- always off
N/A -- always off
one of:

TEXT

__BINARY

__RECORD

combination of:
READ

__WRITE

" APPEND
N/A -- always off

__ TERMINAL

N/A
N/A
N/A
N/A -- always NULL

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

213

214 2z/0S V1R4.0 C/C++ Programming Guide

Chapter 15. Performing Memory File and Hiperspace 1/0O
Operations

This chapter describes how to perform memory file and hiperspace 1/0 operations.

z/OS C/C++ supports files known as memory files. Memory files are temporary work
files that are stored in main memory rather than in external storage.

There are two types of memory files:
* Regular memory files, which exist in your virtual storage

» Hiperspace memory files, which use special storage areas called hiperspaces.
You cannot share hiperspace memory files with an AMODE=24 C or C++
program.

Memory files can be written to, read from, and repositioned within like any other
type of file. Memory files exist for the life of your root program, unless you explicitly
delete them by using the remove() or clrmemf() functions. The root program is the
first main() to be invoked. Any main() program called by a system() call is known
as a child program. When the root program terminates, z/OS C/C++ removes
memory files automatically. Memory files may give you better performance than
other types of files.

Note: There may not be a one-to-one correspondence between the bytes in a
memory file and the bytes in some other external representation of the file,
such as a disk file. Applications that mix open modes on a file (for example,
writing a file as text file and reading it back as binary) may not port readily
from external 1/0 to memory file 1/O.

This chapter describes C I/O functions as they can be used within C++ programs. If
you want to use the C++ 1/O stream classes instead, see|Chapter 5, “Using the]
IStandard C++ Library I/0 Stream Classes” on page 49|for general information. For
more detailed information about I/O stream classes see the following:

» Standard C++ Library Reference discusses the Standard C++ 1/O stream
classes. It can be found at
http://www.ibm.com/software/ad/c390/czos/czosdocs.html.

« |IBM Open Class Library User’s Guide and |IBM Open Class Library Reference)

\ol. 1|discuss the Unix Systems Laboratories C++ Language System Release
(USL) I/O Stream Library.

Using Hiperspace Operations

On MVS/ESA systems that support hiperspaces, large memory files can be placed
in hiperspaces to reduce memory requirements within your address space.

If your installation is MVS/ESA and supports hiperspaces, and you are not using
CICS, you can use hiperspace memory files (see the appropriate book as listed in
[z/0S Information Roadmap|for more information on hiperspaces). Whereas a
regular memory file stores all the file data in your address space, a hiperspace
memory file uses one buffer in your address space, and keeps the rest of the data
in the hiperspace. Therefore, a hiperspace memory file requires only a certain
amount of storage in your address space, regardless of how large the file is. If you
use setvbuf(), zZOS C/C++ may or may not accept your buffer for its internal use.
For a hiperspace memory file, if the size of the buffer specified to setvbuf() is 4K

© Copyright IBM Corp. 1996, 2002 215

or more, it will affect the number of hiperspace blocks read or written on each call
to the operating system; the size is rounded down to the nearest multiple of 4K.

Hiperspace memory files may not be shared by multiple threads. A Hiperspace
memory file that is created on one thread can only be read/written/closed by the
same thread.

Opening Files

Use the Standard C fopen() or freopen() library functions to open a memory file.
Details about these functions that apply to all z/OS C/C++ I/O operations are
discussed in|Chapter 6, “Opening Files” on page 53|.

Using fopen() or freopen()

This section describes considerations for using fopen() and freopen() with memory
files. Memory files are always treated as binary streams of bytes, regardless of the
parameters you specify on the function call that opens them.

File-Naming Considerations
When you open a file using fopen() or freopen(), you must specify the filename (a
data set name) or the ddname.

Using a Data Set Name: Files are opened with a call to fopen() or freopen() in
the format fopen("filename", "mode"). The following diagram shows the syntax for
the filename argument on your fopen() or freopen() call:

> |_//_|] Y qualifier L(_membe,«)_l] <

The following is a sample construct:
"qualifierl.qualifier2(member)"’

/I lgnored for memory files.

qualifier
There is no restriction on the length of each qualifier. All characters are
considered valid. The total number of characters for all of the qualifiers,
including periods and a TSO prefix, cannot exceed 44 characers when running
POSIX(OFF). Under POSIX(ON), the TSO prefix is not added, and the total
number of characters is not limited, except that the full file name, including the
member, cannot exceed the limit for a POSIX pathname, currently 1024
characters.

(member)
If you specify a member, the data set you are opening is considered to be a
simulated PDS or a PDSE. For more information about PDSs and PDSEs, see
|"Simu|ating Partitioned Data Sets” on page 220|. For members, the member
name (including trailing blanks) can be up to 8 characters long. A member
name cannot begin with leading blanks.

When you enclose a name in single quotation marks, the name is fully qualified.
The file opened is the one specified by the name inside the quotation marks. If the
name is not fully qualified, z/OS C/C++ does one of the following:

216 z/0S V1R4.0 C/C++ Programming Guide

* If your system does not use RACF, z/OS C/C++ does not add a high-level
qualifier to the name you specified.

» If you are running under TSO (batch or interactive), z/OS C/C++ appends the
TSO user prefix to the front of the name. For example, the statement
fopen("a.b","w"); opens a data set tsopref.A.B, where tsoprefis the user
prefix. You can set the user prefix by using the TSO PROFILE command with the
PREFIX parameter.

Note: The TSO prefix is not added when running POSIX(ON).

» If you are running under MVS batch or IMS (batch or online), z/OS C/C++
appends the RACF user ID to the front of the name.

Using a DDname: You can specify names that begin with dd:, but z/OS C/C++
treats the dd: as part of the file name.

z/0OS UNIX Considerations: Using the fork() library function from z/OS UNIX
application programs causes the memory file to be copied into the child process.
The memory file data in the child is identical to that of the parent at the time of the
fork (). The memory file can be used in either the child or the parent, but the data
is not visible in the other process.

fopen() and freopen() Keywords
The following table lists the keywords that are available on the fopen() and

freopen() functions, tells you which ones are useful for memory file I/O, and lists
the values that are valid for the applicable ones.

Table 30. Keywords for the fopen() and freopen() Functions for Memory File 1/O

Keyword Allowed? Applicable? Nptes

recfm= Yes No This parameter is ignored for memory file
and hiperspace 1/O. If you specify a RECFM,
it must have correct syntax. Otherwise the
fopen() call fails.

Trecl= Yes No This parameter is ignored for memory file
and hiperspace 1/O. If you specify an LRECL,
it must have correct syntax. Otherwise
fopen() call fails.

bTksize= Yes No This parameter is ignored for memory file
and hiperspace I/O. If you specify a
BLKSIZE, it must have correct syntax.
Otherwise fopen() call fails.

acc= Yes No This parameter is ignored for memory file
and hiperspace 1/O. If you specify an ACC,
it must have correct syntax. Otherwise
fopen() fails.

password= No No Ignored for memory files.

space= Yes No This parameter is ignored for memory file
and hiperspace 1/O. If you specify a
SPACE, it must have correct syntax.
Otherwise, fopen() call fails.

type= Yes Yes Valid values are memory and
memory (hiperspace). See the parameter list
below.

asis Yes Yes Enables the use of mixed-case file names.

Chapter 15. Performing Memory File and Hiperspace 1/O Operations 217

218

Table 30. Keywords for the fopen() and freopen() Functions for Memory File I/0O (continued)

Keyword Allowed? Applicable? Nptes

byteseek Yes No Ignored for memory files, as they use
byteseeking by default.

noseek Yes No This parameter is ignored for memory file
and hiperspace 1/0.

0S No No This parameter is not valid for memory file
and hiperspace 1/O. If you specify OS, your
fopen() call fails.

recfm=
z/OS C/C++ parses your specification for these values. If they do not have the
correct syntax, your function call fails. If they do, z/OS C/C++ ignores their
values and continues.

Trecl=and blksize=
z/0OS C/C++ parses your specification for these values. If they do not have the
correct syntax, your function call fails. If they do, z/OS C/C++ ignores their
values and continues.

acc=
z/OS C/C++ parses your specification for these values. If they do not have the
correct syntax, your function call fails. If they do, z/OS C/C++ ignores their
values and continues.

password=
This parameter is not valid for memory file and hiperspace I/O. If you specify
PASSWORD, your fopen() call fails.

space=
z/OS C/C++ parses your specification for these values. If they do not have the
correct syntax, your function call fails. If they do, z/OS C/C++ ignores their
values and continues.

type=
To create a memory file, you must specify type=memory. You cannot specify
type=record; if you do, fopen() or freopen() fails.

To create a hiperspace memory file, you must specify
type=memory (hiperspace).
asis
If you use this parameter, you can specify mixed-case filenames such as JaMeS
dAtA or pErCy.FILE. If you are running with POSIX(ON), asis is the default.

byteseek
This parameter is ignored for memory file and hiperspace 1/0O.

noseek
This parameter is ignored for memory file and hiperspace 1/O.

0S
This parameter is not allowed for memory file and hiperspace I/O. If you specify
0S, your fopen() call fails.

Once a memory file has been created, it can be accessed by the module that
created it as well as by any function or module that is subsequently invoked
(including modules that are called using the system() library function), and by any
modules in the current chain of system() calls, if you are running with POSIX(OFF). If

z/0OS V1R4.0 C/C++ Programming Guide

you are running with POSIX(ON), the system() function is the POSIX one, not the
ANSI one, and it does not propagate memory files to a child program. Once the file
has been created, you can open it with the same name, without specifying the
type=memory parameter. You cannot specify type=record for a memory file.

This is how z/OS C/C++ searches for memory files:

1. fopen("my.file","w....,type=memory"); z/OS C/C++ checks the open files to
see whether a file with that name is already open. If not, it creates a memory
file.

2. fopen("my.file","w...... "); z/OS C/C++ checks the open files to see whether
a file with that name is already open. If not, it then checks to see whether a
memory file exists with that name. If so, it opens the memory file; if not, it
creates a disk file.

3. fopen("my.file","a..... ,type=memory"); z/OS C/C++ checks the open files to
see whether a file with that name is already open. If not, it searches the existing
memory files to see whether a memory file exists with that name. If so, z/0S
C/C++ opens it; if not, it creates a new memory file.

4. fopen("my.file","a...."); z/OS C/C++ checks the open files to see whether a
file with that name is already open. If not, z/OS C/C++ searches existing files
(both disk and memory) according to file mode, and opens the first file that has
that name. If there is no such file, z/OS C/C++ creates a disk file.

5. fopen("my.file","r....,type=memory"); z/OS C/C++ searches the memory
files to see whether a file with that name exists. If one does, z/0OS C/C++ opens
it. Otherwise, the fopen() call fails.

6. fopen("my.file","r...."); z/OS C/C++ searches first through memory files. If
it does not find the specified one, it then tries to open a disk file.

If you specify a memory file name that has an asterisk (*) as the first character, a
name is created for that file. (You can acquire this name by using fldata().) For
example, you can specify fopen("x","type=memory");. Opening a memory file this
way is faster than using the tmpnam() function.

You cannot have any blanks or periods in the member name of a memory file.
Otherwise, all valid data set names are accepted for memory files. Note that if
invalid disk file names are used for memory files, difficulties could occur when you
try to port memory file applications to disk-file applications.

Memory files are always opened in fixed binary mode regardless of the open mode.
There is no blank padding, and control characters such as the new line are written
directly into the file (even if the fopen() specifies text mode).

Opening Hiperspace Files

To create a memory file in hiperspace, specify type=memory (hiperspace) on the
fopen() call that creates the file. If hiperspace is not available, you get a regular
memory file. Under systems that do not support hiperspaces, as well as when you
are running with POSIX(ON) and TRAP(OFF), a specification of

type=memory (hiperspace) is treated as type=memory. Use of TRAP(OFF) is not
recommended.

You must decide whether a file is to be a hiperspace memory file before you create
it. You cannot change a memory file to a hiperspace memory file by specifying
type=memory (hiperspace) on a subsequent call to fopen() or freopen(). If the
hiperspace to store the file cannot be created, the fopen() or freopen() call fails.

Chapter 15. Performing Memory File and Hiperspace 1/O Operations 219

Once you have created a hiperspace memory file, you do not have to specify
type=memory (hiperspace) on subsequent function calls that open the file.

If you open a hiperspace memory file for read at the same time that it is opened for
write, you can attempt to read extensions made by the writer, even after the EOF
flag has been set on by a previous read. If such a read succeeds, the EOF flag is
set off until the new EOF is reached. If you have opened a file once for write and
one or more times for read, a reader can now read past the original EOF.

Simulating Partitioned Data Sets

220

You can create memory files that are conceptually grouped as a partitioned data set
(PDS). Grouping the files in this way offers the following advantages:

* You can remove all the members of a PDS by stating the data set name.

* You can rename the qualifiers of a PDS without renaming each member
individually.

Once you have established that a memory file has members, you can rename and
remove all the members by specifying the file name and no members, just as with a
PDS or PDSE. None of the members can be open for you to perform this action.
Once a memory file is created with or without a member, another memory file with
the same name (with or without a member) cannot be created as well. For example,
if you open memory file a.b and write to it, zZOS C/C++ does not allow a memory
file named a.b(c) until you close and remove a.b. Also, if you create a memory file
named a.b(mbrl), you cannot open a file named a.b until you close and remove
a.b(mbrl).

The following example demonstrates the removal of all the members of the data set
a.b. After the call to remove(), neither a.b(mbrl) nor a.b(mbr2) exists.

z/0OS V1R4.0 C/C++ Programming Guide

CCNGMF1

/* this example shows how to remove members of a PDS */
#include <stdio.h>

int main(void)
{
FILE » fpl, * fp2;
fpl=fopen("a.b(mbrl)","w,type=memory");
fp2=fopen("a.b(mbr2)","w, type=memory");
fwrite("hello, world\n", 1, 13, fpl);
fwrite("hello, world\n", 1, 13, fp2);
fclose(fpl);
fclose(fp2);
remove("a.b");
fpl=fopen("a.b(mbrl)","r,type=memory");
if (fpl == NULL) {
perror("fopen():");
printf("fopen(\"a.b(mbr1)\"...) failed as expected: "
"the file has been removed\n");

else {

printf("fopen() should have failed\n");
}

return(0);

Figure 28. Removing Members of a PDS

The following example demonstrates the renaming of a PDS from a.b to c.d.

Chapter 15. Performing Memory File and Hiperspace 1/O Operations 221

CCNGMF2

/* this example shows how to rename a PDS */
#include <stdio.h>
int main(void)

FILE = fpl, = fp2;

fpl=fopen("a.b(mbrl)","w, type=memory");
fp2=fopen("a.b(mbr2)","w, type=memory");
fclose(fpl);

fclose(fp2);

rename("a.b","c.d");

/* after renaming, you cannot access members of PDS a.b */

fpl=fopen("a.b(mbr1)","r,type=memory");
if (fpl == NULL) {
perror("fopen():");
printf("fopen(\"a.b(mbr1)\"...) failed as expected: "
"the file has been renamed\n");

}

else {
printf("fopen() should have failed\n");
}

fp2=fopen("c.d(mbr2)","r,type=memory");
if (fp2 != NULL) {
printf("fopen(\"c.c(mbr1i)\"...) worked as expected: "
"the file has been renamed\n");

1
else {

perror("fopen():");

printf("fopen() should have worked\n");
1

return(0);

Figure 29. Renaming Members of a PDS

Note: If you are using simulated PDSs, you can change either the name of the
PDS, or the member name. You cannot rename a.b(mbrl) to either
c.d(mbr2) or c.d, but you can rename a.b(mbrl) to a.b(mbr2), and a.b to
c.d.

Memory files that are open as a sequential data set cannot be opened again with a
member name specified. Also, if a data set is already open with a member name,
the sequential data set version with only the data set name cannot be opened.
These operations result in fopen() returning NULL. For example, fopen() returns
NULL in the second line of the following:

fp = fopen("a.b","w,type=memory");
fpl = fopen("a.b(ml)","w,type=memory");

You cannot use the rename() or remove() functions on open files.
Buffering

Regular memory files are not buffered. Any parameters passed to setvbuf() are
ignored. Each character that you write is written directly to the memory file.

222 z/0S V1R4.0 C/C++ Programming Guide

Hiperspace memory files are fully buffered. The default size of the 1/O buffer in your
own address space is 16KB. You can override this buffer size by using the
setvbuf() function (see |z/0S C/C++ Run-Time Library Referencd for more
information).

If you call setvbuf() for a hiperspace memory file:

» If the size value is greater than or equal to 4K, it will be rounded down to the
nearest multiple of 4K and this buffer size will be used. Otherwise, the size value
is ignored.

» If a pointer to a buffer is passed, the buffer size is greater than or equal to 4K,
and the buffer is aligned on a 4K boundary, the buffer may be used. Otherwise,
z/OS C/C++ will allocate a buffer.

Reading from Files

You can use the following library functions to read information from memory files:
e fread()

« fgets()

* gets()

« fgetc()

* getc()

» getchar()

e scanf()

e fscanf()

See [z/0S C/C++ Run-Time Library Reference for more information on these library
functions.

The gets(), getchar(), and scanf() functions read from stdin, which can be
redirected to a memory or hiperspace memory file.

You can open an existing file for read one or more times, even if it is already open
for write. You cannot open a file for write if it is already open (for either read or
write). If you want to update or truncate a file or append to a file that is already
open for reading, you must first close all the other streams that refer to that file.

For memory files, a read operation directly after a write operation without an
intervening call to fflush(), fsetpos(), fseek(), or rewind() fails. z/OS C/C++
treats the following as read operations:

» Calls to read functions that request 0 bytes
* Read requests that fail because of a system error
» Calls to the ungetc() function

You can set up a SIGIOERR handler to catch read or write system errors that happen
when you are using hiperspace memory files. See|Chapter 18, “Debugging I/O|
|Programs” on page 233| for more information.

Chapter 15. Performing Memory File and Hiperspace 1/O Operations 223

Writing to Files

You can use the following library functions to write to a file:
o fwrite()

e printf()

o fprintf()
o vprintf()
o vfprintf()
* puts()

o fputs()

» fputc()

e putc()

e putchar()

See |7/0S C/C++ Run-Time Library Reference for more information on these library
functions.

The printf(), puts(), putchar(), and vprintf() functions write to stdout, which
can be redirected to a memory or hiperspace memory file.

In hiperspace memory files, each library function causes your data to be moved into
the buffer in your address space. The buffer is written to hiperspace each time it is
filled, or each time you call the fflush() library function.

z/OS C/C++ counts a call to a write function writing 0 bytes or or a write request
that fails because of a system error as a write operation. For regular memory files,
the only possible system error that can occur is an error in acquiring storage.

Flushing Records

fflush() does not move data from an internal buffer to a memory file, because the
data is written to the memory file as it is generated. However, fflush() does make
the data visible to readers who have a regular or hiperspace memory file open for
reading while a user has it open for writing.

Hiperspace memory files are fully buffered. The fflush() function writes data from
the internal buffer to the hiperspace.

Any repositioning operation writes data to the hiperspace.

The fclose() function also invokes fflush() when it detects an incomplete buffer
for a file that is open for writing or appending.

ungetc() Considerations

ungetc() pushes characters back onto the input stream for memory files. ungetc()
handles only single-byte characters. You can use it to push back as many as four
characters onto the ungetc() buffer. For every character pushed back with ungetc(),
fflush() backs up the file position by one character and clears all the pushed-back
characters from the stream. Backing up the file position may end up going across a
record boundary.

224 z/OS VIR4.0 C/C++ Programming Guide

If you want fflush() to ignore ungetc() characters, you can set the EDC COMPAT
environment variable. See [Chapter 33, “Using Environment Variables” on page 479
for more information.

Repositioning within Files

You can use the following library functions to help you position within a memory or
hiperspace memory file:

» fgetpos()
» fsetpos()
« fseek()

o ftell()

* rewind()

See [z/0S C/C++ Run-Time Library Reference for more information on these library
functions.

Using fseek() to seek past the end of a memory file extends the file using null
characters. This may cause z/OS C/C++ to attempt to allocate more storage than is
available as it tries to extend the memory file.

When you use the fseek() function with memory files, it supports byte offsets from
SEEK_SET, SEEK_CUR, and SEEK_END.

All file positions from ftel1() are relative byte offsets from the beginning of the file.
fseek () supports these values as offsets from SEEK_SET.

fgetpos(), fseek() with an offset of SEEK_CUR, and and ftel1() handle ungetc()
characters unless you have set the _EDC_COMPAT environment variable, in which
case fgetpos() and fseek() do not. See |[Chapter 33, “Using Environmen
|Variables” on page 479|for more information about EDC_COMPAT. If in handling these
characters, if the current position goes beyond the start of the file, fgetpos()
returns the EOF value, and ftel1() returns -1.

fgetpos() values generated by code from previous releases of the z/OS C/C++
compiler are not supported by fsetpos ().

Closing Files

Use the fclose() library function to close a regular or hiperspace memory file. See
[z/0S C/C++ Run-Time Library Reference for more information on this library
function. z/OS C/C++ automatically closes memory files at the termination of the C
root main environment.

Performance Tips

You should use hiperspace memory files instead of regular memory files when they
will be large (1MB or greater).

Regular memory files perform more efficiently if large amounts of data (10K or
more) are written in one request (that is, if you pass 10K or more of data to the
fwrite() function). You should use fopen("*", "type=memory") both to generate a
name for a memory file and to open the file instead of calling fopen() with a name
returned by tmpnam(). You can acquire the file's generated name by using fldata().

Chapter 15. Performing Memory File and Hiperspace 1/O Operations 225

Removing Memory Files

The memory file remains accessible until the file is removed by the remove() or
clrmemf () library functions or until the root program has terminated. You cannot

remove an open memory file, except when you use clrmemf(). See|z/0OS C/C+
|Run-Time Library Reference for more information on these library functions.

fldata() Behavior

The format of the fldata() function is as follows:
int fldata(FILE =file, char =filename, fldata_t *info);

The fldata() function is used to retrieve information about an open stream. The
name of the file is returned in filename and other information is returned in the
fldata_t structure, shown in the figure below. Values specific to this category of 1/0
are shown in the comment beside the structure element. Additional notes pertaining
to this category of I/O follow the figure. For more information on the fldata()
function, refer to|z/OS C/C++ Run-Time Library Reference]

struct _ fileData {

unsigned int _ recfmF 1, /* always on */
__recfmV 1, /* always off */

__recfml 1, /* always off */

__recfmS : 1, /* always off */

__recfmBlk : 1, /* always off */

__recfmASA : 1, /* always off */

__recfmM 1, /* always off */

__dsorgP0 1, /* N/A -- always off */

__dsorgPDSmem : 1, /* N/A -- always off */

__dsorgPDSdir : 1, /* N/A -- always off */

__dsorgPS 1, /* N/A -- always off */

__dsorgConcat : 1, /* N/A -- always off */

__dsorgMem : 1, /* */

__dsorgHiper : 1, /x */

__dsorgTemp: 1, /* N/A -- always off */

__dsorgVSAM: 1, /* N/A -- always off */

__dsorgHFs : 1, /* N/A -- always off */

__openmode : 2, /* __BINARY */

__modeflag : 4, /* combination of: */

/* __READ */

/* _WRITE */

/% __APPEND */

/* __UPDATE */

__dsorgPDSE: 1, /* N/A -- always off */

__reserve2 : 8; /* */

__device_t __device; /* one of: */
/% __MEMORY */

/* __HIPERSPACE */

unsigned long _ blksize, /* */
__maxreclen; /* */

unsigned short _ vsamtype; [* N/A */
unsigned Tong _ vsamkeylen; /* N/A */
unsigned Tong _ vsamRKP; /* N/A */
char =* __dsname; /* */
unsigned int _ reserved; /* */

bs
typedef struct _ fileData fldata_t;

Figure 30. fldata() Structure

226 z/OS V1R4.0 C/C++ Programming Guide

Notes:

1. The filename is the fully qualified version of the filename specified on the
fopen() or freopen() function call. There are no quotation marks. However, if
the filename specified on the fopen() or freopen() function call begins with an
* a unique filename is generated in the format ((n)), where n is an integer.

2. The __dsorgMem bit will be set on only for regular memory files.
3. The __dsorgHiper bit will be set on only for hiperspace memory files.
4. The __dsname is identical to the filename value.

Example Program

The following example shows the use of a memory file. The program PROGA creates
a memory file, calls program PROGB, and redirects the output of the called program
to the memory file. When control returns to the first program, the program reads
and prints the string in the memory file.

For more information on the system() library function, see|z/0S C/C++ Run-Time|
[Library Referencd,.

CCNGMF3

/* this example demonstrates the use of a memory file */
/* part 1 of 2-other file is CCNGMF4 =/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

int main(void)

{
FILE *fp;
char buffer[20];
char *rc;

/* Open the memory file to create it */
if ((fp = fopen("PROG.DAT","wb+,type=memory")) != NULL)
{

/* Close the memory file so that it can be used as stdout */
fclose(fp);

/* Call CCNGMF4 and redirect its output to memory file =/
/* CCNGMF4 must be an executable MODULE */
system("CCNGMF4 >PROG.DAT");

/* Now print the string contained in the file */

fp = fopen("PROG.DAT","rb");
rc = fgets(buffer,sizeof (buffer),fp);
if (rc == NULL)
{
perror(" Error reading from file ");
exit(99);
1
printf("%s", buffer);
}

return(0);

Figure 31. Memory File Example

Chapter 15. Performing Memory File and Hiperspace 1/O Operations 227

CCNGMF4

/* this example demonstrates the use of a memory file */
/* part 2 of 2-other file is CCNGMF3 =/

#include <stdio.h>
#include <stdlib.h>

int main(void)

{
char iteml[] = "Hello World\n";
int rc;

/* Write the data to the stdout which, at this point, has been
redirected to the memory file */
rc = fputs(iteml,stdout);
if (rc == 0) {
perror("Error putting to file ");
exit(99);

return(0);

Figure 32. Memory File Example

228 z/0S V1R4.0 C/C++ Programming Guide

Chapter 16. Performing CICS /O Operations

z/OS C/C++ under CICS supports only three kinds of I/O:

CICS /O
z/0OS C/C++ applications can access the CICS I/O commands through the CICS
command level interface. [CICS Application Programming Guide, SC34-5993]
and [CICS Application Programming Reference, SC34-5994 discuss this
interface in detail.

Files
Memory files are the only type of file that z/OS C/C++ supports under CICS.
Hiperspace files are not supported.

VSAM files can be accessed through the CICS command level interface.

CICS data queues
Under CICS, z/OS C/C++ implements the standard output (stdout) and
standard error (stderr) streams as CICS transient data queues. These data
gueues must be defined in the CICS Destination Control table (DCT) by the
CICS system administrator before the CICS cold start. Output from all users’
transactions that use stdout (or stderr) is written to the queue in the order of
occurrence. To help differentiate the output, place a user’s terminal name, the
CICS transaction identifier, and the time at the beginning of each line printed to
the queue.

The queues are as follows:

Stream Queue
stdout CESO
stderr CESE
stdin Not supported

To access any other queues, you must use the command level interface.

Note: If you are using the C++ I/O stream classes, the standard stream cout maps
to stdout, which maps to CESO. The standard stream cerr and clog both
map to stderr, which maps to CESE. The standard stream cin is not
supported under CICS.

For more general information about C++ 1/0O streaming, see [Chapter 5, “Using the]
[Standard C++ Library 1/0 Stream Classes” on page 49} For more detailed
information about 1/0O streaming see the following:

» Standard C++ Library Reference discusses the Standard C++ 1/O stream
classes. It can be found at
http://www.ibm.com/software/ad/c390/czos/czosdocs.html.

« |IBM Open Class Library User’s Guidd and |IBM Open Class Library Reference)
\ol. 1|discuss the Unix Systems Laboratories C++ Language System Release
(USL) I/O Stream Class Library.

For complete information about using z/OS C/C++ and z/OS C/C++ I/O under
CICS, see [‘Using Input and Output” on page 598|

For information on using wide characters in the CICS environment, see [Chapter 9,
|"z/OS C Support for the Double-Byte Character Set” on page 79|.

© Copyright IBM Corp. 1996, 2002 229

230 z/OS V1R4.0 C/C++ Programming Guide

Chapter 17. Language Environment Message File Operations

This chapter describes input and output with the z/OS Language Environment
message file. This file is write-only. That is, it is nonreadable and nonseekable.

The default open mode for the z/OS Language Environment message file is text.
Binary and record 1/0O modes are not supported.

This chapter also describes C 1/O streams as they can be used within C++
programs. If you want to use the C++ I/O stream classes instead, see IEhapter 5,|
['Using the Standard C++ Library I/O Stream Classes” on page 49| for general
information. For more detailed information about 1/O streaming see the following:

» Standard C++ Library Reference discusses the Standard C++ 1/O stream
classes. It can be found at
http://www.ibm.com/software/ad/c390/czos/czosdocs.html.

« |IBM Open Class Library User’s Guide and [IBM Open Class Library Reference)

\ol. 1|discuss the Unix Systems Laboratories C++ Language System Release
(USL) I/O Stream Class Library.

The standard stream stderr defaults to using the z/OS Language Environment
message file. stderr will be directed to file descriptor 2, which is typically your
terminal if you are running under one of the z/OS UNIX shells. There are some
exceptions, however:

« If the application has allocated the ddname in the MSGFILE (ddname) run-time
parameter, your output will go there. The default is MSGFILE (SYSOUT).

* If the application has issued one of the POSIX exec() functions, or it is running
in an address space created by the POSIX fork() function and the application
has not dynamically allocated a ddname for MSGFILE, then the default is to use
file descriptor 2, if one exists. If it doesn'’t, then the default is to create a
message file in the user’s current working directory. The message file will have
the name that is specified on the message file run-time option, the default being
SYSOUT.

Opening Files

The default is for stderr to go to the message file automatically. The message file
is available only as stderr; you cannot use the fopen() or freopen() library
function to open it.

» freopen() with the null string ("") as filename string will fail.

* Record format (RECFM) is always treated as undefined (U). Logical record length
(LRECL) is always treated as 255 (the maximum length defined by z/OS Language
Environment message file system write interface).

Reading from Files

The z/OS Language Environment message file is non-readable.

Writing to Files

» Data written to the z/OS Language Environment message file is always
appended to the end of the file.

© Copyright IBM Corp. 1996, 2002 231

* When the data written is longer than 255 bytes, it is written to the z/OS

Language Environment message file 255 bytes at a time, with the last write
possibly less than 255 bytes. No truncation will occur.

When the output data is shorter than the actual LRECL of the z/OS Language
Environment message file, it is padded with blank characters by the z/OS
Language Environment system write interface.

When the output data is longer than the actual LRECL of the z/OS Language
Environment message file, it is split into multiple records by the z/OS Language
Environment system write interface. The z/OS Language Environment system
write interface splits the output data at the last blank before the LRECL-th byte,
and begins writing the next record with the first non-blank character. Note that if
there are no blanks in the first LRECL bytes (DBCS for instance), the z/OS
Language Environment system write interface splits the output data at the
LRECL-th byte. It also closes off any DBCS string on the first record with a X'OF'
character, and begins the DBCS string on the next record with a X'OE' character.

The hex characters X'OE' and X'OF' have special meaning to the z/OS Language
Environment system write interface. The z/OS Language Environment system
write interface removes adjacent pairs of these characters (normalization).

* You can set up a SIGIOERR handler to catch system write errors. See |Chapter 18,

[‘Debugging I/0 Programs” on page 233 for more information.

Flushing Buffers

The fflush() function has no effect on the z/OS Language Environment message
file.

Repositioning within Files

The ftell(), fgetpos(), fseek(), and fsetpos() functions are not allowed,
because z/OS Language Environment message file is a non-seekable file. The
rewind() function only resets error flags.

You cannot call fseek() on stderr when it is mapped to MSGFILE (the default routing
of stderr).

Closing Files

Do not use the fclose() library function to close the z/OS Language Environment
message file. z/OS C/C++ automatically closes files on normal program termination
and attempts to do so under abnormal program termination or abend.

232 z/OS V1R4.0 C/C++ Programming Guide

Chapter 18. Debugging 1/0 Programs

This chapter will help you locate and diagnose problems in programs that use input
and output. It discusses several diagnostic methods specific to I/O. Diagnostic
methods for 1/O errors include:

» Using return codes from I/O functions

» Using errno values and the associated perror() message

* Using the __amrc structure

» Using the __amrc2 structure

The information provided with the return code of 1/O functions and with the perror()
message associated with errno values may help you locate the source of errors and
the reason for program failure. Because return codes and errno values do not exist
for every possible system I/O failure, return codes and errno values are not useful
for diagnosing all I/O errors. This chapter discusses the use of the __amrc structure
and the amrc2 structure. For information on return codes from 1/O functions see
lz/0S C/C++ Run-Time Library Reference, For information on errno values and the
associated perror() message see |z/0S Language Environment Debugging Guidel

Using the __amrc Structure

__amrc is a structure defined in stdio.h (when the compile-time option

LANGLVL (LIBEXT) is in effect) to help you determine errors resulting from an 1/0
operation. This structure is changed during system 1/O and some C specific error
situations.

Note: _ amrc is not used to record 1/O errors in HFS files.

When looking at __amrc, be sure to copy the structure into a temporary structure of
__amrctype since any I/O function calls will change the value of __amrc.

[Figure 33 on page 234|shows the __amrc structure as it appears in stdio.h.

© Copyright IBM Corp. 1996, 2002 233

typedef struct _ amrctype {

union { 1]
Tong int __error; 2]
struct {
unsigned short _ syscode,
rc;
} __abend;
struct {
unsigned char _ fdbk_fill,
_rc,
__ftncd,
fdbk;
} _ feedback; A
struct {

unsigned short _ svc99_info,
svc99_error;

} __allocs
} __code;
unsigned long _ RBA; 6|
unsigned int __last_op;
struct {

unsigned long _ Ten_fill;
unsigned long _ Ten;

char __str[120];
unsigned long _ parmr0;
unsigned long _ parmrl;
unsigned long _ fil112[2];

char _str2[64];
} __msg; B
unsigned char _ rplfdbwd[4]; 9]

} __amrc_type;

Figure 33. __amrc Structure

union { ...} _ code
The error or warning value from an I/O operation is in either __error,
__abend, _ feedback, or __alloc. You must look at __Tast_op to determine
how to interpret the ___code union.

H _error

error contains the return code from the system macro or utility. Refer to
[Table 31 on page 237|for further information.

E _ abend
This struct contains the abend code when errno is set to indicate a

recoverable 1/0 abend. _ syscode is the system abend code and _ rc is
the return code. For more information on the abend codes, see the System
Codes manual as listed in|z/OS Information Roadmap. The macros
__abendcode() and __rsncode() may be set to the abend code and reason
code of a TSO CLIST or command when invoked with system().

B _ feedback
This struct is used for VSAM only. The __ rc stores the VSAM register 15,
__fdbk stores the VSAM error code or reason code, and __RBA stores the
RBA after some operations.

B alloc

This struct contains errors during fopen() or freopen() calls when defining

234 z/0S V1R4.0 C/C++ Programming Guide

CCNGDI1

files to the system using SVC 99. See the Systems Macros manual, as listed
in [z/0S Information Roadmap} for more information on these fields as set
by SVC 99.

6 LT

This is the RBA value returned by VSAM after an ESDS or KSDS record is
written out. For a RRDS, it is the calculated value from the record number.
It may be used in subsequent calls to flocate().

__last_op
This field contains a value that indicates the last I/O operation being
performed by z/OS C/C++ at the time the error occurred. These values are
shown in [Table 31 on page 237}

B _nsg

This may contain the system error messages from read or write operations
emitted from the BSAM SYNADAF macro instruction. This field will not always
be filled. If you print this field using the %s format, you should print the string
starting at the sixth position because of possible null characters found in the
first 6 characters. Special messages for PDSEs are contained in the
positions 136 through 184. See the Data Administration manual as listed in
[z/0S Information Roadma for more information.

This field is used by the SIGIOERR handler.

B _ rpifdbwd
This field contains feedback information related to a VSAM RLS failure. This
is the feedback code from the IFGRPL control block.

demonstrates how to print the __amrc structure after an error has
occurred to get information that may help you to diagnose an 1/O error.

/* this example demonstrates how to print the __amrc structure =/
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>

int main(void) {
FILE *fp;
__amrc_type save_amrc;
char buffer[80];
int i = 0;
/* open an MVS binary file */

fp = fopen("testfull.file","wb, recfm=F, 1rec1=80");
if (fp == NULL) exit(99);
memset (buffer, 'A', 80);

Figure 34. Example of Printing the __amrc Structure (Part 1 of 2)

Chapter 18. Debugging I/O Programs 235

/* write to MVS file until it runs out of extents =*/

while (fwrite(buffer, 1, 80, fp) == 80)
++1

save_amrc = *__amrc; /* need copy of __amrc structure */
printf("number of successful fwrites of 80 bytes = %d\n", i);

printf("last fwrite errno=%d lastop=%d syscode=%X rc=%d\n",
errno,
save_amrc.__last_op,
save_amrc.__code.__abend.__syscode,
save_amrc.__code. abend._ rc);

return 0;

Figure 34. Example of Printing the __amrc Structure (Part 2 of 2)

The program writes to a file until it is full. When the file is full, the program fails.
Following the I/O failure the program makes a copy of the __amrc structure, and
prints the number of successful writes to the file, the errno, the __Tast_op code, the
abend system code and the return code.

Using the __amrc2 Structure

236

The __amrc2 structure is an extension of __amrc. Only 2 fields are defined for
__amrc2. Like the __amrc structure, __amrc2 is changed during system 1/0O and
some C specific error situations.

Note: See ['Using the SIGIOERR Signal” on page 240| for information on restrictions
that exist when comparing file pointers if you are using the __amrc2

structure.
Figure 35|shows the __amrc2 structure as it appears in stdio.h.
struct {
long int __errorz; */
FILE *_fileptr; */
Tong int __reserved[6];
}
Figure 35. __amrc2 Structure
This field is a secondary error code that is used to store the reason code

from specific macros. The __last_op codes that can be returned to
__amrc2 are __BSAM STOW, _ BSAM BLDL, _ I0 LOCATE, _ IO RENAME,
__I0 _CATALOG and _ I0 UNCATALOG. For information on the macros
associated with these codes see|Table 31 on page 237}

For further information about the macros see [z70S DFSMSdfp Diagnosis|

2 | This field, _ fileptr, of the __amrc2 structure is used by the signal
SIGIOERR to pass back a FILE pointer that can then be passed to fldata() to
get the name of the file causing the error. The __amrc2__fileptr will be
NULL if a SIGIOERR is raised before the file has been successfully opened.

z/0OS V1R4.0 C/C++ Programming Guide

Using _ last op Codes

The __Tast_op field is the most important of the __amrc fields. It defines the last I/O
operation z/OS C/C++ was performing at the time of the 1/0 error. You should note
that the structure is neither cleared nor set by non-1/0O operations so querying this
field outside of a SIGIOERR handler should only be done immediately after 1/0O
operations. lists _Tast_op codes you may receive and where to look for

further information.

Table 31. __last_op Codes and Diagnosis Information

Code Further Information

__BSAM_BLDL Sets __error with return code from OS BLDL macro.

_ BSAM_CLOSE Sets __error with return code from OS CLOSE macro.

_ BSAM_CLOSE_T Sets __error with return code from OS CLOSE TYPE=T.

_ BSAM_NOTE NOTE returned 0 unexpectedly, no return code.

__BSAM_OPEN Sets __error with return code from OS OPEN macro.

__BSAM_POINT This will not appear as an error 1astop.

__BSAM_READ No return code (either __abend (errno == 92) or __msg
(errno == 66) filled in).

__BSAM_STOW Sets __error with return code from OS STOW macro.

__BSAM_WRITE No return code (either __abend (errno == 92) or __msg

(errno == 65) filled in).

__C_CANNOT_EXTEND

This occurs when an attempt is made to extend a file that
allows writing, but cannot be extended. Typically this is a
member of a partitioned data set being opened for update.

__C_DBCS_SI_TRUNCATE

This occurs only when there was not enough room to start a
DBCS string and data was written anyway, with an Sl to end
it. Cannot happen if MB_CUR_MAX is 1.

_C_DBCS_SO_TRUNCATE

This occurs when there is not enough room in a record to
start any DBCS string or else when a redundant SO is
written to the file before an Sl. Cannot happen if MB_CUR_MAX
is 1.

__C_DBCS_TRUNCATE

This occurs when writing DBCS data to a text file and there
is no room left in a physical record for anymore double byte
characters. A new-line is not acceptable at this point.
Truncation will continue to occur until an Sl is written or the
file position is moved. Cannot happen if MB_CUR_MAX is 1.

__C_DBCS_UNEVEN

This occurs when an Sl is written before the last double
byte character is completed, thereby forcing z/OS C/C++ to
fill in the last byte of the DBCS string with a padding byte
X'FE'. Cannot happen if MB_CUR_MAX is 1.

__C_FCBCHECK

Set when z/0OS C/C++ FCB is corrupted. This is due to a
pointer corruption somewhere. File cannot be used after
this.

__CICS_WRITEQ_TD

Sets __error with error code from EXEC CICS WRITEQ
TD.

__C_TRUNCATE

Set when z/OS C/C++ truncates output data. Usually this is
data written to a text file with no newline such that the
record fills up to capacity and subsequent characters cannot
be written. For a record 1/O file this refers to an fwrite()
writing more data than the record can hold. Truncation is
always of rightmost data. There is no return code.

Chapter 18. Debugging I/O Programs 237

238

Table 31. __last_op Codes and Diagnosis Information (continued)

Code Further Information

__HSP_CREATE Indicates last op was a DSPSERV CREATE to create a
hiperspace for a hiperspace memory file. If CREATE fails,
stores abend code in __amrc.__code.__abend.__syscode,
reason code in __amrc.__code.__abend. rc.

_ HSP_DELETE Indicates last op was a DSPSERV DELETE to delete a
hiperspace for a hiperspace memory file during termination.
If DELETE fails, stores abend code in
__amrc.__code.__abend.__syscode, reason code in
__amrc.__code.__abend.__rc.

__HSP_EXTEND Indicates last op was a HSPSERV EXTEND during a write
to a hiperspace. If EXTEND fails, stores abend code in
__amrc.__code.__abend.__syscode, reason code in
__amrc.__code.__abend.__rc.

__HSP_READ Indicates last op was a HSPSERV READ from a
hiperspace. If READ fails, stores abend code in
__amrc.__code.__abend.__syscode, reason code in
__amrc.__code.__abend.__rc.

__HSP_WRITE Indicates last op was a HSPSERV WRITE to a hiperspace.
If WRITE fails, stores abend code in
__amrc.__code.__abend.__syscode, reason code in
__amrc.__code.__abend.__rc.

__I0_CATALOG Sets __error with return code from I/O CAMLST CAT. The
associated macro is CATALOG.

__IO_DEVTYPE Sets __error with return code from I/O DEVTYPE macro.

__T0_INIT Will never be seen by SIGIOERR exit value given at
initialization.

__T0_LOCATE Sets __error with return code from I/O CAMLST LOCATE.

__I0_OBTAIN Sets __error with return code from 1/O CAMLST OBTAIN.

__I10_RDJFCB Sets __error with return code from 1/0 RDJFCB macro.

__I0_RENAME Sets __error with return code from I1/O CAMLST RENAME.

__I0_TRKCALC Sets __error with return code from 1/0O TRKCALC macro.

__10_UNCATALOG

Sets __error with return code from 1/O CAMLST UNCAT.
The associated macro is CATALOG.

__LFS_CLOSE

Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order
2 bytes can be looked up in|z/0S UNIX System Services
|Programming: Assembler Callable Services Referencel

__LFS_FSTAT

Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order
2 bytes can be looked up in[z/0S UNIX System Services|
|Programming: Assembler Callable Services Referencel

_ LFS_LSEEK

Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order
2 bytes can be looked up in[z/0S UNIX System Services|
|Programming: Assembler Callable Services Referencel

__LFS_OPEN

Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order
2 bytes can be looked up in[z/0S UNIX System Services|
|Programming: Assembler Callable Services Referencel

z/0OS V1R4.0 C/C++ Programming Guide

Table 31. __last_op Codes and Diagnosis Information (continued)

Code

Further Information

__LFS_READ

Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order
2 bytes can be looked up in[z/0S UNIX System Services
|Programming: Assembler Callable Services Referencel

__LFS_STAT

Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order
2 bytes can be looked up in[z/0S UNIX System Services|
|Programming: Assembler Callable Services Referencel

__LFS_WRITE

Sets __error with reason code from HFS services. Reason
code from HFS services must be broken up. The low order
2 bytes can be looked up in|z/OS UNIX System Serviced
|Programming: Assembler Callable Services Referencel

__0S_CLOSE

Sets __error to result of OS CLOSE macro.

__0S_OPEN

Sets __error to result of OS OPEN macro.

__QSAM_FREEPOOL

This is an intermediate operation. You will only see this if an
I/O abend occurred.

__QSAM_GET __error is not set (if abend (errno == 92), _ abend is set,
otherwise if read error (errno == 66), look at __msg.

__QSAM_PUT __error is not set (if abend (errno == 92), _ abend is set,
otherwise if write error (errno == 65), look at __msg.

__QSAM_TRUNC This is an intermediate operation. You will only see this if an

I/0 abend occurred.

_SVC99_ALLOC

Sets __alloc structure with info and error codes from SVC 99
allocation.

_SVC99_ALLOC_NEW

Sets __alloc structure with info and error codes from SVC 99
allocation of NEW file.

_SVC99_UNALLOC

Sets __alloc structure with info and error codes from SVC 99
unallocation.

__TGET_READ Sets __error with return code from TSO TGET macro.
__TPUT_WRITE Sets __error with return code from TSO TPUT macro.
__VSAM_CLOSE Set when the last op was a low level VSAM CLOSE; if the

CLOSE fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_ENDREQ

Set when the last op was a low level VSAM ENDREQ; if the
ENDREQ fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_ERASE Set when the last op was a low level VSAM ERASE; if the
ERASE fails, sets __rc and __ fdbk in the __amrc struct.

__VSAM_GENCB Set when a low level VSAM GENCB macro fails, sets __rc
and __ fdbk fields in the __amrc struct.

__VSAM_GET Set when the last op was a low level VSAM GET, if the GET
fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_MODCB Set when a low level VSAM MODCB macro fails, sets __rc

and __fdbk fields in the __amrc struct.

__VSAM_OPEN_ESDS

Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

__VSAM_OPEN_ESDS_PATH

Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

__VSAM_OPEN_FAIL

Set when a low level VSAM OPEN fails, sets __rc and
__fdbk fields in the __amrc struct.

Chapter 18. Debugging I/O Programs 239

Table 31. __last_op Codes and Diagnosis Information (continued)

Code Further Information

__VSAM_OPEN_KSDS Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

__VSAM_OPEN_KSDS_PATH Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

__VSAM_OPEN_RRDS Does not indicate an error; set when the low level VSAM
OPEN succeeds, and the file type is ESDS.

__VSAM_POINT Set when the last op was a low level VSAM POINT; if the
POINT fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_PUT Set when the last op was a low level VSAM PUT; if the PUT
fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_SHOWCB Set when a low level VSAM SHOWCB macro fails, sets
__rc and __fdbk fields in the __amrc struct.

__VSAM_TESTCB Set when a low level VSAM TESTCB macro fails, sets __rc
and __ fdbk fields in the __amrc struct.

Using the SIGIOERR Signal

SIGIOERR is a signal used by the library to pass control to an error handler when an
I/0 error occurs. The default action for this signal is SIG_IGN. Setting up a SIGIOERR
handler is like setting up any other error handler. The example in|Figure 3§ adds a
SIGIOERR handler to the example shown in |Figure 34 on page 235. Note the way
fldata() and the __amrc2 field _ fileptr are used to get the name of the file that
caused the error.

CCNGDI2

#include <stdio.h>
#include <signal.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>

#ifdef _ cplusplus
extern "C" {
#endif

Figure 36. Example of Using SIGIOERR (Part 1 of 2)

240 z/OS V1R4.0 C/C++ Programming Guide

void iohdlr(int);

#ifdef __cplusplus

#endif

int main(void) {

}

FILE *fp;

char buffer[80];

int i = 0;

signal (SIGIOERR, iohdlr);

/* open an MVS binary file */

fp = fopen("testfull.file","wb, recfm=F, 1rec1=80");
if (fp == NULL) exit(99);

memset (buffer, 'A', 80);
/* write to MVS file until it runs out of extents */

while (fwrite(buffer, 1, 80, fp) == 80)
++i;

printf("number of successful fwrites of 80 bytes = %d\n", i);

return 0;

void iohdlr (int signum) {

__amrc_type save_amrc;
__amrc2_type save_amrc2;
char filename[FILENAME MAX];
fldata_t info;

save_amrc = *__amrc; /* need copy of __amrc structure =*/

save_amrc2 = *__amrc2; /* need copy of __amrc2 structure */
/* get name of file causing error from fldata */

if (fldata(save_amrc2. fileptr, filename, &info) == 0)
printf("error on file %s\n",filename);

perror("io handler"); /* give errno message */

printf("lastop=%d syscode=%X rc=%d\n",
save_amrc.__last_op,
save_amrc.__code.__abend.__syscode,
save_amrc.__code. abend. rc);

signal (SIGIOERR, iohdlr);

Figure 36. Example of Using SIGIOERR (Part 2 of 2)

When control is given to a SIGIOERR handler, the __amrc?2 structure field _ fileptr
will be filled in with a file pointer. The __amrc2__ fileptr will be NULL if a SIGIOERR
is raised before the file has been successfully opened. The only operation permitted
on the file pointer is fldata(). This operation can be used to extract information
about the file that caused the error. Other than freopen() and fclose(), all I/O
operations will fail since the file pointer is marked invalid. Do not issue freopen() or
fclose() in a SIGIOERR handler that returns control. This will result in unpredictable
behavior, likely an abend.

Chapter 18. Debugging I/O Programs 241

242

If you choose not to return from the handler, the file is still locked from all
operations except fldata(), freopen(), or fclose(). The file is considered open and
can prevent other incorrect access, such as an MVS sequential file opened more
than once for a write. Like all other files, the file is closed automatically at program
termination if it has not been closed explicitly already.

When you exit a SIGIOERR handler and do not return, the state of the file at closing
is indeterminate. The state of the file is indeterminate because certain control block
fields are not set correctly at the point of error and they do not get corrected unless
you return from the handler.

For example, if your handler were invoked due to a truncation error and you
performed a Tongjmp () out of your SIGIOERR handler, the file in error would remain
open, yet inaccessible to all I/O functions other than fldata(), fclose(), and
freopen(). If you were to close the file or it was closed at termination of the
program, it is still likely that the record that was truncated will not appear in the final
file.

You should be aware that for a standard stream passed across a system() call, the
state of the file will be indeterminate even after you return to the parent program.
For this reason, you should not jump out of a SIGIOERR handler. For further
information on system() calls and standard streams, see [Chapter 10, “Using C and|
[C++ Standard Streams and Redirection” on page 87|

I/0 with files other than the file causing the error is perfectly valid within a SIGIOERR
handler. For example, it is valid to call printf() in your SIGIOERR handler if the file
causing the error is not stdout. Comparing the incoming file pointer to the standard
streams is not a reliable mechanism of detecting whether any of the standard
streams are in error. This is because the file pointer in some cases is only a pointer
to a file structure that points to the same _ file as the stream supplied by you. The
FILE pointers will not be equal if compared, but a comparison of the _ file fields of
the corresponding FILE pointers will be. See the stdio.h header file for details of
type FILE.

If stdout or stderr are the originating files of a SIGIOERR, you should open a special
log file in your handler to issue messages about the error.

z/0OS V1R4.0 C/C++ Programming Guide

Part 3. Interlanguage Calls with z/OS C/C++

This part describes z/OS C/C++ considerations about interlanguage calls in the
z/0OS Language Environment. For complete information about interlanguage calls
(ILC) with z/OS C/C++ and z/OS Language Environment, refer to[z/OS Languagg
[Environment Writing Interlanguage Communication Applications|

« [Chapter 19, “Using Linkage Specifications in C or C++” on page 245|

« [Chapter 20, “Combining C or C++ and Assembler” on page 251

© Copyright IBM Corp. 1996, 2002 243

244 7z/0S V1R4.0 C/C++ Programming Guide

Chapter 19. Using Linkage Specifications in C or C++

This section describes how you can make calls between C or C++ programs and
assembler, COBOL, PL/I, or FORTRAN programs, or other C or C++ programs. For
more complete information on making interlanguage calls to and from C or C++,
see [z/0S Language Environment Writing Interlanguage Communicatior]

prlicationg.

With XPLINK compilation, the linkage and parameter passing mechanisms for C
and C++ are identical. If you link to a C function from a C++ program, you should
still specify extern "C" to avoid name mangling. For more information about
XPLINK, see [z/0S Language Environment Programming Guide}

Syntax for Linkage in C or C++

You can specify one of the following linkage types:

C C linkage (C++ only)
C++ C++ linkage (C++ only, the default for C++)
COBOL Previously used for linkage to COBOL routines. Maintained for

compatibility with COBOL/370 and VS COBOL Il. With newer
COBOL products, use the REFERENCE, OS, or C linkage type

instead.
FORTRAN FORTRAN linkage
(O] Operating System linkage

OS_DOWNSTACK
XPLINK-enabled operating system linkage

OS_NOSTACK
Minimal operating system linkage (for use with XPLINK)

OS_UPSTACK
Complete operating system linkage (for use with XPLINK)

0OS31_NOSTACK
Same as OS_NOSTACK

PLI Maintained for compatibility with PL/I products prior to the
VisualAge PL/I product. With newer PL/I products use the C linkage
type instead.

REFERENCE A Language Environment reference linkage that has the same
syntax and semantics with and without XPLINK. Unlike OS linkage,
REFERENCE linkage is not affected by the OSCALL suboption of
XPLINK. It is equivalent to OS_DOWNSTACK in XPLINK mode and
OS_UPSTACK in non-XPLINK mode.

Syntax for Linkage in C

You can create linkages between C and other languages by using linkage
specifications with the following #pragma linkage directive:

#pragma linkage(identifier,linkage)

where identifier specifies the name of the function and linkage specifies the linkage
associated with the function.

© Copyright IBM Corp. 1996, 2002 245

Syntax for Linkage in C++
You can create linkages between C++ and other languages by using linkage
specifications with the following syntax:

extern "linkage" { [declaration-list] }
extern "linkage" declaration

declaration-Tist:
declaration
declaration-1ist declaration

where linkage specifies the linkage associated with the function. If z/OS C++ does
not recognize the linkage type, it uses C linkage.

Kinds of Linkage used by C or C++ Interlanguage Programs

The following table describes the kinds of linkage used by C++ interlanguage

programs.
What calls or is called by a |Kind of linkage Description of linkage G++ Example
C or C++ program used
GDDM, ISPF, or (6}S) Basic linkage defined by the extern "0S" { ... }
non-Language Environment operating system. OS Linkage
conforming assembler allows integer, pointer, and floating
point return types. Use of OS
linkage with assembler is detailed in
“Specifying Linkage for C or C++ to|
Assembler” on page 251{
Language Environment OS_UPSTACK This is the same as OS linkage in | extern "0S_UPSTACK"
conforming assembler, NOXPLINK-compiled programs. Itis [{ ... }
NOXPLINK-compiled C or declared this way by the caller
C++ declared with OS when the caller is
linkage (or C linkage, XPLINK-compiled. The compiler will
passing each parameter as a call glue code to transition from the
pointer) is to be called from XPLINK caller to the non-XPLINK
XPLINK-compiled C or C++. callee. Also see the OSCALL
Cannot be used on a suboption of the XPLINK option in
function definition in [z70s c/C++ User’s Guidd,
XPLINK-compiled code.
Assembler which does not OS_NOSTACK, The compiler does not generate extern "0S31 NOSTACK"
follow Language 0S31_NOSTACK any glue code for this call. It { ...}
Environment conventions. provides the called program with a

72-byte save area pointed to by
Register 13, as does
OS_UPSTACK, but the save area
may not be initialized. In particular,
the Language Environment Next
Available Byte (NAB) field may not
be present. On entry to the called
function, Register 15 contains the
entry point address and Register 14
contains the return address.
Register 1 points to an OS-style
argument list. Typically a program
would declare an operating system
or subsystem assembler routine
with this linkage, where such a
routine was not Language
Environment enabled.

246 z/OS V1R4.0 C/C++ Programming Guide

What calls or is called by a
C or C++ program

Kind of linkage
used

Description of linkage @

++ Example

XPLINK-compiled C or C++
using OS_DOWNSTACK
linkage, or XPLINK-enabled
assembler.

OS_DOWNSTACK

As with OS linkage in
NOXPLINK-compiled C or C++, the
parameters are passed by
reference rather than by value.
However, parameter and stack
management use XPLINK
conventions. Also see the OSCALL
suboption of the XPLINK option in
[z70s c/C++ User's Guidd

extern "0S_DOWNSTACK"

{ ...}

The following programs, REFERENCE This is the same as extern "REFERENCE"
using by-reference OS_DOWNSTACK linkage in { ...}
parameter passing: XPLINK-compiled programs and
e XPLINK-compiled C/C++ OS_UPSTACK in
programs calling XPLINK NOXPLINK-compiled programs.
functions (C, C++, or Use this for Language
Language Environment Environment-conforming assembler
conforming assembler) linkage.
* NOXPLINK-compiled
C/C++ programs calling
NOXPLINK functions (C,
C++, or Language
Environment conforming
assembler)
A Language Environment
conforming stack frame is
always provided. This is not
affected by the OSCALL
suboption of XPLINK.
PL/ PLI Modification of OS linkage. It forces |extern "PLI" { ... }

the compiler to read and write
parameter lists using PL/I linkage
conventions. This linkage type
extends OS linkage by allowing
structures as return types. (When
the return type is a structure, the
caller allocates a buffer large
enough to receive the returned
structure and passes it, by
reference, as a hidden final
argument.)

This linkage type is maintained for
compatibility with PL/I products prior
to the VisualAge PL/I product. With
newer PL/I products use the C
linkage type instead.

Chapter 19. Using Linkage Specifications in C or C++

247

What calls or is called by a | Kind of linkage Description of linkage G++ Example
C or C++ program used
COBOL COBOL Forces the compiler to read and extern "COBOL" { ... }

write parameter lists using COBOL
linkage conventions. All calls from
C++ to COBOL must be void
functions.

This linkage type is maintained for
compatibility with COBOL/370 and
VS COBOL II. With newer COBOL
products, you can call COBOL
functions with the REFERENCE
and OS linkage types, which allow
integer return types. If the COBOL
routine receives parameters by
value (a pragmaless call), you can
use the C linkage type.

FORTRAN FORTRAN Forces the compiler to read and extern "FORTRAN" { ... }
write parameter lists using
FORTRAN linkage conventions.

C C Use in C++ to force the compiler to |extern "C" { ... }
read and write parameter lists using
C linkage conventions. C code and
the Data Window Services (DWS)
product both use C linkage.

With XPLINK, C and C++ use the
same linkage conventions. When
this linkage is specified in C++
code, the specified function is
known by its function name alone
rather than its name and argument
types. It cannot be overloaded.

Using Linkage Specifications in C++

In the following example, a function is prototyped in a piece of C++ code and uses,
by default, C++ linkage.

void CXX_FUNC (int); // C++ linkage

Note that C++ is case-sensitive, but PL/I, COBOL, assembler, and FORTRAN are
not. In these languages, external names are mapped to uppercase. To ensure that
external names match across interlanguage calls, code the names in uppercase in
the C++ program, supply an appropriate #pragma map specification, or use the
NOLONGNAME compiler option. This will truncate and uppercase names for functions
without C++ linkage.

To reference functions defined in other languages, you should use a linkage
specification with a literal string that is one of the following:

e C

» COBOL

* FORTRAN

* 0S

* 0S_DOWNSTACK

* 0S_NOSTACK

248 z/0S V1R4.0 C/C++ Programming Guide

- 0S_UPSTACK
« 0531_NOSTACK
. PLI

- REFERENCE

For example:

extern "0S" {
int ASMFUNC1(void);
int ASMFUNC2(int);
}

This specification declares the two functions ASMFUNC1 and ASMFUNC2 to have
operating system linkage. The function names are case-sensitive and must match
the definition exactly. You should also limit identifiers to 8 or fewer characters.

Use the reference type parameter (type&) in C++ prototypes if the called language
does not support pass-by-value parameters or if the called routine expects a
parameter to be passed by reference.

» 2/0OS C/C++ supports the Tong Tong type for FORTRAN linkage functions.
e AC or C++ signed long lTong int maps to a FORTRAN INTEGER.

e A C or C++ unsigned Tong Tong int maps to FORTRAN LOGIC.

» 2/0OS C/C++ does not support other non-C or C++ linkage functions.

Note: To have your program be callable by any of these other languages, include
an extern declaration for the function that the other language will call.

Chapter 19. Using Linkage Specifications in C or C++ 249

250 z/0S V1R4.0 C/C++ Programming Guide

Chapter 20. Combining C or C++ and Assembler

This chapter describes how to communicate between z/OS C/C++ and assembler
programs.

To write assembler code that can be called from z/OS C/C++, use the prolog and
epilog macros described in this chapter. For more information on how the z/OS
Language Environment works with assembler, see [z/OS Language Environment
[Writing Interlanguage Communication Applications,.

Access to z/OS UNIX is intended to be through the z/OS UNIX C/C++ extensions
only. The z/OS C/C++ compiler does not support the direct use of z/OS UNIX
callable services such as the assembler interfaces. You should not directly use
z/0OS UNIX callable services from your z/OS C/C++ application programs, because
problems can occur with the processing of the following:

» Signals

 Library transfers

e fork()

« exec()

* Threads

There are comparable z/OS C/C++ functions for most z/OS UNIX callable services,

and you should use those instead. Do not call assembler programs that access
z/OS UNIX callable services.

Establishing the z/OS C/C++ Environment

Before you can call a C or C++ function from assembler, you must establish a
suitable environment. To establish the environment, do one of the following:

+ Call the assembler program from within the C or C++ program (from main() or
another function). Since the assembler call is from within the C or C++ program,
the environment has already been established. It is often simplest to call the
assembler using OS linkage conventions.

Note: In this chapter, "OS linkages” and "OS linkage” conventions refer to the
following group of specifications: OS, OS_UPSTACK, OS_DOWNSTACK,
OS_NOSTACK, 0S31_NOSTACK and REFERENCE. "OS" is used in
syntax diagrams and examples as a representative specification. These
specifications use different stack conventions. For more information on
these specifications, see [Chapter 19, “Using Linkage Specifications in C o
[C++” on page 245|

» Use preinitialization to set up the z/OS Language Environment. See

[the C Environment Using Preinitialization” on page 262| for information.

Once you are in the assembler program you can call other C or C++ programs from
the assembler.

Note: Under XPLINK, calling other C or C++ programs from the assembler is not
supported.

Specifying Linkage for C or C++ to Assembler

The process for specifying the linkage to assembler differs for C and for C++. In C,
a #pragma linkage directive is used, while in C++ a linkage specifier is used.

© Copyright IBM Corp. 1996, 2002 251

* Under C, a #pragma linkage directive enables the compiler to generate and
accept parameter lists, using a linkage convention known as OS linkage.
Although functionally different, both calling an assembler routine and being called
by one are handled by the same #pragma. Its format is:

#pragma linkage (identifier, 0S)
where identifier is the name of the assembler function to be called from C or the

C function to be called from assembler. The #pragma 1inkage directive must
occur before the call to the entry point.

* Under C++, a linkage specifier enables the compiler to generate and accept
parameter lists, using a linkage convention known as OS linkage. Although
functionally different, both calling an assembler routine and being called by one
are handled by the same linkage specifier. The format of the linkage specifier is:
extern "0S" {

fnl desc;
th desc;

}
where fnx desc is the name of the OS entry point.

For C and C++: In XPLINK compiled code, the 0S_UPSTACK and 0S_NOSTACK (or
0S31_NOSTACK) linkages are used for declaring the linkage
convention of a routine that the C or C++ code is calling. You
cannot define C or C++ entry points as having 0S_NOSTACK
linkage. You define C or C++ entry points with 0S_UPSTACK
linkage by compiling the translation units containing them with
the NOXPLINK compiler option. In NOXPLINK compiled code,
the 0S_DOWNSTACK linkage is used to declare the linkage
convention for a routine that the C or C++ code is calling. You
define C or C++ entry points with 0S_DOWNSTACK linkage by
compiling the translation units containing them with the XPLINK
compiler option.

Just as C (or C++) linkage programs can call OS linkage programs, OS linkage
programs can call C linkage programs. An example of C linkage calling OS linkage,
which in turn calls C linkage (in this case, one of the z/OS C/C++ library functions)
is shown in|Figure 38 on page 258

In general, any type that can be passed between C and assembler can also be
passed between C++ and assembler. However, if a C++ class that uses features
not available to assembler (such as virtual functions, virtual base classes, private
and protected data, or static data members) is passed to assembler, the results will
be undefined.

Note: In C++, a structure is just a class declared with the keyword struct. Its
members and base classes are public by default. A union is a class declared
with the keyword union its members are public by default, and it holds only
one member at a time.

Parameter List for OS Linkage

A parameter list for OS linkage is a list of pointers. The most significant bit of the
last parameter in the parameter list is turned on by the compiler when the list is
created.

252 z/0S V1R4.0 C/C++ Programming Guide

If a parameter is an address-type parameter, the address itself is directly stored into
the parameter list. Otherwise, a copy is created for a value parameter and the
address of this copy is stored into the parameter list.

The type of a parameter is specified by the prototype of a function. In the absence
of a prototype, the creation of a parameter list is determined by the types of the
actual parameters passed to the function. shows an example of the
parameter list for OS linkage.

In the list, the first and third parameters are value parameters, and the second is an
address parameter.

R1

l

ptr of P1 copy ptr of P3 copy

copy of P1 I copy of P3 I

Figure 37. Example of Parameter Lists For OS Linkages

XPLINK Assembler

The XPLINK support provided by the assembler macros EDCXPRLG and
EDCXEPLG allows XPLINK C and C++ code to call routines that can be coded for
performance, or to perform a function that can not be readily done in C/C++. There
is no CALL macro support for calling other XPLINK routines from an XPLINK
assembler routine. Most XPLINK assembler routines will be leaf routines that
perform their function and return. (Leaf routines do not call any other functions.)
The following z/OS Language Environment books provide more information on
XPLINK that may be useful to assembler programmers:

+ [2/0S Language Environment Programming Guide|— provides an overview of
XPLINK and what it means to the application programmer.

+ |z/0S Language Environment Writing Interlanguage Communication Applicationd
— provides information on how assembler routines interact with routines coded in
other high level languages.

+ [2/0S Language Environment Debugging Guide — provides details on XPLINK,
including information on building parameter lists for calling other XPLINK
routines.

Coding XPLINK assembler routines differs from traditional non-XPLINK assembler

in the following ways:

* You use the EDCXPRLG and EDCXEPLG macros for entry/exit code. These are
documented in the section ['Using Standard Macros” on page 255,

* You use the following XPLINK register conventions within the XPLINK assembler
routine:

— XPLINK parameter passing conventions: Registers 1, 2, and 3 are used to
pass up to the first 3 integral values, and floating point registers will be used
to pass floating point parameters.

Chapter 20. Combining C or C++ and Assembler 253

— XPLINK DSA format: Note that the stack register (reg 4) is "biased”. This
means that you must add 2K (2048) to the stack register to get the actual
start of the current routine’s DSA. The z/OS Language Environment mapping
macro CEEDSA contains a mapping of the XPLINK DSA, including the 2K
bias (CEEDSAHP_BIAS). The caller’s registers are saved in the DSA obtained
by the callee. The callee’s parameters (other than those passed in registers, if
any), are built in the argument list in the callers DSA, and addressed there
directly by the callee. There is no indirect access to the parameters via
Register 1 as in OS linkage.

* While EDCXPRLG and EDCXEPLG allow Language Environment conforming
XPLINK assembler routines to be written, another alternative for XPLINK C/C++
callers is to designate the linkage as OS31 NOSTACK. For more information on
0S31 NOSTACK see |Chapter 19, “Using Linkage Specifications in C or C++” on|
When the C/C++ caller designates the assembler routine as
0S31 _NOSTACK linkage, the assembler code can be written without using
EDCXPRLG or EDCXEPLG (or any other Language Environment prolog or
epilog macros). This can only be done when the assembler code has no dynamic
stack storage requirements. With OS31_NOSTACK, standard OS linkage rules
apply:

— Register 1 will be used to point to the parameter list.

— Register 13 will point to an 18 word savearea, provided to the callee for
saving and restoring registers.

— Register 14 will be the return address for branching back to the caller.
— Register 15 will contain the address of the callee.

shows the layout of the XPLINK interface.

Table 32. Comparison of non-XPLINK and XPLINK Register Conventions

Non-XPLINK XPLINK
Stack Pointer Reg 13 Reg 4 (biased)
Return Address Reg 14 Reg 7
Entry point on entry Reg 15 Reg 6 (not guaranteed; a routine may be

called via branch relative)

Environment Reg 0 (writeable static) Reg 5
CAA Address Reg 12 Reg 12
Input Parameter List |address in R1 Located at fixed offset 64 ('40’X) into the

caller's stack frame (remember the 2K bias
on R4). Additionally, any of General Registers
1, 2, and 3, and Floating Point Registers 0, 2,
4, and 6, may be used to pass parameters
instead of the caller’s stack frame.

Return code Reg 15 R3 (extended return value in R1,R2)
Start address of Caller's NAB value Caller's Reg 4 - DSA size

callee’s stack frame

End address of Caller's NAB value + DSA size Caller's Reg 4

callee’s stack frame

254 7z/0S V1R4.0 C/C++ Programming Guide

Table 32. Comparison of non-XPLINK and XPLINK Register Conventions (continued)

Non-XPLINK XPLINK
Where caller’s R0O-R12 saved in caller's stack frame RO not saved, not preserved
registers are saved R13 saved in callee’s stack frame R1-R3 not saved, not preserved
R14-R15 saved in caller's stack frame R4 not saved, recalculated

(or saved, restored)

R5 not saved, not preserved

R6 saved in callee’s stack frame,
not restored

R7-R15 saved in callee’s stack frame
(R7 is the return register and is

not guaranteed to be restored)

See [z/0S Language Environment Vendor Interfaced for additional information about
register usage and conventions, especially for details about passing parameters
with XPLINK. For information on the registers which are saved in the register
savearea of the XPLINK stack frame see|z/0OS Language Environment]
[Programming Guide,

Using Standard Macros

To communicate properly, assembler routines must preserve the use of certain
registers and particular storage areas, in a way that is consistent with code from the
C or C++ compiler. z/OS C/C++ provides macros for use with assembler routines.
These macros are in CEE.SCEEMAC. The High-Level Assembler for MVS & VM & VSE
must be used when assembling with these macros. The macros are:

EDCPRLG Generates the prolog for non-XPLINK assembler code
EDCEPIL Generates the epilog for non-XPLINK assembler code
EDCXPRLG Generates the prolog for XPLINK assembler code
EDCXEPLG Generates the epilog for XPLINK assembler code

EDCDSAD Accesses automatic memory in the non-XPLINK stack. For the
XPLINK stack, use the CEEDSA macro, described in |z/0S Language|
[Environment Programming Guidel

EDCPROL, the old version of EDCPRLG, is shipped for compatibility with Version 1 of
C/370 and is unchanged. However, you should use EDCPRLG if you can.

The advantage of writing assembler code using these macros is that the assembler
routine will then participate fully in the z/OS C/C++ environment, enabling the
assembler routine to call z/OS C/C++ functions. The macros also manage
automatic storage, and make the assembler code easier to debug because the
z/OS Language Environment control blocks for the assembler function will be
displayed in a formatted traceback or dump. See|Debug Tool User’s Guide and
for further information on z/OS Language Environment tracebacks and
dumps.

Note: Only non-XPLINK Assembler code can call z/OS C/C++ functions.

Non-XPLINK Assembler Prolog

Use the EDCPRLG macro to generate non-XPLINK assembler prolog code at the start
of assembler routines.

Chapter 20. Combining C or C++ and Assembler 255

v
A

BASEREG=register—
DSALEN=dlen

name |EUSRDSAL=u1 en

name Is inserted in the prolog. It is used in the processing of certain
exception conditions and is useful in debugging and in reading
memory dumps. If name is absent, the name of the current CSECT
is used.

USRDSAL=ulen Is used only when automatic storage (in bytes) is needed. To
address this storage, see the EDCDSAD macro description. The ulen
value is the requested length of the user space in the DSA.

BASEREG=register
Designates the required base register. The macro generates code
needed for setting the value of the register and for establishing
addressability. The default is Register 3. If register equals NONE, no
code is generated for establishing addressability.

DSALEN=dlen Is the total requested length of the DSA. The default is 120. If fewer
than 120 bytes are requested, 120 bytes are allocated. If both dlen
and ulen are specified, then the greater of dlen or ulen+120 is
allocated. If DSALEN=NONE is specified, no code is generated for DSA
storage allocation, and R13 will still point to the caller's DSA.
Therefore, you should not use the EDCEPIL macro to terminate the
assembler routine. Instead, you have to restore the registers
yourself from the current DSA. To do this, you can use an
assembler instruction such as

LM 14,12,12(R13)
BR 14

You should not use EDCDSAD to access automatic memory if you
have specified DSALEN=NONE, since DSECT is addressable using R13.

Non-XPLINK Assembler Epilog

Use the EDCEPIL macro to generate non-XPLINK assembler epilog code at the end
of assembler routines. Do not use this macro in conjunction with an EDCPRLG macro
that specifies DSALEN=NONE.

>>—|_—_|_EDCEPI L >«
name

name Is the optional name operand, which then becomes the label on the
exit from this code. The name does not have to match the prolog.

XPLINK Assembler Prolog

256

Use the EDCXPRLG macro to generate XPLINK assembler prolog code at the start
of assembler routines.

z/0OS V1R4.0 C/C++ Programming Guide

A\
A

»—L——I—EDCXPRLG—DSASIZE=1 en
name PARMWRDS=numwrds—

ENTNAME=epname—
BASEREG=register—
PSECT=pname
GT2KSTK=YES

name If ENTNAME=epname is specified then name is used as the name of
the XPLINK entry marker, else name is the name of the entry point
and name#C is used as the name of the XPLINK entry marker.

DSASIZE=len Specifies automatic storage requirements (in bytes). Specify a len
of 0 if the XPLINK assembler routine is a leaf routine with no
automatic storage requirements. XPLINK leaf routines must
preserve registers 4,6, and 7 throughout their execution. This is a
required parameter, the minimum size of an XPLINK DSA (80
bytes) or more must be specified if DSASIZE is not zero

PARMWRDS =numwrds
Specifies the number of 4-byte words in the input parameter list. If
this is omitted, then the routine will be treated as vararg, and it will
adversely affect performance if the call to this routine results in a
stack overflow.

ENTNAME=epname
Is the optional name of the XPLINK assembler routine entry point.

BASEREG=register
Designates the required base register. The macro generates code
needed for setting the value of the register and for establishing
addressability. The default is register 8. If register equals NONE, no
code is generated for establishing addressability.

PSECT=pname Is the name to be assigned to the XPLINK assembler routine
PSECT area. For more information about the PSECT area see
[HLASM Language Reference

GT2KSTK=YES If GT2KSTK=YES is specified, then an unconditional "large stack
frame” prolog will be used that checks for the XPLINK stack floor in
the CAA, instead of depending on the write-protected guard page.
This parameter must be specified if the /en on the DSASIZE
parameter is greater than 2048 (ie. 2K).

XPLINK Assembler Epilog

Use the EDCXEPLG macro to generate XPLINK assembler epilog code at the end
of assembler routines. This macro must always be used with a matching
EDCXPRLG macro, even if the EDCXPRLG macro specified DSASIZE=0.

»»—L——I—EDCXEPLG =
name

name Is the optional name operand, which then becomes the label on the
exit from this code. The name does not have to match the prolog.

Accessing Automatic Memory in the Non-XPLINK Stack

Use the EDCDSAD macro to access automatic memory in the non-XPLINK stack..
Automatic memory is reserved using the USRDSAL, or the DSALEN operand of the

Chapter 20. Combining C or C++ and Assembler 257

EDCPRLG macro. The length of the allocated area is derived from the ulen and/or
dlen values specified on the EDCPRLG macro. EDCDSAD generates a DSECT, which
reserves space for the stack frame needed for the C or C++ environment.

>>—Lﬁ—l':DCDSAD > <
name

name Is the optional name operand, which then becomes the name of the
generated DSECT.

The DSECT is addressable using Register 13. Register 13 is initialized by the
prolog code. If you have specified DSALEN=NONE with EDCPRLG you should not use
EDCDSAD.

The Language Environment mapping macro CEEDSA can be used to map a DSA,
either non-XPLINK or XPLINK or both.

»—L——I—CEEDSA—SECTYPE=XPLINK <
name

There are other SECTYPE operands. SECTYPE=XPLINK will only produce an XPLINK
DSA mapping. For more information on CEEDSA see |z/OS Language Environmen]

|Programming Guide,

Calling C Code from Assemble r — C Example

CCNGCA4

The following C example shows how to call C code from assembler. This example
is non-XPLINK only. XPLINK assembler cannot call C functions. There are three
parts to this example. The first part, shown in is a trivial C routine that
establishes the C run-time environment.

/* this example demonstrates C/Assembler ILC */
/* part 1 of 3 (other files are CCNGCA2, CCNGCA5) =/

#pragma linkage(CALLPRTF, 0S)

int main(void) {
CALLPRTF();

return(0);

}

Figure 38. Establishing the C Run-Time Environment

The second part of the example, shown in [Figure 39 on page 259} is the assembler
routine. It calls an intermediate C function that invokes a run-time library function.

258 z/0S V1R4.0 C/C++ Programming Guide

CCNGCAZ2

CCNGCA5

* this example demonstrates ILC with Assembler-part 2 of 3
CALLPRTF CSECT

EDCPRLG
LA 1,ADDR_BLK parameter address block in rl
L 15,=V(@PRINTF4) address of routine
BALR 14,15 call it
EDCEPIL

ADDR_BLK DC ~ A(FMTSTR) parameter address block with..
DC A(X'80000000'+INTVAL) ..high bit on the last address

FMTSTR DC C'Sample formatting string'
DC C' which includes an int -- %d --'
DC AL1(NEWLINE,NEWLINE)
DC C'and two newline characters'
DC AL1(NULL)

*

INTVAL DC F'222' The integer value displayed
*
NULL EQU X'00' C NULL character
NEWLINE EQU X'15' C \n character
END

Figure 39. Calling an Intermediate C Function from Assembler OS Linkage

Finally, the intermediate C routine calls a run-time library function as shown in
Figure 40

/* this example demonstrates C/Assembler ILC */
/* part 3 of 3 (other files are CCNGCA2, CCNGCA4) x/
/***\
This routine is an interface between assembler code =*
and the C/C++ Tibrary function printf(). *
0S linkage will not tolerate C-style variable length *
parameter lists, so this routine is specific to a *
*
*
/

*

* ok X X

formatting string and a single 4-byte substitution
* parameter. It's specified as an int here.
/***

#pragma linkage(_printf4,0S) /+function will be called from assembler*/
#include <stdio.h>

#pragma map(_printf4,"@PRINTF4")

int _printf4(char *str,int i) {

return printf(str,i); /* call run-time library function /

Figure 40. Intermediate C Routine Calling a Run-Time Library Function

Chapter 20. Combining C or C++ and Assembler

259

Calling Run-Time Library Routines from Assembler — C++ Example

The following C++ example shows how to call library routines from assembler.
There are three parts to this example. The first part shown in[Figure 41} is a trivial
C/C++ routine that establishes the C/C++ run-time environment. It uses extern 0S to
indicate the OS linkage and calls the assembler routine.

CCNGCA1l

// this example demonstrates C++/Assembler ILC
// part 1 of 3 (other files are CCNGCA2, CCNGCA3)

extern "0S" int CALLPRTF(void);

int main(void) {
CALLPRTF();
}

Figure 41. Establishing the C/C++ Run-Time Environment

The second part of this example, shown in |[Figure 42|is the assembler routine. It
calls an intermediate C/C++ routine that invokes a run-time library function.

CCNGCAZ2

* this example demonstrates ILC with Assembler (part 2 of 3)
CALLPRTF CSECT

EDCPRLG
LA 1,ADDR_BLK parameter address block in rl
L 15,=V(GPRINTF4) address of routine
BALR 14,15 call it
EDCEPIL

ADDR_BLK DC A(FMTSTR) parameter address block with..
DC A(X'80000000'+INTVAL) ..high bit on the last address

FMTSTR DC C'Sample formatting string'
DC C' which includes an int -- %d --'
DC AL1(NEWLINE,NEWLINE)
DC C'and two newline characters'
DC AL1(NULL)

*

INTVAL DC F'222' The integer value displayed
*
NULL EQU X'00' C NULL character
NEWLINE EQU X'15' C \n character
END

Figure 42. Calling an Intermediate C/C++ Function from Assembler using OS Linkage

The third part of the example, shown in|Figure 43 on page 26]j, is an intermediate
C/C++ routine that calls a run-time library function.

260 z/OS V1R4.0 C/C++ Programming Guide

CCNGCA3

// this example demonstrates C/C++/Assembler ILC
// part 3 of 3 (other files are CCNGCA1l, CCNGCA2)

// This routine is an interface between assembler code

// and the Run-time library function printf(). 0S Tinkage
// will not tolerate C-style variable length parameter lists,
// so this routine is specific to a formatting string

// and a single 4-byte substitution parameter. It's

// specified as an int here.

#include <stdio.h>

#pragma map(_printf4,"@PRINTF4")

extern "0S" int _printfd(char *str,int i) {

//function will be called from assembler
return printf(str,i); // call Run-time library function

Figure 43. Intermediate C/C++ Routine Calling a Run-Time Library Function

Register Content at Entry to a Non-XPLINK ASM Routine Using OS

linkage

When control is passed to an assembler routine that uses OS linkage, the contents
of the registers are as follows:

Register Contents
RO Undefined.
R1 Points to the parameter list. The parameter list consists of a vector

of addresses, each of which points to an actual parameter. The
address of the last parameter has its high-order bit set on, to
indicate the end of the list.

R2 to R11 Undefined.

R12 Points to an internal control block. It can be used by the called
routine but must be restored to its entry value if it calls a routine
that expects z/OS Language Environment.

R13 Points to the caller's DSA. Part of the DSA is used by EDCPRLG and
EDCEPIL to save and restore registers. EDCPRLG can change R13 so
that it points to the called routine’s DSA from the caller's DSA.

R14 The return address.
R15 The address of the entry point being called.

Register Content at Exit from a Non-XPLINK ASM Routine to z/OS

C/IC++

Registers have the following content when control returns to the point of call:

Register Contents
RO Undefined.
R1 Undefined.

Chapter 20. Combining C or C++ and Assembler 261

R2 to R13 Must be restored to entry values. This is done by EDCEPIL and

EDCPRLG.

R14 Return address.

R15 Return value for integer types (Tong int, short int, char) and
pointer types. Otherwise set to 0.

FPO Returns value for float or double parameters.

FPO Returns value if Tong double is passed.

FP2 Returns value if Tong double is passed.

Note: When in FLOAT(AFP) mode the callee must save and restore FPR’s 8 through
15.

All other floating point registers are undefined.

Retaining the C Environment Using Preinitialization

262

If an assembler routine called the same C or C++ program repeatedly, the creation
and termination of the C/C++ environment for each call would be inefficient. The
solution is to create the C/C++ environment only once by preinitializing the C or
C++ program. The Language Environment preinitialization services are the strategic
form of preinitialization. For information on the Language Environment
preinitialization services, see [z/0S Language Environment Programming Guide,
This section discusses the z/OS C preinitialization interface only for reasons of
compatibility.

Notes:
1. This information pertains only to users of C programs.

2. XPLINK applications are not supported under Preinitialized Compatibility
Interface (PICI) environments.

Under the z/OS Language Environment, you should use the callable service
CEEPIPI instead to preinitialize the environment for your applications. For more
information about this service, see|z/OS Language Environment Writing|
[Interlanguage Communication Applications,

If you are calling a C program multiple times from an assembler program, you can
establish the C environment and then repeatedly invoke the C program using the
already established C environment. You incur the overhead of initializing and
terminating the C environment only once instead of every time you invoke the C
program.

Because C detects programs that can be preinitialized dynamically during
initialization, you do not have to recompile the program or link-edit it again.

To maintain the C environment, you start the program with the C entry CEESTART,
and pass a special Extended Parameter List that indicates that the program is to be
preinitialized.

When you use preinitialization, you are initializing the library yourself with the INIT
call and terminating it yourself with the TERM call. In a non-preinitialized program, the
library closes any files you left open and releases storage. It does not do this in a
preinitialized program. Therefore, for every invocation of your preinitialized program,
you must release all allocated resources as follows:

* Close all files that were opened

z/0OS V1R4.0 C/C++ Programming Guide

* Free all allocated storage
* Release all fetched modules

If you do not release all allocated resources, you will waste memory.

Setting Up the Interface for Preinitializable Programs
The interface for preinitializing programs is shown in .

Chapter 20. Combining C or C++ and Assembler 263

Extended plist
address

Request

X'80000000' +
R1—>|
address

Length of EPL

A

Token 1
Token 2
address
address X80000000" + LL | Runtime Options
address
0
address count of fields

defined

user-defined
word

request modifier

address of work
area for DSAS etc.
address of
load routine

address of
delete routine
address of get-
storage routine
address of free-
storage routine

address of
exception router

address of
attention router

address of
message router

—> argc

pointer to pointer to argv [0]

argv vector argv [0] (program name)
pointer to
argv [1] argv [1]
pointer to .

argv [argc-1] argv [arge-1]
0

Figure 44. Interface for Preinitializable Programs

The LL field is a halfword containing the value of 16. The halfword that follows must
contain O (zero).

The Request field is 8 characters that can contain:

"INIT '
Initializes the C environment and, returns two tokens that represent the

264 z/0S V1R4.0 C/C++ Programming Guide

environment, but does not run the program. Token 1 and token 2 must both
have the value of zero on an INIT call; otherwise, preinitialization fails.

You can initialize only one C environment at a time. However, you can make
the sequence of calls to INIT, CALL, and TERM more than once.

"CALL !
Runs the C program using the environment established by the INIT request,
and exits from the environment when the program completes. The CALL request
uses the two tokens that were returned by the INIT request so that C can
recognize the proper environment.

You can also initialize and call a C program by passing the CALL parameter with
two zero tokens. The C program processes this request as an INIT followed by
a CALL. You can still call the program repeatedly, but you should pass the two
zero tokens only on the first call. Once the C environment is initialized, the
values of the tokens are changed, and must not be modified on any subsequent
calls.

Calling a C program other than the one used to initialize the C environment is
not supported, especially if write-able static is needed by the program being
called. This is because write-able static was allocated and initialized based
upon the program used to initialize the C environment.

'TERM '
Terminates the C environment but does not run the program.

The program used to terminate the C environment should be the same as the
program used to initialize the C environment. Usage of a different program to
terminate the C environment is unsupported.

"EXECUTE '
Performs INIT, CALL, and TERM in succession.

No other value is valid.

The Extended PLIST address field is a pointer to the Extended Parameter List
(EPL). The EPL is a vector of fullwords that consists of:

Length of Extended Parameter List
The length includes the 4 bytes for the length field. Valid decimal values are
20, 28, and 32.

First and Second C Environment Tokens
These tokens are automatically returned during initialization; or, you can
use zeros for them when requesting a preinitialized CALL, and the effect is
that both an INIT and a CALL are performed.

Pointer to Your Program Parameters
The layout of the parameters is shown in|Figure 44 on page 264|, Interface
for Preinitialization Programs. If no parameter is specified, use a fullword of
zeros.

Pointer to Your Run-Time Options
To point to the character string of run-time options, refer to [Figure 44 The
character string consists of a halfword LL field that contains the length of
the list of run-time options, followed by the actual list of run-time options.

Pointer to an Alternative Main
This field is not supported in C. However, if you want to use the seventh or
eighth fields, use a full word of zeros as a place holder.

Chapter 20. Combining C or C++ and Assembler 265

266

Pointer to the Service Vector
If you want certain services (such as load and delete) to be carried out by
other code supplied by you (instead of, for example, by the LOAD and DELETE

macros), use this field to point to the service vector. See [Figure 44 on
page 264

Request Modifier Code
When your request is INIT, CALL, or EXECUTE, you can specify any of the
following request modifier codes:

0
1

Does not change the request.

Loads all common library modules as part of the preinitialized
environment.

Loads all common and C library modules as part of the
preinitialized environment.

Reinitializes the environment. If the environment is already
established, frees all HEAP storage and any ISA overflow segments.

Do not use this code if subsequent calls depend on storage that is
still being allocated by previous calls.

Allows you to create more than one environment. The new
environment is chained with existing request modifier 4
environments or a batch environment, where possible, so that C
memory file sharing among the environments is possible. Details on
chaining and C memory file sharing support are covered in|“MuItipIe|

Preinitialization Compatibility Interface C Environments” on|

page 274[

The user-supplied service routine vector is not supported when you
use request modifier value 4 in the extended parameter list. Do not
code this if you are using the service routine vector. If you do, an
abnormal end will occur.

Allows you to create more than one environment. The new
environment is separated from other environments which may
already exist. This environment does not support sharing of C
memory files with other preinitialization compatibility interface
environments.

When your request is TERM, you can specify either of the following request
modifier codes:

0
1

Does not change the request.

Forces termination. Ends the C environment without any of the
usual checks.

Code this field only when you cannot request normal termination.
You must ensure that the environment you are forcing to end is not
in use.

The length you specify in the first field of the extended parameter list makes it
known whether you have specified a request modifier code or not.

Run-Time options are applied only at initialization and remain until termination. You
must code PLIST(MVS) in the called C program in order for the preinitialization to

work.

z/0OS V1R4.0 C/C++ Programming Guide

The options ARGPARSE | NOARGPARSE have no effect on preinitialized programs. The
assembler program has to provide parameters in the form expected by the C
program. Thus, if the C program is coded for the NOARGPARSE option, the argc
should be set to 2, and parameters passed as a single string.

Preinitializin g a C Program

A preinitialized C program is displayed in |Figure 45 on page 268| which shows how
to:

» Establish the C environment using an INIT request

* Pass run-time parameters to the C initialization routine

* Set up a parameter to the C program

* Repeatedly call a C program using the CALL request

* Communicate from the C program to the driving program using a return code
* End the C program using the TERM request

The example C program is very simple. The parameters it expects are the file name
in argv[1] and the return code in argv[2]. The C program printf()s the value of
the return code, writes a record to the file name, and decrements the value in return
code.

The assembler program that drives the C program establishes the C environment
and repeatedly invokes the C program, initially passing a value of 5 in the return
code. When the return code set by the C program is zero, the assembler program
terminates the C environment and exits.

The program in [Figure 45 on page 268|does not include the logic that would verify
the correctness of any of the invocations. Such logic is imperative for proper
operations.

Chapter 20. Combining C or C++ and Assembler 267

268

CCNGCAG6

CCNGCAb

*k*k
k
*k*k
*kk
k
*kk

CCNGCAb
CCNGCAb
CCNGCA6

k
k
k
*kk
k
k

DO_CALL

TITLE 'TESTING PREINITIALIZED C PROGRAMS'

this example shows how to preinitialize a C program

part 1 of 3 (other files are CCNGCA7 and CCNGCA8)
Function: Demonstrate the use of Preinitialized C programs
Requests used: INIT, CALL, TERM

Parameters to C program: FILE_NAME, RUN_INDEX

Return from C Program: RUN_INDEX

CSECT
RMODE ANY
AMODE ANY
EXTRN CEESTART C Program Entry
STM R14,R12,12(R13) Save registers
BALR R3,0 Set base register
USING *,R3 Establish addressability
ST R13,SVAR+4 Set back chain
LA R13,SVAR Set this module's save area

DS OH

MVC P_RQ,INIT Set INIT as the request
LA R1,PALIPT Load Parameter pointer
L R15,CEP Load C Entry Point

BALR R14,R15 Invoke C Program

The C environment has been established.

Parameters include RUN_INDEX which will be counted down

by the C program. When the RUN_INDEX is zero, termination
will be requested.

The following code will set up C program parameters and
CALL request, invoke the C program and test for termination.

LA R1,PGPAPT Pointer to C program parameters
ST R1,EP_PGPA ... to extended parameter Tist
DS OH

MVC P_RQ,CALL set up CALL request

LA R1,PALIPT set parameter pointer

L R15,CEP set entry point

BALR R14,R15 invoke C program

L RO,RUN_INDEX Test Return Code

LTR RO,RO

BNZ DO_CALL Repeat CALL

Figure 45. Preinitializing a C Program (CCNGCAG6) (Part 1 of 3)

z/0OS V1R4.0 C/C++ Programming Guide

*kk C requested termination.
*kk Set up TERM request and terminate the environment
KKK
DO_TERM DS OH

MVC P_RQ,TERM set up TERM request

SR R1,R1 mark no parameters

ST R1,EP_PGPA

LA R1,PALIPT set parameter pointer

L R15,CEP set entry point

BALR R14,R15 invoke termination
KK
*kk Return to system
KKK o e
XIT DS OH

L R13,4(13)
LM R14,R12,12(13)

BR R14
B g g g g g g g S g g g g g g g g g g g g S S SRS ——
*kk Constants and work areas
b g g g g g g g g g g g e g g gy S S ——

VARCON DS 0D
PALIPT DC A(X'80000000'+PALI) Address of Parameter list

CEP DC A(CEESTART) Entry point address
KKK o o o o o o o = -
PALI DS OF Parameter Tist
P_LG DC H'16' Length of the Tist
DC H'O' Must be zero
P_RQ DC cLg' ' Request - INIT,CALL,TERM,EXECUTE
P_EP_PT DC A(EPALI) Address of extended plist
B L L T T T L L T L
EPALI DS 0OF Extended Parameter Tist
DC A(EP_LG) Length of this Tlist
EP.TCA DC A(0) First token
EP_PRV DC A(0) Second token
EP_PGPA DC A(PGPAPT) Address of C program plist
EP_XOPT DC A(XOPTPT) Address of run-time options
EP LG EQU *-EPALI Length of this Tist
KKK o o - - - -
*Hx C program plist in argc, argv format
AR e e e e e e e e e e e e e e e, e e e e e e e e e e e e — e ————————————
PGPAPT DC F'3! Number of parameters (argc)
DC A(PGVTPT) parameter vector pter (argv)
PGVTPT DS 0A Parameter Vector
DC A (PGNM) Program name pointer (argvl)
DC A(FILE_NAME) File name pointer (argv2)
DC A(RUN_INDEX) Run index pointer (argv3)
DC XL4'00000000" NULL pointer

Figure 45. Preinitializing a C Program (CCNGCAG6) (Part 2 of 3)

Chapter 20. Combining C or C++ and Assembler

269

Kk Run-Time options

E L R T T T LT T L T T T
XOPTPT DC A(X'80000000'+XOPTLG) Run-Time options pter
XOPTLG DC AL2 (XOPTSQ) Run-Time option Tist length
XOPTS DC C'STACK(4K) RPTSTG(ON)' Run-Time options list
XOPTSQ EQU *-XOPTS Run-Time options length

KKK o e e e e e e e e e
PGNM DC C'CCNGCA7',X'00" C program name

FILE_NAME DC C'PREINIT.DATA',X'00' File name for C program
RUN_INDEX DC F'5',X'00" changed by C Program
B T g S g
*HE Request strings for preinitialization

KKK o o o o o o o o o = =

INIT DC CL8"INIT!
CALL DC CL8'CALL'
TERM DC CL8'TERM'
EXEC DC CL8'EXECUTE'

KKK o o o o o o o o e o e
*HE Assembler program's register save area
K o e o e i e
SVAR DC 18F'0'
LTORG
f gy gy g gy g g g g g g g g g g g g g g S S S
KK Register definitions
KKK o o o o o o o o o o o o o o
RO EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
END

Figure 45. Preinitializing a C Program (CCNGCAG6) (Part 3 of 3)

The program shown in [Figure 46 on page 271|shows how to use the preinitializable
program.

270 z/OS V1R4.0 C/C++ Programming Guide

CCNGCA7Y

/* this example shows how to use a preinitializable program =/
/* part 2 of 3 (other files are CCNGCA6 and CCNGCA8) =/

#pragma runopts(PLIST(MVS))

#include <stdio.h>
#include <stdlib.h>

#define MAX_MSG 50
#define MAX_FNAME 8

typedef int (*f_ptr)(int, char*);/* pointer to function returning intx/

int main(int argc, char x*argv)

{
FILE *fp; /* File to be written to */
int *ptr_run; /* Pointer to the "run index" x/
char *ffmsg; /* a pointer to the "fetched function msg"*/
char fname[MAX_FNAME+1]; /* name of the function to be fetched */
int fetch_rc; /* Return value of function invocation */
f ptr fetch_ptr; /* Function pointer to fetched function */

/* Get the pointer to the "run index" =*/
ptr_run = (int *)argv[2];

if ((fp = fopen(argv[1],"a")) == NULL)
{

printf("Cannot open file %s\n",argv[1]);
ptr_run = 0; / Set to zero so it won't be called again */
return(0); /* Return to Assembler program x/

}

/* Write the record to the file =/
fprintf(fp,"Run index was %d.\n",*ptr_run);

/* Allocate the message returned from the fetched function x/
if ((ffmsg=(char *)malloc(MAX_MSG + 1)) == NULL)
printf("ERROR -- malloc returned NULL\n");

/* fetch the function */
fetch_ptr = (f_ptr) fetch("MYFUNC");
if (fetch_ptr == NULL)
printf("ERROR - Fetch returned a null pointer\n");
/* execute the function */
fetch_rc = fetch_ptr(*ptr_run, ffmsg);

Figure 46. Using the Preinitializable Program (CCNGCA?7) (Part 1 of 2)

Chapter 20. Combining C or C++ and Assembler 271

/* Write the function msg to file */
fprintf(fp,"%s\n",ffmsg);

/% Tell the user the value of the "run index" =/
printf("Run index was %d.\n",*ptr_run);

/* Decrement the "run index" x/
(*ptr_run)--;

/* Remember to close all opened files */
fclose(fp);

/* Remember to free all allocated storage */
free(fname);

/* Remember to release all fetched modules */
release((void(*)())fetch ptr);

/* Return to Assembler program */
return(0);

Figure 46. Using the Preinitializable Program (CCNGCA?7) (Part 2 of 2)

CCNGCAS8

/* this example shows how to use a preinitializable program */
/* part 3 of 3 (other files are CCNGCA6 & CCNGCA7) x/

#include <string.h>
#pragma linkage(fetched, fetchable)

int fetched(int run_index, char *ffmsg) {
sprintf(ffmsg,"Welcome to myfunc: Run index was %d.",run_index);
return(0);

}

Figure 47. Using the Preinitializable Program (CCNGCAS8)

Return Codes
Preinitialized programs do not put their return codes in R15. If the address of the

return code is required, specify a parameter. [Figure 45 on page 268 shows how you
can use the RUN_INDEX parameter to evaluate the address of a return code.

User Exits in Preinitializable Programs
C invokes user exits when initialization and termination are actually performed. That

is, the initialization user exit is invoked during the INIT request or the CALL with the
zero token request. Similarly, the termination user exit is called only during the TERM
request.

Run-Time Options

If run-time options are specified in the assembler program, the C program must be
compiled with EXECOPS in effect. EXECOPS is the default.

' initializable Program
Figure 48 on page 273|shows sample JCL to run a preinitializable program in the

z/OS environment.

272 z/OS VIR4.0 C/C++ Programming Guide

//youridA JOB
/1%

// SET LIB='CEE'
// SET CMP='CBC'

/1%

//PROCLIB JCLLIB ORDER=(&CMP..SCCNPRC)

|| *===
Ty

/1* ASSEMBLE THE DRIVING ASSEMBLER PROGRAM
2y
//HLASM EXEC PGM=ASMA90,

// PARM="NODECK,0BJECT,LIST,ALIGN'

//SYSPRINT DD SYSOUT=+

//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR

//SYSUT1 DD UNIT=VIO,DISP=(NEW,DELETE),SPACE=(32000, (30,30))
//SYSUT2 DD UNIT=VIO,DISP=(NEW,DELETE),SPACE=(32000, (30,30))
//SYSUT3 DD UNIT=VIO,DISP=(NEW,DELETE),SPACE=(32000, (30,30))
//SYSPUNCH DD DUMMY

//SYSLIN DD DSN=&&0BJECT (ASSEM),SPACE=(80, (400,400,5)),

// DISP=(,PASS),UNIT=VIO,DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSIN DD DSN=yourid.CCNGCA6.ASM,DISP=SHR

//*==s===============
2y

/1* COMPILE THE MAIN C PROGRAM
7y

//COMP EXEC EDCC,INFILE='yourid.CCNGCA7.C',

// OUTFILE="'&&0BJECT (CMAIN),DISP=(0LD,PASS)"',

// CPARM="NOOPT,NOSEQ,NOMAR",

// LIBPRFX=&LIB.,LNGPRFX=&CMP.
//*:==
J e m e e e e e e e

/1* COMPILE AND LINK THE FETCHED C PROGRAM

I L S S S S U S IS Sy

//CMPLK EXEC EDCCL,INFILE="yourid.CCNGCA8.C',

// CPARM="NOOPT,NOSEQ,NOMAR",

// LIBPRFX=&LIB.,LNGPRFX=&CMP.

//LKED.SYSLMOD DD DSN=&&LOAD(MYFUNC),DISP=(,PASS),

// UNIT=VIO,SPACE=(TRK, (1,1,5))

Figure 48. JCL for Running a Preinitializable C Program (Part 1 of 2)

Chapter 20. Combining C or C++ and Assembler 273

//LKED EXEC PGM=IEWL,PARM='MAP,XREF,LIST',
// COND=((4,LT,HLASM), (4,LT,COMP.COMPILE), (4,LT,CMPLK.LKED))
//OBJECT DD DSN=&&OBJECT,DISP=(0LD,PASS)
//SYSLIN DD =
INCLUDE OBJECT (ASSEM)
INCLUDE OBJECT (CMAIN)
ENTRY CCNGCA6
/*
//SYSLIB DD DISP=SHR,DSN=&LIB..SCEELKED
//SYSPRINT DD SYSOUT=x
//SYSUT1 DD DSN=&&SYSUT1,UNIT=VIO,SPACE=(CYL,(1,1))
//SYSLMOD DD DSN=&&LOAD(PREINIT),DISP=(0OLD,PASS)

/[*===================s====s======s====s=s====s=s==s=ss==s=ss=s===s====
27y

//* RUN

[Hmm e m e e e e e

//G0 EXEC PGM=x.LKED.SYSLMOD,

// COND=(4,LT,LKED)

//STEPLIB DD DISP=0LD,DSN=&&LOAD

// DD DISP=SHR,DSN=&LIB..SCEERUN

//STDIN DD SYSOUT=+
//STDOUT DD SYSOUT=+
//STDERR DD SYSOUT=+
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=+

Figure 48. JCL for Running a Preinitializable C Program (Part 2 of 2)

Multiple Preinitialization Compatibility Interface C Environments

274

To establish multiple Preinitialized Compatibility Interface (PICI) environments, you
must specify either request modifier 4 or request modifier 5 in the extended
parameter list (EPL) at environment initialization.

Request Modifier 4 Environment Characteristics

Use request modifier 4 to establish an environment which is tolerant of an existing
environment. When a request modifier 4 environment is dormant, it is immune to
creation or termination of other environments.

Environments created using request modifier 4 normally intend to share C memory
files, but it is not required for the application to take advantage of this support. A
new environment of this type is chained to the currently active environment that
supports chaining, or it will set up a dummy environment which supports chaining.
This allows for C memory files to be shared.

The sharing of C memory files across request modifier 4 environments is only
supported within the boundary of the application. There are really only two types of
applications where request modifier 4 environments are involved. The first type is a
set of pure request modifier 4 environments; there are no batch environments. The
second type allows a single batch environment. In the second type, the batch
environment must be the first initialized and the last terminated.

If starting with non z/OS Language Environment enabled assembler, the first
request modifier 4 environment creates a dummy environment (z/OS Language
Environment region-level control blocks) in addition to its own. The dummy

z/0OS V1R4.0 C/C++ Programming Guide

environment remains pointed to by the TCB when the initialization is complete. The
next initialization using request modifier 4 recognizes an existing environment that
supports chaining and the new environment will be chained. This permits the two
environments to share C memory files. Request modifier 4 environments in this
model can be initialized and terminated in any order.

If starting with a batch environment (for example, COBOL, PL/I or C), which
supports chaining by default, and during execution within that environment a call is
made to an assembler routine which initializes a request modifier 4 environment,
the z/OS Language Environment batch environment is recognized and the new
environment will be chained. This allows an initial batch environment to share C
memory files with the request modifier 4 environment. Request modifier 4
environments in this model can be initialized and terminated in any order, but all
request modifier environments must be terminated before the batch environment is
terminated.

Notes:

1. When a batch environment is chained with request modifier 4 environments, the
z/OS Language Environment batch environment must be the first environment
that is initialized and the last environment that is terminated. All request modifier
4 environments initialized within the scope of a batch environment must be
terminated prior to exiting the batch environment. Failure to do so will leave the
request modifier 4 environments in a state such that attempted call or
termination requests will result in unpredictable behavior.

2. Initialization of a request modifier 4 environment while running in a non-sharable
environment, such as a request modifier 5 environment, causes the new request
modifier 4 environment to be non-sharable.

Sharing C Memory Files with Request Modifier 4 Environments: You can use
request modifier 4 to create multiple Preinitialized Compatibility Interface (PICI) C
environments. When you create a new request modifier 4 environment, it is chained
under certain circumstances to the current environment.

The following list identifies the specific features that are or are not supported in the
multiple PICI C environment scenario:

* C memory files will be shared across all C environments (as long as at least one
C environment exists) that are on the chain. This includes all PICI C
environments that are initialized and possibly an initial batch C environment.

» Because the PICI C environments are chained, initialization and termination of
these PICI C environments can be performed in any order. The chaining also
requires that the C run-time library treat each PICI C environment as equal. In C
run-time library terms, each PICI C environment is considered a root enclave
(depth=0).

* Because there can be multiple C root enclaves, sharing of C standard streams
across the C root enclaves exhibits a special behavior. When a C standard
stream is referenced for the first time, its definition is made available to each of
the C root enclaves.

» C standard streams are inherited across the system() call boundary. When a
PICI C environment is initialized from a nested enclave, it does not inherit the
standard streams of the nested enclave. Instead, it shares the C standard stream
definitions at the root level.

* C regular (honmemory, nonstandard stream) files are also shared across the
PICI C environments.

* Nested C enclaves are created using the system() call. The depth is relative to
the root enclave that owns the system() call chain. You can have two C

Chapter 20. Combining C or C++ and Assembler 275

276

enclaves, other than the C root enclaves, with the same depth. You can do this
by calling one of the PICI C environments from a nested enclave and then using
system() in the PICI C environment.

* C regular (nonmemory, nonstandard stream) files opened in a system() call
enclave are closed automatically when the enclave ends.

* C regular (nonmemory, nonstandard stream) files that are opened in a PICI C
environment root enclave are not closed automatically until the PICI C
environment ends. Before returning to the caller, you should close streams that
are opened by the PICI C environment. If you do not, undefined behavior can
occur.

* C memory files are not removed until the last PICI C environment is ended.

* The clrmemf () function will only remove C memory files created within the scope
of the C root enclave from which the function is called.

* When a PICI C environment is called, flushing of open streams is not performed
automatically as it is when you use the system() call.

* This function is not supported under CICS.
» This function is not supported under System Programming C (SP C).
* Use of POSIX(ON) is not supported with this feature.

Request Modifier 5 Environment Characteristics

Use request modifier 5 to establish an environment which is tolerant of an existing
environment. When a request modifier 5 environment is dormant, it is immune to
creation or termination of other environments.

Request modifier 5 environments cannot share C memory files with other
environments. Each environment of this type is created as a separate entity, not
connected to any other environment. Request modifier 5 environments can be
initialized and terminated in any order.

Restrictions on Using batch Environments with Preinitialization
Compatibility Interface C Environments
If a batch environment is to participate in C memory file sharing, such as with a

request modifier 4 environment, then the batch environment must be the first
environment created and the last one terminated. All PICI environments initialized
within the scope of the batch environment must be terminated before the batch
environment is terminated. This is required because the PICI environment shares
control blocks that belong to the batch environment. If the batch environment is
terminated, storage for those control blocks is released. Attempts to use or
terminate a PICI environment after the batch environment has terminated will result
in unpredictable behavior.

Behaviors When Mixing Request Modifier 4 and Request Modifier

5

While running in a request modifier 5 environment, initializing another environment
with request modifier 4 creates a new environment that is separated from the rest.
The new environment will not be able to share C memory files with any other
request modifier 4 environment that may already exist.

While running in a request modifier 4 environment, initialization of a request
modifier 5 environment creates a new environment that is separated from the rest.
If the new request modifier 5 environment is within the scope of a batch
environment, this new environment does not need to be terminated before the batch
environment is terminated.

z/0OS V1R4.0 C/C++ Programming Guide

Using the Service Vector and Associated Routines

The service vector is a list of addresses of user-supplied service routines. The
interface requirements for each of the service routines that you can supply,
including sample routines for some of the services, are provided in the following
sections.

Using the Service Vector
If you want certain services like load and delete to be carried out by other programs

supplied by you (instead of, for example, by the LOAD and DELETE macros), you must
place the address of your service vector in the seventh fullword field of the
extended parameter list. Define the service vector according to the pattern shown in
the following example:

SRV_COUNT DS
SRV_USER_WORD DS
SRV_WORKAREA DS
SRV_LOAD DS
SRV_DELETE DS
SRV_GETSTOR DS
SRV_FREESTOR DS
SRV_EXCEP_RTR DS
SRV_ATTN RTR DS
SRV_MSG_RTR DS

Count of fields defined
User-defined word

Addr of work area for DSAs etc
Addr of Toad routine

Addr of delete routine

Addr of get-storage routine
Addr of free-storage routine
Addr of exception router

Addr of attention router

Addr of message router

> > > > > > > T

Although you need not use labels identical to those above, you must use the same
order. The address of your load routine is "fourth”, and the address of your
free-storage routine is "seventh”.

Some other constraints apply:

You cannot omit any fields on the template that precede the last one you specify
from your definition of the service vector. You can supply zeros for the ones you
want ignored.

The field count does not count itself. The maximum value is therefore 9.

You must specify an address in the work area field if you specify addresses in
any of the subsequent fields.

This work area must begin on a doubleword boundary and start with a fullword
that specifies its length. This length must be at least 256 bytes.

For the load and delete routines, you cannot specify one of the pair without the
other; if one of these two fields contains a value of zero, the other is
automatically ignored. The same is true for the get-storage and free-storage pair.

If you specify the get-storage and free-storage services, you must also specify
the load and delete services.

You must supply any service routines pointed to in your service vector. When
called, these service routines require the following:

Register 13 points to a standard 18—fullword save area.
Register 1 points to a list of addresses of parameters available to the routine.

The third parameter in the list must be the address of the user word you
specified in the second field of the service vector.

The parameters available to each routine, and the return and reason codes that
each routine uses, are shown in the following section. The parameter addresses are
passed in the same order in which the parameters are listed.

Chapter 20. Combining C or C++ and Assembler 277

278

Load Service Routine
The load routine loads named modules. The LOAD macro usually provides this

service.

The parameters passed to the load routine are shown in|Table 33

Table 33. Load Service Routine Parameters

Parameter ASM Attributes Type
Address of module name DS A Input
Length of name DS F Input
User word DS A Input
(Reserved field) DS F Input
Address of load point DS A Output
Size of module DS F Output
Return code DS F Output
Reason code DS F Output

The name length must not be zero. You can ignore the reserved field. It will contain
Zeros.

The load routine can set the following return/reason codes:

0/0 successful

4/4 unsuccessful — module loaded above line when in AMODE 24

8/4 unsuccessful — load failed

16/4 unrecoverable error occurred

Delete Service Routine
The delete routine deletes named modules. The DELETE macro usually provides this

service.

The parameters passed to the delete routine are shown in[Table 34}

Table 34. Delete Service Routine Parameters

Parameter ASM Attributes Type
Address of module name DS A Input
Length of name DS F Input
User word DS A Input
(Reserved field) DS F Input
Return code DS F Output
Reason code DS F Output

The name length must not be zero. You can ignore the reserved field. It will contain
zeros. Every delete action must have a corresponding load action, and the task that
does the load must also do the delete. Counts of deletes and loads performed must
be maintained by the service routines.

The delete routine can set the following return/reason codes:

z/0OS V1R4.0 C/C++ Programming Guide

0/0 successful
8/4 unsuccessful — delete failed

16/4 unrecoverable error occurred

Get-Storage Service Routine
The get-storage routine obtains storage. The GETMAIN macro usually provides this

service.

The parameters passed to the get-storage routine are shown in [Table 35,

Table 35. Get-Storage Service Routine Parameters

Parameter ASM Attributes Type
Amount desired DS F Input
Subpool number DS F Input
User word DS A Input
Flags DS F Input
Address of obtained storage |DS A Output
Amount obtained DS F Output
Return code DS F Output
Reason code DS F Output

The get-storage routine can set the following return/reason codes:
0/0 successful
4/4 unsuccessful — the storage could not be obtained

16/4 unrecoverable error occurred.

Free-Storage Service Routine
The free-storage routine frees storage. The FREEMAIN macro usually provides this

service.

The parameters passed to the free-storage routine are shown in [Table 36

Table 36. Free-Storage Service Routine Parameters

Parameter ASM Attributes Type
Amount to be freed DS F Input
Subpool number DS F Input
User word DS A Input
Address of storage DS A Input
Return code DS F Output
Reason code DS F Output

The free-storage routine can set the following return/reason codes:
0/0 successful

16/4 unrecoverable error occurred

Chapter 20. Combining C or C++ and Assembler 279

Exception Router Service Routine
The exception router traps and routes exceptions. The ESTAE and ESPIE macros

usually provide this service.

The parameters passed to the exception router are shown in{Table 37|

Table 37. Exception Router Service Routine Parameters

Parameter ASM Attributes Type
Address of exception handler | DS A Input
Environment token DS A Input
User word DS A Input
Abend flags DS F Input
Check flags DS F Input
Return code DS F Output
Reason code DS F Output

During initialization, if the ESTAE and/or ESPIE options are in effect, the common
library puts the address of the common library exception handler in the first field of
the above parameter list, and sets the environment token field to a value that is
passed on to the exception handler. It also sets abend and check flags as
appropriate, and then calls your exception router to establish an exception handler.

The meaning of the bits in the abend flags are given by the following structure:

struct {
struct {
unsigned short abends : 1, /*control for system abends*/
reserved : 15;
} system;
struct {
unsigned short abends : 1, /*control for user abendsx*/
reserved : 15;
} user;

} abendflags;

The meaning of the bits in the check flags are given by the following structure:

struct {
struct {

unsigned short reserved
operation :
privileged operation :
execute :
protection
addressing
specification
data
fixed_overflow
fixed_divide
decimal_overflow
decimal_divide
exponent_overflow
exponent_divide
significance
float_divide

= o b b b b b b b b e s e b e

} type;
unsigned short reserved;
} checkflags;

280 z/OS V1R4.0 C/C++ Programming Guide

The exception router service routine can set the following return/reason codes:
0/0 successful
4/4 unsuccessful — the exit could not be (de)-established

16/4 unrecoverable error occurred

Attention Router Service Routine
The attention router traps and routes attention interrupts. The STAX macro usually

provides this service.

The parameters passed to the attention router are shown in|Table 38

Table 38. Attention Router Service Routine Parameters

Parameter ASM Attributes Type
Address of attention router DS A Input
Environmental token DS A Input
User word DS A Input
Return code DS F Output
Reason code DS F Output

The attention router routine can set the following return/reason codes:
0/0 successful

4/4 unsuccessful — the exit could not be (de)-established

16/4 unrecoverable error occurred

When an attention interrupt occurs, your attention router must invoke the attention
handler. Use the address in the attention handler field passing the parameters

shown in .

Table 39. Attention Handler Parameters

Parameter ASM Attributes Type
Environment token DS A Input
Return code DS F Output
Reason code DS F Output

The return/reason codes upon return from the attention handler are:

0/0 The attention interrupt has been or will be handled

If an attention interrupt occurs in the attention handler or when an attention handler
is not started, your attention router should ignore the attention interrupt.

Message Router Service Routine

The message router routes messages written by the run-time library. These
messages are normally written to the Language Environment Message File.

Chapter 20. Combining C or C++ and Assembler 281

The parameters passed to the message router are shown in|Table 40

Table 40. Message Router Service Routine Parameters

Parameter ASM Attributes Type
Address of message DS A Input
Message length in bytes DS F Input
User word DS A Input
Line length DS F Input
Return code DS F Output
Reason code DS F Output

If the address of the message is zero, your message router is expected to return
the size of the line to which messages are written (in the length field). The length
field allows messages to be formatted correctly, for example, broken at blanks.

The message routine must use the following return/reason codes:
0/0 successful

16/4 unrecoverable error occurred

282 z/0S V1R4.0 C/C++ Programming Guide

Part 4. Coding: Advanced Topics

This part contains the following coding topics:

« [Chapter 21, “Building and Using Dynamic Link Libraries (DLLs)” on page 285|
[Chapter 22, “Building Complex DLLs” on page 303]

[Chapter 23, “Using Threads in z/OS UNIX Applications” on page 329
[Chapter 24, “Reentrancy in z/0OS C/C++” on page 343

[Chapter 25, “Using the Decimal Data Type in C” on page 351

[Chapter 27, “Handling Exceptions, Error Conditions, and Signals” on page 379
[Chapter 28, “Optimizing Code” on page 399

« [Chapter 29, “Optimizing Your C/C++ Code with Interprocedural Analysis” on|
page 421]

* |Chapter 30, “Network Communications under UNIX System Services” od
page 435

« |Chapter 31, “Interprocess Communication Using z/OS UNIX” on page 463

* |Chapter 32, “Structuring a Program That Uses C++ Templates” on page 467|
* |Chapter 33, “Using Environment Variables” on page 479|

© Copyright IBM Corp. 1996, 2002 283

284 z/0S V1R4.0 C/C++ Programming Guide

Chapter 21. Building and Using Dynamic Link Libraries (DLLS)

A dynamic link library (DLL) is a collection of one or more functions or variables in
an executable module that is executable or accessible from a separate application
module. In an application without DLLs, all external function and variable references
are resolved statically at bind time. In a DLL application, external function and
variable references are resolved dynamically at run-time.

This chapter defines DLL concepts and shows how to build simple DLLs.
[Chapter 22, “Building Complex DLLs” on page 303 shows how to build complex
DLLs and discusses some of the compatibility issues of DLLs.

There are two types of DLLs: simple and complex. A simple DLL contains only DLL
code in which special code sequences are generated by the compiler for
referencing functions and external variables, and using function pointers. With these
code sequences, a DLL application can reference imported functions and imported
variables from a DLL as easily as it can non-imported ones.

A complex DLL contains mixed code, that is, some DLL code and some non-DLL
code. A typical complex DLL would contain some C++ code, which is always DLL
code, and some C object modules compiled with the NODLL compiler option bound
together.

The object code generated by the z/OS C++ compiler is always DLL code. Also, the
object code generated by the z/OS C compiler with either the DLL compiler option or
the XPLINK compiler option is DLL code. Other types of object code are non-DLL
code. For more information about compiler options for DLLs, see the

XPLINK compiled code and non-XPLINK compiled code cannot be statically mixed
(with the exception of OS_UPSTACK and OS_NOSTACK (or OS31_NOSTACK)
linkages). The XPLINK compiled code can only be bound together with other
XPLINK-compiled code. You can mix non-XPLINK compiled DLLs with XPLINK
compiled DLLs (the same is true for routines which you load with fetch()). The
z/OS C++ run-time library manages the transitions between the two different linkage
styles across the DLL and fetch() boundaries.

Note: There is inherent performance degradation when the z/OS C++ run-time
library transitions across these boundaries. In order for your application to
perform well, these transitions should be made infrequently. When using
XPLINK, recompile all parts of the application with the XPLINK compiler
option wherever possible.

Notes:

1. As of OS/390 Version 2, the C/C++ IBM Open Class Library is licensed with the
base operating system and enables access to the C/C++ Class Library by
applications that require the library at execution time. This eliminates the need
to license the C/C++ Compiler features or to use the DLL Rename Uitility.
Provided you use the base operating system, the DLL Rename Utility discussed
in this chapter is not applicable.

2. If your application uses the IBM-supplied C++ Class Library DLLs for execution
on a system prior to OS/390 Version 2, you must rename them using the DLL
Rename utility. See the [z/0S C/C++ User’s Guidg for more information on using
this utility.

© Copyright IBM Corp. 1996, 2002 285

Support for DLLs

DLL support is available for applications running under the following systems:
» z/OS batch

» CICS

* IMS

« TSO

* z/OS UNIX

It is not available for applications running under SPC, CSP or MTF.

Note: All potential DLL executable modules are registered in the CICS PPT control
table in the CICS environment and are invoked at run time.

DLL Concepts and Terms

286

Application
All the code executed from the time an executable program module is
invoked until that program, and any programs it directly or indirectly calls, is
terminated.

DLL An executable module that exports functions, variable definitions, or both, to
other DLLs or DLL applications.

DLL application
An application that references imported functions, imported variables, or
both, from other DLLs.

DLL code
Object code resulting when C source code is compiled with the DLL or
XPLINK compiler options. C++ code is always DLL code.

Executable program (or executable module)
A file which can be loaded and executed on the computer. z/OS supports
two types:

Load module
An executable residing in a PDS.

Program object
An executable residing in a PDSE or in the HFS.

Exported functions or variables
Functions or variables that are defined in one executable module and can
be referenced from another executable module. When an exported function
or variable is referenced within the executable module that defines it, the
exported function or variable is also non-imported.

Function descriptor
An internal control block containing information needed by compiled code to
call a function.

Imported functions and variables
Functions and variables that are not defined in the executable module
where the reference is made, but are defined in a referenced DLL.

Non-imported functions and variables
Functions and variables that are defined in the same executable module
where a reference to them is made.

z/0OS V1R4.0 C/C++ Programming Guide

Object code (or object module)
A file output from a compiler after processing a source code module, which
can subsequently be used to build an executable program module.

Source code (or source module)
A file containing a program written in a programming language.

Variable descriptor
An internal control block containing information about the variable needed
by compiled code.

Writable Static Area (WSA)
An area of memory that is modifiable during program execution. Typically,
this area contains global variables and function and variable descriptors for
DLLs.

XPLINK application
An application that is made up of C and/or C++ object modules that were
compiled with the XPLINK compiler option. XPLINK applications are always
DLL applications. Since the C/C++ run-time library for XPLINK is packaged
as a DLL, any XPLINK executable module that calls a C/C++ run-time
library is also importing from a DLL.

XPLINK code
Object code resulting when C or C++ source code is compiled with the
XPLINK compiler option. XPLINK code is always DLL code.

Loading a DLL

The DLL is loaded implicitly when an application references an imported variable or
calls an imported function. DLLs can be explicitly loaded by calling d111oad(). Due
to optimizations performed, the DLL implicit load point may be moved and the DLL
will be loaded only if the actual reference occurs.

Loading a DLL Implicitly

When an application uses functions or variables defined in a DLL, the compiled
code loads the DLL. This implicit load is transparent to the application. The load
establishes the required references to functions and variables in the DLL by
updating the control information contained in function and variable descriptors.

If the DLL contains static classes, constructors are run when the DLL is loaded.
This loading may occur before main(); in this case, the corresponding destructors
are run once when main() returns.

To implicitly load a DLL, do one of the following:
1. Statically initialize a variable pointer to the address of an exported DLL variable.

2. Reference a function pointer that points to an exported function.

3. Call an exported function.

4. Reference (use, modify, or take the address of) an exported variable.
5. Call through a function pointer that points to an exported function.

In the first situation, the DLL is loaded before main() is invoked, and if the DLL
contains C++ code, constructors are run before main() is invoked. In the other
situations, the DLL loading may be delayed until the time of the implicit call,
although optimization may move this load earlier.

Chapter 21. Building and Using Dynamic Link Libraries (DLLs) 287

If the DLL application references (imports) an exported DLL variable, that DLL may
be implicitly loaded before that DLL application is invoked (not necessarily before
main() is invoked). With XPLINK, the DLL will always be implicitly loaded before
invoking the DLL application that references (imports) a DLL variable or takes the
address of a DLL function.

Note: When a DLL is loaded, its writable static is initialized. If the DLL load module
contains C++ code, static constructors are run once at initial load time, and
static destructors are run once at program termination. Static destructors are
run in the reverse order of the static constructors.

Loading a DLL Explicitly

288

The use of DLLs can also be explicitly controlled by the application code at the
source level. The application uses explicit source-level calls to one or more run-time
services to connect the reference to the definition. The connections for the
reference and the definition are made at run-time.

The DLL application writer can explicitly call the following run-time services:

» d111oad(), which loads the DLL and returns a handle to be used in future
references to this DLL

* dllqueryfn(), which obtains a pointer to a DLL function
* dllqueryvar(), which obtains a pointer to a DLL variable
e dl1free(), which frees a DLL loaded with d111oad ()

For more information about the run-time services, see the [z/0S C/C++ Run-Time|
[Library Referencd,

To explicitly call a DLL in your application:

» Determine the names of the exported functions and variables that you want to
use. You can get this information from the DLL provider's documentation or by
looking at the definition side-deck file that came with the DLL. A definition
side-deck is a directive file that contains an IMPORT control statement for each
function and variable exported by that DLL.

* Include the DLL header file d11.h in your application.
* Compile your source as usual.
* Bind your object with the binder using the same AMODE value as the DLL.

Note: You do not need to bind with the definition side-deck if you are calling the
DLL explicitly with the run-time services, since there are no references
from the source code to function or variable names in the DLL, for the
binder to resolve. Therefore the DLL will not be loaded until you explicitly
load it with the d1110ad() run-time service.

|Figure 49 on page 289| is an example of an application that uses explicit DLL calls.

Explicit Use of a DLL in an Application
The following example shows explicit use of a DLL in an application.

z/0OS V1R4.0 C/C++ Programming Guide

#include <d11.h>
#include <stdio.h>
#include <string.h>

#ifdef _ cplusplus
extern "C" {
#endif
typedef int (DLL_FN) (void);

#ifdef __cplusplus
}

#endif
#define FUNCTION "FUNCTION"
#define VARIABLE "VARIABLE"

static void Syntax(const char* progName) {
fprintf(stderr, "Syntax: %s <DLL-name> <type> <identifier>\n"

" where\n"

" <pLL-name> is the DLL to load,\n"

" <type> can be one of FUNCTION or VARIABLE\n"

" and <identifier> is the function or variable\n"
" to reference\n", progName);

return;

}

main(int argc, char* argv[]) {
int value;
intx varPtr;
char* d11;
char* type;
char* id;
d1Thandle* d1THandle;

if (argc != 4) {
Syntax(argv[0]);
return(4);

}

Figure 49. Explicit Use of a DLL in an Application (Part 1 of 2)

Chapter 21. Building and Using Dynamic Link Libraries (DLLSs)

289

d11 = argv[1];
type = argv[2];
id = argv[3];

d1THandle = d117oad(d11);

if (d11Handle == NULL) {
perror("DLL-Load");
fprintf(stderr, "Load of DLL %s failed\n", d11);
return(8);

}

if (strcmp(type, FUNCTION)) {
if (strcmp(type, VARIABLE)) {

fprintf(stderr,
"Type specified was not " FUNCTION " or " VARIABLE "\n");
Syntax(argv[0]);
return(8);
1
/*
* variable request, so get address of variable
*
/

varPtr = (int*)(d11queryvar(dllHandle, id));
if (varPtr == NULL) {
perror("DLL-Query-Var");
fprintf(stderr, "Variable %s not exported from %s\n", id, d11);
return(8);
1
value = *varPtr;
printf("Variable %s has a value of %d\n", id, value);
}
else {
/*
* function request, so get function descriptor and call it
*
/
DLL_FNx fn = (DLL_FN*) (d11queryfn(dllHandle, id));
if (fn == NULL) {
perror("DLL-Query-Fn");
fprintf(stderr, "Function %s() not exported from %s\n", id, d11);
return(8);

value = fn();
printf("Result of call to %s() is %d\n", id, value);

}
d11free(d1THandle);
return(0);

}

Figure 49. Explicit Use of a DLL in an Application (Part 2 of 2)

For more information on the DLL functions, see the |[z/0S C/C++ Run-Time Library

Managing the Use of DLLs When Running DLL Applications

This section describes how z/OS C/C++ manages loading, sharing and freeing
DLLs when you run a DLL application.

Loading DLLs

When you load a DLL for the first time, either implicitly or via an explicit d111o0ad(),
writable static is initialized. If the DLL is written in C++, constructors are run.

290 z/0S V1R4.0 C/C++ Programming Guide

You can load DLLs from an HFS as well as from conventional data sets. The
following list specifies the order of a search for unambiguous and ambiguous file

names.

* Unambiguous file names

If the file has an unambiguous z/OS UNIX HFS name (it starts with a ./ or
contains a /), the file is searched for only in the HFS.

If the file has an unambiguous MVS name, and starts with two slashes (//),
the file is only searched for in MVS.

* Ambiguous file names
For ambiguous cases, the settings for POSIX are checked.
— When specifying the POSIX(ON) run-time option, the run-time library attempts

to load the DLL as follows:
1. An attempt is made to load the DLL from the HFS. This is done usin

the
system service BPX1LOD. For more information on this service, see iz/Oa

UNIX System Services Programming: Assembler Callable Services|

Referencd

If the environment variable LIBPATH is set, each directory listed will be
searched for the DLL. See [Chapter 33, “Using Environment Variables” on|

for information on LIBPATH. Otherwise the current directory will

be searched for the DLL. Note that a search for the DLL in the HFS is
case-sensitive.

- If the DLL is found and contains an external link name of eight
characters or less, the uppercase external link name is used to attempt
a LOAD from the caller’'s MVS load library search order. If the DLL is
not found or the external link name is more than eight characters, then
the load fails.

- If the DLL is found and its sticky bit is on, any suffix is stripped off.
Next, the name is converted to uppercase, and the base DLL name is
used to attempt a LOAD from the caller’'s MVS load library search
order. If the DLL is not found or the base DLL name is more than eight
characters, the version of the DLL in the HFS is loaded.

- If the DLL is found and does not fall into one of the previous two cases,
a load from the HFS is attempted.

If the DLL could not be loaded from the HFS, an attempt is made to load

the DLL from the caller's MVS load library search order. This is done by

calling the z/OS service LOAD with the DLL name, which must be eight
characters or less and is converted to uppercase. LOAD searches data sets
in the following order:

a. Run-time library services (if active)

b. Job Pack Queue

c. Current STEPLIB/JOBLIB

d. LPA

e. Link List

* When POSIX(OFF) is specified the sequence is reversed.
— An attempt to load the DLL is made from the caller's MVS load library search

order.

— If the DLL could not be loaded from the caller's MVS load library then an

attempt is made to load the DLL from the HFS.

Chapter 21. Building and Using Dynamic Link Libraries (DLLs) 291

Sharing DLLs

Freeing DLLs

DLLs are shared at the enclave level (as defined by the z/OS Language
Environment). A referenced DLL is loaded only once per enclave and only one copy
of the writable static is created or maintained per DLL per enclave. Thus, one copy
of a DLL serves all modules in an enclave regardless of whether the DLL is loaded
implicitly or explicitly. You can access the same DLL within an enclave both
implicitly and by explicit run-time services.

All accesses to a variable in a DLL in an enclave refer to the only copy of that
variable. All accesses to a function in a DLL in an enclave refer to the only copy of
that function.

Although only one copy of a DLL is maintained per enclave, multiple logical loads
are counted and used to determine when the DLL can be deleted. For a given DLL
in a given enclave, there is one logical load for each explicit d11Toad() request.

DLLs are not shared in a nested enclave environment. Only the enclave that loaded
the DLL can access functions and variables.

You can free explicitly loaded DLLs with a d11free() request. This request is
optional because the DLLs are automatically deleted by the run-time library when
the enclave is terminated.

Implicitly loaded DLLs cannot be deleted from the DLL application code. They are
deleted by the run-time library at enclave termination. Therefore, if a DLL has been
both explicitly and implicitly loaded, the DLL can only be deleted by the run-time
when the enclave is terminated.

Creating a DLL or a DLL Application

Building a DLL or a DLL application is similar to creating a C or C++ application. It
involves the following steps:

1. Writing your source code
2. Compiling your source code
3. Binding your object modules

Building a Simple DLL

This section shows how to build a simple DLL.

Writing Your C Code

To build a simple C DLL, write code using the #pragma export directive to export
specific external functions and variables as shown in [Figure 50 on page 293.

292 z/0S V1R4.0 C/C++ Programming Guide

#pragma export(bopen)
#pragma export(bclose)
#pragma export(bread)
#pragma export (bwrite)
int bopen(const char* file, const char* mode) {

}...
int bclose(int) {

int bread(int bytes) {

int bwrite(int bytes) {

.

#pragma export(berror)
int berror;
char buffer[1024];

Figure 50. Using #pragma export to Create a DLL Executable Module Named BASICIO

For the previous example, the functions bopen(), bclose(), bread(), and bwrite()
are exported; the variable berror is exported; and the variable buffer is not
exported.

Note: To export all defined functions and variables with external linkage in the
compilation unit to the users of the DLL, compile with the EXPORTALL compile
option. All defined functions and variables with external linkage will be
accessible from this DLL and by all users of this DLL. However, exporting all
functions and variables has a performance penalty, especially with IPA.
When you use EXPORTALL you do not need to include #pragma export in your
code.

Writing Your C++ Code

To create a simple C++ DLL:

* Ensure that classes and class members are exported correctly, especially if they
use templates.

* Use _Export or the #pragma export directive to export specific functions and
variables.
For example, to create a DLL executable module TRIANGLE, export the
getarea() function, the getperim() function, the static member objectCount and
the constructor for class triangle using #pragma export:

Chapter 21. Building and Using Dynamic Link Libraries (DLLs) 293

class triangle : public area
{
public:
static int objectCount;
getarea();
getperim();
triangle::triangle(void);
1
#pragma export(triangle::objectCount)
#pragma export(triangle::getarea())
#pragma export(triangle::getperim())
#pragma export(triangle::triangle(void))

Figure 51. Using #pragma Export to Create a DLL Executable Module TRIANGLE

» Do not inline the function if you apply the _Export keyword to the function
declaration.

class triangle : public area
{
public:
static int _Export objectCount;
double _Export getarea();
double _Export getperim();
_Export triangle::triangle(void);

1

Figure 52. Using _export to Create DLL Executable Module TRIANGLE

* Always export constructors and destructors when using the Export keyword.

* Apply the Export keyword to a class. This keyword automatically exports static
members and defined functions of that class, constructors, and destructors.

class _Export triangle

{ public:
static int objectCount;
double getarea();
double getperim();
triangle::triangle(void);
}s
» To export all external functions and variables in the compilation unit to the users
of this DLL, you can also use the compiler option EXPORTALL. This compiler option
is described in the [z/0S C/C++ User’s Guidd and #pragma directives are
described in detail in the |C/C++ Language Reference If you use the EXPORTALL
option, you do not need to include #pragma export or _Export in your code.

Compiling Your Code

For C source code compiled without using the DLL or XPLINK compiler options, that
code cannot reference (import) functions or variables that are exported by a DLL.

NODLL is the default when compiling C source code, and the XPLINK compiler option
is not used. C source code compiled with the DLL or XPLINK compiler options, and

all C++ source code, can reference exported functions and variables. Source code
that can reference exported functions and variables is called DLL application code.
It need not itself be a DLL, in that it may not itself export any functions or variables.

When compiling DLL application source code, the compiler generates object code in

such a way that references to external functions and variables can be resolved
statically or dynamically (that is, resolved to a DLL). If you are uncertain whether

294 7z/0S V1R4.0 C/C++ Programming Guide

non-XPLINK C source code references a DLL, you should specify the DLL or XPLINK
compiler options. Compiling source code as DLL application code eliminates the
potential compatibility problems that may occur when binding DLL application code
with non-DLL application code. See [Chapter 22, “Building Complex DLLs” on|

page 303 for more information on compatibility issues.

The decision to use XPLINK needs to be made independently from the decision to
build a DLL application. While XPLINK compiled code is always DLL application
code, the XPLINK and non-XPLINK function call linkages are different. There is DLL
compatibility for XPLINK and non-XPLINK at the DLL boundary, but XPLINK and
non-XPLINK object modules cannot be mixed in the same DLL. Also, there is a
performance penalty when transitioning between XPLINK and non-XPLINK DLLs
(and vice versa). It is best to have a DLL application made up of all XPLINK or all
non-XPLINK executable modules to the extent that is possible. For more
information on XPLINK, see ['Using XPLINK” on page 417

Binding Your Code

When creating a DLL, the binder automatically creates a definition side-deck that
describes the functions and the variables that can be imported by DLL applications.
You must provide the generated definition side-deck to all users of the DLL. Any
DLL application that implicitly loads the DLL must include the definition side-deck
when they bind.

Note: You can choose to store your DLL in a PDS load library, but only if it is
non-XPLINK. Otherwise, it must be stored in a PDSE load library or in the
HFS. To target a PDS load library, prelink and link your code rather than
using the binder. For information on prelinking and linking, see the appendix
on the Prelinker in|z/0S C/C++ User’s Guide

When binding the C object module as shown in[Figure 50 on page 293} the binder
generates the following definition side-deck:

IMPORT CODE,BASICIO, 'bopen'
IMPORT DATA,BASICIO, 'bclose’
IMPORT DATA,BASICIO, 'bread"'
IMPORT DATA,BASICIO, 'bwrite’
IMPORT DATA,BASICIO, 'berror'

Note: You should also provide a header file containing the prototypes for exported
functions and external variable declarations for exported variables.

When binding the C++ object modules shown in [Figure 51 on page 294} the binder

generates the following definition side-deck.

IMPORT CODE,TRIANGLE, 'getarea_ 8triangleFv'

IMPORT CODE,TRIANGLE, 'getperim__8triangleFv'
IMPORT CODE,TRIANGLE,' ct_8triangleFv'

You can edit the definition side-deck to remove any functions and variables that you
do not want to export. You must maintain the file as a binary file with fixed format
and a record length of 80 bytes. Also, use proper binder continuation rules if the
IMPORT statement spans multiple lines, and you change the length of the
statement. In the above example, if you do not want to expose getperim(), remove
the control statement IMPORT CODE ,TRIANGLE, getperim_ 8triangleFv from the
definition side-deck.

Chapter 21. Building and Using Dynamic Link Libraries (DLLs) 295

Notes:

1. Removing functions and variables from the definition side-deck does not
minimize the performance impact caused by specifying the EXPORTALL
compiler option.

2. Editing the side-deck is not recommended. If the DLL name needs to be
changed, you should bind using the appropriate name. Instead of using the
EXPORTALL compiler option, you should remove unnecessary IMPORT
statements by using explicit #pragma export statements or _Export directives.

The definition side-deck contains mangled names of exported C++ functions, such
as getarea_ 8triangleFv. To find the original function or variable name in your
source module, review the compiler listing, the binder map, or use the CXXFILT
utility, if you do not have access to the listings. This will permit you to see both the
mangled and demangled names. For more information on the CXXFILT utility, see
the [/0S C/C++ User’s Guidel

Building a Simple DLL Application

296

A simple DLL application contains object modules that are made up of only
DLL-code. The application may consist of multiple source modules. Some of the
source modules may contain references to imported functions, imported variables,
or both.

To use an implicitly loaded DLL (sometimes called a load-on-call DLL) in your
simple DLL application:

1. Write your code as you would if the functions were statically bound.
2. Compile as follows:
* Compile your non-XPLINK application C source files with the following
compiler options:
— DLL
— RENT
— LONGNAME

These options instruct the compiler to generate special code when calling
functions and referencing external variables. If you are using z/OS UNIX,
RENT and LONGNAME are already the defaults, so compile as:

c89 -W c,DLL ...

» Compile your C++ source files normally. A C++ application is always DLL
code.

e For XPLINK, compile your C and C++ source files with the XPLINK compiler
option. XPLINK compiled C and C++ source is always DLL code.

3. Bind your object modules as follows.

* If you are using z/OS Batch, use the IBM-supplied procedure when you bind
your object modules. You must chose the appropriate procedures for XPLINK
or non-XPLINK.

* If you are not using the IBM-supplied procedure, specify the RENT,
DYNAM(DLL), and CASE(MIXED) binder options when you bind your object
modules.

Note: XPLINK and non-XPLINK use different z/OS Language Environment
libraries, and XPLINK requires the C run-time library side-deck for

z/0OS V1R4.0 C/C++ Programming Guide

resolution of C run-time library function calls. For more information,
see "Planning to Link-Edit and Run” in|z/OS Language Environment
[Programming Guidé|
* If you are using z/OS UNIX specify the following option for the bind step for
c89 or c++.

c89 -W 1,DLL

If you are using XPLINK, also add the XPLINK option, so that c89 will use the
correct z/OS Language Environment libraries and side-decks:

c89 -W 1,DLL,XPLINK ...

* Include the definition side-deck from the DLL provider in the set of object
modules to bind. The binder uses the definition side-deck to resolve
references to functions and variables defined in the DLL. If you are
referencing multiple DLLs, you must include multiple definition side-decks.

Note: Definition side-decks can not be resolved by automatic library call
(autocall) processing, so you must specify an INCLUDE statement to
explicitly include a definition side-deck for each referenced DLL.

The following is a code fragment illustrating how an application can use the DLL
described previously. Compile normally and bind with the definition side-deck
provided with the TRIANGLE DLL.

extern int getarea(); /* function prototype */
main () {

getarea(); /* imported function reference */

}

See |Figure 53 on page 298| for a summary of the processing steps required for the
application (and related DLLS).

Creating and Using DLLs

[Figure 53 on page 298| summarizes the use of DLLs for both the DLL provider and
for the writer of applications that use them. In this example, application ABC is
referencing functions and variables from two DLLs, XYZ and PQR. The connection
between DLL preparation and application preparation is shown. Each DLL shown
contains a single compilation unit. The same general scheme applies for DLLs
composed of multiple compilation units, except that they have multiple compiles and
a single bind for each DLL. For simplicity, this example assumes the following:

* ABC does not export variables or functions.
* XYZ and PQR do not use other DLLs.
* The application is completely non-XPLINK and written in C.

Chapter 21. Building and Using Dynamic Link Libraries (DLLs) 297

G DLL oo » <« APPLICATION -» 4o DLL -
XYZ.c ABC.c PQR.c
DLL Source: Application Source: DLL Source:

hooVar definition
kooVar definition
foo() definition
goo() definition

Compile with
EXPORTALL, DLL

v XYZObj

DLL TEXT

Bind

foo() ref
goo() ref
boo() ref
hooVar ref
kooVar ref
rooVar ref

Compile
with
DLL

v ABC.obj
APPL TEXT .

XYZ.objdef PQR.objdef

rooVar definition
sooVar definition
boo() definition
s00() definition

Compile with
EXPORTALL, DLL

PQR.0bj
DLL TEXT

Bind

Import code 'XYZ' foo
Import code 'XYZ' goo
"| Import data 'XYZ hooVar
Import data 'XYZ' kooVar

vXYZ.pobJ

Import code 'PQR' boo
Import code 'PQR' soo

Bind

A

Import data 'PQR' rooVar
Import data '‘PQR' sooVar

Link

\

'ABC.pobj PQR.pobj §

DLL program

Application program

DLL program

Figure 53. Summary of DLL and DLL Application Preparation and Usage

DLL Restrictions

Consider the following restrictions when creating DLLs and DLL applications:

* The entry point for a DLL must be either z/OS C/C++ or Language Environment
conforming. An entry point is considered Language Environment conforming if it
includes CEESTART or if it was compiled using a Language Environment

conforming compiler.

298

z/0OS V1R4.0 C/C++ Programming Guide

Note: If the entry point for a DLL does not meet either of the above conditions,
Language Environment issues an error and terminates the application.

In a DLL application that contains main(), main() cannot be exported.

The AMODE of a DLL application must be the same as the AMODE of the DLL
that it calls.

DLL facilities are not available:
— Under MTF, CSP or SPC

— To application programs with main() written in PL/I that dynamically call z/OS
C functions

You cannot implicitly or explicitly perform a physical load of a DLL while running
C++ static destructors. However, a logical load of a DLL (meaning that the DLL
has previously been loaded into the enclave) is allowed from a static destructor.
In this case, references from the load module containing the static destructor to
the previously-loaded DLL are resolved.

If a DLL contains static objects, the constructors are called during DLL load. 1ISO
C++ requires that the global objects must be defined within the same compilation
unit, but does not specify any order for these to be called; hence the objects are
constructed in the order that they are defined. z/OS C/C++ enhances the
standard behavior by providing #pragma priority to control the construction
order for all global objects within the same execution load module. Please refer
to the |C/C++ Language Referencd for the details of this pragma. A DLL is one
execution load module and the #pragma priority allows you to control global
object construction within a single DLL. On the other hand, you still have no
control over the initialization order across different DLLs, or across a DLL
application and the DLLs it references. If such order is important, the DLL
provider has to define a protocol for applications to follow so that the interaction
between the DLL and the applications happens in the required manner. The
protocol must be part of the DLL interface design. Take note of the restriction in
the previous bullet when defining such a protocol. A simple example would be
requiring an application to call a setup() function, which is exported by a DLL,
before any other references to the same DLL are made. More elaborate designs
are possible. The techniques for controlling static initialization are well-discussed
in C++ literature; you can reference, for example, Item 47 of Scott Meyers's
Effective C++, 50 Specific Ways to Improve Your Programs and Designs.

You cannot use the functions set_new _handler() or set_unexpected() in a DLL if
the DLL application is expected to invoke the new handler or unexpected function
routines.

When using the explicit DLL functions in a multithreaded environment, avoid any
situation where one thread frees a DLL while another thread calls any of the DLL
functions. For example, this situation occurs when a main() function uses
d1110ad() to load a DLL, and then creates a thread that uses the ftw() function.
The ftw() target function routine is in the DLL. If the main() function uses
d11free() to free the DLL, but the created thread uses ftw() at any point, you
will get an abend.

To avoid a situation where one thread frees a DLL while another thread calls a

DLL function, do either of the following:

— Do not free any DLLs by using d11free() (the z/OS Language Environment
will free them when the enclave is terminated).

— Have the main() function call d11free() only after all threads have been
terminated.

For DLLs to be processed by IPA, they must contain at least one function or
method. Data-only DLLs will result in a compilation error.

Chapter 21. Building and Using Dynamic Link Libraries (DLLs) 299

Use of circular DLLs may result in unpredictable behavior related to the
initialization of non-local static objects. For example, if a static constructor (being
run as part of loading DLL "A") causes another DLL "B” to be loaded, then DLL
"B" (or any other DLLs that "B” causes to be loaded before static constructors
for DLL "A” have completed) cannot expect non-local static objects in "A” to be
initialized (that is what static constructors do). You should ensure that non-local
static objects are initialized before they are used, by coding techniques such as
counters or by placing the static objects inside functions.

Improving Performance

This section contains some hints on using DLLs efficiently. Effective use of DLLs
may improve the performance of your application. Following are some suggestions
that may improve performance:

300

If you are using a particular DLL frequently across multiple address spaces, the
DLL can be installed in the LPA or ELPA. When the DLL resides in a PDSE, the
dynamic LPA services should be used (this will always be the case for XPLINK

applications). Installing in the LPA/ELPA may give you the performance benefits
of a single rather than multiple load of the DLL

When writing XPLINK applications, avoid frequent calls from XPLINK to
non-XPLINK DLLs, and vice-versa. These transitions are expensive, so you
should build as much of the application as possible as either XPLINK or
non-XPLINK. When there is a relatively large amount of function calls compared
to the rest of the code, the performance of an XPLINK application can be
significantly better than non-XPLINK. It is acceptable to make calls between
XPLINK and non-XPLINK, when a relatively large amount of processing will be
done once the call is made.

Be sure to specify the RENT option when you bind your code. Otherwise, each
load of a DLL results in a separately loaded DLL with its own writable static.
Besides the performance implications of this, you are likely to get incorrect
results if the DLL exports variables (data).

Group external variables into one external structure.
When using z/OS UNIX avoid unnecessary load attempts.

z/OS Language Environment supports loading a DLL residing in the HFS or a
data set. However, the location from which it tries to load the DLL first varies
depending whether your application runs with the run-time option POSIX(ON) or
POSIX (OFF).

If your application runs with POSIX(ON), z/OS Language Environment tries to load
the DLL from the HFS first. If your DLL is a data set member, you can avoid
searching the HFS directories. To direct a DLL search to a data set, prefix the
DLL name with two slashes (/) as is in the following example.

//MYDLL

If your application runs with POSIX(OFF), z/OS Language Environment tries to
load your DLL from a data set. If your DLL is an HFS file, you can avoid
searching a data set. To direct a DLL search to the HFS, prefix the DLL name
with a period and slash (./) as is done in the following example.

. /myd11

Note: DLL names are case sensitive in the HFS. If you specify the wrong case
for your DLL that resides in the HFS, it will not be found in the HFS.

For IPA, you should only export subprograms (functions and C++ methods) or
variables that you need for the interface to the final DLL. If you export
subprograms or variables unnecessarily (for example, by using the EXPORTALL

z/0OS V1R4.0 C/C++ Programming Guide

option), you severely limit IPA optimization. In this case, global variable
coalescing and pruning of unreachable or 100% inlined code does not occur. To
be processed by IPA, DLLs must contain at least one subprogram. Attempts to
process a data-only DLL will result in a compilation error.

The suboption NOCALLBACKANY of the compiler option DLL is more efficient than the
CALLBACKANY suboption. The CALLBACKANY option calls z/OS Language
Environment at run-time. This run-time service enables direct function calls.
Direct function calls are function calls through function pointers that point to
actual function entry points rather than function descriptors. The use of
CALLBACKANY will result in extra overhead at every occurrence of a call through a
function pointer. This is unnecessary if the calls are not direct function calls.

Chapter 21. Building and Using Dynamic Link Libraries (DLLs) 301

302 z/0S V1R4.0 C/C++ Programming Guide

Chapter 22. Building Complex DLLs

Before you attempt to build complex DLLs it is important to understand the
differences between the terms DLL, DLL code, and DLL application.

A DLL (Dynamic Link Library) is a file containing executable code and data bound
to a program at run time. The code and data in a DLL can be shared by several
applications simultaneously. It is important to note that compiling code with the DLL
option does not mean that the produced executable will be a DLL. To create a DLL,
you must use the #pragma export or EXPORTALL compiler option.

DLL code is code that can use a DLL. The following are DLL code:
* C++ code
* C code compiled using the DLL or XPLINK option

Code written in languages other than C++ and compiled without the DLL or XPLINK
option is non-DLL code.

A DLL application is an application that can use exported functions or variables
that are bound with DLL code. All of the source files that make up a DLL application
do not need to be compiled with the DLL or XPLINK option, only the source files that
reference exported functions and exported global variables.

If you link DLL code with non-DLL code, the resulting DLL or DLL application is
called complex . You might compile your code as non-DLL for the following reasons:

1. Source modules do not use C or C++.

2. To prevent problems which occur when a non-DLL function pointer call uses
DLL code. This problem takes place when a function makes a call through a
function pointer that points to a function entry rather than a function descriptor.

For complex DLLs and DLL applications that you compile without XPLINK, you can
use the CBA suboption of the DLL|NODLL compiler option. With this suboption, a call
is made to z/OS Language Environment at run-time for each function call through a
function pointer. This call eliminates the error that would occur when a non-DLL
function pointer passes to DLL code.

Note: In this book, unless otherwise specified, all references to the DLL|NODLL
compiler option assume suboption NOCBA. For more information on the
compiler option DLL, see |[z/0S C/C++ User’s Guide,

If you specify the XPLINK compiler option, the CBA and NOCBA suboptions of
DLL|NODLL are ignored.

There are two ways to combine XPLINK and non-XPLINK code in the same
application:

» Compile each entire DLL with XPLINK or without XPLINK. The only interaction
between XPLINK and non-XPLINK code occurs at a DLL or fetch() boundary.

* Use the 0S_UPSTACK, 0S_NOSTACK, and 0S31_NOSTACK linkage directive. For more
information, see the description of #pragma linkage in |C/C++ Language|

[Referencd

The steps for creating a complex DLL or DLL application are:
1. Determining how to compile your source modules.
2. Modifying the source modules that do not meet all the DLL rules.

© Copyright IBM Corp. 1996, 2002 303

3. Compiling the source modules to produce DLL code and non-DLL code as
determined in the previous steps.

4. Binding your DLL or DLL application.
The focus of this chapter is step 1 and step 2. You perform step 3 the same way

you would for any other C or C++ application.|“Binding Your Code” on page 295|
explains step 4.

Rules for Compiling Source Code

(Guidd

The instructions for XPLINK and non-XPLINK applications are different. For
information about how to decide whether to use XPLINK, see [z/0S C/C++ User’q

XPLINK Applications

XPLINK provides compatibility with non-XPLINK functions when calls are made
across executable modules, using either the DLL or fetch() call mechanism. You
should make a reference from XPLINK code into non-XPLINK code only if the
reference is by an imported function or variable, or the function pointer is a
parameter into the XPLINK code. This prevents incompatible references to a
non-XPLINK function entry point.

If the non-XPLINK code exposes a function entry point directly to the XPLINK code
(as a global variable, as part of a structure that is passed as a parameter, or by
passing an explicit return value), the XPLINK code will not be able to correctly use
it.

These are the only factors that you need to consider when building non-XPLINK
DLLs that will be used by XPLINK applications.

There is also a restriction in passing a function pointer from a non-XPLINK
application into an XPLINK function. By default, a function pointer that is used as a
callback must be passed explicitly as an argument into the XPLINK function. That
is, you cannot pass a function pointer as a member of a structure that is itself an
argument to the XPLINK function.

Modifying Noncompliant Source
For each function pointer, make sure that one of the following is true:

* The function pointer is passed as a parameter to the XPLINK code.
» The indirectly-referenced function pointer was imported by this DLL.

* The indirectly-referenced function pointer was imported by another XPLINK or
non-XPLINK DLL.

Non-XPLINK Applications

304

To create a complex DLL or DLL application, you must comply with the following
rules that dictate how you compile source modules. The first decision you must
make is how you should compile your code. You determine whether to compile with
either the DLL or NODLL compiler option based on whether or not your code
references any other DLLs. Even if your code is a DLL, it is safe to compile your
code with the NODLL compiler option if your code does not reference other DLLs.

The second decision you must make is whether to compile with the default compiler
suboption for DLL|NODLL, which is NOCBA, or use the alternative suboption CBA. This
decision is based upon your knowledge of the code you reference. If you are sure

z/0OS V1R4.0 C/C++ Programming Guide

that you do not reference any function calls through function pointers that point to a
function entry rather than a function descriptor, use the NOCBA suboption. Otherwise,
you should use the CBA suboption.

As of V2R4 of OS/390 C/C++, use the following options to ensure that you do not
have undefined results as a result of the function pointer pointing to a function entry
rather than a function descriptor:

1.

Compile your source module with the CBA suboption of DLL|NODLL. This option
inserts extra code whenever you have a function call through a function pointer.
The inserted code invokes a run-time service of z/OS Language Environment
which enables direct function calls through C/C++ function pointers. Direct
function calls are function calls through function pointers that point to actual
function entry points rather than function descriptors. The drawback of this
method is that your code will run slower. This occurs because whenever you
have function calls through function pointers z/OS Language Environment is
called at run-time to enable direct function calls. See |Figure 64 on page 315|for
an example of the CBA suboption and an explanation of what the called z/OS
Language Environment routine does at run-time when using the CBA suboption.

Compile your C source module with the NOCBA suboption of DLL|NODLL. This
option has the benefit of faster running but with more restrictions placed on your
coding style. If you do not follow the restrictions, your code may behave
unpredictably. See [‘DLL Restrictions” on page 298| for more information.

Compile your C source modules as DLL when:

1.
2.

Your source module calls imported functions or imported variables by name.

Your source module contains a comparison of function pointers that may be DLL
function pointers.

The comparisons shown in ['‘Function Pointer Comparison in Non-DLL Code” on|
are undefined. To obtain valid comparisons, compile the source
modules as DLL code.

Your source module may pass a function pointer to DLL code through a
parameter or a return value.

If the sort () routine in|Figure 63 on page 314 is compiled as DLL code instead
of non-DLL code, non-DLL applications can no longer call it. To be able to call
the DLL code version of sort (), the original non-DLL application must be
recompiled as DLL code.

Your source module may define a global function pointer and another source
module changes it.

Consider [Figure 54 on page 306 and [Figure 55 on page 306} You have the
following two options when compiling them.

a. If source module 1 is compiled as DLL code, source module 2 must also be
compiled as DLL code.

b. Alternately, you can compile source module 1 as DLL and source module 2
as NODLL(CBA).

Chapter 22. Building Complex DLLs 305

void (*fp) (void);
extern void goo (void);
void main() {
goo() 3
(=fp) ()3 /* call hello function */
1

Figure 54. Source Module 1

#include <stdio.h>
extern void (*fp)(void);
void hello(void) {
printf("hello\n");
}
void goo(void) {
fp = hello;
1

Figure 55. Source Module 2

The following table summarizes some of the ways that you could compile the
two source modules and lists the results. Both modules are linked into a single

executable.

How Modules Were Compiled Result

Source module 1 NODLL(NOCBA) fp contains a function descriptor. Execution of fp will

source module 2 DLL(NOCBA) succeed because it is valid to the address of a
function descriptor.

Source module 1 DLL(NOCBA) fp contains the address of hello. The execution of

Source module 2 NODLL(NOCBA) fp would abend because source module 1 expects
fp to contain a function descriptor for hello.

Source module 1 DLL(CBA) fp contains a function descriptor. The generated

Source module 2 DLL(NOCBA) code will function correctly. It will run slower than if
the source modules were compiled as DLL (NOCBA)
because it will use Language Environment to make
the function call.

Source module 1 NODLL(CBA) A call to Language Environment made by the

Source module 2 DLL(NOCBA) function call through the function pointer prevents a
problem that would have occurred had a direct
function call been made.

If you do not use the DLL compiler option, and your source module calls
imported functions or imported variables by name, there will be unresolved
references to these variables and functions at bind time. A DLL or DLL
application that does not comply with these rules may produce undefined
run-time behavior. For a detailed explanation of incompatibilities between DLL
and non-DLL code, see [‘Compatibility Issues Between DLL and Non-DLL Code’

on page 307}

Modifying Noncompliant Source

Sometimes source modules of a complex DLL or DLL application do not
simultaneously meet all the DLL rules. These rules are documented in the section
r‘RuIes for Compiling Source Code” on page 304|. When these situations occur, you
can use the following methods to solve the problem:

* Use the CBA suboption.

306 z/0S V1R4.0 C/C++ Programming Guide

* Rewrite the source in C. Only C source can be compiled as either DLL or
non-DLL code. C++ source code is always DLL code.

* Split a C source module in two so that one of the new files is compiled as DLL
code and the other is compiled as non-DLL code.

Note: In rare cases, you may have to split a function into two functions before
you can successfully split the file.

An example of noncompliant source is a C++ source module that contains a
function call through a pointer that may be either a DLL pointer to a function
descriptor or a direct function pointer. Convert it to C code and compile as non-DLL
code or, preferably, as DLL(CBA) and recompile.

Compatibility Issues Between DLL and Non-DLL Code

This section describes the differences between DLL code and non-DLL code, and
discusses the related compatibility issues for linking them to create complex DLLs.

Note: This section does not apply to XPLINK applications. XPLINK code is always
DLL code.

The following table and |[Figure 56 on page 308|illustrate DLL code referencing
functions and variables.

Chapter 22. Building Complex DLLs 307

308

DLL Application DLL
DLL Code Data DLL Code
extern int f(void); int f(void);
int g(void); Func Des int x;
extern int Xx; ce c
inty; > addr(f) » int f(void); {
L 10, }
Lox=1
Ce Var Des
— 90);
»| addr(x)
> int g(void) {
T Func Des
} P
—v=2. A »| addr(g)
Data
—» 2 |y » 1 |X

Figure 56. Referencing Functions and External Variables in DLL code

Table 41. Referencing Functions and External Variables

DLL

Imported Functions

A function descriptor is created by the binder.
The descriptor is in the WSA class and contains
the address of the function and the address of
the writable static area associated with that
function. The function address and the address
of the WSA associated with the function is
resolved when the DLL is loaded. |

Nonimported Functions

Also called through the function descriptor but
the function address is resolved at link time.

Imported Variables

A variable descriptor is created in the WSA by
the binder. It contains addressing information
for accessing an imported variable. The
address is resolved when the DLL is loaded.

Nonimported Variables

Direct access [

z/0OS V1R4.0 C/C++ Programming Guide

Pointer Assignment

In DLL code and non-DLL code, the actual address of a variable is assigned to a
variable pointer. A valid variable pointer always points to the variable itself and
causes no compatibility problems.

Function Pointers

In non-DLL code, the actual address of a nonimported function is assigned to a
function pointer. In DLL code, the address of a function descriptor is assigned to a
function pointer.

If you assign the address of an imported function to a pointer in non-DLL code, the
link step will fail with an unresolved reference. In a complex DLL or DLL application,
a pointer to a function descriptor may be passed to non-DLL code. A direct function
pointer (pointer to a function entry point) may be passed to DLL code. °

In a complex DLL or DLL application, a function pointer may point either to a
function descriptor or to a function entry, depending on the origin of the code. The
different ways of dereferencing a function pointer causes the compatibility problem
in linking DLL code with non-DLL code.

In [Figure 57 on page 310] assigns the address of the descriptor for the imported
function f to fp. | assigns the address of the imported variable x to xp. [EJ
assigns the address of the descriptor for the nonimported function g to gp. [
assigns the address of the non-imported variable y to yp.

5. A parameter, a return value, or an external variable can pass a function pointer or an external variable.

Chapter 22. Building Complex DLLs 309

DLL Application DLL

DLL Code Data DLL Code
extern int f(void); int f(void);
int (*fp) (); Func Des int x:
int g(void); e Ce
int (*gp)(); > addr(f) » int f(void) {
extern int x; o e
inty, *xp, *yp; }

L fp =f;
— Xp = &x: Var Des
addr(x)

—op=g;
» int g(void) { Func Des

o > addr(g)
— Yp = &y;

Data

Ly | XXXXX | Y > » 1 |x

Figure 57. Pointer Assignment in DLL code

In|Figure 58 on page 311}, causes a bind error because the assignment to fp is
undefined.] causes a binder error because the assignment to xp is undefined.
E assigns gp to the address of the nonimported function, g. [[] assigns the
address of the nonimported variable y to yp.

310 z/0S V1R4.0 C/C++ Programming Guide

Application DLL

non-DLL Code DLL Code

extern int f(void); int f(void);
int (*fp) (); int x;

int g(void); ce
int (*gp)(); int f(void) {
extern int x; e
inty, *xp, *yp; }

v

Bind

L=t

» Bind

- Xp = &X;
gp - é;.

I: int g.(\./(.)id){
} .

—yp=&y; &l

Data Data

Ly | Xxxxx |y 1]|x

Figure 58. Pointer Assignment in Non-DLL code

DLL Function Pointer Call in Non-DLL Code

Because z/OS C/C++ supports a DLL function pointer call in non-DLL code, you are
able to create a DLL to support both DLL and non-DLL applications. The z/OS
C/C++ compiler inserts glue code at the beginning of a function descriptor to allow
branching to a function descriptor. Glue code is special code that enables function
pointer calls from non-DLL code to DLL code, including XPLINK code.

A function pointer in non-DLL code points to the function entry and a function
pointer call branches to the function address. However, a DLL function pointer
points to a function descriptor. A call made through this pointer in non-DLL code
results in branching to the descriptor.

z/OS C/C++ executes a DLL function pointer call in non-DLL code by branching to
the descriptor and executing the glue code that invokes the actual function.

Chapter 22. Building Complex DLLs 311

The following examples and [Figure 63 on page 314 show a DLL function pointer call
in non-DLL code, where a simplified sort () routine is used. Note that the sort()
routine compiled as non-DLL code can be called from both a DLL application and a
non-DLL application.

C Example

File 1 and File 2 are bound together to create application A. File 1 is compiled with
the NODLL option. File 2 is compiled with the DLL option (so that it can call the DLL
function sort()). File 3 is compiled as DLL to create application B. Application A and
B can both call the imported function sort() from the DLL in file 4.

File 1 of Complex DLL Application compiled with NODLL option.

typedef int CmpFP(int, int);

void sort(int* arr, int size, CmpFPx); /* sort routine in DLL */
void callsort(int* arr, int size, CmpFP* fp); /* routine compiled as DLL */
/* which can call DLL */
/* routine sort() */

int comp(int el, int e2) {
if (el == e2) {
return(0);

else if (el < e2) {
return(-1);

}

else {
return(1);

}

main() {
CmpFP+ fp = comp;
int a[2] = {2,1};
callsort(a, 2, fp);
return(0);

}

Figure 59. File 1. Application A.

File 2 of Complex DLL Application compiled with DLL option.

typedef int CmpFP(int, int);
void sort(int* arr, int size, CmpFPx); /* sort routine in DLL */
void callsort(int* arr, int size, CmpFP* fp) {

sort(arr, size, fp);

}

Figure 60. File 2. Application A

312 z/0S V1R4.0 C/C++ Programming Guide

Simple DLL Application compiled with DLL option.

int comp(int el, int e2) {
if (el == e2)
return(0);
else if (el < e2)
return(-1);
else
return(1); }
int (*fp)(int el, int e2);
main()
{
int a[2] = {2, 1 };
fp = comp; /* assign function address */
sort(a, 2, fp); /* call sort =/
}

Figure 61. File 3. Application B

File 4 is compiled as NODLL and bound into a DLL. The function sort () will be
exported to users of the DLL.

DLL Compiled with NODLL Option

typedef int CmpFP(int, int);
int sort(int* arr, int size, CmpFPx fp) {
int i,j,temp,rc;

for (i=0; i<size; ++i) {
for (j=1; j<size-1; ++j) {
rc = fp(arr[j-1], arr[j]); /* call 'fp' which may be DLL or no-DLL code x/

if (rc > 0) {
temp = arr[j];
arr[jl = arr[j-1];
arr[j-1] = temp;

}
}
}

return(0);

}

#pragma export(sort)

Figure 62. File 4. DLL

Note: Non-DLL function pointers can only safely be passed to a DLL if the function
referenced is naturally reentrant, that is, it is C code compiled with the
NORENT compiler option, or is C code with no global or static variables. See
the discussion on the CBA option to see how to make a DLL that can be
called by applications that pass constructed reentrant function pointers.

Chapter 22. Building Complex DLLs 313

DLL Application in C DLLinC

DLL Code Data Non-DLL Code
|-> int comp (int e1, int e2) »void sort (

{ int *a, int num,
... branch to comp int (*comp)(int el, int e2)
}

. func des e
main () if (*comp)(. ..) <0)
{ .
e » | glue code || }

. L

/* point to des */
fp = comp; branch to des
sort (a, 2, fp);
}

non-DLL Application in C

DLL Code

branch to
func entry

|—> int comp (int e1, int e2)
{

L

main ()

{
)*. boint to des */
fp = comp;
sort (a, 2, fp);

}

Figure 63. DLL Function Pointer Call in non-DLL code

Non-DLL Function Pointer Call in DLL(CBA) Code

The following figure illustrates one situation where you could use the CBA suboption.
In the example, the DLL provider provides stub routines which the application
programmer can bind with their applications. These stub routines allow an
application programmer to use a DLL without recompiling the application with the
DLL option. This is an important consideration for library providers that want to move
from a static version of a library to a dynamic one. Stub routines are not mandatory,
however if they are provided, the application programmer only needs to rebind, but
not recompile the application. If stub routines are not provided by the DLL provider,
the application programmer must recompile the application.

314 z/0S V1R4.0 C/C++ Programming Guide

APPLICATION

int compare (int el, int e2) {

} E
typedev void (CMP_FP) (int, int);
void main(void)
int x [10];

CMP_FP* fo=&compare;
stubsort (fp, x, 10); n

|

typedef void (CMP_FP) (int, int);
void dllsort (CMP_FP*, int*, int);
stubsort (CMP_FP* fp, int* arr, int len)
dllsort (fp, arr, len);) ; E

Definition Side Deck
IMPORT CODE DLL DLLSORT

|

Language Environment <+

#pragma export (dllsort)
typedef void (CMP_FP) (int, int);
void dllsort (CMP_FP* fp, int* arr, int len)

rc = fp(arri], arr[i+i]); E

Figure 64. DLL Function Pointer Call in Non-DIl Code

In the previous example, the DLL provider:

Compiles the DLL parts as either DLL(CBA) or NODLL (CBA).
Exports function d11sort () for use by other applications.
Binds the DLL to produce a DLL executable module and a DLL definition

side-deck.

Creates a stub function for every function exported from the DLL. The stub
function calls a corresponding function in the DLL.This routine is compiled with

the DLL option. The stub functions are provided to the application programmer in
a static library to be bound with the application.

The Application Programmer:
» Codes the program using any of the following compiler options;

— DLL

— NODLL
— RENT
— NORENT

» Calls the stub routines, not the exported functions.

Note: The stub routines must be called because the application programmer

may have compiled his code with the NODLL compiler option. Otherwise,

references to the DLL functions will be unresolved at bind time. Providing
the stub routines allows an application programmer to use a DLL without
recompiling the application with the DLL option. This is an important
consideration for library providers that want to move from a static version

Chapter 22. Building Complex DLLs

315

of a library to a dynamic one. Providing stub routines requires the
application programmer to rebind but not recompile the application.

» Statically binds the definition side-deck, provided by the DLL provider, and the
stub routines with their program.

* Binds the DLL to produce a DLL executable module and a DLL definition
side-deck

* Creates a stub function for every function exported from the DLL. The stub
function calls the DLL directly

The reference keys in |Figure 64 on page 315| illustrate the sequence of events.
Note that in [, the user does not explicitly make a call to Language Environment.
The generated code for the fp function call makes the call to z/OS Language
Environment. z/OS Language Environment does the following at point [in the
figure:

* Saves the DLL environment

» Establishes the application environment

* Branches to the user’s function

* Reestablishes the DLL environment after execution of the function
* Returns control to the DLL.

Non-DLL Function Pointer Call in DLL Code

In DLL code, it is assumed that a function pointer points to a function descriptor. A
function pointer call is made by first obtaining the function address through
dereferencing the pointer; and then, branching to the function entry. When a
non-DLL function pointer is passed to DLL code, it points directly to the function
entry. An attempt to dereference through such a pointer produces an undefined
function address. The subsequent branching to the undefined address may result in
an exception. The following is an example of passing a non-DLL function pointer to
DLL code via an external variable. Its behavior is undefined as shown in the
following example:

C and C++ Example

#include <stdio.h>
extern void (*fp)(void);
void hello(void) {
printf("hello\n");
1
void goo(void) {
fp = hello; /* assign address of hello, to fp */
/* (refer to
[Figure 58 on page 311)). */
1

Figure 65. C Non-DLL Code

316 z/0S V1R4.0 C/C++ Programming Guide

extern void goo(void);
void (*fp) (void);
void main (void) {
goo();
(*xfp) () /* Expect a descriptor, but get a function address, =/
/* so it dereferences to an undefined address and */
/* call fails */

Figure 66. C DLL Code

extern "C" void goo(void);
void (*fp) (void);
void main (void) {
goo();
(*fp) () /* Expect a descriptor, but get a function address, =/
/* so it dereferences to an undefined address and */
/* call fails */

Figure 67. C++ DLL Code

In the following example, a non-DLL function pointer call to an assembler function is
resolved.

/*
* This function must be compiled as DLL(CBA)
*/

extern "0S" {
typedef void 0S_FP(char *, int =*);

extern "0S" 0S_FP* ASMFN(char=);

int CXXFN(charx pl, intx p2) {
0S_FP* fptr;

fptr = ASMFN("ASM FN"); /+ returns pointer to address of function */
if (fptr) {
fptr(pl, p2); /* call asm function through fn pointer =/

return(0);

Figure 68. C++ DLL Code Calling an Assembler Function

Function Pointer Comparison in Non-DLL Code

In non-DLL code, the results of the following function pointer comparisons are
undefined:

* Comparing a DLL function pointer to a non-DLL function pointer
» Comparing a DLL function pointer to another DLL function pointer
* Comparing a DLL function pointer to a constant function address

Comparing a DLL function pointer to a non-DLL function pointer
In [Figure 71 on page 318| both the DLL function pointer and the non-DLL
function pointer point to the same function, but the pointers when compared are
unequal.

Chapter 22. Building Complex DLLs 317

C Example

#include <stdio.h>
extern int foo(int (xfpl)(const char *, ...));
main ()

int (xfp)(const char *, ...);
fp = printf; /* assign address of a descriptor that =/
/* points to printf. */
if (foo(fp))
printf("Test result is undefined\n");

Figure 69. C DLL code
int foo(int (*fpl)(const char *, ...))

int (xfp2) (const char *, ...);
fp2 = printf; /* assign the address of printf. */
if (fpl == fp2) /* comparing address of descriptor to =/
/* address of printf results in unequal.*/
return(0);
else
return(1);

Figure 70. C Non-DLL code

In the preceding examples, DLL code and non-DLL code can reside either in the
same executable file or in different executable files.

Func Descriptor

non-DLL code C Library

int printf(...

func addr
if (fpl == fp2)

Figure 71. Comparison of Function Pointers in non-DLL code

Comparing a DLL function pointer to another DLL function
pointer

The example in |Figure 75 on page 320| compares addresses of function
descriptors. In the following examples, both of the DLL function pointers point to
the same function, but they compare unequal.

318 z/0S V1R4.0 C/C++ Programming Guide

C Example

#include <stdio.h>
extern int goo(int (xfpl)(const char *, ...));
main ()

int (xfp)(const char *, ...);
fp = printf; /* assign address of a descriptor that =/
/* points to printf. */
if (goo(fp))
printf("Test result is undefined\n");

Figure 72. File 1 C DLL Code

#include <stdio.h>

extern int foo(int (*fpl)(const char *, ...),
int (xfp2) (const char *, ...));
int goo(int (*fpl)(const char *, ...))
{
int (*fp2) (const char *, ...);
fp2 = printf; /* assign address of a different */
/* descriptor that points to printf. */
return (foo(fpl, fp2));
1
Figure 73. File 2 C DLL Code
int foo(int (*fpl)(const char %, ...),
int (xfp2) (const char *, ...))
{
if (fpl == fp2) /* comparing the addresses of two */
/* descriptors results in unequal. */

return(0);
else
return(1);

Figure 74. File 3 C Non-DLL Code

Comparison of Two DLL Function Pointers in Non-DLL code

File 1 and file 2 reside in different executable modules. File 3 can reside in the
same executable module as file 1 or file 2 or it can reside in a different executable
module. In all cases, the addresses of the function descriptors will not compare
equally.

Chapter 22. Building Complex DLLs 319

Func Desl1

non-DLL code

C Library

int printf(...
}

func addr
if (fpl==fp2)
e }

Func Des2

v

func addr

Figure 75. Comparison of Two DLL Function Pointers in Non-DIl Code

Comparing a DLL function pointer to a constant function
address other than NULL
Here, you are comparing the constant function address to an address of a
function descriptor.

Note: Comparing a DLL function pointer to NULL is well defined, because when
a pointer variable is initialized to NULL in DLL code, it has a value zero.

Function Pointer Comparison in DLL Code

320

In XPLINK code, function pointers are compared using the address of the
descriptor. No special considerations, such as dereferencing, are required to
initialize the function pointer prior to comparison. Function descriptors are
guaranteed to be unique throughout the XPLINK application for a particular function,
so this comparison of function descriptor addresses will yield the correct results
even if the function pointer is passed between executable modules within the
XPLINK application. The remainder of this section does not apply to XPLINK
applications.

In non-XPLINK DLL code, a function pointer must be NULL before it is compared.
For a non-NULL pointer, the pointer is further dereferenced to obtain the function
address that is used for the comparison. For an uninitialized function pointer that
has a non-zero value, the dereference can cause an exception to occur. This
happens if the storage that the uninitialized pointer points to is read-protected.

Usually, comparing uninitialized function pointers results in undefined behavior. You
must initialize a function pointer to NULL or the function address (from source view).
Two examples follow.

z/0OS V1R4.0 C/C++ Programming Guide

#include <stdio.h>
int (xfp2)(const char =, ...) /* Initialize to point to the
= printf; /x descriptor for printf
int goo(void);
int (xfp2) (void) = goo;
int goo(void) {
int (xfpl)(void);
if (fpl == fp2)
return (0);
else
return (1);
1

void check _fp(void (*fp)()) {
/* exception likely when -1 is dereferenced below */
if (fp == (void (*)())-1)
printf("Found terminator\n");
else
fp()s

void dummy() {
printf("In function\n");
}

main() {
void («fa[2])();
int i;

fa[0]
fa[1]

dummy ;

(void (+)())-1;

for(i=0;i<2;i++)
check_fp(fa[i]);

Figure 76. Undefined Comparison in DLL Code (C or C++)

Figure 77|shows that, when fpl points to a read-protected memory block, an

exception OCcCurs.

DLL code read-protected memory

Aread attempt to access

*/
*/

»
»

if (fpl == fp2) will cause an exception being accessed

read-protected memory A memory block

as if a descriptor

Figure 77. Comparison of Function Pointers in DLL code (C or C++)

Following is an example of valid comparisons in DLL code:

Chapter 22. Building Complex DLLs

321

#include <stdio.h>

int (*fpl)(const char *, ...); /* An extern variable is implicitly=/
/* initialized to zero */

/* if it has not been explicitly =*/

/* initialized in source. */

int (*fp2) (const char *, ...) /* Initialize to point to the */
= printf; /* descriptor for printf */

int foo(void) {
if (fpl 1= fp2)
return (0);
else
return (1);

Figure 78. Valid Comparisons in DLL Code (C or C++)

Using DLLs That Call Each Other

322

bage 524).

An application can use DLLs that call each other. There are two methods for
building these applications, as illustrated in the examples that follow:

* In the first method, the loop is broken by manually creating IMPORT statements
for the referenced DLLs, when binding one of the DLLs (APPL2D3).

* In the second method, an initial bind is done on APPL2D3 using the binder NCAL
parameter, which will be done again after the referenced DLLs are built.

In both cases, the result is that the side-deck is produced for APPL2D3, so that the
DLLs that reference APPL2D3 can be built.

The APPL2 application (Figure 79 on page 323) imports functions and variables
from three DLLs: (Figure 80 on page 323| |Figure 81 on page 324} and [Figure 82 on|

z/0OS V1R4.0 C/C++ Programming Guide

#include <stdlib.h>

extern int varl dl; /*imported from APPL2D1 */
extern int funcl_dl(int); /*imported from APPL2D1 */
extern int varl d2; /*imported from APPL2D2 */
extern int funcl d2(int); /*imported from APPL2D2 x/
extern int varl_d3; /*imported from APPL2D3 */
extern int funcl d3(int); /*imported from APPL2D3 */

int main() {
int rc = 0;

printf("+-APPL2::main() starting \n");
/* ref DLLL */
if (varl_dl == 100) {
printf("| varl_dl=<%d>\n",varl_dl++);
funcl_dl(varl_dl);

1
/* ref DLL2 =/

if (varl_d2 == 200) {
printf("| varl_d2=<%d>\n",varl_d2++);
funcl_d2(varl_d2);

}
/* ref DLL3 =/
if (varl_d3 == 300) {
printf("| varl_d3=<%d>\n",varl d3++);
funcl_d3(varl_d3);
}

printf("+-APPL2::main() Ending \n");

Figure 79. Application APPL2

The following application APPL2D1 imports functions from|Figure 81 on page 324
and [Figure 82 on page 324

#include <stdio.h>

int funcl d1(); /* A function to be externalized */
int varl_dl = 100; /* export this variable */
extern int funcl_d2(int); /*imported from APPL2D2 */
extern int funcl d3(int); /*imported from APPL2D3 */
int funcl_dl (int input)
{

int rc2 = 0;

int rc3 = 0;

printf("| +-APPL2D1() funcl d1() starting. Input is %d\n", input);
rc2 = funcl_d2(200);
rc3 = funcl_d3(300);
printf("| | funcl_d1() d111 - rc2=<%d> rc3=<%d>\n", rc2,
rc3);
printf("| +-APPL2D1() funcl d1() ending. \n");

Figure 80. Application APPL2D1

The following application APPL2D2 imports a function from |Figure 82 on page 324].

Chapter 22. Building Complex DLLs 323

#include <stdio.h>

int funcl d2(); /* A function to be externalized */
int varl_d2 = 200;

extern int funcl d3(int); /* import this function */

int funcl d2 (int input)
{

int rc3 =0;

printf("| | +-APPL2D2() funcl d2() starting. Input is %d\n",
input);

rc3 = funcl_d3(300);

printf(" | funcl_d2() d112 - rc3=<%d>\n", rc3);

printf(" +-APPL2D2() funcl d2() ending\n");

}

Figure 81. Application APPL2D2

The following application APPL2D3 imports variables from |Figure 80 on page 323
and

#include <stdio.h>

int funcl_d3(); /* A function to be externalized */
int varl_d3 = 300;

extern int varl_dl; /* imported variable from app12D1 =/
extern int varl d2; /* imported variable from app12D2 =*/

int funcl d3 (int input)

printf("| | | +-APPL2D3()-funcl d3() starting. Input is %d\n",
input);
printf("| | | | value of varl di=%d varl_d2=%d\n",
varl d1, wvarl d2);
printf("| | | +-APPL2D3()-funcl _d3() ending\n");

Figure 82. Application APPL2D3

The first method uses the JCL in|Figure 83 on page 325 The following processing
occurs:

1. APPL2D3 is compiled and bound to create a DLL. The binder uses the control
cards supplied through SYSIN to import variables from APPL2D1 and APPL2D2.
The binder also generates a side-deck APPL2D3 that is used in the following
steps.

2. APPL2D2 is compiled and bound to create a DLL. The binder uses the control
cards supplied through SYSIN to include the side-deck from APPL2D3. The
following steps use the binder which generates the side-deck APPL2D2.

3. APPL2D1 is compiled and bound to create a DLL. The binder uses the control
cards supplied through SYSIN to include the side-decks from APPL2D2 and
APPL2D3. The following steps show the binder generating the side-deck
APPL2D1.

4. APPL2 is compiled, bound, and run. The binder uses the control statements
supplied through SYSIN to include the side-decks from APPL2D1, APPL2D2,
and APPL2D3.

324 z/0S V1R4.0 C/C++ Programming Guide

//jobcard information...

//*

//* CBDLL3: -Compile and bind APPL2D3

//* -Explicit import of variables from APPL2D1 and APPL2D2
//* -Generate the side-deck APPL2D3

//*

//CBDLL3 EXEC EDCCB,INFILE='myid.SOURCE(APPL2D3)",
// CPARM='SO,LIST,DLL,EXPO,RENT,LONG',

// OUTFILE='myid.LOAD,DISP=SHR'

//BIND.SYSIN DD =

IMPORT DATA APPL2D1 varl_dl

IMPORT DATA APPL2D2 varl_d2

NAME APPL2D3(R)

/*

//BIND.SYSDEFSD DD DSN=myid.IMPORT(APPL2D3),DISP=SHR
/1*

//*CDDLL2: -Compile and bind APPL2D2

//* -Include the side-deck APPL2D3

//* -Generate the side-deck APPL2D2

//*

//CBDLL2 EXEC EDCCB,INFILE='myid.SOURCE(APPL2D2)",
// CPARM='SO,LIST,DLL,EXPO,RENT,LONG',

// OUTFILE='myid.LOAD,DISP=SHR'

//BIND.SYSIN DD =

INCLUDE DSD(APPL2D3)

NAME APPL2D2 (R)

/*

//BIND.SYSDEFSD DD DSN=myid.IMPORT(APPL2D2),DISP=SHR
//BIND.DSD DD DSN=myid.IMPORT,DISP=SHR

/1*

//* CBDLL1: -Compile and bind APPL2D1

//* -Include the side-deck APPL2D2 and APPL2D3

//* -Generate the side-deck APPL2D1

//*

//CBDLL1 EXEC EDCCB,INFILE='myid.SOURCE(APPL2D1)",
// CPARM='SO,LIST,DLL,EXPO,RENT,LONG',

// OUTFILE='myid.LOAD,DISP=SHR'

//BIND.SYSIN DD =

INCLUDE DSD(APPL2D2)

INCLUDE DSD(APPL2D3)

NAME APPL2D1(R)

/*

//BIND.SYSDEFSD DD DSN=myid.IMPORT(APPL2D1),DISP=SHR
//BIND.DSD DD DSN=myid.IMPORT,DISP=SHR

/1*

//* CBAPP2: -Compile, bind and run APPL2

//* -Include the side-deck APPL2D1, APPL2D2 and APPL2D3
//*

//CBAPP2 EXEC EDCCBG,INFILE='myid.SOURCE(APPL2)",
// CPARM='S0,LIST,DLL,RENT,LONG',

// OUTFILE='myid.LOAD(APPL2),DISP=SHR"
//BIND.SYSIN DD =

INCLUDE DSD(APPL2D1)

INCLUDE DSD(APPL2D2)

INCLUDE DSD(APPL2D3)

NAME APPL2 (R)

/*

//BIND.DSD DD DSN=myid.IMPORT,DISP=SHR
//GO.STEPLIB DD

// DD DSN=myid.LOAD,DISP=SHR

Figure 83. Method 1 JCL

The second method uses the JCL in [Figure 84 on page 326 The following
processing occurs:

Chapter 22. Building Complex DLLs

325

326

1. Once compiled, the object module APPL2D2 is saved for the following steps.
2. APPL2D1 is compiled, the object module is saved for the following steps.

3. APPL2D3 is compiled and bound to generate the side-deck and the object
module is not used in the following steps. The load module for this step is not
saved, as it is not being used. The load module for APPL2D3 is generated at a
later step.

4. APPL2D2 is bound to create a DLL. The binder takes as input the object
module APPL2D2 and the side-deck APPL2D3. It also generates the side-deck
APPL2D?2 that is used in the following steps.

5. APPL2DL1 is bound to create a DLL. The binder takes as input the object
module APPL2D1 and the side-decks APPL2D3 and APPL2D?2. It also
generates the side-deck APPL2D1 that is used in the following steps.

6. APPL2D3 is bound to create a DLL. The binder takes as input the object
module APPL2D3 and the side-decks APPL2D1 and APPL2D?2. It also
generates the side-deck APPL2D3 that is used in the following step.

7. APPL2 is compiled, bound, and run. The binder takes as input the object
module APPL2 and the side-decks APPL2D1, APPL2D2, and APPL2D3.

//jobcard information...

//* CDLL2: -Compile APPL2D2

/1*

//CDLL2 EXEC EDCC,INFILE="myid.SOURCE(APPL2D2)"',
// OUTFILE="myid.0BJ(APPL2D2),DISP=SHR',

// CPARM='S0,LIST,DLL,EXPO,RENT,LONG'

/1%

//* CDLLL: -Compile APPL2D1

/1%

//CDLL1 EXEC EDCC,INFILE="myid.SOURCE(APPL2D1)",
// OUTFILE="myid.0BJ(APPL2D1),DISP=SHR',

// CPARM='S0,LIST,DLL,EXPO,RENT,LONG'

//*

//* CBDLL3: -Compile and bind APPL2D3 with NCAL
//* -Generate the side-deck APPL2D3

//* -The load module will not be kept, as it will not be
//* used

/1*

//CBDLL3 EXEC EDCCB,INFILE='myid.SOURCE(APPL2D3)",
// CPARM='SO,LIST,DLL,EXPO,RENT,LONG',

// BPARM="'NCAL'

//COMPILE.SYSLIN DD DSN=myid.OBJ(APPL2D3),DISP=SHR
//BIND.SYSLIN DD DSN=myid.OBJ(APPL2D3),DISP=SHR
//BIND.SYSIN DD =

INCLUDE OBJ(APPL2D2)

INCLUDE 0BJ(APPL2D1)

NAME APPL2D3(R)

/*

//BIND.SYSDEFSD DD DSN=myid.IMPORT (APPL2D3),DISP=SHR
//BIND.OBJ DD DSN=myid.OBJ,DISP=SHR

/1*

Figure 84. Method 2 JCL (Part 1 of 2)

z/0OS V1R4.0 C/C++ Programming Guide

/1*

//* BDLL2: -Bind APPL2D2

//* -Generate the side-deck APPL2D2

/1*

/1%

//BDLL2 EXEC CBCB,INFILE='myid.0BJ(APPL2D2)',

// BPARM='"CALL"',

// OUTFILE='myid.LOAD(APPL2D2),DISP=SHR'
//BIND.SYSIN DD DSN=myid.IMPORT (APPL2D3),DISP=SHR
//BIND.SYSDEFSD DD DSN=myid.IMPORT(APPL2D2),DISP=SHR
/1*

/1%

//* BDLL1: -Bind APPL2D1

//* -Generate the side-deck APPL2D1

/1*

//BDLL1 EXEC CBCB,INFILE='myid.0BJ(APPL2D1)",

// BPARM='CALL',

// OUTFILE='myid.LOAD(APPL2D1),DISP=SHR'
//BIND.SYSIN DD =

INCLUDE DSD(APPL2D2)

INCLUDE DSD(APPL2D3)

/*

//BIND.SYSDEFSD DD DSN=myid.IMPORT(APPL2D1),DISP=SHR
//BIND.DSD DD DSN=myid.IMPORT,DISP=SHR

/1*

//* BDLL3: -Bind APPL2D3

//* -Generate the side-deck APPL2D3

/1*

//BDLL3 EXEC CBCB,INFILE='myid.0BJ(APPL2D3)",

// BPARM='CALL"',

// OUTFILE="myid.LOAD(APPL2D3),DISP=SHR'
//BIND.SYSIN DD =

INCLUDE DSD(APPL2D1)

INCLUDE DSD(APPL2D2)

NAME APPL2D3(R)

/*

//BIND.SYSDEFSD DD DSN=myid.IMPORT (APPL2D3),DISP=SHR
//BIND.DSD DD DSN=myid.IMPORT,DISP=SHR

/1*

//* CBAPP2: -Compile, bind and run APPL2

//* -Input the side-decks APPL2D1, APPL2D2 and APPL2D3
/1*

//CBAPP2 EXEC EDCCBG,INFILE="'myid.SOURCE(APPL2)",
// CPARM='SO,LIST,DLL,RENT,LONG',

// OUTFILE="myid.LOAD(APPL2),DISP=SHR'
//BIND.SYSIN DD =

INCLUDE DSD(APPL2D1)

INCLUDE DSD(APPL2D2)

INCLUDE DSD(APPL2D3)

NAME APPL2(R)

/*

//BIND.DSD DD DSN=myid.IMPORT,DISP=SHR
//GO.STEPLIB DD

// DD DSN=myid.LOAD,DISP=SHR

Figure 84. Method 2 JCL (Part 2 of 2)

Chapter 22. Building Complex DLLs

327

328 z/0S V1R4.0 C/C++ Programming Guide

Chapter 23. Using Threads in z/OS UNIX Applications

A thread is a single flow of control within a process. The following section describes
some of the advantages of using multiple threads within a single process, and
functions that can be used to maintain this environment.

Models and Requirements

Functions

Threads are efficient in applications that allow them to take advantage of any
underlying parallelism available in the host environment. This underlying parallelism
in the host can be exploited either by forking a process and creating a new address
space, or by using multiple threads within a single process. There are advantages
and disadvantages to both techniques, but it primarily comes down to a
compromise between the efficiency of using multiple threads versus the security of
working in separate address spaces. The POSIX(ON) run-time option must be
specified to use threads.

The following table lists the functions provided to implement a multi-threaded
application:

Table 42. Functions used in creating multi-threaded applications

Function Purpose

pthread_create() Create a thread

pthread_join() Wait for thread termination
pthread_exit() Terminate a thread normally
pthread detach() Detach a thread

pthread_self() Get your thread ID

pthread equal() Compare thread IDs
pthread_once() Run a function once per process
pthread yield() Yield the processor

Creating a Thread

To use a thread you must first create a thread attribute object with the
pthread_attr_init() function. A thread attribute object defines the modifiable
characteristics that a thread may have. Refer to the description of
pthead_attr_init() in[z/0S C/C++ Run-Time Library Reference for a list of the
attributes and their default values. When the thread attribute object has been
created, you may use the following functions to change the default attributes.

Table 43. Functions to change default attributes

Function Purpose

pthread_attr_init() Initialize a thread attribute object

pthread_attr_destroy() Delete a thread attribute object

pthread_attr _getstacksize() Gets the stacksize for thread attribute object

pthread_attr_setstacksize() Sets the stacksize for thread attribute object

pthread_attr _getdetachstate() Returns current value of detachstate for
thread attribute object

© Copyright IBM Corp. 1996, 2002 329

Table 43. Functions to change default attributes (continued)

Function Purpose

pthread_attr setdetachstate() Alters the current detachstate of thread
attribute object

pthread_attr_getweight np() Obtains the current weight of thread setting

pthread_attr_setweight_np() Alters the current weight of thread setting

pthread_attr_getsynctype np() Returns the current synctype setting of
thread attribute object

pthread_attr_setsynctype np() Alters the synctype setting of thread attribute
object

The attribute object is only used when the thread is created. You can reuse it to
create other threads with the same attributes, or you can modify it to create threads
with other attributes. You can delete the attribute object with the

pthread attr_destroy() function.

After you create the thread attribute object, you can then create the thread with the
pthread create() function.

When a daughter thread is created, the function specified on the pthread create()
as the start routine begins to execute concurrently with the thread that issued the
pthread create(). It may use the pthread_self() function to determine its thread
ID. The daughter thread will continue to execute until a pthread exit() is issued, or
the start routine ends. The function that issued the pthread create() resumes as
soon as the daughter thread is created. The daughter thread ID is returned on a
successful pthread_create(). This thread ID, for example, can be used to send a
signal to the daughter thread using pthread_ki11() or it can be used in

pthread join() to cause the initiating thread to wait for the daughter thread to end.

The following functions can be used to control the behavior of the individual threads
in a multi-threaded application.

Table 44. Functions used to control individual threads in a multi-threaded environment

Function Purpose
pthread_equal() Compares two thread IDs
pthread_yield() Allows threads to give up control

Refer to |z/0S C/C++ Run-Time Library Referencd for more information on these
functions.

Synchronization Primitives

330

This section covers the control of multiple threads that may share resources. In
order to maintain the integrity of these resources, a method must exist for the
threads to communicate their use of, or need to use, a resource. The threads can
be within a common process or in different processes.

Models

Mutexes, condition variables, and read-write locks are used to communicate
between threads. These constructs may be used to synchronize the threads
themselves, or they can also be used to serialize access to common data objects
shared by the threads.

z/0OS V1R4.0 C/C++ Programming Guide

* The mutex, which is the simple type of lock, is exclusive. If a thread has a mutex
locked, the next thread that tries to acquire the same mutex is put in a wait state.
This is beneficial when you want to serialize access to a resource. This might
cause contention however if several threads are waiting for a thread to unlock a
mutex. Therefore, this form of locking is used more for short durations. It the
mutex is a shared mutex, it must be obtained in shared memory accessable
among the cooperating processes.

A thread in mutex wait will not be interrupted by a signal.

* A condition variable provides a mechanism by which a thread can suspend
execution when it finds some condition untrue, and wait until another thread
makes the condition true. For example, threads could use a condition variable to
insure that only one thread at a time had write access to a data set.

Threads in condition wait can be interrupted by signals.

* A read-write lock can allow many threads to have simultaneous read-only access
to data while allowing only one thread at a time to have write access. The
read-write lock must be allocated in memory that is writable. If the read-write lock
is a shared read-write lock, it must be obtained in shared memory accessable
among the cooperating processes.

Functions
The following functions allow for synchronization between threads:

Table 45. Functions that allow for synchronization between threads

Function Purpose

pthread mutex_init() Initialize a Mutex

pthread_mutex_destroy ()

Destroy a Mutex

pthread_mutexattr_init()

Initialize Default Attribute Object for a Mutex

pthread_mutexattr_destroy()

Destroy Attribute Object for a Mutex

pthread_mutexattr_getkind_np()

Get Kind Attribute for a Mutex

pthread_mutexattr_setkind_np()

Set Kind Attribute for a Mutex

pthread mutexattr gettype()

Get Type Attribute for a Mutex

pthread mutexattr_settype()

Set Type Attribute for a Mutex

pthread_mutexattr_getpshared()

Get Process-shared Attribute for a Mutex

pthread mutexattr_setpshared()

Set Process-shared Attribute for a Mutex

pthread_mutex_Tock()

Acquire a Mutex Lock

pthread_mutex_unlock()

Release a Mutex Lock

pthread_mutex_trylock()

Allows lock to be tested

pthread _cond_init()

Initialize a Condition Variable

pthread_cond_destroy()

Destroy a Condition Variable

pthread _condattr_init()

Initialize Default Attribute Object
for a Condition Variable

pthread_condattr_destroy()

Destroy Attributes Object for a Condition Variable

pthread_condattr_getkind_np()

Get Attribute for Condition Variable object

pthread_condattr_setkind_np()

Set Attribute for Condition Variable object

pthread_cond_wait()

Wait for a Condition Variable

pthread_cond_timedwait ()

Timed wait for a Condition Variable

pthread_cond_signal()

Signal a Condition Variable

Chapter 23. Using Threads in z/OS UNIX Applications

331

Table 45. Functions that allow for synchronization between threads (continued)

Function

Purpose

pthread _cond broadcast()

Broadcast a Condition Variable

pthread_rwlock_init()

Initialize a Read-Write Lock

pthread_rwlock_destroy()

Destroy a Read-Write Lock

pthread_rwlock_rdlock()

Wait for a Read Lock

pthread_rwlock_tryrdlock()

Allows Read Lock to be Tested

pthread_rwlock_trywrlock()

Allows Read-Write Lock to be Tested

pthread_rwlock_unlock()

Release a Read-Write Lock

pthread_rwlock_wrlock()

Wait for a Read-Write Lock

pthread_rwlockattr_init()

Initialize Default Attribute Object
for a Read-Write Lock

pthread_rwlockattr_destroy()

Destroy Attribute Object for a Read-Write Lock

pthread rwlockattr_getpshared()

Get Process-shared Attribute

for a Read-Write Lock

Set Process-shared Attribute
for a Read-Write Lock

pthread_rwlockattr_setpshared()

Creating a Mutex
To use the mutex lock you must first create a mutex attribute object with the

pthread mutexattr_init() function. A mutex attribute object defines the modifiable
characteristics that a mutex may have. Refer to the description of

pthread mutexattr_init() in|z/OS C/C++ Run-Time Library Reference for a list of
these attributes and their defaults.

After the mutex attribute object has been created, you can use the following
functions to change the default attributes.

e pthread mutexattr_getkind np()

* pthread mutexattr_setkind np()

* pthread mutexattr_gettype()

e pthread mutexattr_settype()

* pthread mutexattr_getpshared()

* pthread_mutexattr_setpshared()

The mutex attribute object is used only when creating the mutex. It can be used to
create other mutexes with the same attributes or modified to create mutexes with
different attributes. You can delete a mutex attribute object with the

pthread mutexattr_destroy() function.

After the mutex attribute object has been created, the mutex can be created with
the pthread_mutex_init() function.

While using mutexes as the locking device, the following functions can be used:
pthread_mutex lock()
pthread mutex_unlock()
pthread_mutex_trylock()

To remove the mutex, use the pthread mutex_destroy() function.

332 z/0S V1R4.0 C/C++ Programming Guide

Creating a Condition Variable
Before creating a condition variable, you need to create a mutex (as shown above),

then you must use the pthread condattr_init() function to create a condition
variable attribute object. This attribute object, like the mutex attribute object, defines
the modifiable characteristics that a condition variable may have. Refer to the
description of pthread_condattr_init() in|zZOS C/C++ Run-Time Library Referencd
for a list of these attributes and their defaults.

After the condition variable attribute object has been created, you may use the
following functions to change the default attributes:

pthread condattr_getkind np()
pthread_condattr_setkind_np()

The condition variable attribute object is used only when creating the condition
variable. It can be used to create other condition variables with the same attributes
or modified to create condition variables with different attributes. You can delete a
condition variable attribute object with the pthread_condattr_destroy() function.

After a condition variable attribute object has been created, the condition variable
itself can be created with the pthread cond_init() function.

Condition variables can then be used as a synchronization primitive using the
following functions:

pthread_cond wait()
pthread_cond_timedwait()
pthread_cond_signal()
pthread cond broadcast()

The condition variable can be removed with the pthread _cond_destroy() function.

Creating a Read-Write Lock
To use a read-write lock you must first create a read-write attribute object with the

pthread_rwlockattr_init() function. A read-write attribute object defines the
modifiable characteristics that a read-write lock may have. Refer to the description
of pthread_rwlockattr_init() in[z/0S C/C++ Run-Time Library Referencefor a list
of these attributes and their defaults.

After the read-write lock attribute object has been created, you can use the
following functions to change the default attributes.

* pthread_rwlockattr_getpshared()
* pthread rwlockattr_setpshared()

The read-write lock attribute object is used only when creating the read-write lock. It
can be used to create other read-write locks with the same attributes or modified to
create read-write locks with different attributes. You can delete a read-write attribute
object with the pthread_rwlockattr destroy() function.

After the read-write attribute has been created, the read-write lock can be created
with the pthread rwlock init() function.

While using read-write locks as the locking device, the following functions can be
used:

* pthread rwlock rdlock()
* pthread_rwlock tryrdlock()

Chapter 23. Using Threads in z/0S UNIX Applications 333

e pthread_rwlock wrlock()
* pthread_rwlock trywrlock()
e pthread_rwlock unlock()

To remove the read-write lock, use the pthread_rwlock destroy() function.

Thread-specific Data

While all threads can access the same memory, it is sometimes desirable to have
data that is (logically) local to a specific thread. The key/value mechanism provides
for global (process-wide) keys with value bindings that are unique to a thread.

You can also use the pthread_tag np() function to set and query 65 bytes of thread
tag data associated with the caller’s thread.

Model

The key/value mechanism associates a data key with each data item. When the

association is made, the key identifies the data item with a particular thread. This
data key is a transparent data object of type pthread_key t. The contents of this
key are not exposed to the user.

The user gets a key by issuing the pthread_key create() function. One of the
arguments on the pthread key create() function is a pointer to a local variable of
type pthread_key t. This variable is then used with the pthread set specific()
function to establish a unique key value.

pthread key create() creates a unique identifier (a key) that is visible to all of the
threads in a process. This data key is returned to the caller of
pthread key create(). Threads can associate a thread unique data item with this
key using the pthread_setspecific() call. A thread can get its unique data value
for a key using the pthread_getspecific() call. In addition, a key can have an
optional "destructor” routine associated with it. This routine is executed during
thread termination and is passed the value of the key for the thread being
terminated. A typical use of a key and destructor is to have storage obtained by a
thread using malloc() and returned within the destructor at thread termination by
using free().

Functions
The following functions are used with thread-specific data:

Table 46. Functions used with thread-specific data

Function Purpose
pthread_key create() Create a thread-specific data key
pthread_getspecific() Retrieve the value associated
with a thread-specific key
pthread_setspecific() Associate a value with a
thread-specific key
pthread_tag np() Set and query the contents of the calling thread’s
tag data

Creating Thread-specific Data
The following example uses thread-specific data to insure that storage acquired by
a specific thread is freed when the thread ends.

334 z/0S V1R4.0 C/C++ Programming Guide

Signals

CCNGTH1:

#define _OPEN_THREADS
#include <stdio.h>
#include <pthread.h>

pthread_key_t mykey; /* A place to get the key */
void mydestruct(void *value); /* My destructor routine =*/
main()

char * thddataptr;

/* Create a key, getting back the key from pthread_key create(),
and associate a function to be executed at thread termination
for this key

*/

(void)pthread key create(&mykey,&mydestruct);

/*
Obtain some storage which this thread will manage (remember,
the main is also a thread), which we want freed by our
destructor upon thread termination. Associate the storage
pointer with the key using pthread_setspecific.

*

/

thddataptr = (char *) malloc(100);

(void)pthread_setspecific(mykey,thddataptr);

/* the body of the function

/* now, the thread exits, causing the thread termination
key data destructor to be executed.
*
/
pthread_exit((void *)0);
1
/*
The key data destructor function
*
/
void mydestruct(void * value) {

/* value is the value in the key/value binding that is unique
to the thread being terminated. Thus, in the example,
it represents the pointer to the storage needing freed.

*

/

free(value);
1

Figure 85. Referring to Thread-specific Data

Each thread has an associated signal mask. The signal mask contains a flag for
each signal defined by the system. The flag determines which signals are to be

blocked from being delivered to a particular thread.

Unlike the signal mask, there is one signal action per signal for all of the threads in
the process. Some signal functions work on the process level, having an impact on

multiple threads, while others work on the thread level, and only affect one

particular thread. For example, the function ki11() operates at the process level,
whereas the functions pthread ki11() and sigwait() operate at the thread level.

The following are some other signal functions that operate on the process level and

can influence multiple threads:
alarm()
bsd_signal()

Chapter 23. Using Threads in z/OS UNIX Applications

335

ki11()
killpg()
raise()
sigaction()
siginterrupt()
signal()
sigset()

Generating a Signal

336

A signal can be generated explicitly with the raise(), ki11(), killpg(), or
pthread ki11() functions or implicitly with functions such as alarm() or by the
system when certain events occur. In all cases, the signal will be directed to a
specific thread running in a process.

The two primary functions for controlling signals are sigaction() and
sigprocmask(). sigaction() also includes bsd_signal(), signal(), and sigset().

sigaction()

sigaction() specifies the action when a signal is processed by the system. This
function is process-scoped instead of thread-specific. When a signal is generated
for a process, the state of each thread within that process determines which thread
is affected.

The three types of signal actions are:

catcher
Specifies the address of a function that will get control when the signal is
delivered

SIG_DFL
Specifies that the system should perform default processing when this
signal type is generated

SIG_IGN
Specifies that the system should ignore all signals of this type.

Attention: If a signal whose default action is to terminate is delivered to a thread
running in a process where there are multiple threads running, and no
signal catcher is designated for the signal, the entire process is
terminated. You can avoid this by blocking each of the terminating
signals, or by establishing a signal catcher for each of them.

In a multi-threaded application, when a signal is generated by a function or action
that is not thread specific, and the process has some threads set up for signals and
some threads that are not set up for signals, then the kernel’'s signal processing
determines which thread has the most interest in the signal.

The following is a list of signal interest rules in their order of priority:

1. When threads are found in a sigwait() for this signal type, the signal is
delivered to the first thread found in a sigwait().

2. When all threads are blocking this signal type, the signal is left pending in the
kernel at the process level. The sigpending function moves blocked pending
signals at the process level to the thread level.

3. When all of the following are true:
* One or more threads are set up for signals

z/0OS V1R4.0 C/C++ Programming Guide

» All threads set up for signals have the signal blocked
» Athread not set up for signals has not blocked the signal

The signal is left pending in the kernel on the first thread set up for signals. The
signal remains pending on that thread until the thread unblocks the signal.

4. When the signal action is to catch, the signal is delivered to one of the threads
that has the signal unblocked.

sigprocmask()
sigprocmask() specifies a way to control which set of signals interrupt a specific

thread. Because sigprocmask() is thread-scoped, it blocks the signal for only the
thread that issues the function.

Thread Cancellation

When multiple threads are running in a process, thread cancellation permits one
thread to cancel another thread in that process. This is done with the
pthread_cancel () function, which causes the system to generate a cancel interrupt
and direct it to the thread specified on the pthread cancel (). Each thread can
control how the system generates this cancel interrupt by altering the interrupt state
and type.

A thread may have the following interrupt states, in descending order of control:

disabled
For short code sequences, the entire code sequence can be disabled to
prevent cancel interrupts. The pthread_setintr() function enables or
disables cancel interrupts in this manner.

controlled
For larger code sequences where you want some control over the interrupts
but cannot be entirely disabled, set the interrupt type to controlled and the
interrupt state to enabled. The pthread_setintrtype() function allows for
this type of managed interrupt delivery by introducing the concept of
cancellation points.

Cancellation points consist of calls to a limited set of library functions. Refer
to the description of pthread_setintrtype() in[z/0S C/C++ Run-Tim€
[Library Referencd for a list of these cancellation points. The user program
can implicitly or explicitly solicit interrupts by invoking one of the library
functions in the set of cancellation points, thus allowing the user to control
the points within their application where a cancel may occur.

asynchronous
For code sequences where you do not need any control over the interrupt,
set pthread_setintr() to enable and pthread_setintrtype() to
asynchronous. This will allow cancel interrupts to occur at any point within
your program.

For example, if you have a critical code section (a sequence of code that needs to
complete), you would turn cancel off or prevent the sequence from being
interrupted. If the code is relatively long, consider running using the control
interrupt and as long as the critical code section doesn’t contain any of the
functions that are considered cancellation points, it will not be unexpectedly
canceled.

For C++, destructors for automatic objects on the stack are run when a thread is
cancelled. The stack is unwound and the destructors are run in reverse order.

Chapter 23. Using Threads in z/0S UNIX Applications 337

Functions

Table 47. Functions used to control cancellability

Function Purpose
pthread cancel() Cancel a thread
pthread_setintr() Set thread cancellability

state
pthread_setintrtype() Set thread cancellability type
pthread_testintr() Establish a cancellabilty point

Cancelling a Thread
Three possible scenarios may cancel a thread, one for each of the interrupt states
of the thread being canceled.

» One thread issues pthread_cancel () to another thread whose cancellability state
is enabled and controlled. In this case the thread being canceled continues to run
until it reaches an appropriate cancellation point. When the thread is eventually
cancelled, just prior to termination of the thread, any cleanup handlers which
have been pushed and not yet popped will be executed. Then if the thread has
any thread-specific data, the destructor functions associated with this data will be
executed.

* One thread issues pthread cancel() to another thread whose interruption state
is enabled and asynchronous. In this case the thread being canceled is
terminated immediately, after any cleanup handlers and thread-specific data
destructor functions are executed, as in the first scenario.

* One thread issues pthread cancel() to another thread whose interruption state
is disabled. In this case the cancel request is ignored and the thread being
canceled continues to run normally.

In the first two interrupt states above, the caller of pthread_cancel () may get
control back before the thread is actually canceled.

Cleanup for Threads

338

Cleanup handlers are routines written by the user that include any special
processing the user finds necessary for termination of a thread. As the user’s
routine executes, it pushes cleanup handlers on to a stack. As the thread continues
to run and the routine progresses, these cleanup handlers can be taken off of the
stack by the user’s routine.

A list or stack of cleanup handlers is maintained for each thread. When the thread
ends, all pushed but not yet popped cleanup routines are popped from the cleanup
stack and executed in last-in-first-out (LIFO) order. This occurs when the thread:

* Calls pthread_exit()

* Does a return from or reaches the end of the start routine (that gets controls as a
result of a pthread create())

* Is canceled because of a pthread_cancel ().

Functions

Table 48. Functions used for cleanup purposes

Function Purpose
pthread_cleanup_push() Establish a cleanup handler

z/0OS V1R4.0 C/C++ Programming Guide

Table 48. Functions used for cleanup purposes (continued)

Function Purpose
pthread_cleanup_pop() Remove a cleanup
handler

Behaviors and Restrictions in z/OS UNIX Applications

The following are implementation-specified behaviors and restrictions that apply to
the C/C++ library functions when running a multi-threaded z/OS UNIX application.

Using Threads with MVS Files

MVS files that are opened by data-set names or ddnames are thread-specific in the
following ways:

Note: These restrictions specifically do not apply to Hierarchical File System (HFS)
files.

All opens and closes by the C library that result in calls to an underlying access
method for a given MVS file must occur on the same thread. Apart from this
requirement, file pointers can be freely used for any type of file access (reading,
writing, repositioning, and so forth) from any thread. Therefore, the following specific
functions are prohibited from any thread except the owning thread (the one that
does the initial fopen()) of the file:

« fclose()

» freopen()

* rewind()

Multivolume data sets and files that are part of a concatenated ddname are further
restricted in multithreaded applications. All 1/O operations are restricted to the
thread on which the file is opened.

The above thread affinity restrictions on the use of MVS files apply to hiperspace
memory files but not to regular memory files.

When standard streams are directed to MVS files, they are governed by the above
restrictions. Standard streams are directed to MVS files in one of two ways:

* By default when a main() program is run from the TSO ready prompt or by a
JCL EXEC PGM= statement, that is, whenever it is not initiated by the exec()
function. This is regardless of whether you are running with POSIX(ON) or
POSIX(OFF). In these cases, the owning thread is the initial processing thread
(IPT), the thread on which main() is executed.

* By explicit action when the user redirects the streams by using command line
redirection, fopen(), or freopen(). The thread that is redirected (the IPT, if you
are using command line redirection) becomes the owning thread of the particular
standard stream. The usual MVS file thread affinity restrictions outlined above
apply until the end of program or until the stream is redirected to the HFS.

Any operation that violates these restrictions causes SIGIOERR to be raised and
errno to be set with the following associated message:

EDC5024I: An attempt was made to close a file that had been
opened on another thread.

Chapter 23. Using Threads in z/0S UNIX Applications 339

Thread-Scoped

All MVS files opened from a given thread and still open when the thread is
terminated are closed automatically by the library during thread termination.

The getc(), getchar(), putc(), and putchar() functions have two versions, one
that is defined in the header file, stdio.h, which is a macro and the other which is
an actual library routine. The macros have better performance than their respective
function versions, but these macros are not thread safe, so in a multithreaded
application where _OPEN_THREADS feature test macro is defined, the macro version of
these functions are not exposed. Instead, the library functions are used. This is
done to ensure thread safety while multiple threads are executing.

Having more than one writer use separate file pointers to a single data set or
ddname is prohibited as always, regardless of whether the file pointers are used
from multiple threads or a single thread.

Functions

Thread-scoped functions are functions that execute independently on each thread
without sharing intermediate state information across threads. For example,
strtok() preserves pointers to tokens independently on each thread, regardless of
the fact that multiple threads may be examining the same string in a strtok()
operation. Some examples of thread-scoped functions are:

e strtok()

e rand(), srand()

* mblen(), mbtowc ()

e strerror()

e asctime(), ctime(), gmtime(), Tocaltime()

e clock()

The following are examples of process-scoped functions, which means that a call to
these functions on one thread influences the results of calls to the same function on
another thread. For example, tmpnam() is required to return a unique name for
every invocation during the life of the process, regardless of which thread issues
the call.

o tmpnam()

e getenv()

e setenv()

e clearenv()

* putenv()

Unsafe Thread Functions

The following functions are not thread-safe. In a multithreaded application,
therefore, they should only be used before the first invocation of pthread_create().
* setlocale() - (returns NULL if issued after pthread_create())

e tzset()

e fork()

Fetched Functions and Writable Statics

Fetched functions are recorded globally at the process level. Therefore a function
fetched from one thread can be executed from any thread.

Module boundary crossings are thread-scoped. Writable statics have a scope
between process and thread. They are process-scoped except that module
crossings are thread-scoped. This means that:

340 z/0S V1R4.0 C/C++ Programming Guide

» All threads initially inherit the writable statics of the creating thread at the time of
the creation.

* When any thread executes a function pointer supplied by the fetch() function
and crosses a module boundary, only that thread has access to the writable
statics of the fetched module.

MTF and z/OS UNIX Threading

MTF is not supported from applications running under POSIX(ON). A return value of
EWRONGOS is issued when running in a POSIX(ON) environment. An application that
requires multithreading must either use MTF with POSIX(OFF) or pthread create()
with POSIX(ON).

Thread Queuing Function

The thread queuing function allows you to control whether or not threads should be
queued up while waiting for TCBs to become available. You can accomplish this by
switching the synctype attribute of a thread between synchronous and
asynchronous mode. With synchronous mode for example, if a process can only
have 50 TCBs active at any one time, then only 50 threads can be created. The
51st thread create results in an error. With asynchronous mode, however, you can
set the synctype attribute for a thread such that the 51st thread is created. This
thread will not start until one of the other threads finishes and releases a TCB.

Functions that relate to the ability to control thread queuing are:
* pthread set 1imit_np()

* pthread_attr _getsynctype np()

* pthread_attr_setsynctype np()

Thread Scheduling

You can use the pthread_attr_setweight_np() and
pthread_attr setsynctype np() functions to establish priorities for threads. The
pthread attr setweight np() threadweight variable can be set to the following:

__MEDIUM_WEIGHT
Each thread runs on a task. When the current thread exits, the task waits
for another thread to do a pthread_create(). The new thread runs on that
task.

__HEAVY_WEIGHT
The task is attached on pthread_create() and terminates when the thread
exits. When the thread exits, the associated task can no longer request
threads to process, and full MVS EOT resource manager cleanup occurs.

You can use the pthread_addt setsynctype np() function to set the
__PTATASYNCHRONOUS value. This enables you to create more threads than there are
TCBs available. For example, you could run 50 TCBs and create hundreds of
threads. The kernel queues the threads until a task is available. This frees your
application from managing the work. While a thread is queued and not executing on
an MVS task, you can still interact with the thread via pthread functions, such as
pthread_join() and pthread kil1().

iconv() Family of Functions

The conversion descriptor returned from a successful iconv_open() may be used
safely within a single thread for conversion purposes. It may, however, be opened
on one thread (iconv_open()), closed on another thread (iconv_close()), and used

Chapter 23. Using Threads in z/OS UNIX Applications 341

on a third thread (iconv()). However, it is the user’s responsibility to ensure
operations are synchronized if they are used across multiple threads.

342 z/0S V1R4.0 C/C++ Programming Guide

Chapter 24. Reentrancy in z/OS C/C++

This chapter describes the concept of reentrancy. It tells you how to use reentrancy
in C programs to help make your programs more efficient, and how C++ achieves
constructed reentrancy.

Reentrant programs are structured to allow multiple users to share a single copy of
an executable module or to use an executable module repeatedly without reloading.
C and C++ achieve reentrancy by splitting your program into two parts, which are
maintained in separate areas of memory until the program terminates:

* The first part, which consists of executable code and constant data, does not
change during program execution.

* The second part contains persistent data that can be altered. This part includes
the dynamic storage area (DSA) and a piece of storage known as the writable
static area.

For XPLINK, the writable static area is further logically subdivided into areas
called environments. Environments are optional, and each function can have its
own environment. When an XPLINK function is called, the caller must load
general purpose register 5 with the address of the environment of the called
function before control is given to the entry point of the called function.

If the program is installed in the Link Pack Area (LPA) or Extended Link Pack Area
(ELPA) of your operating system, only a single copy of the first (constant or
reentrant) part exists within a single address space. This occurs regardless of the
number of users that are running the program simultaneously. This reentrant part
may be shared across address spaces or across sessions. In this case, the
executable module is loaded only once. Separate concurrent invocations of the
program share or reenter the same copy of the write-protected executable module.
If the program is not installed in the LPA or ELPA area, each invocation receives a
private copy of the code part, but this copy may not be write-protected.

The modifiable writable static part of the program contains:

« All program variables with the static storage class

» All program variables receiving the extern storage class

» All writable strings

» All function linkage descriptors for all referenced DLL functions

» Function linkage descriptors for all referenced DLL functions that are used by
multiple compilation units in the program, but are not imported (XPLINK, RENT)

» All variable pointers for imported variables (non-XPLINK)
» All function pointers for imported functions (XPLINK, RENT)
» All variable linkage descriptors to reference imported variables (non-XPLINK)

Each user running the program receives a private copy of the second (data or
non-reentrant) part. This part, the data area, is modifiable by each user.

The code part of the program contains:

» Executable instructions

* Read-only constants

* Global objects compiled with the #pragma variable(identifier, NORENT)

© Copyright IBM Corp. 1996, 2002 343

Note: The ROCONST compiler option implicitly inserts a #pragma
variable(identifier, NORENT) for const qualified variables.

Natural or Constructed Reentrancy

Natural Reentrancy
C programs that contain no references to the writable static objects listed in
the previous section have natural reentrancy. You do not need to compile
naturally reentrant C programs with the RENT compiler option or bind them
with the binder.

Constructed Reentrancy
C++ programs, and C programs that contain references to writable static
objects, can have constructed reentrancy. You must bind these programs
with the binder. For C programs, you must use the RENT compiler option.

If you use the XPLINK option, RENT is the default. If you override this default by
specifying NORENT, any parts of the program that are normally stored in the writable
static area go instead into a static area. If this static area is write-protected, you will
get a run-time failure because the function pointers for imported functions cannot be
modified to point to the function when the DLL containing the function is loaded and
the function address determined. For programs that are both XPLINK and NORENT,
all functions must be statically bound or explicitly loaded (d1110ad(), or fetch()).

Limitations of Constructed Reentrancy for C Programs

Even if a C program is large and will have more than one user at the same time,
there are also these limitations to consider:

» The binder is required for code that you compile with XPLINK.

 If the prelinker, rather than the binder, will process code that is compiled with
NOXPLINK, RENT:

— The resultant load module referring to the writable area cannot be
reprocessed.

— The resultant program may reside in a PDS.

 If the binder is used, and not the prelinker, the resultant program must reside in a
PDSE or HFS. If a PDSE member should be installed into LPA or ELPA, it can
only be installed into dynamic LPA.

* A system programmer can install only the shared portion of your program in the
LPA or ELPA of your operating system.

Controlling External Static in C Programs

344

Certain program variables with the extern storage class may be constant and never
written. If this is the case, every user does not need to have a separate copy of
these variables. In addition, there may be a need to share constant program
variables between C and another language.

You can force an external variable to be the part of the program that includes
executable code and constant data by using the #pragma variable(varname,
NORENT) directive. The following program fragment illustrates how this is
accomplished:

z/0OS V1R4.0 C/C++ Programming Guide

#pragma options(RENT)

#pragma variable(rates, NORENT)
extern float rates[5] = { 3.2, 83.3, 13.4, 3.6, 5.0 };

extern float totals[5];

int main(void) {
[x ... %/
1

Figure 86. Controlling External Static

In this example, the source file is compiled with the RENT option. The external
variable rates are included in the executable code because #pragma
variable(rates, NORENT) is specified. The variable totals are included with the
writable static. Each user has a copy of the array totals, and the array rates are
shared among all users of the program.

The #pragma variable(varname, NORENT) does not apply to, and has no effect on,
program variables with the static storage class. Program variables with the static
storage class are always included in the writable static. An informational message
will appear if you do try to write to a non-reentrant variable when you specify the
CHECKOUT compiler option.

When specifying #pragma variable(varname, NORENT), ensure that this variable is
never written; if it is written, program exceptions or unpredictable program behavior
may result. In addition, you must include #pragma variable(varname, NORENT) in
every source file where the variable is referenced or defined. It is good practice to
put these pragmas in a common header file.

Note: You can also use the keyword const to ensure that a variable is not written.
See the [C/C++ Language Reference|for more information on this keyword.

The ROCONST compiler option has the same effect as specifying the #pragma
variable (var_name, NORENT) for all constant variables (i.e. const qualified
variables). The option gives the compiler the choice of allocating const variables
outside of the Writable Static Area (WSA). For more information on using ROCONST,
see [z/0S C/C++ User’s Guide,

Controlling Writable Strings

In a large number of C programs, character strings may be constant and never
written to. If this is the case, every user does not need a separate copy of these
strings.

You can force all strings in a given source file to be the part of the program that
includes executable code and constant data by using #pragma strings(readonly)
or the ROSTRING compiler option.["CCNGRE1” on page 346]illustrates one way to
make the strings constant.

Chapter 24. Reentrancy in z/0S C/C++ 345

CCNGRE1

/* this example demonstrates how to make strings constant */

#pragma strings(readonly)
#include <stdio.h>

int main(void)
{
printf("hello world\n");

return(0);

}

Figure 87. Making Strings Constant

In this example, the string "hello world\n" is included with the executable code
because #pragma strings(readonly) is specified. This can yield a performance and
storage benefit.

Ensure that you do not write to read-only strings. The following code tries to
overwrite the literal string "abcd” because 'chrs’ is just a pointer:

char chrs[]= "abcd";
memcpy (chrs, "ABCD",4) ;

Program exceptions or unpredictable program behavior may result if you attempt to
write to a string constant.

The ROSTRING compiler option has the same effect as #pragma string(readonly) in
the program source. For more information on using ROSTRING, see [z/OS C/C++

Controlling the Memory Area in C++

346

In C++, some objects may be constant and never modified. If your program is
reentrant, having such objects exist in the code part is a storage and performance
benefit.

As a programmer, you control where objects with global names and string literals

exist. You can use the #pragma variable(objname, NORENT) directive to specify that
the memory for an object with a global name is to be in the code area. You can use
the ROCONST compiler option to specify that all const variables go into the code area.

/* RATES is constant and in code area */

#pragma variable(RATES, NORENT)

const float RATES[5] = { 1.0, 1.5, 2.25, 3.375, 5.0625 };
float totals[5];

In this example, the variable RATES exists in the executable code area because
#pragma variable(RATES,NORENT) has been specified. The variable totals exists in
writable static area. All users have their own copies of the array totals, but the
array RATES is shared among all users of the program.

When you specify #pragma variable(objname,NORENT) for an object, and the
program is to be reentrant, you must ensure that this object is never modified, even
by constructors or destructors. Program exceptions or unpredictable behavior may
result. Also, you must include #pragma variable(objname,NORENT) in every source

z/0OS V1R4.0 C/C++ Programming Guide

file where the object is referenced or defined. Otherwise, the compiler will generate
inconsistent addressing for the object, sometimes in the code area and sometimes
in the writable static area.

Controlling Where String Literals Exist in C++ Code

CCNGRE2

In z/OS C/C++, the string literals exist in the code part by default, and are not
modifiable if the code is reentrant. In a large number of programs, string literals
may be constant. In this case, every user does not need a separate copy of these
strings.

By using the #pragma strings(writable) directive, you can ensure that the string

literals for that compilation unit will exist in the writable static area and be
modifiable. ['CCNGRE2"|illustrates how to make the string literals modifiable:

/* this example demonstrates how to make string Titerals modifiable */

#pragma strings(writable)
#include <iostream.h>
int main(void)

{

char * s;

s = "wall\n"; // point to string literal
x(s+3) = 'k'; // modify string literal
cout << s; // output "walk\n"

Figure 88. How to Make String Literals Modifiable

In this example, the string "wall\n" will exist in the writable static area because
#pragma strings(writable) is specified. This modifies the fourth character.

Using Writable Static in Assembler Code

Programming in C or C++ can eliminate most of the need to code in assembler.
However, in cases where you must code in assembler, you may have a need to
modify data in the writable static area of a C or C++ program, from within an
assembler program.

Notes:

1. To call assembler from C++, you must use extern "0S" as documented in
[Chapter 19, “Using Linkage Specifications in C or C++” on page 245|

2. The following macros, and access to writable static data from assembler are not
supported for XPLINK programs.

One way to modify data in the writable static area is to pass the address of the
writable static data item as a parameter to the assembler program. This may be
difficult in some cases. The following assembler macros makes this easier:

* EDCDXD
e EDCLA
* EDCDPLNK

Chapter 24. Reentrancy in z/0S C/C++ 347

CCNGRE3

These are in CEE.SCEEMAC (EDCDXD,EDCLA,EDCDPLNK). The restriction on the names of
writable static objects accessible in assembler code is that they are S-names. This
means that they may be at most 8 characters long and may contain only characters
allowed in external names by the assembler code.

The macro EDCDXD declares a writable static data item. EDCLA loads the address of
the writable static data item into a register. Using the EDCLA macro in assembler
code necessitates coding EDCDXD as well.

The EDCDPLNK macro defines reference writable static data with the z/0S binder.
This macro must appear before the first executable control section is initiated in the
assembler source module. If there is more than one assembler source program in
the input file, EDCDPLNK must precede every assembler source program in any input
file that defines or references writable static data.

‘CCNGREZ3 illustrates their use:

B R R R Rk Rk R ko o o o o R R R R R R R R R Rk ko

* this example shows how to reference objects in the writable *
* static area, from assembler code *
* part 1 of 2(other file is CCNGRE4) *
* *
* parameters: none *
* return: none *
* action: store contents of register 13 (callers dynamic *
* storage area) in variable DSA which exists in *
* the writable static area *
* *
* Macros: EDCPRLG, EDCEPIL, EDCDXD, EDCLA in CEE.SCEEMAC *
""""""" B T R T)
XOBJHDR EDCDPLNK ;generate an XOBJ header
GETDSA CSECT
GETDSA AMODE ANY
GETDSA RMODE ANY

EDCPRLG ;prolog (save registers etc.)

EDCLA 1,DSA ;1oad register 1 with address of DSA

ST 13,0(,1) ;store contents of reg 13 in DSA

EDCEPIL ;epilog (restore registers etc.)
DSA EDCDXD OF ;declaration of DSA in writable static
TBLDSA EDCDXD 20F ;definition of TBLDSA in writable static

END

Figure 89. Referencing Objects in the Writable Static Area-Part 1

In this example, the external variable TBLDSA is declared using the EDCDXD macro.
The size value of OF (zero fullwords) indicates that DSA will be treated as an extern
declaration in C or C++. Because TBLDSA is an extern declaration and not a
definition, DSA must be defined in another C, C++, or assembler program. The
EDCLA macro loads the general purpose register 1 with the address of DSA, which
exists in the writable static area.

The external variable TBDLSA is declared using the EDCDXD macro. It is defined
because its size is 20F (20 fullwords or 80 bytes) and corresponds to an external
data definition in C or C++. When the program starts, TBDLSA is initialized to zero.
Because TBDLSA is an external data definition, there should not be another definition
of itin a C++, C, or assembler program.

348 z/0S V1R4.0 C/C++ Programming Guide

CCNGRE4

When these macros are used, these pseudo-registers cannot be used within the

same assembler program.

There are no assembler macros for static initialization of a variable with a nonzero

value. You can do this by defining and initializing the variable in C or C++ and
making an extern declaration for it in the assembler program. In the example
assembler program, DSA is declared this way.

‘CCNGRE4"illustrates how to call the above assembler program.

/* this example shows how to reference objects in the writable */
/* static area, from assembler code */

/* part 2 of 2 (other file is CCNGRE3) =/

#include <stdio.h>

#ifdef __cplusplus

extern "0S" {
#endif
void GETDSA(void); /* assembler routine modifies DSA */
#ifdef _ cplusplus
#endif
const int sz = 20; /* maximum call depth */
extern void * TBLDSA[sz]; /* defined in assembler program */
void * DSA; /* define it here, source name */

/* same as assembler name */

/* call yourself deeper and deeper */
/* save DSA pointers as you go x/
void deeper(int 1)

{

if (i >= sz) /* if deep enough just return */
return;

GETDSA() 5 /% assign value to DSA x/

TBLDSA[i] = DSA; /= save value in table */

deeper(i+l); /* go deeper in call chain */

}

int main(void) {
int i;
deeper(0);
for(i=0; i<sz; i++)
printf("depth %3d, DSA was at %p\n", i, TBLDSA[i]);
return 0;

}

Figure 90. Referencing Objects in the Writable Static Area-Part 2

Chapter 24. Reentrancy in z/OS C/C++

349

350 z/0S V1R4.0 C/C++ Programming Guide

Chapter 25. Using the Decimal Data Type in C

This chapter refers to fixed-point decimal data types as “decimal types”. The
decimal type is an extension of the ANSI C language definition. You can use
decimal types to represent large numbers accurately, especially in business and
commercial applications for financial calculations. Decimal types are available only if

the LANGLVL is EXTENDED by specifying the LANGLVL(EXTENDED) com

piler option.

For more details on this compiler option, see [z/0S C/C++ User’s Guidd

The decimal types allow expressions of up to DEC_DIG significant digits including
integral and fractional parts. The header file <decimal.h> specifies the value of

DEC_DIG.

You can pass decimal arguments in function calls and define macros. You can also
declare decimal variables, typedefs, arrays, structures, and unions having decimal

members. The following operators apply on decimal variables:

e |Arithmetic

¢ Relational

* |Assignment

e Comma
Conditional

L]
m
o)
c
Q.
g

* Logical
* Primary
nar

Ei

When using the decimal types, you must include the decimal.h header file in your

source code.

Declaring Decimal Types

Use the type specifier decimal(n,p) to declare decimal variables and to initialize
them with fixed-point decimal constants. The decimal() macro is defined in

<decimal.h>.

The decimal(n,p) type specifier designates a decimal number with n digits and p
decimal places. In this specifier, n is the total number of digits for the integral and
decimal parts combined and p is the number of digits for the decimal part only. For
example, decimal(5,2) represents a number, such as 123.45, where n=5 and p=2.
Specifying the value for p is optional. If omitted, p has a default value of 0.

INIA A QD
S

=

>
IA 1A

DEC_DIG

n
p
1
0 DEC_PRECISION

nd p have a range of allowed values according to the following rules:

Note: The header file <decimal.h> defines DEC_DIG (the maximum number of digits
n) and DEC_PRECISION (the maximum precision p). Currently, there is a limit

of a maximum of 31 digits.

© Copyright IBM Corp. 1996, 2002

351

Declaring Fixed-Point Decimal Constants

The syntax for fixed-point decimal constants is:

fixed-point-decimal-constant:
fractional-constant fixed-point-decimal-suffix

fractional-constant (use any one of the following formats):
digit-sequence . digit-sequence
. digit-sequence
digit-sequence .
digit-sequence

digit-sequence (use any one of the following formats):
digit
digit-sequence digit

fixed-point-decimal-suffix (use any one of the following formats):

D
d

A fixed-point decimal constant has a numeric part and a suffix that specifies its
type. The components of the numeric part may include a digit sequence
representing the integral part, followed by a decimal point (.), followed by a digit
sequence representing the fractional part. Either the integral part, the fractional part,
or both are present.

Each fixed-point decimal constant has the attributes number of digits (digits) and
number of decimal places (precision). Leading or trailing zeros are not discarded
when the digits and the precision are determined.

The following table gives examples of fixed-point decimal constants and their
corresponding attributes:

Table 49. Fixed-Point Decimal Constants and Their Attributes

Fixed-Point Decimal Constant (digits, precision)
1234567890123456D (16,0)
12345678.12345678D (16, 8)
12345678.d (8,0)
.1234567890d (10, 10)
12345.99d (7,2)
000123.990d (9,3)

0.00D (3,2)

Declaring Decimal Variables

352

The following example shows how you can declare a variable as a decimal type:

decimal(10,2) x;
decimal(5,0) y;
decimal(5) Z;
decimal(18,10) *ptr;
decimal(8,2) arr[100];

In the previous example:
e x can have values between -99999999.99D and +99999999.99D.

z/0OS V1R4.0 C/C++ Programming Guide

* yand z can have values between -99999D and +99999D.
» ptris a pointer to type decimal(18,10).
» arris an array of 100 elements, where each element is of type decimal(8,2).

The syntax for the decimal type specifier is as follows:

) »><
<

»»—decimal—(—constant-expression |_ _|
, constant-expression

The constant-expression is evaluated as a positive integral constant expression.
Specifying a second constant-expression is optional. If left out, the default value is
0. Decimal variables decimal(n,0) and decimal(n) are type compatible.

Defining Decimal-Related Constants
Use the following numerical limits to define the decimal value in assignments and
expressions. <decimal.h> contains these predefined values.
* The smallest number in a decimal type

DEC_MIN
-9999999999999999999999999999999D

* The largest positive number in a decimal type

DEC_MAX
+9999999999999999999999999999999D
* The smallest number greater than zero in a decimal type
DEC_EPSILON
.0000000000000000000000000000001D
» Maximum number of significant digits that decimal types can hold
DEC_DIG
31
* Maximum number of decimal places that decimal types can hold

DEC_PRECISION
31

Using Operators

You can use arithmetic, relational, assignment, comma, conditional, equality, logical,
primary, and unary cast operators on a decimal data type. Conversions follow these
arithmetic conversion rules:

« First, if the type of either operand is long double, the other operand becomes
long double.

» Otherwise, if the type of either operand is double, the other operand becomes
double.

» Otherwise, if the type of either operand is float, the other operand becomes float.

* Otherwise, if the type of either operand is decimal, the other operand becomes
decimal.

» Otherwise, the integral promotions are performed on both operands. Then the
following rules are applied:

— If the type of either operand is unsigned long int, the other operand becomes
unsigned long int.

Chapter 25. Using the Decimal Data Type in C 353

— Otherwise, if the type of one operand is long int and the other is unsigned int,
the operand of type unsigned int is converted to long int, if the long int can
represent all values of an unsigned int. If a long int cannot represent all the
values of an unsigned int, both operands become unsigned long int.

— Otherwise, if the type of either operand is long int, the other operand becomes
long int.

— Otherwise, if the type of either operand is unsigned int, the other operand
becomes unsigned int.

— Otherwise, the type of both operands is int.

Arithmetic Operators

Figure 91|shows how to use arithmetic operators, and then describes certain
arithmetic, assignment, unary, and cast operators in more detail. It summarizes how
to add, subtract, multiply and divide decimal variables.

CCNGDC1

/*this example demonstrates arithmetic operations on decimal variables*/

#include <decimal.h> /* decimal header file */
#include <stdio.h>

int main(void)

decimal(10,2) op_1 = 12d;
decimal(5,5) op 2 = -.12345d;
decimal(24,12) op_3 = 12.34d;
decimal(20,5) op_4 = 11.01d;
decimal(14,5) res_add;
decimal(25,2) res_sub;
decimal(15,7) res_mul;
decimal(31,14) res_div;

res_add = op_l1 + op_2;
res_sub = op_3 - op_1;
res_mul = op_2 * op_l;
res_div = op_3 / op_4;

printf("res_add =%D(*,*)\n",digitsof(res_add),
precisionof(res_add),res_add);
printf("res_sub =%D(*,*)\n",digitsof(res_sub),
precisionof(res_sub),res_sub);
printf("res_mul =%D(*,*)\n",digitsof(res_mul),
precisionof(res_mul),res _mul);
printf("res_div =%D(*,*)\n",digitsof(res_div),
precisionof(res_div), res_div);

return(0);

}

Figure 91. Arithmetic Operators Example

Additive Operators
Additive and multiplicative operators follow the arithmetic conversion rules defined
in ['Using Operators” on page 353

Note: For performance reasons, generating negative zero is possible.

354 7z/0S V1R4.0 C/C++ Programming Guide

Refer to ['Intermediate Results” on page 356 for details on how to get the
conversion type during alignment of the decimal point.

Relational Operators
Relational operators follow the arithmetic conversion rules defined in
[Operators” on page 353

Figure 92|shows you how to use a relational expression less than (<) for decimals.
In this example, decimal types are compared with other arithmetic types (integer,
float, double, long double). In addition, the implicit conversion of the decimal types

is performed using the arithmetic conversion rules in|“Converting Decimal Types” od
h

ge 358 Leading zeros in the example are shown to indicate the number of digits
in the decimal type. You do not need to enter leading zeros in your decimal type
variable initialization.

CCNGDC2

/* this example shows how to use a relational expression with the */
/* decimal type */

#include <decimal.h>

decimal(10,3) pdval = 0000023.423d; /* Decimal declarationx/

int ival = 1233; /* Integer declarationx/
float fval = 1234.34; /* Float declaration*/
double dval = 251.5832; /* Double declaration*/

long double 1val = 37486.234; /* Long double declarationx/

int main(void)

decimal(15,6) value = 000485860.085999d;
/*Perform relational operation between other data types and decimalx/
if (pdval < ival) printf("pdval is the smallest !\n");
if (pdval < fval) printf("pdval is the smallest !\n");
if (pdval < dval) printf("pdval is the smallest !\n");
if (pdval < lval) printf("pdval is the smallest !\n");
if (pdval < value) printf("pdval is the smallest !\n");

return(0);

Figure 92. Relational Operators Example

Refer to ['Intermediate Results” on page 356 for details on how to get the
conversion type during alignment of the decimal point.

Equality Operators

Equality operators follow the arithmetic conversions defined in[‘Using Operators” on|
Where the operands have types and values suitable for the relational

operators, the semantics for relational operators applies.

Note: Positive zero and negative zero compare equal. In the following example, the
expression always evaluates to TRUE:

(-0.00d == +0.00000d)

Refer to ['Intermediate Results” on page 356 for details on how to get the convert
type during alignment of the decimal point.

Chapter 25. Using the Decimal Data Type in C 355

Conditional Operators
Conditional operators follow the arithmetic conversions defined in{“Using Operators’|
lon page 353 If both the second and third operands have an arithmetic type, the
usual arithmetic conversions are performed to bring them to a common type. If both
operands are decimal types, the operands are converted to the convert type and
the result has that type.

Refer to |“Intermediate Results”| for details on how to get the convert type during
alignment of the decimal point.

Intermediate Results
Use one of the following tables to calculate the size of the result. The tables

summarize the intermediate expression results with the four basic arithmetic
operators and conditional operators when applied to the decimal types. Most of the
time, you can use |iable 55| to calculate the size of the result. It assumes no
overflow. If overflow occurs, use|TabIe 51| to determine the resulting type.

Both tables assume the following:

* X has type decimal(n,, p;)

* yhas type decimal(n,, p,)

* decimal(n,p) is the resulting type

Table 50. Intermediate Results (without overflow in n or p)

Expression n, p)

X*y n=n;+n, p=p; +p,

xly n=DEC_DIG p = DEC_DIG - ((n, - p;) + P,)
Xty p = max(py, P2) N =max(ny - Py, Ny - Pz) + p+1
X-y same rule as addition

z?x:y p = max(py, pz) N =max(n; - Py, N - Pp) + P

You can use|Table 51| to calculate the size of the result, whether there is an
overflow or not.

Table 51. Intermediate Results (in the general form)

Expression n, p)

X*y n = min(n, + n,, DEC_DIG)
p = min(p; + p,, DEC_DIG - min((h,; - p;)
+ (n, - p,), DEC_DIG))

xly n = DEC_DIG
p = max(DEC_DIG - ((n; - p;) + p2), 0)

X+ y ir = min(max(n, - p;, N, - p,) + 1, DEC_DIG)
p = min(max(p,, p,), DEC_DIG - ir)
n=ir+p

X-y same rule as addition

z?2x:y ir = max(n, - Py, Ny - Pp)
p = min(max(p,, p,), DEC_DIG - ir)
n=ir+p

If overflow occurs in n or p, a compile-time warning message is issued and the
decimal places are truncated. As much of the integral part is reserved as possible.
If the integral part is truncated as an expression in the static or extern initialization,

356 z/0S V1R4.0 C/C++ Programming Guide

an error message is issued. If the integral part is truncated inside the block scope,
a warning is issued. On each operation, the complete result is calculated before
truncation occurs.

Assignment Operators

Assignment operators follow the arithmetic conversion rules defined in
[Operators” on page 353

When values are assigned, an SIGFPE exception may be raised if the operands
contain values that are not valid.

Unary Operators
Use the following unary operators to determine the digits in a decimal type:

Determines the total number of bytes occupied by the decimal type
Determines the number of digits (n)

Determines the number of decimal digits (p)

sizeof Operator

When you use the sizeof operator with decimal(n,p), the result is an integer
constant. The sizeof operator returns the total number of bytes occupied by the
decimal type.

Each decimal digit occupies a halfbyte. In addition, a halfoyte represents the sign.
The number of bytes used by decimal(n,p) is the smallest whole number greater
than or equal to (n + 1)/2, that is, sizeof(decimal(n,p)) = ceil((n + 1)/2). The
sizeof result is calculated using this method because the z/OS C compiler uses
packed decimal to implement decimal types.

The following example shows you how to determine the total number of bytes
occupied by the decimal type:
int y;
decimal (5, 2) x;
y = sizeof x; /* This would be calculated to be 3 bytesx*/
/% (5+1)/2 = 3. */

digitsof Operator

When you use the digitsof operator with a decimal type, the result is an integer
constant. The digitsof operator returns the number of significant digits (n) in a
decimal type.

This example gives you the number of digits (n) in a decimal type.

decimal (5, 2) x;
int n;
n = digitsof x; /* the result is n=5 %/

Note: Apply digitsof only to a decimal type.

precisionof Operator

When you use the precisionof operator with a decimal type, the result is an integer
constant. The precisionof operator tells you the number of decimal digits (p) of the
decimal type.

This example gives you the number of decimal digits (p) of the decimal type.

Chapter 25. Using the Decimal Data Type in C 357

decimal (5, 2) x;
int p;
p = precisionof x; /x the result is p=2 */

Note: Apply precisionof only to a decimal type.

Cast Operator

You can convert the following types explicitly:
» |Decimal types to decimal typesl

» |Decimal types to and from floating types|

» |Decimal types to and from integer typesl

Notes:

1. When you are explicitly casting to a decimal type, the discarding of the leading
nonzero digits does not cause an exception at run-time. For more information
about suppressing compiler messages and run-time exceptions, refer to
[Converting Decimal Types” on page 358]

2. An implicit conversion to a decimal type with an even number of digits may not
clear the pad digit, but an explicit cast will clear the pad digit.

Summary of Operators Used With Decimal Types

summarizes all of the operators to be used with decimal types.
Table 52. Operators Used With Decimal Types

Operator Name IAssociativity Qperators

Primary left to right ()

Unary right to left ++ -— + — | & (typename)
sizeof digitsof precisionof

Multiplicative left to right */

Additive left to right + -

Relational left to right <><=>=

Equality left to right == 1=

Conditional right to left ?

Assignment right to left =+= —=*= /=

Comma left to right ,

Converting Decimal Types

The z/OS C compiler implicitly converts the following types:
» |Decimal types to decimal types|

» |Decimal types to and from floating typesl

Decimal types to and from integer types|

Converting Decimal Types to Decimal Types

358

If the value of the decimal type to be converted is within the range of values that
can be represented exactly, the value of the decimal type is not changed.

If the value of the decimal type to be converted is outside the range of values that
can be represented, the value of the decimal type is truncated. Truncation may
occur on either the integral part or the fractional part or both.

z/0OS V1R4.0 C/C++ Programming Guide

When truncation occurs on the fraction part, no compile-time message or a run-time
exception occurs.

When truncation occurs on the integral part, a compile-time message, a run-time
exception or both are generated as follows:

* In the initialization of static or external variables
— Compile-time error if nonzero digits are truncated in the integral part

* In the initialization of automatic variables, an assignment or function call with
prototype
— Checkout warning at compile time

— Run-time exception SIGFPE may occur if nonzero digits are truncated in the
integral part at run time.

Note: An explicit cast is used to suppress compile-time messages and run-time
exceptions. A run-time exception may occur if any leading nonzero digits are
discarded and the operation is not an explicit cast operation.

Examples
In the following examples, message represents a compile-time message and
exception represents a run-time exception (that is, SIGFPE is raised).

Fractional Part Cannot Be Represented: Conversion of one decimal object to
another decimal object with smaller precision involves truncation on the right of the
decimal point.

#include <decimal.h>

void func(void);
void dec_func(decimal(7, 1));
decimal(7, 4) x = 123.4567D;
decimal(7, 1) y;
decimal(7, 1) z = 123.4567D; /* z = 000123.4D <-- No message, */
/* No exception */
void func(void) {
decimal(7, 1) a = 123.4567D; /* a = 000123.4D <-- No message, */
/* No exception */
y = X; /* y = 000123.4D <-- No message, No exception */
y = 123.4567D; /* y = 000123.4D <-- No message, No exception =*/
dec_func(x); /* <-- No message, No exception x/

}

Figure 93. Fractional Part Cannot be Represented

Integral Part Cannot Be Represented: Conversion of one decimal object to
another decimal object with fewer digits involves truncation on the left of the
decimal point.

Chapter 25. Using the Decimal Data Type in C 359

void func(void);
void dec_func(decimal(5, 2));
decimal(8, 2) w = 000456.78D;

decimal(8, 2) x = 123456.78D;

decimal(5, 2) y;

decimal(5, 2) z = 123456.78D; /* <-- Compile-time error */
decimal(5, 2) z1 = (decimal(5, 2)) 123456.78D;

/* z1 = 456.78D <-- No message, =/

/* No exception */

void func(void) {
decimal(5, 2) a = 123456.78D; /* <-- Checkout warning */
/* and exception *x/

decimal(5, 2) al = (decimal(5, 2)) 123456.78D;
/* al = 456.78D <-- No message, =/

/* No exception */
y = w; /*y = 456.78D <-- Checkout warning, No exception */
y = X3 /* <-- Checkout warning and exception */
y = 123456.78D; /* <-- Checkout warning and exception */
dec_func(x); /* <-- Checkout warning and exception */

y = (decimal(5, 2)) w;

/*y = 456.78D <-- No message, No exception */
y = (decimal(5, 2)) x;
/*y = 456.78D <-- No message, No exception */

y = (decimal(5, 2)) 123456.78D;
/* y = 456.78D <-- No message, No exception */
dec_func((decimal(5, 2)) x);
/* <-- No message, No exception =/

Figure 94. Integral Part Cannot be Represented

Converting Decimal Types to and from Integer Types

Conversion to Integer Types

When a value of decimal type is converted to integer type, the fractional part is
discarded. If the value of the integral part cannot be represented by the integer
type, the behavior is undefined.

When a negative decimal type is converted to an unsigned integer type, the
conversion proceeds as though these steps are followed:

1. The decimal type is converted to a signed integer type with the same size as
the unsigned integer type.

2. The signed integer type is converted to the unsigned integer type.

Example of Conversion to Integer Type

int i = 1234.5678d; [* i = 1234 */
int j = -789d; [* j = -789 */
int k = 9876543210d; /* k is undefined */

Figure 95. Conversion to Integer Type
Conversion from Integer Types

When a value of integer type is implicitly converted to decimal type, the integer type
is converted to type decimal(10,0).

360 z/0S V1R4.0 C/C++ Programming Guide

When a value of integer type is explicitly converted to decimal type, the conversion
proceeds as though these two steps are followed:

1. The integer type is converted to type decimal(10,0). A run-time exception can
never occur in this step.

2. Type decimal(10,0) is then converted to decimal(n,p). All rules for decimal
type to decimal type conversion apply in this step.

An unsigned integer type is converted to a positive decimal value.

If the value of the integral part cannot be represented by the decimal type, the
behavior is undefined.

Example of Conversion from Integer Type

#include <decimal.h>

decimal(10,2) pd0ol = 1234; /* pd0l = 00001234.00d */
decimal(5,0) pd02 = 987654; /* compile-time error */
int main(void) {
decimal(5,0) pd03 = 987654; /* run-time exception */
decimal(13,4) pdo4;

/* The number 321 is converted to decimal(10,0) before the */
/* addition is performed. */
pdo4 = 1234.56d + 321; /* pd04 = 000001555.5600d */

Figure 96. Conversion from Integral Type
Converting Decimal Types to and from Floating Types

Conversion to Floating Types
The result of the conversion might not be exact due to:

» The limitations of significant digits in different floating types
* The degree to which a value can be stored exactly in a floating type
* The loss of precision during conversion

In the following example, the content of each floating type variable depends on their
limitation of significant digits that are specified in <float.h>.

float a
double b
long double ¢

12345678901234567890.1234567890d;
12345678901234567890.1234567890d;
12345678901234567890.1234567890d;

Figure 97. Conversion to Floating Type

Conversion from Floating Types

When a value of floating type is converted to decimal type and the value being
converted cannot be represented by the decimal type, the result is rounded towards
zero. If the value of the floating type to be converted is within the range of values
that can be represented, but cannot be represented exactly, the result is also
rounded towards zero. The result retains as much value as possible. When any
leading nonzero digits are suppressed and the operation is not an explicit cast
operation, a decimal overflow exception occurs at run time and an SIGFPE exception
is raised.

Chapter 25. Using the Decimal Data Type in C 361

When a conversion from a floating type is made with static or external variable
initialization, a compile-time error message is issued.

The result of the conversion may not be exact because the internal representation
of System/370 floating-point instructions is hexadecimal based if FLOAT (HEX) mode
is used. The mapping between the two representations is not one-to-one, even
when the value of a float type is within the range of the decimal type.

Example of Conversion from Floating Type

#include <decimal.h>

decimal(10,2) pdll = 1234.0; /* pdll = 00001234.00d =/
decimal (5,0) pdl2 = 987654.0; /* compile-time error */
int main(void) {
decimal(5,0) pd13 = 987654.0; /* run-time exception =*/
decimal(13,4) pdl4 = 12.34567890; /* fractional part is truncated */
}

Figure 98. Conversion from Floating Type

Calling Functions

There are no default argument promotions on arguments that have type decimal
when the called function does not include a prototype. If the expression for the
called function has a type that includes a prototype, the behavior is as documented
in ANSI, with the exception of prototype with an ellipsis (...). If the prototype ends
with an ellipsis (...), default argument promotions are not performed on arguments
with decimal types.

A function may change the values of its parameters, but these changes cannot
affect the values of the arguments. However, it is possible to pass a pointer to a
decimal object, and the function may change the value of the decimal object to
which it points.

Using Library Functions
You can use variable arguments and I/O operations with decimals.
Using Variable Arguments with Decimal Types

You can use the va_arg macro with a decimal type decimal(n,p).
var_type va_arg(va_list arg ptr, var_type);

Each invocation of va_arg modifies arg_ptr so that the values of successive
arguments are returned in turn.

Formatting Input and Output Operations

Use the following functions to print the value of a decimal type:
o fprintf()

o printf()

o sprintf()

o vfprintf()

o vprintf()

e vsprintf()

362 z/OS V1R4.0 C/C++ Programming Guide

Use the following functions to read the value of a decimal type:
e fscanf()

e scanf()

e sscanf()

The conversion specifier for decimal types is one of the following:

%D(n,p)
%D(n)

For more information about these functions and their keywords, see the
|C/C++ Run-Time Library Reference]

Validating Values

It is possible to have nonvalid representation of decimal value stored in memory,
such as input from file or overlay memory. If the nonvalid decimal value is used in
an operation or assignment, the result may not be as expected. A built-in function
can be used to report whether the decimal representation is valid or not. The
function call can be in the following form:

status = decchk (x);

The built-in function decchk() accepts a decimal-type expression as argument and
returns a status value of type int.

The status can be interpreted as follows:

0 Valid decimal representation value (including nonpreferred but valid sign,
A-F)

1 Leftmost halfbyte is not zero in a decimal-type number that has an even
number of digits (for example, 123 is stored in decimal(2,0))

2 Incorrect digits (not 0-9)

4 Incorrect sign (not A-F)

Macro define names for function return status (in <decimal.h>):

#define DEC_VALUE_OK 0
#define DEC_BAD_NIBBLE 1
#define DEC_BAD DIGIT 2
#define DEC_BAD_SIGN 4

The function return status is the OR of all errors that were detected.

Fix Sign

A built-in function can be used to fix nonpreferred sign variables. The function call
can be in the following form:

x = decfix (x);

The built-in function decfix() accepts a decimal-type expression as argument and
returns a decimal value that has the same size (that is, same decimal types) and
same value as the argument, but with the correct preferred sign. The function does
not change the content of the argument.

Chapter 25. Using the Decimal Data Type in C 363

Decimal Absolute Value

The built-in function decabs () accepts a decimal-type expression as argument and
returns the absolute value of the decimal argument (the same decimal type as the
argument, and the same magnitude, but positive). The function does not change the
content of the argument. The function call can be in the following form:

y = decabs (x);

See the [z/0S C/C++ Run-Time Library Reference for more information on the
decabs (), decchk(), and decfix() library functions.

364 z/0S V1R4.0 C/C++ Programming Guide

Programming Example

CCNGDC3

/* this example demonstrates the use of the decimal type */
/* always include decimal.h when decimal type is used */

#include <decimal.h>

/* Declares a decimal(10,2) variable */
decimal(10,2) pdol;

/* Declares a decimal(15,4) variable and initializes it with the */
/* value 1234.56d */
decimal(15,4) pd02 = 1234.56d;

/* Structure that has decimal-related members */
struct pdec

{ /* members' data types */
int m; /* - integer %/
decimal(23,10) pdo3; /* - decimal(23,10) */
decimal(10,2) pdo4[3]; /* - array of decimal(10,2) =*/
decimal(10,2) *pd05; /* - pointer to decimal(10,2) */
} pdoe,

pd07 = &pd06; / pd07 points to pdo6 */

/* Array of decimal(31,30) */
decimal(31,30) pd0e8[2];

/* Prototype for function that accepts decimal(10,2) and int as */
/* arguments and has return type decimal(25,5) */
decimal(25,5) product(decimal(10,2), int);

decimal(5,2) PdCnt; /* decimal loop counter =/
int i;

int main(void)
{
pd01 = -789.45d; /* simple assignment */
pd06.m = digitsof(pd06.pd03) + precisionof(pdd2); /* 23 + 4 */
pd06.pd03 = sizeof(pdOl);
pd06.pd04[0] = pd02 + pd0l; /* decimal addition =/
*(pd06.pd04 + 1) = (decimal(10,2)) product(pd07->pd04[0], pdO7->m);
pd07->pd04[2] = product(pd07->pd04[0], pdO7->pd04[1]);
pd07->pd05 = &pd01; /* taking the address of a */
/* decimal variable */
/* These two statements are different */
pdos[e] = 1 / 3d;
pd0os[1] = 1d / 3d;

printf("pdol = %D(10,2)\n", pd01);
printf("pd02 = %*.xD(*,*)\n",

20, 5, digitsof(pd@2), precisionof(pdd2), pd02);
printf("pd06.m = %d, pd07->m = %d\n", pd06.m, pdO7->m);
printf("pd06.pd03 = %D(23,10), pd07->pd03 = %D(23,10)\n",

pd06.pd03, pd07->pd03);

Figure 99. Decimal Type — Example 1 (Part 1 of 2)

Chapter 25. Using the Decimal Data Type in C

365

/* You will get an infinite Toop if floating type is =*/
/* used instead of the decimal types. */

for (PdCnt = 0.0d; PdCnt != 3.6d; PdCnt += 1.2d)

{

i = PdCnt / 1.2d;
printf("pd06.pd04[%d] = %D(10,2), \
pd07->pd04[%d] = %D(10,2)\n",
i, pd06.pdea[il, i, pdo7->pdoa[il);
}

printf("*(pd06.pd05) = %D(10,2), *(pd07->pd05) = %D(10,2)\n",
*(pd06.pd05), *(pd07->pdo5));

printf("pde8[0]
printf("pde8[1]

%D(31,30)\n", pdod[e]);
%D(31,30)\n", pdo8[1]);

return(0);

}

/* Function definition for product() */
decimal(25,5) product(decimal(10,2) v1, int v2)
{

/* The following happens in the return statement */

/* - v2 is converted to decimal(10,0)

/* - after the multiplication, the expression has resulting
/* type decimal(20,2) (i.e. (10,2) * (10,0) ==> (20,2))

/* - the result is then converted implicitly to decimal(25,5)
/* before it is returned

return(vl * v2);

Figure 99. Decimal Type — Example 1 (Part 2 of 2)

Output from Programming Example One

366

pdol = -789.45
pd02 = 1234.56000
pd06.m = 27, pd07->m = 27

pd06.pd03 = 6.0000000000, pd07->pd03 = 6.0000000000

pd06.pdo4[0] = 445.11, pd07->pdo4[0] = 445.11
pd06.pdo4[1] = 12017.97, pd07->pdo4[1] = 12017.97
pd06.pdo4[2] = 5348886.87, pd07->pdo4[2] = 5348886.87

*(pd06.pd05) = -789.45, *(pd07->pd05) = -789.45
pdo8[0] = 0.333333333333333333333000000000
pd08[1] = 0.333333333333333333333333333333

z/0OS V1R4.0 C/C++ Programming Guide

*/
*/
*/
*/
*/

CCNGDCA4

/* this example demonstrates the use of the decimal type */
#include <decimal.h>

decimal(31,4) pdol
decimal(29,4) pd02

1234.5678d;
1234.5678d;

int main(void)

{
/* The results are different in the next two statements =*/
pd01 = pdO1 + 1d;
pd02 = pd02 + 1d;

printf("pdol
printf("pdo2

%D(31,4)\n", pd0l);
%D(29,4)\n", pd02);

/* Warning: The decimal variable with size 31 should not be */
/* used in arithmetic operation. */
/* In the above example: (31,4) + (1,0) ==> (31,3) */
/* (29,4) + (1,0) ==> (30,4) */

return(0);

Figure 100. Decimal Type — Example 2

Note: See [Intermediate Results” on page 356 to understand the output from this
example and to see why decimal variables with size 31 should be used with
caution in arithmetic operations.

Output from Programming Example Two

pd0l = 1235.5670
pd02 = 1235.5678

Decimal Exception Handling

z/OS C decimal instructions produce the following exceptions that are unique to
decimal operations:

» Data exception (interrupt code hex '7’)

This may be caused by nonvalid sign or digit codes in a packed decimal number
operated on by packed decimal instructions, for example, ADD DECIMAL or COMPARE
DECIMAL.

When an operation is performed on decimal operands and the assignment is not
through an explicit cast operation, the following situations cause run-time
exceptions at execution time and SIGFPE is raised.

» Decimal-overflow exception (interrupt code hex 'A’)

This exception may be caused when nonzero digits are lost because the
destination field in a decimal operation is too short to contain the result.

Note: The following unhandled decimal overflow message is the same for both
decimal overflow and fixed overflow conditions:

CEE3210S The system detected a Decimal-overflow exception.

Chapter 25. Using the Decimal Data Type in C 367

However, because the fixed overflow condition is normally disabled
(masked) and is ignored at run time, fixed overflow conditions should not
occur.

» Decimal-divide exception (interrupt code hex 'B’)

This exception may be caused when, in decimal division, the divisor is zero, or
the quotient exceeds the specified data-field size. The decimal divide is indicated
if the sign codes of both the divisor and dividend are valid, and if the digit or
digits used in establishing the exception are valid.

Note: The following unhandled divide message does not distinguish between a
decimal-divide condition and a fixed divide-by-zero condition:

CEE3211S The system detected a Decimal-divide exception.

Both are mapped into the same error message.

A decimal exception may be produced by the printf() family when processing
an nonvalid decimal operand. This may result in abnormal termination of your
program with the run-time message: Under z/OS:

CEE3207S The system detected a Data exception.

Under CICS:
EDCKOO7 ABEND=8097 Data Exception

Other exceptions indicated by the decimal instruction set are not unique.

System Programming Calls Restrictions

Decimal overflow conditions are supported for System Programming Calls only with
the run-time library.

printf() and scanf() Restrictions

You must ensure that valid packed decimal data is present when attempting to use
it with run-time library decimal routines. No additional validation is performed on
decimal to ensure format correctness. Use the decchk() routine to validate decimal
data operands in such circumstances.

Additional Considerations

368

When the operands of a decimal operation contain nonvalid digits, the result is
undefined, and a run-time exception can occur. To validate a decimal number,
call the decchk() built-in function in your code.

Code should be written in a manner that does not depend on the ability of the
run-time library to recover from a decimal overflow exception.

In a multiprocessor configuration, decimal operations cannot be used safely to
update a shared storage location when the possibility exists that another
processor may also be updating that location. This possibility arises because the
bytes of a decimal operand are not necessarily accessed concurrently.

If a decimal exception occurs in user code or library routines, the expected
results of the instruction causing the exception or the library routine where the
exception occurred are undefined. The results produced by the library routine’s
execution are also undefined.

If a SIGFPE handler is coded to handle decimal exceptions, it should reenable
itself before resuming normal execution or recovery from the error. This
reestablishes the exception environment and is consistent with good
programming practice.

z/0OS V1R4.0 C/C++ Programming Guide

Error Messages
If an overflow occurs at run time, the exception handler issues the following
run-time error messages:
IBM4821 'ONCODE'=0310 'FIXEDOVERFLOW' CONDITION RAISED

Unhandled exception. This result may be produced in a C-only environment only for
decimal overflow conditions. Fixed-point overflow exception is not allowed in the
Program Mask.

Note: The Program Mask in the Program Status Word (PSW) is enabled for
decimal overflow exceptions.

IBM301I 'ONCODE'=0320 'ZERODIVIDE' CONDITION RAISED

Unhandled decimal or fixed overflow. Fixed overflow is normally masked and
ignored at C run time, but it may occur in interlanguage calls.

IBM5371 'ONCODE'=8097 DATA EXCEPTION
Unhandled data exception

The error messages for FIXEDOVERFLOW and ZERODIVIDE mean that either the
fixed-point overflow condition or the decimal overflow condition has caused the
condition reported.

Under CICS

Decimal overflow condition exceptions are supported in CICS with C and the
following run-time message is produced:

EDCKO17 ABEND=0320 Fixed or Decimal Overflow

Decimal Exceptions and Assembler Interlanguage Calls

Calls to an assembler language procedure or function assume that the called
routine will save and restore the value of the Program Mask if the routine alters it.
Ensure that the Program Mask is preserved across an assembler language
interface. If it is not preserved, the recognition of subsequent decimal overflow
exceptions in C code will be unpredictable.

Chapter 25. Using the Decimal Data Type in C 369

370 z/0S V1R4.0 C/C++ Programming Guide

Chapter 26. Using the Decimal Data Type in C++

This section describes how you use the IBinaryCodedDecimal class and the decimal
class to represent numerical quantities accurately in C++ business and commercial
applications for financial calculations.

The IBinaryCodedDecimal Class

The IBinaryCodedDecimal class allows representation of up to 31 significant digits,
including integral and fractional parts. Two digits can represent the fractional part of
a dollar accurately following the decimal point. You do not have to use floating-point
arithmetic, which is more suitable for scientific and engineering computations.
These computations often use numbers much larger than the largest that the
IBinaryCodedDecimal object can store.

The same declarations and operators that you use on other data types, such as
float, are applied to IBinaryCodedDecimal objects. You can declare typedefs,
arrays, and structures that have IBinaryCodedDecimal objects. You can apply
arithmetic, relational, assignment, comma, conditional, equality, logical, primary, and
unary operators on the IBinaryCodedDecimal object. You can pass
IBinaryCodedDecimal objects in function calls.

Header File and Constants for IBinaryCodedDecimal

You must include this statement in any file that uses the IBinaryCodedDecimal
class:

#include <idecimal.hpp>

The file must be included before any use of the IBinaryCodedDecimal object.

Constants Defined in idecimal.hpp

lists the binary coded decimal constants that the Binary Coded Decimal
Class Library defines:

Table 53. Constants Defined in idecimal.hpp

Constant Name Description

DEC_DIG The maximum number of significant digits that
IBinaryCodedDecimal can hold.

DEC_MIN The minimum value that IBinaryCodedDecimal can
hold.

DEC_MAX The maximum value that IBinaryCodedDecimal can
hold.

DEC_EPSILON The smallest incremental or decremental value that
IBinaryCodedDecimal can hold.

DFT_DIG The default number of digits (15) for the default
constructor.

DFT_PREC The default number of digits after the decimal point
(5) for the default constructor.

DFT_LNG_DIG The default number of digits (20) for a long type.

© Copyright IBM Corp. 1996, 2002 371

Constructing IBinaryCodedDecimal Objects

You can use the IBinaryCodedDecimal constructor to construct IBinaryCodedDecimal

objects or arrays of IBinaryCodedDecimal objects. The following example shows

how to construct an IBinaryCodedDecimal object to have a value (12) with

DFT_LNG_DIG, number of digits (20) and number of digits after the decimal point (0):
IBinaryCodedDecimal a(12L);

The following example shows how to construct an IBinaryCodedDecimal object to
have a value INT_MAX with number of digits (16) and number of digits after the
decimal point (5):

IBinaryCodedDecimal b(16,5,INT_MAX);

IBinaryCodedDecimal Input and Output

You can use the input and output operators for the 1/O Stream Library to perform
input and output operations on IBinaryCodedDecimal. See [|[BM Open Class Library
[User's Guidegand |IBM Open Class Library Reference, Vol. 1|for more detailed
information about 1/0 streaming.

Arithmetic Operators for IBinaryCodedDecimal

The IBinaryCodedDecimal class defines a set of arithmetic operators with the same
precedence as the corresponding real operators. With these operators, you can
code expressions on IBinaryCodedDecimal objects such as the expressions shown
in the example below:

IBinaryCodedDecimal BCD_1(2.220446049250313L);

IBinaryCodedDecimal BCD_2 = + BCD_1;

IBinaryCodedDecimal BCD_l(2.220445@49250313L);
IBinaryCodedDecimal BCD_2 = -BCD_1;

Relational Operators

You can use the relational operators <, >, <=, and >= for IBinaryCodedDecimal
objects and compare IBinaryCodedDecimal objects with other arithmetic types
(integer, float, double, and Tong double):

IBinaryCodedDecimal BCD_1(15);

IBinaryCodedDecimal BCD_2(-15);

if (BCD_1 < BCD_2)

Equality Operators

You can use equality operators with IBinaryCodedDecimal objects to compare
IBinaryDecimalCoded objects for equality.

IBinaryCodedDecimal BCD_1(15);
IBinaryCodedDecimal BCD_2(-15);

if (BCD_1 != BCD_ 2)

Converting IBinaryCodedDecimal Objects

The IBinaryCodedDecimal class defines a set of conversion operators. With these
operators you can convert IBinaryCodedDecimal objects to other data types.

372 z/0S V1R4.0 C/C++ Programming Guide

An IBinaryCodedDecimal Object to an IBinaryCodedDecimal Object

If the value of an IBinaryCodedDecimal object that is to be converted to another
IBinaryCodedDecimal object is not within the range of values that can be
represented exactly, the value of the IBinaryCodedDecimal object to be converted is
truncated. If truncation occurs in the fractional part, there is no exception raised. If
assignment causes truncation in the integral part, then there is an exception in
which a IDecimalDataError object is thrown. This exception occurs when an
integral value is lost during conversion to a different type, regardless of what
operation requires the conversion:

IBinaryCodedDecimal targ_1(4,2);

IBinaryCodedDecimal targ 2(4,2);

IBinaryCodedDecimal op_1("1234.56");
IBinaryCodedDecimal op 2("12.34");

targ_l=op_1; // An exception is generated because the integral
// part is truncated; targ_1=("34.56").

targ_2=op_2; // No exception is generated because neither the
// integral nor the fractional part is truncated;
// targ 2=("12.34").

An exception occurs on assignment to a smaller target only when the integral part
is truncated.

When assigning one IBinaryCodedDecimal object to another IBinaryCodedDecimal
object with a smaller precision, the result is truncation of the fractional part:

IBinaryCodedDecimal x("123.4567");
IBinaryCodedDecimal y(7,1);

Yy = X; //y = ("123.4")

When assigning one IBinaryCodedDecimal object with another IBinaryCodedDecimal
object with a smaller integral part, the result is truncation of the integral part. An
exception occurs if the value is too large to fit:

IBinaryCodedDecimal x("123456.78");
IBinaryCodedDecimal y(5,2);

y=x; [//y=("456.78")

When assigning one IBinaryCodedDecimal object to another IBinaryCodedDecimal
object with a smaller integral part, and smaller precision, the result is truncation of
the integral, and fractional parts. An exception occurs if the value is too large to fit:

IBinaryCodedDecimal x("123456.78");
IBinaryCodedDecimal y(4,1);

y=x; //y=("456.7")

Number of Digits in an IBinaryCodedDecimal Object

When you use the member function digits0f() with an IBinaryCodedDecimal
object, you can find out the total number of digits n in an IBinaryCodedDecimal
object:

int n;

IBinaryCodedDecimal x(5, 2);

n = x.digits0f(); // the result is n=5

Chapter 26. Using the Decimal Data Type in C++ 373

Precision of a IBinaryCodedDecimal Object

When you use the member function precision0f() with an IBinaryCodedDecimal
object, you can find out the number of decimal digits p in an IBinaryCodedDecimal
object:

int p;

IBinaryCodedDecimal x(5, 2);

p=x.precision0f(); // The result is p=2

IBinaryCodedDecimal Object Exceptions

The IDecimalDataError exception class is thrown whenever the integral part is
truncated as the result of any arithmetic operation.

The Decimal Class

z/OS C++ supports the decimal data type through the IBinaryCodedDecimal class
as well as the decimal class. Use the decimal class to improve the performance of
your applications relative to using the IBinaryCodedDecimal class. The decimal
class is compatible with the decimal data type in C. This class permits you to
represent up to 31 significant digits, including integral and fractional parts.

You can declare typedefs, arrays, and structures that have decimal objects. You can
apply arithmetic, relational, assignment, equality, and unary operators on the
decimal object. You can pass decimal objects in function calls.

Header File for the Decimal Class
You must include this statement in any file that uses the decimal class:
#include <idecimal.hpp>

The file must be included before any use of the decimal object.

Constructing Decimal Objects

You can use the decimal constructor to construct decimal objects or arrays of
decimal objects.

Use the template specifier decimal<w,p> to declare decimal objects. The template
specifier decimal<w,p> designates a decimal number with w digits, and p decimal
places. In the specifier, wis the total number of digits for the integral and decimal
parts combined, and p is the number of digits for the decimal part only. For
example, decimal <5,2> represents a number, such as 123.45, where w=5 and
p=2. Specifying the value for p is optional. If the value for p is omitted, z/OS C++
uses a default value of 0.

In the specifier, w and p have a range of allowed values according to the following
rules:

0=p
1=w

w
31

IA 1A
IA 1A

You can construct a decimal object using an integer, a char *, an
IBinaryCodedDecimal object, or another decimal object. The decimal class does not
support other object types.

The following example shows how you can construct a decimal type:

374 z/0S V1R4.0 C/C++ Programming Guide

decimal<10,2>> x("4.67"); // char *

decimal<5,0> y(7); // integer

decimal<5> z=y; // another decimal object
decimal<18,10> *ptr; // pointer

decimal<8,2> arr[100]; // array

IBinaryCodedDecimal a(12) //another IBinaryCodedDecimal object

decimal<10,3> b(a);

In the previous example:

* x has a value of +4.67.

*