
z/OS

Open Cryptographic Services Facility
Service Provider Module
Developer’s Guide and Reference

SC24-5900-00

IBM

z/OS

Open Cryptographic Services Facility
Service Provider Module
Developer’s Guide and Reference

SC24-5900-00

IBM

Note
Before using this information and the product it supports, be sure to read the general information under Appendix A,
“Notices”.

First Edition (March 2001)

This edition, SC24-5900-00, applies to Version 1 Release 1 of z/OS Cryptographic Services (program number
5694-A01) and to all subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address given below.

IBM® welcomes your comments. A form for reader’s comments may be provided at the back of this publication, or
you may address your comments to the following address:

International Business Machines Corporation
Information Development, Dept. G60
1701 North Street
Endicott, NY 13760-5553
United States of America

FAX (United States & Canada): 1+607+752+2327
FAX (Other Countries): Your International Access Code+1+607+752+2327

IBMLink™ (United States customers only): GDLVME(PUBRCF)
Internet e-mail: pubrcf@vnet.ibm.com
World Wide Web:
http://www.ibm.com/servers/eserver/zseries/zos/

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in you comment or note:
v Title and order number of this book

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright Intel Corporation 1997. All rights reserved.
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro OR 97124-6497

© Copyright International Business Machines Corporation 1999, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/

Contents

Figures . ix

Tables . xi

Preface . xiii
Service Provider Modules . xiii

Who Should Use This Book . xiv
Conventions Used in This Book . xiv
Where to Find More Information . xv

Softcopy Publications . xv
Internet Sources . xv
Using LookAt to Look Up Message Explanations . xv
Accessing Licensed Books on the Web . xvi

Writing a Cryptographic Service Provider . xvii

Chapter 1. Module Structure and Administration . 1
Security Services . 1

Module-to-Module Interaction . 1
Module Administration Components . 2
Installing a Service Provider Module . 2
Attaching a Service Provider Module . 3

Module Entry Point . 3
Module Function Table Registration . 3
Memory Management Upcalls . 3

Error Handling . 4
Install Example . 4
CL Module Install . 4
Attach/Detach Example. 5
DLLMain . 5

Service Provider Module Interface Functions . 6
Data Structures. 6
CSSM_ALL_SUBSERVICES. 7
CSSM_BOOL . 7
CSSM_CALLBACK . 7
CSSM_CRYPTO_DATA . 7
CSSM_DATA . 8
CSSM_GUID . 8
CSSM_HANDLE . 8
CSSM_HANDLEINFO . 8
CSSM_INFO_LEVEL . 9
CSSM_MEMORY_FUNCS/CSSM_API_MEMORY_FUNCS 9
CSSM_MODULE_FLAGS . 10
CSSM_MODULE_FUNCS . 10
CSSM_MODULE_HANDLE. 10
CSSM_MODULE_INFO . 10
CSM_NOTIFY_CALLBACK . 11
CSSM_REGISTRATION_INFO . 11
CSSM_RETURN. 12
CSSM_SERVICE_FLAGS . 12
CSSM_SERVICE_INFO . 13
CSSM_SERVICE_MASK. 13
CSSM_SERVICE_TYPE . 14
CSSM_SPI_FUNC_TBL . 14

© Copyright IBM Corp. 1999, 2001 iii

CSSM_USER_AUTHENTICATION . 14
CSSM_USER_AUTHENTICATION_MECHANISM 15
CSSM_VERSION . 15

Relevant CSSM API Functions . 15
Service Provider Module Functions . 16

CSSM_DeregisterServices . 16
CSSM_GetHandleInfo . 17
CSSM_ModuleInstall . 18
CSSM_ModuleUninstall . 19
CSSM_RegisterServices . 20
CSSM_SetModuleInfo . 21
EventNotify . 22
FreeModuleInfo . 23
GetModuleInfo . 24
Initialize . 26
Terminate . 27

Chapter 2. Cryptographic Service Provider Module Information 29

Chapter 3. Trust Policy Interface . 31
Trust Policy Services API . 32
Trust Policy Data Structures . 32

Basic Data Types . 32
CSSM_BOOL . 33
CSSM_CERTGROUP . 33
CSSM_DATA . 33
CSSM_DL_DB_HANDLE . 33
CSSM_DL_DB_LIST . 34
CSSM_FIELD . 34
CSSM_OID. 34
CSSM_RETURN. 34
CSSM_REVOKE_REASON. 34
CSSM_TP_ACTION . 35
CSSM_TP_HANDLE . 35
CSSM_TP_STOP_ON. 35

Trust Policy Operations . 36
TP_CertSign . 36
TP_CertRevoke . 37
TP_CrlVerify . 38
TP_CrlSign . 39
TP_ApplyCrlToDb . 40
TP_CertGroupConstruct . 41
TP_CertGroupPrune . 42
TP_CertGroupVerify . 43

Trust Policy Extensibility Functions . 46
TP_PassThrough . 46

Trust Policy Attach/Detach Example. 47
DLLMain. 47

Trust Policy OCSF Errors . 48

Chapter 4. Certificate Library Interface . 49
Certificate Life Cycle . 49
Certificate Library Interface Specification . 50
Certificate Library Data Structures . 52

CSSM_BOOL . 52
CSSM_CS_SERVICES . 52

iv OCSF Service Provider Module Developer’s Guide and Reference

CSSM_CERT_ENCODING . 52
CSSM_CERTGROUP . 52
CSSM_CERT_TYPE . 53
CSSM_CL_CA_CERT_CLASSINFO . 53
CSSM_CL_CA_PRODUCTINFO . 53
CSSM_CL_ENCODER_PRODUCTINFO . 54
CSSM_CL_HANDLE . 55
CSSM_CLSUBSERVICE. 55
CSSM_CL_WRAPPEDPRODUCTINFO . 56
CSSM_DATA . 56
CSSM_FIELD . 56
CSSM_HEADERVERSION . 57
CSSM_KEY . 57
CSSM_KEYHEADER . 57
CSSM_KEY_SIZE . 60
CSSM_KEY_TYPE . 60
CSSM_SPI_MEMORY_FUNCS . 60
CSSM_OID. 61
CSSM_RETURN. 61
CSSM_REVOKE_REASON. 61

Certificate Library Operations . 62
CL_CertAbortQuery. 62
CL_CertCreateTemplate . 63
CL_CertDescribeFormat . 64
CL_CertExport . 65
CL_CertGetAllFields . 66
CL_CertGetFirstFieldValue . 67
CL_CertGetKeyInfo . 68
CL_CertGetNextFieldValue . 69
CL_CertImport . 70
CL_CertSign . 71
CL_CertVerify . 72

Certificate Revocation List Operations . 73
CL_CrlAbortQuery . 73
CL_CrlAddCert . 74
CL_CrlCreateTemplate . 75
CL_CrlDescribeFormat . 76
CL_CrlGetFirstFieldValue . 77
CL_CrlGetNextFieldValue . 78
CL_CrlRemoveCert . 79
CL_CrlSetFields . 80
CL_CrlSign . 81
CL_CrlVerify . 82
CL_IsCertInCrl . 83
Format . 83
Parameters. 83
Return Value . 83

Certificate Library Extensibility Functions . 84
CL_PassThrough . 84

Certificate Library Attach/Detach Example . 85
DLLMain. 85

Certificate Operations Examples . 87
CL_CertCreateTemplate . 87

CRL Operations Examples . 89
CL_CrlAddCert . 89

Certificate Library Extensibilty Functions Example . 92

Contents v

Certificate Library OCSF Errors . 93

Chapter 5. Data Storage Library Interface . 95
Categories of Operations. 96
Data Storage Library Data Structures . 97

CSSM_BOOL . 97
CSSM_DATA . 97
CSSM_DB_ACCESS_TYPE . 97
CSSM_DB_ATTRIBUTE_DATA . 98
CSSM_DB_ATTRIBUTE_INFO . 98
CSSM_DB_ATTRIBUTE_NAME_FORMAT . 98
CSSM_DB_CERTRECORD_SEMANTICS . 98
CSSM_DB_CONJUNCTIVE . 99
CSSM_DB_HANDLE . 99
CSSM_DB_INDEX_INFO . 99
CSSM_DB_INDEX_TYPE . 99
CSSM_DB_INDEXED_DATA_LOCATION . 99
CSSM_DBINFO . 100
CSSM_DB_OPERATOR . 101
CSSM_DB_PARSING_MODULE_INFO . 101
CSSM_DB_RECORD_ATTRIBUTE_DATA . 101
CSSM_DB_RECORD_ATTRIBUTE_INFO . 101
CSSM_DB_RECORD_INDEX_INFO . 102
CSSM_DB_RECORD_PARSING_FNTABLE . 102
CSSM_DB_RECORDTYPE . 103
CSSM_DB_UNIQUE_RECORD. 103
CSSM_DL_DB_HANDLE . 103
CSSM_DL_DB_LIST . 103
CSSM_DL_CUSTOM_ATTRIBUTES . 104
CSSM_DL_FFS_ATTRIBUTES . 104
CSSM_DL_HANDLE . 104
CSSM_DL_LDAP_ATTRIBUTES . 104
CSSM_DL_ODBC_ATTRIBUTES . 104
CSSM_DL_PKCS11_ATTRIBUTES . 104
CSSM_DLSUBSERVICE . 104
CSSM_DLTYPE . 106
CSSM_DL_WRAPPEDPRODUCTINFO . 106
CSSM_NAME_LIST . 107
CSSM_QUERY. 107
CSSM_QUERY_LIMITS . 108
CSSM_SELECTION_PREDICATE . 108

Data Storage Operations . 109
DL_Authenticate . 109
DL_DbClose . 110
DL_DbCreate . 111
DL_DbDelete . 112
DL_DbExport . 113
DL_GetDbNameFromHandle . 114
DL_DbGetRecordParsingFunctions . 115
DL_DbImport. 116
DL_DbOpen . 118
DL_DbSetRecordParsingFunctions. 119

Data Record Operations . 120
DL_DataAbortQuery . 120
DL_DataDelete . 121
DL_DataGetFirst . 122

vi OCSF Service Provider Module Developer’s Guide and Reference

DL_DataGetNext . 123
DL_DataInsert . 124
DL_FreeUniqueRecord . 125

Data Storage Library Extensibility Functions . 126
DL_PassThrough . 126

Data Storage Library Attach/Detach Example . 127
DLLMain . 127

Data Store Operations Example. 129
Data Storage Library OCSF Errors. 130

Appendix. Notices . 131
Regarding Licensing . 132
Programming Interface Information . 132
Trademarks . 133

Bibliography . 135
IBM Cryptographic Services Publication . 135

Glossary . 137

Index . 141

Contents vii

viii OCSF Service Provider Module Developer’s Guide and Reference

Figures

1. Open Cryptographic Services Facility Architecture. xiv
2. Certificate Life Cycle States and Actions . 50

© Copyright IBM Corp. 1999, 2001 ix

x OCSF Service Provider Module Developer’s Guide and Reference

Tables

1. Service Access Tables . 10
2. Notification Reasons . 11
3. Module Event Types . 22
4. Module Event Parameters . 22
5. CSSM_TP_STOP_ON Values . 44
6. Trust Policy Module Error Numbers . 48
7. Keyblob Type Identifiers . 58
8. Keyblob Format Identifiers . 58
9. Key Class Identifiers . 58

10. KeyAttribute Flags . 59
11. Key Usage Flags . 59
12. Certificate Library Module Error Numbers . 93
13. Data Storage Library Module Error Numbers . 130

© Copyright IBM Corp. 1999, 2001 xi

xii OCSF Service Provider Module Developer’s Guide and Reference

Preface

The Open Cryptographic Services Facility (OCSF) is a derivative of the IBM Keyworks technology which is
an implementation of the Common Data Security Architecture (CDSA) for applications running in the UNIX
Services environment. It is an extensible architecture that provides mechanisms to manage service
provider security modules, which use cryptography as a computational base to build security protocols and
security systems. Figure 1 shows the four basic layers of the OCSF: Application Domains, System Security
Services, OCSF Framework, and Service Providers. The OCSF Framework is the core of this architecture.
It provides a means for applications to directly access security services through the OCSF security
application programming interface (API), or to indirectly access security services via layered security
services and tools implemented over the OCSF API. The OCSF Framework manages the service provider
security modules and directs application calls through the OCSF API to the selected service provider
module that will service the request. The OCSF API defines the interface for accessing security services.
The OCSF service provider interface (OCSF SPI) defines the interface for service providers who develop
plug-able security service products.

Service providers perform various aspects of security services, including:
v Cryptographic Services1

v Trust Policy Libraries
v Certificate Libraries
v Data Storage Libraries.

Cryptographic Service Providers (CSPs) are service provider modules that perform cryptographic
operations including encryption, decryption, digital signing, key pair generation, random number
generation, and key exchange. Trust Policy (TP) modules implement policies defined by authorities and
institutions, such as VeriSign (as a Certificate Authority (CA)) or MasterCard (as an institution). Each TP
module embodies the semantics of a trust model based on using digital certificates as credentials.
Applications may use a digital certificate as an identity credential and/or an authorization credential.
Certificate Library (CL) modules provide format-specific, syntactic manipulation of memory-resident digital
certificates and Certificate Revocation Lists (CRLs). Data Storage Library (DL) modules provide persistent
storage for certificates and CRLs.

Service Provider Modules
An OCSF service provider module is a Dynamically Linked Library (DLL) composed of functions that
implement some or all of the OCSF module interfaces. Applications directly or indirectly select the modules
used to provide security services to the application. Independent Software Vendors (ISVs) and hardware
vendors will provide these service providers. The functionality of the service providers may be extended
beyond the services defined by the OCSF API, by exporting additional services to applications using an
OCSF PassThrough mechanism.

The API calls defined for service provider modules are categorized as service operations, module
management operations, and module-specific operations. Service operations include functions that perform
a security operation such as encrypting data, inserting a CRL into a data source, or verifying that a
certificate is trusted. Module management functions support module installation, registration of module
features and attributes, and queries to retrieve information on module availability and features.

1. If you want to provide a Cryptographic Service Provider, you need to contact IBM. For more information, see “Writing a
Cryptographic Service Provider” on page xvii.

© Copyright IBM Corp. 1999, 2001 xiii

Applications

OCSF Security API

CSP
Manager

TP Module
Manager

CL Module
Manager

DL Module
Manager

SPI

Cryptographic
Service
Provider

Trust
Policy
Library

Certificate
Library

Data StoreData
Storage
Library

TPI CLI DLI

Application
Domains

System
Security
Services

OCSF
Framework

Service
Providers

SSL S/MIME IPSEC

Module-specific operations are enabled in the API through passthrough functions whose behavior and use
is defined by the service provider module developer.

Each module, regardless of the security services it offers, has the same set of module management
responsibilities. Every module must expose functions that allow OCSF to indicate events such as module
attach and detach. In addition, as part of the attach operation, every module must be able to verify its own
integrity, verify the integrity of OCSF, and register with OCSF. Detailed information about service provider
module structure, administration, and interfaces are found in this book.

Who Should Use This Book
This book should be used by Independent Software Vendors (ISVs) who want to develop their own service
provider modules. These ISVs can be highly experienced software and security architects, advanced
programmers, and sophisticated users. The intended audience of this document must be familiar with
high-end cryptography and digital certificates. They must also be familiar with local and foreign
government regulations on the use of cryptography and the implication of those regulations for their
applications and products. We assume that this audience is familiar with the basic capabilities and features
of the protocols they are considering.

Conventions Used in This Book
This book uses the following typographic conventions:

Bold Bold words or characters represent system elements that you must enter into the system literally,
such as commands.

Italic Italicized words or characters represent values for variables that you must supply.

Figure 1. Open Cryptographic Services Facility Architecture.

xiv OCSF Service Provider Module Developer’s Guide and Reference

Example Font
Examples and information displayed by the system are printed using an example font that is a
constant width typeface.

Where to Find More Information
This book describes the features common to all OSCF service provider modules. It defines the interfaces
for certificate, trust, and data library service providers. Service provider developers must conform to these
interfaces in order for the individual service provider modules to be accessible through the OCSF
framework.

The z/OS: Open Cryptographic Services Facility Application Programming provides an overview of the
OCSF. It explains how to integrate OCSF into applications and contains a sample OCSF application. It
also defines the interfaces that application developers employ to access security services provided by the
OCSF framework and service provider modules. Specific information about the individual service providers
is also provided.

For complete titles and order numbers of the books for all products that are part of z/OS see the z/OS:
Information Roadmap, SA22-7500.

Softcopy Publications
The z/OS Cryptographic Services library is available on a CD-ROM, z/OS Collection, SK3T-4269. The
CD-ROM online library collections is a set of unlicensed books for z/OS and related products that includes
the IBM Library Reader™. This is a program that enables you to view the BookManager® files. This
CD-ROM also contains the Portable Document Format (PDF) files. You can view or print these files with
the Adobe Acrobat reader.

Internet Sources
The softcopy z/OS publications are also available for web-browsing and for viewing or printing PDFs using
the following URL:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv

You can also provide comments about this book and any other z/OS documentation by visiting that URL.
Your feedback is important in helping to provide the most accurate and high-quality information.

Using LookAt to Look Up Message Explanations
LookAt is an online facility that allows you to look up explanations for z/OS messages. You can also use
LookAt to look up explanations of system abends. The IBM LookAt development team is investigating
other forms of reference information, such as commands.

Using LookAt to find information is faster than a conventional search because LookAt goes directly to the
explanation.

LookAt can be accessed from the Internet or from a TSO command line.

You can use LookAt on the Internet at:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

To use LookAt as a TSO command, LookAt must be installed on your host system. You can obtain the
LookAt code for TSO from the LookAt Website by clicking on the News and Help link or from the z/OS
Collection, SK3T-4269.

To find a message explanation from a TSO command line, simply enter: lookat message-id as in the
following:

Preface xv

http://www.ibm.com/servers/eservers/zseries/zos/bkserv
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

lookat iec192i

This results in direct access to the message explanation for message IEC192I.

To find a message from the LookAt Web site, simply enter the message ID and select the release you are
working with.

Note: Some messages have information in more than one book. For example, IEC192I has routing and
descriptor codes listed in z/OS: MVS Routing and Descriptor Codes, SA22-7624. For such
messages, LookAt prompts you to choose which book to open.

Accessing Licensed Books on the Web
z/OS licensed documentation in PDF format is available on the Internet at the IBM Resource Link site at:
http://www.ibm.com/servers/resourcelink

Licensed books are available only to customers with a z/OS license. Access to these books requires an
IBM Resource Link user ID, password, and z/OS licensed book key code. The z/OS order that you
received provides a memo that includes your key code.

To obtain your IBM Resource Link user ID and password, logon to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed books:
1. Logon to Resource Link using your Resource Link user ID and password.
2. Select User Profiles located on the left-hand navigation bar.
3. Select Access Profile .
4. Select Request Access to Licensed books .
5. Supply your key code where requested and select the Submit button.

If you supplied the correct key code you will receive confirmation that your request is being processed.

After your request is processed you will receive an e-mail confirmation.

Note: You cannot access the z/OS licensed books unless you have registered for access to them and
received an e-mail confirmation informing you that your request has been processed.

To access the licensed books:
1. Logon to Resource Link using your Resource Link user ID and password.
2. When prompted, enter the key code.
3. Select Library .
4. Select zSeries
5. Select Software .
6. Click on z/OS.
7. Access the licensed book by selecting the approriate element.

xvi OCSF Service Provider Module Developer’s Guide and Reference

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

Writing a Cryptographic Service Provider
If you want to write your own Cryptographic Service Provider (CSP) you need to contact IBM using one of
the following methods:

v Send an e-mail note to S390PID@US.IBM.COM

v Call the Solution Developer Program Hotline at 1-770-835-9902 (worldwide) or 1-800-627-8363 (US and
Canada), ask for the S/390 Administrator

v Access the S/390 Partners in Development home page at:
http://www.s390.ibm.com/s390da

and use the feedback form to make a request.

Preface xvii

http://www.s390.ibm.com/s390da

xviii OCSF Service Provider Module Developer’s Guide and Reference

Chapter 1. Module Structure and Administration

Service provider modules are composed of module administration components and implementation of
security service interfaces in one or more categories of service. Module administration components include
the tasks required during module installation, attach, and detach. The module developer determines the
number, categories, and contents of the service implementation. Both the administration components and
service interfaces are discussed in the following sections.

Export
Any application you create and export or re-export from the U.S. utilizing the Open Cryptographic
Services Facility Cryptographic Services may be subject to special export licensing requirements by
the Bureau of Export Administration of the U.S. Department of Commerce.

Security Services
The primary components of a service provider module are the security services that it offers. A service
provider module may provide one to four categories of service, with each service having one or more
available subservices. The service categories are Cryptographic Service Provider (CSP)2 services, Trust
Policy (TP) services, Certificate Library (CL) services, and Data Storage Library (DL) services. A
subservice consists of a unique set of capabilities within a certain service. For example, in a CSP service
providing access to hardware tokens, each subservice would represent a slot. A TP service may have one
subservice that supports the Secure Electronic Transfer (SET) Merchant TP and a second subservice that
supports the SET Cardholder TP. A CL service may have different subservices for different encoding
formats. A DL service could use subservices to represent different types of persistent storage. In all cases,
the subservice implements the basic service functions for its category of service.

Each service category contains a number of basic service functions. A library developer may choose to
implement some or all of the functions specified in the service interface. A module developer may also
choose to extend the basic interface functionality by exposing pass through operations.

Module-to-Module Interaction
Modules may make use of other OCSF service provider modules to implement their functionality. For
example, a module implementing a CL may use the capabilities of a CSP module to perform the
cryptographic operations of sign and verify. In that case, the CL module could package the certificate or
Certificate Revocation List (CRL) fields to be signed or verified, attach to the appropriate CSP module, and
call CSSM_SignData or CSSM_VerifyData to perform the operation.

A second form of module-to-module interaction is subservice collaboration. For example, a Public-Key
Cryptographic Standard module may require collaborating CSP and DL subservices. Collaborating
subservices are assumed to share state. A module indicates that two or more subservices collaborate by
assigning them the same subservice ID. When an application attaches one of the collaborating
subservices, it will receive a handle that may be used to access any of the subservices having the same
subservice ID. This mechanism may be used for collaboration across categories of services, but is not
available within a single category of service.

Subservices may make use of other products or services as part of their implementation. For example, an
Open Database Connectivity (ODBC) DL subservice may make use of a commercial database product
such as DB2. A CL subservice may make use of a Certificate Authority (CA) service, such as the VeriSign

2. If you want to provide a Cryptographic Service Provider, you need to contact IBM. For more information, see “Writing a
Cryptographic Service Provider” on page xvii .

© Copyright IBM Corp. 1999, 2001 1

DigitalID Center, for filling certification requests. The encapsulation of these products and services is
exposed to applications in the CSSM_XX_WRAPPEDPRODUCT_INFO data structure, which is available
by querying the OCSF registry.

A module developer may provide additional utility libraries for use by other module developers. Utility
libraries are software components that contain functions that may be useful to several modules. For
example, a utility library that performs DER encoding might be useful to several modules providing CL
services. The utility library developer is responsible for making the definition, interpretation, and usage of
their library available to other module developers.

Module Administration Components
Every module implementation shares certain administrative tasks that must be performed during module
installation, attach, and detach. As part of module installation, the module developer must register
information about the module’s services with OCSF. This information is stored in the OCSF registry and
may be queried by applications using the CSSM_GetModuleInfo function.

On attach, the module’s administrative responsibilities include module registration, and module
initialization.

During attach, the module registers its functions with OCSF and performs any initialization operations. The
module uses CSSM_RegisterServices to register a function table with OCSF for each subservice that it
supports. The function tables consist of pointers to the subservice functions supported by the module.
During future function calls from the application, OCSF will use these function pointers to direct calls to the
appropriate module subservice. When the module is detached, it performs any necessary cleanup actions.

Installing a Service Provider Module
Every module must include functions for module initialization and cleanup. The first time the module is
attached, OCSF calls the module’s Initialize function to allow the module to perform any necessary
initialization operations. The last time the module is detached, OCSF calls the module’s function that
allows the module to perform any necessary cleanup actions. OCSF will call the module’s EventNotify
function as part of every attach and detach operation.

Before an application can use a module, the module’s name, location, and description must be registered
with OCSF by an installation application. The name given to a module includes both a logical name and a
Globally Unique ID (GUID). The logical name is a string chosen by the module developer to describe the
module. The GUID is a structure used to differentiate between service provider modules in the OCSF
registry. GUIDs are discussed in more detail later in this section. The location of the module is required at
installation time so the OCSF can locate the module and its credentials when an application requests an
attach. The module description indicates to OCSF the security services available within this module.

Each module must have a GUID that the OCSF, applications, and the module itself use to uniquely identify
a given module. The GUID is used by the OCSF registry to expose service provider module availability
and capabilities to applications. A module uses its GUID to identify itself when it sets an error. When
attaching the library, the application uses the GUID to identify the requested module.

A GUID is defined in the following example. GUID generators are publicly available for Windows 95,
Windows NT, on many UNIX-based platforms and the UUIDGEN of the DCE on z/OS.
typedef struct cssm_guid {

uint32 Data1;
uint16 Data2;
uint16 Data3;
uint8 Data4[8];

} CSSM_GUID, *CSSM_GUID_PTR;

2 OCSF Service Provider Module Developer’s Guide and Reference

At install time, the installation program must inform OCSF of the ways in which this module can be used.
The module usage information includes indicators of the overall module capabilities and descriptions of the
security services available from this module. The overall module capabilities include indicators such as the
module’s threading properties or exportability. The security service descriptions include information on
each service, its subservices, and any embedded products or services. For example, a module description
might indicate that this is an exportable module containing a DL service and a CSP service, where the
CSP service provides one subservice to access a software token and a second subservice to access a
hardware token. The module description is made available to applications via queries to the OCSF
registry.

Attaching a Service Provider Module
Before an application can use the functions of a specific module subservice, it must use the
CSSM_ModuleAttach function to request that OCSF attach to the module’s subservice. On the first attach,
OCSF verifies the integrity of the service provider module prior to loading the module. Loading the module
initiates a call to an operating system (OS-specific) entry point in the module. On registration, the service
provider module registers its tables of service function pointers with OCSF and receives the application’s
memory management upcalls. OCSF then uses the module function table to call the module’s Initialize
function to confirm version compatibility and calls the module’s EventNotify function to indicate that an
attach operation is occurring. Once these steps have successfully completed, OCSF returns a module
handle to the application that uniquely identifies the pairing of the application thread to the module
subservice instance. The application uses this handle to identify the module subservice in future function
calls. The module subservice uses the handle to identify the calling application. OCSF notifies the module
of subsequent attach requests from the application by using the module’s EventNotify function.
Subsequent attach operations do not require integrity verification.

Module Entry Point
When OCSF first attaches to or last detaches from a module, it initiates an OS-specific entry point. The
entry points are _init and _fini. On attach, this function is responsible for calling CSSM_RegisterServices.
On detach, it is responsible for calling CSSM_DeregisterServices. To avoid OS-related conflicts, any setup
or cleanup operations should be performed in the module’s Initialize and Terminate functions.

Module Function Table Registration
On attach, a module must register its function tables with OCSF by calling CSSM_RegisterServices. Its
function tables consist of a table of module management function pointers, plus one table of Service
Provider Interface (SPI) function pointers for each (service, subservice) pair contained in the module. The
module management functions include Initialize, EventNotify, and Terminate. The interface functions reflect
the OCSF API for each security service. The function prototypes and their descriptions provide the OCSF
SPI specifications. If a subservice does not support a given function in its SPI, the pointer to that function
must be set to NULL. These structures are specified in the OCSF header files, cssmspi.h, cssmtpi.h,
cssmcli.h, and cssmdli.h.

Memory Management Upcalls
All memory allocation and deallocation for data passed between the application and a module via OCSF is
ultimately the responsibility of the calling application. Since a module needs to allocate memory to return
data to the application, the application must provide the module with a means of allocating memory that
the application has the ability to free. It does this by providing the module with memory management
upcalls.

Memory management upcalls are pointers to the memory management functions used by the calling
application. They are provided to a module via OCSF as a structure of function pointers and are passed to
the module when it calls the CSSM_RegisterServices function. The functions will be the calling
application’s equivalent of malloc, free, calloc, and re-alloc, and will be expected to have the same
behavior as those functions. The function parameters will consist of the normal parameters for that

Chapter 1. Module Structure and Administration 3

function. The function return values should be interpreted in the standard manner. A module is responsible
for making the memory management functions available to all of its internal functions.

Error Handling
When an error occurs inside a module, the function should call CSSM_SetError. The CSSM_SetError
function takes the module’s GUID and an error number as inputs. The module’s GUID is used to identify
where the error occurred. The error number is used to describe the error.

The error number set by a module subservice should fall into one of two ranges. The first range of error
numbers is predefined by OCSF. These are errors that are common to all modules implementing a given
subservice function. They are defined in the header file, cssmerr.h, which is distributed as part of OCSF.
The second range of error numbers is used to define module-specific error codes. These module-specific
error codes should be in the range of CSSM_XX_PRIVATE_ERROR to CSSM_xx_END_ERROR, where
XX stands for the service abbreviation (CSP, TP, CL, DL). CSSM_XX_PRIVATE_ERROR and
CSSM_XX_END_ERROR are also defined in the header file cssmerr.h. A module developer is responsible
for making the definition and interpretation of their module-specific error codes available to applications.

When no error has occurred, but the appropriate return value from a function is CSSM_FALSE, that
function should call CSSM_ClearError before returning. When the application receives a CSSM_FALSE
return value, it is responsible for checking whether an error has occurred by calling CSSM_GetError. If the
module function has called CSSM_ClearError, the calling application receives a CSSM_OK response from
the CSSM_GetError function, indicating no error has occurred.

Install Example
An installation program is responsible for registering a module’s capabilities with OCSF. A sample code
segment for the installation of a CL Module is shown in the following example.

CL Module Install
#include "cssm.h"
CSSM_GUID clm_guid =
{ 0x5fc43dc1, 0x732, 0x11d0, { 0xbb, 0x14, 0x0, 0xaa, 0x0, 0x36, 0x67, 0x2d } };
CSSM_BOOL CLModuleInstall()
{

CSSM_VERSION cssm_version = { CSSM_MAJOR, CSSM_MINOR };
CSSM_VERSION cl_version = { CLM_MAJOR_VER, CLM_MINOR_VER };
CSSM_GUID cl_guid = clm_guid;
CSSM_CLSUBSERVICE sub_service;
CSSM_SERVICE_INFO service_info;
CSSM_MODULE_INFO module_info;
char SysDir[_MAX_PATH];

/* fill subservice information */
sub_service.SubServiceId = 0;
strcpy(sub_service.Description, "X509v3 SubService");
sub_service.CertType = CSSM_CERT_X_509v3;
sub_service.CertEncoding = CSSM_CERT_ENCODING_DER;
sub_service.AuthenticationMechanism = CSSM_AUTHENTICATION_NONE;
sub_service.NumberOfTemplateFields = NUMBER_X509_CERT_OIDS;
sub_service.CertTemplates = X509_CERT_OIDS_ARRAY;
sub_service.NumberOfTranslationTypes = 0;
sub_service.CertTranslationTypes = NULL;
sub_service.WrappedProduct.EmbeddedEncoderProducts = NULL;
sub_service.WrappedProduct.NumberOfEncoderProducts = 0;
sub_service.WrappedProduct.AccessibleCAProducts = NULL;
sub_service.WrappedProduct.NumberOfCAProducts = 0;

/* fill service information */
strcpy(service_info.Description, "CL Service");
service_info.Type = CSSM_SERVICE_CL;

4 OCSF Service Provider Module Developer’s Guide and Reference

service_info.Flags = 0;
service_info.NumberOfSubServices = 1;
service_info.ClSubServiceList = &sub_service;
service_info.Reserved = NULL;

/* fill module information */
module_info.Version = cl_version;
module_info.CompatibleCSSMVersion = cssm_version;
strcpy(module_info.Description, "Vendor Module");
strcpy(module_info.Vendor, "Vendor Name");
module_info.Flags = 0;
module_info.ServiceMask = CSSM_SERVICE_CL;
module_info.NumberOfServices = 1;
module_info.ServiceList = &service_info;
module_info.Reserved = NULL;

cssm.init
/* set dir path for service provider */
SysDir = "/usr/lpp/ocsf/my_addin";

/* Install the module */
if (CSSM_ModuleInstall(clm_fullname_string,

clm_filename_string,
SysDir,
&clm_guid,
&module_info,
NULL,
NULL) == CSSM_FAIL)

{
return CSSM_FALSE;

}

return CSSM_TRUE;
}

Attach/Detach Example
A module is responsible for performing certain operations when OCSF attaches to and detaches from it.
Modules use _init in conjunction with the DLLMain routine to perform those operations, as shown in the
following DL Module example.
_init BOOL_init()

{
BOOL rc;
rc = DllMain(NULL, DLL_PROCESS_ATTACH, NULL);
return (rc);

}

DLLMain
#include<cssm.h>
CSSM_GUID dl_guid =
{ 0x5fc43dc1, 0x732, 0x11d0, { 0xbb, 0x14, 0x0, 0xaa, 0x0, 0x36, 0x67, 0x2d } };
CSSM_SPI_DL_FUNCS FunctionTable;
CSSM_REGISTRATION_INFO DLRegInfo;
CSSM_MODULE_FUNCS Services;
CSSM_SPI_MEMORY_FUNCS DLMemoryFunctions;

BOOL DllMain (HANDLE hInstance, DWORD dwReason, LPVOID lpReserved)
{
switch (dwReason)
{
case DLL_PROCESS_ATTACH:
{

/* Fill in Registration information */
DLRegInfo.Initialize = DL_Initialize;

Chapter 1. Module Structure and Administration 5

DLRegInfo.Terminate = DL_Uninitialize;
DLRegInfo.EventNotify = DL_EventNotify;
DLRegInfo.GetModuleInfo = NULL;
DLRegInfo.FreeModuleInfo = NULL;
DLRegInfo.ThreadSafe = CSSM_TRUE;
DLRegInfo.ServiceSummary = CSSM_SERVICE_DL;
DLRegInfo.NumberOfServiceTables = 1;
DLRegInfo.Services = &Services;

/* Fill in Services */

Services.ServiceType = CSSM_SERVICE_DL;
Services.DlFuncs = &FunctionTable;

/* Fill in FunctionTable with function pointers */
FunctionTable.Authenticate = DL_Authenticate;
FunctionTable.DbOpen = DL_DbOpen;
FunctionTable.DbClose = DL_DbClose;
FunctionTable.DbCreate = DL_DbCreate;
FunctionTable.DbDelete = DL_DbDelete;
FunctionTable.DbImport = DL_DbImport;
FunctionTable.DbExport = DL_DbExport;
FunctionTable.DbSetRecordParsingFunctions = DL_DbSetRecordParsingFunctions;
FunctionTable.DbGetRecordParsingFunctions = DL_DbGetRecordParsingFunctions;

FunctionTable.GetDbNameFromHandle = DL_GetDbNameFromHandle;
FunctionTable.DataInsert = DL_DataInsert;
FunctionTable.DataDelete = DL_DataDelete;

FunctionTable.DataGetFirst = DL_DataGetFirst;
FunctionTable.DataGetNext = DL_DataGetNext;
FunctionTable.DataAbortQuery = DL_DataAbortQuery;
FunctionTable.FreeUniqueRecord = DL_FreeUniqueRecord;
FunctionTable.PassThrough = DL_PassThrough;

/* Call CSSM_RegisterServices to register the FunctionTable */
/* with CSSM and to receive the application's memory upcall table */

if (CSSM_ RegisterServices (&dl_guid, &DLRegInfo,
&DLMemoryFunctions,NULL) != CSSM_OK)
return FALSE;

/* Make the upcall table available to all functions in this library */

break;
}
case DLL_THREAD_ATTACH:
break;
case DLL_THREAD_DETACH:
break;
case DLL_PROCESS_DETACH:
if (CSSM_DeregisterServices (&dl_guid) != CSSM_OK)
return FALSE;
break;
}
return TRUE;
}

Service Provider Module Interface Functions
These interfaces are used by OCSF service providers to register information with and to provide address
of supported function to the OCSF.

Data Structures
This section describes the data structures that may be passed to or returned from a service provider
module function. They are used by modules to prepare data passing to and from the calling application
through the OCSF Framework. These data structures are defined in the header file, cssmspi.h, which is

6 OCSF Service Provider Module Developer’s Guide and Reference

distributed with the OCSF . Data structures that are specific to a particular type of service provider module,
such as a Trust Policy (TP) Service Provider or Data Library service provider, are described in the
individual OCSF service provider sections of this book.

The data structures used in OCSF are described in the /usr/lpp/ocsf/include/cssmtype.h header. Many of
these data structures are compatible with the equivalent cssmtype.h headers on other OCSF platforms.
The exceptions are those enclosed in ″#ifdef_MVS″.

Basic Data Types
typedef unsigned char uint8;
typedef unsigned short uint16;
typedef short sint16;
typedef unsigned int uint32;
typedef int sint32;

The following is used by OCSF data structures to represent a character string inside of a fixed-length
buffer. The character string is expected to be NULL-terminated. The string size was chosen to
accommodate current security standards.
#define CSSM_MODULE_STRING_SIZE 64
typedef char CSSM_STRING [CSSM_MODULE_STRING_SIZE + 4];

CSSM_ALL_SUBSERVICES
This data type is used to identify that information on all of the subservices is being requested or returned.
#define CSSM_ALL_SUBSERVICES (-1)

CSSM_BOOL
This data type is used to indicate a true or false condition.
typedef uint32 CSSM_BOOL;

#define CSSM_TRUE 1
#define CSSM_FALSE 0

Definitions:
CSSM_TRUE Indicates a true result or a true value.
CSSM_FALSE Indicates a false result or a false value.

CSSM_CALLBACK
An application uses this data type to request that a service provider module call back into the application
for certain cryptographic information.
typedef CSSM_DATA_PTR (CSSMAPI *CSSM_CALLBACK) (void *allocRef, uint32 ID);

Definitions:
allocRef Memory heap reference specifying which heap to use for memory allocation.
ID Input data to identify the callback.

CSSM_CRYPTO_DATA
This data structure is used to encapsulate cryptographic information, such as the passphrase to use when
accessing a private key.
typedef struct cssm_crypto_data {

CSSM_DATA_PTR Param;

CSSM_CALLBACK Callback;
uint32 CallbackID;
}CSSM_CRYPTO_DATA, *CSSM_CRYPTO_DATA_PTR

Chapter 1. Module Structure and Administration 7

Definitions:
Param A pointer to the parameter data and its size in bytes.
Callback An optional callback routine for the service provider modules to obtain the parameter.
CallbackID A tag that identifies the callback.

CSSM_DATA
The CSSM_DATA structure is used to associate a length, in bytes, with an arbitrary block of contiguous
memory. This memory must be allocated and freed using the memory management routines provided by
the calling application via OCSF. Trust Policy (TP) modules and Certificate Libraries (CLs) use this
structure to hold certificates and Certificate Revocation Lists (CRLs). Other service provider modules, such
as Cryptographic Service Providers (CSPs), use this same structure to hold general data buffers. Data
Storage Library (DL) modules use this structure to hold persistent security-related objects.
typedef struct cssm_data{

uint32 Length;/* in bytes */
uint8 *Data;

} CSSM_DATA, *CSSM_DATA_PTR

Definitions:
Length Length of the data buffer in bytes.
Data Points to the start of an arbitrary length data buffer

CSSM_GUID
This structure designates a Globally Unique ID (GUID) that distinguishes one service provider module from
another. All GUID values should be computer-generated to guarantee uniqueness. (The GUID generator in
Microsoft Developer Studio, the RPC UUIDGEN/uuid_gen program can be used on a number of
UNIX-based platforms and the UUIDGEN of the DCE on z/OS can be used to generate a GUID.)
typedef struct cssm_guid{

uint32 Data1;
uint16 Data2;
uint16 Data3;
uint8 Data4[8];

} CSSM_GUID, *CSSM_GUID_PTR

Definitions:

Data1 Specifies the first 8 hexadecimal digits of the GUID.

Data2 Specifies the first group of 4 hexadecimal digits of the GUID.

Data3 Specifies the second group of 4 hexadecimal digits of the GUID.

Data4 Specifies an array of 8 elements that contains the third and final group of 8 hexadecimal
digits of the GUID in elements 0 and 1, and the final 12 hexadecimal digits of the GUID in
elements 2 through 7.

CSSM_HANDLE
A unique identifier for an object managed by OCSF or by a service provider module.
typedef uint32 CSSM_HANDLE, *CSSM_HANDLE_PTR

CSSM_HANDLEINFO
This structure is used by service provider modules to obtain information about a CSSM_HANDLE.
typedef struct cssm_handleinfo {

uint32 SubServiceID;
uint32 SessionFlags;
CSSM_NOTIFY_CALLBACK Callback;
uint32 ApplicationContext;

} CSSM_HANDLEINFO, *CSSM_HANDLEINFO_PTR;

8 OCSF Service Provider Module Developer’s Guide and Reference

Definitions:

SubserviceID An identifier for this subservice.

SessionFlags A bit-mask of service options defined by a particular subservice of the module. Legal
values are described in the module-specific documentation. A default set of flags is
specified in the CSSM_MODULE_INFO structure for use by the caller.

Callback A callback function registered by the application as part of the module attach operation.
This function should be used to notify the application of certain events.

ApplicationContext
An identifier which should be passed back to the application as part of the Callback
function.

CSSM_INFO_LEVEL
This enumerated list defines the levels of information detail that can be retrieved about the services and
capabilities implemented by a particular module. Modules can implement multiple OCSF service types.
Each service may provide one or more subservices. Modules also can have dynamically available services
and features.
typedef enum cssm_info_level {

CSSM_INFO_LEVEL_MODULE = 0,
/* values from CSSM_SERVICE_INFO struct */

CSSM_INFO_LEVEL_SUBSERVICE = 1,
/* values from CSSM_SERVICE_INFO and XXsubservice struct */

CSSM_INFO_LEVEL_STATIC_ATTR = 2,
/* values from CSSM_SERVICE_INFO and XXsubservice and

all static-valued attributes of a subservice */
CSSM_INFO_LEVEL_ALL_ATTR = 3,

/* values from CSSM_SERVICE_INFO and XXsubservice and
all attributes, static and dynamic, of a subservice */

} CSSM_INFO_LEVEL;

CSSM_MEMORY_FUNCS/CSSM_API_MEMORY_FUNCS
This structure is used by applications to supply memory functions for the OCSF and the service provider
modules. The functions are used when memory needs to be allocated by the OCSF or service providers
for returning data structures to the applications.
typedef struct cssm_memory_funcs {

void *(*malloc_func) (uint32 Size, void *AllocRef);
void (*free_func) (void *MemPtr, void *AllocRef);
void *(*realloc_func)(void *MemPtr, uint32 Size, void *AllocRef);
void *(*calloc_func) (uint32 Num, uint32 Size, void *AllocRef);
void *AllocRef;

} CSSM_MEMORY_FUNCS, *CSSM_MEMORY_FUNCS_PTR;

typedef CSSM_MEMORY_FUNCS CSSM_API_MEMORY_FUNCS;
typedef CSSM_API_MEMORY_FUNCS *CSSM_API_MEMORY_FUNCS_PTR;

Definitions:

Malloc_func Pointer to a function that returns a void pointer to the allocated memory block of at least
Size bytes from heap AllocRef.

Free_func Pointer to a function that deallocates a previously allocated memory block (MemPtr) from
heap AllocRef.

Realloc_func Pointer to a function that returns a void pointer to the reallocated memory block (MemPtr)
of at least Size bytes from heap AllocRef.

Calloc_func Pointer to a function that returns a void pointer to an array of Num elements of length Size
initialized to zero from heap AllocRef.

Chapter 1. Module Structure and Administration 9

AllocRef Indicates which memory heap the function operates on

CSSM_MODULE_FLAGS
This bit-mask is used to identify characteristics of the module, such as whether or not it is threadsafe.
typedef uint32 CSSM_MODULE_FLAGS;

#define CSSM_MODULE_THREADSAFE 0x1 /* Module is threadsafe */
#define CSSM_MODULE_EXPORTABLE 0x2 /* Module can be exported outside the USA */

CSSM_MODULE_FUNCS
This structure is used by service provider modules to pass a table of function pointers for a single service
to OCSF.
typedef struct cssm_module_funcs {

CSSM_SERVICE_TYPE ServiceType;
union {

void *ServiceFuncs;
CSSM_SPI_CSP_FUNCS_PTR CspFuncs;
CSSM_SPI_DL_FUNCS_PTR DlFuncs;
CSSM_SPI_CL_FUNCS_PTR ClFuncs;
CSSM_SPI_TP_FUNCS_PTR TpFuncs;
CSSM_SPI_KRSP_FUNCS_PTR KrspFuncs;
};

} CSSM_MODULE_FUNCS, *CSSM_MODULE_FUNCS_PTR;

Definitions:

ServiceType The type of service provider module services accessible via the XXFuncs function table.

XXFuncs A pointer to a function table of the type described by ServiceType. These function pointers
are used by OCSF to direct function calls from an application to the appropriate service in
the service provider module. These function pointer tables are described in the OCSF
header files cssmcspi.h, cssmkrspi.h, cssmdli.h, cssmcli.h, and cssmtpi.h. Table 1 provides
the service access tables.

Table 1. Service Access Tables

Value Description

CSSM_SPI_CSP_FUNCS_PTR CspFuncs Function pointers to CSP services

CSSM_SPI_KRSP_FUNCS_PTR KrspFuncs Function pointers to KR services
Note: This is not supported in z/OS.

CSSM_SPI_DL_FUNCS_PTR DlFuncs Function pointers to DL services

CSSM_SPI_CL_FUNCS_PTR ClFuncs Function pointers to CL services

CSSM_SPI_TP_FUNCS_PTR TpFuncs Function pointers to TP services

CSSM_MODULE_HANDLE
The structure is a unique identifier for an attached service provider module.
typedef uint32 CSSM_MODULE_HANDLE

CSSM_MODULE_INFO
This structure aggregates all service descriptions about all service types of a module implementation.
typedef struct cssm_module_info {

CSSM_VERSION Version; /* Module version */
CSSM_VERSION CompatibleCSSMVersion; /* Module written for CSSM version */
CSSM_STRING Description; /* Module description */
CSSM_STRING Vendor; /* Vendor name, etc */
CSSM_MODULE_FLAGS Flags; Flags to describe and control module use */

10 OCSF Service Provider Module Developer’s Guide and Reference

CSSM_SERVICE_MASK ServiceMask; /* Bit mask of supported services */
uint32 NumberOfServices; /* Num of services in Servicelist */
CSSM_SERVICE_INFO_PTR ServiceList; /* Pointer to list of service infos */
void *Reserved;

} CSSM_MODULE_INFO, *CSSM_MODULE_INFO_PTR;

Definitions:

Version The major and minor version numbers of this service provider module.

CompatibleCSSMVersion
The version of OCSF to which this module was written.

Description A text description of this module and its functionality.

Vendor The name and description of the module vendor.

Flags Characteristics of this module, such as whether or not it is threadsafe.

ServiceMask A bit-mask identifying the types of services available in this module.

NumberOfServices
The number of services for which information is provided. Multiple descriptions (as
subservices) can be provided for a single service category.

ServiceList An array of pointers to the service information structures. This array contains
NumberOfServices entries.

Reserved This field is reserved for future use. It should always be set to NULL.

CSM_NOTIFY_CALLBACK
The CSSM_NOTIFY_CALLBACK is used by the application to provide a function pointer to a callback
routine. It is typically supplied in the CSSM_ModuleAttach API when the application developer wishes
something to be called in response to a particular event happening. It is defined as follows:
typedef CSSM_RETURN (CSSMAPI *CSSM_NOTIFY_CALLBACK)(CSSM_MODULE_HANDLE

uint32 Application,ModuleHandle,
uint32 Reason,
Void * Param);

Definitions:
ModuleHandle The handle of the attached service provider module.
Application Input data to identify the callback.
Reason The reason for the notification (see Table 2).
Param Any additional information about the event.

Table 2. Notification Reasons

Reason Description

CSSM_NOTIFY_SURRENDER The service provider module is temporarily surrendering control of
the process.

CSSM_NOTIFY_COMPLETE An asynchronous operation has completed.

CSSM_NOTIFY_DEVICE_REMOVED A device, such as a token, has been removed.

CSSM_NOTIFY_DEVICE_INSERTED A device, such as a token, has been inserted.

CSSM_REGISTRATION_INFO
This structure is used by service provider modules to pass tables of function pointers and module
information to OCSF.
typedef struct cssm_registration_info {

/* Loading, Unloading and Event Notifications */
CSSM_RETURN (CSSMAPI *Initialize) (CSSM_MODULE_HANDLE Handle,

Chapter 1. Module Structure and Administration 11

uint32 VerMajor,
uint32 VerMinor);

CSSM_RETURN (CSSMAPI *Terminate) (CSSM_MODULE_HANDLE Handle);
CSSM_RETURN (CSSMAPI *EventNotify)(CSSM_MODULE_HANDLE Handle,

const CSSM_EVENT_TYPE Event,
const uint32 Param);

CSSM_MODULE_INFO_PTR (CSSMAPI *GetModuleInfo)
(CSSM_MODULE_HANDLE ModuleHandle,
CSSM_SERVICE_MASK ServiceMask,
uint32 SubserviceID,
CSSM_INFO_LEVEL InfoLevel);

CSSM_RETURN (CSSMAPI *FreeModuleInfo) (CSSM_MODULE_HANDLE ModuleHandle,
CSSM_MODULE_INFO_PTR ModuleInfo);

CSSM_BOOL ThreadSafe;
uint32 ServiceSummary;
uint32 NumberOfServiceTables;
CSSM_MODULE_FUNCS_PTR Services;

} CSSM_REGISTRATION_INFO, *CSSM_REGISTRATION_INFO_PTR;

Definitions:

Initialize Pointer to function that verifies compatibility of the requested module version with the
actual module version, and which performs module setup operations.

Terminate Pointer to function that performs module cleanup operations.

EventNotify Pointer to function that accepts event notification from OCSF.

GetModuleInfo Pointer to function that obtains and returns dynamic information about the module.

FreeModuleInfo
Pointer to function that frees the module information structure.

Threadsafe A flag that indicates to OCSF whether or not the module is capable of handling
multithreaded access.

ServiceSummary
A bit-mask indicating the types of services offered by this module. It is the bitwise-OR of
the service types described in Table 1.

NumberofServiceTables
The number of distinct services provided by this module. This is also the length of the
Services array.

Services An array of CSSM_MODULE_FUNCS structures that provide the mechanism for
accessing the module’s services.

CSSM_RETURN
This data type is used to indicate whether a function was successful.
typedef enum cssm_return {

CSSM_OK = 0,

CSSM_FAIL = -1
} CSSM_RETURN

Definitions:
CSSM_OK Indicates operation was successful.
CSSM_FAIL Indicates operation was unsuccessful.

CSSM_SERVICE_FLAGS
This defines a bit-mask that categorizes the type of service proviced by a service provider module. It can
contain any combination of CSSM_SERVICE_MASK values.

12 OCSF Service Provider Module Developer’s Guide and Reference

typedef uint32 CSSM_SERVICE_FLAGS

#define CSSM_SERVICE_ISWRAPPEDPRODUCT 0x1
/* On = Contains one or more embedded products

Off = Contains no embedded products */

CSSM_SERVICE_INFO
This structure holds a description of a module service. The service described is of the OCSF service type
specified by the module type.
typedef struct cssm_serviceinfo {
CSSM_STRING Description; /* Service description */
CSSM_SERVICE_TYPE Type; /* Service type */
CSSM_SERVICE_FLAGS Flags; /*Service flags */

uint32 NumberOfSubServices; /* Number of sub services in SubServiceList */
union {

void *SubServiceList;
CSSM_CSPSUBSERVICE_PTR CspSubServiceList;
CSSM_DLSUBSERVICE_PTR DlSubServiceList;
CSSM_CLSUBSERVICE_PTR ClSubServiceList;
CSSM_TPSUBSERVICE_PTR TpSubServiceList;
CSSM_KRSUBSERVICE_PTR KrSubServiceList;

};
void *Reserved;

} CSSM_SERVICE_INFO, *CSSM_SERVICE_INFO_PTR;

Definitions:

Description A text description of the service.

Type Specifies exactly one type of service structure, such as CSSM_SERVICE_CSP,
CSSM_SERVICE_CL, etc.

Flags Characteristics of this service, such as whether it contains any embedded products.

NumberOfSubServices
The number of elements in the module SubServiceList.

SubServiceList
A list of descriptions of the encapsulated subservices (not of the basic service types).

CspSubServiceList
A list of descriptions of the encapsulated CSP subservices.

DlSubServiceList
A list of descriptions of the encapsulated DL subservices.

ClSubServiceList
A list of descriptions of the encapsulated CL subservices.

TpSubServiceList
A list of descriptions of the encapsulated TP subservices.

KrSubServiceList3
A list of descriptions of the encapsulated key recovery subservices.

Reserved This field is reserved for future use. It should always be set to NULL.

CSSM_SERVICE_MASK
This defines a bit-mask of the possible categories of OCSF services that may be implemented by a single
service provider module.

3. This is not supported in z/OS.

Chapter 1. Module Structure and Administration 13

typedef uint32 CSSM_SERVICE_MASK;

#define CSSM_SERVICE_CSSM 0x1
#define CSSM_SERVICE_CSP 0x2
#define CSSM_SERVICE_DL 0x4
#define CSSM_SERVICE_CL 0x8
#define CSSM_SERVICE_TP 0x10
#define CSSM_SERVICE_KR 0x20
#define CSSM_SERVICE_LAST CSSM_SERVICE_TP

CSSM_SERVICE_TYPE
This data type is used to identify a single service from the CSSM_SERVICE_MASK options defined
above.
typedef CSSM_SERVICE_MASK CSSM_SERVICE_TYPE

CSSM_SPI_FUNC_TBL
This structure is used by service provider modules to reference an application’s memory management
functions. The functions are used when a service provider module needs to allocate memory for returning
data structures to the application, or needs to deallocate memory for a data structure that is passed to it
from an application.
typedef struct cssm_spi_func_tbl {

void *(*malloc_func) (CSSM_HANDLE AddInHandle, uint32 Size);
void (*free_func) (CSSM_HANDLE AddInHandle, void *MemPtr);
void *(*realloc_func)(CSSM_HANDLE AddInHandle, void *MemPtr, uint32 Size);
void *(*calloc_func) (CSSM_HANDLE AddInHandle, uint32 Num, uint32 Size);

} CSSM_SPI_MEMORY_FUNCS, *CSSM_SPI_MEMORY_FUNCS_PTR;

Definitions:

Malloc_func Pointer to a function that returns a void pointer to the allocated memory block of at least
Size bytes from the heap of the application associated with AddInHandle.

Free_func Pointer to a function that deallocates a previously allocated memory block (MemPtr) from
the heap of the application associated with AddInHandle.

Realloc_func Pointer to a function that returns a void pointer to the reallocated memory block (MemPtr)
of at least Size bytes from the heap of the application associated with AddInHandle.

Calloc_func Pointer to function that returns a void pointer to an array of Num elements of length Size
initialized to zero from the heap of the application associated with AddInHandle.

CSSM_USER_AUTHENTICATION
This structure holds the user’s credentials for authentication to the data storage library module. The type of
credentials required is defined by the DL module and specified as a
CSSM_USER_AUTHENTICATION_MECHANISM.
typedef struct cssm_user_authentication {

CSSM_DATA_PTR Credential;
CSSM_CRYPTO_DATA_PTR MoreAuthenticationData;

} CSSM_USER_AUTHENTICATION, *CSSM_USER_AUTHENTICATION_PTR;

Definitions:

Credential A certificate, a shared secret, a magic token, or whatever is required by a service provider
module for user authentication. The required credential type is specified as a
CSSM_USER_AUTHENTICATION_MECHANISM.

MoreAuthenticationData
A passphrase or other data that can be provided as immediate data within this structure or
via a callback function to the user/caller.

14 OCSF Service Provider Module Developer’s Guide and Reference

CSSM_USER_AUTHENTICATION_MECHANISM
The enumerated list of CSSM_User_Authentication_Mechanism defines different methods a service
provider module can require when authenticating a caller. The module specifies which mechanism the
caller must use for each subservice type provided by the module. OCSF-defined authentication methods
include password-based authentication, a login sequence, or a certificate and passphrase. It is anticipated
that new mechanisms will be added to this list as required.
typedef enum cssm_user_authentication_mechanism {

CSSM_AUTHENTICATION_NONE = 0,
CSSM_AUTHENTICATION_CUSTOM = 1,
CSSM_AUTHENTICATION_PASSWORD = 2,
CSSM_AUTHENTICATION_USERID_AND_PASSWORD = 3,
CSSM_AUTHENTICATION_CERTIFICATE_AND_PASSPHRASE = 4,
CSSM_AUTHENTICATION_LOGIN_AND_WRAP = 5,

} CSSM_USER_AUTHENTICATION_MECHANISM;

CSSM_VERSION
This structure is used to represent the version of OCSF components.
typedef struct cssm_version {

uint32 Major;
uint32 Minor;

} CSSM_VERSION, *CSSM_VERSION_PTR;

Definitions:
Major The major version number of the component.
Minor The minor version number of the component.

Relevant CSSM API Functions
Several API functions are particularly relevant to module developers because they are used either by the
application to access a module, or by a module to access OCSF services such as the OCSF registry or
the error-handling routines. For additional information, module developers are encouraged to reference the
z/OS: Open Cryptographic Services Facility Application Programming book.

Chapter 1. Module Structure and Administration 15

Service Provider Module Functions
A service provider module interfaces with OCSF using the functions described in this section.

CSSM_DeregisterServices

Purpose
This function is used by a service provider module to deregister its function table with OCSF

Format
CSSM_RETURN CSSMAPI CSSM_DeregisterServices (const CSSM_GUID_PTR GUID)

Parameters
Input

GUID A pointer to the CSSM_GUID structure containing the Globablly Unique ID (GUID) for this
module.

Return Value
CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use CSSM_GetError
to obtain the error code.

Error Codes

Value Description

CSSM_INVALID_GUID Invalid GUID

CSSM_DEREGISTER_SERVICES_FAIL Unable to deregiser services.

Related Information
CSSM_RegisterServices

16 OCSF Service Provider Module Developer’s Guide and Reference

CSSM_GetHandleInfo

Purpose
This function retrieves a CSSM_HANDLEINFO structure which describes the attributes of the service
provider module referenced by hModule.

Format
CSSM_HANDLEINFO_PTR CSSMAPI CSSM_GetHandleInfo (CSSM_HANDLE hModule)

Parameters
Input

hModule Handle of the service provider module.

Return Value
A pointer to a CSSM_HANDLEINFO data structure. If the pointer is NULL, an error has occurred. Use
CSSM_GetError to obtain the error code.

Chapter 1. Module Structure and Administration 17

CSSM_ModuleInstall

Purpose
This function registers the module with OCSF. OCSF adds the module’s descriptive information to its
persistent registry. This makes the service module available for use on the local system. The function
accepts as input the name and unique identifier for the module, the location executable code for the
module, and a digitally signed list of capabilities supported by the module. The module name and
description are added to the OCSF registry, making the module available for use by applications.

Format
CSSM_RETURN CSSMAPI CSSM_ModuleInstall (const char *ModuleName,

const char *ModuleFileName,
const char *ModulePathName,
const CSSM_GUID_PTR GUID,
const CSSM_MODULE_INFO_PTR ModuleDescription,
const void * Reserved1,
const CSSM_DATA_PTR Reserved2)

Parameters
Input

ModuleName The name of the module.

ModuleFileName
The name of the file that implements the module.

ModulePathName
The path to the file that implements the module.

GUID A pointer to the CSSM_GUID structure containing the GUID for the module.

ModuleDescription
A pointer to the CSSM_MODULE_INFO structure containing a description of the module.

Reserved1 Reserve data for the function.

Reserved2 Reserve data for the function.

Return Value
A CSSM_OK return value signifies that information has been updated. If CSSM_FAIL is returned, an error
has occurred. Use CSSM_GetError to obtain the error code.

Related Information
CSSM_ModuleUninstall

18 OCSF Service Provider Module Developer’s Guide and Reference

CSSM_ModuleUninstall

Purpose
This function deletes the persistent OCSF internal information about the module and removes it from the
name space of available modules in the OCSF system.

Format
CSSM_RETURN CSSMAPI CSSM_ModuleUninstall (const CSSM_GUID_PTR GUID)

Parameters
Input

GUID A pointer to the CSSM_GUID structure containing the GUID for the module.

Return Value
A CSSM_OK return value means the module has been successfully uninstalled. If CSSM_FAIL is returned,
an error has occurred. Use CSSM_GetError to obtain the error code.

Related Information
CSSM_ModuleInstall

Chapter 1. Module Structure and Administration 19

CSSM_RegisterServices

Purpose
This function is used by a service provider module to register its function table with OCSF and to receive a
memory management upcall table from OCSF.

Format
CSSM_RETURN CSSMAPI CSSM_RegisterServices (const CSSM_GUID_PTR GUID,

const CSSM_REGISTRATION_INFO_PTR FunctionTable,
CSSM_SPI_MEMORY_FUNCS_PTR UpcallTable,
void *Reserved)

Parameters
Input

GUID A pointer to the CSSM_GUID structure containint the GUID for the calling module.

FunctionTable A structure containing pointers to the interface functions implemented by this module,
organized by interface type.

Reserved A reserved input.

Output

UpcallTable A pointer to the CSSM_SPI_MEMORY_FUNCS structure containing the memory
management function pointers to be used by this module

Return Value
CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use CSSM_GetError
to obtain the error code.

Error Codes

Value Desciption

CSSM_INVALID_GUID Invalid GUID

CSSM_INVALID_FUNCTION_TABLE Invalid function table

CSSM_REGISTER_SERVICES_FAIL Unable to register services

Related Information
CSSM_DeregisterServices

20 OCSF Service Provider Module Developer’s Guide and Reference

CSSM_SetModuleInfo

Purpose
This function replaces all of the currently registered descriptive information about the module identified by
GUID with the new specified information. CSSM_SetModuleInfo replaces all information for all service
categories and all subservices.

To retain any of the module information, use the CSSM_GetModuleInfo function to retrieve the current
module information from the OCSF registry, make a private copy, and then use the CSSM_SetModuleInfo
function to update the OCSF registry.

This function should be used to incrementally update descriptive information that is unspecified at
installation time.

Format
CSSM_RETURN CSSMAPI CSSM_SetModuleInfo(const CSSM_GUID_PTR ModuleGUID,

const CSSM_MODULE_INFO_PTR ModuleInfo)

Parameters
Input

ModuleGUID A pointer to the CSSM_GUID structure containing the GUID for the service provider
module.

ModuleInfo A pointer to the complete structured set of descriptive information about the module.

Return Value
A CSSM_OK return value signifies that the module information has been successfully written to the
registry. If CSSM_FAIL is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Related Information

CSSM_GetModuleInfo
CSSM_FreeModuleInfo

Chapter 1. Module Structure and Administration 21

EventNotify

Purpose
This function is used by OCSF to notify the module of certain events such as module attach and detach
operations.

Format
CSSM_RETURN CSSMAPI EventNotify (CSSM_MODULE_HANDLE Handle,

const CSSM_EVENT_TYPE Event,
const uint32 Param)

Parameters
Input

Handle The handle that identifies the module to application thread pairing

Event The event that is occurring. The possible events are described in Table 3.

Param An event-specific parameter (see Table 4).

Table 3. Module Event Types

Event Description

CSSM_EVENT_ATTACH The application has requested an attach operation.

CSSM_EVENT_DETACH The application has requested a detach operation.

CSSM_EVENT_INFOATTACH An application has requested module info and OCSF wants to obtain the
module’s dynamic capabilities. The service provider module cannot
assume that Initialize or Terminate has been called.

CSSM_EVENT_INFODETACH OCSF has finished obtaining the module’s dynamic capabilities.

CSSM_EVENT_CREATE_CONTEXT A context has been created.

CSSM_EVENT_DELETE_CONTEXT A context has been deleted.

Table 4. Module Event Parameters

Event Parameter

CSSM_EVENT_ATTACH None

CSSM_EVENT_DETACH None

CSSM_EVENT_INFOATTACH None

CSSM_EVENT_INFODETACH None

CSSM_EVENT_CREATE_CONTEXT Context handle

CSSM_EVENT_DELETE_CONTEXT Context handle

Return Value
A CSSM_OK return value signifies that the module’s event-specific operations were successfully
performed. When CSSM_FAIL is returned, an error has occurred. Use CSSM_GetError to obtain the error
code.

Related Information

Initialize
Terminate

22 OCSF Service Provider Module Developer’s Guide and Reference

FreeModuleInfo

Purpose
This function frees the memory allocated to hold all of the info structures returned by GetModuleInfo. All
substructures within the info structure are freed by this function.

Format
CSSM_RETURN CSSMAPI FreeModuleInfo (CSSM_MODULE_HANDLE ModuleHandle,

CSSM_MODULE_INFO_PTR ModuleInfo)

Parameters
Input

ModuleHandle The handle of the attached service provider module.

ModuleInfo A pointer to the CSSM_MODULE_INFO structures to be freed

Return Value
This function returns CSSM_OK if successful, and returns an error code if an error has occurred.

Error Codes

Value Description

CSSM_INVALID_MODULEINFO_POINTER Invalid Pointer

Related Information
GetModuleInfo

Chapter 1. Module Structure and Administration 23

GetModuleInfo

Purpose
This function returns descriptive information about the module identified by the ModuleHandle. The
information returned can include all of the capability information for each subservice, and for each of the
service types implemented by the selected module. The request for information can be limited to a
particular set of services, as specified by the service bit-mask. The request may be further limited to one
or all of the subservices implemented in one or all of the service categories. Finally, the detail level of the
information returned can be controlled by the InfoLevel input parameter. This is particularly important for
the module with dynamic capabilities. InfoLevel can be used to request static attribute values only or
dynamic values.

Format
CSSM_MODULE_INFO_PTR CSSMAPI GetModuleInfo (CSSM_MODULE_HANDLE ModuleHandle,

CSSM_SERVICE_MASK ServiceMask,
uint32 SubserviceID,
CSSM_INFO_LEVEL InfoLevel)

Parameters
Input

ModuleHandle The handle of the attached service provider module.

ServiceMask A bit-mask specifying the module service types used to restrict the capabilities information
returned by this function. An input value of zero specifies all services for the specified
module.

SubserviceID A single subservice ID or the value CSSM_ALL_SUBSERVICES must be provided. If a
subservice ID is provided the get operation is limited to the specified subservice. Note that
the operation may already be limited by a service mask. If so, the subservice ID applies to
all service categories selected by the service mask. If CSSM_ALL_SUBSERVICES is
specified, information for all subservices (as limited by the service mask) is returned by
this function.

InfoLevel Indicates the level of detail returned by this function. Information retrieval can be restricted
as follows:

v CSSM_INFO_LEVEL_MODULE - Returns only the information contained in the
cssm_moduleinfo structure.

v CSSM_INFO_LEVEL_SUBSERVICE - Returns the information returned by
CSSM_INFO_LEVEL_MODULE and the information contained in the
cssm_XXsubservice structure, where XX corresponds to the module type, such as
cssm_tpsubservice.

v CSSM_INFO_LEVEL_STATIC_ATTR - Returns the information returned by
CSSM_INFO_LEVEL_SUBSERVICE and the attribute and capability values that are
statically defined for the module.

v CSSM_INFO_LEVEL_ALL_ATTR - Returns the information returned by
CSSM_INFO_LEVEL_SUBSERVICE and the attribute and capability values that are
statically or dynamically defined for the module. Dynamic modules, whose capabilities
change over time, support a query function used by OCSF to interrogate the module’s
current capability status.

Return Value
A pointer to a module info structure containing a pointer to an array of zero or more service information
structures. Each structure contains type information identifying the service description as representing
Certificate Library services (CL), Data Storage Library (DL) services, etc. The service descriptions are
subclassed into subservice descriptions that describe the attributes and capabilities of a subservice.

24 OCSF Service Provider Module Developer’s Guide and Reference

Error Codes

Value Description

CSSM_INVALID_POINTER Invalid pointer

CSSM_INVALID_USAGE_MASK Invalid bit-mask

CSSM_INVALID_SUBSERVICEID Invalid subservice ID

CSSM_INVALID_INFO_LEVEL Invalid info level indicator

CSSM_MEMORY_ERROR Internal memory error

CSSM_INVALID_GUID Unknown GUID

Related Information
CSSM_SetModuleInfo CSSM_FreeModuleInfo

Chapter 1. Module Structure and Administration 25

Initialize

Purpose
This function checks whether the current version of the module is compatible with the input version, and
performs any module-specific setup activities

Format
CSSM_RETURN CSSMAPI Initialize (CSSM_MODULE_HANDLE Handle, uint32 VerMajor, uint32 VerMinor)

Parameters
Input

Handle The handle that identifies the module to application thread pairing

VerMajor The major version number of the module expected by the calling application.

VerMinor The minor version number of the module expected by the calling application.

Return Value
A CSSM_OK return value signifies that the current version of the module is compatible with the input
version numbers, and all setup operations were successfully performed. When CSSM_FAIL is returned,
either the current module is incompatible with the requested module version or an error has occurred. Use
CSSM_GetError to obtain the error code.

Related Information

Terminate
EventNotify

26 OCSF Service Provider Module Developer’s Guide and Reference

Terminate

Purpose
This function performs any module-specific cleanup activities.

Format
CSSM_RETURN CSSMAPI Terminate (CSSM_MODULE_HANDLE Handle)

Parameters
Input

Handle The handle that identifies the module to application thread pairing.

Return Value
A CSSM_OK return value signifies that all cleanup operations were successfully performed. When
CSSM_FAIL is returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Related Information

Initialize
EventNotify

Chapter 1. Module Structure and Administration 27

28 OCSF Service Provider Module Developer’s Guide and Reference

Chapter 2. Cryptographic Service Provider Module Information

Cryptographic Service Providers (CSPs) are service provider modules which perform cryptographic
operations including encryption, decryption, digital signing, key pair generation, random number
generation, message digest, and key exchange. Besides the traditional cryptographic functions, CSPs may
provide other vendor-specific services. For more information on providing your own CSP, you need to
contact IBM by using one of the following methods:

v Send an e-mail note to S390PID@US.IBM.COM

v Call the Solution Developer Program Hotline at 1-770-835-9902 (worldwide) or 1-800-627-8363 (US and
Canada), ask for the S/390 Administrator

v Access the S/390 Partners in Development home page at:
http://www.s390.ibm.com/s390da

and use the feedback form to make a request.

© Copyright IBM Corp. 1999, 2001 29

http://www.s390.ibm.com/s390da

30 OCSF Service Provider Module Developer’s Guide and Reference

Chapter 3. Trust Policy Interface

A digital certificate is the binding of some identification to a public key in a particular domain. When a trust
domain authority issues (creates and signs) a certificate to a subject, it binds the subject’s public key to
the identity. This binding obviously can be verified through the signature verification process. The issuing
authority also associates a level of trust with the certificate. The actions of the user, whose identity is
bound to the certificate, are constrained by the Trust Policy (TP) governing the usage domain of the
certificate. A digital certificate is a subject’s credential in cyberspace that cannot be forged.

The use of digital certificates is the basic premise of OCSF design. The OCSF assumes the concept of
digital certificates in its broadest sense. Applications use digital certificates as credential for:
v Identification
v Authentication
v Authorization.

The applications interpret and manipulate the contents of certificates to achieve these ends based on the
real-world trust model they chose as their model for trust and security. The primary purpose of a TP
module is to answer the question, ″Is this certificate trusted for this action″? The OCSF TP application
programming interface (API) determines the generic operations that should be defined for certificate-based
trust in every application domain. The specific semantics of each operation is defined by the following:
v Application domain
v Trust model
v Policy statement for a domain
v Certificate type
v Real-world operation the user is trying to perform within the application domain.

The trust model is expressed as an executable policy that is used by all applications that ascribe to that
policy and the trust model it represents. As an infrastructure, OCSF is policy neutral; it does not
incorporate any single policy. For example, the verification procedure for a credit card certificate should be
defined and implemented by the credit company issuing the certificate. Employee access to a lab housing
a critical project should be defined by the company whose intellectual property is at risk. Rather than
defining policies, OCSF provides the infrastructure for installing and managing policy-specific modules.
This ensures complete extensibility of certificate-based trust on every platform hosting OCSF.

Different TPs define different actions that an application may request. Some of these actions are common
to every TP, and are operations on objects that all trust models use. The objects common to all trust
models are certificates and Certificate Revocation Lists (CRLs). The basic operations on these objects are
sign, verify, and revoke.

OCSF defines a set of API calls that should be implemented by TP modules. These calls allow an
application to perform basic operations such as verify, sign-on certificates, and CRLs. More extensible
operations can be embedded in the implementation of these APIs.

Application developers and trust domain authorities benefit from the ability to define and implement
policy-based modules. Application developers are freed from the burden of implementing a policy
description and certifying that their implementation conforms. Instead, the application needs only to build in
a list of the authorities and certificate issuers it uses.

Trust domain authorities also benefit from an infrastructure that supports TP modules. Trust domain
authorities are ensured that applications using their modules adhere to the policies of the domain.
Individual functions within the module may combine local and remote processing. This flexibility allows the
module developer to implement policies based on the ability to communicate with a remote authority
system. This also allows the policy implementation to be decomposed in any convenient distributed
manner.

© Copyright IBM Corp. 1999, 2001 31

Implementing a TP module may or may not be tightly coupled with one or more Certificate Library (CL)
modules or one or more Data Storage Library (DL) modules. The TP embodies the semantics of the
domain. The CL and the DL embody the syntax of a certificate format and operations on that format. A TP
can be completely independent of certificate format, or it may be defined to operate with one or a small
number of certificate formats. A TP implementation may invoke a CL module and/or a DL module to
manipulate certificates.

Trust Policy Services API
OCSF defines eight API calls that TP modules can implement. These calls implement various categories of
operations that can be performed on trust objects.

Signing Certificates and Certificate Revocation Lists. Every system should be capable of being a
Certificate Authority (CA), if so authorized. CAs are applications that issue and validate certificates and
CRLs. Issuing certificates and CRLs include initializing their attributes and digitally signing the result using
the private key of the issuing authority. The private key used for signing is associated with the signer’s
certificate. The TP module must evaluate the trustworthiness of the signer’s certificate before performing
this operation. Some policies may require that multiple authorities sign an issued certificate. If the TP
trusts the signer’s certificate, then the TP module may perform the cryptographic signing algorithm by
invoking the signing function in a CL module, or by directly invoking the data signing function in a
Cryptographic Service Provider (CSP) module. The CL functions that can be used to carry out some of the
TP operations are documented in this book.

Verifying Certificates and Certificate Revocation Lists. The TP module determines the trustworthiness
of a CRL received from a remote system. The test focuses on the trustworthiness of the agent who signed
the CRL. The TP module may need to perform operations on the certificate or CRL to determine
trustworthiness. If these operations depend on the data format of the certificate or CRL, the TP module
uses the services of a CL module to perform these checks.

Revoking Certificates. When revoking a certificate, the identity of the revoking agent is presented in the
form of another certificate. The TP module must determine trustworthiness of the revoking agent’s
certificate to perform revocation. If the requesting agent’s certificate is trustworthy, the TP module carries
out the operation directly by invoking a CL module to add a new revocation record to a CRL, marking the
certificate as revoked. The OCSF API also defines a reason parameter that is passed to the TP module.
The TP may use this parameter as part of its trust evaluation.

PassThrough Function. For operations not defined in the TPI, the passthrough function allows the TP
module to provide support for these services to clients. These private services are identified by operation
identifiers. TP module developers must provide documentation of these services

Trust Policy Data Structures
This section describes the data structures that may be passed to or returned from a TP function. They will
be used by applications to prepare data to be passed as input parameters into OCSF API function calls
that will be passed without modification to the appropriate TP. The TP is then responsible for interpreting
them and returning the appropriate data structure to the calling application through OCSF. These data
structures are defined in the header file, cssmtype.h, which is distributed with OCSF.

Basic Data Types
typedef unsigned char uint8;
typedef unsigned short uint16;
typedef short sint16;
typedef unsigned int uint32;
typedef int sint32;

32 OCSF Service Provider Module Developer’s Guide and Reference

#define CSSM_MODULE_STRING_SIZE 64
typedef char CSSM_STRING [CSSM_MODULE_STRING_SIZE + 4];

CSSM_BOOL
This data type is used to indicate a true or false condition.
typedef uint32 CSSM_BOOL;

#define CSSM_TRUE 1
#define CSSM_FALSE 0

Definitions:
CSSM_TRUE Indicates a true result or a true value.
CSSM_FALSE Indicates a false result or a false value.

CSSM_CERTGROUP
This structure contains a set of certificates. It is assumed that the certificates are related based on the
signature hierarchy. A typical group is a chain of certificates. The certificate group is a syntactic
representation of a trust model. All certificates in the group must be of the same type and issued for the
same trust domain.
typedef struct cssm_certgroup{

uint32 NumCerts;
CSSM_DATA_PTR CertList;
void *reserved;

} CSSM_CERTGROUP, *CSSM_CERTGROUP_PTR;

Definitions:
NumCerts Number of certificates in the group.
CertList List of certificates.
Reserved Reserved for future use.

CSSM_DATA
The CSSM_DATA structure associates a length, in bytes, with an arbitrary block of contiguous memory.
This memory must be allocated and freed using the memory management routines provided by the calling
application via OCSF.
typedef struct cssm_data {

uint32 Length; /* in bytes */
uint8* Data;

} CSSM_DATA, *CSSM_DATA_PTR

Definitions:
Length The length, in bytes, of the memory block pointed to by Data.
Data A pointer to a contiguous block of memory.

CSSM_DL_DB_HANDLE
This data structure holds a pair of handles, one for a DL and another for a data store opened and being
managed by the DL.
typedef struct cssm_dl_db_handle {

CSSM_DL_HANDLE DLHandle;
CSSM_DB_HANDLE DBHandle;

} CSSM_DL_DB_HANDLE, *CSSM_DL_DB_HANDLE_PTR;

Definitions:
DLHandle Handle of an attached module that provides DL services.
DBHandle Handle of an open data store that is currently under the management of the DL module

specified by the DLHandle.

Chapter 3. Trust Policy Interface 33

CSSM_DL_DB_LIST
This data structure defines a list of handle pairs (DL handle, data store handle).
typedef struct cssm_dl_db_list {

uint32 NumHandles;
CSSM_DL_DB_HANDLE_PTR DLDBHandle;

} CSSM_DL_DB_LIST, *CSSM_DL_DB_LIST_PTR;

Definitions:
NumHandles Number of pairs in the list (DL handle, data store handle).
DLDBHandle List of pairs (DL handle, data store handle).

CSSM_FIELD
This structure contains the object identifier (OID)/value pair for any item that can be identified by an OID. A
CL module uses this structure to hold an OID/value pair for a field in a certificate or CRL.
typedef struct cssm_field {

CSSM_OID FieldOid;
CSSM_DATA FieldValue;

}CSSM_FIELD, *CSSM_FIELD_PTR

Definitions:
FieldOid The OID that identifies the certificate or CRL data type or data structure.
FieldVAlue A CSSM_DATA type which contains the value of the specified OID in a contiguous block of

memory.

CSSM_OID
The OID is used to hold an identifier for the data types and data structures that comprise the fields of a
certificate or CRL. The underlying representation and meaning of the identifier is defined by the CL
module. For example, a CL module can choose to represent its identifiers in any of the following forms:

v A character string in a character set native to the platform

v A DER-encoded X.509 OID that must be parsed

v An S-expression that must be evaluated

v An enumerated value that is defined in header files supplied by the CL module.
typedef CSSM_DATA CSSM_OID, *CSSM_OID_PTR

CSSM_RETURN
This data type is used to indicate whether a function was successful.
typedef enum cssm_return {

CSSM_OK = 0,
CSSM_FAIL = -1

} CSSM_RETURN

Definitions:
CSSM_OK Indicates operation was successful.
CSSM_FAIL Indicates operation was unsuccessful.

CSSM_REVOKE_REASON
This structure represents the reason a certificate is being revoked.
typedef enum cssm_revoke_reason {

CSSM_REVOKE_CUSTOM = 0,
CSSM_REVOKE_UNSPECIFIC = 1,
CSSM_REVOKE_KEYCOMPROMISE = 2,
CSSM_REVOKE_CACOMPROMISE = 3,
CSSM_REVOKE_AFFILIATIONCHANGED = 4,
CSSM_REVOKE_SUPERCEDED = 5,

34 OCSF Service Provider Module Developer’s Guide and Reference

CSSM_REVOKE_CESSATIONOFOPERATION = 6,
CSSM_REVOKE_CERTIFICATEHOLD = 7,
CSSM_REVOKE_CERTIFICATEHOLDRELEASE = 8,
CSSM_REVOKE_REMOVEFROMCRL = 9

} CSSM_REVOKE_REASON;

CSSM_TP_ACTION
This data structure represents a descriptive value defined by the TP module. A TP can define
application-specific actions for the application domains over which the TP applies. Given a set of
credentials, the TP module verifies authorizations to perform these actions.
typedef uint32 CSSM_TP_ACTION

CSSM_TP_HANDLE
This data structure represents the TP module handle. The handle value is a unique pairing between a TP
module and an application that has attached that module. TP handles can be returned to an application as
a result of the CSSM_ModuleAttach function.
typedef uint32 CSSM_TP_HANDLE/* Trust Policy Handle */

CSSM_TP_STOP_ON
This enumerated list defines the conditions controlling termination of the verification process by the TP
module when a set of policies/conditions must be tested.
typedef enum cssm_tp_stop_on {

CSSM_TP_STOP_ON_POLICY = 0,/* use the pre-defined stopping criteria */
CSSM_TP_STOP_ON_NONE = 1,/* evaluate all condition whether T or F */
CSSM_TP_STOP_ON_FIRST_PASS = 2, /* stop evaluation at first TRUE */
CSSM_TP_STOP_ON_FIRST_FAIL = 3/* stop evaluation at first FALSE */

} CSSM_TP_STOP_ON;

Chapter 3. Trust Policy Interface 35

Trust Policy Operations
This section describes the function prototypes expected for the functions in the TPI. The functions will be
exposed to OCSF through a function table, so the function names may vary at the discretion of the TP
developer. However, the function parameter list and return type must match the prototypes given in this
section in order to be used by applications.

TP_CertSign

Purpose
The TP module decides first whether the signer certificate is trusted to sign the subject certificate. Once
the trust is established, the TP signs the certificate when given the signer’s certificate and the scope of the
signing process.

Format
CSSM_DATA_PTR CSSMTPI TP_CertSign (CSSM_TP_HANDLE TPHandle,

CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DL_DB_LIST_PTR DBList,
const CSSM_DATA_PTR CertToBeSigned,
const CSSM_CERTGROUP_PTR SignerCertGroup,
const CSSM_FIELD_PTR SignScope,
uint32 ScopeSize)

Parameters
Input

TPHandle The handle that describes the TP module used to perform this function.

CLHandle The handle that describes the CL module used to perform this function.

CCHandle The cryptographic context specifies the handle of the CSP that must be used to perform
the operation.

DBList A list of handle pairs specifying a DL module and a data store managed by that module.
These data stores can be used to store or retrieve objects (such as certificate and CRLs)
related to the signer’s certificate or a data store for storing a resulting signed CRL.

CertToBeSigned
A pointer to the CSSM_DATA structure containing a certificate to be signed.

SignerCertGroup
A pointer to the CSSM_CERTGROUP structure containing one or more related certificates
used to sign the certificate.

SignScope A pointer to the CSSM_FIELD array containing the tags of the certificate fields to be
included in the signing process.

ScopeSize The number of entries in the sign scope list. If the signing scope is not specified, the input
parameter value for scope size must be zero.

Return Value
A pointer to a CSSM_DATA structure containing the signed certificate. If the pointer is NULL, an error has
occurred. Use CSSM_GetError to obtain the error code.

Related Information

CSSM_TP_CertVerify
CSSM_CL_CertSign

36 OCSF Service Provider Module Developer’s Guide and Reference

TP_CertRevoke

Purpose
The TP module determines whether the revoking certificate can revoke the subject certificate. The revoker
certificate group is first authenticated and its applicability to perform this operation is determined. Once the
trust is established, the TP revokes the subject certificate by adding it to the CRL. The revoker certificate
and passphrase is used to sign the resultant CRL.

Format
CSSM_DATA_PTR CSSMTPI TP_CertRevoke

(CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DL_DB_LIST_PTR DBList,
const CSSM_DATA_PTR OldCrl,
const CSSM_CERTGROUP_PTR CertGroupToBeRevoked,
const CSSM_CERTGROUP_PTR RevokerCertGroup,
CSSM_REVOKE_REASON Reason)

Parameters
Input

TPHandle The handle that describes the TP module used to perform this function.

CLHandle The handle that describes the CL module that can be used to manipulate the certificates
targeted for revocation and the revoker’s certificates. If no CL module is specified, the TP
module uses an assumed CL module, if required.

CCHandle The handle that describes the context for a cryptographic operation. The cryptographic
context specifies the handle of the CSP that must be used to perform the operation

DBList A list of certificate databases containing certificates that may be used to construct the trust
structure of the subject and revoker certificate group.

OldCrl A pointer to the CSSM_DATA structure containing an existing CRL. If this input is NULL, a
new list is created.

CertGroupToBeRevoked
A group of one or more certificates that partially or fully represent the certificate to be
revoked by this operation. The first certificate in the group is the target certificate. The use
of subsequent certificates is specific to the trust domain. For example, in a hierarchical
trust model subsequent members are intermediate certificates of a certificate chain.

RevokerCertGroup
A group of one or more certificates that partially or fully represent the revoking entity for
this operation. The first certificate in the group is the target certificate representing the
revoker. The use of subsequent certificates is specific to the trust domain.

Reason The reason for revoking the target certificates.

Return Value
A pointer to the CSSM_DATA structure containing the updated CRL. If the pointer is NULL, an error has
occurred. Use CSSM_GetError to obtain the error code.

Related Information
CSSM_CL_CrlAddCert

Chapter 3. Trust Policy Interface 37

TP_CrlVerify

Purpose
This function verifies the integrity of the CRL and determines whether it is trusted. Some of the checks that
may be performed include verifying the signatures on the signer’s certificate group, establishing the
authorization of the signer to issue CRLs, verification of the signature on the CRL, verifying validity period
of the CRL and the date the CRL was issued, etc.

Format
CSSM_BOOL CSSMTPI TP_CrlVerify (CSSM_TP_HANDLE TPHandle,

CSSM_CL_HANDLE CLHandle,
CSSM_CSP_HANDLE CSPHandle,
const CSSM_DL_DB_LIST_PTR DBList,
const CSSM_DATA_PTR CrlToBeVerified,
const CSSM_CERTGROUP_PTR SignerCertGroup,
const CSSM_FIELD_PTR VerifyScope,
uint32 ScopeSize)

Parameters
Input

TPHandle The handle that describes the TP module used to perform this function.

CSPHandle The handle referencing a CSP to be used to verify signatures on the signer’s certificate
and on the CRL. The TP module is responsible for creating the cryptographic context
structure required to perform the verification operation. If no CSP is specified, the TP
module uses anassumed CSP to perform the operations.

DBList A list of handle pairs specifying a DL module and a data store managed by that module.
These data stores can be used to store or retrieve objects (such as certificate and CRLs)
related to the signer’s certificate. If no DL and database (DB) handle pairs are specified,
the TP module can use an assumed DL module and an assumed data store, if required.

CrlToBeVerified
A pointer to the CSSM_DATA structure containing a signed CRL to be verified.

SignerCertGroup
A group of one or more certificates that partially or fully represent the signer of the CRL.
The first certificate in the group is the target certificate representing the CRL signer. Use of
subsequent certificates is specific to the trust domain. For example, in a hierarchical trust
model subsequent members are intermediate certificates of a certificate chain.

VerifyScope A pointer to the CSSM_FIELD array indicating the CRL fields to be included in the CRL
signature verification process. A NULL input verifies the signature assuming the module’s
default set of fields was used in the signaturing process (this can include all fields in the
CRL).

ScopeSize The number of entries in the verify scope list. If the verification scope is not specified, the
input parameter value for scope size must be zero.

Input/optional

CLHandle The handle that describes the CL module that can be used to manipulate the certificates
to be verified. If no CL module is specified, the TP module uses an assumed CL module, if
required.

Return Value
A CSSM_TRUE return value means the CRL can be trusted. If CSSM_FALSE is returned, an error has
occurred. Use CSSM_GetError to obtain the error code.

Related Information
CSSM_CL_CrlVerify

38 OCSF Service Provider Module Developer’s Guide and Reference

TP_CrlSign

Purpose
The TP module decides whether the signer certificate is trusted to sign CRL. The signer certificate group is
first authenticated and its applicability to perform this operation is determined. Once the trust is
established, this operation signs the CRL.

Format
CSSM_DATA_PTR CSSMTPI TP_CrlSign (CSSM_TP_HANDLE TPHandle,

CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DL_DB_LIST_PTR DBList,
const CSSM_DATA_PTR CrlToBeSigned,
const CSSM_CERTGROUP_PTR SignerCertGroup,
const CSSM_FIELD_PTR SignScope,
uint32 ScopeSize)

Parameters
Input

TPHandle The handle that describes the TP module used to perform this function.

CLHandle The handle that describes the CL module used to perform this function.

CCHandle The handle that describes the context of the cryptographic operation.

DBList A list of handle pairs specifying a DL module and a data store managed by that module.
These data stores can be used to store or retrieve objects (such as certificate and CRLs)
related to the signer’s certificate or a data store for storing a resulting signed CRL. If no
DL and DB handle pairs are specified, the TP module can use an assumed DL module
and an assumed data store, if required.

CrlToBeSigned
A pointer to the CSSM_DATA structure containing a CRL to be signed.

SignerCertGroup
A group of one or more certificates that partially or fully represent the signer for this
operation. The first certificate in the group is the targetcertificate representing the signer.
Use of subsequent certificates is specific to the trust domain. For example, in a
hierarchical trust model subsequent members are intermediate certificates of a certificate
chain.

SignScope A pointer to the CSSM_FIELD array containing the tags of the fields to be signed. A NULL
input signs a default set of fields in the CRL.

ScopeSize The number of entries in the sign scope list.

Return Value
A pointer to the CSSM_DATA structure containing the signed CRL. If the pointer is NULL, an error has
occurred. Use CSSM_GetError to obtain the error code.

Related Information
CSSM_CL_CrlSign

Chapter 3. Trust Policy Interface 39

TP_ApplyCrlToDb

Purpose
This function first determines whether the memory-resident CRL is trusted. The CRL is authenticated, its
signer is verified, and its authority to update the data sources is determined. If trust is established, this
function updates persistent storage to reflect entries in the CRL. This results in designating persistent
certificates as revoked.

Format
CSSM_RETURN CSSMTPI TP_ApplyCrlToDb (CSSM_TP_HANDLE TPHandle,

CSSM_CL_HANDLE CLHandle,
CSSM_CSP_HANDLE CSPHandle,
const CSSM_DL_DB_LIST_PTR DBList,
const CSSM_DATA_PTR Crl)

Parameters
Input

TPHandle The handle that describes the TP module used to perform this function.

Crl A pointer to the CSSM_DATA structure containing the CRL.

Input/optional

CLHandle The handle that describes the certificate library module that can be used to manipulate the
CRL as it is applied to the data store and to manipulate the certificates effected by the
CRL, if required. If no certificate library module is specified, the TP module uses an
assumed CL module, if required. If optional, the caller will set this value to 0.

CSPHandle The handle referencing a Cryptographic Service Provider to be used to verify signatures
on the CRL determining whether to trust the CRL and apply it to the data store. The TP
module is responsible for creating the cryptographic context structures required for
verification operation. If no CSP is specified, the TP module uses an assumed CSP to
perform these operations. If optional, the caller will set this value to 0.

DBList A list of handle pairs specifying a DL module and a data store managed by that module.
These data stores can contain certificates that might be affected by the CRL, they may
contain CRLs, or both. If no DL and DB handle pairs are specified, the TP module must
use an assumed DL module and an assumed data store for this operation. If optional, the
caller will set this value to NULL.

Return Value
A CSSM_TRUE return value means the CRL has been used to update the revocation status of certificates
in the specified database. If CSSM_FALSE is returned, an error has occurred. Use CSSM_GetError to
obtain the error code.

Related Information

CCSM_CL_CrlGetFirstItem
CSSM_CL_CrlGetNextItem
CSSM_DL_CertRevoke

40 OCSF Service Provider Module Developer’s Guide and Reference

TP_CertGroupConstruct

Purpose
This function builds a collection of certificates that together make up a meaningful credential for a given
trust domain. For example, in a hierarchical trust domain, a certificate group is a chain of certificates from
an end entity to a top-level CA. The constructed certificate group format (such as ordering) is
implementation-specific. However, the subject or end-entity is always the first certificate in the group.

A partially constructed certificate group is specified in CertGroupFrag. The first certificate is interpreted to
be the subject or end-entity certificate. Subsequent certificates in the CertGroupFrag structure may be
used during the construction of a certificate group in conjunction with certificates found in DBList. The TP
defines the certificates that will be included in the resulting set.

The constructed certificate group can be consistent locally or globally. Consistency can be limited to the
local system if locally defined anchor certificates are inserted into the group.

Format
CSSM_CERTGROUP_PTR CSSMTPI TP_CertGroupConstruct (CSSM_TP_HANDLE TPHandle,

CSSM_CL_HANDLE CLHandle,
CSSM_CSP_HANDLE CSPHandle
CSSM_CERTGROUP_PTR CertGroupFrag,
CSSM_DL_DB_LIST_PTR DBList)

Parameters
Input

TPHandle The handle to the TP module to perform this operation.

CLHandle The handle to the CL module that can be used to manipulate and parse values in stored in
the certgroup certificates. If no CL module is specified, the TP module uses an assumed
CL module.

CSPHandle The handle referencing a CSP to be used to perform this operation.

CertGroupFrag
The first certificate in the group represents the target certificate for which a group of
semantically related certificates will be assembled. Subsequent intermediate certificates
can be supplied by the caller. Theyneed not be in any particular order.

DBList A list of handle pairs specifying a DL module and a data store managed by that module.
These data stores should contain certificates (and possibly, other security object also). The
data stores should be searched to complete construction of a semantically related
certificate group.

Return Value
A list of certificates that form a complete certificate group based on the original subset of certificates and
the certificate data stores. A NULL list indicates an error.

Related Information

CSSM_TP_CertGroupPrune
CSSM_TP_CertGroupVerify

Chapter 3. Trust Policy Interface 41

TP_CertGroupPrune

Purpose
This function removes certificates from a certificate group. The prune operation can remove those
certificates that have been signed by any local CA, as it is possible that these certificates will not be
meaningful on other systems.

This operation can also remove additional certificates that can be added to the certificate group, again
using the CertGroupConstruct operation. The pruned certificate group should be suitable for transmission
to external hosts, which can in turn reconstruct and verify the certificate group.

Format
CSSM_CERTGROUP_PTR CSSMTPI TP_CertGroupPrune (CSSM_TP_HANDLE TPHandle,

CSSM_CL_HANDLE CLHandle,
CSSM_CERTGROUP_PTR OrderedCertGroup,
CSSM_DL_DB_LIST_PTR DBList)

Parameters
Input/optional

CLHandle The handle to the CL module that can be used to manipulate and parse the certgroup
certificates and the certificates in the specified data stores. If no CL module is specified,
the TP module uses an assumed CL module.

Input

TPHandle The handle to the TP module used to perform this operation.

OrderedCertGroup
The initial, complete set of certificates from which certificates will be selectively removed.

DBList A list of handle pairs specifying a DL module and a data store managed by that module.
These data stores should contain certificates (and possibly, other security object also). The
data stores are searched for certificates semantically related to those in the certificate
group to determine whether they should be removed from the certificate group.

Return Value
Returns a certificate group containing those certificates which are verifiable credentials outside of the local
system. If the list is NULL, an error has occurred.

Related Information

CSSM_TP_CertGroupConstruct
CSSM_TP_CertGroupVerify

42 OCSF Service Provider Module Developer’s Guide and Reference

TP_CertGroupVerify

Purpose
This function verifies the signatures on each certificate in the group. Each certificate in the group has an
associated signing certificate that was used to sign the subject certificate. Determination of the associated
signing certificate is implied by the certificate model. For example, when verifying an X.509 certificate
chain, the signing certificate for a certificate C is known to be the certificate of the issuers of certificate C.
In a multisignature, web-of-trust model, the signing certificates can be any certificates in the CertGroup or
unknown certificates.

Signature verification is performed on the VerifyScope fields for all certificates in the CertGroup.

Additional validation tests can be performed on the certificates in the group depending on the certificate
model supported by the TP. For example, certificate expiration dates can be checked and appropriate
CRLs can be searched as part of the verification process.

Format
CSSM_BOOL CSSMTPI TP_CertGroupVerify (CSSM_TP_HANDLE TPHandle,

CSSM_CL_HANDLE CLHandle,
CSSM_DL_DB_LIST_PTR DBList,
CSSM_CSP_HANDLE CSPHandle,
const CSSM_FIELD_PTR PolicyIdentifiers,
uint32 NumberofPolicyIdentifiers,
CSSM_TP_STOP_ON VerificationAbortOn,
const CSSM_CERTGROUP_PTR CertToBeVerified,
const CSSM_DATA_PTR AnchorCerts
uint32 NumberofAnchorCerts,
const CSSM_FIELD_PTR VerifyScope,
uint32 ScopeSize,
CSSM_TP_ACTION Action,
const CSSM_DATA_PTR Data,
CSSM_DATA_PTR *Evidence,
uint32 *EvidenceSize)

Parameters
Input

TPHandle The handle to the TP module to perform this operation.

CSPHandle The handle referencing a CSP to be used to perform this operation.

NumberofPolicyIdentifiers
The number of policy identifiers provided in the PolicyIdentifiers parameters.

CertToBeVerified
A pointer to the CSSM_CERTGROUP structure containing a certificate containing at least
one signature for verification. An unsigned certificate template cannot be verified.

NumberofAnchorCerts
The number of anchor certificates provided in the AnchorCerts parameter.

ScopeSize The number of entries in the verify scope list. If the verification scope is not specified, the
input scope size must be zero.

Input/optional :

CLHandle The handle to the CL module that can be used to manipulate and parse the certgroup
certificates and the certificates in the specified data stores. If no CL module is specified,
the TP module uses an assumed CL module.

DBList A list of handle pairs specifying a DL module and a data store managed by that module.
These data stores should contain zero or more trusted certificates. If no data stores are
specified, the TP module can assume a default data store, if required.

Chapter 3. Trust Policy Interface 43

PolicyIdentifiers
The policy identifier is an OID/value pair. The CSSM_OID structure contains the name of
the policy and the value is an optional caller-specified input value for the TP module to use
when applying the policy.

VerificationAbortOn
When a TP module verifies multiple conditions or multiple policies, the TP module can
allow the caller to specify when to abort the verification process. If supported by the TP
module, this selection can effect the evidence returned by the TP module to the caller. The
default stopping condition is to stop evaluation according to the policy defined in the TP
Module. The specifiable stopping conditions and their meaning are defined as follows in
Table 5.

Table 5. CSSM_TP_STOP_ON Values

Value Definition

CSSM_STOP_ON_POLICY Stop verification whenever the policy dictates it.

CSSM_STOP_ON_NONE Stop verification only after all conditions have been tested (ignoring
the pass-fail status of each condition).

CSSM_STOP_ON_FIRST_PASS Stop verification on the first condition that passes.

CSSM_STOP_ON_FIRST_FAIL Stop verification on the first condition that fails.

The TP module may ignore the caller’s specified stopping condition and revert to the
default of stopping according to the policy embedded in the module.

AnchorCerts A pointer to the CSSM_DATA structure containing one or more certificates to be used in
order to validate the subject certificate. These certificates can be root certificates,
cross-certified certificates, and certificates belonging to locally designated sources of trust.

VerifyScope A pointer to the CSSM_FIELD array containing the OID indicators specifying the certificate
fields to be used in the verification process. If VerifyScope is not specified, the TP module
must assume a default scope (portions of each certificate) when performing the verification
process.

Action An application-specific and application-defined action to be performed under the authority
of the input certificate. If no action is specified, the TP module defines a default action and
performs verification assuming that action is being requested. Note that it is possible that a
TP module verifies certificates for only one action.

Data A pointer to the CSSM_DATA structure containing the application-specific data or a
reference to the application-specific data upon which the requested action should be
performed. If no data is specified, the TP module defines one or more default data objects
upon which the action or default action would be performed.

Output/optional

Evidence A pointer to a list of CSSM_DATA objects containing an audit trail of evidence constructed
by the TP module during the verification process. Typically, this is a list of certificates and
CRLs that were used to establish the validity of the CertToBeVerified, but other objects
may be appropriate for other types of trust policies.

Output

EvidenceSize The number of entries in the Evidence list. The returned value is zero if no evidence is
produced. Evidence may be produced even when verification fails. This evidence can
describe why and how the operation failed to verify the subject certificate

44 OCSF Service Provider Module Developer’s Guide and Reference

Return Value
CSSM_TRUE if the certificate group is verified. CSSM_FALSE if the certificate did not verify or an error
condition occurred. Use CSSM_GetError to obtain the error code.

Related Information

CSSM_TP_CertGroupConstruct
CSSM_TP_CertGroupPrune

Chapter 3. Trust Policy Interface 45

Trust Policy Extensibility Functions
The TP_PassThrough function is provided to allow TP developers to extend the certificate of the OCSF
API. Because it is only exposed to OCSF as a function pointer, its name internal to the TP can be
assigned at the discretion of the TP module developer. However, its parameter list and return value must
match.

TP_PassThrough

Purpose
The TP module allows clients to call TP module-specific operations that have been exported. Such
operations may include queries or services specific to the domain represented by the TP module.

Format
CSSM_DATA_PTR CSSMTPI TP_PassThrough (CSSM_TP_HANDLE TPHandle,

CSSM_CL_HANDLE CLHandle,
CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_CC_HANDLE CCHandle,
uint32 PassThroughId,
const void * InputParams)

Parameters
Input

TPHandle The handle that describes the TP module used to perform this function.

CLHandle The handle that describes the CL module used to perform this function.

DLHandle The handle that describes the DL module used to perform this function.

DBHandle The handle that describes the data storage used to perform this function.

CCHandle The handle that describes the context of the cryptographic operation.

PassThroughId
An identifier assigned by the TP module to indicate the exported function to perform.

InputParams A pointer to the CSSM_DATA structure containing parameters to be interpreted in a
function-specific manner by the TP module.

Return Value
A pointer to the CSSM_DATA structure containing the output from the passthrough function. The output
data must be interpreted by the calling application based on externally available information. If the pointer
is NULL, an error has occurred.

46 OCSF Service Provider Module Developer’s Guide and Reference

Trust Policy Attach/Detach Example
TPHandle The Trust Policy (TP) module performs certain operations when OCSF attaches to or detaches
from it. TP modules use _init in conjuction with the DLLMain routine to perform those operations, as
shown in the following example.
_init

BOOL_init()
{
BOOL rc;
rc = DllMain(NULL, DLL_PROCESS_ATTACH, NULL);
return (rc);

}

DLLMain
#include<cssm.h>
CSSM_GUID tp_guid =
{ 0x83bafc39, 0xfac1, 0x11cf, { 0x81, 0x72, 0x0, 0xaa, 0x0, 0xb1, 0x99, 0xdd } };

BOOL DllMain (HANDLE hInstance, DWORD dwReason, LPVOID lpReserved)
{

switch (dwReason)
{

case DLL_PROCESS_ATTACH:
{

CSSM_SPI_TP_FUNCS_PTR FunctionTable;
CSSM_SPI_MEMORY_FUNCS_PTR UpcallTable;

/* Allocate TP memory for pointers */
FunctionTable = (CSSM_SPI_TP_FUNCS_PTR)malloc (sizeof

(CSSM_SPI_TP_FUNCS));
UpcallTable = (CSSM_SPI_MEMORY_FUNCS_PTR)malloc (sizeof

(CSSM_SPI_MEMORY_FUNCS);

/* Initialize TP callback functions */
FunctionTable->CertSign = CertSign;
FunctionTable->CertRevoke = CertRevoke;
FunctionTable->CrlVerify = CrlVerify;
FunctionTable->CrlSign = CrlSign;
FunctionTable->ApplyCrlToDb = ApplyCrlToDb;
FunctionTable->CertGroupConstruct = CertGroupConstruct;
FunctionTable->CertGroupPrune = CertGroupPrune;
FunctionTable->CertGroupVerify = CertGroupVerify;
FunctionTable->PassThrough = NULL;

/* Call CSSM_RegisterServices to register the FunctionTable */
/* with OCSF and to receive the application's memory upcall table */
if (CSSM_RegisterServices (&tp_guid, FunctionTable, UpcallTable)

!= CSSM_OK)
return FALSE;

break;
}

case DLL_THREAD_ATTACH:
break;

case DLL_THREAD_DETACH:
Break;

case DLL_PROCESS_DETACH:
if (CSSM_DeregisterServices (&tp_guid) != CSSM_OK)

return FALSE;
break;
}

return TRUE;
}

Chapter 3. Trust Policy Interface 47

Trust Policy OCSF Errors
This section defines the error code range that is defined by OCSF for use by all Trust Policies (TPs) in
describing common error conditions. A TP may also define and return vendor-specific error codes. The
error codes defined by OCSF are considered to be comprehensive and few if any vendor-specific codes
should be required. Applications must consult vendor-supplied documentation for the specification and
description of any error codes defined outside of this specification.

All Trust Policy service provider interface (TP SPI) functions return one of the following:

v CSSM_RETURN - An enumerated type consisting of CSSM_OK and CSSM_FAIL. If it is CSSM_FAIL,
an error code indicating the reason for failure can be obtained by calling CSSM_GetError.

v CSSM_BOOL - OCSF functions returning this data type return either CSSM_TRUE or CSSM_FALSE. If
the function returns CSSM_FALSE, an error code may be available (but not always) by calling
CSSM_GetError.

v A pointer to a data structure, a handle, a file size, or whatever is logical for the function to return. An
error code may be available (but not always) by calling CSSM_GetError.

The information returned from CSSM_GetError includes both the error number and a Globally Unique ID
(GUID) that associates the error with the module that set it. Each module must have a mechanism for
reporting their errors to the calling application. In general, there are two types of errors a module can
return:

v Errors defined by OCSF that are common to a particular type of service provider module

v Errors reserved for use by individual service provider modules

Since some errors are predefined by OCSF, those errors have a set of predefined numeric values that are
reserved by OCSF, and cannot be redefined by modules. For errors that are particular to a module, a
different set of predefined values has been reserved for their use. Table 6 lists the range of error numbers
defined by OCSF for TP modules and those available for use individual Trust Policy (TP) modules. See
the z/OS: Open Cryptographic Services Facility Application Programming book for a list of all the error
codes and descriptions for TP.

Table 6. Trust Policy Module Error Numbers

Error Number Range Description

7000-7999 TP errors defined by OCSF

8000-8999 TP errors reserved for individual TP modules

The calling application must determine how to handle the error returned by CSSM_GetError. Detailed
descriptions of the error values will be available in the corresponding specification, the cssmerr.h header
file, and the documentation for specific modules. If a routine does not know how to handle the error, it may
choose to pass the error to its caller.

48 OCSF Service Provider Module Developer’s Guide and Reference

Chapter 4. Certificate Library Interface

The primary purpose of a Certificate Library (CL) module is to perform syntactic operations on a specific
certificate format, and its associated Certificate Revocation List (CRL) format. These manipulations
encapsulate the complete life cycle of a certificate and the key pair associated with that certificate.
Certificate and CRLs are related by the life cycle model and by the data formats used to represent them.
For this reason, a single, cohesive library should manipulate these objects.

The CL encapsulates format-specific knowledge into a library that an application can access through
OCSF. These libraries allow applications and service provider modules to interact with Certificate
Authorities (CAs) and to use certificates and CRLs for services such as signing, verification, creation and
revocation without requiring knowledge of the certificate and CRL formats.

CLs manipulate memory-based objects only. The persistence of certificates, CRLs, and other
security-related objects is an independent property of these objects. It is the responsibility of the
application and/or the Trust Policy (TP) module to use data storage service provider modules to make
objects persistent (if appropriate).

Certificate Life Cycle
The CL provides support for the certificate life cycle and for format-specific certificate or CRL manipulation,
services that an application can access through OCSF. These libraries allow applications and service
provider modules to create, sign, verify, and revoke certificates without requiring knowledge of certificate
and CRL format and encoding.

A certificate is a form of credential. Under current certificate models, such as X.509, Simple Distributed
Security Infrastructure (SDSI), Simple Public Key Infrastructure (SPKI), etc., a single certificate represents
the identity of an entity (in the form of a binding between a name and a public key) and optionally
associates authorizations with that entity. When a certificate is issued, the issuer includes a digital
signature on the certificate. Verification of this signature is the mechanism used to establish trust in the
identity and authorizations recorded in the certificate. Certificates can be signed by one or more other
certificates. Root certificates are self-signed. The syntactic process of signing corresponds to establishing
a trust relationship between the entities identified by the certificates.

Figure 2 presents the certificate life cycle. It begins with the registration process. During registration, the
authenticity of a user’s identity is verified. This can be a two-part process beginning with manual
procedures requiring physical presence, followed by backoffice procedures to register results for use by
the automated system. The level of verification associated with the identity of the individual will depend on
the Security Policy and Certificate Management Practice Statements that apply to the individual who will
receive a certificate, and the domain in which that certificate will be issued and used.

After registration, keying material is generated and a certificate is created. Once the private key material
and public key certificate are issued to a user, and backed up if appropriate, the active phase of the
certificate management life cycle begins. The active phase includes:
v Retrieval - Retrieves a certificate from a remote repository such as an X.500 directory.
v Verification - Verifies the validity dates and signatures on a certificate and revocation status.
v Revocation - Asserts that a previously legitimate certificate is no longer a valid certificate.
v Recovery - When an end user can no longer access encryption keys (e.g., forgotten password).
v Update - Issues a new public/private keypair when a legitimate pair has or will expire soon.

© Copyright IBM Corp. 1999, 2001 49

Registration of
Certificate Bearer

Certificate
Generation

Key Generation
(and other CA-provided services)

Key
Retrieval

Key
Verification

Key
Revocation

Key
Recovery

Key
Update

Active Phase

Certificate Library Interface Specification
The Certificate Library Interface (CLI) specifies the functions that a CL may make available to applications
via OCSF in order to support a certificate and a CRL format. These functions mirror the OCSF API for
certificates and CRLs. These functions include the basic areas of functionality expected of a CL, which
include certificate operations, CRL operations, extensibility functions, and module management functions.
The CL developer may choose to implement some or all of these CLI functions. The available functions
are made known to OCSF at module attach time when it receives the CL’s function table. In the function
table, any unsupported function must have a NULL function pointer. The CL module developer is
responsible for making the certificate format and general functionality known to application developers.

Certificate operations fall into three general areas, including:

v Cryptographic Operations - These operations include signing a certificate and verifying the signature
on a certificate. It is expected that the CL will determine the certificate fields to be signed or verified,
and will manage the interaction with a Cryptographic Service Provider (CSP) to perform the signing or
verification.

v Certificate Field Management - Fields are added to a certificate when it is created. After the certificate
is signed, the fields cannot be modified in any way. However, they can be queried for their values using
the OCSF certificate interface.

v Certificate Format Translation - In the heterogeneous world of multiple certificate formats, CL modules
may want to provide the service of translating between certificate formats. This translation would involve
mapping the fields from one certificate format into another certificate format, while maintaining the
original format for integrity verification purposes. For example, an X.509 Version 1 certificate may be
exported to a Simple Distributed Security Infrastructure (SDSI) format or imported into an X.509 Version
3 certificate, but the original data and signature must somehow be maintained. The supported import
and export types are registered with OCSF as part of CL installation.

Figure 2. Certificate Life Cycle States and Actions

50 OCSF Service Provider Module Developer’s Guide and Reference

To support new certificate types and new uses of certificates, the sign and verify operations in the CLI
support a scope parameter. The scope parameter enables an application to sign a portion of the
certificate, namely, the fields identified by the scope. This provides support for certificate models that
permit field signing. CL modules that support existing certificate formats, such as X.509 Version 1, which
sign and verify a predefined portion of the certificate, will ignore this parameter.

The CL module’s certificate format is exposed via its fields. These fields will consist of tag/value pairs,
where the tag is an object identifier (OID). These OIDs reference specific data types or data structures
within the certificate or CRL. OIDs are defined by the CL developer at a granularity appropriate for the
expected usage of the CL.

Operations on CRLs are comprised of cryptographic operations and field management operations on the
CRL, as a whole, and on individual revocation records. The entire CRL can be signed or verified. This will
ensure the integrity of the CRL’s contents as it is passed between systems. Individual revocation records
are signed when they are revoked and verified when they are queried. Certificates may be revoked and
unrevoked by adding or removing them from the CRL at any time prior to its being signed. The contents of
the CRL can be queried for all of its revocation records, specific certificates, or individual CRL fields.

A pass-through function is included in the CLI to allow CLs to expose additional services beyond what is
currently defined in the OCSF API. These services should be syntactic in nature, meaning that they should
be dependent on the data format of the certificates and CRLs manipulated by the library. OCSF will pass
an operation identifier and input parameters from the application to the appropriate CL. Within the
CL_PassThrough function in the CL, the input parameters will be interpreted and the appropriate operation
performed. The CL developer is responsible for making known to the application the identity and
parameters of the supported passthrough operations.

Chapter 4. Certificate Library Interface 51

Certificate Library Data Structures
This section describes the data structures that may be passed to or returned from a CL function. They will
be used by applications to prepare data to be passed as input parameters into OCSF API function calls
that will be passed without modification to the appropriate CL. The CL is then responsible for interpreting
the data structures and returning the appropriate data structure to the calling application through the OCSF
Framework. These data structures are defined in the header file, cssmtype.h, which is distributed with
OCSF.

CSSM_BOOL
This data type is used to indicate a true or false condition.
typedef uint32 CSSM_BOOL;

#define CSSM_TRUE 1
#define CSSM_FALSE 0

Definitions:
CSSM_TRUE Indicates a true result or a true value.
CSSM_FALSE Indicates a false result or a false value.

CSSM_CS_SERVICES
This bit-mask defines the additional certificate-creation-related services that an issuing CA (CA) can offer.
Such services include (but are not limited to) archiving the certificate and keypair, publishing the certificate
to one or more certificate directory services, and sending automatic, out-of-band notifications of the need
to renew a certificate. A CA may offer any subset of these services. Additional services can be defined
over time.
typedef uint32 CSSM_CA_SERVICES;
/* bit masks for additional CA services at cert enroll */
#define CSSM_CA_KEY_ARCHIVE 0x0001 /* archive cert & keys */
#define CSSM_CA_CERT_PUBLISH 0x0002 /* cert in directory service */
#define CSSM_CA_CERT_NOTIFY_RENEW 0x0004 /* notify at renewal time */
#define CSSM_CA_CRL_DISTRIBUTE 0x0010 /* push CRL to everyone */

CSSM_CERT_ENCODING
This variable specifies the certificate-encoding format supported by a CL.
typedef enum cssm_cert_encoding {

CSSM_CERT_ENCODING_UNKNOWN = 0x00,
CSSM_CERT_ENCODING_CUSTOM = 0x01,
CSSM_CERT_ENCODING_BER = 0x02,
CSSM_CERT_ENCODING_DER = 0x03,
CSSM_CERT_ENCODING_NDR = 0x04

} CSSM_CERT_ENCODING, *CSSM_CERT_ENCODING_PTR;

CSSM_CERTGROUP
This structure contains a set of certificates. It is assumed that the certificates are related based on
cosignaturing. The certificate group is a syntactic representation of a trust model. All certificates in the
group must be of the same type. Typically, the certificates are related in some manner, but this is not
required.
typedef struct cssm_certgroup {

uint32 NumCerts;
CSSM_DATA_PTR CertList;
void *reserved;

} CSSM_CERTGROUP, *CSSM_CERTGROUP_PTR;

Definitions:
NumCerts Number of certificates in the group.

52 OCSF Service Provider Module Developer’s Guide and Reference

CertList List of certificates.
Reserved Reserved for future use.

CSSM_CERT_TYPE
This variable specifies the type of certificate format supported by a CL and the types of certificates
understood for import and export. They are expected to define such well-known certificate formats as
X.509 Version 3 and Simple Distributed Security Intrastructure (SDSI), as well as custom certificate
formats. The list of enumerated values can be extended for new types by defining a label with an
associated value greater than CSSM_CL_CUSTOM_CERT_TYPE.
typedef uint32 CSSM_CERT_TYPE,*CSSM_CERT_TYPE_PTR;
/* bit masks for supported cert types */
#define CSSM_CERT_UNKNOWN 0x00000000
#define CSSM_CERT_X_509v1 0x00000001
#define CSSM_CERT_X_509v2 0x00000002
#define CSSM_CERT_X_509v3 0x00000004
#define CSSM_CERT_Fortezza 0x00000008
#define CSSM_CERT_PGP 0x00000010
#define CSSM_CERT_SPKI 0x00000020
#define CSSM_CERT_SDSIv1 0x00000040
#define CSSM_CERT_Intel 0x00000080
#define CSSM_CERT_ATTRIBUTE_BER 0x00000100
#define CSSM_CERT_X509_CRL 0x00000200
#define CSSM_CERT_LAST 0x00007fff

/* Applications wishing to define their own custom certificate
* type should create a random uint32 whose value is greater than
* the CSSM_CL_CUSTOM_CERT_TYPE */
#define CSSM_CL_CUSTOM_CERT_TYPE 0x08000

CSSM_CL_CA_CERT_CLASSINFO
typedef struct cssm_cl_ca_cert_classinfo {

CSSM_STRING CertClassName;
CSSM_DATA CACert;

} CSSM_CL_CA_CERT_CLASSINFO, *CSSM_CL_CA_CERT_CLASSINFO_PTR;

Definitions:
CertClassName

Name of a certificate class issued by this CA.
CSCert CA certificate for this cert class.

CSSM_CL_CA_PRODUCTINFO
This structure holds product information about a backend CA that is accessible to the CL module. The CL
module vendor is not required to provide this information, but may choose to do so. For example, a CL
module that implements upstream protocols to a particular type of commercial CA can record information
about that CA service in this structure.
typedef struct cssm_cl_ca_productinfo {

CSSM_VERSION StandardVersion;
CSSM_STRING StandardDescription;
CSSM_VERSION ProductVersion;
CSSM_STRING ProductDescription;
CSSM_STRING ProductVendor;
CSSM_CERT_TYPE CertType;
CSSM_CA_SERVICES AdditionalServiceFlags;
uint32 NumberOfCertClasses;
CSSM_CL_CA_CERT_CLASSINFO CertClassNames;

} CSSM_CL_CA_PRODUCTINFO, *CSSM_CL_CA_PRODUCTINFO_PTR;

Definitions:

Chapter 4. Certificate Library Interface 53

StandardVersion
If this product conforms to an industry standard, this is the version number of that
standard.

StandardDescription
If this product conforms to an industry standard, this is a description of that standard.

ProductVersion
Version number information for the actual product version used in this version of the CL
module.

ProductDescription
A string describing the product.

ProductVendor
The name of the product vendor.

CertType An enumerated value specifying the certificate and CRL type that the CA manages.

AdditionalServiceFlags
A bit-mask indicating the additional services a caller can request from a CA (as side
effects and in conjunction with other service requests).

NumberOfCertClasses
The number of classes or levels of certificates managed by this CA.

CertClassNames
Names of the certificate classes issued by this CA.

CSSM_CL_ENCODER_PRODUCTINFO
This structure holds product information about embedded products that a CL module uses to provide its
services. The CL module vendor is not required to provide this information, but may choose to do so. For
example, a CL module that manipulates X.509 certificates may embed a third-party tool that parses,
encodes, and decodes those certificates. The CL module vendor can describe such embedded products
using this structure.
typedef struct cssm_cl_encoder_productinfo {

CSSM_VERSION StandardVersion;
CSSM_STRING StandardDescription;
CSSM_VERSION ProductVersion;
CSSM_STRING ProductDescription;
CSSM_STRING ProductVendor;
CSSM_CERT_TYPE CertType;
uint32 ProductFlags;

} CSSM_CL_ENCODER_PRODUCTINFO, *CSSM_CL_ENCODER_PRODUCTINFO_PTR;

Definitions:

StandardVersion
If this product conforms to an industry standard, this is the version number of that
standard.

StandardDescription
If this product conforms to an industry standard, this is a description of that standard.

ProductVersion
Version number information for the actual product version used in this version of the CL
module.

ProductDescription
A string describing the product.

ProductVendor
The name of the product vendor.

54 OCSF Service Provider Module Developer’s Guide and Reference

CertType An enumerated value specifying the certificate and CRL type that the CA manages.

ProductFlags A bit-mask indicating any selectable features of the embedded product that the CL module
selected for use.

CSSM_CL_HANDLE
The CSSM_CL_HANDLE is used to identify the association between an application thread and an instance
of a CL module. CSSM_CL_HANDLE is assigned when an application causes OCSF to attach to a CL. It
is freed when an application causes OCSF to detach from a CL. The application uses the
CSSM_CL_HANDLE with every CL function call to identify the targeted CL. The CL module uses the
CSSM_CL_HANDLE to identify the appropriate application’s memory management routines when
allocating memory on the application’s behalf.
typedef uint32 CSSM_CL_HANDLE

CSSM_CLSUBSERVICE
Three structures are used to contain all of the static information that describes a CL module:
cssm_moduleinfo, cssm_serviceinfo, and cssm_clsubservice. This descriptive information is securely
stored in the OCSF registry when the CL module is installed with OCSF. A CL module may implement
multiple types of services and organize them as subservices. For example, a CL module supporting X.509
encoded certificates may organize its implementation into three subservices: one for X.509 Version 1, a
second for X.509 Version 2, and a third for X.509 Version 3. Most CL modules will implement exactly one
sub-service.

The descriptive information stored in these structures can be queried using the function
CSSM_GetModuleInfo and specifying the CL module Globally Unique ID (GUID).
typedef struct cssm_clsubservice {

uint32 SubServiceId;
CSSM_STRING Description;
CSSM_CERT_TYPE CertType;
CSSM_CERT_ENCODING CertEncoding;
CSSM_USER_AUTHENTICATION_MECHANISM AuthenticationMechanism;
uint32 NumberOfTemplateFields;
CSSM_OID_PTR CertTemplates;
uint32 NumberOfTranslationTypes;
CSSM_CERT_TYPE_PTR CertTranslationTypes;
CSSM_CL_WRAPPEDPRODUCT_INFO WrappedProduct;

} CSSM_CLSUBSERVICE, *CSSM_CLSUBSERVICE_PTR;

Definitions:

SubServiceID A unique, identifying number for the subservice described in this structure.

Description A string containing a description name or title for this subservice.

CertType An identifier for the type of certificate. This parameter is also used to determine the
certificate data format.

CertEncoding An identifier for the certificate-encoding format.

AuthenticationMechanism
An enumerated value defining the credential format accepted by the CL module.
Authentication credential may be required when requesting certificate creation or other CL
functions. Presented credentials must be of the required format.

NumberOfTemplateFields
The number of certificate fields. This number also indicates the length of the CertTemplate
array.

CertTemplates A pointer to an array of tag/value pairs which identify the field values of a certificate.

Chapter 4. Certificate Library Interface 55

NumberOfTranslationTypes
The number of certificate types that this CL module can import and export. This number
also indicates the length of the CertTranslationTypes array.

CertTranslationTypes
A pointer to an array of certificate types. This array indicates the certificate types that can
be imported into and exported from this CL module’s native certificate type.

WrappedProduct
A data structure describing the embedded products and CA service used by the CL
module.

CSSM_CL_WRAPPEDPRODUCTINFO
This structure lists the set of embedded products and the CA service used by the CL module to implement
its services. The CL module is not required to provide any of this information, but may choose to do so.
typedef struct cssm_cl_wrappedproductinfo {

CSSM_CL_ENCODER_PRODUCTINFO_PTR EmbeddedEncoderProducts;
uint32 NumberOfEncoderProducts;
CSSM_CL_CA_PRODUCTINFO_PTR AccessibleCAProducts;
uint32 NumberOfCAProducts;

} CSSM_CL_WRAPPEDPRODUCTINFO, *CSSM_CL_WRAPPEDPRODUCTINFO_PTR;

Definitions:

EmbeddedEncoderProducts
An array of structures that describe each embedded encoder product used in this CL
module implementation.

NumberOfEncoderProducts
A count of the number of distinct embedded certificate encoder products used in the CL
module implementation.

AccessibleCAProducts
An array of structures that describe each type of CA accessible through this CL module
implementation.

NumberOfCAProducts
A count of the number of distinct CA products described in the array
AccessibleCAProducts.

CSSM_DATA
The CSSM_DATA structure is used to associate a length, in bytes, with an arbitrary block of contiguous
memory. This memory must be allocated and freed using the memory management routines provided by
the calling application via OCSF.
typedef struct cssm_data {

uint32 Length;
uint8* Data;

} CSSM_DATA, *CSSM_DATA_PTR

Definitions:
Length Length of the data buffer in bytes.
Data Points to the start of an arbitrary length data buffer.

CSSM_FIELD
This structure contains the OID/value pair for any item that can be identified by an OID. A CL module uses
this structure to hold an OID/value pair for a field in a certificate or CRL.

56 OCSF Service Provider Module Developer’s Guide and Reference

typedef struct cssm_field {
CSSM_OID FieldOid;
CSSM_DATA FieldValue;

}CSSM_FIELD, *CSSM_FIELD_PTR

Definitions:
FieldOid The OID that identifies the certificate or CRL data type or data structure.
FieldValue A CSSM_DATA type which contains the value of the specified OID in a contiguous block of

memory.

CSSM_HEADERVERSION
This data structure represents the version number of a key header structure. This version number is an
integer that increments with each format revision of CSSM_KEYHEADER. The current revision number is
represented by CSSM_KEYHEADER_VERSION, which equals 2 in this release of OCSF.
typedef uint32 CSSM_HEADERVERSION

#define CSSM_KEYHEADER_VERSION (2)

CSSM_KEY
This structure is used to represent keys in OCSF.
typedef struct cssm_key{

CSSM_KEYHEADER KeyHeader;
CSSM_DATA KeyData;

} CSSM_KEY, *CSSM_KEY_PTR;

typedef CSSM_KEY CSSM_WRAP_KEY, *CSSM_WRAP_KEY_PTR;

Definitions:
KeyHeader Header describing the key, fixed length.
KeyData Data representation of the key, variable length.

CSSM_KEYHEADER
The key header contains meta-data about a key. It contains information used by a CSP or application
when using the associated key data. The service provider module is responsible for setting the appropriate
values.
typedef struct cssm_keyheader {

CSSM_HEADERVERSION HeaderVersion;
CSSM_GUID CspId;
uint32 BlobType;
uint32 Format;
uint32 AlgorithmId;
uint32 KeyClass;
uint32 KeySizeInBits;
uint32 KeyAttr;
uint32 KeyUsage;
CSSM_DATE StartDate;
CSSM_DATE EndDate;
uint32 WrapAlgorithmId;
uint32 WrapMode;
uint32 Reserved;

} CSSM_KEYHEADER, *CSSM_KEYHEADER_PTR;

Definitions:

HeaderVersion
This is the version of the keyheader structure.

Cspld If known, the GUID of the CSP that generated the key. This value will not be known if a
key is received from a third party, or extracted from a certificate.

Chapter 4. Certificate Library Interface 57

BlobType Describes the basic format of the key data. It can be any one of the following values in
Table 7.

Table 7. Keyblob Type Identifiers

Keyblob Type Identifier Description

CSSM_KEYBLOB_RAW The blob is a clear, raw key.

CSSM_KEYBLOB_RAW_BERDER The blob is a clear key, DER-encoded.

CSSM_KEYBLOB_REFERENCE The blob is a reference to a key.

CSSM_KEYBLOB_WRAPPED The blob is a wrapped RAW key.

CSSM_KEYBLOB_WRAPPED_BERDER The blob is a wrapped DER-encoded key.

CSSM_KEYBLOB_OTHER Other keyblob type.

Format Describes the detailed format of the key data based on the value of the BlobType field. If
the blob type has a non-reference basic type, then a CSSM_KEYBLOB_RAW_FORMAT
identifier must be used, otherwise a CSSM_KEYBLOB_REF_FORMAT identifier is used.
Any of the following values in Table 8 are valid as format identifiers.

Table 8. Keyblob Format Identifiers

Keyblob Format Identifiers Description

CSSM_KEYBLOB_RAW_FORMAT_NONE No further conversion needs to be done.

CSSM_KEYBLOB_RAW_FORMAT_PKCS1 RSA PKCS1 V1.5

CSSM_KEYBLOB_RAW_FORMAT_PKCS3 RSA PKCS3 V1.5

CSSM_KEYBLOB_RAW_FORMAT_MSCAPI Microsoft CAPI V2.0

CSSM_KEYBLOB_RAW_FORMAT_PGP PGP

CSSM_KEYBLOB_RAW_FORMAT_FIPS186 U.S. Gov. FIPS 186 - DSS V

CSSM_KEYBLOB_RAW_FORMAT_BSAFE RSA BSAFE V3.0

CSSM_KEYBLOB_RAW_FORMAT_PKCS11 RSA PKCS11 V2.0

CSSM_KEYBLOB_RAW_FORMAT_CDSA Intel CDSA

CSSM_KEYBLOB_RAW_FORMAT_OTHER Other, CSP defined.

CSSM_KEYBLOB_REF_FORMAT_INTEGER Reference is a number or handle.

CSSM_KEYBLOB_REF_FORMAT_STRING Reference is a string or name.

CSSM_KEYBLOB_REF_FORMAT_OTHER Other, CSP defined.

AlgorithmId The algorithm for which the key was generated. This value does not change when the key
is wrapped. Any of the defined OCSF algorithm IDs may be used.

KeyClass Class of key contained in the key blob. Valid key classes are as follows in Table 9.

Table 9. Key Class Identifiers

Key Class Identifier Description

CSSM_KEYCLASS_PUBLIC_KEY Key is a public key.

CSSM_KEYCLASS_PRIVATE_KEY Key is a private key.

CSSM_KEYCLASS_SESSION_KEY Key is a session or symmetric key.

CSSM_KEYCLASS_SECRET_PART Key is part of secret key.

CSSM_KEYCLASS_OTHER Other.

KeySizeInBits This is the logical size of the key in bits. The logical size is the value referred to when
describing the length of the key. For instance, an RSA key would be described by the size

58 OCSF Service Provider Module Developer’s Guide and Reference

of its modulus and a Digital Signature Algorithm (DSA) key would be represented by the
size of its prime. Symmetric key sizes describe the actual number of bits in the key. For
example, Data Encryption Standard (DES) keys would be 64 bits and an RC4 key could
range from 1 to 128 bits.

KeyAttr Attributes of the key represented by the data. These attributes are used by CSPs to
convey information about stored or referenced keys. The attributes are represented as a
bit-mask (see Table 10).

KeyUsage A bit-mask representing the valid uses of the key. Any of the following values in Table 11
are valid.

StartDate Date from which the corresponding key is valid. All fields of the CSSM_DATA structure will
be set to zero if the date is unspecified or unknown. This date is not enforced by the CSP.

EndDate Data that the key expires and can no longer be used. All fields of the CSSM_DATA
structure will be set to zero if the date is unspecified or unknown. This date is not enforced
by the CSP.

WrapAlgorithmId
If the key data contains a wrapped key, this field contains the algorithm used to create the
wrapped blob. This field will be set to CSSM_ALGID_NONE if the key is not wrapped.

WrapMode If the wrapping algorithm supports multiple wrapping modes, this field contains the mode
used to wrap the key. This field is ignored if the WrapAlgorithmId is CSSM_ALGID_NONE.

Reserved This field is reserved for future use. It should always be set to zero.

Table 10. KeyAttribute Flags

Attribute Desccription

CSSM_KEYATTR_PERMANENT Key is stored persistently in the CSP, i.e., PKCS11 token
object.

CSSM_KEYATTR_PRIVATE Key is a private object and protected by either user login,
a password, or both.

CSSM_KEYATTR_MODIFIABLE The key or its attributes can be modified.

CSSM_KEYATTR_SENSITIVE Key is sensitive. It may only be extracted from the CSP in
a wrapped state. It will always be false for raw keys.

CSSM_KEYATTR_ALWAYS_SENSITIVE Key has always been sensitive. It will always be false for
raw keys.

CSSM_KEYATTR_EXTRACTABLE Key is extractable from the CSP. If this bit is not set, the
key is either not stored in the CSP or cannot be extracted
from the CSP under any circumstances. It will always be
false for raw keys.

CSSM_KEYATTR_NEVER_EXTRACTABLE Key has never been extractable. It will always be false for
raw keys.

Table 11. Key Usage Flags

Usage Mask Description

CSSM_KEYUSE_ANY Key may be used for any purpose supported by the algorithm.

CSSM_KEYUSE_ENCRYPT Key may be used for encryption.

CSSM_KEYUSE_DECRYPT Key may be used for decryption.

CSSM_KEYUSE_SIGN Key can be used to generate signatures. For symmetric keys this
represents the ability to generate Message Authentication Codes
(MACs).

Chapter 4. Certificate Library Interface 59

Table 11. Key Usage Flags (continued)

Usage Mask Description

CSSM_KEYUSE_VERIFY Key can be used to verify signatures. For symmetric keys this
represents the ability to verify MACs.

CSSM_KEYUSE_SIGN_RECOVER Key can be used to perform signatures with message recovery.
This form of a signature is generated using the
CSSM_EncryptData API with the algorithm mode set to
CSSM_ALGMODE_PRIVATE_KEY. This attribute is only valid for
asymmetric algorithms.

CSSM_KEYUSE_VERIFY_RECOVER Key can be used to verify signatures with message recovery. This
form of a signature verified using the CSSM_DecryptData API
with the algorithm mode set to
CSSM_ALGMODE_PRIVATE_KEY. This attribute is only valid for
asymmetric algorithms.

CSSM_KEYUSE_WRAP Key can be used to wrap another key.

CSSM_KEYUSE_UNWRAP Key can be used to unwrap a key.

CSSM_KEYUSE_DERIVE Key can be used as the source for deriving other keys.

CSSM_KEY_SIZE
This structure holds the physical key size and the effective key size for a given key. The metric used is
bits. The number of effective bits is the number of key bits that can be used in a cryptographic operation
compared with the number of bits that may be present in the key. When the number of effective bits is less
than the number of actual bits, this is known as ″dumbing down″.
typedef struct cssm_key_size {

uint32 KeySizeInBits;/* Key size in bits */
uint32 EffectiveKeySizeInBits; /* Effective key size in bits */

} CSSM_KEYSIZE, *CSSM_KEYSIZE_PTR

Definitions:
KeySizeInBits The actual number of bits in a key.
EffectiveKeySizeInBits

The number of key bits that can be used for cryptographic operations.

CSSM_KEY_TYPE
typedef uint32 CSSM_KEY_TYPE, *CSSM_KEY_TYPE_PTR;

CSSM_SPI_MEMORY_FUNCS
This structure is used by OCSF to pass an application’s memory function table to the service provider
modules. The functions are used when memory needs to be allocated by the service provider module for
returning data structures to the applications.
typedef struct cssm_spi_func_tbl {
void *(*malloc_func) (CSSM_HANDLE AddInHandle, uint32 Size);
void (*free_func) (CSSM_HANDLE AddInHandle, void *MemPtr);
void *(*realloc_func) (CSSM_HANDLE AddInHandle, void *MemPtr, uint32 Size);
void *(*calloc_func) (CSSM_HANDLE AddInHandle, uint32 Num, uint32 Size);
} CSSM_SPI_MEMORY_FUNCS, *CSSM_SPI_MEMORY_FUNCS_PTR;

Definitions:

Malloc_func Pointer to function that returns a void pointer to the allocated memory block of at least size
bytes from heap AllocRef.

Free_func Pointer to function that deallocates a previously allocated memory block (memblock) from
heap AllocRef.

60 OCSF Service Provider Module Developer’s Guide and Reference

Realloc_func Pointer to function that returns a void pointer to the reallocated memory block (memblock)
of at least size bytes from heap AllocRef.

Calloc_func Pointer to function that returns a void pointer to an array of num elements of length size
initialized to zero from heap AllocRef.

AllocRef Pointer that can be used at the discretion of the application developer to implement
additional memory management features such as usage counters.

CSSM_OID
The OID is used to hold an identifier for the data types and data structures that comprise the fields of a
certificate or CRL. The underlying representation and meaning of the identifier is defined by the CL
module. For example, a CL module can choose to represent its identifiers in any of the following forms:

v A character string in a character set native to the platform.

v A DER-encoded X.509 OID that must be parsed.

v An S-expression that must be evaluated.

v An enumerated value that is defined in header files supplied by the CL module.
typedef CSSM_DATA CSSM_OID, *CSSM_OID_PTR;

CSSM_RETURN
This data type is used to indicate whether a function was successful.
typedef enum cssm_return {

CSSM_OK = 0,
CSSM_FAIL = -1

} CSSM_RETURN;

CSSM_REVOKE_REASON
This data structure represents the reason a certificate is being revoked.
typedef enum cssm_revoke_reason {

CSSM_REVOKE_CUSTOM,
CSSM_REVOKE_UNSPECIFIC,
CSSM_REVOKE_KEYCOMPROMISE,
CSSM_REVOKE_CACOMPROMISE,
CSSM_REVOKE_AFFILIATIONCHANGED,
CSSM_REVOKE_SUPERCEDED,
CSSM_REVOKE_CESSATIONOFOPERATION,
CSSM_REVOKE_CERTIFICATEHOLD,
CSSM_REVOKE_CERTIFICATEHOLDRELEASE,
CSSM_REVOKE_REMOVEFROMCRL

} CSSM_REVOKE_REASONrtificate Operations

Chapter 4. Certificate Library Interface 61

Certificate Library Operations
This section describes the function prototypes and error codes expected for the functions in the CLI. The
functions will be exposed to OCSF via a function table, so the function names may vary at the discretion
of the CL developer. However, the function parameter list and return type must match the prototypes given
in this section in order to be used by applications.

CL_CertAbortQuery

Purpose
This function terminates the query initiated by CL_CertGetFirstFieldValue and allows the CL to release all
intermediate state information associated with the query.

Format
CSSM_RETURN CSSMAPI CL_CertAbortQuery CSSM_CL_HANDLE CLHandle, CSSM_HANDLE ResultsHandle)

Parameters
Input
CLHandle The handle that describes the service provider CL module used to perform this function.
ResultsHandle The handle that identifies the results of a certificate query.

Return Value
CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use CSSM_GetError
to obtain the error code.

Related Information

CL_CertGetFirstFieldValue
CL_CertGetNextFieldValue

62 OCSF Service Provider Module Developer’s Guide and Reference

CL_CertCreateTemplate

Purpose
This function allocates and initializes memory for a certificate based on the input OID/value pairs specified
in the CertTemplate. The initialization process includes encoding all certificate field values according to the
format required by the certificate representation. The function returns the initialized template containing
encoded values. The memory is allocated using the calling application’s memory management routines.

Format
CSSM_DATA_PTR CSSMAPI CL_CertCreateTemplate (CSSM_CL_HANDLE CLHandle,

const CSSM_FIELD_PTR CertTemplate,
uint32 NumberOfFields)

Parameters
Input

CLHandle The handle that describes the service provider CL module used to perform this function.

CertTemplate A pointer to an array of OID/value pairs that identify the field values to initialize a new
certificate.

NumberOfFields
The number of certificate field values specified in the CertTemplate.

Return Value
A pointer to the CSSM_DATA structure containing the unsigned certificate template. If the return pointer is
NULL, an error has occurred. Use CSSM_GetError to obtain the error code.

Related Information

CL_CertRequest
CL_CertGetFirstFieldValue

Chapter 4. Certificate Library Interface 63

CL_CertDescribeFormat

Purpose
This function returns a list of the OIDs used to describe the certificate format supported by the specified
CL.

Format
CSSM_OID_PTR CSSMAPI CL_CertDescribeFormat (CSSM_CL_HANDLE CLHandle, uint32 *NumberOfFields)

Parameters
Input

CLHandle The handle that describes the service provider CL module used to perform this function.

Output

NumberOfFields
The length of the output OID array.

Return Value
A pointer to the array of CSSM_OID structures which are supported for certificate operations in the
specified CL module. If the return pointer is NULL, an error has occurred. Use CSSM_GetError to obtain
the error code.

Related Information
CL_CertGetFirstFieldValue

64 OCSF Service Provider Module Developer’s Guide and Reference

CL_CertExport

Purpose
This function exports a certificate from the native format of the specified CL into the specified target
certificate format.

Format
CSSM_DATA_PTR CSSMAPI CL_CertExport (CSSM_CL_HANDLE CLHandle,

CSSM_CERT_TYPE TargetCertType,
const CSSM_DATA_PTR NativeCert)

Parameters
CLHandle The handle that describes the service provider CL module used to perform this function.

TargetCert A unique value that identifies the target type of the certificate being exported.

NativeCert A pointer to the CSSM_DATA structure containing the certificate to be exported.

Return Value
A pointer to the CSSM_DATA structure containing the target-type certificate exported from the native
certificate. If the pointer is NULL, an error has occurred. Use CSSM_GetError to obtain the error code.

Related Information
CL_CertImport

Chapter 4. Certificate Library Interface 65

CL_CertGetAllFields

Purpose
This function returns a list of the fields in the input certificate, as described by their OID/value pairs.

Format
CSSM_FIELD_PTR CSSMAPI CL_CertGetAllFields (CSSM_CL_HANDLE CLHandle,

const CSSM_DATA_PTR Cert,
uint32 *NumberOfFields)

Parameters
Input

CLHandle The handle that describes the service provider CL module used to perform this function.

Cert A pointer to the CSSM_DATA structure containing the certificate whose fields will be
returned.

Output

NumberOfFields
The length of the output CSSM_FIELD array.

Return Value
A pointer to an array of CSSM_FIELD structures that describe the contents of the certificate using
OID/value pairs. If the return pointer is NULL, an error has occurred. Use CSSM_GetError to obtain the
error code.

Related Information
CL_CertGetFirstFieldValue

66 OCSF Service Provider Module Developer’s Guide and Reference

CL_CertGetFirstFieldValue

Purpose
This function returns the value of the designated certificate field. If more than one field matches the
CertField OID, the first matching field will be returned. The number of matching fields is an output
parameter, as is the ResultsHandle to be used to retrieve the remaining matching fields.

Format
CSSM_DATA_PTR CSSMAPI CL_CertGetFirstFieldValue (CSSM_CL_HANDLE CLHandle,

const CSSM_DATA_PTR Cert,
const CSSM_OID_PTR CertField,
CSSM_HANDLE_PTR ResultsHandle,
uint32 *NumberOfMatchedFields)

Parameters
Input

CLHandle The handle that describes the service provider CL module used to perform this function.

Cert A pointer to the CSSM_DATA structure containing the certificate.

CertField A pointer to an OID that identifies the field value to be extracted from the Cert.

Output

ResultsHandle A pointer to the CSSM_HANDLE that should be used to obtain any additional matching
fields.

NumberOfMatchedFields
The number of fields that match the CertField OID.

Return Value
A pointer to the CSSM_DATA structure containing the value of the requested field. If the pointer is NULL,
an error has occurred. Use CSSM_GetError to obtain the error code.

Related Information

CL_CertGetNextFieldValue
CL_CertAbortQuery
CL_CertGetAllFields
CL_CertDescribeFormat

Chapter 4. Certificate Library Interface 67

CL_CertGetKeyInfo

Purpose
This function obtains information about the certificate’s public key. Ideally, this information comprises the
key fields the application needs to create a cryptographic context that uses this certificate’s key.

Format
CSSM_KEY_PTR CSSMAPI CL_CertGetKeyInfo (CSSM_CL_HANDLE CLHandle, const CSSM_DATA_PTR Cert)

Parameters
Input

CLHandle The handle that describes the service provider CL module used to perform this function.

Cert A pointer to the CSSM_DATA structure containing the certificate from which to extract the
public key information.

Return Value
A pointer to the CSSM_KEY structure containing the public key and possibly other key information. If the
pointer is NULL, an error has occurred. Use CSSM_GetError to obtain the error code.

68 OCSF Service Provider Module Developer’s Guide and Reference

CL_CertGetNextFieldValue

Purpose
This function returns the next certificate field that matched the OID in a call to CL_CertGetFirstFieldValue.

Format
CSSM_DATA_PTR CSSMAPI CL_CertGetNextFieldValue (CSSM_CL_HANDLE CLHandle, CSSM_HANDLE ResultsHandle)

Parameters
Input

CLHandle The handle that describes the service provider CL module used to perform this function.

ResultsHandle The handle that identifies the results of a certificate query.

Return Value
A pointer to the CSSM_DATA structure containing the value of the requested field. If the pointer is NULL,
an error has occurred. Use CSSM_GetError to obtain the error code.

Related Information

CL_CertGetFirstFieldValue
CL_CertAbortQuery

Chapter 4. Certificate Library Interface 69

CL_CertImport

Purpose
This function imports a certificate from the input format into the native format of the specified CL.

Format
CSSM_DATA_PTR CSSMAPI CL_CertImport (CSSM_CL_HANDLE CLHandle,

CSSM_CERT_TYPE ForeignCertType,
const CSSM_DATA_PTR ForeignCert)

Parameters
CLHandle The handle that describes the service provider CL module used to perform this function.

ForeignCertType
A unique value that identifies the type of the certificate being imported.

Cert A pointer to the CSSM_DATA structure containing the certificate to be imported into the
native type.

Return Value
A pointer to the CSSM_DATA structure containing the native-type certificate imported from the foreign
certificate. Use CSSM_GetError to obtain the error code.

Related Information
CL_CertExport

70 OCSF Service Provider Module Developer’s Guide and Reference

CL_CertSign

Purpose
This function signs the fields of the input certificate as indicated by the SignScope array.

Format
CSSM_DATA_PTR CSSMAPI CL_CertSign (CSSM_CL_HANDLE CLHandle,

CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR SubjectCert,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR SignScope,
uint32 ScopeSize)

Parameters
Input

CLHandle The handle that describes the service provider CL module used to perform this function.

CCHandle The handle that describes the context of this cryptographic operation.

SubjectCert A pointer to the CSSM_DATA structure containing the certificate to be signed.

SignerCert A pointer to the CSSM_DATA structure containing the certificate to be used to sign the
subject certificate.

SignScope A pointer to the CSSM_FIELD array containing the tag/value pairs of the fields to be
signed. A NULL input signs all the fields in the certificate.

ScopeSize The number of entries in the sign scope list.

Return Value
A pointer to the CSSM_DATA structure containing the signed certificate. If the pointer is NULL, an error
has occurred. Use CSSM_GetError to obtain the error code.

Related Information
CL_CertVerify

Chapter 4. Certificate Library Interface 71

CL_CertVerify

Purpose
This function verifies that the signed certificate has not been altered since it was signed by the designated
signer. It does this by verifying the digital signature on the VerifyScope fields.

Format
CSSM_BOOL CSSMAPI CL_CertVerify (CSSM_CL_HANDLE CLHandle,

CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR SubjectCert,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR VerifyScope,
uint32 ScopeSize)

Parameters
Input

CLHandle The handle that describes the service provider CL module used to perform this function.

CCHandle The handle that describes the context of this cryptographic operation.

SubjectCert A pointer to the CSSM_DATA structure containing the signed certificate

SignerCert A pointer to the CSSM_DATA structure containing the certificate used to sign the subject
certificate.

VerifyScope A pointer to the CSSM_FIELD array containing the tag/value pairs of the fields to be
verified. A NULL input verifies all the fields in the certificate.

ScopeSize The number of entries in the verify scope list.

Return Value
CSSM_TRUE if the certificate verified. CSSM_FALSE if the certificate did not verify or an error condition
occurred. Use CSSM_GetError to obtain the error code.

Related Information
CL_CertSign

72 OCSF Service Provider Module Developer’s Guide and Reference

Certificate Revocation List Operations
This section describes the function prototypes supported by a CL module for operations on CRLs. The
functions will be exposed to OCSF through a function table, so the function names may vary at the
discretion of the CL developer. However, the function parameter list and return type must match the
prototypes given in this section in order to be used by applications.

CL_CrlAbortQuery

Purpose
This function terminates the query initiated by CL_CrlGetFirstFieldValue and allows the CL to release all
intermediate state information associated with the query.

Format
CSSM_RETURN CSSMAPI CL_CrlAbortQuery (CSSM_CL_HANDLE CLHandle, CSSM_HANDLE ResultsHandle)

Parameters
Input

CLHandle The handle that describes the service provider CL module used to perform this function.

ResultsHandle The handle that identifies the results of a CRL query.

Return Value
CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use CSSM_GetError
to obtain the error code.

Related Information

CL_CrlGetFirstFieldValue
CL_CrlGetNextFieldValue

Chapter 4. Certificate Library Interface 73

CL_CrlAddCert

Purpose
This function revokes the input certificate by adding a record representing the certificate to the CRL. It
uses the revoker’s certificate to sign the new record in the CRL. The reason for revoking the certificate
may also be stored in the revocation record.

Format
CSSM_DATA_PTR CSSMAPI CL_CrlAddCert (CSSM_CL_HANDLE CLHandle,

CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR Cert,
const CSSM_DATA_PTR RevokerCert,
CSSM_REVOKE_REASON RevokeReason,
const CSSM_DATA_PTR OldCrl)

Parameters
Input

CLHandle The handle that describes the service provider CL module used to perform this function.

CCHandle The handle that describes the context of this cryptographic operation.

Cert A pointer to the CSSM_DATA structure containing the certificate to be revoked.

RevokerCert A pointer to the CSSM_DATA structure containing the revoker’s certificate.

RevokeReason
The reason for revoking the certificate.

OldCrl A pointer to the CSSM_DATA structure containing the CRL to which the newly revoked
certificate will be added.

Return Value
A pointer to the CSSM_DATA structure containing the updated CRL. If the pointer is NULL, an error has
occurred. Use CSSM_GetError to obtain the error code.

Related Information
CL_CrlRemoveCert

74 OCSF Service Provider Module Developer’s Guide and Reference

CL_CrlCreateTemplate

Purpose
This function creates an unsigned, memory-resident CRL. Fields in the CRL are initialized with the
descriptive data specified by the OID/value input pairs. The specified OID/value pairs can initialize all or a
subset of the general attribute fields in the new CRL, though the module developer may specify a set of
fields that must be or cannot be set using this operation. Subsequent values may be set using the
CL_CrlSetFields operation.

Format
CSSM_DATA_PTR CSSMAPI CL_CrlCreateTemplate (CSSM_CL_HANDLE CLHandle,

const CSSM_FIELD_PRT CrlTemplate,
uint32 NumberOfFields)

Parameters
Input

CLHandle The handle that describes the service provider CL module used to perform this function.

CrlTemplate An array of OID/value pairs specifying the initial values for descriptive data fields of the
new CRL.

NumberOfFields
The number of OID/value pairs specified in the CrlTemplate input parameter.

Return Value
A pointer to the CSSM_DATA structure containing the new CRL. If the pointer is NULL, an error has
occurred. Use CSSM_GetError to obtain the error code.

Chapter 4. Certificate Library Interface 75

CL_CrlDescribeFormat

Purpose
This function returns a list of the OIDs used to describe the CRL format supported by the specified CL.

Format
CSSM_OID_PTR CSSMAPI CL_CrlDescribeFormat (CSSM_CL_HANDLE CLHandle, uint32 *NumberOfFields)

Parameters
Input

CLHandle The handle that describes the service provider CL module used to perform this function.

Output

NumberOfFields
The length of the output array.

Return Value
A pointer to the array of CSSM_OID structures which are supported for CRL operations in the specified CL
module. If the return pointer is NULL, an error has occurred. Use CSSM_GetError to obtain the error code.

76 OCSF Service Provider Module Developer’s Guide and Reference

CL_CrlGetFirstFieldValue

Purpose
This function returns the value of the designated CRL field. If more than one field matches the CrlField
OID, the first matching field will be returned. The number of matching fields is an output parameter, as is
the ResultsHandle to be used to retrieve the remaining matching fields.

Format
CSSM_DATA_PTR CSSMAPI CL_CrlGetFirstFieldValue (CSSM_CL_HANDLE CLHandle,

const CSSM_DATA_PTR Crl,
const CSSM_OID_PTR CrlField,
CSSM_HANDLE_PTR ResultsHandle,
uint32 *NumberOfMatchedFields)

Parameters
Input

CLHandle The handle that describes the service provider CL module used to perform this function.

Crl A pointer to the CSSM_DATA structure that contains the CRL from which the first
revocation record will be retrieved.

CrlField A pointer to an OID that identifies the field value to be extracted from the Crl.

Output

ResultsHandle A pointer to the CSSM_HANDLE, which should be used to obtain any additional matching
fields.

NumberOfMatchedFields
The number of fields that match the CrlField OID.

Return Value
Returns a pointer to a CSSM_DATA structure containing the first field that matched the CrlField. If the
pointer is NULL, an error has occurred. Use CSSM_GetError to obtain the error code.

Related Information

CL_CrlGetNextFieldValue
CL_CrtAbortQuery

Chapter 4. Certificate Library Interface 77

CL_CrlGetNextFieldValue

Purpose
This function returns the next CRL field that matched the OID in a call to CL_CrlGetFirstFieldValue.

Format
CSSM_DATA_PTR CSSMAPI CL_CrlGetNextFieldValue (CSSM_CL_HANDLE CLHandle, CSSM_HANDLE ResultsHandle)

Parameters
Input

CLHandle The handle that describes the service provider CL module used to perform this function.

ResultsHandle The handle that identifies the results of a CRL query.

Return Value
Returns a pointer to a CSSM_DATA structure containing the next field in the CRL, which matched the
CrlField specified in the CL_CrlGetFirstFieldValue function. If the pointer is NULL, an error has occurred.
Use CSSM_GetError to obtain the error code.

Related Information

CL_CrlGetFirstFieldValue
CL_CrlAbortQuery

78 OCSF Service Provider Module Developer’s Guide and Reference

CL_CrlRemoveCert

Purpose
This function unrevokes a certificate by removing it from the input CRL.

Format
CSSM_DATA_PTR CSSMAPI CL_CrlRemoveCert (CSSM_CL_HANDLE CLHandle,

const CSSM_DATA_PTR Cert,
const CSSM_DATA_PTR OldCrl)

Parameters
Input

CLHandle The handle that describes the service provider CL module used to perform this function.

Cert A pointer to the CSSM_DATA structure containing the certificate to be unrevoked.

OldCrl A pointer to the CSSM_DATA structure containing the CRL from which the certificate will
be removed.

Return Value
A pointer to the CSSM_DATA structure containing the updated CRL. If the pointer is NULL, an error has
occurred. Use CSSM_GetError to obtain the error code.

Related Information
CL_CrlAddCert

Chapter 4. Certificate Library Interface 79

CL_CrlSetFields

Purpose
This function will set the fields of the input CRL to the new values specified by the input OID/value pairs.
The module developer may specify a set of fields that must be or cannot be set using this operation. This
operation is valid only if the CRL has not been closed by the process of signing the CRL (i.e., execution of
the function CL_CrlSign). Once the CRL has been signed, fields cannot be changed.

Format
CSSM_DATA_PTR CSSMAPI CL_CrlSetFields (CSSM_CL_HANDLE CLHandle,

const CSSM_FIELD_PRT CrlTemplate,
uint32 NumberOfFields,
const CSSM_DATA_PTR OldCrl)

Parameters
Input

CLHandle The handle that describes the service provider CL module used to perform this function.

CrlTemplate Any array of field OID/value pairs containing the values to initialize the CRL attribute fields.

NumberOfFields
The number of OID/value pairs specified in the CrlTemplate input parameter.

OldCrl The CRL to be updated with the new attribute values. The CRL must be unsigned and
available for update.

Return Value
A pointer to the modified, unsigned CRL. If the pointer is NULL, an error has occurred. Use
CSSM_GetError to obtain the error code

80 OCSF Service Provider Module Developer’s Guide and Reference

CL_CrlSign

Purpose
This function signs, in accordance with the specified cryptographic context, the fields of the CRL indicated
in the SignScope parameter.

Format
CSSM_DATA_PTR CSSMAPI CL_CrlSign (CSSM_CL_HANDLE CLHandle,

CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR UnsignedCrl,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR SignScope,
uint32 ScopeSize)

Parameters
Input

CLHandle The handle that describes the service provider CL module used to perform this function.

CCHandle The handle that describes the context of this cryptographic operation.

UnsignedCrl A pointer to the CSSM_DATA structure containing the CRL to be signed.

SignerCert A pointer to the CSSM_DATA structure containing the certificate to be used to sign the
CRL.

SignScope A pointer to the CSSM_FIELD array containing the tag/value pairs of the fields to be
signed. A NULL input signs all the fields in the CRL.

ScopeSize The number of entries in the sign scope list.

Return Value
A pointer to the CSSM_DATA structure containing the signed CRL. If the pointer is NULL, an error has
occurred. Use CSSM_GetError to obtain the error code.

Related Information
CL_CrlVerify

Chapter 4. Certificate Library Interface 81

CL_CrlVerify

Purpose
This function verifies that the signed CRL has not been altered since it was signed by the designated
signer. It does this by verifying the digital signature on the VerifyScope fields.

Format
CSSM_BOOL CSSMAPI CL_CrlVerify (CSSM_CL_HANDLE CLHandle,

CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR SubjectCrl,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR VerifyScope,
uint32 ScopeSize)

Parameters
Input

CLHandle The handle that describes the service provider CL module used to perform this function.

CCHandle The handle that describes the context of this cryptographic operation.

SubjectCrl A pointer to the CSSM_DATA structure containing the CRL to be verified.

SignerCert A pointer to the CSSM_DATA structure containing the certificate used to sign the CRL.

VerifyScope A pointer to the CSSM_FIELD array containing the tag/value pairs of the fields to be
verified. A NULL input verifies all the fields in the CRL.

ScopeSize The number of entries in the verify scope list.

Return Value
A CSSM_TRUE return value signifies that the CRL verifies successfully. When CSSM_FALSE is returned,
either the CRL verified unsuccessfully or an error has occurred. Use CSSM_GetError to obtain the error
code.

Related Information
CL_CrlSign

82 OCSF Service Provider Module Developer’s Guide and Reference

CL_IsCertInCrl

Purpose
This function searches the CRL for a record corresponding to the certificate.

Format
CSSM_BOOL VSSMAPI CL_IsCertInCrl (CSSM_CL_HANDLE CLHandle,

const CSSM_DATA_PTR Cert,
const CSSM_DATA_PTR Crl)

Parameters
Input

CLHandle The handle that describes the service provider CL module used to perform this function.

Cert A pointer to the CSSM_DATA structure containing the certificate to be located.

Crl A pointer to the CSSM_DATA structure containing the CRL to be searched.

Return Value
A CSSM_TRUE return value signifies that the certificate is in the CRL. When CSSM_FALSE is returned,
either the certificate is not in the CRL or an error has occurred. Use CSSM_GetError to obtain the error
code.

Chapter 4. Certificate Library Interface 83

Certificate Library Extensibility Functions
The CL_PassThrough function is provided to allow CL developers to extend the certificate and CRL
format-specific functionality of the OCSF API. Because it is only exposed to OCSF as a function pointer, its
name internal to the CL can be assigned at the discretion of the CL module developer. However, its
parameter list and return value must match.

CL_PassThrough

Purpose
This function allows applications to call CL module-specific operations.

Format
void * CSSMAPI CL_PassThrough (CSSM_CL_HANDLE CLHandle,

CSSM_CC_HANDLE CCHandle,
uint32 PassThroughID,
const void * InputParams)

Parameters
Input

CLHandle The handle that describes the service provider CL module used to perform this function.

CCHandle The handle that describes the context of the cryptographic operation.

PassThroughId
An identifier assigned by the CL module to indicate the function to perform.

InputParams A pointer to a module, implementation-specific structure containing parameters to be
interpreted in a function-specific manner by the requested CL module. This parameter can
be used as a pointer to an array of void pointers.

Return Value
A pointer to a module, implementation-specific structure containing the output from the passthrough
function. The output data must be interpreted by the calling application based on externally available
information. If the pointer is NULL, an error has occurred. Use CSSM_GetError to obtain the error code.

84 OCSF Service Provider Module Developer’s Guide and Reference

Certificate Library Attach/Detach Example
The Certificate Library (CL) module is responsible for performing certain operations when OCSF attaches
to and detaches from it. CL modules use _init in conjunction with the DLLMain routine to perform those
operations, as shown in the following example.
_init

BOOL_init()
{
BOOL rc;
rc = DllMain(NULL, DLL_PROCESS_ATTACH, NULL);
return (rc);

}

DLLMain
#include <cssm.h>
CSSM_GUID my_clm_guid =
{ 0x83bafc39, 0xfac1, 0x11cf, { 0x81, 0x72, 0x0, 0xaa, 0x0, 0xb1, 0x99, 0xdd } };

BOOL DllMain (HANDLE hInstance, DWORD dwReason, LPVOID lpReserved)
{
switch (dwReason)
{
case DLL_PROCESS_ATTACH:
{
CSSM_SPI_CL_FUNCS FunctionTable;
CSSM_SPI_FUNC_TBL_PTR UpcallTable;

/* Fill in FunctionTable with function pointers */
FunctionTable.CertSign = CL_CertSign;

FunctionTable.CertVerify = CL_CertVerify;
FunctionTable.CertCreateTemplate = CL_CertCreateTemplate;
FunctionTable.CertGetFirstFieldValue = CL_CertGetFirstFieldValue;
FunctionTable.CertGetNextFieldValue = CL_CertGetNextFieldValue;
FunctionTable.CertAbortQuery = CL_CertAbortQuery;
FunctionTable.CertGetKeyInfo = CL_CertGetKeyInfo;
FunctionTable.CertGetAllFields = CL_CertGetAllFields;
FunctionTable.CertImport = NULL;
FunctionTable.CertExport = NULL;
FunctionTable.CertDescribeFormat = CL_CertDescribeFormat;
FunctionTable.CrlCreateTemplate = CL_CrlCreateTemplate;
FunctionTable.CrlSetFields = CL_CrlSetFields;
FunctionTable.CrlAddCert = CL_CrlAddCert;
FunctionTable.CrlRemoveCert = CL_CrlRemoveCert;
FunctionTable.CrlSign = CL_CrlSign;
FunctionTable.CrlVerify = CL_CrlVerify;
FunctionTable.IsCertInCrl = CL_IsCertInCrl;
FunctionTable.CrlGetFirstFieldValue = CL_CrlGetFirstFieldValue;
FunctionTable.CrlGetNextFieldValue = CL_CrlGetNextFieldValue;
FunctionTable.CrlAbortQuery = CL_CrlAbortQuery;
FunctionTable.CrlDescribeFormat = CL_CrlDescribeFormat;
FunctionTable.PassThrough = CL_PassThrough;

/* Call CSSM_RegisterServices to register the FunctionTable */
/* with OCSF and to receive the application's memory upcall table */
if (CSSM_RegisterServices (&my_clm_guid, FunctionTable, &UpcallTable) != CSSM_OK)

return FALSE;

/* Make the upcall table available to all functions in this library */

break;
}

case DLL_THREAD_ATTACH:

break;

Chapter 4. Certificate Library Interface 85

case DLL_THREAD_DETACH:
break;

case DLL_PROCESS_DETACH:
if (CSSM_CL_DeregisterServices (&my_clm_guid) != CSSM_OK)

return FALSE;
break;

}
return TRUE;

86 OCSF Service Provider Module Developer’s Guide and Reference

Certificate Operations Examples
This section contains sample implementations of certificate functions in the CL.

CL_CertCreateTemplate
/*---
* Name: CL_CertCreateTemplate
*
* Description:
* This function allocates and initializes memory for a certificate
* based on the input tag/values pairs. The returned certificate
* must be signed using the CSSM_CL_CertSign function.
*
* Parameters:
* CLHandle (input) : A handle to a CL module.
* CertTemplate (input) : A pointer to an array of tag/value pairs
* which identify the fields of the new certificate
* NumberOfFields (input) : The length of the CertTemplate array
*
* Return value:
* The new certificate
*
* Error Codes:
* CSSM_CL_INVALID_CL_HANDLE
* CSSM_CL_INVALID_FIELD_POINTER
* CSSM_CL_INVALID_TEMPLATE
* CSSM_CL_MEMORY_ERROR
* CSSM_CL_UNSUPPORTED_OPERATION
* CSSM_CL_CERT_CREATE_FAIL
---/
CSSM_DATA_PTR CSSMAPI CL_CertCreateTemplate (CSSM_CL_HANDLE CLHandle,

const CSSM_FIELD_PTR CertTemplate,
uint32 NumberOfFields)

{
/* Initializations */
CSSM_CERTIFICATE_PTR cert_ptr = NULL;
CSSM_DATA_PTR packed_cert_ptr = NULL;
CSSM_ERROR_PTR err_ptr = NULL;
uint32 i=0;

/* Check inputs */
/* Check that this is a valid CLHandle */

if (CLHandle == 0)
{

CSSM_SetError(&my_clm_guid, CSSM_CL_INVALID_CL_HANDLE);
return NULL;

}
/* Check that the NumberOfFields is greater than 0

and that the CertTemplate pointer is not NULL */
if (!NumberOfFields || !CertTemplate)
{

CSSM_SetError(&my_clm_guid, CSSM_CL_INVALID_TEMPLATE);
return NULL;

}
/* Check that CertTemplate is a valid pointer */

if (cssm_IsBadReadPtr (CertTemplate, NumberOfFields*sizeof(CSSM_FIELD)) ||
cssm_IsBadReadPtr(CertTemplate[NumberOfFields-1].FieldValue.Data,

CertTemplate[NumberOfFields-1].FieldValue.Length) ||
cssm_IsBadReadPtr(CertTemplate[NumberOfFields-1].FieldOid.Data,

CertTemplate[NumberOfFields-1].FieldOid.Length))
{

CSSM_SetError(&my_clm_guid, CSSM_CL_INVALID_TEMPLATE);
return NULL;

}

Chapter 4. Certificate Library Interface 87

/* Allocate a new certificate structure */
cert_ptr = UpcallTable.malloc_func(CLHandle, sizeof(CSSM_CERTIFICATE));
if (cert_ptr == NULL)
{

CSSM_SetError(&my_clm_guid, CSSM_CL_MEMORY_ERROR);
return NULL;

}
memset(cert_ptr, 0, sizeof(CSSM_CERTIFICATE));

/* Loop through the CertTemplate array */
for(i=0; i < NumberOfFields; i++)
{

/* Check that this field contains a valid data pointer */
if (!cl_IsBadReadPtr (CertTemplate[i].FieldValue.Data,

CertTemplate[i].FieldValue.Length))
{

/* If so, copy the data into the certificate structure */
/* Add CL module-specific code here */

}
else
{

CSSM_SetError(&my_clm_guid, CSSM_CL_INVALID_FIELD_POINTER);
/* Free the certificate structure */
return NULL;

}
}

/* Add internal, CL-generated certificate information */
/* Add CL module-specific code here */

/* If there are signatures on this cert, delete them */
/* A newly created cert is assumed to be unsigned */
/* Add CL module-specific code here */

/* Pack the new certificate */
/* The pack routine will allocate memory for the new cert using the

application's memory allocation routines */
packed_cert_ptr = cl_PackCertificate(cert_ptr);

/* Cleanup */
/* Free the certificate structure */

/* Return the packed certificate */
return packed_cert_ptr;

};

88 OCSF Service Provider Module Developer’s Guide and Reference

CRL Operations Examples
This section contains sample implementations of Certificate Revocation List (CRL) functions in the CL.

CL_CrlAddCert
/*---
* Name: CL_CrlAddCert
*
* Description:
* This function revokes the input certificate by adding a record
* representing the certificate to the CRL. It uses the revoker's certificate
* to sign the new record in the CRL. The reason for revoking the certificate
* may also be stored in the revocation record.
*
* Parameters:
* CLHandle (input) : Handle to the CL module
* CCHandle (input) : Handle to the cryptographic context
* Cert (input) : A pointer to the CSSM_DATA structure containing the
* certificate to be revoked
* RevokerCert (input) : A pointer to the CSSM_DATA structure containing the
* revoker's certificate
* RevokeReason (input) : The reason for revoking the certificate
* OldCrl (input) : A pointer to the CSSM_DATA structure containing the
* CRL to which the newly revoked certificate will be
* added
*
* Return value:
* The updated CRL
*
* Error Codes:
* CSSM_CL_INVALID_CL_HANDLE
* CSSM_CL_INVALID_CC_HANDLE
* CSSM_CL_INVALID_CERTIFICATE_PTR
* CSSM_CL_INVALID_CRL
* CSSM_CL_MEMORY_ERROR
* CSSM_CL_CRL_ADD_CERT_FAIL
---/
CSSM_DATA_PTR CSSMAPI CL_CrlAddCert (CSSM_CL_HANDLE CLHandle,

CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR Cert,
const CSSM_DATA_PTR RevokerCert,

CSSM_REVOKE_REASON RevokeReason,
const CSSM_DATA_PTR OldCrl)

{
CSSM_REVOCATION_LIST_PTR new_crl_ptr = NULL;
CSSM_DATA_PTR new_crl_data_ptr = NULL;
CSSM_DATA_PTR sign_data_ptr = NULL;
CSSM_REVOKED_CERT_PTR new_revoked_cert_ptr = NULL;
CSSM_REVOKED_CERT_PTR temp_revoked_cert_ptr = NULL;
CSSM_REVOKED_CERT_PTR prev_revoked_cert_ptr = NULL;

CSSM_CERTIFICATE_PTR revoker_cert_ptr = NULL;
CSSM_CERTIFICATE_PTR cert_ptr = NULL;
uint32 signature_size;
CSSM_DATA_PTR signature_data_ptr = NULL;
CSSM_CONTEXT_PTR context_ptr = NULL;
CSSM_RETURN ret;

/* Check inputs */
if(CLHandle == 0)
{

CSSM_SetError(&my_clm_guid,CSSM_CL_INVALID_CL_HANDLE);
return NULL;

}
if(CCHandle == 0)

Chapter 4. Certificate Library Interface 89

{
CSSM_SetError(&my_clm_guid,CSSM_CL_INVALID_CC_HANDLE);
return NULL;

}
if(Cert == NULL)
{

CSSM_SetError(&my_clm_guid,CSSM_CL_INVALID_CERT_POINTER);
return NULL;

}
if(Cert != NULL && cssm_IsBadReadPtr(Cert, sizeof(CSSM_DATA)))
{

CSSM_SetError(&my_clm_guid, CSSM_CL_INVALID_DATA_POINTER);
return NULL;

}
if(Cert->Length != 0 && cssm_IsBadReadPtr(Cert->Data,Cert->Length))
{

CSSM_SetError(&my_clm_guid, CSSM_CL_INVALID_CERT_POINTER);
return NULL;

}

if(RevokerCert == NULL)
{

CSSM_SetError(&my_clm_guid,CSSM_CL_INVALID_REVOKER_CERT_PTR);
return NULL;

}
if(RevokerCert->Length != 0 && cssm_IsBadReadPtr(RevokerCert->Data,RevokerCert->Length))
{

CSSM_SetError(&my_clm_guid, CSSM_CL_INVALID_REVOKER_CERT_PTR);
return NULL;

}
if(OldCrl == NULL)
{

CSSM_SetError(&my_clm_guid, CSSM_CL_INVALID_CRL_PTR);
return NULL;

}
if(cssm_IsBadReadPtr(OldCrl, sizeof(CSSM_DATA)))
{
CSSM_SetError(&my_clm_guid, CSSM_CL_INVALID_CRL_PTR);
return NULL;
}
if(OldCrl->Length != 0 && !cssm_IsBadReadPtr(OldCrl->Data, OldCrl->Length))
{
/* Unpack the CRL */
new_crl_ptr = cl_UnPackCrl(CLHandle,&MemoryFunctions,OldCrl);
if(new_crl_ptr == NULL)
{

CSSM_SetError(&my_clm_guid, CSSM_CL_MEMORY_ERROR);
return NULL;

}

/* remove the crl signature, if necessary */
/* unpack the revoker's certificate */
revoker_cert_ptr =
cl_UnpackCertificate(CLHandle,&MemoryFunctions,RevokerCert);
if(revoker_cert_ptr == NULL)
{

/* Cleanup */
CSSM_SetError(&my_clm_guid, CSSM_CL_MEMORY_ERROR);
return NULL;

}
/* unpack the certificate to be revoked */
cert_ptr = cl_UnpackCertificate(CLHandle,&MemoryFunctions,Cert);;
if(cert_ptr == NULL)
{
/* Cleanup */

CSSM_SetError(&my_clm_guid, CSSM_CL_MEMORY_ERROR);
return NULL;

90 OCSF Service Provider Module Developer’s Guide and Reference

}

/* Create the revoked certificate structure to be placed in the CRL */
/* Add any revocation record specific information,

such as the time of revocation and the revocation reason */
/* Sign the revoked certificate structure using the revoker's certificate */
}

/* Add the new revocation record to the CRL */

/* Pack the new CRL */
new_crl_data_ptr = cl_PackCrl(CLHandle,&MemoryFunctions,new_crl_ptr);

/* Cleanup & Return */
return new_crl_data_ptr;

}

Chapter 4. Certificate Library Interface 91

Certificate Library Extensibilty Functions Example
In this example, the pack and unpack routines that are used internally to the CL module are exposed for
use by applications through the passthrough mechanism.
typedef enum cl_custom_function_id {

CL_CUSTOMID_PACK_CERTIFICATE= 0,
CL_CUSTOMID_UNPACK_CERTIFICATE= 1,

} CL_CUSTOM_FUNCTION_ID;

/*---
* Name: CL_PassThrough
*
* Description:
* This function allows applications to call OCSF CL module-specific operations.
* The OCSF CL module-specific operations include:
* cl_PackCertificate
* cl_UnpackCertificate
*
* Parameters:
* CCHandle (input) : Handle identifying a Cryptographic Context which
* may be used by the passthrough function
* PassThroughId (input) : An identifier assigned by the OCSF CL module
* to indicate the exported function to perform.
* InputParams (input) : Parameters to be interpreted in a
* function-specific manner by the OCSF CL module.
*
* Return value:
* Output from the passthrough function.
* The output data must be interpreted by the calling application
* based on externally available information.
*
* Error Codes:
* CSSM_CL_INVALID_CL_HANDLE
* CSSM_CL_INVALID_CC_HANDLE
* CSSM_CL_INVALID_DATA_POINTER
* CSSM_CL_UNSUPPORTED_OPERATION
* CSSM_CL_PASS_THROUGH_FAIL
---/
CSSM_DATA_PTR CSSMAPI CL_PassThrough (CSSM_CL_HANDLE CLHandle,

CSSM_CC_HANDLE CCHandle,
uint32 PassThroughId,
const CSSM_DATA_PTR InputParams)

{
/* Initializations */
/* Check inputs */

/* Check that this is a recognized PassThroughId */
/* Call the requested function */
switch (PassThroughId) {

case CL_CUSTOMID_PACK_CERTIFICATE:
return cl_PackCertificate(InputParams);
case CL_CUSTOMID_UNPACK_CERTIFICATE:
return cl_UnpackCertificate(InputParams);
default:

CSSM_SetError(&my_clm_guid, CSSM_CL_UNSUPPORTED_OPERATION);
return NULL;

92 OCSF Service Provider Module Developer’s Guide and Reference

Certificate Library OCSF Errors
This section defines the error code range that is defined by OCSF for use by all Certificate Libraries (CLs)
in describing common error conditions. A CL may also define and return vendor-specific error codes. The
error codes defined by OCSF are considered to be comprehensive and few if any vendor-specific codes
should be required. Applications must consult vendor-supplied documentation for the specification and
description of any error codes defined outside of this specification.

All CL service provider interface (SPI) functions return one of the following:

v CSSM_RETURN - An enumerated type consisting of CSSM_OK and CSSM_FAIL. If it is CSSM_FAIL,
an error code indicating the reason for failure can be obtained by calling CSSM_GetError.

v CSSM_BOOL - OCSF functions returning this data type return either CSSM_TRUE or CSSM_FALSE. If
the function returns CSSM_FALSE, an error code may be available (but not always) by calling
CSSM_GetError.

v A pointer to a data structure, a handle, a file size, or whatever is logical for the function to return. An
error code may be available (but not always) by calling CSSM_GetError.

The information returned from CSSM_GetError includes both the error number and a Globally Unique ID
(GUID) that associates the error with the module that set it. Each module must have a mechanism for
reporting their errors to the calling application. In general, there are two types of errors a module can
return, including:

v Errors defined by OCSF that are common to a particular type of service provider module

v Errors reserved for use by individual service provider modules

Since some errors are predefined by OCSF, those errors have a set of predefined numeric values that are
reserved by OCSF, and cannot be redefined by modules. For errors that are particular to a module, a
different set of predefined values has been reserved for their use. Table 12 lists the range of error
numbers defined by OCSF for CL modules and those available for use in individual Certificate Library (CL)
modules. See the z/OS: Open Cryptographic Services Facility Application Programming for a complete
listing of the error numbers and their descriptions.

Table 12. Certificate Library Module Error Numbers

Error Number Range Description

3000 – 3999 CL errors defined by OCSF

4000 – 4999 CL errors reserved for individual CL modules

The calling application must determine how to handle the error returned by CSSM_GetError. Detailed
descriptions of the error values will be available in the corresponding specification, the cssmerr.h header
file, and the documentation for specific modules. If a routine does not know how to handle the error, it may
choose to pass the error to its caller.

Chapter 4. Certificate Library Interface 93

94 OCSF Service Provider Module Developer’s Guide and Reference

Chapter 5. Data Storage Library Interface

A module with Data Storage Library (DL) services provides access to persistent data stores of certificates,
Certificate Revocation Lists (CRLs), keys, policies, and other security-related objects. Stable storage can
be provided by a:
v Commercially available database management system (DBMS) product
v Directory service
v Custom hardware-based storage device
v Native file system.

The implementation of DL operations should be semantically free. For example, a DL operation that inserts
a trusted X.509 certificate into a data store should not be responsible for verifying the trust on that
certificate. The semantic interpretation of security objects should be implemented in Trust Policy (TP)
services, layered services, and applications.

The DL provides access to persistent stores of security-related objects by translating calls from the Data
Storage Library Interface (DLI) into the native interface of the data store. The native interface of the data
store may be that of a DBMS package, a directory service, a custom storage device, or a traditional local
or remote file system. Applications are able to obtain information about the available DL services by using
the CSSM_GetModuleInfo function to query the OCSF registry. The information about the DL service
includes the following:

v Vendor information - Information about the module vendor, a text description of the DL and the module
version number.

v Types of supported data stores - The module may support one or more types of persistent data stores
as separate subservices. For each type of data store, the DL provides information on the supported
query operators and optionally provides specific information on the accessible data stores.

The DL may choose to provide information about the data stores that it has access to. Applications can
obtain information about these data stores by using the CSSM_GetModuleInfo function call. The
information about the data store includes the following:

v Types of persistent security objects - The types of security objects that may be stored include
certificates, CRLs, keys, policy objects, and generic data objects. A single data store can contain a
single object type in one format, a single object type in multiple formats, or multiple object types.

v Attributes of persistent security objects - The stored security object may have attributes which must be
included by the calling application on data insertion, and which are returned by the DL on data retrieval.

v Data store indexes - These indexes are high-performance query paths constructed as part of data store
creation and maintained by the data store.

v Secure access mechanisms - A data store may restrict a user’s ability to perform certain actions on the
data store or on the data store’s contents. This structure exposes the mechanism required to
authenticate to the data store.

v Record integrity capabilities - Some data stores will insure the integrity of the data store’s contents. To
insure the integrity of the data store’s contents, the data store is expected to sign and verify each
record.

v Data store location - The persistent repository can be local or remote.

To build indexes or to satisfy an application’s request for record retrieval, the data store may need to parse
the stored security objects. If the application has invoked CSSM_DL_DbSetRecordParsingFunctions for a
given security object type, those functions will be used to parse that security object as the need arises. If
the application has not explicitly set record-parsing functions, the default service provider modules set by
the data store creator will be used for parsing.

© Copyright IBM Corp. 1999, 2001 95

Secured access to the data store and to the data store’s contents may be enforced by the DL, the data
store, or both. The partitioning of authentication responsibility is exposed via the DL and data store
authentication mechanisms.

Data stores may be added to a DL in one of three ways:

v Using DL_DbCreate - This creates and opens a new, empty data store with the specified schema.

v Using DL_DbImport with information and data - If the specified data store does not exist, a new data
store is created with the specified schema and the exported data records.

v Using DL_DbImport with information only - In this case, the data store’s native format is the same as
that managed by the DL service. Importing its information makes it accessible via this DL service.

In all cases, it is the responsibility of the DL service to update the OCSF registry with information about
the new data store. This can be accomplished by making use of the CSSM_GetModuleInfo and
CSSM_SetModuleInfo functions.

Categories of Operations
The DL service provider interface (SPI) defines four categories of operations:
v DL operations
v Data store operations
v Data record operations
v Extensibility operations.

DL operations are used to control access to the DL library. They include:

v Authentication to the DL Module - A user may be required to present valid credentials to the DL prior to
accessing any of the data stores embedded in the DL module. The DL module will be responsible for
insuring that the access privileges of the user are not exceeded.

The data store functions operate on a data store as a single unit. These operations include:

v Opening and closing data stores - A DL service manages the mapping of logical data store names to
the storage mechanisms it uses to provide persistence. The caller uses logical names to reference
persistent data stores. The open operation prepares an existing data store for future access by the
caller. The close operation terminates current access to the data store by the caller.

v Creating and deleting data stores - A DL creates a new, empty data store and opens it for future access
by the caller. An existing data store may be deleted. Deletion discards all data contained in the data
store.

v Importing and exporting data stores - Occasionally a data store must be moved from one system to
another, or a DL service may need to provide access to an existing data store. The import and export
operations may be used in conjunction to support the transfer of an entire data store. The export
operation prepares a snapshot of a data store. (Export does not delete the data store it snapshots.)

v The import operation accepts a snapshot (generated by the export operation) and includes it in a new or
existing data store managed by a DL. Alternately, the import operation may be used independently to
register an existing data store with a DL.

The data record operations operate on a single record of a data store. They include:

v Adding new data objects - A DL adds a persistent copy of data object to an open data store. This
operation may or may not include the creation of index entries. The mechanisms used to store and
retrieve persistent data objects are private to the implementation of a DL module.

v Deleting data objects - A DL removes single data object from the data store.

v Retrieving data objects - A DL provides a search mechanism for selectively retrieving a copy of
persistent security objects. Selection is based on a selection criterion.

Data store extensibility operations include:

96 OCSF Service Provider Module Developer’s Guide and Reference

Pass through for unique, module-specific operations - A passthrough function is included in the DLI to
allow data store libraries to expose additional services beyond what is currently defined in the OCSF API.
OCSF passes an operation identifier and input parameters from the application to the appropriate DL.
Within the DL_PassThrough function in the DL, the input parameters are interpreted and the appropriate
operation performed. The DL developer is responsible for making known to the application the identity and
parameters of the supported passthrough operations.

Data Storage Library Data Structures
This section describes the data structures that may be passed to or returned from a DL function.
Applications use these data structures to prepare and then pass input parameters into OCSF API function
calls, which are passed without modification to the appropriate DL. The DL is responsible for interpreting
them and returning the appropriate data structure to the calling application via OCSF. These data
structures are defined in the header file, cssmtype.h, which is distributed with OCSF.

CSSM_BOOL
This data type is used to indicate a true or false condition.
typedef uint32 CSSM_BOOL;

#define CSSM_TRUE 1
#define CSSM_FALSE 0

Definitions:
CSSM_TRUE Indicates a true result or a true value.
CSSM_FALSE Indicates a false result or a false value.

CSSM_DATA
The CSSM_DATA structure is used to associate a length, in bytes, with an arbitrary block of contiguous
memory. This memory must be allocated and freed using the memory management routines provided by
the calling application via OCSF. DL modules use this structure to hold persistent security-related objects.
typedef struct cssm_data {

uint32 Length;
uint8* Data;

} CSSM_DATA, *CSSM_DATA_PTR

Definitions:
Length Length of the data buffer in bytes.
Data Points to the start of an arbitrary length data buffer

CSSM_DB_ACCESS_TYPE
This structure indicates a user’s desired level of access to a data store.
typedef struct cssm_db_access_type {

CSSM_BOOL ReadAccess;
CSSM_BOOL WriteAccess;
CSSM_BOOL PrivilegedMode; /* versus user mode */
CSSM_BOOL Asynchronous; /* versus synchronous */

} CSSM_DB_ACCESS_TYPE, *CSSM_DB_ACCESS_TYPE_PTR;

Definitions:
ReadAccess A Boolean indicating that the user requests read access.
WriteAccess A Boolean indicating that the user requests write access.
PriviledgedMode

A Boolean indicating that the user requests privileged operations.
Asynchronous A Boolean indicating that the user requests asynchronous access.

Chapter 5. Data Storage Library Interface 97

CSSM_DB_ATTRIBUTE_DATA
This data structure holds an attribute value that can be stored in an attribute field of a persistent record.
The structure contains a value for the data item and a reference to the meta-information (typing
information and schema information) associated with the attribute.
typedef struct cssm_db_attribute_data {

CSSM_DB_ATTRIBUTE_INFO Info;
CSSM_DATA Value;

} CSSM_DB_ATTRIBUTE_DATA, *CSSM_DB_ATTRIBUTE_DATA_PTR;

Definitions:

Info A reference to the meta-information/schema describing this attribute in relationship to the
data store at large.

Value The data-present value assigned to the attribute.

CSSM_DB_ATTRIBUTE_INFO
This data structure describes an attribute of a persistent record. The description is part of the schema
information describing the structure of records in a data store. The description includes the format of the
attribute name and the attribute name itself. The attribute name implies the underlying data type of a value
that may be assigned to that attribute.
typedef struct cssm_db_attribute_info {

CSSM_DB_ATTRIBUTE_NAME_FORMAT AttributeNameFormat;
union {

char * AttributeName; /* eg. "record label" */
CSSM_OID AttributeID; /* eg. CSSMOID_RECORDLABEL */
uint32 AttributeNumber;

};
} CSSM_DB_ATTRIBUTE_INFO, *CSSM_DB_ATTRIBUTE_INFO_PTR;

Definitions:

AttributeNameFormat
Indicates which of the three formats was selected to represent the attribute name.

AttributeName A character string representation of the attribute name.

AttributeID A DER-encoded Object Identifier (OID) representation of the attribute name.

AttributeNumber
A numeric representation of the attribute name.

CSSM_DB_ATTRIBUTE_NAME_FORMAT
This enumerated list defines three formats used to represent an attribute name. The name can be
represented by a character string in the native string encoding of the platform, by a number, or the name
can be represented by an opaque OID structure that is interpreted by the DL module.
typedef enum cssm_db_attribute_name_format {

CSSM_DB_ATTRIBUTE_NAME_AS_STRING = 0,
CSSM_DB_ATTRIBUTE_NAME_AS_OID = 1,
CSSM_DB_ATTRIBUTE_NAME_AS_NUMBER = 2

} CSSM_DB_ATTRIBUTE_NAME_FORMAT, *CSSM_DB_ATTRIBUTE_NAME_FORMAT_PTR;

CSSM_DB_CERTRECORD_SEMANTICS
These bit-masks define a list of usage semantics for how certificates may be used. It is anticipated that
additional sets of bit-masks will be defined listing the usage semantics of how other record types can be
used, such as CRL record semantics, key record semantics, policy record semantics, etc.
#define CSSM_DB_CERT_USE_ROOT 0x00000001 /* a self-signed root cert */
#define CSSM_DB_CERT_USE_TRUSTED 0x00000002 /* re-issued locally */
#define CSSM_DB_CERT_USE_SYSTEM 0x00000004 /* contains CSSM system cert */

98 OCSF Service Provider Module Developer’s Guide and Reference

#define CSSM_DB_CERT_USE_OWNER 0x00000008 /* private key, owned by the system's user
/ #define CSSM_DB_CERT_USE_REVOKED 0x00000010 / revoked cert - used w\ CRL APIs */
#define CSSM_DB_CERT_SIGNING 0x00000011 /* use cert for signing only */
#define CSSM_DB_CERT_PRIVACY 0x00000012 /* use cert for encryption only */

CSSM_DB_CONJUNCTIVE
These are the conjunctive operations that can be used when specifying a selection criterion.
typedef enum cssm_db_conjunctive{

CSSM_DB_NONE = 0,
CSSM_DB_AND = 1,
CSSM_DB_OR = 2

} CSSM_DB_CONJUNCTIVE, *CSSM_DB_CONJUNCTIVE_PTR;

CSSM_DB_HANDLE
A unique identifier for an open data store.
typedef uint32 CSSM_DB_HANDLE /* data store Handle */

CSSM_DB_INDEX_INFO
This structure contains the meta-information or schema description of an index defined on an attribute.
The description includes the type of index (e.g., unique key or nonunique key), the logical location of the
indexed attribute in the OCSF record (e.g., an attribute, a field within the opaque object in the record, or
unknown), and the meta-information on the attribute itself.
typedef struct cssm_db_index_info {

CSSM_DB_INDEX_TYPE IndexType;
CSSM_DB_INDEXED_DATA_LOCATION IndexedDataLocation;
CSSM_DB_ATTRIBUTE_INFO Info;

} CSSM_DB_INDEX_INFO, *CSSM_DB_INDEX_INFO_PTR

Definitions:
IndexType A CSSM_DB_INDEX_TYPE.
IndexedDataLocation

A CSSM_DB_INDEXED_DATA_LOCATION.
Info The meta-information description of the attribute being indexed.

CSSM_DB_INDEX_TYPE
This enumerated list defines two types of indexes: indexes with unique values (i.e., primary database
keys) and indexes with non-unique values. These values are used when creating a new data store and
defining the schema for that data store.
typedef enum cssm_db_index_type {

CSSM_DB_INDEX_UNIQUE = 0,
CSSM_DB_INDEX_NONUNIQUE = 1

} CSSM_DB_INDEX_TYPE;

CSSM_DB_INDEXED_DATA_LOCATION
This enumerated list defines where within a record the indexed data values reside. Indexes can be
constructed on atributes or on fields wihin the opaque object in the record.
CSSM_DB_INDEX_ON_UNKNOWN indicates that the logical location of the index value between these
two categories is unknown.
typdef enum cssm_db_indexed_data_location {

CSSM_DB_INDEX_ON_UNKOWN = 0
CSSM_DB_INDEX_ON_ATTRIBUTE = 1
CSSM_DB_INDEX_ON_RECORD = 2

} CSSM_DB_INDEXED_DATA_LOCATION

Chapter 5. Data Storage Library Interface 99

CSSM_DBINFO
This structure contains the meta-information about an entire data store. The description includes the types
of records stored in the data store, the attribute schema for each record type, the index schema for all
indexes over records in the data store, the type of authentication mechanism used to gain access to the
data store, and other miscellaneous information used by the DL module to manage the data store in a
secure manner.
typedef struct cssm_dbInfo {

uint32 NumberOfRecordTypes;
CSSM_DB_PARSING_MODULE_INFO_PTR DefaultParsingModules;
CSSM_DB_RECORD_ATTRIBUTE_INFO_PTR RecordAttributeNames;
CSSM_DB_RECORD_INDEX_INFO_PTR RecordIndexes;

/* access restrictions for opening this data store */
CSSM_USER_AUTHENTICATION_MECHANISM AuthenticationMechanism;

/* transparent integrity checking options for this data store */
CSSM_BOOL RecordSigningImplemented;
CSSM_DATA SigningCertificate;
CSSM_GUID SigningCsp;

/* additional information */
CSSM_BOOL IsLocal;
char *AccessPath; /* URL, dir path, etc */
void *Reserved;

} CSSM_DBINFO, *CSSM_DBINFO_PTR;

Definitions:

NumberOfRecordTypes
The number of distinct record types stored in this data store.

DefaultParsingModules
A pointer to a list of pairs (record-type, GUID) which define the default-parsing module for
each record type.

RecordAttributeNames
The meta-information (schema) about the attributes associated with each record type that
can be stored in this data store.

RecordIndexes
The meta- information (schema) about the indexes that are defined over each of the
record types that can be stored in this data store.

AuthenticationMechanism
Defines the authentication mechanism required when accessing this data store.

RecordSigningImplemented
A flag indicating whether or not the DL module provides record integrity service based on
digital signaturing of the data store records.

SigningCertificate
The certificate used to sign data store records when the transparent record integrity option
is in effect.

SigningCsp The GUID for the Cryptographic Service Provider (CSP) to be used to sign data store
records when the transparent record integrity option is in effect.

IsLocal Indicates whether the physical data store is local.

AccessPath A character string describing the access path to the data store, such as a Universal
Resource Locator (URL), a file system path name, a remote directory service name, etc.

Reserved Reserved for future use

100 OCSF Service Provider Module Developer’s Guide and Reference

CSSM_DB_OPERATOR
These are the logical operators that can be used when specifying a selection predicate.
typedef enum cssm_db_operator {

CSSM_DB_EQUAL = 0,
CSSM_DB_NOT_EQUAL = 1,
CSSM_DB_APPROX_EQUAL = 2,
CSSM_DB_LESS_THAN = 3,
CSSM_DB_GREATER_THAN = 4,
CSSM_DB_EQUALS_INITIAL_SUBSTRING = 5,
CSSM_DB_EQUALS_ANY_SUBSTRING = 6,
CSSM_DB_EQUALS_FINAL_SUBSTRING = 7,
CSSM_DB_EXISTS = 8

} CSSM_DB_OPERATOR, *CSSM_DB_OPERATOR_PTR;

CSSM_DB_PARSING_MODULE_INFO
This structure aggregates the GUID of a default-parsing module with the record type that it parses. A
parsing module can parse multiple record types. The same GUID would be repeated with each record type
parsed by the module.
typedef struct cssm_db_parsing_module_info {

CSSM_DB_RECORDTYPE RecordType;
CSSM_GUID Module;

} CSSM_DB_PARSING_MODULE_INFO, *CSSM_DB_PARSING_MODULE_INFO_PTR;

Definitions:
RecordType The type of record parsed by the module specified by GUID.
Module A GUID identifying the default parsing module for the specified record type.

CSSM_DB_RECORD_ATTRIBUTE_DATA
This structure aggregates the actual data values for all of the attributes in a single record.
typedef struct cssm_db_record_attribute_data {

CSSM_DB_RECORDTYPE DataRecordType;
uint32 SemanticInformation;
uint32 NumberOfAttributes;
CSSM_DB_ATTRIBUTE_DATA_PTR AttributeData;

} CSSM_DB_RECORD_ATTRIBUTE_DATA, *CSSM_DB_RECORD_ATTRIBUTE_DATA_PTR;

Definitions:

DataRecordType
A CSSM_DB_RECORDTYPE.

SemanticInformation
A bit-mask of type CSSM_XXXRECORD_SEMANTICS defining how the record can be
used. Currently, these bit-masks are defined only for certificate records
(CSSM_CERTRECORD_SEMANTICS). For all other record types, a bit-mask of zero must
be used or a set of semantically meaningful masks must be defined.

NumberOfAttributes
The number of attributes in the record of the specified type.

AttributeData A list of attribute name/value pairs

CSSM_DB_RECORD_ATTRIBUTE_INFO
This structure contains the meta-information or schema information about all of the attributes in a particular
record type. The description specifies the record type, the number of attributes in the record type, and a
type information for each attribute.

Chapter 5. Data Storage Library Interface 101

typedef struct cssm_db_record_attribute_info {
CSSM_DB_RECORDTYPE DataRecordType;
uint32 NumberOfAttributes;
CSSM_DB_ATTRIBUTE_INFO_PTR AttributeInfo;

} CSSM_DB_RECORD_ATTRIBUTE_INFO, *CSSM_DB_RECORD_ATTRIBUTE_INFO_PTR;

Definitions:
DataRecordType

A CSSM_DB_RECORDTYPE.
NumberOfAttributes

The number of attributes in a record of the specified type.
AttributeInfo A list of pointers to the type information (schema) for each of the attributes.

CSSM_DB_RECORD_INDEX_INFO
This structure contains the meta-information or schema description of the set of indexes defined on a
single record type. The description includes the type of the record, the number of indexes and the
meta-information describing each index.
typedef struct cssm_db_record_index_info {

CSSM_DB_RECORDTYPE DataRecordType;
uint32 NumberOfIndexes;
CSSM_DB_INDEX_INFO_PTR IndexInfo;

} CSSM_DB_RECORD_INDEX_INFO, *CSSM_DB_RECORD_INDEX_INFO_PTR;

Definitions:
DataRecordType

A CSSM_DB_RECORDTYPE.
NumberOfIndexes

The number of indexes defined on the records of the given type.
IndexInfo An array of pointer to the meta-description of each index defined over the specified record

type.

CSSM_DB_RECORD_PARSING_FNTABLE
This structure defines the three prototypes for functions that can parse the opaque data object stored in a
record. It is used in the CSSM_DbSetRecordParsingFunctions function to override the default-parsing
module for a given record type. The DL module developer designates the default-parsing module for each
record type stored in the data store.
typedef struct cssm_db_record_parsing_fntable {

CSSM_DATA_PTR (CSSMAPI *RecordGetFirstFieldValue)
(CSSM_HANDLE Handle,
CSSM_DB_RECORDTYPE RecordType,
const CSSM_DATA_PTR Data,
const CSSM_OID_PTR DataField,
CSSM_HANDLE_PTR ResultsHandle,
uint32 *NumberOfMatchedFields);

CSSM_DATA_PTR (CSSMAPI *RecordGetNextFieldValue)
(CSSM_HANDLE Handle,
CSSM_HANDLE ResultsHandle);

CSSM_RETURN (CSSMAPI *RecordAbortQuery)
(CSSM_HANDLE Handle,
CSSM_HANDLE ResultsHandle);

} CSSM_DB_RECORD_PARSING_FNTABLE, *CSSM_DB_RECORD_PARSING_FNTABLE_PTR;

Definitions:

*RecordGetFirstFieldValue
A function to retrieve the value of a field in the opaque object. The field is specified by
attribute name. The results handle holds the state information required to retrieve
subsequent values having the same attribute name.

102 OCSF Service Provider Module Developer’s Guide and Reference

*RecordGetNextFieldValue
A function to retrieve subsequent values having the same attribute name from a record
parsed by the first function in this table.

*RecordAbortQuery
Stop subsequent retrieval of values having the same attribute name from within the
opaque object.

CSSM_DB_RECORDTYPE
This enumerated list defines the categories of persistent security-related objects that can be managed by a
DL module. These categories are in one-to-one correspondence with types of records that can be
managed by a DL module.
typedef enum cssm_db_recordtype {

CSSM_DL_DB_RECORD_GENERIC = 0,
CSSM_DL_DB_RECORD_CERT = 1,
CSSM_DL_DB_RECORD_CRL = 2,
CSSM_DL_DB_RECORD_PUBLIC_KEY = 3,
CSSM_DL_DB_RECORD_PRIVATE_KEY = 4,
CSSM_DL_DB_RECORD_SYMMETRIC_KEY = 5,
CSSM_DL_DB_RECORD_POLICY = 6

} CSSM_DB_RECORDTYPE;

CSSM_DB_UNIQUE_RECORD
This structure contains an index descriptor and a module-defined value. The index descriptor may be used
by the module to enhance the performance when locating the record. The module-defined value must
uniquely identify the record. For a DBMS, this may be the record data. For a Public-Key Cryptographic
Standard DL, this may be an object handle. Alternately, the DL may have a module-specific scheme for
identifying data that has been inserted or retrieved.
typedef struct cssm_db_unique_record {

CSSM_DB_INDEX_INFO RecordLocator;
CSSM_DATA RecordIdentifier;

} CSSM_DB_UNIQUE_RECORD, *CSSM_DB_UNIQUE_RECORD_PTR;

Definitions:
RecordLocator The information describing how to locate the record efficiently.
RecordIdentifier

A module-specific identifier which will allow the DL to locate this record.

CSSM_DL_DB_HANDLE
This data structure holds a pair of handles, one for a DL and another for a data store opened and being
managed by the DL.
typedef struct cssm_dl_db_handle {

CSSM_DL_HANDLE DLHandle;
CSSM_DB_HANDLE DBHandle;

} CSSM_DL_DB_HANDLE, *CSSM_DL_DB_HANDLE_PTR;

Definitions:
DLHandle Handle of an attached module that provides DL services.
DBHandle Handle of an open data store that is currently under the management of the DL module

specified by the DLHandle.

CSSM_DL_DB_LIST
This data structure defines a list of handle pairs (DL handle, data store handle).
typedef struct cssm_dl_db_list {

uint32 NumHandles;
CSSM_DL_DB_HANDLE_PTR DLDBHandle;

} CSSM_DL_DB_LIST, *CSSM_DL_DB_LIST_PTR;

Chapter 5. Data Storage Library Interface 103

Definitions:
NumHandles Number of (DL handle, data store handle) pairs in the list.
DLDBHandle List of (DL handle, data store handle) pairs.

CSSM_DL_CUSTOM_ATTRIBUTES
This structure can be used by DL module developers to define a set of attributes for a custom data store
format.
typedef void *CSSM_DL_CUSTOM_ATTRIBUTES;

CSSM_DL_FFS_ATTRIBUTES
This structure can be used by DL module developers to define a set of attributes for a flat file system data
store format.
typedef void *CSSM_DL_FFS_ATTRIBUTES;

CSSM_DL_HANDLE
A unique identifier for an attached module that provides DL services.
typedef uint32 CSSM_DL_HANDLE/* Data Storage Library Handle */

CSSM_DL_LDAP_ATTRIBUTES
This structure can be used by DL module developers to define a set of attributes for a Lightweight
Directory Access Protocol (LDAP) data store format.
typedef void *CSSM_DL_LDAP_ATTRIBUTES;

CSSM_DL_ODBC_ATTRIBUTES
This structure can be used by DL module developers to define a set of attributes for an Open Database
Connectivity (ODBC) data store format.
typedef void *CSSM_DL_ODBC_ATTRIBUTES;

CSSM_DL_PKCS11_ATTRIBUTES
Each type of DL module can define its own set of type-specific attributes. This structure contains the
attributes that are specific to a data storage device.
typedef struct cssm_dl_pkcs11_attributes {

uint32 DeviceAccessFlags;
} *CSSM_DL_PKCS11_ATTRIBUTES;

Definitions:

DeviceAccessFlags
Specifies the access modes applicable for accessing persistent objects in a data store.

CSSM_DLSUBSERVICE
Three structures are used to contain all of the static information that describes a DL module:
cssm_moduleinfo, cssm_serviceinfo, and cssm_dlsubservice. This descriptive information is securely
stored in the OCSF registry when the DL module is installed with OCSF. A DL module may implement
multiple types of services and organize them as subservices. For example, a DL module supporting two
types of remote directory services may organize its implementation into two subservices: one for an X.509
certificate directory and a second for custom enterprise policy data store. Most DL modules will implement
exactly one subservice.

Not all DL modules can maintain a summary of managed data stores. In this case, the DL module reports
its number of data stores as CSSM_DB_DATASTORES_UNKNOWN. Data stores can (and probably do)
exist, but the DL module cannot provide a list of them.

104 OCSF Service Provider Module Developer’s Guide and Reference

#define CSSM_DB_DATASTORES_UNKNOWN -1

The descriptive information stored in these structures can be queried using the function
CSSM_GetModuleInfo and specifying the DL module GUID.
typedef struct cssm_dlsubservice {

uint32 SubServiceId;
CSSM_STRING Description;
CSSM_DLTYPE Type;
union {

CSSM_DL_CUSTOM_ATTRIBUTES CustomAttributes;
CSSM_DL_LDAP_ATTRIBUTES LdapAttributes;
CSSM_DL_ODBC_ATTRIBUTES OdbcAttributes;
CSSM_DL_PKCS11_ATTRIBUTES Pkcs11Attributes;
CSSM_DL_FFS_ATTRIBUTES FfsAttributes;

} Attributes;

CSSM_DL_WRAPPEDPRODUCT_INFO WrappedProduct;
CSSM_USER_AUTHENTICATION_MECHANISM AuthenticationMechanism;
/* meta-information about the query support provided by the module */
uint32 NumberOfRelOperatorTypes;
CSSM_DB_OPERATOR_PTR RelOperatorTypes;
uint32 NumberOfConjOperatorTypes;
CSSM_DB_CONJUNCTIVE_PTR ConjOperatorTypes;
CSSM_BOOL QueryLimitsSupported;

/* meta-information about the encapsulated data stores (if known) */
uint32 NumberOfDataStores;
CSSM_NAME_LIST_PTR DataStoreNames;
CSSM_DBINFO_PTR DataStoreInfo;

/* additional information */
void *Reserved;

} CSSM_DLSUBSERVICE, *CSSM_DLSUBSERVICE_PTR;

Definitions:

SubServiceID A unique, identifying number for the subservice described in this structure.

Description A string containing a descriptive name or title for this subservice.

Type An identifier for the type of underlying data store the DL module uses to provide persistent
storage.

Attributes A structure containing attributes that define additional parameter values specific to the DL
module type.

WrappedProduct
Pointer to a CSSM_DL_WRAPPEDPRODUCT_INFO structure describing a product that is
wrapped by the DL module.

AuthenticationMechanism
Defines the authentication mechanism required when using this DL module. This
authentication mechanism is distinct from the authentication mechanism (specified in a
cssm_dbInfo structure) required to access a specific data store.

NumberOfRelOperatorsTypes
The number of distinct relational operators the DL module accepts in selection queries for
retrieving records from its managed data stores.

RelOperatorTypes
The list of specific relational operators that can be used to formulate selection predicates
for queries on a data store. The list contains NumberOfRelOperatorTypes operators.

Chapter 5. Data Storage Library Interface 105

NumberOfConjOperatorTypes
The number of distinct conjunctive operators the DL module accepts in selection queries
for retrieving records from its managed data stores.

ConjOperatorTypes
A list of specific conjunctive operators that can be used to formulate selection predicates
for queries on a data store. The list contains NumberOfConjOperatorTypes operators.

QueryLimitsSupported
A Boolean indicating whether query limits are effective when the DL module executes a
query.

NumberOfDataStores
The number of data stores managed by the DL module. This information may not be
known by the DL module, in which case this value will equal
CSSM_DB_DATASTORES_UNKNOWN.

DataStoreNames
A list of names of the data stores managed by the DL module. This information may not
be known by the DL module and hence may not be available. The list contains
NumberOfDataStores entries.

DataStoreInfo A list of pointers to the meta-information (schema) for each data store managed by the DL
module. This information may not be known in advance by the DL module and hence may
not be available through this structure. The list contains NumberOfDataStores entries.

Reserved Reserved for future use.

CSSM_DLTYPE
This enumerated list defines the types of underlying DBMSs that can be used by the DL module to provide
services. It is the option of the DL module to disclose this information.
typedef enum cssm_dltype {

CSSM_DL_UNKNOWN = 0,
CSSM_DL_CUSTOM = 1,
CSSM_DL_LDAP = 2,
CSSM_DL_ODBC = 3,
CSSM_DL_PKCS11 = 4,
CSSM_DL_FFS = 5,/* flat file systemor fast file system */
CSSM_DL_MEMORY = 6,
CSSM_DL_REMOTEDIR = 7

} CSSM_DLTYPE, *CSSM_DLTYPE_PTR;

CSSM_DL_WRAPPEDPRODUCTINFO
This structure lists the set of data store services used by the DL module to implement its services. The DL
module vendor is not required to provide this information, but may choose to do so. For example, a DL
module that uses a commercial DBMS can record information about that product in this structure. Another
example is a DL module that supports certificate storage through an X.500 certificate directory server. The
DL module can describe the X.500 directory service in this structure.
typedef struct cssm_dl_wrappedproductinfo {

CSSM_VERSION StandardVersion;
CSSM_STRING StandardDescription;
CSSM_VERSION ProductVersion;
CSSM_STRING ProductDescription;
CSSM_STRING ProductVendor;
uint32 ProductFlags;

} CSSM_DL_WRAPPEDPRODUCT_INFO, *CSSM_DL_WRAPPEDPRODUCT_INFO_PTR;

Definitions:

106 OCSF Service Provider Module Developer’s Guide and Reference

StandardVersion
If this product conforms to an industry standard, this is the version number of that
standard.

StandardDescription
If this product conforms to an industry standard, this is a description of that standard.

ProductVersion
Version number information for the actual product version used in this version of the DL
module.

ProductDescription
A string describing the product.

ProductVendor
The name of the product vendor.

ProductFlags A bit-mask enumerating selectable features of the database service that the DL module
uses in its implementation.

CSSM_NAME_LIST
typedef struct cssm_name_list {

uint32 NumStrings;
char** String;

} CSSM_NAME_LIST, *CSSM_NAME_LIST_PTR;

CSSM_QUERY
This structure holds a complete specification of a query to select records from a data store.
typedef struct cssm_query {

CSSM_DB_RECORDTYPE RecordType;
CSSM_DB_CONJUNCTIVE Conjunctive;
uint32 NumSelectionPredicates;
CSSM_SELECTION_PREDICATE_PTR SelectionPredicate;
CSSM_QUERY_LIMITS QueryLimits;
CSSM_QUERY_FLAGS QueryFlags;

} CSSM_QUERY, *CSSM_QUERY_PTR;

Definitions:

RecordType Specifies the type of record to be retrieved from the data store.

Conjunctive The conjunctive operator to be used in constructing the selection predicate for the query.

NumSelectionPredicates
The number of selection predicates to be connected by the specified conjunctive operator
to form the query.

SelectionPredicate
The list of selection predicates to be combined by the conjunctive operator to form the
data store query.

QueryLimits Defines the time and space limits for processing the selection query. The constant values
CSSM_QUERY_TIMELIMIT_NONE and CSM_QUERY_SIZELIMIT_NONE should be used
to specify no limit on the resources used in processing the query.

QueryFlags An integer that indicates the return format of the key data. This integer is represented by
CSSM_QUERY_RETURN_DATA. When CSSM_QUERY_RETURN_DATA is 1, the key
record is returned in OCSF format. When CSSM_QUERY_RETURN_DATA is 0, the
information is returned in raw format (a format native to the individual module, BSAFE, or
PKCS11).

Chapter 5. Data Storage Library Interface 107

CSSM_QUERY_LIMITS
This structure defines the time and space limits a caller can set to control early termination of the
execution of a data store query. The constant values CSSM_QUERY_TIMELIMIT_NONE and
CSM_QUERY_SIZELIMIT_NONE should be used to specify no limit on the resources used in processing
the query. These limits are advisory. Not all DL modules recognize and act upon the query limits set by a
caller.
#define CSSM_QUERY_TIMELIMIT_NONE 0
#define CSSM_QUERY_SIZELIMIT_NONE 0

typedef struct cssm_query_limits {
uint32 TimeLimit;
uint32 SizeLimit;

} CSSM_QUERY_LIMITS, *CSSM_QUERY_LIMITS_PTR;

Definitions:

TimeLimit Defines the maximum number of seconds of resource time that should be expended
performing a query operation. The constant value CSSM_QUERY_TIMELIMIT_NONE
means no time limit is specified.

SizeLimit Defines the maximum number of records that should be retrieved in response to a single
query. The constant value CSSM_QUERY_SIZELIMIT_NONE means no space limit is
specified.

CSSM_SELECTION_PREDICATE
This structure defines the selection predicate to be used for database queries.
typedef struct cssm_selection_predicate {

CSSM_DB_OPERATOR DbOperator;
CSSM_DB_ATTRIBUTE_DATA Attribute;

} CSSM_SELECTION_PREDICATE, *CSSM_SELECTION_PREDICATE_PTR;

Definitions:

DbOperator The relational operator to be used when comparing a value to the values stored in the
specified attribute in the data store.

Attribute The meta-information about the attribute to be searched and the attribute value to be used
for comparison with values in the data store.

108 OCSF Service Provider Module Developer’s Guide and Reference

Data Storage Operations
This section describes the function prototypes and error codes defined for the data source operations in
the DLI. The functions are exposed to OCSF through a function table, so the function names may vary at
the discretion of the DL developer. However, the function parameter list and return type must match the
prototypes given in this section in order to be used by applications.

DL_Authenticate

Purpose
This function allows the caller to provide authentication credentials to the DL module at a time other than
data store creation, deletion, open, import, and export. AccessRequest defines the type of access to be
associated with the caller. If the authentication credential applies to access and use of a DL module in
general, then the data store handle specified in the DLDBHandle must be NULL. When the authorization
credential is to applied to a specific data store, the handle for that data store must be specified in the
DLDBHandle pair.

Format
CSSM_RETURN DL_Authenticate (const CSSM_DL_DB_HANDLE DLDBHandle,

const CSSM_DB_ACCESS_TYPE_PTR AccessRequest,
const CSSM_USER_AUTHENTICATION_PTR UserAuthentication)

Parameters
Input

DLDBHandle The handle pair that describes the DL module used to perform this function and the data
store to which access is being requested. If the form of authentication being requested is
authentication to the DL module in general, then the data store handle must be NULL.

AccessRequest
An indicator of the requested access mode for the data store or DL module in general.

UserAuthentication
The caller’s credential as required for obtaining authorized access to the data store or to
the DL module in general.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL is returned,
an error has occurred. Use CSSM_GetError to obtain the error code.

Chapter 5. Data Storage Library Interface 109

DL_DbClose

Purpose
This function closes an open data store.

Format
CSSM_RETURN DL_DbClose (CSSM_DL_DB_HANDLE DLBHandle)

Parameters
DLDBHandle A handle structure containing the DL handle for the attached DL module and the database

(DB) handle for an open data store managed by the DL. This specifies the open data store
to be closed.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL is returned,
an error has occurred. Use CSSM_GetError to obtain the error code.

Related Information
DL_DbOpen

110 OCSF Service Provider Module Developer’s Guide and Reference

DL_DbCreate

Purpose
This function creates a new, empty data store with the specified logical name.

Format
CSSM_DB_HANDLE DL_DbCreate (CSSM_DL_HANDLE DLHandle,

const char *DbName,
const CSSM_DBINFO_PTR DBInfo,
const CSSM_DB_ACCESS_TYPE_PTR AccessRequest,
const CSSM_USER_AUTHENTICATION_PTR UserAuthentication,
const void *OpenParameters)

Parameters
Input

DLHandle The handle that describes the DL module to be used to perform this function.

DbName The general, external name for the new data store.

DBInfo A pointer to a structure describing the format/schema of each record type that will be
stored in the new data store.

AccessRequest
An indicator of the requested access mode for the data store, such as read-only or
read/write.

Input/optional

UserAuthentication
The caller’s credential as required for obtaining access to the data store. If no credentials
are required for the specified data store, then user authentication must be NULL.

OpenParameters
A pointer to a module-specific set of parameters required to open the data store.

Return Value
Returns the CSSM_DB_HANDLE of the newly created data store. If the handle is NULL, an error has
occurred. Use CSSM_GetError to obtain the error code.

Related Information

DL_DbOpen
DL_DbClose
DL_DbDelete

Chapter 5. Data Storage Library Interface 111

DL_DbDelete

Purpose
This function deletes all records from the specified data store and removes all state information associated
with that data store.

Format
CSSM_RETURN DL_DbDelete (CSSM_DL_HANDLE DLHandle,

const char *DbName,
const CSSM_USER_AUTHENTICATION_PTR UserAuthentication)

Parameters
Input

DLHandle The handle that describes the DL module to be used to perform this function.

DbName A pointer to the string containing the logical name of the data store.

Input/optional

UserAuthentication
The caller’s credential as required for obtaining access (and consequently deletion
capability) to the data store. If no credentials are required for the specified data store, then
user authentication must be NULL.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL is returned,
an error has occurred. Use CSSM_GetError to obtain the error code.

Related Information

DL_DbCreate
DL_DbClose
DL_DbOpen

112 OCSF Service Provider Module Developer’s Guide and Reference

DL_DbExport

Purpose
This function exports a copy of the data store records from the source data store to a data container that
can be used as the input data source for the DL_DbImport function. The DL module may require additional
user authentication to determine authorization to snapshot a copy of an existing data store.

Format
CSSM_RETURN DL_DbExport (CSSM_DL_HANDLE DLHandle,

const char *DbDestinationName,
const char *DbSourceName,
const CSSM_BOOL InfoOnly,
const CSSM_USER_AUTHENTICATION_PTR UserAuthentication)

Parameters
Input

DLHandle The handle that describes the DL module to be used to perform this function.

DbSourceName
The name of the data store from which the records are to be exported.

DbDestinationName
The name of the destination data container which will contain a copy of the source data
store’s records.

InfoOnly A Boolean value indicating what to export. If CSSM_TRUE, export only the DBInfo that
describes the data store. If CSSM_FALSE, export both the DBInfo and all of the records in
the specified data store.

Input/optional

UserAuthentication
The caller’s credential as required for authorization to snapshot/copy a data store. If the
DL module requires no additional credentials to perform this operation, then user
authentication can be NULL

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL is returned,
an error has occurred. Use CSSM_GetError to obtain the error code.

Related Information
DL_DbImport

Chapter 5. Data Storage Library Interface 113

DL_GetDbNameFromHandle

Purpose
This function retrieves the data source name corresponding to an opened database handle. A DL module
is responsible for allocating the memory required for the list.

Format
char * DL_GetDbNameFromHandle (CSSM_DL_DB_HANDLE DLDBHandle)

Parameters
Input

DLDBHandle The handle pair that describes the DL module used to perform this function and the data
store to which access is being requested.

Return Value
Returns a string that contains a data store name. If the pointer is NULL, an error has occurred. Use
CSSM_GetError to obtain the error code.

114 OCSF Service Provider Module Developer’s Guide and Reference

DL_DbGetRecordParsingFunctions

Purpose
This function gets the records parsing function table, that operates on records of the specified type, in the
specified data store. Three record-parsing functions can be returned in the table. The functions can be
implemented to parse multiple record types. In this case, multiple calls to
DL_DbGetRecordParsingFunctions must be made, once for each record type whose parsing functions are
required by the caller. The DL module uses these functions to parse the opaque data object stored in a
data store record. If no parsing function table has been set for a given record type, then a NULL value is
returned.

Format
CSSM_DB_RECORD_PARSING_FNTABLE_PTR DL_DbGetRecordParsingFunctions (CSSM_DL_HANDLE DLHandle,

const char* DbName,
CSSM_DB_RECORDTYPE RecordType)

Parameters
DLHandle The handle that describes the DL module to be used to perform this function.

DbName The name of the data store with which the parsing functions are associated.

RecordType The record type whose parsing functions are requested by the caller.

Return Value
A pointer to a function table for the parsing function appropriate to the specified record type. When
CSSM_NULL is returned, either no function table has been set for the specified record type or an error
has occurred. Use CSSM_GetError to obtain the error code and determine the reason for the NULL result.

Related Information
DL_SetRecordParsingFunctions

Chapter 5. Data Storage Library Interface 115

DL_DbImport

Purpose
This function creates a new data store, or adds to an existing data store, by importing records from the
specified data source. It is assumed that the data source contains records exported from a data store
using the function DL_DbExport.

The DbDestinationName specifies the name of a new or existing data store. If a new data store is being
created, the DBInfo structure provides the meta-information (schema) for the new data store. This
structure describes the record attributes and the index schema for the new data store. If the data store
already exists, then the existing meta-information (schema) is used. (Dynamic schema evolution is not
supported.)

Typically, user authentication is required to create a new data store or to write to an existing data store. An
authentication credential is presented to the DL module in the form required by the module. The required
form is documented in the capabilities and feature descriptions for this module. The resulting data store is
not opened as a result of this operation.

Format
CSSM_RETURN DL_DbImport (CSSM_DL_HANDLE DLHandle,

const char *DbDestinationName,
const char *DbSourceName,
const CSSM_DBINFO_PTR DBInfo,
const CSSM_BOOL InfoOnly,
const CSSM_USER_AUTHENTICATION_PTR UserAuthentication)

Parameters
Input

DLHandle The handle that describes the DL module to be used to perform this function.

DbDestinationName
The name of the destination data store in which to insert the records.

DbSourceName
The name of the data source from which to obtain the records that are added to the data
store.

InfoOnly A Boolean value indicating what to import. If CSSM_TRUE, import only the DBInfo that
describes the a data store. If CSSM_FALSE, import both the DBInfo and all of the records
exported from a data store.

Input/optional

DBInfo A data structure containing a detailed description of the meta-information (schema) for the
new data store. If a new data store is being created, then the caller must specify the
meta-information (schema), or the data source must include the meta-information required
for proper import of the records. If meta-information is supplied by the caller and specified
in the data source, then the meta-information provided by the caller overrides the
meta-information recorded in the data source. If the data store exists and records are
being added, then this pointer must be NULL. The existing meta-information will be used
and the schema cannot be evolved.

UserAuthentication
The caller’s credential as required for authorization to create a data store. If the DL
module requires no additional credentials to create a new data store, then user
authentication can be NULL.

116 OCSF Service Provider Module Developer’s Guide and Reference

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL is returned,
an error has occurred. Use CSSM_GetError to obtain the error code.

Related Information
DL_DbExport

Chapter 5. Data Storage Library Interface 117

DL_DbOpen

Purpose
This function opens the data store with the specified logical name under the specified access mode. If
user authentication credentials are required, they must be provided. In addition, additional open
parameters may be required to open a given data store and are supplied in the OpenParameters.

Format
CSSM_DB_HANDLE DL_DbOpen (CSSM_DL_HANDLE DLHandle,

const char *DbName,
const CSSM_DB_ACCESS_TYPE_PTR AccessRequest,
const CSSM_USER_AUTHENTICATION_PTR UserAuthentication,
const void *OpenParameters)

Parameters
Input

DLHandle The handle that describes the DL module to be used to perform this function

DbName A pointer to the string containing the logical name of the data store.

AccessRequest
An indicator of the requested access mode for the data store, such as read-only or
read/write.

Input/ptional

UserAuthentication
The caller’s credential as required for obtaining access to the data store. If no credentials
are required for the specified data store, then user authentication must be NULL.

OpenParameters
A pointer to a module-specific set of parameters required to open the data store.

Return Value
Returns the CSSM_DB_HANDLE of the opened data store. If the handle is NULL, an error has occurred.
Use CSSM_GetError to obtain the error code.

Related Information
DL_DbClose

118 OCSF Service Provider Module Developer’s Guide and Reference

DL_DbSetRecordParsingFunctions

Purpose
This function sets the records parsing function table, overriding the default-parsing module for records of
the specified type in the specified data store. Three record-parsing functions can be specified in the table.
The functions can be implemented to parse multiple record types. In this case, multiple calls to
DL_DbSetRecordParsingFunctions must be made, once for each record type that should be parsed using
these functions. The DL module uses these functions to parse the opaque data object stored in a data
store record. If no parsing function table has been set for a given record type, then the default-parsing
module is invoked for that record type.

Format
CSSM_RETURN DL_DbSetRecordParsingFunctions (CSSM_DL_HANDLE DLHandle,

const char* DbName,
CSSM_DB_RECORDTYPE RecordType,
const CSSM_DB_RECORD_PARSING_FNTABLE_PTR FunctionTable)

Parameters
Input

DLHandle The handle that describes the DL module to be used to perform this function.

DbName The name of the data store with which to associate the parsing functions.

RecordType One of the record types parsed by the functions specified in the function table.

FunctionTable The function table referencing the three parsing functions to be used with the data store
specified by DbName.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL is returned,
an error has occurred. Use CSSM_GetError to obtain the error code.

Related Information
DL_GetRecordParsingFunctions

Chapter 5. Data Storage Library Interface 119

Data Record Operations
This section describes the function prototypes and error codes defined for the data record operations in
the DLI. The functions are exposed to OCSF through a function table, so the function names may vary at
the discretion of the DL developer. However, the function parameter list and return type must match the
prototypes given in this section in order to be used by applications.

DL_DataAbortQuery

Purpose
This functions terminates the query initiated by CSSM_DL_DataGetFirst or CSSM_DL_DataGetNext, and
allows a DL to release all intermediate state information associated with the query.

Format
CSSM_RETURN DL_DataAbortQuery (CSSM_DL_DB_HANDLE DLDBHandle, CSSM_HANDLE ResultsHandle)

Parameters
Input

DLDBHandle The handle pair that describes the DL module to be used to perform this function and the
open data store from which records were selected by the initiating query

ResultsHandle The selection handle returned from the initial query function.

Return Value
CSSM_OK if the function was successful. CSSM_FAIL if an error condition occurred. Use CSSM_GetError
to obtain the error code.

Related Information

DL_DataGetFirst
DL_DataGetNext

120 OCSF Service Provider Module Developer’s Guide and Reference

DL_DataDelete

Purpose
This function removes from the specified data store the data record specified by the unique record
identifier.

Format
CSSM_RETURN DL_DataDelete (CSSM_DL__DB_HANDLE DLDBHandle,

CSSM_DB_RECORDTYPE RecordType,
const CSSM_DB_UNIQUE_RECORD_PTR UniqueRecordIdentifier)

Parameters
Input

DLDBHandle The handle pair that describes the DL module to be used to perform this function and the
open data store from which to delete the specified data record.

UniqueRecordIdentifier
A pointer to a CSSM_DB_UNIQUE_RECORD identifier containing unique identification of
the data record to be deleted from the data store. The identifier may be unique only
among records of a given type. Once the associated record has been deleted, this unique
record identifier cannot be used in future references.

Input/optional

RecordType An indicator of the type of record to be deleted from the data store. The
UniqueRecordIdentifier may be unique only among records of the same type. If the data
store contains only one record type or the unique identifiers managed are globally unique,
then the record type need not be specified

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL is returned,
an error has occurred. Use CSSM_GetError to obtain the error code.

Related Information
DL_DataInsert

Chapter 5. Data Storage Library Interface 121

DL_DataGetFirst

Purpose
This function retrieves the first data record in the data store that matches the selection criteria. The
selection criteria (including selection predicate and comparison values) is specified in the Query structure.
The DL module can use internally managed indexing structures to enhance the performance of the
retrieval operation. This function returns the first record, satisfying the query in the list of Attributes and the
opaque Data object. This function also returns a flag indicating whether additional records also satisfied
the query, and a results handle to be used when retrieving subsequent records satisfying the query.
Finally, this function returns a unique record identifier associated with the retrieved record. This structure
can be used in future references to the retrieved data record.

Format
CSSM_DB_UNIQUE_RECORD_PTR DL_DataGetFirst (CSSM_DL_DB_HANDLE DLDBHandle,

const CSSM_QUERY_PTR Query,
CSSM_HANDLE_PTR ResultsHandle,
CSSM_BOOL *EndOfDataStore,
CSSM_DB_RECORD_ATTRIBUTE_DATA_PTR Attributes,
CSSM_DATA_PTR Data)

Parameters
Input

DLDBHandle The handle pair that describes the DL module to be used to perform this function and the
open data store to search for records satisfying the query.

Input/optional

Query The query structure specifying the selection predicates used to query the data store. The
structure contains meta-information about the search fields and the relational and
conjunctive operators forming the selection predicate. The comparison values to be used
in the search are specified in the Attributes and Data parameter. If no query is specified,
the DL module can return the first record in the data store (i.e., perform sequential
retrieval) or return an error.

Output

ResultsHandle This handle should be used to retrieve subsequent records that satisfied this query.

EndOfDataStore
A flag indicating whether a record satisfying this query was available to be retrieved in the
current operation. If CSSM_FALSE, then a record was available and was retrieved unless
an error condition occurred. If CSSM_TRUE, then all records satisfying the query have
been previously retrieved and no record has been returned by this operation.

Attributes A list of attributes values (and corresponding meta-information) from the retrieved record.

Data The opaque object stored in the retrieved record.

Return Value
If successful and EndOfDataStore is CSSM_FALSE, this function returns a pointer to a
CSSM_UNIQUE_RECORD structure containing a unique record locator and the record. If the pointer is
NULL and EndOfDataStore is CSSM_TRUE, then a normal termination condition has occurred. If the
pointer is NULL and EndOfDataStore is CSSM_FALSE, then an error has occurred. Use CSSM_GetError
to obtain the error code.

Related Information

DL_DataGetNext
DL_DataAbortQuery

122 OCSF Service Provider Module Developer’s Guide and Reference

DL_DataGetNext

Purpose
This function returns the next data record referenced by the ResultsHandle. The ResultsHandle parameter
references a set of records selected by an invocation of the DL_DataGetFirst function. The record values
are returned in the Attributes and Data parameters. A flag indicates whether additional records satisfying
the original query remain to be retrieved. The function also returns a unique record identifier for the return
record.

Format
CSSM_DB_UNIQUE_RECORD_PTR DL_DataGetNext (CSSM_DL_DB_HANDLE DLDBHandle,

CSSM_HANDLE ResultsHandle,
CSSM_BOOL *EndOfDataStore,
CSSM_DB_RECORD_ATTRIBUTE_DATA_PTR Attributes,
CSSM_DATA_PTR Data)

Parameters
Input

DLDBHandle The handle pair that describes the DL module to be used to perform this function and the
open data store from which records were selected by the initiating query.

Output

ResultsHandle The handle identifying a set of records retrieved by a query executed by the
DL_DataGetFirst function.

EndOfDataStore
A flag indicating whether a record satisfying this query was available to be retrieved in the
current operation. If CSSM_FALSE, then a record was available and was retrieved unless
an error condition occurred. If CSSM_TRUE, then all records satisfying the query have
been previously retrieved and no record has been returned by this operation.

Attributes A list of attributes values (and corresponding meta-information) from the retrieved record

Data The opaque object stored in the retrieved record.

Return Value
If successful and EndOfDataStore is CSSM_FALSE, this function returns a pointer to a
CSSM_UNIQUE_RECORD structure containing a unique record locator and the record. If the pointer is
NULL and EndOfDataStore is CSSM_TRUE, then a normal termination condition has occurred. If the
pointer is NULL and EndOfDataStore is CSSM_FALSE, then an error has occurred. Use CSSM_GetError
to obtain the error code.

Related Information

DL_DataGetFirst
DL_DataAbortQuery

Chapter 5. Data Storage Library Interface 123

DL_DataInsert

Purpose
This function creates a new persistent data record of the specified type by inserting it into the specified
data store. The values contained in the new data record are specified by the Attributes and the Data
parameters. The attribute value list contains zero or more attribute values. The DL modules can assume
default values for unspecified attribute values or can return an error condition when required attributes
values are not specified by the caller. The Data parameter is an opaque object to be stored in the new
data record.

Format
CSSM_DB_UNIQUE_RECORD_PTR DL_DataInsert (CSSM_DL_DB_HANDLE DLDBHandle,

const CSSM_DB_RECORDTYPE RecordType,
const CSSM_DB_RECORD_ATTRIBUTE_DATA_PTR Attributes,
const CSSM_DATA_PTR Data)

Parameters
Input

DLDBHandle The handle pair that describes the DL module to be used to perform this function and the
open data store in which to insert the new data record.

RecordType Indicates the type of data record being added to the data store.

Input/optional

Attributes A list of structures containing the attribute values to be stored in that attribute and the
meta-information (schema) describing those attributes. The list contains, at most, one
entry per attribute in the specified record type. The DL module can assume default values
for those attributes that are not assigned values by the caller or may return an error. If the
specified record type does not contain any attributes, this parameter must be NULL.

Data A pointer to the CSSM_DATA structure that contains the opaque data object to be stored
in the new data record. If the specified record type does not contain an opaque data
object, this parameter must be NULL.

Return Value
A pointer to a CSSM_DB_UNIQUE_RECORD_POINTER containing a unique identifier associated with the
new record. This unique identifier structure can be used in future references to this record. When NULL is
returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Related Information
DL_DataDelete

124 OCSF Service Provider Module Developer’s Guide and Reference

DL_FreeUniqueRecord

Purpose
This function frees the memory associated with the data store unique record structure.

Format
CSSM_RETURN DL_FreeUniqueRecord (CSSM_DL_DB_HANDLE DLDBHandle, CSSM_DB_UNIQUE_RECORD_PTR UniqueRecord)

Parameters
Input

DLDBHandle The handle pair that describes the DL module to be used to perform this function.

UniqueRecord The pointer to the memory that describes the data store unique record structure.

Return Value
A CSSM_OK return value signifies that the function completed successfully. When CSSM_FAIL is returned,
an error has occurred. Use CSSM_GetError to obtain the error code.

Related Information

DL_DataInsert
DL_DataGetFirst
DL_DataGetNext

Chapter 5. Data Storage Library Interface 125

Data Storage Library Extensibility Functions
The DL_PassThrough function is provided to allow DL developers to extend the certificate and CRL
format-specific storage functionality of the OCSF API. Because it is exposed to OCSF as only a function
pointer, its name internal to the DL can be assigned at the discretion of the DL module developer.
However, its parameter list and return value must match. The error codes listed in this section are the
generic codes all data storage libraries may use to describe common error conditions.

DL_PassThrough

Purpose
This function allows applications to call additional module-specific operations that have been exported by
the DL. Such operations may include queries or services specific to the domain represented by the DL
module.

Format
void * DL_PassThrough (CSSM_DL_DB_HANDLE DLDBHandle, uint32 PassThroughId, const void *InputParams)

Parameters
Input

DLDBHandle The handle pair that describes the DL module to be used to perform this function and the
open data store upon which the function is to be performed.

PassThroughId
An identifier assigned by a DL module to indicate the exported function to be performed.

InputParams A pointer to a module, implementation-specific structure containing parameters to be
interpreted in a function-specific manner by the requested DL module. This parameter can
be used as a pointer to an array of void pointers.

Return Value
A pointer to a module, implementation-specific structure containing the output from the passthrough
function. The output data must be interpreted by the calling application based on externally available
information. If the pointer is NULL, an error has occurred. Use CSSM_GetError to obtain the error code.

126 OCSF Service Provider Module Developer’s Guide and Reference

Data Storage Library Attach/Detach Example
The DL module is responsible for performing certain operations when OCSF attaches to and detaches
from it. DL modules use _init in conjunction with the DLLMain routine to perform those operations, as
shown in the following example:
_init

BOOL_init()
{
BOOL rc;
rc = DllMain(NULL, DLL_PROCESS_ATTACH, NULL);
return (rc);

}

DLLMain
#include<cssm.h>
CSSM_GUID dl_guid =
{ 0x5fc43dc1, 0x732, 0x11d0, { 0xbb, 0x14, 0x0, 0xaa, 0x0, 0x36, 0x67, 0x2d } };
CSSM_FUNCTIONTABLE FunctionTable;
CSSM_SPI_FUNC_TBL_PTR UpcallTable;

BOOL DllMain (HANDLE hInstance, DWORD dwReason, LPVOID lpReserved)
{

switch (dwReason)
{
case DLL_PROCESS_ATTACH:

{

/* Fill in FunctionTable with function pointers */
FunctionTable.Authenticate = DL_Authenticate;
FunctionTable.DbOpen = DL_DbOpen;
FunctionTable.DbClose = DL_DbClose;
FunctionTable.DbCreate = DL_DbCreate;
FunctionTable.DbDelete = DL_DbDelete;
FunctionTable.DbImport = DL_DbImport;
FunctionTable.DbExport = DL_DbExport;
FunctionTable.DbSetRecordParsingFunctions =

DL_DbSetRecordParsingFunctions;
FunctionTable.DbGetRecordParsingFunctions =

DL_DbGetRecordParsingFunctions;
FunctionTable.GetDbNameFromHandle = DL_GetDbNameFromHandle;

FunctionTable.DataInsert = DL_DataInsert;
FunctionTable.DataDelete = DL_DataDelete;
FunctionTable.DataGetFirst = DL_DataGetFirst;
FunctionTable.DataGetNext = DL_DataGetNext;
FunctionTable.DataAbortQuery = DL_DataAbortQuery;
FunctionTable.FreeUniqueRecord = DL_FreeUniqueRecord;
FunctionTable.PassThrough = DL_PassThrough;

* Call CSSM_RegisterServices to register the FunctionTable */
/* with CSSM and to receive the application's memory upcall table */
if (CSSM_RegisterServices (&dl_guid, FunctionTable, &UpcallTable) != CSSM_OK)

return FALSE;

/* Make the upcall table available to all functions in this library */

break;
}

case DLL_THREAD_ATTACH:
break;

case DLL_THREAD_DETACH:
break;

case DLL_PROCESS_DETACH:
if (CSSM_DeregisterServices (&dl_guid) != CSSM_OK)

return FALSE;

Chapter 5. Data Storage Library Interface 127

break;
}

return TRUE;
}

128 OCSF Service Provider Module Developer’s Guide and Reference

Data Store Operations Example
This section contains a template for the DL_DbOpen function.
/*---
* Name: DL_DbOpen
*
* Description:
* This function opens a Data store and returns a handle back to the
* caller which should be used for further access to the data store.
*
* Parameters:
* DLHandle(input) : Handle identifying the DL module.
* DbName : String containing the logical Data store name.
* AccessRequest : Requested access mode for the data store
* UserAuthentication : Caller's credentials
* OpenParameters : Module-specific parameters
*
* Return value:
* Handle to the Opened Data store.
* If NULL, use CSSM_GetError to get the following return codes
*
* Error Codes:
* CSSM_DL_INVALID_DL_HANDLE
* CSSM_DL_DATASTORE_NOT_EXISTS
* CSSM_DL_INVALID_AUTHENTICATION
* CSSM_DL_MEMORY_ERROR
* CSSM_DL_DB_OPEN_FAIL
---/

CSSM_DB_HANDLE DL_DbOpen (CSSM_DL_HANDLE DLHandle,
const char *DbName,
const CSSM_DB_ACCESS_TYPE_PTR AccessRequest,
const CSSM_USER_AUTHENTICATION_PTR UserAuthentication,
const void * OpenParameters)

{
if(DLHandle == NULL)
{

CSSM_SetError(&dl_guid, CSSM_DL_INVALID_DL_HANDLE);
return NULL;

}
if(DbName == NULL)
{

CSSM_SetError(&dl_guid, CSSM_DL_INVALID_DATASTORE_NAME);
return NULL;

}
if(!dl_IfDataStoreExists(DLHandle, DbName))
{

CSSM_SetError(&dl_guid, CSSM_DL_DATASTORE_NOT_EXISTS);
return NULL;

}

/*DL specific internal implementation of DbOpen*/

CSSM_DB_Handle Handle = dl_OpenDataStore(DbName);
return Handle;

}

Chapter 5. Data Storage Library Interface 129

Data Storage Library OCSF Errors
This section defines the error code range in OCSF that provides a consistent mechanism across all layers
of OCSF for returning errors to the caller. All Data Storage Library (DL) service provider interface (SPI)
functions return one of the following:

v CSSM_RETURN - An enumerated type consisting of CSSM_OK and CSSM_FAIL. If it is CSSM_FAIL,
an error code indicating the reason for failure can be obtained by calling CSSM_GetError.

v CSSM_BOOL - OCSF functions returning this data type return either CSSM_TRUE or CSSM_FALSE. If
the function returns CSSM_FALSE, an error code may be available (but not always) by calling
CSSM_GetError.

v A pointer to a data structure, a handle, a file size, or whatever is logical for the function to return. An
error code may be available (but not always) by calling CSSM_GetError.

The information returned from CSSM_GetError includes both the error number and a Globally Unique ID
(GUID) that associates the error with the module that set it. Each module must have a mechanism for
reporting their errors to the calling application. In general, there are two types of errors a module can
return:

v Errors defined by OCSF that are common to a particular type of service provider module.

v Errors reserved for use by individual service provider modules.

Since some errors are predefined by OCSF, those errors have a set of predefined numeric values that are
reserved by OCSF, and cannot be redefined by modules. For errors that are particular to a module, a
different set of predefined values has been reserved for their use. Table 13 lists the range of error
numbers defined by OCSF for DL modules and those available for use individual DL modules. See the
z/OS: Open Cryptographic Services Facility Application Programming book for a list of error codes and
their descriptions for DL.

Table 13. Data Storage Library Module Error Numbers

Error Number Range Description

5000 – 5999 DL errors defined by OCSF

6000 – 6999 DL errors reserved for individual DL modules

The calling application must determine how to handle the error returned by CSSM_GetError. Detailed
descriptions of the error values will be available in the corresponding specification, the cssmerr.h header
file, and the documentation for specific modules. If a routine does not know how to handle the error, it may
choose to pass the error to its caller.

130 OCSF Service Provider Module Developer’s Guide and Reference

Appendix. Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″
WITHOUT ANY WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie, NY 12601-5400
USA
Attention: Information Request

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

© Copyright IBM Corp. 1999, 2001 131

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Information regarding non-IBM products was obtained from the suppliers of those products, their published
announcements, or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility, or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This publication contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing, or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application programs conforming to
IBM application programming interfaces.

If you are viewing this information in softcopy, the photographs and color illustrations may not appear.

The Open Cryptographic Services Facility contains software licensed by IBM from RSA Data Security
Incorporated

Regarding Licensing
Portions of the IBM Weak Software Cryptographic Service Provider and the IBM Software Cryptographic
Service Provider contained in the Open Cryptographic Services Facility base of z/OS contain software
code provided by RSA Data Security, Inc.

Prior to utilizing the z/OS Open Cryptographic Services APIs of the IBM Weak Software Cryptographic
Service Provider or the IBM Software Cryptographic Service Provider functionality contained in the OCSF
base of z/OS, see the z/OS: Open Cryptographic Services Facility Application Programming for additional
requirements.

Programming Interface Information
This Open Cryptographic Services Facility Service Provider Module Guide and Reference documents
intended Programming Interfaces that allow the customer to write programs to obtain the services of the
Open Cryptographic Services Facility.

132 OCSF Service Provider Module Developer’s Guide and Reference

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United
States, or other countries, or both:

BookManager
IBM
IBMLink
OS/390
Resource Link
z/OS

UNIX is a registered trademark in the United States and/or other countries licensed exclusively through
The Open Group.

Other company, product, and service names may be trademarks or service marks of others.

Appendix. Notices 133

134 OCSF Service Provider Module Developer’s Guide and Reference

Bibliography

This bibliography provides a list of publications
that are useful when implementing OCSF. The
complete title, order number, and a brief
description is given for each publication.

IBM Cryptographic Services
Publication
v z/OS: Open Cryptographic Services Facility

Application Programming, SC24-5899.

This book provides an overview of the Open
Cryptographic Services Facility (OCSF). It explains
how to integrate OCSF into applicatins and
contains a sample OCSF application. It also
defines the interfaces that application developers
employ to access security services provided by
the OCSF framework and service provider
modules. It also describes specific information
about the individual service providers.

© Copyright IBM Corp. 1999, 2001 135

136 OCSF Service Provider Module Developer’s Guide and Reference

Glossary

This glossary defines technical terms and
abbreviations used in Open Cryptographic
Services Facility documentation. If you do not find
the term you are looking for, refer to the index of
the appropriate OCSF manual or view IBM
Glossary of Computing Terms, located at:
http://www.ibm.com/ibm/terminology

A
Asymmetric algorithms. Cryptographic algorithms,
where one key is used to encrypt and a second key is
used to decrypt. They are often called public-key
algorithms. One key is called the public key, and the
other is called the private key or secret key. RSA
(Rivest-Shamir-Adelman) is the most commonly used
public-key algorithm. It can be used for encryption and
for signing.

C
certificate. See Digital certificate

certificate authority. An entity that guarantees or
sponsors a certificate. For example, a credit card
company signs a cardholder’s certificate to assure that
the cardholder is who he or she claims to be. The credit
card company is a Certificate Authority (CA). CAs issue,
verify, and revoke certificates.

certificate chain. The hierarchical chain of all the
other certificates used to sign the current certificate.
This includes the CA who signs the certificate, the CA
who signed that CA’s certificate, and so on. There is no
limit to the depth of the certificate chain.

certificate signing. The CA can sign certificates it
issues or co-sign certificates issued by another CA. In a
general signing model, an object signs an arbitrary set
of one or more objects. Hence, any number of signers
can attest to an arbitrary set of objects. The arbitrary
objects could be, for example, pieces of a document for
libraries of executable code.

certificate validity date. A start date and a stop date
for the validity of the certificate. If a certificate expires,
the CA may issue a new certificate.

cryptographic algorithm. A method or defined
mathematical process for implementing a cryptography
operation. A cryptographic algorithm may specify the
procedure for encrypting and decrypting a byte stream,
digitally signing an object, computing the hash of an
object, generating a random number, etc. OCSF
accommodates Data Encryption Standard (DES), RC2,
RC4, International Data Encryption Algorithm (IDEA),
and other encryption algorithms.

cryptographic service provier. Cryptographic Service
Providers (CSPs) are modules that provide secure key
storage and cryptographic functions. The modules may
be software only or hardware with software drivers. The
cryptographic functions provided may include:

v Bulk encryption and decryption

v Digital signing

v Cryptographic hash

v Random number generation

v Key exchange

cryptography. The science for keeping data secure.
Cryptography provides the ability to store information or
to communicate between parties in such a way that
prevents other non-involved parties from understanding
the stored information or accessing and understanding
the communication. The encryption process takes
understandable text and transforms it into an
unintelligible piece of data (called ciphertext); the
decryption process restores the understandable text
from the unintelligible data. Both involve a mathematical
formula or algorithm and a secret sequence of data
called a key. Cryptographic services provide
confidentiality (keeping data secret), integrity (preventing
data from being modified), authentication (proving the
identity of a resource or a user), and non-repudiation
(providing proof that a message or transaction was send
and/or received). There are two types of cryptography:
In shared/secret key (symmetric) cryptography there is
only one key that is a shared secret between the two
communicating parties. The same key is used for
encryption and decryption. In public key (asymmetric)
cryptography different keys are used for encryption and
decryption. A party has two keys: a public key and a
private key. The two keys are mathematically related,
but it is virtually impossible to derive the private key
from the public key. A message that is encrypted with
someone’s public key (obtained from some public
directory) can only be decrypted with the associated
private key. Alternately, the private key can be used to
″sign″ a document; the public key can be used as
verification of the source of the document

cryptoki. Short for cryptographic token interface. See
Token.

D
data encryption standard. In computer security, the
National Institute of Standards and Technology (NIST)
Data Encryption Standard (DES), adopted by the U.S.
Government as Federal Information Processing
Standard (FIPS) Publication 46, which allows only
hardware implementations of the data encryption
algorithm.

© Copyright IBM Corp. 1999, 2001 137

http://www.ibm.com/ibm/terminology

digital certificate. The binding of some identification
to a public key in a particular domain, as attested to
directly or indirectly by the digital signature of the owner
of that domain. A digital certificate is an unforgettable
credential in cyberspace. The certificate is issued by a
trusted authority, covered by that party’s digital
signature. The certificate may attest to the certificate
holder’s identity, or may authorize certain actions by the
certificate holder. A certificate may include multiple
signatures and may attest to multiple objects or multiple
actions.

digital signature. A data block that was created by
applying a cryptographic signing algorithm to some
other data using a secret key. Digital signatures may be
used to:

v Authenticate the source of a message, data, or
document

v Verify that the contents of a message has not been
modified since it was signed by the sender

v Verify that a public key belongs to a particular
person

Typical digital signing algorithms include MD5 with RSA
encryption, and DSS, the proposed Digital Signature
Standard defined as part of the U.S. Government
Capstone project.

H
hash algorithm. A cryptographic algorithm used to
hash a variable-size input stream into a unique,
fixed-sized output value. Hashing is typically used in
digital signing algorithms. Example hash algorithms
include MD and MD2 from RSA Data Security. MD5,
also from RSA Data Security, hashes a variable-size
input stream into a 128-bit output value. SHA, a Secure
Hash Algorithm published by the U.S. Government,
produces a 160-bit hash value from a variable-size input
stream.

L
leaf certificate. The certificate in a certificate chain
that has not been used to sign another certificate in that
chain. The leaf certificate is signed directly or
transitively by all other certificates in the chain.

M
message digest. The digital fingerprint of an input
stream. A cryptographic hash function is applied to an
input message arbitrary length and returns a fixed-size
output, which is called the digest value.

O
Open Cryptographic Services Facility (OCSF)
Framework. Open Cryptographic Services Facility
(OCSF) Framework. The Open Cryptographic Services
Facility (OCSF) framework defines four key service
components:

v Cryptographic Module Manager

v Trust Policy Module Manager

v Certificate Library Module Manager

v Data Storage Library Module Manager

The OCSF binds together all the security services
required by applications. In particular, it facilitates linking
digital certificates to cryptographic actions and trust
protocols.

owned certificate. A certificate whose associated
secret or private key resides in a local Cryptographic
Service Provider (CSP). Digital-signing algorithms
require using owned certificates when signing data for
purposes of authentication and non-repudiation. A
system may use certificates it does not own for
purposes other than signing.

P
private key. The cryptographic key is used to decipher
messages in public-key cryptography. This key is kept
secret by its owner.

public key. The cryptographic key is used to encrypt
messages in public-key cryptography. The public key is
available to multiple users (i.e., the public).

R
random number generator. A function that generates
cryptographically strong random numbers that cannot be
easily guessed by an attacker. Random numbers are
often used to generate session keys.

root certificate. The prime certificate, such as the
official certificate of a corporation or government entity.
The root certificate is positioned at the top of the
certificate hierarchy in its domain, and it guarantees the
other certificates in its certificate chain. Each Certificate
Authority (CA) has a self-signed root certificate. The
root certificate’s public key is the foundation of signature
verification in its domain.

S
S/MIME. Secure/Multipurpose Internet Mail Extensions
(S/MIME) is a protocol that adds digital signatures and
encryption to Internet MIME messages. MIME is the
official proposed standard format for extended Internet
electronic mail. Internet e-mail messages consist of two
parts, the header and the body. The header forms a

138 OCSF Service Provider Module Developer’s Guide and Reference

collection of field/value pairs structured to provide
information essential for the transmission of the
message. The body is normally unstructured unless the
e-mail is in MIME format. MIME defines how the body of
an e-mail message is structured. The MIME format
permits e-mail to include enhanced text, graphics,
audio, and more in a standardized manner via
MIME-compliant mail systems. However, MIME itself
does not provide any security services. The purpose of
S/MIME is to define such services, following the syntax
given in PKCS #7 for digital signatures and encryption.
The MIME body carries a PKCS #7 message, which
itself is the result of cryptographic processing on other
MIME body parts.

secure electronic transaction. A mechanism for
securely and automatically routing payment information
among users, merchants, and their banks. Secure
Electronic Transaction (SET) is a protocol for securing
bankcard transactions on the Internet or other open
networks using cryptographic services. SET is a
specification designed to utilize technology for
authenticating parties involved in payment card
purchases on any type of on-line network, including the
Internet. SET was developed by Visa and MasterCard,
with participation from leading technology companies,
including Microsoft, IBM, Netscape, SAIC, GTE, RSA,
Terisa Systems, and VeriSign. By using sophisticated
cryptographic techniques, SET will make cyberspace a
safer place for conducting business and is expected to
boost consumer confidence in electronic commerce.
SET focuses on maintaining confidentiality of
information, ensuring message integrity, and
authenticating the parties involved in a transaction.

security context. A control structure that retains state
information shared between a CSP and the application
agent requesting service from the CSP. Only one
context can be active for an application at any given
time, but the application is free to switch among
contexts at will, or as required. A security context
specifies CSP and application-specific values, such as
required key length and desired hash functions.

security-relevant event. An event where a
CSP-provided function is performed, a security module
is loaded, or a breach of system security is detected.

session key. A cryptographic key used to encrypt and
decrypt data. The key is shared by two or more
communicating parties, who use the key to ensure
privacy of the exchanged data.

signature. See Digital signature.

signature chain. The hierarchical chain of signers,
from the root certificate to the leaf certificate, in a
certificate chain.

symmetric algorithm. Cryptographic algorithms that
use a single secret key for encryption and decryption.
Both the sender and receiver must know the secret key.

Well-known symmetric functions include Data
Encryption Standard (DES) and International Data
Encryption Algorithm (IDEA). The U.S. Government
endorsed DES as a standard in 1977. It is an encryption
block cipher that operates on 64-bit blocks with a 56-bit
key. It is designed to be implemented in hardware, and
works well for bulk encryption. IDEA, one of the best
known public algorithms, uses a 128-bit key.

T
token. The logical view of a cryptographic device, as
defined by a CSP’s interface. A token can be hardware,
a physical object, or software. A token contains
information about its owner in digital form, and about
the services it provides for electronic-commerce and
other communication applications. A token is a secure
device. It may provide a limited or a broad range of
cryptographic functions. Examples of hardware tokens
are smart cards and Personal Computer Memory Card
International Association (PCMCIA) cards.

V
verification. The process of comparing two message
digests. One message digest is generated by the
message sender and included in the message. The
message recipient computes the digest again. If the
message digests are exactly the same, it shows or
proves there was no tampering of the message contents
by a third party (between the sender and the receiver).

W
web of trust. A trust network among people who know
and communicate with each other. Digital certificates
are used to represent entities in the web of trust. Any
pair of entities can determine the extent of trust
between the two, based on their relationship in the web.
Based on the trust level, secret keys may be shared
and used to encrypt and decrypt all messages
exchanged between the two parties. Encrypted
exchanges are private, trusted communications.

Glossary 139

140 OCSF Service Provider Module Developer’s Guide and Reference

Index

A
API (application programming interface) xiii
application programming interface (API) xiii
Attach/Detach Example

trust policy 47

C
CA (Certificate Authority) xiii
CDSA (Common Data Security Architecture) xiii
Certificate Authority (CA) xiii
Certificate Library (CL) xiii

CL (Certificate Library) 49
CL_CertCreateTemplate 87
CL_CertGetAllFields 66
CL_CertGetFirstFieldValue 67
CL_CertGetKeyInfo 68
CL_CertGetNextFieldValue 69
CL_CertImport 70
CL_CertSign 71
CL_CrlAbortQuery 73
CL_CrlCreateTemplate 75
CL_CrlGetFirstFieldValue 77
CL_CrlGetNextFieldValue 78
CL_CrlRemoveCert 79
CL_CrlSetFields 80
CL_CrlSign 81
CL_CrlVerify 82
CL_IsCertInCrl 83
CL_PassThrough 84
CSSM_BOOL 52
CSSM_CERT_ENCODING 52
CSSM_CERT_TYPE 53
CSSM_CERTGROUP 52
CSSM_CL_CA_PRODUCTINFO 53
CSSM_CL_ENCODER_PRODUCTINFO 54
CSSM_CL_HANDLE 55
CSSM_CL_WRAPPEDPRODUCTINFO 56
CSSM_CLSUBSERVICE 55
CSSM_CS_SERVICES 52
CSSM_DATA 56
CSSM_FIELD 56
CSSM_HEADERVERSION 57
CSSM_KEY 57
CSSM_KEY_SIZE 60
CSSM_KEY_TYPE 60
CSSM_KEYHEADER 57
CSSM_OID 61
CSSM_RETURN 61
CSSM_REVOKE_REASON 61
CSSM_SPI_MEMORY_FUNCS 60

Certificate Library Attach/Detach Example 85
Certificate Library Extensibility Functions 84
Certificate Library Extensibilty Functions Example 92
Certificate Library OCSF Errors 93
Certificate Library Operations 62
Certificate Operations Examples 87

Certificate Revocation List Operations 73
Certificate Revocation Lists (CRLs) xiii
certificates

revoking 32
signing 32

CL (Certificate Library) xiii
CL_CertAbortQuery 62
CL_CertCreateTemplate 63, 87
CL_CertDescribeFormat 64
CL_CertExport 65
CL_CertGetAllFields 66
CL_CertGetFirstFieldValue 67
CL_CertGetKeyInfo 68
CL_CertGetNextFieldValue 69
CL_CertImport 70
CL_CertSign 71
CL_CrlAbortQuery 73
CL_CrlCreateTemplate 75
CL_CrlGetFirstFieldValue 77
CL_CrlGetNextFieldValue 78
CL_CrlRemoveCert 79
CL_CrlSetFields 80
CL_CrlSign 81
CL_CrlVerify 82
CL_IsCertInCrl 83
CL_PassThrough 84
Common Data Security Architecture (CDSA) xiii
conventions xiv
CRL (Certificate Revocation Lists) xiii
CRL Operations Examples 89
Cryptographic Service Provider (CSP) xvii
Cryptographic Service Providers (CSPs) xiii
CSM_NOTIFY_CALLBACK 11
CSP (Cryptographic Service Provider) xvii
CSP (Cryptographic Service Providers) xiii
CSSM_BOOL 7, 33, 52

data structures 33
CSSM_CALLBACK 7
CSSM_CERT_ENCODING 52
CSSM_CERT_TYPE 53
CSSM_CERTGROUP 33, 52

data structures 33
CSSM_CL_CA_PRODUCTINFO 53
CSSM_CL_ENCODER_PRODUCTINFO 54
CSSM_CL_HANDLE 55
CSSM_CL_WRAPPEDPRODUCTINFO 56
CSSM_CLSUBSERVICE 55
CSSM_CRYPTO_DATA 7
CSSM_CS_SERVICES 52
CSSM_DATA 8, 33, 56

data structures 33
CSSM_DB_INDEXED_DATA_LOCATION 99
CSSM_DeregisterServices 16
CSSM_DL_DB_LIST 34

data structures 34
CSSM_FIELD 34, 56

data structures 34
CSSM_GetHandleInfo 17

© Copyright IBM Corp. 1999, 2001 141

CSSM_GUID 8
CSSM_HANDLE 8
CSSM_HEADERVERSION 57
CSSM_INFO_LEVEL 9
CSSM_KEY 57
CSSM_KEY_SIZE 60
CSSM_KEY_TYPE 60
CSSM_KEYHEADER 57
CSSM_MEMORY_FUNCS/CSSM_API_MEMORY_FUNCS 9
CSSM_MODULE_FLAGS 10
CSSM_MODULE_HANDLE 10
CSSM_MODULE_INFO 10
CSSM_ModuleInstall 18
CSSM_ModuleUninstall 19
CSSM_OID 34, 61

data structures 34
CSSM_RegisterService 20
CSSM_RETURN 12, 34, 61

data structures 34
CSSM_REVOKE_REASON 34, 61

data structures 34
CSSM_SERVICE_FLAGS 12
CSSM_SERVICE_INFO 13
CSSM_SERVICE_MASK 13
CSSM_SERVICE_TYPE 14
CSSM_SetModuleInfo 21
CSSM_SPI_FUNC_TBL 14
CSSM_SPI_MEMORY_FUNCS 60
CSSM_TP_ACTION 35

data structures 35
CSSM_TP_HANDLE 35

data structures 35
CSSM_TP_STOP_ON 35

data structures 35
CSSM_USER_AUTHENTICATION 14
CSSM_USER_AUTHENTICATION_MECHANISM 15
CSSM_VERSION 15
cssmtype.h header file 32

D
Data Storage Library (DL) xiii
data structure (service provider module)

CSM_NOTIFY_CALLBACK 11
CSSM_BOOL 7
CSSM_CALLBACK 7
CSSM_CRYPTO_DATA 7
CSSM_DATA 8
CSSM_GUID 8
CSSM_HANDLE 8
CSSM_HANDLEINFO 8
CSSM_INFO_LEVEL 9
CSSM_MEMORY_FUNCS/CSSM_API_MEMORY_FUNCS 9
CSSM_MODULE_FLAGS 10
CSSM_MODULE_HANDLE 10
CSSM_MODULE_INFO 10
CSSM_RETURN 12
CSSM_SERVICE_FLAGS 12
CSSM_SERVICE_INFO 13
CSSM_SERVICE_MASK 13
CSSM_SERVICE_TYPE 14
CSSM_SPI_FUNC_TBL 14

data structure (service provider module) (continued)
CSSM_USER_AUTHENTICATION 14
CSSM_USER_AUTHENTICATION_MECHANISM 15
CSSM_VERSION 15

data structures
CSSM_BOOL 33
CSSM_CERTGROUP 33
CSSM_DATA 33
CSSM_DL_DB_LIST 34
CSSM_FIELD 34
CSSM_OID 34
CSSM_RETURN 34
CSSM_REVOKE_REASON 34
CSSM_TP_ACTION 35
CSSM_TP_HANDLE 35
CSSM_TP_STOP_ON 35
trust policy 32

data structures (data storage library)
CSSM_DB_INDEXED_DATA_LOCATION 99

digital certificates 31
use of 31

DL (Data Storage Library) xiii
DLL (Dynamically Linked Library) xiii
Dynamically Linked Library (DLL) xiii

E
EventNotify 22
examples

TP attach/detach 47
extensibility functions

TP_PassThrough 46

F
FreeModuleInfo 23
function

PassThrough 32

G
GetModuleInfo 24

H
header file

cssmtype.h 32

I
Independent Software Vendors (ISVs) xiii
Initialize 26
ISV (Independent Software Vendors) xiii

M
module management functions

CSSM_SetModuleInfo 21

O
OCSF (Open Cryptographic Services Facility) xiii
OCSF API xiii

142 OCSF Service Provider Module Developer’s Guide and Reference

Open Cryptographic Services Facility
API xiii
SPI xiii

Open Cryptographic Services Facility (OCSF) xiii

P
PassThrough

function 32

R
revoking

certificates 32

S
security services

certificate libraries xiii
cryptographic services xiii
data storage libraries xiii
trust policy libraries xiii

service provider interface (SPI) xiii
service provider module functions

CSSM_DeregisterServices 16
CSSM_GetHandleInfo 17
CSSM_ModuleInstall 18
CSSM_ModuleUninstall 19
CSSM_RegisterService 20
EventNotify 22
FreeModuleInfo 23
GetModuleInfo 24
Initialize 26
Terminate 27

signing
certificates 32

SPI (service provider interface) xiii

T
Terminate 27
TP (Trust Policy) xiii, 7
TP_ApplyCrlToDb 40

trust policy operations 40
TP_CertGroupConstruct 41

trust policy operations 41
TP_CertGroupPrune 42

trust policy operations 42
TP_CertGroupVerify 43

trust policy operations 43
TP_CertRevoke

trust policy operations 37
TP_CertSign

trust policy operations 36
TP_CrlSign 39

trust policy operations 39
TP_CrlVerify 38

trust policy operations 38
TP_PassThrough 46
trust domain authority 31
Trust Policy (TP) xiii, 7

Trust Policy (TP) xiii, 7 (continued)
Attach/Detach Example 47
data structures 32

trust policy operations 36
TP_ApplyCrlToDb 40
TP_CertGroupConstruct 41
TP_CertGroupPrune 42
TP_CertGroupVerify 43
TP_CertRevoke 37
TP_CertSign 36
TP_CrlSign 39
TP_CrlVerify 38

U
use of

digital certificates 31

Index 143

144 OCSF Service Provider Module Developer’s Guide and Reference

Readers’ Comments — We’d Like to Hear from You

z/OS
Open Cryptographic Services Facility Service Provider Module
Developer’s Guide and Reference

Publication No. SC24-5900-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC24-5900-00

SC24-5900-00

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Information Development
Department G60
1701 North Street
Endicott, NY 13760-5553
United States of America

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Program Number: 5694-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC24-5900-00

	Contents
	Figures
	Tables
	Preface
	Service Provider Modules
	Who Should Use This Book

	Conventions Used in This Book
	Where to Find More Information
	Softcopy Publications
	Internet Sources
	Using LookAt to Look Up Message Explanations
	Accessing Licensed Books on the Web

	Writing a Cryptographic Service Provider

	Chapter 1. Module Structure and Administration
	Security Services
	Module-to-Module Interaction

	Module Administration Components
	Installing a Service Provider Module
	Attaching a Service Provider Module
	Module Entry Point
	Module Function Table Registration
	Memory Management Upcalls

	Error Handling
	Install Example
	CL Module Install
	Attach/Detach Example
	DLLMain

	Service Provider Module Interface Functions
	Data Structures
	Basic Data Types

	CSSM_ALL_SUBSERVICES
	CSSM_BOOL
	CSSM_CALLBACK
	CSSM_CRYPTO_DATA
	CSSM_DATA
	CSSM_GUID
	CSSM_HANDLE
	CSSM_HANDLEINFO
	CSSM_INFO_LEVEL
	CSSM_MEMORY_FUNCS/CSSM_API_MEMORY_FUNCS
	CSSM_MODULE_FLAGS
	CSSM_MODULE_FUNCS
	CSSM_MODULE_HANDLE
	CSSM_MODULE_INFO
	CSM_NOTIFY_CALLBACK
	CSSM_REGISTRATION_INFO
	CSSM_RETURN
	CSSM_SERVICE_FLAGS
	CSSM_SERVICE_INFO
	CSSM_SERVICE_MASK
	CSSM_SERVICE_TYPE
	CSSM_SPI_FUNC_TBL
	CSSM_USER_AUTHENTICATION
	CSSM_USER_AUTHENTICATION_MECHANISM
	CSSM_VERSION

	Relevant CSSM API Functions
	Service Provider Module Functions
	CSSM_DeregisterServices
	Purpose
	Format
	Parameters
	Return Value
	Error Codes
	Related Information

	CSSM_GetHandleInfo
	Purpose
	Format
	Parameters
	Return Value

	CSSM_ModuleInstall
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	CSSM_ModuleUninstall
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	CSSM_RegisterServices
	Purpose
	Format
	Parameters
	Return Value
	Error Codes
	Related Information

	CSSM_SetModuleInfo
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	EventNotify
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	FreeModuleInfo
	Purpose
	Format
	Parameters
	Return Value
	Error Codes
	Related Information

	GetModuleInfo
	Purpose
	Format
	Parameters
	Return Value
	Error Codes
	Related Information

	Initialize
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	Terminate
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	Chapter 2. Cryptographic Service Provider Module Information
	Chapter 3. Trust Policy Interface
	Trust Policy Services API
	Trust Policy Data Structures
	Basic Data Types
	CSSM_BOOL
	CSSM_CERTGROUP
	CSSM_DATA
	CSSM_DL_DB_HANDLE
	CSSM_DL_DB_LIST
	CSSM_FIELD
	CSSM_OID
	CSSM_RETURN
	CSSM_REVOKE_REASON
	CSSM_TP_ACTION
	CSSM_TP_HANDLE
	CSSM_TP_STOP_ON

	Trust Policy Operations
	TP_CertSign
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	TP_CertRevoke
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	TP_CrlVerify
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	TP_CrlSign
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	TP_ApplyCrlToDb
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	TP_CertGroupConstruct
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	TP_CertGroupPrune
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	TP_CertGroupVerify
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	Trust Policy Extensibility Functions
	TP_PassThrough
	Purpose
	Format
	Parameters
	Return Value

	Trust Policy Attach/Detach Example
	DLLMain

	Trust Policy OCSF Errors

	Chapter 4. Certificate Library Interface
	Certificate Life Cycle
	Certificate Library Interface Specification
	Certificate Library Data Structures
	CSSM_BOOL
	CSSM_CS_SERVICES
	CSSM_CERT_ENCODING
	CSSM_CERTGROUP
	CSSM_CERT_TYPE
	CSSM_CL_CA_CERT_CLASSINFO
	CSSM_CL_CA_PRODUCTINFO
	CSSM_CL_ENCODER_PRODUCTINFO
	CSSM_CL_HANDLE
	CSSM_CLSUBSERVICE
	CSSM_CL_WRAPPEDPRODUCTINFO
	CSSM_DATA
	CSSM_FIELD
	CSSM_HEADERVERSION
	CSSM_KEY
	CSSM_KEYHEADER
	CSSM_KEY_SIZE
	CSSM_KEY_TYPE
	CSSM_SPI_MEMORY_FUNCS
	CSSM_OID
	CSSM_RETURN
	CSSM_REVOKE_REASON

	Certificate Library Operations
	CL_CertAbortQuery
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	CL_CertCreateTemplate
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	CL_CertDescribeFormat
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	CL_CertExport
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	CL_CertGetAllFields
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	CL_CertGetFirstFieldValue
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	CL_CertGetKeyInfo
	Purpose
	Format
	Parameters
	Return Value

	CL_CertGetNextFieldValue
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	CL_CertImport
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	CL_CertSign
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	CL_CertVerify
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	Certificate Revocation List Operations
	CL_CrlAbortQuery
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	CL_CrlAddCert
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	CL_CrlCreateTemplate
	Purpose
	Format
	Parameters
	Return Value

	CL_CrlDescribeFormat
	Purpose
	Format
	Parameters
	Return Value

	CL_CrlGetFirstFieldValue
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	CL_CrlGetNextFieldValue
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	CL_CrlRemoveCert
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	CL_CrlSetFields
	Purpose
	Format
	Parameters
	Return Value

	CL_CrlSign
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	CL_CrlVerify
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	CL_IsCertInCrl
	Purpose

	Format
	Parameters
	Return Value

	Certificate Library Extensibility Functions
	CL_PassThrough
	Purpose
	Format
	Parameters
	Return Value

	Certificate Library Attach/Detach Example
	DLLMain

	Certificate Operations Examples
	CL_CertCreateTemplate

	CRL Operations Examples
	CL_CrlAddCert

	Certificate Library Extensibilty Functions Example
	Certificate Library OCSF Errors

	Chapter 5. Data Storage Library Interface
	Categories of Operations
	Data Storage Library Data Structures
	CSSM_BOOL
	CSSM_DATA
	CSSM_DB_ACCESS_TYPE
	CSSM_DB_ATTRIBUTE_DATA
	CSSM_DB_ATTRIBUTE_INFO
	CSSM_DB_ATTRIBUTE_NAME_FORMAT
	CSSM_DB_CERTRECORD_SEMANTICS
	CSSM_DB_CONJUNCTIVE
	CSSM_DB_HANDLE
	CSSM_DB_INDEX_INFO
	CSSM_DB_INDEX_TYPE
	CSSM_DB_INDEXED_DATA_LOCATION
	CSSM_DBINFO
	CSSM_DB_OPERATOR
	CSSM_DB_PARSING_MODULE_INFO
	CSSM_DB_RECORD_ATTRIBUTE_DATA
	CSSM_DB_RECORD_ATTRIBUTE_INFO
	CSSM_DB_RECORD_INDEX_INFO
	CSSM_DB_RECORD_PARSING_FNTABLE
	CSSM_DB_RECORDTYPE
	CSSM_DB_UNIQUE_RECORD
	CSSM_DL_DB_HANDLE
	CSSM_DL_DB_LIST
	CSSM_DL_CUSTOM_ATTRIBUTES
	CSSM_DL_FFS_ATTRIBUTES
	CSSM_DL_HANDLE
	CSSM_DL_LDAP_ATTRIBUTES
	CSSM_DL_ODBC_ATTRIBUTES
	CSSM_DL_PKCS11_ATTRIBUTES
	CSSM_DLSUBSERVICE
	CSSM_DLTYPE
	CSSM_DL_WRAPPEDPRODUCTINFO
	CSSM_NAME_LIST
	CSSM_QUERY
	CSSM_QUERY_LIMITS
	CSSM_SELECTION_PREDICATE

	Data Storage Operations
	DL_Authenticate
	Purpose
	Format
	Parameters
	Return Value

	DL_DbClose
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	DL_DbCreate
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	DL_DbDelete
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	DL_DbExport
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	DL_GetDbNameFromHandle
	Purpose
	Format
	Parameters
	Return Value

	DL_DbGetRecordParsingFunctions
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	DL_DbImport
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	DL_DbOpen
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	DL_DbSetRecordParsingFunctions
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	Data Record Operations
	DL_DataAbortQuery
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	DL_DataDelete
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	DL_DataGetFirst
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	DL_DataGetNext
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	DL_DataInsert
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	DL_FreeUniqueRecord
	Purpose
	Format
	Parameters
	Return Value
	Related Information

	Data Storage Library Extensibility Functions
	DL_PassThrough
	Purpose
	Format
	Parameters
	Return Value

	Data Storage Library Attach/Detach Example
	DLLMain

	Data Store Operations Example
	Data Storage Library OCSF Errors

	Appendix. Notices
	Regarding Licensing
	Programming Interface Information
	Trademarks

	Bibliography
	IBM Cryptographic ServicesPublication

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

