
z/OS

DFSMSrmm Application Programming
Interface

SC26-7403-01

���

z/OS

DFSMSrmm Application Programming
Interface

SC26-7403-01

���

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on page 87.

Second Edition, March 2002

This edition applies to Version 1 Release 3 of z/OS™ (5694-A01) and to all subsequent releases and modifications
until otherwise indicated in new editions.

This edition replaces SC26-7403-00.

Order publications through your IBM® representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you
may address your comments to the following address:

International Business Machines Corporation
RCF Processing, Department M86/050
5600 Cottle Road
San Jose, CA 95193-0001
United States of America

IBMLINK from US: STARPUBS at SJEVM5
IBMLINK from Canada: STARPUBS at TORIBM
IBM Mail Exchange: USIB3VVD at IBMMAIL
Internet: starpubs@us.ibm.com

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this book
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1992, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . vii

Tables . ix

About This Book . xi
Required Product Knowledge . xi
Referenced Publications . xi
Accessing z/OS DFSMS Books on the Internet xii
Using LookAt to look up message explanations xii
Accessing Licensed Books on the Web xii
How to Send Your Comments xiii
Notational Conventions . xiv
How to Read Syntax Diagrams xiv
How to Abbreviate Commands and Operands xvii
How to Use Continuation Characters xvii
Delimiters . xvii
Character Sets. xvii

Summary of Changes . xix
Summary of Changes for SC26-7403-01 z/OS Version 1 Release 3 xix
New Information . xix
Changed Information . xix

Chapter 1. Using the DFSMSrmm Application Programming Interface . . . 1
Supported RMM TSO Subcommands 2
Using the EDGXCI Macro . 3
EDGXCI: Calling the DFSMSrmm Interface 3
EDGXCI Environment . 3
EDGXCI Programming Requirements 3
EDGXCI Syntax . 4
EDGXCI Parameters . 5
EDGXCI Return and Reason Codes 9
EDGXCI Example . 12

Chapter 2. Programming Guidelines 15
Specifying the Subcommand Input in EDGXCI 15
Using the CONTINUE Operation in EDGXCI 16
Using Parameter Lists . 16
Single Parameter List, Single Token Area 17
Single Parameter List, Multiple Token Areas 18
Multiple Parameter List, Single Token Area 21
Multiple Parameter List, Multiple Token Areas 22

Freeing Resources . 24

Chapter 3. Receiving Output Data in the Output Buffer 27
Description of Structured Fields 27
Requesting SFI Data Format . 28
Requesting Line Format . 28
Requesting Field Format . 29

Requesting Types of Output . 31
Requesting Standard Output 31
Requesting Expanded Output 31

Accessing Return and Reason Codes 32

© Copyright IBM Corp. 1992, 2002 iii

Accessing Messages and Message Variables 33
Interpreting Date Format and Time Format. 33
Identifying Structured Field Introducers 34
Begin and End Resource Groups 34
System Return and Reason Code SFIs 35
Messages and Message Variables SFIs. 36
SFIs for Output Data for Subcommands. 37
Add Type of Subcommands 37
Change Type of Subcommands. 38
Delete Type of Subcommands 38
GETVOLUME Subcommand 38
List Type of Subcommands 39
LISTBIN Structured Field Introducers. 39
LISTCONTROL Structured Field Introducers 40
LISTDATASET Structured Field Introducers 43
LISTOWNER Structured Field Introducers 44
LISTPRODUCT Structured Field Introducers 44
LISTRACK Structured Field Introducers 44
LISTVOLUME Structured Field Introducers 45
LISTVRS Structured Field Introducers 47
Search Type of Subcommands 47
SEARCHBIN Structured Field Introducers 48
SEARCHDATASET Structured Field Introducers. 48
SEARCHPRODUCT Structured Field Introducers 48
SEARCHRACK Structured Field Introducers 49
SEARCHVOLUME Structured Field Introducers 49
SEARCHVRS Structured Field Introducers. 50

Controlling Output from List and Search Type Requests 51
Limiting the Search for a Request 51
Output Buffer Examples . 51

Appendix A. Structured Field Introducers 55
SFI Format . 55
Structured Field Lengths . 55
SFIs for Begin and End Resource Groups 56
SFIs for Return and Reason Codes 56
SFIs for Messages and Message Variables 57
SFIs for Subcommand Output Data 58

Appendix B. Structured Field Introducers by Subcommand 73

Appendix C. DFSMSrmm Application Programming Interface Mapping
Macros . 75

EDGXCI: Parameter List . 75
EDGXSF: Structured Field Definitions 76
EDGXSF Parameters . 76
EDGXSF Mapping . 77
EDGXSF Labeling Conventions 77

Appendix D. Hexadecimal Example of an Output Buffer 81
Hexadecimal Representation of an Output Buffer 81
Description of the Contents of an Output Buffer 81
Processing the Contents of an Output Buffer 83

Appendix E. Accessibility . 85
Using assistive technologies . 85

iv z/OS V1R3.0 DFSMSrmm Application Programming Interface

Keyboard navigation of the user interface 85

Notices . 87
Programming Interface Information 88
Trademarks . 88

Glossary . 89

Index . 101

Contents v

vi z/OS V1R3.0 DFSMSrmm Application Programming Interface

Figures

1. Example of the DFSMSrmm DELETEOWNER TSO Subcommand Syntax Diagram xvi
2. EDGXCI Macro Syntax Diagram . 5
3. Communicating with the DFSMSrmm API . 12
4. Example of Specifying the DFSMSrmm API Subcommand 15
5. Example of Specifying the RMM TSO Subcommand 15
6. Single Parameter List, Single Token Area . 17
7. Single Parameter List, Multiple Token Areas . 19
8. Releasing All Resources . 20
9. Multiple Parameter Lists, Single Token Area . 22
10. Multiple Parameter Lists, Multiple Token Area . 23
11. TOKEN= Specified on EDGXCI . 25
12. TOKEN= Not Specified on EDGXCI . 25
13. Example of List Type of Output Using OUTPUT=LINES 29
14. Example of Output Using OUTPUT=FIELDS. 29
15. Example of Search Type of Output Using EXPAND=NO 31
16. Example of Search Type of Output Using OUTPUT=FIELDS, EXPAND=YES. 32
17. Message and Message Variable Structured Fields 33
18. Begin and End Resource Group SFI Sequence 34
19. Begin and End Resource Group SFI Pairs . 35
20. Begin and End Resource Group SFI Pairs for Subgroups 35
21. System Return and Reason Codes . 35
22. SFIs for Messages and Message Variables . 36
23. Formatted Lines . 37
24. SFIs for ADDVOLUME with OUTPUT=FIELDS . 38
25. SFIs for CHANGEVOLUME with OUTPUT=FIELDS 38
26. SFIs for GETVOLUME with OUTPUT=FIELDS . 39
27. SFIs for LISTBIN with OUTPUT=FIELDS . 39
28. SFIs for LISTCONTROL with OUTPUT=FIELDS 40
29. SFIs for LISTDATASET with OUTPUT=FIELDS 43
30. SFIs for LISTOWNER with OUTPUT=FIELDS . 44
31. SFIs for LISTPRODUCT with OUTPUT=FIELDS 44
32. SFIs for LISTRACK with OUTPUT=FIELDS . 44
33. SFIs for LISTVOLUME with OUTPUT=FIELDS . 45
34. SFIs for LISTVRS with OUTPUT=FIELDS . 47
35. SFIs for SEARCHBIN with OUTPUT=FIELDS,EXPAND=NO 48
36. SFIs for SEARCHDATASET with OUTPUT=FIELDS,EXPAND=NO 48
37. SFIs for SEARCHPRODUCT with OUTPUT=FIELDS,EXPAND=NO 49
38. SFIs for SEARCHRACK with OUTPUT=FIELDS,EXPAND=NO 49
39. SFIs for SEARCHVOLUME with OUTPUT=FIELDS,EXPAND=NO. 50
40. SFIs for SEARCHVRS with OUTPUT=FIELDS,EXPAND=NO 50
41. CONTINUE Example, First Output Buffer . 52
42. CONTINUE Example, Second Output Buffer. 53
43. CONTINUE Example, Third (Last) Output Buffer 53
44. Mapping of the Parameter List Using the List Form of EDGXCI 75
45. Mapping: Output Buffer and Structured Field Introducers 77
46. Mapping of the Begin and End ACCESS Group 78
47. Mapping of the Begin and End VOL Group . 78
48. Mapping of the ATM SFI . 78
49. Mapping of the ACT SFI . 79
50. Mapping of the LOCT SFI . 79
51. Hexadecimal Representation of the Contents of an Output Buffer 81
52. Output Buffer Definition . 83
53. SFI Definition . 83

© Copyright IBM Corp. 1992, 2002 vii

||

||

||

||

||

viii z/OS V1R3.0 DFSMSrmm Application Programming Interface

Tables

1. Character Sets . xvii
2. Special Characters Used in Syntax. xviii
3. RMM TSO Subcommands . 2
4. Return and Reason Codes for the EDGXCI Macro 10
5. Message Related SFIs. 36
6. Begin and End Group Structured Field Introducers 56
7. Reason and Return Code SFIs . 57
8. Message SFIs . 57
9. Command SFIs . 58
10. Structured Field Introducers by Subcommand . 73

© Copyright IBM Corp. 1992, 2002 ix

x z/OS V1R3.0 DFSMSrmm Application Programming Interface

About This Book

This book is intended for application programmers who use the DFSMSrmm™

application programming interface to obtain information about DFSMSrmm-
managed resources.

Refer to:

v “Chapter 1. Using the DFSMSrmm Application Programming Interface” on page 1
for information on the EDGXCI macro you use for communication between your
application program and DFSMSrmm.

v “Chapter 2. Programming Guidelines” on page 15 for guidelines for setting up
communications.

v “Chapter 3. Receiving Output Data in the Output Buffer” on page 27 for
information on the data that the DFSMSrmm application programming interface
returns.

Required Product Knowledge
To use this book effectively, you should be familiar with:

v The RMM TSO subcommand and operands

v Macros to communicate between programs

Referenced Publications
The following publications have additional information about DFSMSrmm:

Publication Title Order Number

z/OS DFSMSrmm Command Reference Summary SX26-6022

z/OS DFSMSrmm Diagnosis Guide SY27-7619

z/OS DFSMSrmm Guide and Reference SC26-7404

z/OS DFSMSrmm Implementation and Customization Guide SC26-7405

z/OS DFSMSrmm Reporting SC26-7406

This book also refers to the following publications:

Publication Title Order Number

z/OS DFSMS Migration GC26-7398

z/OS MVS System Messages, Vol 1 (ABA-AOM) SA22-7631

z/OS MVS System Messages, Vol 2 (ARC-ASA) SA22-7632

z/OS MVS System Messages, Vol 3 (ASB-BPX) SA22-7633

z/OS MVS System Messages, Vol 4 (CBD-DMO) SA22-7634

z/OS MVS System Messages, Vol 5 (EDG-GFS) SA22-7635

z/OS MVS System Messages, Vol 6 (GOS-IEA) SA22-7636

z/OS MVS System Messages, Vol 7 (IEB-IEE) SA22-7637

z/OS MVS System Messages, Vol 8 (IEF-IGD) SA22-7638

z/OS MVS System Messages, Vol 9 (IGF-IWM) SA22-7639

z/OS MVS System Messages, Vol 10 (IXC-IZP) SA22-7640

© Copyright IBM Corp. 1992, 2002 xi

Accessing z/OS DFSMS Books on the Internet
In addition to making softcopy books available on CD-ROM, IBM provides access to
unlicensed z/OS softcopy books on the Internet. To find z/OS books on the Internet,
first go to the z/OS home page: http://www.ibm.com/servers/eserver/zseries/zos

From this Web site, you can link directly to the z/OS softcopy books by selecting
the Library icon. You can also link to IBM Direct to order hardcopy books.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for z/OS
messages, system abends, and some codes. Using LookAt to find information is
faster than a conventional search because in most cases LookAt goes directly to
the message explanation.

You can access LookAt from the Internet at:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

or from anywhere in z/OS where you can access a TSO command line (for
example, TSO prompt, ISPF, z/OS UNIX System Services running OMVS).

To find a message explanation on the Internet, go to the LookAt Web site and
simply enter the message identifier (for example, IAT1836 or IAT*). You can select a
specific release to narrow your search. You can also download code from the z/OS
Collection, SK3T-4269 and the LookAt Web site so you can access LookAt from a
PalmPilot (Palm VIIx suggested).

To use LookAt as a TSO command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO from a disk on your z/OS
Collection, SK3T-4269 or from the LookAt Web site. To obtain the code from the
LookAt Web site, do the following:

1. Go to http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html.

2. Click the News button.

3. Scroll to Download LookAt Code for TSO and VM.

4. Click the ftp link, which will take you to a list of operating systems. Select the
appropriate operating system. Then select the appropriate release.

5. Find the lookat.me file and follow its detailed instructions.

To find a message explanation from a TSO command line, simply enter: lookat
message-id. LookAt will display the message explanation for the message
requested.

Note: Some messages have information in more than one book. For example,
IEC192I has routing and descriptor codes listed in z/OS MVS Routing and
Descriptor Codes. For such messages, LookAt prompts you to choose which
book to open.

Accessing Licensed Books on the Web
z/OS licensed documentation in PDF format is available on the Internet at the IBM
Resource Link Web site at:
http://www.ibm.com/servers/resourcelink

xii z/OS V1R3.0 DFSMSrmm Application Programming Interface

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.ibm.com/servers/resourcelink

Licensed books are available only to customers with a z/OS license. Access to
these books requires an IBM Resource Link Web userid and password, and a key
code. With your z/OS order you received a memo that includes this key code.

To obtain your IBM Resource Link Web userid and password log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed books:

1. Log on to Resource Link using your Resource Link user ID and password.

2. Click on User Profiles located on the left-hand navigation bar.

3. Click on Access Profile.

4. Click on Request Access to Licensed books.

5. Supply your key code where requested and click on the Submit button.

If you supplied the correct key code you will receive confirmation that your request
is being processed. After your request is processed, you will receive an e-mail
confirmation.

Note: You cannot access the z/OS licensed books unless you have registered for
access to them and received an e-mail confirmation informing you that your
request has been processed.

To access the licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on Library .

3. Click on zSeries .

4. Click on Software .

5. Click on z/OS.

6. Access the licensed book by selecting the appropriate element.

How to Send Your Comments
Your feedback is important in helping to provide the most accurate and high-quality
information. If you have any comments about this book or any other DFSMS
documentation:

v Send your comments by e-mail to:

– IBMLink™ from US: starpubs@us.ibm.com

– IBMLink from Canada: STARPUBS at TORIBM

– IBM Mail Exchange: USIB3VVD at IBMMAIL

– Internet: starpubs@us.ibm.com

Be sure to include the name of the book, the part number of the book, version
and product name, and if applicable, the specific location of the text you are
commenting on (for example, a page number or a table number).

v Fill out one of the forms at the back of this book and return it by mail or by giving
it to an IBM representative. If the form has been removed, address your
comments to IBM Corporation, RCF Processing Department M86/050, 5600
Cottle Road, San Jose, California 95193-0001, U.S.A.

About This Book xiii

http://www.ibm.com/servers/resourcelink

Notational Conventions
This section explains the notational conventions used in this book.

How to Read Syntax Diagrams
Throughout this library, diagrams are used to illustrate the programming syntax.
Keyword parameters are parameters that follow the positional parameters. Unless
otherwise stated, keyword parameters can be coded in any order. The following list
tells you how to interpret the syntax diagrams:

v Read the diagrams from left-to-right, top-to-bottom, following the main path line.
Each diagram begins on the left with double arrowheads and ends on the right
with two arrowheads facing each other.

�� Syntax Diagram �%

v If a diagram is longer than one line, each line to be continued ends with a single
arrowhead and the next line begins with a single arrowhead.

�� LISTDATASET
LD

data_set_name VOLUME(volume_serial) �

�
1

FILESEQ (physical_file_sequence_number)
SEQ

�%

v Required keywords and values appear on the main path line. You must code
required keywords and values.

�� REQUIRED_KEYWORD �%

If several mutually exclusive required keywords or values exist, they are stacked
vertically in alphanumeric order.

�� REQUIRED_KEYWORD_OR_VALUE_1
REQUIRED_KEYWORD_OR_VALUE_2

�%

v Optional keywords and values appear below the main path line. You can choose
not to code optional keywords and values.

��
KEYWORD

�%

If several mutually exclusive optional keywords or values exist, they are stacked
vertically in alphanumeric order below the main path line.

xiv z/OS V1R3.0 DFSMSrmm Application Programming Interface

��
KEYWORD_OR_VALUE_1
KEYWORD_OR_VALUE_2

�%

v An arrow returning to the left above a keyword or value on the main path line
means that the keyword or value can be repeated. The comma means that each
keyword or value must be separated from the next by a comma.

�� 6

,

REPEATABLE_KEYWORD �%

v An arrow returning to the left above a group of keywords or values means more
than one can be selected, or a single one can be repeated.

��

6

,

REPEATABLE_KEYWORD_OR_VALUE_1
REPEATABLE_KEYWORD_OR_VALUE_2

�%

v A word in all uppercase is a keyword or value you must spell exactly as shown.
In this example, you must code KEYWORD.

�� KEYWORD �%

If a keyword or value can be abbreviated, the abbreviation is discussed in the
text associated with the syntax diagram.

v If a diagram shows a character that is not alphanumeric (such as parentheses,
periods, commas, and equal signs), you must code the character as part of the
syntax. In this example, you must code KEYWORD=(001,0.001).

�� KEYWORD=(001,0.001) �%

v If a diagram shows a blank space, you must code the blank space as part of the
syntax. In this example, you must code KEYWORD=(001 FIXED).

�� KEYWORD=(001 FIXED) �%

v Default keywords and values appear above the main path line. If you omit the
keyword or value entirely, the default is used.

��
DEFAULT

KEYWORD
�%

About This Book xv

v A word in all lowercase italics is a variable. Where you see a variable in the
syntax, you must replace it with one of its allowable names or values, as defined
in the text.

�� variable �%

v References to syntax notes appear as numbers enclosed in parentheses above
the line. Do not code the parentheses or the number.

��
(1)

KEYWORD �%

Notes:

1 An example of a syntax note.

v Some diagrams contain syntax fragments, which serve to break up diagrams that
are too long, too complex, or too repetitious. Syntax fragment names are in
mixed case and are shown in the diagram and in the heading of the fragment.
The fragment is placed below the main diagram.

�� Reference to Syntax Fragment �%

Syntax Fragment:

1ST_KEYWORD,2ND_KEYWORD,3RD_KEYWORD

Figure 1 shows an example of a syntax diagram.

The possible valid versions of the RMM DELETEOWNER command are:
RMM DELETEOWNER owner
RMM DO owner
RMM DELETEOWNER owner NEWOWNER(new_owner)
RMM DO owner NEWOWNER(new_owner)

�� DELETEOWNER
DO

owner_ID
newowner

�%

newowner

(1)
NEWOWNER(new_owner_ID)

Notes:

1 Must be specified if the owner owns one or more volumes.

Figure 1. Example of the DFSMSrmm DELETEOWNER TSO Subcommand Syntax Diagram

xvi z/OS V1R3.0 DFSMSrmm Application Programming Interface

How to Abbreviate Commands and Operands
The TSO abbreviation convention applies for all DFSMSrmm commands and
operands. The TSO abbreviation convention requires you to specify as much of the
command name or operand as is necessary to distinguish it from the other
command names or operands.

Some DFSMSrmm keyword operands allow unique abbreviations. All unique
abbreviations are shown in the command syntax diagrams.

How to Use Continuation Characters
The symbol - is used as the continuation character in this book. You can use either
- or +.

- Do not ignore leading blanks on the continuation statement

+ Ignore leading blanks on the continuation statement

Delimiters
When you type a command, you must separate the command name from the first
operand by one or more blanks. You must separate operands by one or more
blanks or a comma. Do not use a semicolon as a delimiter because any character
you enter after a semicolon is ignored.

Character Sets
To code job control statements, use characters from the character sets in Table 1.
Table 2 on page xviii lists the special characters that have syntactical functions in
job control statements.

Table 1. Character Sets

Character Set Contents

Alphanumeric Alphabetic
Numeric

Capital A through Z
0 through 9

National
(See note)

“At” sign
Dollar sign
Pound sign

@ (Characters that can be
$ represented by hexadecimal
values X'7C', X'5B', and X'7B')

Special Comma
Period
Slash
Apostrophe
Left parenthesis
Right parenthesis
Asterisk
Ampersand
Plus sign
Hyphen
Equal sign
Blank

,
.
/
'
(
)
*
&
+
-
=

EBCDIC text EBCDIC printable character set Characters that can be represented
by hexadecimal X'40' through X'FE'

Note: The system recognizes the following hexadecimal representations of the U.S.
National characters; @ as X'7C'; $ as X'5B'; and # as X'7B'. In countries other than the
U.S., the U.S. National characters represented on terminal keyboards might generate a
different hexadecimal representation and cause an error. For example, in some countries
the $ character may generate a X'4A'.

About This Book xvii

Table 2. Special Characters Used in Syntax

Character Syntactical Function

, To separate parameters and subparameters

= To separate a keyword from its value, for example, BURST=YES

(�) To enclose subparameter list or the member name of a PDS or PDSE

& To identify a symbolic parameter, for example, &LIB

&& To identify a temporary data set name, for example, &&TEMPDS, and, to
identify an in-stream or sysout data set name, for example, &&PAYOUT

. To separate parts of a qualified data set name, for example, A.B.C., or
parts of certain parameters or subparameters, for example,
nodename.userid

* To refer to an earlier statement, for example, OUTPUT=*.name, or, in
certain statements, to indicate special functions: //label CNTL * //ddname
DD * RESTART=* on the JOB statement

’ To enclose specified parameter values which contain special characters

(blank) To delimit fields

xviii z/OS V1R3.0 DFSMSrmm Application Programming Interface

Summary of Changes

This book contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of Changes for SC26-7403-01 z/OS Version 1 Release 3
This book contains information previously presented in z/OS Version 1 Release 1
DFSMSrmm Application Programming Interface (SC26-7403-00).

The following sections summarize the changes to that information.

New Information
This edition includes the following new information:
v New structured field introducers as part of these DFSMSrmm functions:

– DFSMSrmm pooling control enhancements

– DFSMSrmm support for multiple systems and platforms

– DFSMSrmm bin management enhancements

Changed Information
The following information was changed in this edition:
v Output examples have been updated to show the new structured field
introducers.

You might notice changes in the style and structure of some content in this
book--for example, headings that are more task-oriented, notes with headings that
are more specific and clear in their intent, additional index entries for easier
information retrieval, and procedures that have a different look and format. The
changes are ongoing improvements to the consistency and retrievability of
information in our books.

© Copyright IBM Corp. 1992, 2002 xix

xx z/OS V1R3.0 DFSMSrmm Application Programming Interface

Chapter 1. Using the DFSMSrmm Application Programming
Interface

DFSMSrmm is a z/OS® feature. Use the DFSMSrmm application programming
interface (API) to read, extract, and update data in the DFSMSrmm control data set.
You can use the data to create reports or implement automation.

Use macro EDGXCI as described in “EDGXCI: Calling the DFSMSrmm Interface”
on page 3 to define a parameter list to call the DFSMSrmm application
programming interface. Use macro EDGXCI to pass any supported RMM TSO
subcommand to DFSMSrmm. See “Supported RMM TSO Subcommands” on
page 2 for a list of supported RMM TSO subcommands. Figure 3 on page 12 is an
example you can modify to communicate with the DFSMSrmm application
programming interface.

Use macro EDGXSF as described in “EDGXSF: Structured Field Definitions” on
page 76 to help you process the data that the DFSMSrmm application programming
interface returns. The DFSMSrmm application programming interface returns data
as structured fields in an output buffer that you define. Structured fields consist of
these parts.

v A structured field introducer (SFI) that introduces the type of data, length, and
characteristics of the data that the API returns,

v Data.

You can request that the API returns data in line format or field format as described
in “Requesting SFI Data Format” on page 28. You can also request standard output
or expanded output as described in “Requesting Types of Output” on page 31.

To use the DFSMSrmm application programming interface, you must have High
Level Assembler installed on your system. z/OS Planning for Installation provides
information about the level of High Level Assembler required for DFSMS.

© Copyright IBM Corp. 1992, 2002 1

Supported RMM TSO Subcommands
The DFSMSrmm API supports all the RMM TSO subcommands as shown in
Table 3.

Table 3. RMM TSO Subcommands

Group Subcommand Abbrev Function

Add ADDBIN
ADDDATASET
ADDOWNER
ADDPRODUCT
ADDRACK
ADDVOLUME
ADDVRS

AB
AD
AO
AP
AR
AV
AS

Add bin number information
Add data set information
Add owner information
Add software product information
Add shelf location information
Add volume information
Add a vital record specification

Change CHANGEDATASET
CHANGEOWNER
CHANGEPRODUCT
CHANGEVOLUME

CD
CO
CP
CV

Change data set information
Change owner information
Change software product information
Change volume information

Delete DELETEBIN
DELETEDATASET
DELETEOWNER
DELETEPRODUCT
DELETERACK
DELETEVOLUME
DELETEVRS

DB
DD
DO
DP
DR
DV
DS

Delete bin number information
Delete data set information
Delete owner information
Delete software product information
Delete shelf location information
Release a volume and delete volume
Delete a vital record specification
information

Get GETVOLUME GV Request or assign a volume

List LISTBIN
LISTCONTROL

LISTDATASET
LISTOWNER
LISTPRODUCT
LISTRACK
LISTVOLUME
LISTVRS

LB
LC

LD
LO
LP
LR
LV
LS

Display bin number information
Display PARMLIB options and control
information
Display data set information
Display owner information
Display software product information
Display shelf location information
Display volume information
Display vital record specification
information

Search SEARCHBIN
SEARCHDATASET
SEARCHPRODUCT
SEARCHRACK
SEARCHVOLUME
SEARCHVRS

SB
SD
SP
SR
SV
SS

Create a list of bin numbers
Create a list of data sets
Create a list of software products
Create a list of rack numbers
Create a list of volumes
Create a list of vital record
specifications

Refer to z/OS DFSMSrmm Guide and Reference for details on these
subcommands.

Rule: When you use the DFSMSrmm application programming interface, you must
specify the subcommand as a single, continuous string of characters rather than as
multiple input lines.

2 z/OS V1R3.0 DFSMSrmm Application Programming Interface

|
|
|

Using the EDGXCI Macro
Follow these steps to obtain information from DFSMSrmm using the EDGXCI
macro.

1. Use EDGXCI MF=(L,addr) to save space in your dynamic area for the
parameter list.

2. Save the address of an output buffer that the application programming interface
uses.

3. Load the DFSMSrmm API module, EDGXAPI, and then save the address of the
module.

4. Create the subcommand that you want to process.

5. Use the EDGXCI macro to complete the parameter list and call the DFSMSrmm
application programming interface.

6. Use EDGXCI with OPERATION=CONTINUE as needed to get more data for the
current subcommand.

7. Use EDGXCI with OPERATION=RELEASE to free resources that are obtained
by the DFSMSrmm API module.

8. Delete the EDGXAPI module that you loaded.

EDGXCI: Calling the DFSMSrmm Interface
Use the EDGXCI macro in your application program (the caller) to:

v Define a parameter list.

v Set parameters in the list.

v Change parameters in the list.

v Call the DFSMSrmm application programming interface module, EDGXAPI.

EDGXCI Environment
The requirements for the caller are:

Minimum authorization: Non-APF authorized, problem state and key (0-8).
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller must not be locked.
Control parameters: Control parameters must be in the primary address space.

EDGXCI Programming Requirements
The caller must load the DFSMSrmm API module, EDGXAPI, prior to using the
execute or standard form of EDGXCI. The caller must delete EDGXAPI when the
DFSMSrmm API is no longer needed.

The caller should also use the EDGXSF macro to define the structured fields that
are used in the output.

See “Appendix C. DFSMSrmm Application Programming Interface Mapping Macros”
on page 75 for a complete description of the EDGXCI and EDGXSF macros.

Chapter 1. Using the DFSMSrmm Application Programming Interface 3

EDGXCI Restrictions
The caller must not have functional recovery routines (FRRs) established.

EDGXCI Input Register Information
Before issuing the EDGXCI macro, ensure that the following general purpose
registers (GPRs) contain the specified information:

Register Contents
13 The address of a 72-byte standard save area in the primary

address space

Before issuing the EDGXCI macro, no information is needed in any access register
(AR) unless the access register is used in register notation for a particular
parameter or as a base register.

EDGXCI Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0 Reason code
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents that remain the same before and after
issuing a service. If the system changes the contents of registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

EDGXCI Syntax
Figure 2 on page 5 shows the syntax for the EDGXCI macro. You can use this
macro to communicate with the DFSMSrmm application programming interface.

4 z/OS V1R3.0 DFSMSrmm Application Programming Interface

EDGXCI Parameters
You can specify these parameters:

name
An optional symbol that starts in column 1. This is the name on the EDGXCI
macro call. The name must conform to the rules for an ordinary assembler
language symbol.

EDGXCI Macro

�� b EDGXCI b APIADDR=apiaddr
name

�

�
,OPERATION=BEGIN

parameters-1
,OPERATION=CONTINUE ,OUTBUFADDR=outbufaddr ,TOKEN=token
,OPERATION=RELEASE ,TOKEN=token
,OPERATION=ENDALL

�

�
,RETCODE=retcode ,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

�
,MF=S

(1) ,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)
(2)

,COMPLETE
,MF=(M ,list addr)

(3)
,NOCHECK

�%

parameters-1:

,SUBCMDADDR=subcmdaddr ,OUTBUFADDR=outbufaddr �

�
,OUTPUT=FIELDS ,EXPAND=YES

,EXPAND=NO
,OUTPUT=LINES

,TOKEN=token

Notes:

1 Only the PLISTVER parameter can be coded with MF=L.

2 When NOCHECK is specified with MF=E, all parameters are optional and the
system does not supply defaults for omitted optional parameters.

3 When NOCHECK is specified with MF=M, all parameters are optional and the
system does not supply defaults for omitted optional parameters.

Figure 2. EDGXCI Macro Syntax Diagram

Chapter 1. Using the DFSMSrmm Application Programming Interface 5

APIADDR=apiaddr
A required input parameter that contains the address of the DFSMSrmm API
load module. The calling program is responsible for loading the DFSMSrmm
API load module, saving, and then using the returned load address. Use the
MVS™ LOAD service to obtain the DFSMSrmm API address.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,EXPAND=YES

,EXPAND=NO
When OUTPUT=FIELDS and OPERATION=BEGIN are specified, EXPAND is
an optional parameter that specifies whether to expand the number of returned
data fields to be the same as for the corresponding list type of subcommand.
The default is EXPAND=YES.

,EXPAND=YES
Specify to expand the number of data fields to be the same as the
corresponding list type of subcommand.

,EXPAND=NO
Specify to not expand the number of data fields for the subcommand.

,MF=S

,MF=(L,list addr)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

,MF=(E,list addr,NOCHECK)

,MF=(M,list addr)

,MF=(M,list addr,COMPLETE)

,MF=(M,list addr,NOCHECK)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro. This builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the macro list form with the
macro execute form for applications that require reentrant code. The list form
defines an area of storage that the execute form uses to store the parameters.
Only the PLISTVER parameter can be coded with the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage
area defined by the list form and generates the macro invocation to transfer
control to the service.

Use MF=M together with the list form and execute form of the macro for service
routines that need to provide different options according to user-provided input.
Use the list form to define a storage area. Use the modify form to set the
appropriate options. Then use the execute form to call the service.

6 z/OS V1R3.0 DFSMSrmm Application Programming Interface

Recommendation: Use the modify and execute forms of EDGXCI in the
following order:

1. Use EDGXCI ...MF=(M,list-addr,COMPLETE) and specify all the required
parameters and any appropriate optional parameters.

2. Use EDGXCI ...MF=(M,list-addr,NOCHECK) and specify the parameters that
you want to change.

3. Use EDGXCI ...MF=(E,list-addr,NOCHECK) to execute the macro.

,list addr
The name of a storage area to contain the parameters. For MF=S, MF=E,
and MF=M, this can be an RS-type address or an address in register
(1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of X'0F' to force the parameter
list to a word boundary or X'0D' to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of X'0D'.

,COMPLETE
Specifies that the system should check for required parameters and supply
defaults for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

,OPERATION=BEGIN

,OPERATION=CONTINUE

,OPERATION=RELEASE

,OPERATION=ENDALL
An optional parameter that describes the processing of the current
subcommand. The default is OPERATION=BEGIN.

,OPERATION=BEGIN
Specify BEGIN to start a new subcommand.

,OPERATION=CONTINUE
Specify CONTINUE to continue the current subcommand.

,OPERATION=RELEASE
Specify when you want the token and all its associated resources to be
released.

,OPERATION=ENDALL
Specify when you want to end all operations by releasing all tokens and all
resources.

,OUTBUFADDR=outbufaddr
When OPERATION=BEGIN is specified, OUTBUFADDR=outbufaddr is a
required input parameter that contains the address of your output buffer, which
is used for both data and messages. It must be at least 4096 bytes in length.
The first four bytes of the buffer must contain the length of the buffer, including
the four bytes of the length.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,OUTBUFADDR=outbufaddr
When OPERATION=CONTINUE is specified, OUTBUFADDR=outbufaddr is a

Chapter 1. Using the DFSMSrmm Application Programming Interface 7

|
|

|
|

|
|

|

required input parameter that contains the address of your output buffer, which
is used for both data and messages. It must be at least 4096 bytes in length.
The first four bytes of the buffer must contain the length of the buffer, including
the four bytes of the length.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,OUTPUT=FIELDS

,OUTPUT=LINES
When OPERATION=BEGIN is specified, OUTPUT is an optional parameter that
specifies the format of the returned data. The default is OUTPUT=FIELDS.

,OUTPUT=FIELDS
Specify when you want data returned in field format.

,OUTPUT=LINES
Specify when you want data returned in line format. Search output is
always returned in standard form when OUTPUT=LINES is specified.

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0
An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
Specify PLISTVER on all macro forms used for a request and with the same
value on all of the macro forms. The PLISTVER values are:

v IMPLIED_VERSION which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX which allows you to change to the largest size currently possible. This
size might grow from release to release and affect the amount of storage that
your application program needs.

Recommendation: If you can tolerate the size change, always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is large enough to hold all the parameters you
might specify on the execute form, when both are assembled with the same
level of the system. In this way, MAX ensures that the parameter list does
not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:

v IMPLIED_VERSION

v MAX

v A decimal value of 0

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

8 z/OS V1R3.0 DFSMSrmm Application Programming Interface

|
|
|
|
|
|

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,SUBCMDADDR=subcmdaddr
When OPERATION=BEGIN is specified, SUBCMDADDR=subcmdaddr is a
required input parameter that contains the address of the input subcommand.
The subcommand consists of a halfword field followed by the subcommand text.
The halfword field must contain the length of the subcommand, including both
the halfword field and the subcommand text. The maximum value is 32 761.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,TOKEN=token
When OPERATION=BEGIN is specified, TOKEN=token is a required input
parameter of a 4-byte area. The DFSMSrmm API creates a token and obtains
resources for it, or the DFSMSrmm API reuses the token and the resources.

TOKEN is required even when MF=(E,label,NOCHECK) is specified, unless
OPERATION=ENDALL is also specified.

To code: Specify the RS-type address, or address in register (2)-(12), of a
4-character field.

,TOKEN=token
When OPERATION=CONTINUE is specified, TOKEN=token is a required input
parameter of a 4-byte area containing the token used to begin the
subcommand. The DFSMSrmm API uses the resources for the token to
continue the subcommand.

TOKEN is required even when MF=(E,label,NOCHECK) is specified, unless
OPERATION=ENDALL is also specified.

To code: Specify the RS-type address, or address in register (2)-(12), of a
4-character field.

,TOKEN=token
When OPERATION=RELEASE is specified, TOKEN=token is a required input
parameter of a 4-byte area containing a token. The DFSMSrmm API releases
the resources for the token, releases the token, and clears the 4-byte area.

TOKEN is required even when MF=(E,label,NOCHECK) is specified, unless
OPERATION=ENDALL is also specified.

To code: Specify the RS-type address, or address in register (2)-(12), of a
4-character field.

EDGXCI Return and Reason Codes
When the EDGXCI macro returns control to your application program:

v GPR 15 (and retcode, when you code RETCODE) contains a return code.

v GPR 0 (and rsncode, when you code RSNCODE) contains a reason code.

The EDGXCI macro returns the following types of return codes and reason codes:

v Return and reason codes that are associated with the processing of your
subcommand. These return and reason codes are the same ones that
DFSMSrmm returns when you issue a subcommand request. Refer to z/OS
DFSMSrmm Guide and Reference for more information about these return and
reason codes.

Chapter 1. Using the DFSMSrmm Application Programming Interface 9

v Return codes and reason codes that are issued by the API. The API returns:

– Return code 0 and reason code 0 when processing has completed
successfully.

– Return code 0 and reason code 4 when the output buffer is full and more
information is available.

– Any return code higher than 100 when an error has occurred.

Table 4 identifies the decimal return and reason codes.

Table 4. Return and Reason Codes for the EDGXCI Macro

Return Code Reason Code Meaning and Action

0 — Meaning : Success.

Action : Refer to the action provided with the specific reason
code.

0 0 Meaning : EDGXCI command is successfully completed.

Action : None required.

0 4 Meaning : There is more output waiting to be given to you.

Action : After you have processed the output in your output
buffer, use OPERATION=CONTINUE to get more output.

104 — Meaning : Program error. An exception condition has been
encountered, but the operation you requested was
completed. The output results might not be acceptable to
you.

Action : Refer to the action provided with the specific reason
code.

104 02 Meaning : There is nothing to CONTINUE.

Action : None required.

108 — Meaning : Program error. An error condition has been
encountered, and the operation you requested was not
successfully completed.

Action : Refer to the action provided with the specific reason
code.

108 02 Meaning : Required token is missing.

Action : You need to use TOKEN=token

108 04 Meaning : Required address of the input subcommand is
missing.

Action : You need to use SUBCMDADDR=subcmdaddr

108 06 Meaning : Required address of your output buffer is missing.

Action : Use OUTBUFADDR=outbufaddr to specify the
parameter.

108 08 Meaning : Your output buffer is less than 4096 bytes in size.

Action : Obtain storage and set its length.

10 z/OS V1R3.0 DFSMSrmm Application Programming Interface

Table 4. Return and Reason Codes for the EDGXCI Macro (continued)

Return Code Reason Code Meaning and Action

108 10 Meaning : Your output buffer is too small. The second word
in your buffer contains the size you need.

Action : Obtain the correct amount of storage and set its
length.

108 12 Meaning : OPERATION parameter is invalid.

Action : Use OPERATION= to specify the parameter; check
your program for incorrect modifying of the parameter list.

108 14 Meaning : OUTPUT parameter is invalid.

Action : Use OUTPUT= to specify the parameter; check
your program for incorrect modifying of the parameter list.

108 16 Meaning : EXPAND parameter is invalid.

Action : Use EXPAND= to specify the parameter; check
your program for incorrect modifying of the parameter list.

108 56 Meaning : The token is already in use.

Action : Use TOKEN=token to specify a token that is not in
use.

108 58 Meaning : OUTPUT=FIELDS is not supported for the
subcommand specified by SUBCMDADDR=subcmdaddr .

Action : Use OUTPUT=LINES or specify a different
subcommand.

108 60 Meaning : The length of the subcommand specified by
SUBCMDADDR=subcmdaddr is too large.

Action : Use a smaller subcommand.

112 — Meaning : Environmental error. A limit, such as a storage
limit, was exceeded. The operation you requested was not
successfully completed.

Action : Refer to the action provided with the specific reason
code.

112 02 Meaning : Unable to obtain sufficient work area storage.

Action : Remove the cause of the short-on-storage condition
or request a larger region size. Rerun your program.

116 — Meaning : System error. An error caused by the system,
rather than your program, has been encountered. The
operation you requested was not successfully completed.

Action : Refer to the action provided with the specific reason
code.

116 02 Meaning : DFSMSrmm is not installed.

Action : Ensure DFSMSrmm is installed and active before
running your program.

Chapter 1. Using the DFSMSrmm Application Programming Interface 11

Table 4. Return and Reason Codes for the EDGXCI Macro (continued)

Return Code Reason Code Meaning and Action

116 04 Meaning : A call to a system service has resulted in a
non-zero return code. DFSMSrmm has placed the return
code and the associated reason code as structured fields in
your output buffer.

Action : Retry the subcommand after the cause of the error
has been corrected or removed.

116 06 Meaning : An abnormal end has occurred.

Action : Remove the cause of the abnormal end. Rerun
your program.

EDGXCI Example
You can modify the example shown in Figure 3 to:

v Obtain space for your output buffer in your work area in dynamic storage.

v Obtain space for the parameter list in your work area in dynamic storage.

v Specify subcommands that have the following format:

– The subcommand is prefixed by a two-byte length.

– The subcommand is specified as a single input string.

v Use addresses that are pointer fields.

v Reuse the same parameter list for many requests.

v Reuse your 4-byte token area by specifying TOKEN= on all EXECUTE forms of
EDGXCI. Your 4-byte token area is updated on return from the DFSMSrmm API.

v Make the list form parameter list large enough for all the parameters you might
specify by using PLISTVER=MAX on the execute form of the EDGXCI macro.

Macro continuation characters must be entered in column 72.

YOURPGM CSECT
R0 EQU 0
R1 EQU 1
R3 EQU 3
R4 EQU 4
R9 EQU 9
R11 EQU 11
R12 EQU 12
R13 EQU 13
R15 EQU 15
* ..

USING *,R11
USING WORKDS,R12
LA R13,REGSAVE Point to register save area

* ..
* ..

LA R0,OUTBUFWK Save the
ST R0,APIOUTB@ address of output buffer

Figure 3. Communicating with the DFSMSrmm API (Part 1 of 3)

12 z/OS V1R3.0 DFSMSrmm Application Programming Interface

|

* Load the API module **

LOAD EP=EDGXAPI
ST R0,APIMOD@ Save API module address

* ..
XC MYTOKEN,MYTOKEN Ensure no token yet
LA R4,LISTV@ List volume subcmd address
BAL R9,BEGINCMD Begin the command

* ..

* Going to reuse the resources, instead of releasing**
* resources obtained by the API for the 1st BEGIN **

LA R4,SEARCHD@ Search subcmd address
BAL R9,BEGINCMD Begin the command

* ..
BAL R9,MOREDATA Get more data for search

* ..
BAL R9,RELEASE All done, release resources

* ..

* Delete the API module **

DELETE EP=EDGXAPI
* ..

** Call API to begin a new subcommand **

BEGINCMD DS 0H
CALL1 EDGXCI MF=(E,MYPL),PLISTVER=MAX, X

APIADDR=APIMOD@,OPERATION=BEGIN, X
TOKEN=MYTOKEN, X

SUBCMDADDR=(R4),OUTBUFADDR=APIOUTB@
BR R9 Return

** Call API to get more data for current subcommand **

MOREDATA DS 0H
CALL2 EDGXCI MF=(E,MYPL,NOCHECK),PLISTVER=MAX, X

OPERATION=CONTINUE,TOKEN=MYTOKEN
BR R9 Return

Figure 3. Communicating with the DFSMSrmm API (Part 2 of 3)

Chapter 1. Using the DFSMSrmm Application Programming Interface 13

** Call API to release resource such as storage and **
** loaded modules. **

RELEASE DS 0H
REL1 EDGXCI MF=(E,MYPL,NOCHECK),PLISTVER=MAX, X

OPERATION=RELEASE,TOKEN=MYTOKEN
BR R9 Return

** SEARCH DATA SET SUBCOMMAND **

SEARCHD DS 0C

DC AL2(SEARCHDL)
DC C'SEARCHDATASET'

SEARCHDL EQU *-SEARCHD
SEARCHD@ DC A(SEARCHD)

** LISTVOLUME SUBCOMMAND **

LISTV DS 0C Listv command buffer

DC AL2(LISTVL) Length of command
DC C'LISTVOLUME'

LISTVL EQU *-LISTV Length of command
LISTV@ DC A(LISTV) Address of command
* ..

** PROGRAM WORK AREA **

WORKDS DSECT
APIOUTB@ DS A Pointer to output buffer
APIMOD@ DS A Address of the API module
REGSAVE DS 18F Save area
MYTOKEN DS CL4 Token from the API

** PARAMETER LIST DEFINITION **

EDGXCI MF=(L,MYPL,0D),PLISTVER=MAX PLIST area
DS 0D

OUTBUFWK DS CL4096 Output buffer area

** STRUCTURED FIELD DEFINITIONS **

SFDEFDS DSECT

EDGXSF
END

Figure 3. Communicating with the DFSMSrmm API (Part 3 of 3)

14 z/OS V1R3.0 DFSMSrmm Application Programming Interface

Chapter 2. Programming Guidelines

When you use the DFSMSrmm API, your application program should:

v Allocate a sufficient number of token areas.

v Allocate a sufficient number of output buffers.

v Allocate a sufficient number of parameter lists.

v Consider using a different output buffer for each subcommand request. Reuse an
output buffer to begin a new subcommand request only when there is nothing in
the buffer that you need.

v Use the correct token when continuing a subcommand or when releasing a
particular set of resources.

v Reuse the resources associated with the token, especially when you are
processing hundreds or thousands of subcommands.

v Reuse a token to begin a new subcommand only when you no longer need the
information obtained from the previous request.

v Use the EDGXCI macro parameter OPERATION=CONTINUE with the correct
token to ensure you have obtained all the output data when more data is
available.

v Use the EDGXCI macro parameter OPERATION=RELEASE to release unneeded
resources associated with a token.

v Use the EDGXCI macro parameter OPERATION=ENDALL to ensure that all
resources are released. You must also set all the tokens associated with the
resources to zeros to prevent using a token that does not contain correct
information.

Specifying the Subcommand Input in EDGXCI
To obtain information from the DFSMSrmm control data set, specify a DFSMSrmm
TSO subcommand as a single input line without the RMM command, as shown in
Figure 4.

Do not specify it as an RMM command with multiple input lines, as shown in
Figure 5.

In addition, specify subcommands using fully specified subcommand operands and
their values. Avoid abbreviating the subcommands or operands because they can
change when new subcommand operands and values are added for new functions.

AV MLV001 STATUS(MASTER) EXPDT(98001) OWNER(IBMUSER) OWNERACCESS(UPDATE) RACK(ML0001)

Figure 4. Example of Specifying the DFSMSrmm API Subcommand

RMM AV MLV001 STATUS(MASTER) EXPDT(98001) OWNER(IBMUSER)-
OWNERACCESS(UPDATE) RACK(ML0001)

Figure 5. Example of Specifying the RMM TSO Subcommand

© Copyright IBM Corp. 1992, 2002 15

|
|
|

Using the CONTINUE Operation in EDGXCI
The DFSMSrmm API can return control back to your application program before
returning all the data you expect because:

v There is no more room in the output buffer for the additional data.

v The API stops after returning data for a single resource when you issue a
request using a SEARCH command and the OUTPUT=FIELDS parameter.

v There is no more data to return to your application program.

Write your application program to check the return codes and reason codes that the
DFSMSrmm API returns to your application program. To receive more data, you
need to use EDGXCI OPERATION=CONTINUE parameter.

When you issue requests specifying the LISTCONTROL subcommand or the
SEARCH type subcommands, the DFSMSrmm API issues return code 0 and
reason code 4.

v For requests specifying SEARCH type subcommands with the OUTPUT=LINES
or LISTCONTROL subcommands for both LINES and FIELDS, the output buffer
is too full to hold any more output data.

You might consider increasing the size of your output buffer for SEARCH type of
subcommands or LISTCONTROL subcommands.

v For SEARCH type subcommands with OUTPUT=FIELDS, the DFSMSrmm API
stops after all of the data for a single resource, such as a data set or volume,
has been placed in your output buffer, even though there might be room for
another resource in your output buffer.

The DFSMSrmm API issues return code 4 and reason code 2 in response to a
SEARCH type subcommand. The DFSMSrmm API issues these codes when the
search limit you set for a DFSMSrmm subcommand has been reached. The API
has placed all of the data it received from DFSMSrmm into your output buffer, but
there might be more records to search. See “Limiting the Search for a Request” on
page 51 for more information.

DFSMSrmm issues these return codes and reason codes when you have coded
OPERATION=CONTINUE and there are no more records to search or because the
search limit has been reached.

v Return code 0 and reason code 0

v Return code 4 and reason code 4

v Return code 4 and reason code 8

When you use OPERATION=CONTINUE, you might not receive more output data
or you might receive only messages in your output buffer.

See “Controlling Output from List and Search Type Requests” on page 51 for an
example of the interaction between the size of an output buffer, the amount of
output data the API returns, and the LIMIT value you set.

Using Parameter Lists
Your application can use single or multiple parameter lists For example, your
application program can use one parameter list for a SEARCH type of subcommand
and another parameter list for a CHANGE type of subcommand.

You need to decide if your application is going to:

16 z/OS V1R3.0 DFSMSrmm Application Programming Interface

v Process subcommands serially or concurrently.

v Use single or multiple parameter lists for each subcommand.

v Reuse resources (tokens).

The following is a list of major variations on using parameter lists and tokens in
your application program:

v Using a single parameter list and a single token area. See “Single Parameter
List, Single Token Area”.

v Using a single parameter list and multiple token areas. See “Single Parameter
List, Multiple Token Areas” on page 18.

v Using multiple parameter lists and a single token area. See “Multiple Parameter
List, Single Token Area” on page 21.

v Using multiple parameter lists and multiple token areas. See “Multiple Parameter
List, Multiple Token Areas” on page 22.

You can combine any of these variations to meet your application requirements.
The examples in the sections that follow use inline code segments with shortened
code lines for illustrative purposes.

Single Parameter List, Single Token Area
When you use a single parameter list and a single token:

v Only one subcommand request can be active at a time.

v An active subcommand request must be completed before beginning another
subcommand request.

In Figure 6, your application program uses a single parameter list and a single
token area. The example includes a BEGIN, CONTINUE, and RELEASE for each
subcommand request because you are not reusing resources. The token for the
second subcommand request is different from the first subcommand request
because you are not reusing any resources and need a separate token for each
request.

**
** Start the first subcommand
**

XC TOKENA,TOKENA No resources/token yet
LA R4,SUBCMD1 Point to 1st subcommand
EDGXCI MF=(E,PLIST),PLISTVER=MAX, X

APIADDR=APIMOD@,OPERATION=BEGIN, X
TOKEN=TOKENA, X
SUBCMDADDR=(R4),OUTBUFADDR=(R3)

...

Figure 6. Single Parameter List, Single Token Area (Part 1 of 2)

Chapter 2. Programming Guidelines 17

The example includes the OPERATION=RELEASE parameter. When you use
OPERATION=RELEASE, work areas that are used to contain data and pointers for
the subcommand are released and you must obtain resources for the next
subcommand request. You might improve performance by deleting the
OPERATION=RELEASE for the first subcommand. Then when you begin the
second subcommand, the DFSMSrmm API module reuses resources, such as work
areas, that it obtained for the first subcommand. Reusing resources can reduce
processing overhead associated with releasing and obtaining resources.

If you do not use OPERATION=RELEASE, when the second subcommand request
starts, all data and pointers for the first subcommand are overwritten.

For OPERATION=RELEASE, you do not specify SUBCMDADDR or
OUTBUFADDR. For OPERATION=CONTINUE, you do not specify SUBCMDADDR.

Single Parameter List, Multiple Token Areas
When you use a single parameter list and multiple token areas:

v More than one subcommand request can be active at a time.

v Only one subcommand request can be processed at any given time.

**
** Continue the subcommand
**

EDGXCI MF=(E,PLIST),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=CONTINUE, X
TOKEN=TOKENA, X
OUTBUFADDR=(R3)

...
**
** Done with the subcommand, release
**

EDGXCI MF=(E,PLIST),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=RELEASE, X
TOKEN=TOKENA

...
**
** Start the second subcommand
**

LA R4,SUBCMD2 Point to 2nd subcommand
EDGXCI MF=(E,PLIST),PLISTVER=MAX, X

APIADDR=APIMOD@,OPERATION=BEGIN, X
TOKEN=TOKENA, X
SUBCMDADDR=(R4),OUTBUFADDR=(R3)

...
**
** Continue the subcommand
**

EDGXCI MF=(E,PLIST),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=CONTINUE, X
TOKEN=TOKENA, X
OUTBUFADDR=(R3)

...
**
** Done with the subcommand, release
**

EDGXCI MF=(E,PLIST),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=RELEASE, X
TOKEN=TOKENA

Figure 6. Single Parameter List, Single Token Area (Part 2 of 2)

18 z/OS V1R3.0 DFSMSrmm Application Programming Interface

This variation allows you to continue a previous subcommand after you have
started another. You might need to use multiple token areas when your application
program is designed to support a sequence of subcommand requests like the one
that follows:

1. Use a SEARCHVOLUME subcommand to request volume information. For
example:
SEARCHVOLUME OWNER(userid) LIMIT(*)

2. Use a SEARCHDATASET subcommand to obtain data set information. For
example:
SEARCHDATASET VOLUME(volser) LIMIT(*)

3. Repeat subcommands until all information for all data sets is obtained and
passed back to your user.

Figure 7 shows the use of a single parameter list and multiple tokens to identify
work areas. The multiple token areas allow the flexibility of continuing a previous
subcommand after starting another subcommand. Use the token you obtained from
the previous subcommand when you want to continue that subcommand.

**
** Start the first subcommand
**

XC TOKEN1,TOKEN1 No resources/token yet
LA R4,SUBCMD1 Point to 1st subcommand
EDGXCI MF=(E,PLIST),PLISTVER=MAX, X

APIADDR=APIMOD@,OPERATION=BEGIN, X
TOKEN=TOKEN1, X
SUBCMDADDR=(R4),OUTBUFADDR=(R3)

...
**
** Start the second subcommand
**

XC TOKEN2,TOKEN2 No resources/token yet
LA R4,SUBCMD2 Point to 2nd subcommand
EDGXCI MF=(E,PLIST),PLISTVER=MAX, X

APIADDR=APIMOD@,OPERATION=BEGIN, X
TOKEN=TOKEN2, X
SUBCMDADDR=(R4),OUTBUFADDR=(R3)

...

Figure 7. Single Parameter List, Multiple Token Areas (Part 1 of 2)

Chapter 2. Programming Guidelines 19

Figure 7 on page 19 shows how you can reuse resources. When your application
program is finished with the first subcommand request, it can reuse the first token
to begin a third request. When that token is reused to begin a new subcommand
request, you cannot continue the previous request associated with that token.

In Figure 7 on page 19, the same output buffers are used for all subcommand
requests. As a result, all of the output data in the output buffer must be processed
before another request can be started or continued. To avoid this situation, you
might write your application program to use multiple output buffers instead of a
single output buffer.

Figure 7 on page 19 shows multiple releases using the OPERATION=RELEASE
parameter. Instead of using multiple releases, you can specify the
OPERATION=ENDALL once to free all resources associated with all tokens. See
Figure 8 for an example of this method.

Note: You do not specify the TOKEN parameter when you use
OPERATION=ENDALL. Your application program, however, is responsible for
setting all tokens to zeros to prevent them from being reused.

**
** Continue the second subcommand
**

EDGXCI MF=(E,PLIST),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=CONTINUE, X
TOKEN=TOKEN2, X
OUTBUFADDR=(R3)

...
**
** Continue the first subcommand
**

EDGXCI MF=(E,PLIST),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=CONTINUE, X
TOKEN=TOKEN1, X
OUTBUFADDR=(R3)

...
**
** Release resources for the first subcommand
**

EDGXCI MF=(E,PLIST),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=RELEASE, X
TOKEN=TOKEN1

...
**
** Release resources for the second subcommand
**

EDGXCI MF=(E,PLIST),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=RELEASE, X
TOKEN=TOKEN2

Figure 7. Single Parameter List, Multiple Token Areas (Part 2 of 2)

**
** Release all resources
**

EDGXCI MF=(E,PLIST),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=ENDALL

Figure 8. Releasing All Resources

20 z/OS V1R3.0 DFSMSrmm Application Programming Interface

|
|
|
|

Your application program might encounter a resource constraint condition like
short-on-storage before it issues the OPERATION=ENDALL.

Multiple Parameter List, Single Token Area
When you use multiple parameter lists with a single token:

v Only one subcommand can be active at a time.

v Different parameter lists can be used to:

– Begin subcommand requests.

– Continue subcommand requests.

– Release resources.

v Starting a new subcommand request ends any previous subcommand request.

Figure 9 on page 22 shows the use of multiple parameter lists and a single token
area. With a single token area, you cannot continue the first subcommand request,
even though there are multiple parameter lists. The variation in Figure 9 on page 22
prevents you from continuing the first subcommand after you begin the second
subcommand.

Chapter 2. Programming Guidelines 21

Multiple Parameter List, Multiple Token Areas
When you use multiple parameter lists and multiple token areas:

v More than one subcommand request can be active at a time.

v More than one active subcommand request can be processed at a time.

v Different parameter lists can be used to:

– Begin subcommand requests.

– Continue subcommand requests.

– Release resources.

**
** Start the first subcommand
**

XC TOKENA,TOKENA No resources/token yet
LA R4,SUBCMD1 Point to 1st subcommand
EDGXCI MF=(E,BEGINPL),PLISTVER=MAX, X

APIADDR=APIMOD@,OPERATION=BEGIN, X
TOKEN=TOKENA, X
SUBCMDADDR=(R4),OUTBUFADDR=(R3)

...
**
** Continue the subcommand
**

EDGXCI MF=(E,CONTPL),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=CONTINUE, X
TOKEN=TOKENA, X
OUTBUFADDR=(R3)

...
**
** Done with the subcommand, release
**

EDGXCI MF=(E,RELPL),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=RELEASE, X
TOKEN=TOKENA

...
**
** Start the second subcommand
**

LA R4,SUBCMD2 Point to 2nd subcommand
EDGXCI MF=(E,BEGINPL),PLISTVER=MAX, X

APIADDR=APIMOD@,OPERATION=BEGIN, X
TOKEN=TOKENA, X
SUBCMDADDR=(R4),OUTBUFADDR=(R3)

**
** Continue the subcommand
**

EDGXCI MF=(E,CONTPL),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=CONTINUE, X
TOKEN=TOKENA, X
OUTBUFADDR=(R3)

...
**
** Done with the subcommand, release
**

EDGXCI MF=(E,RELPL),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=RELEASE, X
TOKEN=TOKENA

Figure 9. Multiple Parameter Lists, Single Token Area

22 z/OS V1R3.0 DFSMSrmm Application Programming Interface

This variation lends itself to processing in re-entrant code where subroutines can be
created for commonly used code. Figure 10 shows how the same subroutines can
be used to issue and process multiple subcommand requests with each having its
own token and output buffer area.

**
** Start the first subcommand
**

XC TOKENA,TOKENA No resources/token yet
LA R2,TOKENA Point to 1st token
LA R3,OUTBUF1 Point to 1st buffer
LA R4,SUBCMD1 Point to 1st subcommand
BAS R9,BEGRTN Issue command
...

**
** Start the second subcommand
**

LA R2,TOKENB Point to 2nd token
LA R3,OUTBUF2 Point to 2nd buffer
LA R4,SUBCMD2 Point to 2nd subcommand
BAS R9,BEGRTN Issue command
...

Figure 10. Multiple Parameter Lists, Multiple Token Area (Part 1 of 2)

Chapter 2. Programming Guidelines 23

Freeing Resources
When you begin a new subcommand request, the DFSMSrmm API either obtains a
new set of resources when you provide a token set to all zeros, or reuses
resources associated with a valid, nonzero token that you provide.

The DFSMSrmm API does not free any resources or clear any tokens when it
completes processing a subcommand request. Resources are freed under these
conditions.

**
** Continue the 2nd subcommand
**

LA R2,TOKENB Point to 2nd token
BAS R9,CONRTN Continue 2nd cmd
...

**
** Continue the 1st subcommand
**

LA R2,TOKENA Point to 1st token
BAS R9,CONRTN Continue 1st cmd
...

**
** Done with the subcommands, release
**

LA R2,TOKENA Point to 1st token
BAS R9,RELTRN Release 1st token
...
LA R2,TOKENB Point to 2nd token
BAS R9,RELTRN Release 2nd token
...

BEGRTN EQU *
EDGXCI MF=(E,BEGINPL),PLISTVER=MAX, X

APIADDR=APIMOD@,OPERATION=BEGIN, X
TOKEN=(R2), X
SUBCMDADDR=(R4),OUTBUFADDR=(R3)

BR R9
...

CONRTN EQU *
**
** Continue the subcommand
**

EDGXCI MF=(E,CONTPL),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=CONTINUE, X
TOKEN=(R2), X
OUTBUFADDR=(R3)

BR R9
...

RELRTN EQU *
**
** Done with the subcommand, release
**

EDGXCI MF=(E,RELPL),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=RELEASE, X
TOKEN=(R2)

BR R9

Figure 10. Multiple Parameter Lists, Multiple Token Area (Part 2 of 2)

24 z/OS V1R3.0 DFSMSrmm Application Programming Interface

v You specify the OPERATION=RELEASE and TOKEN=token parameters to free
all resources associated with the specified token as shown in Figure 11.

Specifying TOKEN=TOKENA on the execute form of EDGXCI causes the 4-byte
TOKENA area to be set to all zeros upon return from freeing the token.

TOKEN=token is required even when you specify MF=(E,label,NOCHECK),
unless you also specify OPERATION=ENDALL. Specifying TOKEN=token causes
the 4-byte token area to be updated upon return from the DFSMSrmm API. The
token is set to all zeros by the EDGXCI macro expansion.

v You specify the OPERATION=ENDALL parameter to free all resources
associated with all tokens, as shown in Figure 12.

Note: You are responsible for setting applicable tokens to all zeros when you
specify OPERATION=ENDALL.

v Your application program ends (end-of-task occurs).

To release a resource, you need to have access to the tokens associated with the
resources you want to release. If you no longer have access to the tokens or you
have set the tokens to all zeros before you use OPERATION=RELEASE, there are
only two ways you can free the resources.

v Your application program specifies OPERATION=ENDALL to free all resources
associated with all tokens.

v Your application program ends (end-of-task occurs).

In Figure 12, the OPERATION=ENDALL parameter is specified and TOKEN is not
required.

** Done with the subcommand, setup release parmlist

EDGXCI MF=(M,RELPL,NOCHECK),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=RELEASE

** Call the DFSMSrmm API

EDGXCI MF=(E,RELPL,NOCHECK),TOKEN=TOKENA

Figure 11. TOKEN= Specified on EDGXCI

** Done with the subcommand, setup endall parmlist

EDGXCI MF=(M,RELPL,NOCHECK),PLISTVER=MAX, X
APIADDR=APIMOD@

** Call the DFSMSrmm API

EDGXCI MF=(E,RELPL,NOCHECK),OPERATION=ENDALL

Figure 12. TOKEN= Not Specified on EDGXCI

Chapter 2. Programming Guidelines 25

26 z/OS V1R3.0 DFSMSrmm Application Programming Interface

Chapter 3. Receiving Output Data in the Output Buffer

The DFSMSrmm application programming interface returns data in the output buffer
you define. The data is in the following format:

v A four-byte length field into which your application program sets the total size of
the output buffer.

v A four-byte length field that is used by DFSMSrmm when your output buffer is
too small.

v A four-byte length field containing the total size of all the output including the
bytes of the length field.

v Structured fields which consist of structured field introducers (SFI) and data.

– An SFI is a structure that separates one line or field of output data from
another. SFIs are described in “Description of Structured Fields”.

– Data in line format or field format.

Use the EDGXSF macro described in “EDGXSF: Structured Field Definitions” on
page 76 to map the output buffer header and the structured field introducers.
EDGXSF also defines values used in the output fields. Do not hardcode the offsets
because they might change in the future.

The DFSMSrmm API returns various types of output to your application program:

v Return and reason codes in registers from DFSMSrmm and the DFSMSrmm API.

v Return and reason codes from system services in structured fields.

v List header lines as formatted lines in structured fields.

v Messages as formatted lines or as message variables in structured fields.

v Report output data as formatted lines or as unformatted fields in structured fields.

The DFSMSrmm API does not return output data in the output buffer for every
subcommand you issue using the API. See “SFIs for Output Data for
Subcommands” on page 37 for information on each subcommand and the possible
output data that the API returns as structured fields in your output buffer.

Description of Structured Fields
A structured field consists of:

v A Structured Field Introducer (SFI)

v Data that follows the SFI as described below:

Part Description

SFI Structured Field Introducer. A structure with a minimum size of 8 bytes in
the following format:

Byte count Description

2 Two-byte length. The length includes the length of the SFI
(8 bytes) and the length of the data following the SFI.

3 Three-byte SFI identifier (ID)

1 One-byte SFI type modifier

1 One-byte (reserved)

1 One-byte data-type identifier

© Copyright IBM Corp. 1992, 2002 27

|

|

|

|

|

|

|
|
|
|

Data Data following the SFI which can contain actual data, no data, binary zeros,
or blank data.

See “Appendix A. Structured Field Introducers” on page 55 for descriptions of the
SFIs that the DFSMSrmm API returns.

Structured fields can appear in any order. Write your application so it skips over any
structured field it is not prepared to handle. This makes your application program
less sensitive to changes like enhancements to DFSMSrmm that introduce new or
different structured fields and sequences. You can update your application program
when it is convenient to do so rather than being forced to do so because your
application program no longer works.

We use the convention <SFI>data to describe the SFIs in the examples that follow.
<SFI>data denotes a Structured Field Introducer (SFI) that is followed by data. In
the examples, we replace the term “SFI” with its descriptive name, for example:
<data-set-name>. There is no association between the length of a particular SFI
and its descriptive name.

Requesting SFI Data Format
You determine if the DFSMSrmm API returns line format or field format data to your
application program. Line format is where fixed text and variable data are formatted
into lines suitable for displaying at a terminal or for printing, while field format is
where the output consists only of SFIs and variable data.

You can request that the data be returned in line format when you specify the
EDGXCI macro OUTPUT=LINES parameter. You can request that the data be
returned in field format by specifying the OUTPUT=FIELDS parameter.

When you specify the EDGXCI macro OUTPUT=LINES parameter, the DFSMSrmm
API returns the output lines in the same format as information returned by the
DFSMSrmm RMM TSO subcommand.

In the examples that follow, assume that there is only one data set on volume
VOL001: OWNERONE.FIELD.TEST.

Requesting Line Format
Figure 13 on page 29 is an example of the line format data that the DFSMSrmm
API returns when you specify the OUTPUT=LINES parameter. In the example, the
request specifies the RMM TSO subcommand LISTDATASET FIELD.TEST
VOLUME(VOL001). The request might produce the output that is shown in
Figure 13 on page 29. <line> is the Structured Field Introducer for each line and is
followed by the data returned from specifying the RMM LISTDATASET
subcommand.

28 z/OS V1R3.0 DFSMSrmm Application Programming Interface

|
|
|
|
|
|
|
|

Requesting Field Format
Figure 14 is an example of the field format data that the DFSMSrmm API returns
when you specify the OUTPUT=FIELDS parameter. Your request specifying
LISTDATASET FIELD.TEST VOLUME(VOL001) subcommand might also produce
the output shown in Figure 14.

<Begin DATASET Group>
<line>Data set name = RMMUSER.TSO.COMMAND1
<line>Volume = A00001 Physical file sequence number = 1
<line>Owner = RMMUSER Data set sequence = 0
<line>Create date = 11/15/2001 Create time = 04:32:14 System ID = EZU34
<line>Block size = 80 Block count = 10
<line>Percent of volume = 0 Total block count = 0
<line>Logical Record Length = 8 Record Format = FB
<line>Date last written = Date last read = 11/15/2001
<line>Job name = RMMUSERJ Last job name = RMMUSERJ
<line>Step name = READ2 Last step name = READ2
<line>Program name = Last program name = IEBGENER
<line>DD name = SYSUT1 Last DD name = SYSUT1
<line>Device number = 0590 Last Device number = 0590
<line>Management class = VRS management value =
<line>Storage group = VRS retention date =
<line>Storage class = VRS retained = NO
<line>Data class = ABEND while open = NO
<line> Catalog status = UNKNOWN
<line>Primary VRS details:
<line> Name =
<line> Job name = Type =
<line> Subchain NAME = Subchain start date =
<line>Secondary VRS details:
<line> Value or class =
<line> Job name =
<line> Subchain NAME = Subchain start date =
<line> Security Class = Description =
<End DATASET group>

Figure 13. Example of List Type of Output Using OUTPUT=LINES

<Begin DATASET group>
<DSN - data set name : 44 , character: >
<CJBN - job name : 8 , character: >
<VOL - volume serial : 6 , character: >
<OWN - owner : 8 , character: >
<DSEQ - data set sequence : 4 , bin(31): >
<DEV - device number (address) : 4 , hexadecimal: >
<FILE - physical file sequence : 4 , bin(31): >
<CDTJ - create date : 4 , packed decimal: >
<CTM - create time : 4 , packed decimal: >
<SYS - SMF system id : 8 , character: >
<BLKS - block size : 4 , bin(31): >
<BLKC - block count : 4 , bin(31): >
<LRCL - logical record length : 4 , bin(31): >
<RCFM - record format : 4 , character: >
<DC - data class : 8 , character: >
<DLWJ - date last written : 4 , packed decimal: >
<DLRJ - date last read : 4 , packed decimal: >

Figure 14. Example of Output Using OUTPUT=FIELDS (Part 1 of 2)

Chapter 3. Receiving Output Data in the Output Buffer 29

Figure 14 on page 29:

v Shows begin and end group SFIs. In this example, <Begin DATASET Group>
and <End DATASET Group>.

v Includes descriptive names used to identify Structured Field Introducers. The SFI
identifies the data type; and the long character <...> strings do not represent the
actual size of the SFIs, which are only 8 bytes in length.

v Can appear to have no data. This is because structured fields can

– Have no data (SFI only, as in this example), binary zeros, or blank characters.

– Be omitted if they have no data.

v Shows that structured fields can be order independent. For example, VOL in
Figure 29 on page 43 occurs before OWN for LISTDATASET while OWN occurs
before VOL for LISTPRODUCT in Figure 31 on page 44.

v Shows that structured fields might not be in the same order as their
corresponding positions in any line-format output.

v Shows variable-length fields.

Refer to “Appendix D. Hexadecimal Example of an Output Buffer” on page 81 for an
example of an output buffer in hexadecimal representation.

<STEP - step name : 8 , character: >
<DD - dd name : 8 , character: >
<MC - management class : 8 , character: >
<SG - storage group name : 8 , character: >
<SC - storage class : 8 , character: >
<VMV - VRS management value : 8 , character: >
<RTDJ - retention date : 4 , packed decimal: >
<VTYP - Primary VRS type : 1 , bin(8): >
<VJBN - Primary VRS jobn : 8 , character: >
<VNME - Primary VRS name : 44 , character: >
<VSCN - Primary VRS subchain name: 8 , character: >
<VSCD - Primary VRS subchain date: 4 , packed decimal: >
<VRSR - VRS retained : 1 , bin(8): >
<NME - security class name : 8 , character: >
<CLS - sec class description : 32 , character: >
<ABND - Abend while open : 1 , bin(8): >
<CTLG - Catalog status : 1 , bin(8): >
<2JBN - Secondary VRS jobnme mask: 8 , character: >
<2NME - Secondary VRS mask : 8 , character: >
<2SCN - Second. VRS subchain name: 8 , character: >
<2SCD - Second. VRS subchain date: 4 , packed decimal: >
<BLKT - Total block count : 4 , bin(31): >
<CPGM - Creating program name : 8 , character: >
<LPGM - Last used program name : 8 , character: >
<LJOB - Last used job : 8 , character: >
<LSTP - Last used step name : 8 , character: >
<LDD - Last used DD name : 8 , character: >
<LDEV - Last drive : 4 , character: >
<DPCT - Percent of volume : 1 , bin(8): >

<End DATASET group>

Figure 14. Example of Output Using OUTPUT=FIELDS (Part 2 of 2)

30 z/OS V1R3.0 DFSMSrmm Application Programming Interface

Requesting Types of Output
The DFSMSrmm API can produce standard output and expanded output depending
on the values you specify for the OUTPUT and EXPAND parameters as described
in “EDGXCI Parameters” on page 5.

The examples shown in “Requesting Standard Output” and “Requesting Expanded
Output”:

v Assume that there is only one data set on volume VOL001:
OWNERONE.FIELD.TEST.

v Use SFI data type descriptions, such as DSN for data set name.

v Show maximum length values, without the term “bytes”.

v Show the data type, such as character.

Requesting Standard Output
When you specify EXPAND=NO, your request specifying the SEARCHDATASET
VOLUME(VOL001) subcommand might produce the output that is shown in
Figure 15.

Refer to “Appendix D. Hexadecimal Example of an Output Buffer” on page 81 for a
hexadecimal representation and discussion of the contents of the output buffer
shown in Figure 15.

Requesting Expanded Output
The DFSMSrmm API can provide expanded output for the DFSMSrmm TSO RMM
SEARCHDATASET, SEARCHPRODUCT, SEARCHVOLUME, and SEARCHVRS
subcommands when you specify OUTPUT=FIELDS and EXPAND=YES or use the
default EXPAND=YES in your application program.

The DFSMSrmm API does not provide expanded data for the DFSMSrmm TSO
RMM SEARCHBIN or SEARCHRACK subcommands.

When you specify OUTPUT=FIELDS and EXPAND=YES, your SEARCHDATASET
VOLUME(VOL001) subcommand might produce the output that is shown in
Figure 16 on page 32.

<Begin DATASET group>
<DSN - data set name : 44 , character: >OWNERONE.FIELD.TEST
<VOL - volume serial : 6 , character: >VOL001
<OWN - owner : 8 , character: >OWNERONE
<CDTJ - create date : 4 , packed decimal: >x'1997117C'
<CTM - create time : 4 , packed decimal: >x'0815270C'
<FILE - phys file seq : 4 , bin(31): >x'00000001'

<End DATASET group>

Figure 15. Example of Search Type of Output Using EXPAND=NO

Chapter 3. Receiving Output Data in the Output Buffer 31

Accessing Return and Reason Codes
DFSMSrmm returns return codes and reason codes to your application program in
the general purpose registers and also as data in your output buffer as follows:

v Return codes and reason codes issued as a result of processing of your
subcommand request. Refer to z/OS DFSMSrmm Guide and Reference for
information about these codes.

v Return codes and reason codes associated with the API itself. These are the
return codes and reason codes listed in “EDGXCI Return and Reason Codes” on
page 9 for macro EDGXCI.

v Return and reason codes from system services. DFSMSrmm uses various
system services, such as catalog services, to process the subcommands from
your application program. When DFSMSrmm receives a non-zero return code
from a system service, the DFSMSrmm API places the return code and

<Begin DATASET Group>
<DSN - data set name : 44 , character: >OWNERONE.FIELD.TEST
<CJBN - job name : 8 , character: >TESTAPI
<VOL - volume serial : 6 , character: >VOL001
<OWN - owner : 8 , character: >OWNERONE
<DSEQ - data set sequence : 4 , bin(31): >x'00000001'
<DEV - device number : 4 , bin(31): >0BE0
<FILE - physical file seq : 4 , bin(31): >x'00000001'
<CDTJ - create date : 4 , packed decimal: >x'1997117C'
<CTM - create time : 4 , packed decimal: >x'0741290C'
<SYS - SMF system id : 8 , character: >9021
<BLKS - block size : 4 , bin(31): >x'00000050'
<BLKC - block count : 4 , bin(31): >x'00000005'
<LRCL - logical rcd length : 4 , bin(31): >x'00000050'
<RCFM - record format : 4 , character: >FB
<DC - data class : 8 , character: >DCCLS1
<DLWJ - date last written : 4 , packed decimal: >
<DLRJ - date last read : 4 , packed decimal: >1997117F
<STEP - step name : 8 , character: >STEP01
<DD - dd name : 8 , character: >OUTPUT
<MC - management class : 8 , character: >
<SG - storage group : 8 , character: >STG0S
<SC - storage class : 8 , character: >SCFAST
<VMV - VRS value : 8 , character: >
<RTDJ - VRS retention date : 4 , packed decimal: >
<VTYP - Primary VRS type : 1 , bin(8): >1
<VJBN - Primary VRS jobn : 8 , character: >TEST*
<VNME - Primary VRS name : 44 , character: >TESTA.**
<VSCN - Primary VRS s-chain n.: 8 , character: >VRS1
<VSCD - Primary VRS s-chain d.: 4 , packed decimal: >1997/230
<VRSR - VRS retained : 1 , bin(8): >1
<NME - security class : 8 , character: >
<CLS - secl description : 32 , character: >
<ABND - Abend while open : 1 , bin(8): >0
<CTLG - Catalog status : 1 , bin(8): >0
<2JBN - Seco. VRS jobname mask: 8 , character: >
<2NME - Secondary VRS mask : 8 , character: >MV*
<2SCN - Second. VRS s-chain n.: 8 , character: >M2
<2SCD - Second. VRS s-chain d.: 4 , packed decimal: >1997/241
<BLKT - Total block count : 4 , bin(31): >

<End DATASET Group >

Figure 16. Example of Search Type of Output Using OUTPUT=FIELDS, EXPAND=YES

32 z/OS V1R3.0 DFSMSrmm Application Programming Interface

associated reason code in your output buffer as structured fields, along with a
name to identify the service. See “System Return and Reason Code SFIs” on
page 35 for more information.

Accessing Messages and Message Variables
The DFSMSrmm API can return messages and message variables in your output
buffer. Figure 17 show how messages are returned in line format when you specify
the OUTPUT=LINES parameter and field format when you specify the
OUTPUT=FIELDS parameter.

Refer to “Messages and Message Variables SFIs” on page 36 for information about
which messages can be placed in your output buffer.

Interpreting Date Format and Time Format
DFSMSrmm dates are in packed decimal format: yyyydddC, where yyyyddd is a
Julian date and C is a standard packed-decimal sign character. The date formats
used are returned in internal format and can be interpreted as follows:

v Interpret 9999366 as PERMANENT retention date format.

v Interpret 9999365 as PERMANENT retention date format.

v Interpret 9800000 as WHILECATLG retention date format.

v Interpret 98ccccc as CYCL/ccccc retention date format.

v Interpret 0000098 as CATRETPD retention date format.

v Interpret yyyyddd as yyyy/mm/dd, yyyy/dd/mm, mm/dd/yyyy, dd/mm/yyyy,
dd/yyyy/mm, mm/yyyy/dd.

DFSMSrmm also returns time in packed decimal format: hhmmsstC, where
hhmmsst is the time in hours, minutes, seconds, and tenths of seconds and C is a
standard packed-decimal sign character.

<message line>message text
<message line>message text

or

<Begin MESSAGE group>
<message number >number
<message variable>variable

<End MESSAGE group>
<Begin MESSAGE group>

<message number >number
<message variable>variable

<End MESSAGE group>

Figure 17. Message and Message Variable Structured Fields. Message and Message
Variable Structured Fields

Chapter 3. Receiving Output Data in the Output Buffer 33

Identifying Structured Field Introducers
A structured field introducer (SFI) is a structure that identifies one line or field of
output data from another. The DFSMSrmm API returns these types of SFIs in your
output buffer:

v SFIs that begin and end a resource group as described in “Begin and End
Resource Groups”.

v SFIs that introduce a single line of output data as described in:

– “System Return and Reason Code SFIs” on page 35

– “Messages and Message Variables SFIs” on page 36

– “Add Type of Subcommands” on page 37

– “Change Type of Subcommands” on page 38

– “Delete Type of Subcommands” on page 38

– “GETVOLUME Subcommand” on page 38

– “List Type of Subcommands” on page 39

– “Search Type of Subcommands” on page 47

The following notation indicates an SFI:
<xxxx - descriptive name : data length, data type : >

where “xxxx” is a character type of mnemonic. In your application program, you
need to use the 3-byte hexadecimal identifiers for Structured Field Introducers.

“Appendix A. Structured Field Introducers” on page 55 describes all the structured
fields that the DFSMSrmm API can return to your application program.

“Appendix B. Structured Field Introducers by Subcommand” on page 73 shows all of
the Structured Field Introducers by subcommand.

The DFSMSrmm API does not return information for all subcommands. For
example, the DFSMSrmm API does not produce structured fields for a successful
ADDBIN subcommand request.

Begin and End Resource Groups
In the previous examples, you saw that output structured fields were grouped by a
pair of unique Structured Field Introducers as shown in Figure 18.

The begin and end resource group SFIs identify when output for a particular
resource, such as a data set, begins and ends. The pairs of Begin and End
Resource Group SFIs are shown in Figure 19 on page 35.

<Begin DATASET group>
<.. >data set name
<.. >volume id

<End DATASET group>

Figure 18. Begin and End Resource Group SFI Sequence. This shows the Begin and End
Resource Groups that group output data structured fields.

34 z/OS V1R3.0 DFSMSrmm Application Programming Interface

In addition to identifying the beginning and ending of output for a particular
resource, the Begin and End Resource Group SFIs shown in Figure 20 are used to
differentiate one subgroup of data from another in the output the DFSMSrmm API
returns for the LISTCONTROL, LISTVOLUME, and SEARCHVOLUME
subcommands.

Groups and subgroups, such as MESSAGE and SECCLS, are repeated as often as
necessary to differentiate resources.

System Return and Reason Code SFIs
When DFSMSrmm receives a non-zero return code from a system service, the
system return code and associated reason code are put into your output buffer as
shown in Figure 21. DFSMSrmm issues return code 116 and reason code 06 when
an error like this occurs.

The DFSMSrmm API returns the same SFIs for both line format and field format.

<Begin BIN group> <End BIN group>
<Begin CONTROL group> <End CONTROL group>
<Begin DATASET group> <End DATASET group>
<Begin MESSAGE group> <End MESSAGE group>
<Begin OWNER group> <End OWNER group>
<Begin PRODUCT group> <End PRODUCT group>
<Begin RACK group> <End RACK group>
<Begin VOLUME group> <End VOLUME group>
<Begin VRS group> <End VRS group>

Figure 19. Begin and End Resource Group SFI Pairs. This shows the pairs of Begin and End
Resource Group SFIs used to enclose output data structured fields.

<Begin ACCESS group> <End ACCESS group>
<Begin ACTIONS group> <End ACTIONS group>
<Begin CNTL group> <End CNTL group>
<Begin LOCDEF group> <End LOCDEF group>
<Begin MNTMSG group> <End MNTMSG group>
<Begin MOVES group> <End MOVES group>
<Begin OPTION group> <End OPTION group>
<Begin REJECT group> <End REJECT group>
<Begin SECCLS group> <End SECCLS group>
<Begin STATS group> <End STATS group>
<Begin STORE group> <End STORE group>
<Begin VLPOOL group> <End VLPOOL group>
<Begin VOL group> <End VOL group>

Figure 20. Begin and End Resource Group SFI Pairs for Subgroups. This shows the pairs of
Begin and End Resource Group SFIs used to differentiate subgroups of data.

<Begin SYSRETC group>
<SVCN - service name : 16 , character: >
<RTNC - return code : 4 , bin(31): >
<RSNC - reason code : 4 , bin(31): >

<End SYSRETC group>

Figure 21. System Return and Reason Codes. This shows the sequence of SFIs used when
a non-zero return code is received by DFSMSrmm from a call to a system service.

Chapter 3. Receiving Output Data in the Output Buffer 35

Messages and Message Variables SFIs
When messages or message variables are returned to you as output data, they are
put into your output buffer as structured fields as shown in Figure 22.

When you specify OUTPUT=LINES, messages issued by DFSMSrmm are placed in
your output buffer using the LINE SFI.

When you specify OUTPUT=FIELDS, only the messages listed in Table 5 are
placed in your output buffer. These messages, some of which are issued only in
conjunction with a subcommand parameter such as POOL or COUNT, are included
in the output because they contain data and codes that can be especially useful to
your application. Your application program should use the return and reason codes
that it receives rather than messages to determine whether or not the subcommand
request successful.

Table 5 lists:

v The Structured Field Introducers that follow the <MSGN> SFI

v The applicable subcommands

v A non-inclusive list of the return codes (RC) and reason codes (RSN).

Table 5. Message Related SFIs

Message SFI ID(s) Subcommand(s) RC RSN(s)

EDG3010 ENTN All SEARCH
subcommands when no
(0) entry is returned

4 8

EDG3011 ENTN All SEARCH
subcommands when 1
entry returned

0 4 0 2 and 4

EDG3012 ENTN All SEARCH
subcommands when > 1
entry returned

0 4 0 2 and 4

EDG3013 VOL AV 12 many

EDG3014 CNT AV 12 many

EDG3015 OWN VOL GV 0 0

EDG3016 RCK AV CV 0 0

EDG3017 RCK AB AR 12 18 68 70

EDG3018 CNT AB AR 12 18 68 70

<MSGL - message line : nn , character: >
<MSGL - message line : nn , character: >

or

<Begin MESSAGE group>
<MSGN - message number : 8 , character: >
<xxx - variable>

<End MESSAGE group>
<Begin MESSAGE group>

<MSGN - message number : 8 , character: >
<xxx - variable>

<End MESSAGE group>

Figure 22. SFIs for Messages and Message Variables

36 z/OS V1R3.0 DFSMSrmm Application Programming Interface

Table 5. Message Related SFIs (continued)

Message SFI ID(s) Subcommand(s) RC RSN(s)

EDG3019 RCK DB DR 12 many

EDG3020 CNT DB DR 12 many

EDG3277 FRC FRS AV CV 12 122

EDG3278 CSG AV CV 12 124

EDG3288 FRC FRS VOL CV DV 12 132

EDG3289 FRC FRS CV 12 134

EDG3292 CLIB AV CV 12 140

EDG3301 FRC FRS AV CV GV 12 152

EDG3310 CLIB CV DV 12 170

EDG3311 FRC FRS AV CV DV 12 172

EDG3314 MEDN CV 12 176

EDG3328 KEYF KEYT
TYPF TYPT

SD SV 4 12

See z/OS MVS System Messages, Vol 3 (ASB-BPX), z/OS MVS System Messages,
Vol 4 (CBD-DMO), and z/OS MVS System Messages, Vol 5 (EDG-GFS) for the
DFSMSrmm messages. For a description of messages, you may use LookAt,
described in “Using LookAt to look up message explanations” on page xii. For
DFSMSrmm return and reason codes, see z/OS DFSMSrmm Guide and Reference.

SFIs for Output Data for Subcommands
When you specify OUTPUT=LINES, the DFSMSrmm API returns output data,
except for system return and reason codes, as formatted lines in structured fields.
The structured fields are introduced by the <LINE> and <MSGL> Structured Field
Introducers as shown in Figure 23. DFSMSrmm places system return codes and
reason codes in your output buffer as described in “System Return and Reason
Code SFIs” on page 35.

When you specify OUTPUT=FIELDS, the DFSMSrmm API returns output data as
unformatted data in structured fields.

Add Type of Subcommands
The DFSMSrmm Add type of subcommands are: ADDBIN, ADDDATASET,
ADDOWNER, ADDPRODUCT, ADDRACK, ADDVOLUME, and ADDVRS. You use
these subcommands to add information to the DFSMSrmm control data set.

The DFSMSrmm API returns information when:

<Begin resource group>
<LINE - Formatted output line : nn , character: >
<LINE - Formatted output line : nn , character: >
<MSGL - Formatted output message: nn , character: >
<MSGL - Formatted output message: nn , character: >

<End resource group>

Figure 23. Formatted Lines

Chapter 3. Receiving Output Data in the Output Buffer 37

|
|

v You specify the ADDVOLUME subcommand with the POOL operand. The
DFSMSrmm API returns the rack number that is assigned to the volume as
output data as shown in Figure 24.

v When an error occurs, and then only for specific return and reason code
combinations described “Messages and Message Variables SFIs” on page 36
and “SFIs for Return and Reason Codes” on page 56.

Change Type of Subcommands
The DFSMSrmm Change type of subcommands are: CHANGEDATASET,
CHANGEOWNER, CHANGEPRODUCT,and CHANGEVOLUME. You use these
subcommands to change information in the DFSMSrmm control data set.

The DFSMSrmm API returns information when:

v You specify the CHANGEVOLUME subcommand with the POOL operand. The
DFSMSrmm API returns the rack number that is assigned to the volume as
output data as shown in Figure 25.

v When an error occurs, and then only for specific return and reason code
combinations described “Messages and Message Variables SFIs” on page 36
and “SFIs for Return and Reason Codes” on page 56.

Delete Type of Subcommands
The DFSMSrmm Delete type of subcommands are: DELETEBIN,
DELETEDATASET, DELETEOWNER, DELETEPRODUCT, DELETERACK,
DELETEVOLUME, and DELETEVRS. You use these subcommands to delete
information from the DFSMSrmm control data set.

The DFSMSrmm API returns information when an error occurs, and then only for
specific return and reason code combinations described “Messages and Message
Variables SFIs” on page 36 and “SFIs for Return and Reason Codes” on page 56.

GETVOLUME Subcommand
You use the RMM GETVOLUME subcommand to obtain a volume from
DFSMSrmm.

The DFSMSrmm API returns information when:

<Begin VOLUME group>
<Begin MESSAGE group>

<MSGN - message number : 8 , character: >
<RCK - rack or bin number : 6 , character: >

<End MESSAGE group>
<End VOLUME group>

Figure 24. SFIs for ADDVOLUME with OUTPUT=FIELDS

<Begin VOLUME group>
<Begin MESSAGE group>

<MSGN - message number : 8 , character: >
<RCK - rack or bin number : 6 , character: >

<End MESSAGE group>
<End VOLUME group>

Figure 25. SFIs for CHANGEVOLUME with OUTPUT=FIELDS

38 z/OS V1R3.0 DFSMSrmm Application Programming Interface

v The GETVOLUME request was successful. The DFSMSrmm API returns volume
information and owner information as shown in Figure 26.

v When an error occurs, and then only for specific return and reason code
combinations described “Messages and Message Variables SFIs” on page 36
and “SFIs for Return and Reason Codes” on page 56.

List Type of Subcommands
The DFSMSrmm List type of subcommands are: LISTBIN, LISTCONTROL,
LISTDATASET, LISTOWNER, LISTPRODUCT, LISTRACK, LISTVOLUME, and
LISTVRS. You use these subcommands to obtain information from the DFSMSrmm
control data set about a single resource.

The DFSMSrmm API returns output data for LIST type of subcommands as
structured fields when you specify OUTPUT=FIELDS. The Structured Field
Introducers for each type of LIST subcommand are found in:

v “LISTBIN Structured Field Introducers”

v “LISTCONTROL Structured Field Introducers” on page 40

v “LISTDATASET Structured Field Introducers” on page 43

v “LISTOWNER Structured Field Introducers” on page 44

v “LISTPRODUCT Structured Field Introducers” on page 44

v “LISTRACK Structured Field Introducers” on page 44

v “LISTVOLUME Structured Field Introducers” on page 45

v “LISTVRS Structured Field Introducers” on page 47

LISTBIN Structured Field Introducers
The Structured Field Introducers produced for the LISTBIN subcommand with
OUTPUT=FIELDS are shown in Figure 27.

<Begin VOLUME group>
<Begin MESSAGE group>

<MSGN - message number : 8 , character: >
<VOL - volume serial : 6 , character: >
<OWN - owner : 8 , character: >

<End MESSAGE group>
<End VOLUME group>

Figure 26. SFIs for GETVOLUME with OUTPUT=FIELDS

<Begin RACK or BIN group>
<RCK - rack or bin number : 6 , character: >
<VOL - volume serial : 6 , character: >
<RST - rack or bin status : 1 , bin(8): >
<LOC - location : 6 , character: >
<MEDN - media name : 8 , character: >
<MIV - moving-in volume : 6 , character: >
<MOV - moving-out volume : 6 , character: >
<OVOL - old volume : 6 , character: >

<End RACK or BIN Group>

Figure 27. SFIs for LISTBIN with OUTPUT=FIELDS

Chapter 3. Receiving Output Data in the Output Buffer 39

|
|
|

LISTCONTROL Structured Field Introducers
The Structured Field Introducers produced for the LISTCONTROL subcommand
with OUTPUT=FIELDS are shown in Figure 28.

<Begin CONTROL group>
<Begin CNTL group>

<MTP - CDS type : 1 , bin(8): >
<MDTJ - CDS create date : 4 , packed decimal: >
<MTM - CDS create time : 4 , packed decimal: >
<JRNU - journal percentage used : 2 , bin(15): >
<JRNF - JOURNALFULL parmlib value: 2 , bin(15): >
<BDTJ - last CDS backup date : 4 , packed decimal: >
<BTM - last CDS backup time : 4 , packed decimal: >
<XDTJ - expiration date : 4 , packed decimal: >
<XTM - last inven mgmt exp time : 4 , packed decimal: >
<RDTJ - last CDS extract date : 4 , packed decimal: >
<RTM - last CDS extract time : 4 , packed decimal: >
<DDTJ - last store update date : 4 , packed decimal: >
<DTM - last store update time : 4 , packed decimal: >
<SOSJ - last XPROC start date : 4 , packed decimal: >
<SOST - last XPROC start time : 4 , packed decimal: >
<VDTJ - last VRSEL date : 4 , packed decimal: >
<VTM - last VRSEL time : 4 , packed decimal: >
<LRK - # LIBRARY rack numbers : 4 , bin(31): >
<FRK - free rack numbers in lib : 4 , bin(31): >
<LBN - bin numbers in LOCAL : 4 , bin(31): >
<FLB - free bin numbers in LOCAL: 4 , bin(31): >
<DBN - bin numbers in DISTANT : 4 , bin(31): >
<FDB - free bins in DISTANT loc : 4 , bin(31): >
<RBN - # bin numbers in REMOTE : 4 , bin(31): >
<FRB - free bin nums in REMOTE : 4 , bin(31): >
<CACT - control active functions : 1 , bit(8): >
<CSDT - Catalog Synchronize date : 4 , packed decimal: >
<CSTM - Catalog Synchronize time : 4 , packed decimal: >
<FCSP - Catalog Sync in progress : 1 , bin(8): >
<CSVE - Stacked volume enabled : 1 , bin(8): >
<X100 - EDGUX100 exit status : 1 , bin(8): >
<X200 - EDGUX200 exit status : 1 , bin(8): >
<EBIN - extended bin enable statu: 1 , bin(8): >

<End CNTL group>

Figure 28. SFIs for LISTCONTROL with OUTPUT=FIELDS (Part 1 of 3)

40 z/OS V1R3.0 DFSMSrmm Application Programming Interface

|

<Begin OPTION group>
<OPM - operating mode : 1 , bin(8): >
<DRP - default retention period : 4 , bin(31): >
<MRP - maximum retention period : 4 , bin(31): >
<CRP - CATRETPD retention period: 4 , bin(31): >
<MDS - CDS data set name : 44 , character: >
<JDS - journal name : 44 , character: >
<JRNF - JOURNALFULL parmlib value: 2 , bin(15): >
<CATS - CATSYSID value : 1 , bin(8): >
<SOSP - scratch procedure name : 8 , character: >
<BKPP - backup procedure name : 8 , character: >
<IPL - data check reqd in IPL : 1 , bin(8): >
<DTE - installation date format : 1 , bin(8): >
<RCF - installation RACF support: 1 , bin(8): >
<AUD - SMF audit record number : 2 , bin(15): >
<SSM - SMF security rcd number : 2 , bin(15): >
<CDS - control data set ID : 8 , character: >
<SLM - MAXHOLD value : 2 , bin(15): >
<LCT - default lines per page : 2 , bin(15): >
<SID - RMM system ID : 8 , character: >
<BLP - BLP option : 1 , bin(8): >
<NOT - Notify option : 1 , bin(8): >
<UNC - uncatalog option : 1 , bin(8): >
<VRJ - VRS job name : 1 , bin(8): >
<MSGF - case of message text : 1 , bin(8): >
<MOP - master overwrite : 1 , bin(8): >
<ACCT - accounting source : 1 , bin(8): >
<VCHG - VRSCHANGE value : 1 , bin(8): >
<VRSL - VRSEL value : 1 , bin(8): >
<PSFX - parmlib member suffix : 2 , character: >
<VACT - VRSMIN action : 1 , bin(8): >
<VMIN - VRSMIN count value : 4 , bin(31): >
<DSPD - Disposition DD name : 8 , character: >
<DSPM - Disposition message prefi: 8 , character: >
<RTBY - Retain by : 1 , bin(8): >
<MVBY - Move by : 1 , bin(8): >
<PDA - PDA state : 1 , bin(8): >
<PDAC - PDA block count : 1 , bin(8): >
<PDAS - PDA block size : 1 , bin(8): >
<PDAL - PDA log state : 1 , bin(8): >
<TVXP - Extradays retention : 1 , bit(8): >
<SMP - System-managed tape purge: 1 , bin(8): >
<SMU - System-managed tape updat: 1 , bin(8): >
<ACS - SMS ACS support enabled : 1 , bin(8): >
<PACS - PRE ACS support enabled : 1 , bin(8): >
<RUB - reuse bin at : 1 , bin(8): >

<End OPTION group>
<Begin SECCLS group>

<SEC - security class number : 1 , bin(8): >
<NME - security class name : 8 , character: >
<SCST - sec class status : 1 , bit(8): >
<CLS - sec class description : 32 , character: >

<End SECCLS group>

Figure 28. SFIs for LISTCONTROL with OUTPUT=FIELDS (Part 2 of 3)

Chapter 3. Receiving Output Data in the Output Buffer 41

|
|
|

When there is no information for a subgroup, such as MOVES, for the
LISTCONTROL subcommand, the DFSMSrmm API returns all of the SFIs in the
subgroup with no data. For example, when there are no outstanding volume
actions, the DFSMSrmm API returns the MOVES subgroup (MFR, MST, MTO and
MTY) with no data.

When DFSMSrmm cannot return all the output data for the LISTCONTROL
subcommands in your output buffer, you must specify OPERATION=CONTINUE
after processing your output buffer to obtain the rest of the LISTCONTROL output
data.

Related Reading: See “Using the CONTINUE Operation in EDGXCI” on page 16
for additional information.

<Begin VLPOOL group>
<PID - pool prefix : 6 , character: >
<PSN - pool definition system ID: 8 , character: >
<PRF - pool definition RACF opt : 1 , bin(8): >
<PTP - pool definition pool type: 1 , bin(8): >
<XDC - expiration date check : 1 , bin(8): >
<PLN - pool name : 8 , character: >
<MEDN - media name : 8 , character: >
<PDS - pool description : 40 , character: >

<End VLPOOL group>
<Begin MNTMSG group>

<MID - mount message ID : 12 , character: >
<SMI - offset, message ID (msg) : 2 , bin(15): >
<OVL - offset to volume serial : 2 , bin(15): >
<OPL - offset to rack num/poolid: 2 , bin(15): >

<End MNTMSG group>
<Begin REJECT group>

<GRK - generic rack number : 6 , character: >
<TAC - reject prefix type : 1 , bin(8): >

<End REJECT group>
<Begin LOCDEF group>

<LDDF - location definition exist: 1 , bin(8): >
<LDLC - location name : 8 , character: >
<LDMT - location mgmt type : 1 , bin(8): >
<LDLT - location type : 1 , bin(8): >
<LDPR - location priority : 4 , bin(31): >
<LDMN - location media name : 8 , character: >

<End LOCDEF group>
<Begin ACTIONS group>

<ACT - actions on release : 1 , bit(8): >
<AST - action status : 1 , bit(8): >

<End ACTIONS group>
<Begin MOVES group>

<MFR - source location name : 8 , character: >
<MST - move status : 1 , bin(8): >
<MTO - target location name : 8 , character: >
<MTY - move type : 1 , bin(8): >

<End MOVES group>
<End CONTROL group>

Figure 28. SFIs for LISTCONTROL with OUTPUT=FIELDS (Part 3 of 3)

42 z/OS V1R3.0 DFSMSrmm Application Programming Interface

|
|
|
|
|

|
|
|
|

|
|

LISTDATASET Structured Field Introducers
The Structured Field Introducers produced for the LISTDATASET subcommand with
OUTPUT=FIELDS are shown in Figure 29.

<Begin DATASET group>
<DSN - data set name : 44 , character: >
<CJBN - job name : 8 , character: >
<VOL - volume serial : 6 , character: >
<OWN - owner : 8 , character: >
<DSEQ - data set sequence : 4 , bin(31): >
<DEV - device number (address) : 4 , hexadecimal: >
<FILE - physical file sequence : 4 , bin(31): >
<CDTJ - create date : 4 , packed decimal: >
<CTM - create time : 4 , packed decimal: >
<SYS - SMF system id : 8 , character: >
<BLKS - block size : 4 , bin(31): >
<BLKC - block count : 4 , bin(31): >
<LRCL - logical record length : 4 , bin(31): >
<RCFM - record format : 4 , character: >
<DC - data class : 8 , character: >
<DLWJ - date last written : 4 , packed decimal: >
<DLRJ - date last read : 4 , packed decimal: >
<STEP - step name : 8 , character: >
<DD - dd name : 8 , character: >
<MC - management class : 8 , character: >
<SG - storage group name : 8 , character: >
<SC - storage class : 8 , character: >
<VMV - VRS management value : 8 , character: >
<RTDJ - retention date : 4 , packed decimal: >
<VTYP - Primary VRS type : 1 , bin(8): >
<VJBN - Primary VRS jobn : 8 , character: >
<VNME - Primary VRS name : 44 , character: >
<VSCN - Primary VRS subchain name: 8 , character: >
<VSCD - Primary VRS subchain date: 4 , packed decimal: >
<VRSR - VRS retained : 1 , bin(8): >
<NME - security class name : 8 , character: >
<CLS - sec class description : 32 , character: >
<ABND - Abend while open : 1 , bin(8): >
<CTLG - Catalog status : 1 , bin(8): >
<2JBN - Secondary VRS jobnme mask: 8 , character: >
<2NME - Secondary VRS mask : 8 , character: >
<2SCN - Second. VRS subchain name: 8 , character: >
<2SCD - Second. VRS subchain date: 4 , packed decimal: >
<BLKT - Total block count : 4 , bin(31): >
<CPGM - Creating program name : 4 , bin(31): >
<LPGM - Last used program name : 8 , character: >
<LJOB - Last used job : 8 , character: >
<LSTP - Last used step name : 4 , packed decimal: >
<LDD - Last used DD name : 4 , bin(31): >
<LDEV - Last drive : 4 , bin(31): >
<DPCT - Percent of volume : 4 , bin(31): >

<End DATASET group>

Figure 29. SFIs for LISTDATASET with OUTPUT=FIELDS

Chapter 3. Receiving Output Data in the Output Buffer 43

LISTOWNER Structured Field Introducers
The Structured Field Introducers produced for the LISTOWNER subcommand with
OUTPUT=FIELDS are shown in Figure 30.

LISTPRODUCT Structured Field Introducers
The Structured Field Introducers produced for the LISTPRODUCT subcommand
with OUTPUT=FIELDS are shown in Figure 31.

LISTRACK Structured Field Introducers
The Structured Field Introducers produced for the LISTRACK subcommand with
OUTPUT=FIELDS are shown in Figure 32.

<Begin OWNER group>
<OWN - owner : 8 , character: >
<SUR - owner's surname : 20 , character: >
<FOR - owner's forename : 20 , character: >
<DPT - owner's department : 40 , character: >
<ADL - address line : 40 , character: >
<ADL - address line : 40 , character: >
<ADL - address line : 40 , character: >
<ITL - owner's internal tel num : 8 , character: >
<ETL - owner's external tele num: 20 , character: >
<EMU - owner's user ID : 8 , character: >
<EMN - owner's node : 8 , character: >
<VLN - number of volumes : 4 , bin(31): >

<End OWNER group>

Figure 30. SFIs for LISTOWNER with OUTPUT=FIELDS

<Begin PRODUCT group>
<PNUM - software product number : 8 , character: >
<VER - software product version : 6 , character: >
<OWN - owner : 8 , character: >
<PNME - product software name : 30 , character: >
<PDSC - product description : 32 , character: >
<VOL - volume serial : 6 , character: >
<RCK - rack or bin number : 6 , character: >
<FCD - product feature code : 4 , character: >
<VLN - number of volumes : 4 , bin(31): >

<End PRODUCT group>

Figure 31. SFIs for LISTPRODUCT with OUTPUT=FIELDS

<Begin RACK or BIN group>
<RCK - rack or bin number : 6 , character: >
<VOL - volume serial : 6 , character: >
<RST - rack or bin status : 1 , bin(8): >
<LOC - location : 8 , character: >
<MEDN - media name : 8 , character: >
<PID - pool prefix : 6 , character: >

<End RACK or BIN Group>

Figure 32. SFIs for LISTRACK with OUTPUT=FIELDS

44 z/OS V1R3.0 DFSMSrmm Application Programming Interface

|
|
|

LISTVOLUME Structured Field Introducers
The Structured Field Introducers produced for the LISTVOLUME subcommand with
OUTPUT=FIELDS are shown in Figure 33.

<Begin VOLUME group>
<Begin VOL group>

<VOL - volume serial : 6 , character: >
<RCK - rack or bin number : 6 , character: >
<OWN - owner : 8 , character: >
<CJBN - job name : 8 , character: >
<CDTJ - create date : 4 , packed decimal: >
<CTM - create time : 4 , packed decimal: >
<ADTJ - assigned date : 4 , packed decimal: >
<ATM - assigned time : 4 , packed decimal: >
<XDTJ - expiration date : 4 , packed decimal: >
<OXDJ - original expiration date : 4 , packed decimal: >
<RTDJ - retention date : 4 , packed decimal: >
<DSN - data set name : 44 , character: >
<VST - volume status : 1 , bit(8): >
<OCE - volume info recorded OCE : 1 , bin(8): >
<AVL - volume availability : 1 , bit(8): >
<LBL - volume label type : 1 , bit(8): >
<DEN - media density : 1 , bin(8): >
<MEDT - media type : 1 , bin(8): >
<MEDR - media recording format : 1 , bin(8): >
<MEDC - media compaction : 1 , bin(8): >
<MEDA - media special attributes : 1 , bin(8): >
<ACT - actions on release : 1 , bit(8): >
<PEND - actions pending : 1 , bit(8): >
<SG - storage group name : 8 , character: >
<LOAN - loan location : 8 , character: >
<ACN - account number : 40 , character: >
<DESC - volume description : 30 , character: >
<NME - security class name : 8 , character: >
<CLS - sec class description : 32 , character: >
<VRSI - Scratch Immediate : 1 , bit(8): >
<VRXI - Expiration date ignore : 1 , bit(8): >
<VOLT - Volume Type : 1 , bit(8): >
<LVC - Current label version : 1 , bit(8): >
<LVN - Requiredlabel version : 1 , bit(8): >
<RBYS - Retain by set : 1 , bit(8): >
<STVC - Stacked volume count : 4 , bin(31): >
<SYS - SMF System ID : 8 , character: >
<DSYS - Creation System ID1stfile: 8 , character: >

<End VOL group>
<Begin ACCESS group>

<OAC - owner access : 1 , bin(8): >
<VAC - volume access : 1 , bin(8): >
<LCID - last change user id : 8 , character: >
<VM - VM use : 1 , bin(8): >
<MVS - MVS use : 1 , bin(8): >
<UID - user id : 8 , character: >

<End ACCESS group>

Figure 33. SFIs for LISTVOLUME with OUTPUT=FIELDS (Part 1 of 2)

Chapter 3. Receiving Output Data in the Output Buffer 45

|
|

<Begin STAT group>
<DSC - data set count : 4 , bin(31): >
<DSR - data set recording : 1 , bin(8): >
<USEM - volume usage (kb) : 4 , bin(31): >
<USEC - volume use count : 4 , bin(31): >
<DLRJ - date last read : 4 , packed decimal: >
<DLWJ - date last written : 4 , packed decimal: >
<LDEV - last drive : 4 , character: >
<SEQ - volume sequence : 4 , fixed(31): >
<MEDN - media name : 8 , character: >
<PVL - previous volume : 6 , character: >
<NVL - next volume : 6 , character: >
<PNUM - software product number : 8 , character: >
<VER - software product version : 6 , character: >
<FCD - product feature code : 4 , character: >
<TRD - temporary read errors : 4 , bin(31): >
<TWT - temporary write errors : 4 , bin(31): >
<PRD - permanent read errors : 4 , bin(31): >
<PWT - permanent write errors : 4 , bin(31): >
<VCAP - volume capacity : 4 , bin(31): >
<VPCT - volume percent full : 1 , bin(8): >

<End STAT group>
<Begin STORE group>

<LOC - location : 8 , character: >
<LOCT - location type : 1 , bin(8): >
<DEST - destination : 8 , character: >
<DSTT - destination type : 1 , bin(8): >
<INTR - volume intransit status : 1 , bin(8): >
<HLOC - home location : 8 , character: >
<HLOT - home location type : 1 , bin(8): >
<OLOC - old location : 8 , character: >
<OLOT - old location type : 1 , bin(8): >
<NLOC - required location : 8 , character: >
<NLOT - required location type : 1 , bin(8): >
<SDTJ - movement tracking date : 4 , packed decimal: >
<MOVM - move mode : 1 , bin(8): >
<BIN - bin number : 6 , character: >
<BMN - bin number media name : 8 , character: >
<OBN - old bin number : 6 , character: >
<OBMN - old bin number media name: 8 , character: >
<CTNR - Container :16 , character: >
<DBIN - destination bin number : 6 , character: >
<DBMN - destination bin media nam: 8 , character: >

<End STORE group>
<End VOLUME group>

Figure 33. SFIs for LISTVOLUME with OUTPUT=FIELDS (Part 2 of 2)

46 z/OS V1R3.0 DFSMSrmm Application Programming Interface

LISTVRS Structured Field Introducers
The Structured Field Introducers produced for the LISTVRS subcommand with
OUTPUT=FIELDS are shown in Figure 34.

Search Type of Subcommands
The DFSMSrmm Search type of subcommands are: SEARCHBIN,
SEARCHDATASET, SEARCHPRODUCT, SEARCHRACK, SEARCHVOLUME, and
SEARCHVRS. You use these subcommands to obtain information from the
DFSMSrmm control data set about resources defined to DFSMSrmm.

When you specify OUTPUT=FIELDS, the DFSMSrmm API returns data for all
SEARCH type of subcommands as structured fields. DFSMSrmm returns the output
data for a single resource in your output buffer each time you call the API. You must
specify OPERATION=CONTINUE after processing your output buffer to obtain the
output data for the next resource. Continue to call the DFSMSrmm API until the
output data for all matching resources has been returned.

Related Reading: See “Using the CONTINUE Operation in EDGXCI” on page 16
for additional information.

The DFSMSrmm API returns expanded output data for the RMM TSO
SEARCHDATASET, SEARCHPRODUCT, SEARCHVOLUME, and SEARCHVRS
subcommands when you also specify the EXPAND=YES parameter.

<Begin VRS group>
<VRS - vital rcd specification : 44 , character: >
<TYP - VRS type : 1 , bit(8): >
<VJBN - Primary VRS job name : 8 , character: >
<VRC - vital record count : 2 , bin(31): >
<RET - retention type : 3 , bin(8): >
<VDD - VRS delay days : 2 , bin(15): >
<LOC - location : 8 , character: >
<SC1 - VRS store number : 4 , bin(31): >
<PRTY - priority : 4 , bin(31): >
<NVRS - next VRS name : 8 , character: >
<OWN - owner : 8 , character: >
<DESC - volume or vrs description: 30 , character: >
<DDTJ - delete date : 4 , packed decimal: >
<VANX - Next VRS Type : 1 , bit(8): >
<VRSI - Scratch Immediate : 1 , bit(8): >
<VRXI - Expiration date ignore : 1 , bit(8): >

<End VRS group>

Figure 34. SFIs for LISTVRS with OUTPUT=FIELDS

Chapter 3. Receiving Output Data in the Output Buffer 47

|
|
|
|
|
|

SEARCHBIN Structured Field Introducers
Figure 35 shows the output that DFSMSrmm returns when you specify the
SEARCHBIN subcommand and the EDGXCI macro OUTPUT=FIELDS and
EXPAND=NO parameters.

SEARCHDATASET Structured Field Introducers
Figure 36 shows the output DFSMSrmm returns when you specify the
SEARCHDATASET subcommand and the EDGXCI macro OUTPUT=FIELDS and
EXPAND=NO parameters.

The expanded output that DFSMSrmm returns when you specify the
SEARCHDATASET subcommand with the OUTPUT=FIELDS and EXPAND=YES
parameters is the same as shown in “LISTDATASET Structured Field Introducers”
on page 43 for LISTDATASET.

SEARCHPRODUCT Structured Field Introducers
Figure 37 on page 49 shows the output DFSMSrmm returns when you specify the
SEARCHPRODUCT subcommand and the EDGXCI macro OUTPUT=FIELDS and
EXPAND=NO parameters.

The expanded output that DFSMSrmm returns when you specify the
SEARCHPRODUCT subcommand with the OUTPUT=FIELDS and EXPAND=YES
parameters is the same as shown in “LISTPRODUCT Structured Field Introducers”
on page 44 for LISTPRODUCT.

<Begin RACK or BIN group>
<RCK - rack or bin number : 6 , character: >
<VOL - volume serial : 6 , character: >
<RST - rack or bin status : 1 , bin(8): >
<LOC - location : 8 , character: >
<MEDN - media name : 8 , character: >
<MIV - moving-in volume : 6 , character: >
<MOV - moving-out volume : 6 , character: >
<OVOL - old volume : 6 , character: >

<End RACK or BIN Group>

Figure 35. SFIs for SEARCHBIN with OUTPUT=FIELDS,EXPAND=NO

<Begin DATASET group>
<DSN - data set name : 44 , character: >
<VOL - volume serial : 6 , character: >
<OWN - owner : 8 , character: >
<CDTJ - create date : 4 , packed decimal: >
<CTM - create time : 4 , packed decimal: >
<FILE - physical file sequence : 4 , bin(31): >

<End DATASET group>

Figure 36. SFIs for SEARCHDATASET with OUTPUT=FIELDS,EXPAND=NO

48 z/OS V1R3.0 DFSMSrmm Application Programming Interface

|
|
|
|

SEARCHRACK Structured Field Introducers
Figure 38 shows the output DFSMSrmm returns when you specify the
SEARCHRACK subcommand and the EDGXCI macro OUTPUT=FIELDS and
EXPAND=NO parameters.

SEARCHVOLUME Structured Field Introducers
Figure 39 on page 50 shows the output DFSMSrmm returns when you specify the
SEARCHVOLUME subcommand and the EDGXCI macro OUTPUT=FIELDS and
EXPAND=NO parameters.

The expanded output that DFSMSrmm returns when you specify the
SEARCHVOLUME subcommand with the OUTPUT=FIELDS and EXPAND=YES
parameters is the same as shown in “LISTVOLUME Structured Field Introducers”
on page 45 for LISTVOLUME.

<Begin PRODUCT group>
<PNUM - software product number : 8 , character: >
<VER - software product version : 6 , character: >
<PNME - product software name : 30 , character: >
<FCD - product feature code : 4 , character: >
<VLN - number of volumes : 4 , bin(31): >
<VOL - volume serial : 6 , character: >

<End PRODUCT group>

Figure 37. SFIs for SEARCHPRODUCT with OUTPUT=FIELDS,EXPAND=NO

<Begin RACK or BIN group>
<RCK - rack or bin number : 6 , character: >
<VOL - volume serial : 6 , character: >
<RST - rack or bin status : 1 , bin(8): >
<LOC - location : 8 , character: >
<MEDN - media name : 8 , character: >
<PID - pool prefix : 6 , character: >

<End RACK or BIN Group>

Figure 38. SFIs for SEARCHRACK with OUTPUT=FIELDS,EXPAND=NO

Chapter 3. Receiving Output Data in the Output Buffer 49

|

|
|
|
|

SEARCHVRS Structured Field Introducers
Figure 40 shows the output DFSMSrmm returns when you specify the
SEARCHVRS subcommand and the EDGXCI macro OUTPUT=FIELDS and
EXPAND=NO parameters.

The expanded output that DFSMSrmm returns when you specify the SEARCHVRS
subcommand with the OUTPUT=FIELDS and EXPAND=YES parameters is the
same as shown in “LISTVRS Structured Field Introducers” on page 47 for LISTVRS.

<Begin VOLUME group>
<VOL - volume serial : 6 , character: >
<OWN - owner : 8 , character: >
<RCK - rack or bin number : 6 , character: >
<ADTJ - assigned date : 4 , packed decimal: >
<XDTJ - expiration date : 4 , packed decimal: >
<RTDJ - retention date : 4 , packed decimal: >
<LOC - location : 8 , character: >
<INTR - volume intransit status : 1 , bin(8): >
<HLOC - home location : 8 , character: >
<DSC - data set count : 4 , bin(31): >
<VST - volume status : 1 , bit(8): >
<AVL - volume availability : 1 , bit(8): >
<LBL - volume label : 1 , bit(8): >
<MEDT - media type : 1 , bin(8): >
<MEDR - media recording format : 1 , bin(8): >
<MEDC - media compaction : 1 , bin(8): >
<MEDA - media special attributes : 1 , bin(8): >
<PEND - actions pending : 1 , bit(8): >
<LOAN - loan location : 8 , character: >
<DEST - destination : 8 , character: >
<DSR - data set recording : 1 , bin(8) >
<SEQ - volume sequence : 4 , bin(31): >
<MEDN - media name : 8 , character: >
<LVC - Current label version : 1 , bit(8): >
<LVN - Required label version : 1 , bit(8): >

<End VOLUME group>

Figure 39. SFIs for SEARCHVOLUME with OUTPUT=FIELDS,EXPAND=NO

<Begin VRS group>
<VRS - vital rcd specification : 44 , character: >
<TYP - VRS type : 1 , bit(8): >
<VJBN - Primary VRS job name : 8 , character: >
<RET - retention type : 3 , bin(8): >
<LOC - location : 8 , character: >
<PRTY - priority : 4 , bin(31): >
<NVRS - next VRS name : 8 , character: >
<OWN - owner : 8 , character: >
<DDTJ - delete date : 4 , packed decimal: >
<VANX - Next VRS Type : 1 , bit(8): >
<VRSI - Scratch Immediate : 1 , bit(8): >
<VRXI - Expiration date ignore : 1 , bit(8): >

<End VRS group>

Figure 40. SFIs for SEARCHVRS with OUTPUT=FIELDS,EXPAND=NO

50 z/OS V1R3.0 DFSMSrmm Application Programming Interface

Controlling Output from List and Search Type Requests
The DFSMSrmm API returns information for a SEARCH type of subcommand or for
a LISTCONTROL subcommand based on these factors:

v Whether you want line format or field format data.

v The size of your output buffer.

v The amount of output data.

v The LIMIT operand value used for a SEARCH type of subcommand.

Limiting the Search for a Request
Use the LIMIT keyword on SEARCH type of subcommands to limit the number of
entries DFSMSrmm returns. To conserve use of system resources, such as
dynamic storage, DFSMSrmm suspends a search operation after the number of
entries matches the limit value you specify or the default limit value.

When you issue an RMM TSO Search type of subcommand, you can use the LIMIT
operand to limit the number of entries returned. DFSMSrmm ends the search
because the limit you set is reached or all available entries have been returned.

For an application program, the DFSMSrmm API causes DFSMSrmm to resume the
search. LIMIT does not limit the total number of entries that the DFSMSrmm API
returns to your application program and you cannot use LIMIT to end the
subcommand before you have received all of the entries for a subcommand.
Instead, you can specify OPERATION=CONTINUE regardless of whether limit has
been reached, or begin a new command, or use EDGXCI OPERATION=RELEASE.

Output Buffer Examples
The examples in this section illustrate the following:

v SEARCH type subcommands (and LISTCONTROL) might require your
application program to use one or more OPERATION=CONTINUE calls to the
DFSMSrmm API to receive all of the search results.

v Your application program should expect to receive more than one set of return
and reason codes. In the example, DFSMSrmm issued a different set of codes
for each output buffer:

– Return code 0, reason code 4.

– Return code 4, reason code 2.

– Return code 4, reason code 4.

Depending on the subcommand you specify, the search criteria you specify (fully
or partially qualified names), whether you specify a LIMIT value or LIMIT(*),
DFSMSrmm might also issue the following:

– Return code 0, reason code 0.

– Return code 4, reason code 8.

v Header lines for search lists are placed at the beginning of the first output buffer
of each set of buffers: The first output buffer after OPERATION=BEGIN, and the
first output buffer after OPERATION=CONTINUE in response to the return code
4 and reason code 2.

v Messages issued by DFSMSrmm and that are placed in your output buffers are
introduced by <MSGL> SFIs rather than <LINE> SFIs.

v The number of output data lines that are placed in your buffer is dependent upon
the interaction of the following:

Chapter 3. Receiving Output Data in the Output Buffer 51

– The total number of searched records (entries).

– The size of your output buffer.

– The LIMIT value used for the search.

Figure 41, Figure 42 on page 53, and Figure 43 on page 53 display the contents of
the output buffers when:

v Your application program issues an OPERATION=BEGIN, OUTPUT=LINES for a
SEARCHRACK RACK(*) LIMIT(90) subcommand.

v Your application program is using a minimum size (4096 bytes) output buffer.

v There are 130 records in the RMM inventory.

First Output Buffer
The DFSMSrmm API issues return code 0 and reason code 4 and returns control to
your application program. Your output buffer contains 78 structured fields.

In Figure 41:

v The group begins with the <Begin RACK or BIN group>.

v The structured fields between the Begin and End RACK group SFIs are all
introduced by a <LINE> SFI.

v The first two lines after the Begin RACK group are the header lines for the list of
RACK entries.

v The group ends with the <End RACK or BIN group>.

The DFSMSrmm API returns code 0 and reason code 4 which means there is more
output data, so your application program should continue the subcommand request
by using the EDGXCI macro OPERATION=CONTINUE parameter.

Second Output Buffer
After using the OPERATION=CONTINUE parameter, the DFSMSrmm API continues
processing. The DFSMSrmm API issues return code 4 and reason code 2, returns
control to your application program. Your output buffer contains 20 structured fields.

<Begin RACK or BIN group>
<LINE>Rack Medianame Volume Status Location
<LINE>------ --------- ------ -------- --------
<LINE>020610 CART3480 020610 IN USE SHELF
<LINE>020742 CART3480 020742 IN USE SHELF
<LINE>021042 CART3480 021042 IN USE SHELF

...

...
<LINE>030311 CART3480 030311 IN USE SHELF
<LINE>030318 CART3480 030318 IN USE SHELF

<End RACK or BIN group>

Figure 41. CONTINUE Example, First Output Buffer

52 z/OS V1R3.0 DFSMSrmm Application Programming Interface

In Figure 42:

v There are no header lines in the second output buffer.

v There are only 16 output data lines (the LINE SFIs).

v The last output data line is followed by two message lines introduced by the
<MSGL> SFI.

The DFSMSrmm API returns control to your application program even though there
is room in the output buffer for more data. This is because the LIMIT value of 90
was reached as indicated by the second message line.

The return code 4 and reason code 2 indicate that more entries might exist. When
you use OPERATION=CONTINUE, one of the following is likely to occur:

v When there are more entries, your application program receives control back with
more output data in your output buffer.

v When there are no other entries, your application program receives control back
with a buffer that is empty or that contains only messages.

Third (Last) Output Buffer
After the second OPERATION=CONTINUE, control is returned to your application
program with return code 4 and reason code 4, and your output buffer contains 45
structured fields.

<Begin RACK or BIN group>
<LINE>031086 CART3480 031086 IN USE SHELF
<LINE>031568 CART3480 031568 IN USE SHELF
<LINE>031599 CART3480 031599 IN USE TRON

...

...
<LINE>032848 CART3480 032848 IN USE SHELF
<LINE>032898 CART3480 032898 IN USE SHELF
<MSGL>EDG3203I SEARCH COMPLETE - MORE ENTRIES MAY EXIST
<MSGL>EDG3012I 90 ENTRIES LISTED

<End RACK or BIN group>

Figure 42. CONTINUE Example, Second Output Buffer

<Begin RACK or BIN group>
<LINE>Rack Medianame Volume Status Location
<LINE>------ --------- ------ -------- --------
<LINE>032935 CART3480 032935 IN USE SHELF
<LINE>032941 CART3480 032941 IN USE SHELF
<LINE>032946 CART3480 032946 IN USE SHELF

...

...
<LINE>070692 CART3480 070692 IN USE SHELF
<LINE>070693 CART3480 070693 IN USE SHELF
<MSGL>EDG3012I 40 ENTRIES LISTED

<End RACK or BIN group>

Figure 43. CONTINUE Example, Third (Last) Output Buffer

Chapter 3. Receiving Output Data in the Output Buffer 53

In Figure 43 on page 53:

v The first two lines after the Begin RACK group are the header lines that you saw
in the first output buffer. This is because the output is for a second search that
the DFSMSrmm API started again when you specified OPERATION=CONTINUE
in response to the return code 4 and reason code 2 that the DFSMSrmm API
returned.

v The last output data line in your output buffer is followed by a single message
line.

v The return code 4 and reason code 4 indicate that the subcommand was ended
before the LIMIT value was reached.

v The total number of entries given to your application program in the three output
buffers is 130: 74 in the first, 16 in the second, and 40 in the last output buffer.

54 z/OS V1R3.0 DFSMSrmm Application Programming Interface

Appendix A. Structured Field Introducers

This section defines the Structured Field Introducers used by the DFSMSrmm API
to identify fields in API output.

SFI Format
All Structured Field Introducers (SFIs) have the following format:

Bytes Description

0-1 2-byte length: SFI length plus data length

2-4 3-byte identifier: SFI ID (hexadecimal)

5 1-byte type modifier: Type of SFI
v 0 = 8-byte, fixed-length SFI

6 1-byte (Reserved)

7 1-byte data type: Type of data, if any, that follows the SFI
v 0=Undefined (no data)
v 1=Character (fixed-length)
v 2=Bit(8) (1-byte flag, multiple bits can be on)
v 3=Binary(8) (1-byte (hex) value)
v 4=Binary(15) (2-byte (hex) value)
v 5=Binary(31) (4-byte (hex) value)
v 6=Reserved
v 7=Character (variable-length)
v 8=Reserved
v 9=(4 bytes) Packed decimal Julian date: yyyydddC
v A=(4 bytes) Packed decimal time format: hhmmsstC

Structured Field Lengths
All structured fields have a minimum length of 8 bytes (for the Structured Field
Introducer). The length can be fixed-length or variable-length.

v Fixed-length :

The structured field has one of two length values: 8 when there is no data or the
defined maximum length. For example, if the length is defined as X'000C'
(decimal 12) for a particular structured field, the length in the SFI has a value of
either X'0008' (no data) or X'000C' (data length = 4).

v Variable-length :

The structured field can have a length that varies from 8 (no data) up to
maximum stated size. For example, because a data set name varies from 1 to 44
characters in length, the length value in an SFI for a data set name can be
X'0008' (no data), or it can vary from X'0009' to X'0034' (9 to 52 decimal).

© Copyright IBM Corp. 1992, 2002 55

SFIs for Begin and End Resource Groups
Begin and End Resource Group SFIs identify when the output for a particular
resource begins and ends. Begin and End Resource groups can used to identify
subgroups within a group. The Begin and End Resource groups are never followed
by data. The SFIs that identify Begin and End resource groups are shown in
Table 6.

Table 6. Begin and End Group Structured Field Introducers

Begin - End IDs Resource Group

X'021000' - X'021080' ACCESS - within VOLUME

X'022000' - X'022080' ACTIONS - within CONTROL

X'024000' - X'024080' CNTL - within CONTROL

X'025000' - X'025080' CONTROL

X'026000' - X'026080' DATASET

X'027000' - X'027080' LOCDEF - within CONTROL

X'028000' - X'028080' MESSAGE

X'029000' - X'029080' MNTMSG - within CONTROL

X'02A000' - X'02A080' MOVES - within CONTROL

X'02B000' - X'02B080' OPTION - within CONTROL

X'02C000' - X'02C080' OWNER

X'02D000' - X'02D080' PRODUCT

X'02E000' - X'02E080' RACK or BIN

X'02F000' - X'02F080' REJECT - within CONTROL

X'030000' - X'030080' SECCLS - within CONTROL

X'031000' - X'031080' SECLVL - within CONTROL

X'032000' - X'032080' STAT - within VOLUME

X'033000' - X'033080' STORE - within VOLUME

X'034000' - X'034080' SYSRETC

X'035000' - X'035080' VLPOOL - within CONTROL

X'036000' - X'036080' VOL - within VOLUME

X'037000' - X'037080' VOLUME

X'038000' - X'038080' VRS

SFIs for Return and Reason Codes
The SFIs shown in Table 7 on page 57 introduce return and reason codes in your
output buffer.

v The DFSMSrmm API issues the return and reason code SFIs only when the
subcommand fails. Each return and reason code pair is grouped within the
SYSRETC group. The FRC and FRS SFIs are used for return and reason codes
returned from OAM. The RSNC and RTNC SFIs are used for return and reason
codes from another system service.

When the DFSMSrmm API builds a SYSRETC group for an error reported by a
system service, look for additional information available from system messages in
places like the terminal, SYSTSPRT, job log, and SYSLOG.

56 z/OS V1R3.0 DFSMSrmm Application Programming Interface

v Subcommands are described using standard DFSMSrmm abbreviations. For
example, AV is for ADDVOLUME as shown in Table 3 on page 2.

v The SFI definitions are enclosed in single quotes (’) to signify that they are 8-byte
values, and two spaces are included in the IDs for readability.

Table 7. Reason and Return Code SFIs

SFI Number SFI
Name

SFI Length SFI Data Type Data Description Subcommand

X'400000' FRC 12 Binary(31) Function return code AV CV DV GV

X'401000' FRS 12 Binary(31) Function reason code AV CV DV GV

X'402000' RSNC 12 Binary(31) Reason code Any subcommand

X'403000' RTNC 12 Binary(31) Return code Any subcommand

X'404000' SVCN 16 Character (variable
length)

Service name Any subcommand

SFIs for Messages and Message Variables
The SFIs described in Table 8 introduce messages and message variables that the
DFSMSrmm API places in your output buffer:

v MSGL is used when OUTPUT=LINES.

v MSGN and ENTN are used when OUTPUT=FIELDS.

v The SFI definitions are enclosed in single quotes (’) to signify that they are 8-byte
values and the two spaces are inserted for readability.

The MSGN and ENTN SFIs are always grouped within the MESSAGE group. The
MSGL SFIs are grouped within the MESSAGE group when the DFSMSrmm API is
unable to determine which subcommand type the message is for. One or more SFIs
other than ENTN might follow MSGN as described in “Messages and Message
Variables SFIs” on page 36.

Table 8. Message SFIs

SFI Number SFI
Name

SFI Length SFI Data Type Data Description Subcommand

X'051000' MSGL 259 Character (variable
length)

Message line Any subcommand

X'052000' MSGN 16 Character (fixed
length)

Message number
ID

As previously
defined

X'053000' ENTN 12 Binary(31) Number of entries
Min 0, Max 10-digit

As previously
defined

X'054000' KEYF 64 Character (variable
length)

Key from SD SV

X'054200' KEYT 64 Character (variable
length)

Key to SD SV

X'055000' TYPF 16 Character (variable
length)

VOLUME or
DATASET

SD SV

X'055200' TYPT 16 Character (variable
length)

VOLUME or
DATASET

SD SV

Appendix A. Structured Field Introducers 57

SFIs for Subcommand Output Data
The SFIs described in Table 9 introduce subcommand output data in your output
buffer. These SFIs are always grouped within a pair of Begin and End Resource
group SFIs.

The following notation is used:

v Subcommands are described using standard DFSMSrmm abbreviations. For
example, LV is for LISTVOLUME and SS is for SEARCHVRS as described in
Table 3 on page 2.

v The (e) following a search type of subcommand abbreviation means the
expanded output is available if you specify EXPAND=YES. The absence of (e)
means the SFI is used for both EXPAND=NO and EXPAND=YES.

v The range of two-byte and four-byte numbers is denoted by the minimum
expected value and the maximum number of digits the number is expected to
have. For example: “Min 1, Max 4-digit” means the minimum expected value of
the number is one and the maximum expected number of digits in the number is
four.

v The SFI definitions are enclosed in single quotes (’) to signify that they are 8-byte
values and the two spaces are inserted for readability. Bit data (flags) values are
also enclosed in single quotes.

Table 9. Command SFIs

SFI Number SFI
Name

SFI Length SFI Data Type Data Description Subcommand

X'800500' ABND 9 Binary(8) Abend while open
0=NO 1=YES

LD SD(e)

X'800800' ACCT 9 Binary(8) Accounting source
0=JOB 1=STEP

LC

X'801000' ACN 48 Character (variable
length)

Account number LV SV(e)

X'801800' ACS 9 Binary(8) SMSACS
0=NO 1=YES

LC

X'802000' ACT 9 Bit(8) Actions on release
’80’=SCRATCH
’40’=REPLACE ’20’=INIT
’10’=ERASE
’08’=RETURN
’04’=NOTIFY

LC LV SV(e)

X'803001' ADL 48 Character (variable
length)

Address line
ID is incremented by one
for each SFI

LO

X'804000' ADTJ 12 Packed decimal
Julian date format

Assigned date LV SV

X'805000' AST 9 Bit(8) Action status
’80’=PENDING
’40’=CONFIRMED
’20’=COMPLETE
’10’=UNKNOWN

LC

X'806000' ATM 12 Packed decimal time
format

Assigned time LV SV(e)

X'807000' AUD 10 Binary(8) SMF audit record
number: 128-155

LC

58 z/OS V1R3.0 DFSMSrmm Application Programming Interface

|||||
|
|

Table 9. Command SFIs (continued)

SFI Number SFI
Name

SFI Length SFI Data Type Data Description Subcommand

X'808000' AVL 9 Bit(8) Volume availability
’40’=PENDREL
’20’=VITALRCD
’08’=ONLOAN
’04’=OPEN

LV SV

X'809000' BDTJ 12 Packed decimal
Julian date format

Last control data set
backup date

LC

X'80A000' BIN 14 Character (fixed
length)

6-character alphameric
bin number

LV SV(e)

X'80B000' BKPP 16 Character (Variable
length)

Backup procedure name LC

X'80C000' BLKC 12 Binary(31) Block count: Min 0, Max
5-digit

LD SD(e)

X'80D000' BLKS 12 Binary(31) Block size: Min 0, Max
5-digit

LD SD(e)

X'80D030' BLKT 12 Binary(31) Total block count LD SD(e)

X'80E000' BLP 9 Binary(8) BLP option:
0=RMM 1=NORMM

LC

X'80F000' BMN 16 Character (variable
length)

Bin number media name LV SV(e)

X'810000' BTM 12 Packed decimal time
format

Last control data set
backup time

LC

X'811000' CACT 9 Bit(8) Control active functions
’80’=BACKUP
’40’=RESTORE
’20’=VERIFY
’10’=EXPROC
’08’=EXTRACT
’04’=DSTORE
’02’=VRSEL

LC

X'811800' CATS 9 Binary(8) CATSYSID value 0=SET
1=NOTSET 2=*

LC

X'812000' CDS 16 Character (variable
length)

Control data set identifier LC

X'813000' CDTJ 12 Packed decimal
Julian date format

Create date LD LV SD SV(e)

X'814000' CJBN 16 Character (variable
length)

Job name LD LV SD(e) SV(e)

X'815000' CLIB 16 Character (variable
length)

Current library name AV CV DV

X'816000' CLS 40 Character (variable
length)

Security class
description

LC LD LV SD(e)
SV(e)

X'817000' CNT 12 Binary(31) Bin, rack, or volume
count: Min 0, Max 5-digit

AB AR AV DB DR

X'817820' CPGM 16 Character (fixed
length)

Creating program name LD SD(e)

Appendix A. Structured Field Introducers 59

Table 9. Command SFIs (continued)

SFI Number SFI
Name

SFI Length SFI Data Type Data Description Subcommand

X'818000' CRP 12 Binary(31) CATRETPD retention
period: Min 0, Max
4-digit

LC

X'818800' CSDT 12 Packed decimal
Julian date

Catalog synchronize
date

LC

X'819000' CSG 16 Character (variable
length)

Current storage group
name

AV CV

X'819400' CSTM 12 Packed decimal time
date

Catalog synchronize time LC

X'819600' CSVE 9 Binary(8) Stacked volume enable
status:
0=None
1=Enabled
2=Disabled
3=Mixed

LC

X'819800' CTLG 9 Binary(8) Catalog status:
0=UNKNOWN 1=NO
2=YES

LD SD(e)

X'81A000' CTM 12 Packed decimal time
format

Create time LD LV SD SV(e)

X'81A300' CTNR 24 Character (variable
length)

In container LV STORE

X'81A600' DBIN 14 Character (fixed
length)

Numeric: 0–999999 or 6
alphanumeric character
destination bin number

LV

X'81A700' DBMN 16 Character (fixed
length)

8 character destination
bin media name

LV

X'81B000' DBN 12 Binary(31) Bin numbers in DISTANT
location: Min 0, Max
6-digit

LC

X'81C000' DC 16 Character (variable
length)

Data class name LD SD(e)

X'81D000' DD 16 Character (variable
length)

DD name LD SD(e)

X'81E000' DDTJ 12 Packed decimal
Julian date format

Delete date or last store
update date

LC LS SS

X'81F000' DEN 9 Binary(8) Media density:
0=UNDEFINED 1=1600
2=6250 3=3480
4=COMPACT

LV SV(e)

X'820000' DESC 38 Character (variable
length)

Volume or VRS
description

LS LV SS(e) SV(e)

X'821000' DEST 16 Character (variable
length)

Destination name LV SV

X'822000' DEV 12 Character (fixed
length)

Device number LD SD(e)

X'823000' DLRJ 12 Packed decimal
Julian date format

Date last read LD LV SD(e) SV(e)

60 z/OS V1R3.0 DFSMSrmm Application Programming Interface

||||
|
|
|
|

|

||||
|
|
|
|

Table 9. Command SFIs (continued)

SFI Number SFI
Name

SFI Length SFI Data Type Data Description Subcommand

X'824000' DLWJ 12 Packed decimal
Julian date format

Date last written LD LV SD(e) SV(e)

X'825000' DNM 52 Character (variable
length)

Data set name mask LC

X'825E00' DPCT 9 Binary(8) Percent of volume LD SD(e)

X'826000' DPT 48 Character (variable
length)

Owner’s department LO

X'827000' DRP 12 Binary(31) Default retention period:
Min 0, Max 4-digit

LC

X'828000' DSC 12 Binary(31) Data set count: Min 0,
Max 4-digit

LV SV

X'829000' DSEQ 12 Binary(31) Data set sequence: Min
0, Max 4-digit

LD SD(e)

X'82A000' DSN 52 Character (variable
length)

Data set name LD LV SD SV(e)

X'82A500' DSPD 16 Character (variable
length)

Disposition DD name LC

X'82AA00' DSPM 16 Character (variable
length)

Disposition message
prefix

LC

X'82B000' DSR 9 Binary(8) Data set recording:
0=OFF 1=ON

LV SV

X'82B200' DSTT 9 Binary(8) Destination type
0=SHELF
1=STORE_BUILTIN_BINS
2=MANUAL
3=AUTO
4=STORE_BINS
5=STORE_NOBINS

LV

X'82C000' DTE 9 Binary(8) Installation date format:
1=A 2=E 3=I 4=J

LC

X'82D000' DTM 12 Packed decimal time
format

Last store update run
time

LC

X'82D500' EBIN 9 Binary(8) Extended bin
enable status
0=DISABLED
1=ENABLED

LC

X'82E000' EMN 16 Character (variable
length)

Owner’s node LO

X'82F000' EMU 16 Character (variable
length)

Owner’s user ID LO

X'830000' ETL 28 Character (variable
length)

Telephone number LO

X'831000' FCD 12 Character (variable
length)

Feature code LP LV SP SV(e)

X'831800' FCSP 9 Binary(8) Catalog synchronize in
progress:
0=NO 1=YES

LC

Appendix A. Structured Field Introducers 61

|||||
|
|
|
|
|
|

|

|||||
|
|
|

|

Table 9. Command SFIs (continued)

SFI Number SFI
Name

SFI Length SFI Data Type Data Description Subcommand

X'832000' FDB 12 Binary(31) Free bins in DISTANT
location Min 0, Max
6-digit

LC

X'833000' FILE 12 Binary(31) Physical file sequence
Min 1, Max 4-digit

LD SD

X'834000' FLB 12 Binary(31) Free bin numbers in
LOCAL location:
Min 0, Max 6-digit

LC

X'835000' FOR 28 Character (variable
length)

Owner’s forename LO

X'836000' FRB 12 Binary(31) Free bin numbers in
REMOTE location:
Min 0, Max 6-digit

LC

X'837000' FRK 12 Binary(31) Free rack numbers in
library:
Min 0, Max 10-digit

LC

X'838000' GRK 14 Character (fixed
length)

Generic rack number =
reject prefix

LC

X'839000' HLOC 16 Character (variable
length)

Home location LV SV

X'839200' HLOT 9 Binary(8) Home location type
0=SHELF
2=MANUAL
3=AUTO

LV

X'83A000' INTR 9 Binary(8) Volume intransit status:
0=NO 1=YES

LV SV

X'83B000' IPL 9 Binary(8) Date check required on
IPL:
0=NO 1=YES

LC

X'83C000' ITL 16 Character (variable
length)

Telephone number LO

X'83D000' JDS 52 Character (variable
length)

Journal name LC

X'83E000' JRNF 10 Binary(15) JOURNALFULL parmlib
value:
0 - 99

LC

X'83F000' JRNU 10 Binary(15) Journal percentage
used:
0 - 100

LC

X'840000' LBL 9 Bit(8) Volume label type:
’20’=NL ’10’=AL ’08’=SL
’02’=BLP ’01’=UL

LV SV

X'841000' LBN 12 Binary(31) Bin numbers in LOCAL
location Min 0, Max
6-digit

LC

X'842000' LCID 16 Last change user ID Character (variable
length)

LV SV(e)

62 z/OS V1R3.0 DFSMSrmm Application Programming Interface

|||||
|
|
|

|

Table 9. Command SFIs (continued)

SFI Number SFI
Name

SFI Length SFI Data Type Data Description Subcommand

X'843000' LCT 10 Binary(15) Default lines per page
Min 10, Max 3-digit

LC

X'844000' LDDF 9 Binary(8) Location definition exists:
0=NO 1=YES

LC

X'843B00' LDD 16 Character (fixed
length)

Last used DD name LD SD(e)

X'845000' LDEV 16 Character (fixed
length)

Last drive LD SD(e) LV SV(e)

X'846000' LDLC 16 Character (variable
length)

Location name LC

X'847000' LDLT 9 Binary(8) Location type: 0=SHELF
1=AUTO 2=MANUAL
3=STORE

LC

X'848000' LDMN 16 Character (variable
length)

Location media name LC

X'849000' LDMT 9 Binary(8) Location management
type: 0=UNDEFINED
1=BIN 2=NOBINS

LC

X'84A000' LDPR 12 Binary(31) Location priority: Min 0,
Max 4-digit

LC

X'84B000' LINE 264 Character (variable
length)

Output data line All list and search
subcommands

X'84B420' LJOB 16 Character (fixed
length)

Last used job name LD SD(e)

X'84C000' LOAN 16 Character (fixed
length)

Loan location LV SV

X'84D000' LOC 16 Character (fixed
length)

Location LB LR LS LV SB
SR SS SV

X'84E000' LOCT 9 Binary(8) Location type 0=SHELF
1=STORE_BUILTIN_BINS
2=MANUAL 3=AUTO
4=STORE_BINS
5=STORE_NOBINS
6=IN CONTAINER

LV SV(e)

X'84E760' LPGM 16 Character (fixed
length)

Last used program name LD SD(e)

X'84F000' LRCL 12 Binary(31) Logical record length:
Min 0, Max 5-digit

LD SD(e)

X'850000' LRK 12 Binary(31) Library rack numbers:
Min 0, Max 10-digit

LC

X'850370' LSTP 16 Character (variable
length)

Last used step name LD SD(e)

Appendix A. Structured Field Introducers 63

Table 9. Command SFIs (continued)

SFI Number SFI
Name

SFI Length SFI Data Type Data Description Subcommand

X'850500' LVC 9 Binary(8) Current label version:
0=No version specified
1=Label version 1
specified 3=Label
version 3 specified
4=Label version 4
specified

LV SV

X'850A00' LVN 9 Binary(8) Required label version:
0=No version specified
3=Label version 3
specified 4=Label
version 4 specified

LV SV

X'851000' MC 16 Character (variable
length)

Management class LD SD(e)

X'852000' MDS 52 Character (variable
length)

Control data set name LC

X'853000' MDTJ 12 Packed decimal
Julian date format

Control data set create
date

LC

X'854000' MEDA 9 Binary(8) Media special attributes:
0=NONE 1=READCOMP

LV SV

X'855000' MEDC 9 Binary(8) Media compaction
0=UNDEFINED 1=NO
2=YES

LV SV

X'856000' MEDN 16 Character (variable
length)

Media name CV LC LB LR LV
SB SR SV

X'857000' MEDR 9 Binary(8) Recording technology:
0=Non-cartridge
1=18TRK 2=36TRK
3=128TRK 4=256TRK

LV SV

X'858000' MEDT 9 Binary(8) Media type:
0=UNDEFINED 1=CST
2=ECCST 3=HPCT
4=EHPCT

LV SV

X'859000' MFR 16 Character (variable
length)

Source location name LC

X'85A000' MID 20 Character (variable
length)

Mount message ID LC

X'85A500' MIV 14 Character (fixed
length)

Moving-in volume LB SB

X'85A900' MOV 14 Character (fixed
length)

Moving-out volume LB SB

X'85B000' MOVM 9 Binary(8) Move mode: 0=AUTO
1=MANUAL

LV SV(e)

X'85C000' MOP 9 Binary(8) Master overwrite: 1=ADD
2=LAST 3=MATCH
4=USER

LC

64 z/OS V1R3.0 DFSMSrmm Application Programming Interface

||||
|
||

||||
|
||

Table 9. Command SFIs (continued)

SFI Number SFI
Name

SFI Length SFI Data Type Data Description Subcommand

X'85D000' MRP 12 Binary(31) Maximum retention
period: Min 0, Max
4-digit -1 (negative)
means unlimited
retention.

LC

X'85E000' MSGF 9 Binary(8) Message text case:
0=MIXED 1=UPPER

LC

X'85F000' MST 9 Binary(8) Move status:
0=UNKNOWN
1=PENDING
2=CONFIRMED
3=COMPLETE

LC

X'860000' MTM 12 Packed decimal time
format

Control data set create
time

LC

X'861000' MTO 16 Character (variable
length)

Target location name,
installation defined
name, SHELF, or SMS
library name

LC

X'862000' MTP 9 Binary(8) Control data set type:
0=MASTER

LC

X'862800' MTY 9 Binary(8) Move type: 0=NOTRTS
1=RTS

LC

X'862B00' MVBY 9 Binary(8) Move by: 0=VOLUME
1=SET

LC

X'863000' MVS 9 Binary(8) MVS use 0=NO 1=YES LV SV(e)

X'865000' NLOC 16 Character (variable
length)

Required location LV SV(e)

X'865200' NLOT 9 Binary(8) Required location type
0=SHELF
1=STORE_BUILTIN_BINS
2=MANUAL 3=AUTO
4=STORE_BINS
5=STORE_NOBINS

LV

X'866000' NME 16 Character (variable
length)

Security class name LC LD LV SD(e)
SV(e)

X'866800' NOT 9 Binary(8) User notification: 0=NO
1=YES

LC

X'867000' NVL 14 Character (fixed
length)

Next volume serial LV SV(e)

X'868000' NVRS 16 Character (variable
length)

Next VRS name LS SS

X'869000' OAC 9 Binary(8) Owner access 0=READ
1=UPDATE 2=ALTER

LV SV(e)

X'86A000' OBMN 16 Character (variable
length)

Old bin number media
name

LV SV(e)

X'86B000' OBN 14 Character (fixed
length)

Old bin number LV SV(e)

Appendix A. Structured Field Introducers 65

|||||
|
|
|
|
|

|

Table 9. Command SFIs (continued)

SFI Number SFI
Name

SFI Length SFI Data Type Data Description Subcommand

X'86B800' OCE 9 Binary(8) Volume information
recorded at O/C/EOV
0=NO 1=YES

LV SV(e)

X'86C000' OLOC 16 Character (variable
length)

Old location LV SV(e)

X'86C200' OLOT 9 Binary(8) Old location type
0=SHELF
1=STORE_BUILTIN_BINS
2=MANUAL 3=AUTO
4=STORE_BINS
5=STORE_NOBINS
6=IN_CONTAINER

LV

X'86D000' OPL 10 Binary(15) Position of rack number
or pool ID Min 1, Max
3-digit

LC Position in the
message.

X'86E000' OPM 9 Binary(8) Operating mode 1=M
2=R 3=W 4=P

LC

X'86F000' OVL 10 Binary(15) Position of volume serial
number: Min 1, Max
3-digit

LC Position in the
message.

X'86F500' OVOL 14 Character (fixed
length)

Old volume LB SB

X'870000' OWN 16 Character (variable
length)

Owner GV LD LO LP LS
LV SD(e) SP SS
SV

X'871000' OXDJ 12 Packed decimal
Julian date format

Original expiration date LV SV(e)

X'871800' PACS 9 Binary(8) PREACS
0=NO 1=YES

LC

X'871E00' PDA 9 Binary(8) PDA state:
0=Off
1=On
2=None

LC

X'871E10' PDAC 9 Binary(8) PDA block count:
Numeric 2-255

LC

X'871E30' PDAL 9 Binary(8) PDA log state:
0=Off
1=On

LC

X'871E90' PDAS 9 Binary(8) PDA block size: Numeric
1-31

LC

X'872000' PDS 48 Character (variable
length)

Pool description LC

X'873000' PDSC 40 Character (variable
length)

Product description LP SP(e)

66 z/OS V1R3.0 DFSMSrmm Application Programming Interface

|||||
|
|
|
|
|
|

|

||||
|
||

|||||
|
|

Table 9. Command SFIs (continued)

SFI Number SFI
Name

SFI Length SFI Data Type Data Description Subcommand

X'874000' PEND 9 Bit(8) Actions pending:
’80’=SCRATCH
’40’=REPLACE ’20’=INIT
’10’=ERASE
’08’=RETURN
’04’=NOTIFY

LV SV

X'875000' PID 14 Character (variable
length)

Pool prefix LC LR SR

X'876000' PLN 16 Character (variable
length)

Pool name LC

X'877000' PNME 38 Character (variable
length)

Software product name LP SP

X'878000' PNUM 16 Character (variable
length)

Software product number LP LV SP SV(e)

X'879000' PRD 12 Binary(31) Permanent read errors:
Min 0, Max 5-digit

LV SV(e)

X'87A000' PRF 9 Binary(8) Pool definition RACF® (A
component of the
Security Server for z/OS)
option:
0=NO
1=YES

LC

X'87B000' PRTY 12 Binary(31) Priority: Min 0, Max
4-digit

LS SS

X'87C000' PSFX 10 Character (fixed
length)

Parmlib member suffix LC

X'87D000' PSN 16 Character (variable
length)

Pool definition system ID LC

X'87E000' PTP 9 Binary(8) Pool definition pool type:
0=SCRATCH 1=RACK

LC

X'87F000' PVL 14 Character (fixed
length)

Previous volume: 1 - 6
character

LV SV(e)

X'880000' PWT 12 Binary(31) Permanent write errors:
Min 0, Max 5-digit

LV SV(e)

X'881000' RBN 12 Binary(31) Number of bin numbers
in REMOTE location:
Min 0, Max 6-digit

LC

X'881200' RBYS 9 Binary(8) Retain by set:
0=No 1=Yes

LV SV(e)

X'882000' RCF 9 Binary(8) Installation RACF
support: 1=N 2=P 3=A

LC

X'883000' RCFM 12 Character (variable
length)

RECFM LD SD(e)

X'884000' RCK 14 Character (fixed
length)

Rack or bin number AB AR AV CV DB
DR LB LP LR LV
SB SP(e) SR SV

X'886000' RDTJ 12 Packed decimal
Julian date format

Last control data set
extract date

LC

Appendix A. Structured Field Introducers 67

||||
|
||

Table 9. Command SFIs (continued)

SFI Number SFI
Name

SFI Length SFI Data Type Data Description Subcommand

X'888000' RET 11 Binary(8) Retention type 1st byte:
1=RETAIN_WHILE_CATALOGED
2nd byte:
1=RETAIN_UNTIL_EXPIRED
3rd byte: 1=CYCLES
2=DAYS 3=REFDAYS
4=VOLUMES 5=EXTRA
DAYS 6=BY DAYS
CYCLE

LS SS

X'88A000' RST 9 Binary(8) Rack or bin status
0=EMPTY 1=FREE
2=INUSE

LB LR SB SR

X'88B900' RTBY 9 Binary(8) Retain by: 0=VOLUME
1=SET

LC

X'88C000' RTDJ 12 Packed decimal
Julian date format

Retention date LD LV SD(e) SV

X'88E000' RTM 12 Packed decimal time
format

Last control data set
extract time

LC

X'88E500' RUB 9 Binary(8) Reuse bin at
0=CONFIRMMOVE
1=STARTMOVE

LC

X'890000' SC 16 Character (variable
length)

Storage class name LD SD(e)

X'892000' SCST 9 Bit(8) Security class status
’80’=SMF ’40’=MSGOPT
’20’=ERASE

LC

X'894000' SC1 12 Binary(31) Storenumber Min 1, Max
5-digit

LS SS(e)

X'895000' SDTJ 12 Packed decimal
Julian date format

Movement tracking date LV SV(e)

X'896000' SEC 9 Binary(8) Security class number
Min 0, Max 255

LC

X'898000' SEQ 12 Binary(31) Volume sequence Min 1,
Max 4-digit

LV

X'89A000' SG 16 Character (variable
length)

Storage group name LD LV SD(e) SV(e)

X'89B000' SID 16 Character (variable
length)

DFSMSrmm system ID LC

X'89C000' SLM 10 Binary(15) MAXHOLD value Min 10,
Max 500

LC

X'89E000' SMI’ 10 Binary(15) Offset to message ID
Min 0, Max 3-digit

LC

X'89E210' SMP 9 Binary(8) System-managed tape
purge:
0=NO 1=YES 2=ASIS

LC

68 z/OS V1R3.0 DFSMSrmm Application Programming Interface

|||||
|
|

|

Table 9. Command SFIs (continued)

SFI Number SFI
Name

SFI Length SFI Data Type Data Description Subcommand

X'89E220' SMU 9 Bit(8) System-managed tape
update:
20=Command
40=Scratch
80=Exits
N/A

LC

X'89F000' SOSJ 12 Packed decimal
Julian date format

Last expiration
processing start date

LC

X'8A0000' SOSP 16 Character (variable
length)

Scratch procedure name LC

X'8A1000' SOST 12 Packed decimal time
format

Last expiration
processing start time

LC

X'8A2000' SSM 10 Binary(15) SMF security record
number 128-155 =
record number

LC

X'8A3000' STEP 16 Character (variable
length)

Step name LD SD(e)

X'8A3800' STVC 12 Binary(31) Count of volumes
stacked on a stacked
volume

LV VOL SV(e)

X'8A4000' SUR 28 Character (variable
length)

Surname LO

X'8A5000' SYS 16 Character (variable
length)

SMF System ID LD SD(e)

X'8A6000' TAC 9 Binary(8) Reject type 0=ANYUSE
1=OUTPUT

LC

X'8A7000' TRD 12 Binary(31) Temporary read errors
Min 0, Max 5-digit

LV SV(e)

X'8A7900' TVXP 9 Binary(8) Extradays retention:
0=RELEASE
1=EXPIRE
2=NONE

LC

X'8A8000' TWT 12 Binary(31) Temporary write errors:
Min 0, Max 5-digit

LV SV(e)

X'8A9000' TYP 9 Bit(8) VRS type: ’80’=GDG
’40’=PSEUDGDG
’20’=DSNAME
’10’=VOLUME
’08’=NAME

LS SS(e)

X'8AB001' UID 16 Character (variable
length)

User ID ID is
incremented by one for
each SFI

LV SV(e)

X'8AC000' UNC 9 Binary(8) Uncatalog option: 0=N
1=Y 2=S

LC

X'8AD000' USEC 12 Binary(31) Volume use count: Min
0, Max 5-digit

LV SV(e)

X'8AE000' USEM 12 Binary(31) Volume usage (KB): Min
0, Max 10-digit

LV SV(e)

Appendix A. Structured Field Introducers 69

Table 9. Command SFIs (continued)

SFI Number SFI
Name

SFI Length SFI Data Type Data Description Subcommand

X'8AF001' VAC 9 Binary(8) Volume access:
0=NONE 1=READ
2=UPDATE

LV SV(e)

X'8B0000' VACT 9 Binary(8) VRSMIN action: 0=FAIL
1=INFO 2=WARN

LC

X'8B0800' VANX 9’ Binary(8) Next VRS type:
0=Undefined 1=Next
2=And

LS SS

X'8B0B00' VCAP 12 Binary(31) Volume capacity LV SV(e)

X'8B1000' VCHG 9 Binary(8) VRSCHANGE value:
0=INFO 1=VERIFY

LC

X'8B2000' VDD 10 Binary(15) VRS delay days: Min 0,
Max 99

LS SS(e)

X'8B3000' VDTJ 12 Packed decimal time
format

Last inventory
management processing
date

LC

X'8B4000' VER 14 Character (variable
length)

Software produce
version, release,
modification vvrrmm

LP LV SP SV(e)

X'8B5000' VJBN 16 Character (variable
length)

Primary VRS job name LD LS SD(e) SS

X'8B6000' VLN 12 Binary(31) Number of volumes: Min
0, Max 3-digit

LO LP SP

X'8B7000' VM 9 Binary(31) VM use: 0=NO 1=YES LV SV(e)

X'8B8000' VMIN 12 Binary(31) VRSMIN count value:
Min 0, Max 6-digit

LC

X'8B9000' VMV 16 Character (variable
length)

VRS management value LD SD(e)

X'8BA000' VNME 52 Character (variable
length)

Primary VRS name LD SD(e)

X'8BC000' VOL 14 Character (fixed
length)

1 - 6 characters volume
serial

AV CV GV LB LD
LP LR LV SB SD
SP SR SV

X'8BC200' VOLT 9 Binary(8) Volume type: 0=physical
volume 1=logical volume
2=stacked

LV VOL

X'8BC300' VPCT 9 Binary(8) Volume percent full LV SV(e)

X'8BD000' VRC 12 Binary(31) Vital record count: Min 1,
Max 5-digit

LS SS(e)

X'8BE000' VRJ 9 Binary(8) VRS job name: 1 or 2 LC

X'8BF000' VRS 52 Character (variable
length)

Vital record specification
name

LS SS

X'8BF500' VRSI 9 Binary(8) Release action scratch
immediate: 0=NO 1=YES

LS LV SS SV(e)

X'8BFA00' VRSL 9 Binary(8) VRSEL value: 0=OLD,
1=NEW

LC

70 z/OS V1R3.0 DFSMSrmm Application Programming Interface

||||
|
|
|
|
|
|

|||||
|
|

|

Table 9. Command SFIs (continued)

SFI Number SFI
Name

SFI Length SFI Data Type Data Description Subcommand

X'8C0000' VRSR 9 Binary(8) VRS retained status:
0=NO 1=YES

LD SD(e)

X'8C0800' VRXI 9 Binary(8) Expiration date ignore:
0=NO 1=YES

LV LS SS SV(e)

X'8C1000' VSCD 12 Packed decimal
Julian date format

Primary VRS subchain
start date

LD SD(e)

X'8C1800' VSCN 16 Character (variable
length)

Primary VRS subchain
name

LD SD(e)

X'8C2000' VST 9 Bit(8) Volume status:
’80’=MASTER
’40’=SCRATCH
’20’=USER ’10’=INIT
’08’=ENTRY

LV SV

X'8C3000' VTM 12 Packed decimal time
format

Last inventory
management VRS time

LC

X'8C4000' VTYP 9 Binary(8) Matching VRS type:
0=UNDEFINED
1=DATASET 2=SMSMC
3=VRSMV 4=DSNMV
5=DSNMC

LD SD(e)

X'8C5000' XDC 9 Binary(8) Expiration date check:
0=NO 1=YES
2=OPERATOR

LC

X'8C6000' XDTJ 12 Packed decimal
Julian date format

Expiration date LC LV SV

X'8C7000' XTM 12 Packed decimal time
format

Last inventory
management expiration
time

LC

X'8C7800' X100 9 Binary(8) EDGUX100 installation
exit status:
0=No exit
1=Enabled
2=Disabled

LC

X'8C7801' X200 9 Binary(8) EDGUX200 installation
exit status:
0=No exit
1=Enabled
2=Disabled

LC

X'8C8000' 2JBN 16 Character (variable
length)

Secondary VRS jobname
mask

LD SD(e)

X'8C9000' 2NME 16 Character (variable
length)

Secondary VRS mask LD SD(e)

X'8CA000' 2SCD 12 Packed decimal
Julian date format

Secondary VRS
subchain start date

LD SD(e)

X'8CB000' 2SCN 16 Character (variable
length)

Secondary VRS
subchain name

LD SD(e)

Appendix A. Structured Field Introducers 71

72 z/OS V1R3.0 DFSMSrmm Application Programming Interface

Appendix B. Structured Field Introducers by Subcommand

Table 10 lists the structured field introducers by DFSMSrmm TSO subcommand.

The RMM SEARCHDATASET, RMM SEARCHPRODUCT, RMM SEARCHVOLUME,
and RMM SEARCHVRS subcommands return different sets of SFIs depending on if
you specify the EDGXCI macro EXPAND=YES or EXPAND=NO parameter. When
you specify the EXPAND=YES parameter, these subcommands return the same
information as their corresponding RMM LIST subcommands: RMM LISTDATASET,
RMM LISTPRODUCT, RMM LISTVOLUME, and RMM LISTVRS.

Table 10. Structured Field Introducers by Subcommand

Subcommand Structured Field Introducers

ADDBIN CNT ENTN MSGL MSGN RCK RSNC RTNC SVCN

ADDDATASET ENTN MSGL MSGN RSNC RTNC SVCN

ADDOWNER ENTN MSGL MSGN RSNC RTNC SVCN

ADDPRODUCT ENTN MSGL MSGN RSNC RTNC SVCN

ADDRACK CNT ENTN MSGL MSGN RCK RSNC RTNC SVCN

ADDVOLUME CLIB CNT CSG ENTN FRC FRS MSGL MSGN RCK RSNC RTNC
SVCN VOL

ADDVRS ENTN MSGL MSGN RSNC RTNC SVCN

CHANGEDATASET ENTN MSGL MSGN RSNC RTNC SVCN

CHANGEOWNER ENTN MSGL MSGN RSNC RTNC SVCN

CHANGEPRODUCT ENTN MSGL MSGN RSNC RTNC SVCN

CHANGEVOLUME CLIB CSG ENTN FRC FRS MEDN MSGL MSGN RCK RSNC RTNC
SVCN

DELETEBIN CNT ENTN MSGL MSGN RCK RSNC RTNC SVCN

DELETEDATASET ENTN MSGL MSGN RSNC RTNC SVCN

DELETEOWNER ENTN MSGL MSGN RSNC RTNC SVCN

DELETEPRODUCT ENTN MSGL MSGN RSNC RTNC SVCN

DELETERACK CNT ENTN MSGL MSGN RCK RSNC RTNC SVCN

DELETEVOLUME CLIB ENTN FRC FRS MSGL MSGN RSNC RTNC SVCN

DELETEVRS ENTN MSGL MSGN RSNC RTNC SVCN

GETVOLUME ENTN FRC FRS MSGL MSGN OWN RSNC RTNC SVCN VOL

LISTBIN ENTN LINE LOC MIV MOV MEDN MSGL MSGN OVOL RCK RSNC
RST RTNC SVCN VOL

LISTCONTROL ACCT ACS ACT AST AUD BDTJ BKPP BLP BTM CACT CATS CDS
CLS CRP CSDT CSTM CSVE DBN DDTJ DNM DRP DSPD DSPM
DTE DTM EBIN ENTN FCSP FDB FLB FRB FRK GRK IPL JDS
JRNF JRNU LBN LCT LDDF LDLC LDLT LDMN LDMT LDPR LINE
LOCT LRK MDS MDTJ MEDN MFR MID MOP MRP MSGF MSGL
MSGN MST MTM MTO MTP MTY MVBY NME NOT OPL OPM OVL
PACS PDA PDAC PDAL PDAS PDS PID PLN PRF PSFX PSN PTP
RBN RCF RDTJ RSNC RTBY RTM RTNC RUB SCST SEC SID SLM
SMI SMP SMU SOSJ SOSP SOST SSM SVCN TAC TVXP UNC
VACT VCHG VDTJ VMV VRJ VRSL VTM V1 XDC XDTJ XTM X100
X200

© Copyright IBM Corp. 1992, 2002 73

|
|
|
|
|
|

|

|

|

|
|

Table 10. Structured Field Introducers by Subcommand (continued)

Subcommand Structured Field Introducers

LISTDATASET ABND BLKC BLKS BLKT CDTJ CJBN CLS CPGM CTLG CTM DC
DD DEV DLRJ DLWJDPCT DSEQ DSN ENTN FILE LINE LPGM
LRCL MC MSGL MSGN NME OWN RCFM RSNC RTDJ RTNC SC
SG STEP SVCN SYS VJBN VNME VOL VRSR VSCD VSCN VTYP
2JBN 2NME 2SCD 2SCN

LISTOWNER ADL DPT EMN EMU ENTN ETL FOR ITL LINE MSGL MSGN OWN
RSNC RTNC SUR SVCN VLN

LISTPRODUCT ENTN FCD LINE MSGL MSGN OWN PDSC PNME PNUM RCK
RSNC RTNC SVCN VER VLN VOL

LISTRACK ENTN LINE LOC MEDN MSGL MSGN PID RCK RSNC RST RTNC
SVCN VOL

LISTVOLUME ACN ACT ADTJ ATM AVL BIN BMN CDTJ CJBN CLS CTM CTNR
DBIN DBMN DEN DESC DEST DLRJ DLWJ DSC DSN DSR DSTT
ENTN FCD HLOC HLOT INTR LBL LCID LDEV LINE LOAN LOC
LOCT LVC LVN MEDA MEDC MEDN MEDR MEDT MOVM MSGL
MSGN MVS NLOC NLOT NME NVL OAC OBMN OBN OCE OLOC
OLOT OWN OXDJ PEND PNUM PRD PVL PWT RBYS RCK RSNC
RTDJ RTNC SDTJ SEQ SG STVC SVCN TRD TWT UID USEC
USEM VAC VCAP VER VM VMIN VOL VOLT VPCT VRSI VRXI VST
XDTJ

LISTVRS DESC DDTJ ENTN LINE LOC MSGL MSGN NVRS OWN PRTY RET
RSNC RTNC SC1 SVCN TYP VANX VDD VJBN VRC VRS VRSI
VRXI

SEARCHBIN ENTN LINE LOC MEDN MIV MOV MSGL MSGN OVOL RCK RSNC
RST RTNC SVCN VOL

SEARCHDATASET CDTJ CTM DSN ENTN FILE KEYF KEYT LINE MSGL MSGN OWN
RSNC RTNC SVCN VOL

SEARCHDATASET(EXPAND=YES) The same SFIs as the LISTDATASET subcommand.

SEARCHPRODUCT ENTN FCD LINE MSGL MSGN OWN PNME PNUM RSNC RTNC
SVCN VER VLN VOL

SEARCHPRODUCT(EXPAND=YES) The same SFIs as the LISTPRODUCT subcommand.

SEARCHRACK ENTN LINE LOC MEDN MSGL MSGN PID RCK RSNC RST RTNC
SVCN VOL

SEARCHVOLUME ADTJ AVL DESC DEST DSC DSR ENTN HLOC INTR KEYF KEYT
LBL LINE LOAN LOC LVC LVN MEDA MEDC MEDN MEDR MEDT
MSGL MSGN OWN PEND RCK RSNC RTDJ RTNC SVCN TYPF
TYPT VOL VST XDTJ

SEARCHVOLUME(EXPAND=YES) The same SFIs as the LISTVOLUME subcommand.

SEARCHVRS DDTJ ENTN LINE LOC MSGL MSGN NVRS OWN PRTY RET RSNC
RTNC SVCN VANX VJBN VRS VRSI VRXI

SEARCHVRS(EXPAND=YES) The same SFIs as the LISTVRS subcommand.

74 z/OS V1R3.0 DFSMSrmm Application Programming Interface

|

|
|

|
|

|

|

Appendix C. DFSMSrmm Application Programming Interface
Mapping Macros

DFSMSrmm API macros can be used to generate mappings: This section
discusses:

v The parameter list generated by the list form of the EDGXCI macro as shown in
Figure 44 “EDGXCI: Parameter List”

v The structured field definitions generated by the EDGXSF macro as shown in
“EDGXSF: Structured Field Definitions” on page 76

EDGXCI: Parameter List
The mapping of the parameter list, which is generated by the list form of the
EDGXCI macro, is a Product-sensitive Programming Interface.

The EDGXCI mapping macro is provided for information only. Although the fields
and values of the parameter list are shown here, your application program should
not directly access and modify the parameter list. Always use macro EDGXCI.

MYPL DS 0D ++ EDGXCI PARM LIST
MYPL_XVERSION DS XL1 ++ INPUT XVERSION
MYPL_XOPERATION DS XL1 ++ XOPERATION
MYPL_XOPERATION_BEGIN EQU 0 ++ XOPERATION.BEGIN KEYWORD
MYPL_XOPERATION_CONTINUE EQU 1 ++ XOPERATION.CONTINUE KEYWORD
MYPL_XOPERATION_RELEASE EQU 2 ++ XOPERATION.RELEASE KEYWORD
MYPL_XOPERATION_ENDALL EQU 3 ++ XOPERATION.ENDALL KEYWORD
MYPL_XOUTPUT DS XL1 ++ XOUTPUT
MYPL_XOUTPUT_LINES EQU 0 ++ XOUTPUT.LINES KEYWORD
MYPL_XOUTPUT_FIELDS EQU 1 ++ XOUTPUT.FIELDS KEYWORD
MYPL_XEXPAND DS XL1 ++ XEXPAND
MYPL_XEXPAND_YES EQU 0 ++ XEXPAND.YES KEYWORD
MYPL_XEXPAND_NO EQU 1 ++ XEXPAND.NO KEYWORD
MYPL_XAPIADDR DS A ++ XAPIADDR
MYPL_XOUTBUFADDR DS A ++ XOUTBUFADDR
MYPL_XSUBCMDADDR DS A ++ XSUBCMDADDR
MYPL_XTOKEN DS CL4 ++ XTOKEN
MYPL_XRSV0001 DS CL8 ++ RESERVED XRSV0001
MYPL_XRSV0002 DS CL4 ++ RESERVED XRSV0002
MYPL_XRSV0003 DS CL8 ++ RESERVED XRSV0003
MYPLL EQU *-MYPL ++ LENGTH OF PLIST

Figure 44. Mapping of the Parameter List Using the List Form of EDGXCI

© Copyright IBM Corp. 1992, 2002 75

EDGXSF: Structured Field Definitions
Use macro EDGXSF in your application program to define the data that the
DFSMSrmm API returns in your output buffer. This section includes:

v “EDGXSF Parameters”

v “EDGXSF Mapping” on page 77

v “EDGXSF Labeling Conventions” on page 77

EDGXSF Parameters
The EDGXSF parameters are:

DSECT=YES

DSECT=NO
An optional parameter that specifies whether a DSECT statement is generated.
The default is DSECT=YES.

DSECT=YES
Indicates that a DSECT statement should be generated.

DSECT=NO
Indicates that a DSECT statement should not be generated.

,LIST=YES

,LIST=NO
An optional parameter that specifies whether the macro expansion is printed.
The default is LIST=YES.

,LIST=YES
Indicates to print the expansion.

,LIST=NO
Indicates do not print the expansion.

,TITLE=YES

,TITLE=NO
An optional parameter that specifies whether the macro title is printed. The
default is TITLE=YES.

,TITLE=YES
Indicates to print the title.

,TITLE=NO
Indicates do not print the title

76 z/OS V1R3.0 DFSMSrmm Application Programming Interface

EDGXSF Mapping
Always use macro EDGXSF to determine the exact labels used to define the
DFSMSrmm SFIs. Figure 45 shows the dummy control section and the data types
that define the generic mapping for the SFIs defined in “Appendix A. Structured
Field Introducers” on page 55.

EDGXSF Labeling Conventions
This section includes the labeling conventions used in macro EDGXSF. The
conventions are provided to assist you until such time as you are able to obtain
macro EDGXSF.

Labeling: Begin and End Resource Groups
Resource groups, except for VOL and VRS, are defined using the following format:

v XSF_SFI_ID_xxxx and XSF_xxxx_LENGTH

v XSF_SFI_ID_Exxxx and XSF_Exxxx_LENGTH

EDGXSF
*
* **
* * Output Buffer
* **
*
XSF_OUTBUF DSECT Output Buffer
XSF_OUTBUF_BUFLNG DS 1FL4 Buffer Length
XSF_OUTBUF_RQDLNG DS 1FL4 Required Buffer Length
XSF_OUTBUF_DATALNG DS 1FL4 Length of Output Data
XSF_OUTBUF_FIELDS DS 0C Start of Structured Fields
*
* **
* * Structured Field Introducers for Structured Fields
* **
*
XSF_SFI DSECT Structured Field Introducers
XSF_SFI_LENGTH DS 1FL2 Length
XSF_SFI_ID DS 1CL0003 ID (identifier)

ORG XSF_SFI_ID
XSF_SFI_IDVAL DS 1CL0002 ID (Identifier Value)
XSF_SFI_IDQUAL DS 1CL0001 ID (Identifier Qualifier)
XSF_SFI_TYPE DS 1FL1 Type

DS 1CL0001 Reserved
XSF_SFI_DTYPE DS 1FL1 Data type
XSF_SFI_LEN EQU *-XSF_SFI
XSF_SFI_DATA DS 0C Start of Data
*
* **
* * Data Types (XSF_SFI_DTYPE) **
* **
*
XSF_SFI_DTYPE_UNDEF EQU X'00' Undefined data
XSF_SFI_DTYPE_CHAR_FIX EQU X'01' n-byte character
XSF_SFI_DTYPE_BITFLAG EQU X'02' 1-byte bit flag byte (8 bits)
XSF_SFI_DTYPE_BIN8 EQU X'03' 1-byte (hex) value
XSF_SFI_DTYPE_BIN15 EQU X'04' 2-byte hex value
XSF_SFI_DTYPE_BIN31 EQU X'05' 4-byte hex value
XSF_SFI_DTYPE_CHAR_VAR EQU X'07' Variable length character
XSF_SFI_DTYPE_JDATE EQU X'09' 4-byte packed decimal date yyyydddC
XSF_SFI_DTYPE_TIME EQU X'0A' 4-byte packed decimal time hhmmsstC
*

Figure 45. Mapping: Output Buffer and Structured Field Introducers

Appendix C. DFSMSrmm Application Programming Interface Mapping Macros 77

Figure 46 shows the ACCESS resource group.

The VOL and VRS groups are defined using the following format:

v XSF_SFI_ID_xxx and XSF_xxxGRP_LENGTH

v XSF_SFI_ID_Exxx and XSF_ExxxGRP_LENGTH

Figure 47 shows an example of the VOL resource group.

Labeling: SFIs that Introduce Data
SFIs introduce data and are defined using the following format:

v XSF_SFI_xxxx_ID

v XSF_xxxx_LENGTH

v XSF_xxxx_DTYPE

Figure 48 shows an example of the ATM SFI.

Labeling: Flags
Output data for some SFIs are defined as bit flags using the following format:
XSF_xxxx_FLAG_name.

Figure 49 on page 79 shows an example of the ACT SFI.

* **
* ** Begin and End ACCESS **
* **
XSF_SFI_ID_ACCESS EQU X'021000'
XSF_ACCESS_LENGTH EQU X'0008'
*
XSF_SFI_ID_EACCESS EQU X'021080'
XSF_EACCESS_LENGTH EQU X'0008'

Figure 46. Mapping of the Begin and End ACCESS Group

* **
* ** Begin and End VOL **
* **
XSF_SFI_ID_VOL EQU X'036000'
XSF_VOLGRP_LENGTH EQU X'0008'

XSF_SFI_ID_EVOL EQU X'036080'
XSF_EVOLGRP_LENGTH EQU X'0008'

Figure 47. Mapping of the Begin and End VOL Group

* **
XSF_SFI_ATM_ID EQU X'806000' Assigned Time
XSF_ATM_LENGTH EQU X'000C'
XSF_ATM_DTYPE EQU X'0A'
* **

Figure 48. Mapping of the ATM SFI

78 z/OS V1R3.0 DFSMSrmm Application Programming Interface

Labeling: Bin(8) Data
Output data for some SFIs are defined as one-byte binary numbers using the
following format: XSF_xxxx_DATA_name.

Figure 50 shows an example of the LOCT SFI.

Unlabeled Data
The following output data types are unlabeled:

v Fixed-length and variable-length character data

v Two-byte binary values

v Four-byte binary values

v Dates

v Times

* **
XSF_SFI_ACT_ID EQU X'802000' Actions on Release
XSF_ACT_LENGTH EQU X'0009'
XSF_ACT_DTYPE EQU X'02'
*
XSF_ACT_FLAG_SCRATCH EQU X'80'
XSF_ACT_FLAG_REPLACE EQU X'40'
XSF_ACT_FLAG_INIT EQU X'20'
XSF_ACT_FLAG_ERASE EQU X'10'
XSF_ACT_FLAG_RETURN EQU X'08'
XSF_ACT_FLAG_NOTIFY EQU X'04'
* **

Figure 49. Mapping of the ACT SFI

* **
XSF_SFI_LOCT_ID EQU X'84E000' Location Type
XSF_LOCT_LENGTH EQU X'0009'
XSF_LOCT_DTYPE EQU X'03'
*
XSF_LOCT_DATA_SHELF EQU X'00'
XSF_LOCT_DATA_STORE_BUILTIN_BINS EQU X'01'
XSF_LOCT_DATA_MANUAL EQU X'02'
XSF_LOCT_DATA_AUTO EQU X'03'
XSF_LOCT_DATA_STORE_BINS EQU X'04'
XSF_LOCT_DATA_STORE_NOBINS EQU X'05'
* **

Figure 50. Mapping of the LOCT SFI

Appendix C. DFSMSrmm Application Programming Interface Mapping Macros 79

80 z/OS V1R3.0 DFSMSrmm Application Programming Interface

Appendix D. Hexadecimal Example of an Output Buffer

This appendix provides an example and discussion of a hexadecimal representation
of the contents of an output buffer for a SEARCHDATASET subcommand request.
You can modify this example for use in your installation.

Hexadecimal Representation of an Output Buffer
Figure 51 is a hexadecimal representation of the contents in an output buffer that
might be produced for the SEARCHDATASET VOLUME(VOL001) subcommand
shown in “Requesting Standard Output” on page 31. The following format is used:

v Relative buffer address shown as 2-byte values.

v Buffer contents are shown in groups of 8-bytes.

Description of the Contents of an Output Buffer
The first line of the output buffer shown in Figure 51 shows:
0000 0000100000000000 0000007100080260 00000000001B82A0 00000007D6E6D5C5

v Three 4-byte length fields:

00001000

This is the length you specified for the output buffer.

00000000

This means that the output buffer is large enough. When the buffer length is
too small, DFSMSrmm sets this field with the size of the buffer needed.
DFSMSrmm also returns return code 108 and reason code 10.

00000071

This is the total size of the data in the output buffer, including the length of
this field. You can use this data length to determine when there is no more
data to process.

v Eight structured fields:

0008026000000000

This is the Begin DATASET group SFI, which begins at offset x’000C’ into the
output buffer. Use this SFI to confirm that you are processing a DATASET
SFI. When you do not want to process a group of structured fields, scan to
the end of the group by looking for the corresponding End SFI, such as, the
End DATASET group SFI in this example.

0000 0000100000000000 0000007100080260 00000000001B82A0 00000007D6E6D5C5
0020 D9D6D5C54BC6C9C5 D3C44BE3C5E2E300 0E8BC000000001E5 D6D3F0F0F1001087
0040 0000000007D6E6D5 C5D9D6D5C5000C81 3000000009199711 7C000C81A0000000
0060 0A0815270C000C83 3000000005000000 0100080260800000 0000000000000000
0080 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0FFC 0000000000000000 0000000000000000 0000000000000000 0000000000000000
0FFE 0000000000000000 0000000000000000 0000000000000000 0000000000000000

Figure 51. Hexadecimal Representation of the Contents of an Output Buffer

© Copyright IBM Corp. 1992, 2002 81

The first and second lines of the output buffer shown in Figure 51 on page 81 show:
0000 0000100000000000 0000007100080260 00000000001B82A0 00000007D6E6D5C5
0020 D9D6D5C54BC6C9C5 D3C44BE3C5E2E300 0E8BC000000001E5 D6D3F0F0F1001087

v Data Set Name structured field

001B82A000000007 D6E6D5C5D9D6D5C54BC6C9C5D3C44BE3C5E2E3

This is the Data Set Name structured field, which begins at offset x’0014’ into
the output buffer. The structured field consists of the 8-byte DSN SFI and, in
this example, the 19-byte data set name (OWNERONE.FIELD.TEST). The
length of the structured field is 27 bytes (8 plus 19) as shown by the x’001B’
value at the beginning of the field.

v Volume Serial structured field

000E8BC000000001 E5D6D3F0F0F1

This is the Volume Serial structured field, which begins at offset x’002F’ into
the output buffer. The structured field consists of the 8-byte VOL SFI and the
6-byte volume serial (VOL001).

The second and third lines of the output buffer shown in Figure 51 on page 81
show:
0020 D9D6D5C54BC6C9C5 D3C44BE3C5E2E300 0E8BC000000001E5 D6D3F0F0F1001087
0040 0000000007D6E6D5 C5D9D6D5C5000C81 3000000009199711 7C000C81A0000000

v Owner structured field

0010870000000007 D6E6D5C5D9D6D5C5

This is the Owner structured field, which begins at offset x’003D’ into the
output buffer. The structured field consists of the 8-byte OWN SFI and the
8-byte owner (OWNERONE).

v Create Date structured field

000C813000000009 1997117C

This is the Create Date structured field, which begins at offset x’004D’ into
the output buffer. The structured field consists of the 8-byte CDTJ SFI and the
4-byte packed-decimal date (x’1997117C’).

The third and fourth lines of the output buffer shown in Figure 51 on page 81 show:
0040 0000000007D6E6D5 C5D9D6D5C5000C81 3000000009199711 7C000C81A0000000
0060 0A0815270C000C83 3000000005000000 0100080260800000 0000000000000000

v Create Time structured field

000C81A00000000A 0815270C

This is the Create Time structured field, which begins at offset x’0059’ into the
output buffer. The structured field consists of the 8-byte CTM SFI and the
4-byte packed-decimal time (x’0815270C’).

v Physical File Sequence structured field

000C833000000005 00000001

This is the Physical File Sequence structured field, which begins at offset
x’0065’ into the output buffer. The structured field consists of the 8-byte FILE
SFI and the 4-byte binary sequence number (x’00000001’).

v End DATASET group SFI

0008026080000000

This is the End DATASET group SFI, which begins at offset x’0071’ into the
output buffer.

82 z/OS V1R3.0 DFSMSrmm Application Programming Interface

Processing the Contents of an Output Buffer
To process the contents of an output buffer, consider using the following guidelines:

1. Base the XSF_OUTBUF definition in macro EDGXSF as shown in Figure 52 on
the address of the output buffer you are interested in.

2. Base the XSF_SFI definition in macro EDGXSF as shown in Figure 53 on the
address of XSF_OUTBUF_FIELDS.

3. Find the type of structured field you are processing by using the two-byte
structured field identifier at XSF_SFI_IDVAL. The values of XSF_SFI_IDQUAL
for ADL, address line SFI, and UID, User ID SFI, described in “Appendix A.
Structured Field Introducers” on page 55 are not constant values.

4. Move to the next structured field by adding the length at XSF_SFI_LENGTH to
the XSF_SFI pointer.

5. Verify that you have reached the end of the valid data in the output buffer by
using the length of the output data at XSF_OUTBUF_DATALNG.

6. Determine the type of data you are processing, by using the value in
XSF_SFI_DTYPE.

7. Obtain the length of the data that starts at XSF_SFI_DATA, by subtracting
XSF_SFI_LEN from the structured field length at XSF_SFI_LENGTH. in the
output buffer.

8. Move to the end of the SFI by adjusting the pointer. In this example, when your
pointer is at offset x’00000071’ into the output buffer, there are two indicators
that you are done with the contents of the buffer:

v You are looking at the End DATASET group SFI.

v Adjusting the XSF_SFI pointer by the length of this SFI (8 bytes) points you
past the last byte of data in the buffer.

9. Repeat these steps to process each structured field.

In the examples shown in Figure 52 and Figure 53:

v Adding the length of the data (x’00000071’) at XSF_OUTBUF_DATALNG to the
address of XSF_OUTBUF_DATALNG results in the address just beyond the last

XSF_OUTBUF DSECT Output Buffer
XSF_OUTBUF_BUFLNG DS 1FL4 Buffer Length
XSF_OUTBUF_RQDLNG DS 1FL4 Required Buffer Length
XSF_OUTBUF_DATALNG DS 1FL4 Length of Output Data
XSF_OUTBUF_FIELDS DS 0C Start of Structured Fields

Figure 52. Output Buffer Definition

XSF_SFI DSECT Structured Field Introducers
XSF_SFI_LENGTH DS 1FL2 Length
XSF_SFI_ID DS 1CL0003 ID (identifier)

ORG XSF_SFI_ID
XSF_SFI_IDVAL DS 1CL0002 ID (Identifier Value)
XSF_SFI_IDQUAL DS 1CL0001 ID (Identifier Qualifier)
XSF_SFI_TYPE DS 1FL1 Type

DS 1CL0001 Reserved
XSF_SFI_DTYPE DS 1FL1 Data type
XSF_SFI_LEN EQU *-XSF_SFI
XSF_SFI_DATA DS 0C Start of Data

Figure 53. SFI Definition

Appendix D. Hexadecimal Example of an Output Buffer 83

|
|
|
|

byte of data in the output buffer. You might find this a useful double-check to
ensure that you are looking at valid data.

v Your XSF_SFI pointer is at the first structured field in the output buffer (offset
000C in the buffer), and the SFI identifier value at XSF_SFI_IDVAL (0260) tells
you that the SFI is a Begin DATASET group. To move to the next structured field,
add XSF_SFI_LENGTH (0008) to your pointer.

v Your XSF_SFI pointer is now at the second structured field in the output buffer
(offset 0014 in the buffer); XSF_SFI_IDVAL (82A0) identifies the SFI as DSN
(Data Set Name); and XSF_SFI_LENGTH (001B) minus XSF_SFI_LEN (8) gives
you a length of 19 bytes for the data set name. The type of data is
variable-length character because the data type at XSF_SFI_DTYPE equals
XSF_SFI_DTYPE_CHAR_VAR.

One method to process SFIs is to use an SFI lookup table containing ID values
and addresses of corresponding processing routines. Another method is to use
the XSF_SFI_DTYPE: Call an appropriate data-type routine with the address of
the SFI or SFI data and the address of an output area as inputs.

After you finish processing this structured field, update the XSF_SFI pointer to
the next structured field.

84 z/OS V1R3.0 DFSMSrmm Application Programming Interface

Appendix E. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

© Copyright IBM Corp. 1992, 2002 85

86 z/OS V1R3.0 DFSMSrmm Application Programming Interface

Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

© Copyright IBM Corp. 1992, 2002 87

IBM Corporation
Information Enabling Requests
Dept. DZWA
5600 Cottle Road
San Jose, CA 95193 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Programming Interface Information
This publication documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of DFSMSrmm.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States, or
other countries, or both:

DFSMS/MVS
DFSMSrmm
IBM
MVS
RACF
OS/390
z/OS

Other company, product, and service names may be trademarks or service marks
of others.

88 z/OS V1R3.0 DFSMSrmm Application Programming Interface

Glossary

This glossary defines technical terms and
abbreviations used in DFSMS documentation. If
you do not find the term you are looking for, refer
to the index of the appropriate DFSMS manual or
view the IBM Dictionary of Computing Terms
located at:

http://www.ibm.com/networking/nsg/nsgmain.htm

This glossary includes terms and definitions from:

v The American National Standard Dictionary for
Information Systems, ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). Copies may be
purchased from the American National
Standards Institute, 11 West 42nd Street, New
York, New York 10036. Definitions are identified
by the symbol (A) after the definition.

v The Information Technology Vocabulary
developed by Subcommittee 1, Joint Technical
Committee 1, of the International Organization
for Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC1/SC1). Definitions of published part of this
vocabulary are identified by the symbol (I) after
the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after
the definition, indicating that final agreement
has not yet been reached among the
participating National Bodies of SC1.

v The IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

The following cross-reference is used in this
glossary:

See: This refers the reader to (a) a related
term, (b) a term that is the expanded form
of an abbreviation or acronym, or (c) a
synonym or more preferred term.

A
abend. Abnormal end of task.

AL. American National Standards Label.

AMODE. Addressing mode.

ANDVRS. An RMM ADDVRS TSO subcommand
operand. See alsoUsing AND.

ANSI. American National Standards Institute.

APAR. Authorized program analysis report.

API. Application Programming interface.

ASA. American Standards Association.

assigned date. The date that the volume is assigned
to the current owner. Assigned date is not meaningful
for a scratch volume.

AUL. ANSI and user header or trailer label.

automated tape library data server. A device
consisting of robotic components, cartridge storage
areas, tape subsystems, and controlling hardware and
software, together with the set of tape volumes that
reside in the library and can be mounted on the library
tape drives. Contrast with manual tape library. See also
tape library.

automatic cartridge loader. An optional feature of the
3480 Magnetic Tape Subsystem that allows preloading
of multiple tape cartridges. This feature is standard in
the 3490 Magnetic Tape Subsystem.

automatic recording. In DFSMSrmm, the process of
recording information about a volume and the data sets
on the volume in the DFSMSrmm control data set at
open or close time.

availability. For a storage subsystem, the degree to
which a data set or object can be accessed when
requested by a user.

B
backup. The process of creating a copy of a data set
or object to be used in case of accidental loss.

basic catalog structure (BCS). The name of the
catalog structure in the integrated catalog facility
environment. See also integrated catalog facility catalog.

BCS. Basic catalog structure.

bin number. The specific shelf location where a
volume resides in a storage location; equivalent to a
rack number in the removable media library. See also
shelf location.

BLP. Bypass label processing.

BTLS. Basic Tape Library Support.

built-in storage location. One of the Removable
Media Manager defined storage locations: LOCAL,
DISTANT, and REMOTE.

© Copyright IBM Corp. 1992, 2002 89

C
cache fast write. A storage control capability in which
the data is written directly to cache without using
nonvolatile storage. Cache fast write is useful for
temporary data or data that is readily recreated, such as
the sort work files created by DFSORT. Contrast with
DASD fast write.

cartridge eject. For an IBM Total Storage Enterprise
Automated Tape Library (3494), IBM TotalStorage
Enterprise Automated Tape Library (3495), or a manual
tape library, the act of physically removing a tape
cartridge, usually under robot control, by placing it in an
output station. The software logically removes the
cartridge by deleting or updating the tape volume record
in the tape configuration database. For a manual tape
library, the act of logically removing a tape cartridge
from the manual tape library by deleting or updating the
tape volume record in the tape configuration database.

cartridge entry. For either an IBM Total Storage
Enterprise Automated Tape Library (3494), IBM
TotalStorage Enterprise Automated Tape Library (3495),
or a manual tape library, the process of logically adding
a tape cartridge to the library by creating or updating
the tape volume record in the tape configuration
database. The cartridge entry process includes the
assignment of the cartridge to scratch or private
category in the library.

Cartridge System Tape. The base tape cartridge
media used with 3480 or 3490 Magnetic Tape
Subsystems. Contrast with Enhanced Capacity
Cartridge System Tape.

cell. A single cartridge location within an automated
tape library dataserver. See also rack number.

circular file. A type of file that appends data until full.
Then, starting at the beginning of the file, subsequent
incoming data overwrites the data already there.

command line. On a display screen, a display line
usually at the bottom of the screen in which only
commands can be entered.

concurrent copy. A function to increase the
accessibility of data by enabling you to make a
consistent backup or copy of data concurrent with the
usual application program processing.

confirmation panel. A DFSMSrmm panel that lets you
tell DFSMSrmm to continue or stop a delete or release
action. You specify whether or not you want to confirm
delete or release requests in your dialog user options.

container. A receptacle in which one or more exported
logical volumes can be stored. A stacked volume
containing one or more logical volumes and residing
outside a virtual tape server library is considered to be
the container for those volumes.

container volume. See container.

control data set. A VSAM key-sequenced data set
that contains the complete inventory of your removable
media library, as well as the movement and retention
policies you define. In the control data set DFSMSrmm
records all changes made to the inventory, such as
adding or deleting volumes.

control data set ID. A one-to-eight character identifier
for the DFSMSrmm control data set used to ensure that,
in a multi-system, multi-complex environment, the
correct management functions are performed.

convenience input. The process of adding a small
number of tape cartridges to the IBM TotalStorage
Enterprise Automated Tape Library (3494) and the IBM
TotalStorage Enterprise Automated Tape Library (3495)
without interrupting operations, by inserting the
cartridges directly into cells in a convenience input
station.

convenience input/output station. A transfer station
with combined tape cartridge input and output functions
in the IBM TotalStorage Enterprise Automated Tape
Libraries (3494) only.

convenience output. The process of removing a
small number of tape cartridges from the IBM
TotalStorage Enterprise Automated Tape Library (3494)
or the IBM TotalStorage Enterprise Automated Tape
Library (3495) without interrupting operations, by
removing the cartridges directly from cells in a
convenience input station.

convenience output station. A transfer station, used
by the operator to remove tape cartridges from the
automated tape library dataserver, which is accessible
from outside the enclosure area.

conversion. In DFSMSrmm, the process of moving
your removable media library inventory from another
media management system to DFSMSrmm.
DFSMSrmm manages the inventory and policies once
you have converted it.

create date. Create date for a data set is the date that
the data set is written to tape. Create date can also be
the date a data set was read if it was created before
DFSMSrmm is in use. Create date is updated each time
a data set is replaced and not extended. Create date for
volumes and other resources defined to DFSMSrmm is
the date the resource is defined to DFSMSrmm or the
date specified on the command as the create date.

D
DASD. Direct access storage device.

DASD fast write. An extended function of some
models of the IBM 3990 Storage Control in which data
is written concurrently to cache and nonvolatile storage

90 z/OS V1R3.0 DFSMSrmm Application Programming Interface

and automatically scheduled for destaging to DASD.
Both copies are retained in the storage control until the
data is completely written to the DASD, providing data
integrity equivalent to writing directly to the DASD. Use
of DASD fast write for system-managed data sets is
controlled by storage class attributes to improve
performance. See also dynamic cache management.
Contrast with cache fast write.

DASD volume. A DASD space identified by a common
label and accessed by a set of related addresses. See
also volume, primary storage, migration level 1,
migration level 2.

data column. A vertical arrangement of identical data
items, used on list panels to display an attribute,
characteristic, or value of one or more objects.

data control block (DCB). A control block used by
access method routines in storing and retrieving data.

data entry panel. A panel in which the user
communicates with the system by filling in one or more
fields.

Data Facility Storage Management Subsystem
(DFSMS). An operating environment that helps
automate and centralize the management of storage. To
manage storage, SMS provides the storage
administrator with control over data class, storage class,
management class, storage group, and automatic class
selection routine definitions.

Data Facility Sort. An IBM licensed program that is a
high-speed data processing utility. DFSORT provides an
efficient and flexible way to handle sorting, merging, and
copying operations, as well as providing versatile data
manipulation at the record, field, and bit level.

DCB. Data control block.

device. This term is used interchangeably with unit.
You mount a tape on a unit or device, such as a 3490.

DFSMSdfp. A DFSMS functional component or base
element of z/OS, that provides functions for storage
management, data management, program
management, device management, and distributed data
access.

DFSMSdss. A DFSMS functional component or base
element of z/OS, used to copy, move, dump, and
restore data sets and volumes.

DFSMShsm. A DFSMS functional component or base
element of z/OS, used for backing up and recovering
data, and managing space on volumes in the storage
hierarchy.

DFSMShsm-managed volume. (1) (1) A primary
storage volume, which is defined to DFSMShsm but
which does not belong to a storage group. (2) (2) A
volume in a storage group, which is using DFSMShsm

automatic dump, migration, or backup services. Contrast
with system-managed volume, DFSMSrmm-managed
volume.

DFSMShsm-owned volume. A storage volume on
which DFSMShsm stores backup versions, dump
copies, or migrated data sets.

DFSMSrmm. A DFSMS functional component or base
element of z/OS, that manages removable media.

DFSMSrmm control data set. See control data set.

DFSMSrmm-managed volume. A tape volume that is
defined to DFSMSrmm. Contrast with system-managed
volume, DFSMShsm-managed volume.

disaster recovery. A procedure for copying and
storing an installation’s essential business data in a
secure location, and for recovering that data in the
event of a catastrophic problem. Compare with vital
records.

DISTANT. A DFSMSrmm built-in storage location ID.
See built-in storage location.

dual copy. A high availability function made possible
by nonvolatile storage in some models of the IBM 3990
Storage Control. Dual copy maintains two functionally
identical copies of designated DASD volumes in the
logical 3990 subsystem, and automatically updates both
copies every time a write operation is issued to the dual
copy logical volume.

dump class. A set of characteristics that describes
how volume dumps are managed by DFSMShsm.

duplexing. The process of writing two sets of identical
records in order to create a second copy of data.

dynamic cache management. A function that
automatically determines which data sets will be cached
based on the 3990 subsystem load, the characteristics
of the data set, and the performance requirements
defined by the storage administrator.

E
EHPCT. Extended High Performance Cartridge Tape.

eject. The process used to remove a tape volume
from a system-managed library. For an automated tape
library dataserver, the volume is removed from its cell
location and moved to the output station. For a manual
tape library, the volume is not moved, but the tape
configuration database is updated to show that the
volume no longer resides in the manual tape library.

empty bin. A bin that can accept a volume.

Glossary 91

Enhanced Capacity Cartridge System Tape.
Cartridge system tape with increased capacity that can
only be used with 3490E Magnetic Tape Subsystems.
Contrast with Cartridge System Tape.

entry panel. See data entry panel.

EREP. Environmental Record Editing and Printing
program.

expanded output. The output produced by the
DFSMSrmm application programming interface when
you specify OUTPUT=FIELDS and EXPAND=YES. For
those subcommands for which expanded output applies,
your application program receives more variable data
than for standard output.

expiration. The process by which data sets and
volumes are identified as available for reuse. In
DFSMSrmm, all volumes have an expiration date or
retention period set for them either by vital record
specification policy, by user-specified JCL when writing
a data set to the volume, or by an installation default.
When a volume reaches its expiration date or retention
period, it becomes eligible for release.

expiration date. The date at which a file is no longer
protected against automatic deletion by the system.

expiration processing. The process of inventory
management that ensures expired volumes are released
and carries out required release actions on those
volumes.

export. The operation to remove one or more logical
volumes from a virtual tape server library. First, the list
of logical volumes to export must be written on an
export list volume and then, the export operation itself
must be initiated.

exported logical volume. A logical volume that has
gone through the export process and now resides on a
stacked volume outside a virtual tape server library.

export list volume. A virtual tape server logical
volume containing the list of logical volumes to export.

extended bin support. Enhanced options for
managing shelf locations in a storage location including
optimized use of the number of bins.

extended extract data set file. A data set created
using the DFSMSrmm EDGJRPT exec. The records
within the data set combine data set and volume
information into single records.

extended record. A record in the DFSMSrmm extract
data set that is mapped by the EDGXREXT mapping
macro. The record contains both data set and volume
information.

external label. A label attached to the outside of a
tape cartridge that is to be stored in an IBM 3494 Tape

Library Dataserver or IBM 3495 Tape Library
Dataserver. The label might contain the DFSMSrmm
rack number of the tape volume.

extract data set. A data set that you use to generate
reports.

extract data set record. A record in an extract data
set that is mapped by a DFSMSrmm mapping macro.

F
field format. Field format is where the output consists
of Structured Field Introducers and variable data rather
than output in line format.

filtering. The process of selecting data sets based on
specified criteria. These criteria consist of fully or
partially-qualified data set names or of certain data set
characteristics.

FIPS. Federal Information Processing Standard.

FMID. Function modification identifier.

FRR. Functional recovery routines.

G
generation data group (GDG). A collection of data
sets kept in chronological order. Each data set is a
generation data set.

generation data set (GDS). One generation of a
generation data group.

generation number. The number of a generation
within a generation data group. A zero represents the
most current generation of the group, a negative integer
(-1) represents an older generation and, a positive
integer (+1) represents a new generation that has not
yet been cataloged.

GDG. Generation data group.

GDS. Generation data set.

giga (G). The information-industry meaning depends
upon the context:

1. G = 1 073 741 824(2³⁰) for real and virtual storage.

2. G = 1 000 000 000 for disk storage capacity (for
example, a 4 GB fixed disk).

3. G = 1 000 000 000 for transmission rates.

GPR. General purpose register.

GRS. Global resource serialization.

grouping. When creating a report, grouping sorts
report output contents into separate groups (and
separate pages) based upon field contents.

92 z/OS V1R3.0 DFSMSrmm Application Programming Interface

guaranteed space. A storage class attribute indicating
the space is to be preallocated when a data set is
created. If you specify explicit volume serial numbers,
SMS honors them. If space to satisfy the allocation is
not available on the user-specified volumes, the
allocation fails.

H
hardware configuration definition (HCD). An
interactive interface in MVS that enables an installation
to define hardware configurations from a single point of
control.

HCD. Hardware configuration definition.

high-capacity input station. A transfer station, used
by the operator to add tape cartridges to the IBM
TotalStorage Enterprise Automated Tape Library (3494)
or the IBM TotalStorage Enterprise Automated Tape
Library (3495), which is inside the enclosure area.

high capacity output station. A transfer station, used
by the operator to remove tape cartridges from the
automated tape library dataserver, which is inside the
enclosure area.

home. See home location.

home location. For DFSMSrmm, the place where
DFSMSrmm normally returns a volume when the
volume is no longer retained by vital records
processing.

HPCT. High Performance Cartridge Tape.

I
ICETOOL. The DFSORT multipurpose data processing
and reporting utility.

ID. Identifier.

IDRC. Improved data recording capability.

import. The operation to enter previously exported
logical volumes residing on a stacked volume into a
virtual tape server library. First, the list of logical
volumes to import must be written on an import list
volume and the stacked volumes must be entered, and
then, the import operation itself must be initiated.

import list volume. A virtual tape server logical
volume containing the list of logical volumes to import.
This list can contain individual logical volumes to import
and/or it can contain a list of stacked volumes in which
all logical volumes on the stacked volume are imported.

imported logical volume. An exported logical volume
that has gone through the import process and can be
referenced as a tape volume within a virtual tape server

library. An imported logical volume originates from a
stacked volume that went through the export process.

improved data recording capability (IDRC). A
recording mode that can increase the effective cartridge
data capacity and the effective data rate when enabled
and used. IDRC is always enabled on the 3490E
Magnetic Tape Subsystem.

installation defined storage location. A storage
location defined using the LOCDEF command in the
EDGRMMxx parmlib member.

integrated catalog facility catalog. A catalog that is
composed of a basic catalog structure (BCS) and its
related volume tables of contents (VTOCs) and VSAM
volume data sets (VVDSs). See also basic catalog
structure, VSAM volume data set.

Interactive Storage Management Facility (ISMF).
The interactive interface of DFSMS that allows users
and storage administrators access to the storage
management functions.

Interactive Problem Control System (IPCS). A
system facility that allows interactive problem analysis.

Interactive System Productivity Facility (ISPF). An
IBM licensed program used to develop, test, and run
interactive, panel-driven dialogs.

internal label. The internal label for standard label
tapes is recorded in the VOL1 header label,
magnetically recorded on the tape media.

in transit. A volume state where a volume must be
moved from one location to another and DFSMSrmm
believes that the move has started, but has not yet
received confirmation that the move is complete. For a
volume moving from a system-managed library, the
move starts when the volume is ejected.

inuse bin. A bin that is occupied by a volume and into
which no volume can be assigned.

inventory management. The regular tasks that need
to be performed to maintain the control data set. See
also expiration processing, storage location
management processing, and vital record processing.

IPCS. Interactive Problem Control System.

IPL. Initial program load.

ISPF. Interactive System Productivity Facility.

ISMF. Interactive Storage Management Facility.

ISO. International Organization for Standardization.

Glossary 93

J
JCL. Job control language.

JES2. Job entry subsystem 2.

JES3. Job entry subsystem 3.

JFCB. Job file control block.

journal. A sequential data set that contains a
chronological record of changes made to the
DFSMSrmm control data set. You use the journal when
you need to reconstruct the DFSMSrmm control data
set.

K
keyword. A predefined word that is used as an
identifier.

kilo (K). The information-industry meaning depends
upon the context:

1. K = 1024(2¹⁰) for real and virtual storage.

2. K = 1000 for disk storage capacity (for example, a 4
KB fixed disk).

3. K = 1000 for transmission rates.

L
Library Control System. The Object Access Method
component that controls optical and tape library
operations and maintains configuration information.

line format. Line format is where text and variable
data are formatted into lines suitable for displaying at a
terminal or printing as printed documentation.

LOCAL. A DFSMSrmm built-in storage location ID.
See built-in storage location.

location name. A name given to a place for
removable media that DFSMSrmm manages. A location
name can be the name of a system-managed library, a
storage location name, or the location SHELF,
identifying shelf space outside a system-managed
library or storage locations.

logical volume. Logical volumes have a many-to-one
association with physical tape media and are used
indirectly by MVS applications. They reside in a Virtual
Tape Server or on exported stacked volumes.
Applications can access the data on these volumes only
when they reside in a Virtual Tape Server which makes
the data available via its tape volume cache or after the
data has been copied to a physical volume through the
use of special utilities.

low-on-scratch management. The process by which
DFSMSrmm replenishes scratch volumes in a

system-managed library when it detects that there are
not enough available scratch volumes.

LSR. Local shared resource.

M
management class. (1) A named collection of
management attributes describing the retention and
backup characteristics for a group of data sets, or for a
group of objects in an object storage hierarchy. For
objects, the described characteristics also include class
transition. (2) In DFSMSrmm, if assigned by ACS
routine to system-managed tape volumes, management
class can be used to identify a DFSMSrmm vital record
specification.

manual cartridge entry processing. The process by
which a volume is added to the tape configuration
database when it is added to a manual tape library.
DFSMSrmm can initiate this process.

manual mode. An operational mode where
DFSMSrmm runs without recording volume usage or
validating volumes. The DFSMSrmm TSO commands,
ISPF dialog, and inventory management functions are
all available in manual mode.

manual tape library. An installation-defined set of
stand-alone tape drives and the set of tape volumes
that can be mounted on those drives.

master system. The MVS system where the master
DFSMSrmm control data set resides.

master volume. A private volume that contains data
that is available for write processing based on the
DFSMSrmm EDGRMMxx parmlib
MASTEROVERWRITE operand.

media format. The type of volume, recording format
and techniques used to create the data on the volume.

media library. Removable media library.

media management system. A program that helps
you manage removable media. DFSMSrmm is a media
management system.

media name. An up to 8 character value that
describes the shape or type of removable media stored
in a storage location. Examples of media name are:
SQUARE, ROUND, CARTRDGE, 3480.

media type. A value that specifies the volume’s media
type. Media type can be specified as *, CST, ECCST,
HPCT, or EHPCT.

MEDIA 1. Cartridge system tape.

MEDIA 2. Enhanced capacity cartridge system tape.

MEDIA 3. High performance cartridge tape.

94 z/OS V1R3.0 DFSMSrmm Application Programming Interface

MEDIA 4. Extended high performance cartridge tape

mega (M). The information-industry meaning depends
upon the context:

1. M = 1 048 576(2²⁰) for real and virtual storage.

2. M = 1 000 000 for disk storage capacity (for
example, a 4 MB fixed disk).

3. M = 1 000 000 for transmission rates.

migration. The process of moving unused data to
lower cost storage in order to make space for
high-availability data. To use the data set, it must be
recalled. See also migration level 1, migration level 2.

migration level 1. DFSMShsm-owned DASD volumes
that contain data sets migrated from primary storage
volumes. The data can be compressed. See also
storage hierarchy. Contrast with primary storage,
migration level 2.

migration level 2. DFSMShsm-owned tape or DASD
volumes that contain data sets migrated from primary
storage volumes or from migration level 1 volumes. The
data can be compressed. See also storage hierarchy.
Contrast with primary storage, migration level 1.

moving-in volume. A volume for which a move into a
bin has been started, but not yet confirmed.

moving-out volume. A volume for which a move out
of a bin has been started, but not yet confirmed.

MVS image. A single occurrence of the MVS/ESA
operating system that has the ability to process work.

N
name vital record specification. A vital record
specification used to define additional retention and
movement policy information for data sets or volumes.

NEXTVRS. An RMM ADDVRS TSO subcommand
operand. See also Using Next.

NL. No label.

nonscratch volume. A volume that is not scratch,
which means it has valid or unexpired data on it.
Contrast with scratch.

NSL. Nonstandard label.

O
OAM. Object access method.

object. A named byte stream having no specific format
or record orientation.

object access method (OAM). An access method
that provides storage, retrieval, and storage hierarchy

management for objects and provides storage and
retrieval management for tape volumes contained in
system-managed libraries.

OPC/ESA. Operations Planning and Control/Enterprise
Systems Architecture.

optical volume. Storage space on an optical disk,
identified by a volume label. See also volume.

optical disk. A disk that uses laser technology for data
storage and retrieval.

option line. Command line.

owner. In DFSMSrmm, a person or group of persons
defined as a DFSMSrmm user owning volumes. An
owner is defined to DFSMSrmm through an owner ID.

owner ID. In DFSMSrmm, an identifier for DFSMSrmm
users who own volumes.

P
parallel. During conversion, when you install
DFSMSrmm concurrently with an existing media
management system, it is called running in parallel.

partitioned data set (PDS). A data set on direct
access storage that is divided into partitions, called
members, each of which can contain a program, part of
a program, or data.

PDS. Partitioned data set.

permanent data set. A user-named data set that is
normally retained for longer than the duration of a job or
interactive session. Contrast with temporary data set.

PF. Program function key.

physical stacked volume. See stacked volume.

physical volume. A volume that has a one-to-one
association with physical tape media and which is used
directly by MVS applications. It may reside in an
automated tape library dataserver or be kept on shelf
storage either at vault sites or within the data center
where it can be mounted on stand-alone tape drives.

pool. A group of shelf locations in the removable
media library whose rack numbers share a common
prefix. The shelf locations are logically grouped so that
the volumes stored there are easier to find and use.

pool ID. The identifier for a pool. You define pool IDs
in parmlib member EDGRMMxx.

pooling. The process of arranging shelf locations in
the removable media library into logical groups.

pool storage group. A type of storage group that
contains system-managed DASD volumes. Pool storage

Glossary 95

groups allow groups of volumes to be managed as a
single entity. See also storage group.

primary space allocation. Amount of space
requested by a user for a data set when it is created.
Contrast with secondary space allocation.

primary storage. A DASD volume available to users
for data allocation. The volumes in primary storage are
called primary volumes. See also storage hierarchy.
Contrast with migration level 1, migration level 2.

primary vital record specification. The first retention
and movement policy that DFSMSrmm matches to a
data set and volume used for disaster recovery and vital
record purposes. See also vital record specification and
secondary vital record specification.

private tape volume. A volume assigned to specific
individuals or functions.

protect mode. In protect mode, DFSMSrmm validates
all volume requests.

pseudo-generation data group. A collection of data
sets, using the same data set name pattern, to be
managed like a generation data group. The ¬ masking
character is used in DFSMSrmm to identify the
characters in the pattern that change with each
generation.

PSW. Program status word.

PTF. Program temporary fix.

pull list. A list of scratch volumes to be pulled from the
library for use.

PUT. Program update tape.

R
RACF. Resource Access Control Facility.

rack number. A six-character identifier that
corresponds to a specific volume’s shelf location in the
installation’s removable media library, and is the
identifier used on the external label of the volume to
identify it. The rack number identifies the pool and the
external volume serial number for a volume residing in
an automated tape library dataserver. The rack number
identifies the pool, the external volume serial, and shelf
location number for a volume not residing in an
automated tape library dataserver. The rack number is
not written by the tape drive. It exists as an entry in the
DFSMSrmm control data set and on the external label
of the tape. See also shelf location.

rack pool. A group of shelves that contains volumes
that are generally read-only.

ready to scratch. This describes the condition where
a volume is eligible for scratch processing while it

resides in a storage location. Since no other release
actions are required, the volume can be returned to
scratch directly from the storage location.

recording format. For a tape volume, the format of
the data on the tape; for example, 18 tracks or 36
tracks.

record-only mode. The operating mode where
DFSMSrmm records information about volumes as you
use them, but does not validate or reject volumes.

recovery. The process of rebuilding data after it has
been damaged or destroyed, often by using a backup
copy of the data or by reapplying transactions recorded
in a journal.

relative start generation. Relative start generation
zero is the latest generation of a tape. Relative start
generation -1 is the previous generation of that tape.
Relative start generation -2 is the generation before the
previous one.

REMOTE. A DFSMSrmm built-in storage location ID.
See also built-in storage location.

removable media. See also volume.

removable media library. The volumes that are
available for immediate use, and the shelves where they
could reside.

report. Data that has been selected and extracted
according to the reporting tool, the type of report
desired, and the formatting criteria.

reporting tool. A REXX exec that builds control
statements to enable you to create reports using a
reporting utility.

report type. A data source and how it is mapped.

Resource Access Control Facility (RACF). An IBM
licensed program that provides for access control by
identifying and verifying the users to the system;
authorizing access to protected resources; logging the
detected unauthorized attempts to enter the system;
and logging the detected accesses to protected
resources.

Resource Group. A collection of structured fields that
describe the attributes of a resource such as a volume.

Restructured Extended Executor (REXX) Language.
A general-purpose, high-level programming language,
particularly suitable for EXEC procedures or programs
for personal computing.

retention date. Retention date can be the date that a
data set or volume is retained by a vital record
specification or the date of the inventory management
run when the data set or volume is no longer retained
by a vital record specification.

96 z/OS V1R3.0 DFSMSrmm Application Programming Interface

retention period. The time for which DFSMSrmm
retains a volume or data set before considering it for
release. You can retain a data set or volume as part of
disaster recovery or vital records management. You set
a retention period through a vital record specification
that overrides a data set’s expiration date.

retention type. The types of retention for which
DFSMSrmm retains a volume or data set before
considering it for release. The retention types for data
sets are BYDAYSCYCLE, CYCLES, DAYS,
EXTRADAYS, LASTREFERENCEDAYS,
UNTILEXPIRED, and WHILECATALOG. The retention
types for volumes are DAYS and CYCLE.

REXX. Restructured Extended Executor Language.

RMF. Resource Measurement Facility.

RMM complex (RMMplex). One or more MVS images
that share a common DFSMSrmm control data set.

RMODE. Residence mode.

S
SAF. System Authorization Facility.

scratch. The status of a tape volume that is available
for general use, because the data on it is incorrect or is
no longer needed. You request a scratch volume when
you omit the volume serial number on a request for a
tape volume mount.

scratch pool. The collection of tape volumes from
which requests for scratch tapes can be satisfied.
Contrast with rack pool.

scratch processing. The process for returning a
volume to scratch status once it is no longer in use and
has no outstanding release actions pending.

scratch tape. See scratch volume.

scratch volume. A tape volume that contains expired
data only. See scratch.

SDB. Structured database.

SDSF. Spool display and search facility.

secondary space allocation. Amount of additional
space requested by the user for a data set when
primary space is full. Contrast with primary space
allocation.

secondary vital record specification. The second
retention and movement policy that DFSMSrmm
matches to a data set and volume used for disaster
recovery and vital records purposes. See also vital
record specification and primary vital record
specification.

SFI. Structured field introducer.

shelf. A place for storing removable media, such as
tape and optical volumes, when they are not being
written to or read.

shelf location. A single space on a shelf for storage of
removable media. DFSMSrmm defines a shelf location
in the removable media library by a rack number, and a
shelf location in a storage location by a bin number. See
also rack number and bin number.

shelf-management. Is the function provided to
manage the placement of volumes in individual slots in
a location. Shelf-management is provided for the
removable media library using rack numbers. For
storage locations it is optional as defined by the
LOCDEF options in parmlib and uses bin numbers.

shelf-resident volume. A volume that resides in a
non-system-managed tape library.

shelf space. See shelf.

SL. Standard label.

slot. See shelf location.

SMF. System management facility.

SMP/E. System Modification Program Extended.

SSI. Subsystem interface.

stacked volume. A volume that has a one-to-one
association with physical tape media and which is used
in a virtual tape server to store logical volumes. A
stacked volume is not used by MVS applications but by
the virtual tape server and its associated utilities. It may
be removed from a virtual tape server to allow
transportation of logical volumes to a vault or to another
virtual tape server.

standard label. An IBM standard tape label.

standard output. The output produced by the
DFSMSrmm application programming interface when
you specify OUTPUT=LINES or EXPAND=NO with
OUTPUT=FIELDS.

storage administrator. A person in the data
processing center who is responsible for defining,
implementing, and maintaining storage management
policies.

storage class. A collection of storage attributes that
identify performance goals and availability requirements,
defined by the storage administrator, used to select a
device that can meet those goals and requirements.

storage group. A collection of storage volumes and
attributes, defined by the storage administrator. The
collections can be a group of DASD volumes or tape

Glossary 97

volumes, or a group of DASD volumes and optical
volumes treated as a single object storage hierarchy.

storage location. A location physically separate from
the removable media library where volumes are stored
for disaster recovery, backup, and vital records
management.

(storage) location dominance. The priority used by
DFSMSrmm to decide where to move a volume within
the removable media library during vital record
specification processing. It covers all the locations;
SHELF, storage locations, and system-managed tape
libraries.

storage location management processing. The
process of inventory management that assigns a shelf
location to volumes that have moved as a result of vital
record processing. See also vital record processing.

stripe. In DFSMS, the portion of a striped data set,
such as an extended format data set, that resides on
one volume. The records in that portion are not always
logically consecutive. The system distributes records
among the stripes such that the volumes can be read
from or written to simultaneously to gain better
performance. Whether it is striped is not apparent to the
application program.

striping. A software implementation of a disk array
that distributes a data set across multiple volumes to
improve performance.

structured field. Output from the DFSMSrmm
application programming interface consisting of a
Structured Field Introducer and output data.

structured field introducer (SFI). An 8-byte entity
that either introduces the beginning of a group of data
or introduces output data that immediately follows the
introducer.

subsystem. A special MVS task that provides services
and functions to other MVS users. Requests for service
are made to the subsystem through a standard MVS
facility known as the subsystem interface (SSI).
Standard MVS subsystems are the master subsystem
and the job entry subsystems JES2 and JES3.

subsystem interface (SSI). The means by which
system routines request services of the master
subsystem, a job entry subsystem, or other subsystems
defined to the subsystem interface.

SUL. IBM standard and user header or trailer label.

SVC. Supervisor call.

system-managed storage. Storage managed by the
Storage Management Subsystem. SMS attempts to
deliver required services for availability, performance,
and space to applications. See also system-managed
storage environment.

DFSMS environment. An environment that helps
automate and centralize the management of storage.
This is achieved through a combination of hardware,
software, and policies. In the DFSMS environment for
MVS, this function is provided by DFSMS, DFSORT,
and RACF. See also system-managed storage.

system-managed tape library. A collection of tape
volumes and tape devices, defined in the tape
configuration database. A system-managed tape library
can be automated or manual. See also tape library.

system-managed volume. A DASD, optical, or tape
volume that belongs to a storage group. Contrast with
DFSMShsm-managed volume, DFSMSrmm-managed
volume.

system programmer. A programmer who plans,
generates, maintains, extends, and controls the use of
an operating system and applications with the aim of
improving overall productivity of an installation.

T
tape configuration database (TCDB). One or more
volume catalogs used to maintain records of
system-managed tape libraries and tape volumes.

tape librarian. The person who manages the tape
library. This person is a specialized storage
administrator.

tape library. A set of equipment and facilities that
support an installation’s tape environment. This can
include tape storage racks, a set of tape drives, and a
set of related tape volumes mounted on those drives.
See also system-managed tape library, automated tape
library data server.

Tape Library Control System (TLCS). IBM program
offering 5785-EAW. DFSMSrmm replaces TLCS.

tape library dataserver. A hardware device that
maintains the tape inventory that is associated with a
set of tape drives. An automated tape library dataserver
also manages the mounting, removal, and storage of
tapes. An automated tape library dataserver that
supports system-managed storage of tape volumes. The
IBM automated tape library dataservers include the IBM
3494 Tape Library Dataserver and the IBM 3495 Tape
Library Dataserver.

tape storage group. A type of storage group that
contains system-managed private tape volumes. The
tape storage group definition specifies the
system-managed tape libraries that can contain tape
volumes. See also storage group.

tape subsystem. A magnetic tape subsystem
consisting of a controller and devices, which allows for

98 z/OS V1R3.0 DFSMSrmm Application Programming Interface

the storage of user data on tape cartridges. Examples
of tape subsystems include the IBM 3490 and 3490E
Magnetic Tape Subsystems.

tape volume. A tape volume is the recording space on
a single tape cartridge or reel. See also volume.

TCDB. Tape configuration database.

temporary data set. An uncataloged data set whose
name begins with & or &&, that is normally used only
for the duration of a job or interactive session. Contrast
with permanent data set.

tera (T). The information-industry meaning depends
upon the context:

1. T = 1 099 511 627 776(2⁴⁰) for real and virtual
storage.

2. T = 1 000 000 000 000 for disk storage capacity (for
example, 4 TB of DASD storage).

3. T = 1 000 000 000 000 for transmission rates.

TLCS. Tape Library Control System.

TSO. Time Sharing Option.

U
Until Expired. Allows the use of vital record
specification policies for managing retention in a
location as long as the volume expiration date has not
been reached.

use attribute. (1) (1) The attribute assigned to a DAD
volume that controls when the volume can be used to
allocate new data sets; use attributes are public, private,
and storage. (2) (2) For system-managed tape volumes,
use attributes are scratch and private.

user volume. A volume assigned to a user, that can
contain any data and can be rewritten as many times as
the user wishes until the volume expires.

using AND. A method for linking DFSMSrmm vital
record specifications to create chains of vital record
specifications. DFSMSrmm applies policies in chains
using AND only when all the retention criteria are true.

using NEXT. A method for linking DFSMSrmm vital
record specifications to create chains of vital record
specifications. DFSMSrmm applies policies in chains
using NEXT one vital record at a time.

V
virtual export. A method of exporting a volume by
marking a volume as exported by using the DFSMSrmm
subcommands.

virtual input/output (VIO) storage group. A type of
storage group that allocates data sets to paging

storage, which simulates a DASD volume. VIO storage
groups do not contain any actual DASD volumes. See
also storage group.

virtual tape server (VTS). This subsystem, integrated
into the IBM TotalStorage Enterprise Automated Tape
Library (3494) or the IBM TotalStorage Enterprise
Automated Tape Library (3495), combines the random
access and high performance characteristics of DASD
with outboard hierarchical storage management and
virtual tape devices and tape volumes.

vital record group. A set of data sets with the same
name that matches to the same DFSMSrmm vital
record specification.

vital record processing. The process of inventory
management that determines which data sets and
volumes DFSMSrmm should retain and whether a
volume needs to move. These volumes and data sets
have been assigned a vital record specification.

vital records. A data set or volume maintained for
meeting an externally-imposed retention requirement,
such as a legal requirement. Compare with disaster
recovery.

vital record specification. Policies defined to manage
the retention and movement of data sets and volumes
used for disaster recovery and vital records purposes.

vital record specification management value. A
one-to-eight character name defined by your installation
and used to assign management and retention values
to tape data sets. The vital record management value
can be any value you chose to create a match between
a vital record specification and data sets and volumes in
your installation. By matching the vital record
specifications to the data set or volumes, DFSMSrmm
applies the retention and movement policies you define
in the vital record specifications. During inventory
management VRSEL processing, DFSMSrmm selects
the correct, best matching vital record specification for a
tape data set or volume.

VOLSER. Volume serial number.

volume. The storage space on DASD, tape, or optical
devices, which is identified by a volume label. See also
DASD volume, logical volume, optical volume, stacked
volume, and tape volume.

volume catalog. See tape configuration database..

volume expiration date. The date the volume should
expire based on the highest expiration date of the data
sets that reside on the volume.

volume serial number (VOLSER). An identification
number in a volume label that is assigned when a
volume is prepared for use on the system. For standard
label volumes, the volume serial number is the VOL1
label of the volume. For no label volumes, the volume

Glossary 99

serial number is the name the user assigns to the
volume. In DFSMSrmm, volume serial numbers do not
have to match rack numbers.

VTS. Virtual tape server.

W
warning mode. The operating mode in which
DFSMSrmm validates volumes as you use them, but
issues warning messages when it discovers errors
instead of rejecting volumes.

write-to-operator (WTO). An optional user-coded
service that allows a message to be written to the
system console operator informing the operator of errors
and unusual system conditions that may need to be
corrected.

WTO. Write-to-operator.

100 z/OS V1R3.0 DFSMSrmm Application Programming Interface

Index

Numerics
2JBN (’8C8000’) - Secondary VRS Jobname Mask 71
2NME (’8C9000’) - Secondary VRS Mask 71
2SCD (’8CA000’) - Secondary VRS Subchain Start
Date 71
2SCN (’8CB000’) - Secondary VRS Subchain
Name 71

A
abbreviations for subcommands 2
abend while open SFI 58
ABND (’800800’) - Abend While Open 58
accessibility 85
account number SFI 58
accounting source SFI 58
ACCT (’800800’) - Accounting Source 58
ACN (’801000’) - Account Number 58
ACS (’801800’) - SMSACS 58
ACT (’802000’) - Actions on release 58
Action Status SFI 58
actions on release SFI 58
Actions Pending SFI 67
ADDBIN
SFIs for 37
subcommand abbreviation 2

ADDDATASET
SFIs for 37
subcommand abbreviation 2

ADDOWNER
SFIs for 37
subcommand abbreviation 2

ADDPRODUCT
SFIs for 37
subcommand abbreviation 2

ADDRACK
SFIs for 37
subcommand abbreviation 2

address line SFI 58
ADDVOLUME
SFIs for 37
subcommand abbreviation 2

ADDVRS
SFIs for 37
subcommand abbreviation 2

ADL (’803001’) - Address Line 58
ADTJ (’804000’) - Assigned Date 58
assigned date SFI 58
assigned time SFI 58
AST (’805000’) - Action Status 58
ATM (’806000’) - Assigned Time 58
AUD (’807000’) - SMF Audit Record Number 58
AVL (’808000’) - Volume Availability 59

B
backup procedure name SFI 59
BDTJ (’809000’) - Last Control Data Set Backup
Date 59
begin and end resource group SFIs 56
begin and end resource groups 34
BIN (’80A000’) - Bin Number 59
Bin Count SFI 59
Bin Number Media Name SFI 59
bin number SFI 59
Bin Numbers in DISTANT SFI 60
Bin Numbers in LOCAL SFI 62
Bin Status SFI 68
BKPP (’80B000’) - Backup Procedure Name 59
BLKC (’80C000’) - Block Count 59
BLKS (’80D000’) - Block Size 59
BLKT (’80D030’) - Total block count 59
block count SFI 59
block size SFI 59
BLP (’80E000’) - BLP Option 59
BLP option SFI 59
BMN (’80F000’) - Bin Number Media Name 59
BTM (’810000’) - Last Control Data Set Backup
Time 59

C
CACT (’811000’) - Control Active Functions 59
Catalog status SFI 60
Catalog Synchronize Date 60
Catalog Synchronize in Progress SFI 61
Catalog Synchronize Time 60
CATRETPD Retention Period SFI 60
CATS (’811800’) - CATSYSID Value 59
CATSYSID Value 59
CDTJ (’813000’) - Create Date 59
CHANGEDATASET
SFIs for 38
subcommand abbreviation 2

CHANGEOWNER
SFIs for 38
subcommand abbreviation 2

CHANGEPRODUCT
SFIs for 38
subcommand abbreviation 2

CHANGEVOLUME
SFIs for 38
subcommand abbreviation 2

character set
chart xvii
use in statement xvii

CJBN (’814000’) - Job Name 59
CLIB (’815000’) - Current Library Name 59
CLS (’816000’) - Security Class Description 59
CNT (’817000’) - Bin, Rack, or Volume Count 59
CONTINUE Operation 16
continuing a request 7, 51

© Copyright IBM Corp. 1992, 2002 101

Control Active Functions SFI 59
Control Data Set (’812000’) - Control Data Set
Identifier 59
Control Data Set Create Date SFI 64
Control Data Set Create Time SFI 65
Control Data Set Identifier SFI 59
Control Data Set Name SFI 64
Control Data Set Type SFI 65
Count of volumes stacked on a stacked volume SFI 69
CPGM (’817820’) - Creating program name 59
Create Date SFI 59
Create Time SFI 60
Creating program name SFI 59
CRP (’818000’) - CATRETPD Retention Period 60
CSDT (’818800’) - Catalog Synchronize Date 60
CSG (’819000’) - Current Storage Group 60
CSTM (’818800’) - Catalog Synchronize Time 60
CSVE (’819600’) - Stacked volume enable status 60
CTLG (’819800’) - Catalog status 60
CTM (’81A000’) - Create Time 60
CTNR (’81A300’) - In container 60
Current label version SFI 64
Current Library Name SFI 59
Current Storage Group SFI 60

D
Data Check Required in IPL SFI 62
Data Class SFI 60
data format 28
Data Set Count SFI 61
Data Set Name Mask SFI 61
Data Set Name SFI 61
Data Set Recording SFI 61
Data Set Sequence SFI 61
date format 33
Date Last Read SFI 60
Date Last Written SFI 61
DBIN (’81A600’) - Destination bin number 60
DBMN (’81A700’) - Destination bin media name 60
DBN (’81B000’) - Bin Numbers in DISTANT 60
DC (’81C000’) - Data Class 60
DD (’81D000’) - DD Name 60
DD Name SFI 60
DDTJ (’81E000’) - Delete Date, or Last Store Update
Date 60
Default Lines Per Page SFI 63
Default Retention Period SFI 61
Delete Date SFI 60
DELETEBIN
SFIs for 38
subcommand abbreviation 2

DELETEDATASET
SFIs for 38
subcommand abbreviation 2

DELETEOWNER
SFIs for 38
subcommand abbreviation 2

DELETEPRODUCT
SFIs for 38
subcommand abbreviation 2

DELETERACK
SFIs for 38
subcommand abbreviation 2

DELETEVOLUME
SFIs for 38
subcommand abbreviation 2

DELETEVRS
SFIs for 38
subcommand abbreviation 2

delimiters xvii
DEN (’81F000’) - Media Density 60
DESC (’820000’) - Volume or VRS Description 60
DEST (’821000’) - Destination Name 60
Destination bin media name SFI 60
Destination bin number SFI 60
Destination Name SFI 60
Destination Type SFI 61
DEV (’822000’) - Device Number 60
Device Number SFI 60
DFSMSrmm System ID SFI 68
disability 85
Disposition DD name SFI 61
Disposition Message Prefix SFI 61
DLRJ (’823000’) - Date Last Read 60
DLWJ (’824000’) - Date Last Written 61
DNM (’825000’) - Data Set Name Mask 61
DPT (’826000’) - Owner’s department 61
DPT (’826000’) - Owner’s Department 61
DRP (’827000’) - Default Retention Period 61
DSC (’828000’) - Data Set Count 61
DSEQ (’829000’) - Data Set Sequence 61
DSN (’82A000’) - Data Set Name 61
DSPD (’82A500’) - Disposition DD name 61
DSPM (’82AA00’) - Disposition message prefix 61
DSR (’82B000’) - Data Set Recording 61
DSTT (’82B200’) - Destination Type 61
DTE (’82C000’) - Installation Date Format 61
DTM (’82D000’) - Last Store Update Run Time 61

E
EBIN (’82D500’) - Extended bin enable status 61
EDGXAPI module 3
EDGXCI macro syntax 4
EDGXCI: Call DFSMSrmm Interface 3
EDGXSF Structured Field Definitions 76
EMN (’82E000’) - Owner’s Node 61
EMU (’82F000’) - Owner’s User ID 61
ENTN (’053000’) - Number of Entries 57
ETL (’830000’) - Owner’s External Telephone
Number 61
expanded output 31
Expiration Date Check SFI 71
Expiration Date Ignore SFI 71
Expiration Date SFI 71
Extended bin enable status SFI 61
Extradays retention SFI 69

102 z/OS V1R3.0 DFSMSrmm Application Programming Interface

F
FCD (’831000’) - Product Feature Code 61
FCSP (’831800’) - Catalog Synchronize in Progress 61
FDB (’832000’) - Free Bins in DISTANT Location 62
field format for data 28
FILE (’833000’) - Physical File Sequence 62
FLB (’834000’) - Free Bin Numbers in LOCAL 62
FOR (’835000’) - Owner’s Forename 62
FRB (’836000’) - Free Bin Numbers in REMOTE 62
FRC (’400000’) - Function Return Code 57
Free Bin Numbers in LOCAL SFI 62
Free Bin Numbers in REMOTE SFI 62
Free Bins in DISTANT Location SFI 62
Free Rack Numbers in Library SFI 62
freeing resources 24
FRK (’837000’) - Free Rack Numbers in Library 62
FRS (’401000’) - Function Reason Code 57
Function Reason Code SFI 57
Function Return Code SFI 57

G
Generic Rack Number SFI 62
GETVOLUME
SFIs for 39
subcommand abbreviation 2

GRK (’838000’) - Generic Rack Number 62

H
high level assembler 1
HLOC (’839000’) - Home Location 62
HLOT (’839200’) - Home Location Type 62
Home Location SFI 62
Home Location Type SFI 62

I
In container SFI 60
Installation Date Format SFI 61
Installation RACF Support SFI 67
INTR (’83A000’) - Volume Intransit Status 62
IPL (’83B000’) - Data Check Required in IPL 62
ITL (’83C000’) - Owner’s Internal Telephone
Number 62

J
JDS (’83D000’) - Journal Name 62
Job Name SFI 59
Journal Name SFI 62
Journal Percentage Used SFI 62
JOURNALFULL Parmlib Value SFI 62
JRNF (’83E000’) - JOURNALFULL Parmlib Value 62
JRNU (’83F000’) - Journal Percentage Used 62

K
Key From SFI 57
Key to SFI 57

keyboard 85
KEYF (’054000’) - Key From 57
KEYT (’054200’) - Key to 57

L
Last Change User ID SFI 62
Last Control Data Set Backup Date SFI 59
Last Control Data Set Backup Time SFI 59
Last Control Data Set Extract Date SFI 67
Last Control Data Set Extract Time SFI 68
Last Drive SFI 63
Last Expiration Processing Start Date SFI 69
Last Expiration Processing Start Time SFI 69
Last Inventory Management Expiration Time SFI 71
Last Inventory Management Processing Date SFI 70
Last Inventory Management VRS Time SFI 71
Last Store Update Date SFI 60
Last Store Update Run Time SFI 61
Last used DD name SFI 63
Last used job name SFI 63
Last used program name SFI 63
Last used step name SFI 63
LBL (’840000’) - Volume Label Type 62
LBN (’841000’) - Bin Numbers in LOCAL 62
LCID (’842000’) - Last Change User ID 62
LCT (’843000’) - Default Lines Per Page 63
LDD (’843B00’) - Last used DD name 63
LDDF (’844000’) - Location Definition Exists 63
LDEV (’845000’) - Last Drive 63
LDLC (’846000’) - Location Name 63
LDLT (’847000’) - Location Type 63
LDMN (’848000’) - Location Media Name 63
LDMT (’849000’) - Location Management Type 63
LDPR (’84A000’) - Location Priority 63
Library Rack Numbers SFI 63
limiting the amount of information returned 51
LINE (’84B000’) - Output Data Line 63
line format for data 28
LISTBIN
SFIs for 39
subcommand abbreviation 2

LISTCONTROL
SFIs for 40
subcommand abbreviation 2

LISTDATASET
SFIs for 43
subcommand abbreviation 2

LISTOWNER
SFIs for 44
subcommand abbreviation 2

LISTPRODUCT
SFIs for 44
subcommand abbreviation 2

LISTRACK
SFIs for 44
subcommand abbreviation 2

LISTVOLUME
SFIs for 45
subcommand abbreviation 2

Index 103

LISTVRS
SFIs for 47
subcommand abbreviation 2

LJOB (’84B420’) - Last used job name 63
LOAN (’84C000’) - Loan Location 63
Loan Location SFI 63
LOC (’84D000’) - Location 63
Location Definition Exists SFI 63
Location Management Type SFI 63
Location Media Name SFI 63
Location Name SFI 63
Location Priority SFI 63
Location SFI 63
Location Type SFI 63
LOCT (’84E000’) - Location Type 63
Logical Record Length SFI 63
LPGM (’84E760’) - Last used program name 63
LRCL (’84F000’) - Logical Record Length 63
LRK (’850000’) - Number of Library Rack Numbers 63
LSTP (’850370’) - Last used step name 63
LVC (’850500’) - current label version 64
LVN (’850A00’) - Required label version 64

M
Management Class SFI 64
mapping macros
EDGXCI 75
EDGXSF 76

Master Overwrite SFI 64
Matching VRS Job Name SFI 70
Matching VRS Name SFI 70
Matching VRS Type SFI 71
MAXHOLD Value SFI 68
Maximum Retention Period SFI 65
MC (’851000’) - Management Class 64
MDS (’852000’) - Control Data Set Name 64
MDTJ (’853000’) - Control Data Set Create Date 64
MEDA (’854000’) - Media Special Attributes 64
MEDC (’855000’) - Media Compaction 64
Media Compaction SFI 64
Media Density SFI 60
Media Name SFI 64
Media Recording Format SFI 64
Media Special Attributes SFI 64
Media Type SFI 64
MEDN (’856000’) - Media Name 64
MEDR (’857000’) - Media Recording Format 64
MEDT (’858000’) - Media Type 64
Message Line SFI 57
Message Number SFI 57
Message SFIs 57
Message Text Case SFI 65
Message Variable SFIs 57
MFR (’859000) - Source Location Name 64
MID (’85A000’) - Mount message ID 64
MIV (’85A500’) - Moving-in volume 64
MOP (’85C000’) - Master Overwrite 64
Mount message ID SFI 64
MOV (’85A900’) - Moving-out volume 64
Move By SFI 65

Move Mode SFI 64
Move Status SFI 65
Move Type SFI 65
Movement Tracking Date SFI 68
Moving-in volume SFI 64
Moving-out volume SFI 64
MOVM (’85B000’) - Move Mode 64
MRP (’85D000’) - Maximum Retention Period 65
MSGF (’85E000’) - Case of Message Text 65
MSGL (’051000’) - Message Line 57
MSGN (’052000’) - Message Number 57
MST (’85F000’) - Move Status 65
MTM (’860000’) - Control Data Set Create Time 65
MTO (’861000’) - Target Location Name 65
MTP (’862000’) - Control Data Set Type 65
MTY (’862800’) - Move Type 65
multiple parameter list, multiple token areas 22
multiple parameter list, single token area 21
MVBY (’862B00’) - Move By 65
MVS (’863000’) - MVS Use 65
MVS Use SFI 65

N
Next Vital Record Specification Name SFI 65
Next Volume SFI 65
Next VRS Value SFI 70
NLOC (’865000’) - Required Location 65
NLOT (’865200’) - Required location type 65
NME (’866000’) - Security Class Name 65
NOT (’866800’) - Notify 65
Number of Bin Numbers in REMOTE SFI 67
Number of Entries SFI 57
Number of Volumes SFI 70
NVL (’867000’) - Next Volume 65
NVRS (’868000’) - Next VRS Name 65

O
OAC (’869000’) - Owner Access 65
OBMN (’86A000’) - Old Bin Number Media Name 65
OBN (’86B000’) - Old Bin Number 65
obtaining space for output buffer 12
OCE (’86B800’) - Volume Information Recorded at
O/C/EOV 66
Offset to Message ID SFI 68
Old Bin Number Media Name SFI 65
Old Bin Number SFI 65
Old Location SFI 66
Old location type SFI 66
Old volume SFI 66
OLOC (’86C000’) - Old Location 66
OLOT (’86C200’) - Old location type 66
Operating Mode SFI 66
OPL (’86D000’) - Position of Rack Number or Pool
ID 66
OPM (’86E000’) - Operating Mode 66
Original Expiration Date SFI 66
output buffer
hexadecimal example of an output buffer 81
obtaining space for 12

104 z/OS V1R3.0 DFSMSrmm Application Programming Interface

Output Data Line SFI 63
OVL (’86F000’) - Position of Volume Serial 66
OVOL (’86F500’) - Old volume 66
OWN (’870000’) - Owner 66
Owner Access SFI 65
Owner SFI 66
Owner’s department SFI 61
Owner’s Department SFI 61
Owner’s External Telephone Number SFI 61
Owner’s Forename SFI 62
Owner’s Internal Telephone Number SFI 62
Owner’s Node SFI 61
Owner’s Surname SFI 69
Owner’s User ID SFI 61
OXDJ (’871000’) - Original Expiration Date 66

P
PACS (’801800’) - PREACS 66
parameter lists
multiple parameter list, multiple token areas 22
multiple parameter list, single token area 21
single parameter list, multiple token areas 18
single parameter list, single token area 17

Parmlib Member Suffix SFI 67
PDA (’871E00’) - PDA state 66
PDA block count SFI 66
PDA block size SFI 66
PDA log state SFI 66
PDA state SFI 66
PDAC (’871E90’) - PDA block count 66
PDAL (’871E30’) - PDA log state 66
PDAS (’871E90’) - PDA block size 66
PDS (’872000’) - Pool Description 66
PDSC (’873000’) - Product Description 66
PEND (’874000’) - Actions Pending 67
Permanent Read Error SFI 67
Permanent Write Error SFI 67
Physical File Sequence SFI 62
PID (’875000’) - Pool Prefix 67
PLN (’876000’) - Pool Name 67
PNME (’877000’) - Product Software Name 67
PNUM (’878000’) - Software Product Number 67
Pool Definition Pool Type SFI 67
Pool Definition RACF Option SFI 67
Pool Definition System ID SFI 67
Pool Description SFI 66
Pool Name SFI 67
Pool Prefix SFI 67
Position of Rack Number or Pool ID SFI 66
Position of Volume Serial SFI 66
PRD (’879000’) - Permanent Read Errors 67
PREACS SFI 66
Previous Volume SFI 67
PRF (’87A000’) - Pool Definition RACF Option 67
Primary VRS Subchain Name SFI 71
Primary VRS Subchain Start Date SFI 71
Priority SFI 67
Product Description SFI 66
Product Feature Code SFI 61
Product Software Name SFI 67

Programming Guidelines 15
programming requirements 3
PRTY (’87B000’) - Priority 67
PSFX (’87C000’) - Parmlib Member Suffix 67
PSN (’87D000’) - Pool Definition System ID 67
PTP (’87E000’) - Pool Definition Pool Type 67
PVL (’87F000’) - Previous Volume 67
PWT (’880000’) - Permanent Write Errors 67

R
Rack Count SFI 59
Rack Number or Bin Number SFI 67
Rack Status SFI 68
RBN (’881000’) - Number of Bin Numbers in
REMOTE 67
RBYS (’881200’) - Retain by set 67
RCF (’882000’) - Installation RACF Support 67
RCFM (’883000’) - Record Format 67
RCK (’884000’) - Rack Number or Bin Number 67
RDTJ (’886000’) - Last Control Data Set Extract
Date 67
Reason Code SFI 57
Reason code SFIs 56
Record Format SFI 67
Reject Type SFI 69
Release Action Scratch Immediate SFI 70
releasing all resources 20
releasing resources 15
Required label version SFI 64
Required Location SFI 65
Required location type SFI 65
RET (’888000’) - Retention Type 68
Retain by set SFI 67
Retain by SFI 68
Retention Date SFI 68
Retention Type SFI 68
Return Code SFI 57
Return Code SFIs 56
Reuse bin at SFI 68
reusing resources 15
RSNC (’402000’) - Reason Code 57
RST (’88A000’) - Rack or Bin Status 68
RTBY (’88B900’) - Retain by 68
RTDJ (’88C000’) - Retention Date 68
RTM (’88E000’) - Last Control Data Set Extract
Time 68
RTNC (’403000’) - Return Code 57
RUB (’88E500’) - Reuse bin at 68

S
SC (’890000’) - Storage Class 68
SC1 (’894000’) - Storenumber 68
Scratch Immediate SFI 70
Scratch Procedure Name SFI 69
SCST (’892000’) - Security Class Status 68
SDTJ (’895000’) - Movement Tracking Date 68
SEARCHBIN
SFIs for 48
subcommand abbreviation 2

Index 105

SEARCHDATASET
SFIs for 48
subcommand abbreviation 2

SEARCHPRODUCT
SFIs for 48
subcommand abbreviation 2

SEARCHRACK
limiting the amount of information returned 51
SFIs for 49
subcommand abbreviation 2

SEARCHVOLUME
SFIs for 49
subcommand abbreviation 2

SEARCHVRS
SFIs for 50
subcommand abbreviation 2

SEC (’896000’) - Security Class Number 68
Secondary VRS Jobname Mask SFI 71
Secondary VRS Mask SFI 71
Secondary VRS Subchain Name SFI 71
Secondary VRS Subchain Start Date SFI 71
Security Class Description SFI 59
Security Class Name SFI 65
Security Class Number SFI 68
Security Class Status SFI 68
SEQ (’898000’) - Volume Sequence 68
Service Name SFI 57
SG (’89A000’) - Storage Group Name 68
shortcut keys 85
SID (’89B000’) - DFSMSrmm System ID 68
single parameter list, multiple token areas 18
single parameter list, single token area 17
SLM (’89C000’) - MAXHOLD Value 68
SMF audit record number SFI 58
SMF Security Record Number SFI 69
SMF System ID SFI 69
SMI (’89E000’) - Offset to Message ID 68
SMP (’89E210’) - System-managed tape purge 68
SMSACS SFI 58
SMU (’89E220’) - System-managed tape update 69
Software Product Number SFI 67
Software Product Version SFI 70
software requirements 1
SOSJ (’89F000’) - Last Expiration Processsing Start
Date 69
SOSP (’8A0000’) - Scratch Procedure Name 69
SOST (’8A1000’) - Last XPROC Start Time 69
Source Location Name SFI 64
SSM (’8A2000’) - SMF Security Record Number 69
Stacked volume enable status SFI 60
standard output 31
STEP (’8A3000’) - Step Name 69
Step Name SFI 69
Storage Class SFI 68
Storage Group Name SFI 68
Storenumber SFI 68
Structured Field Introducer
data format 28
for begin and end resource groups 56
for Messages and Message Variables 57
for Return and Reason Codes 56

Structured Field Introducer (continued)
for subcommand output data 58
format 55

Structured Field Introducer Definitions 55
STVC (’8A3800’) - Count of volumes stacked on a
stacked volume 69
subcommand output data SFIs 58
Supported Subcommands 2
SUR (’8A4000’) - Owner’s Surname 69
SVCN (’404000’) - Service Name 57
syntax for EDGXCI 4
SYS (’8A5000’) - SMF System ID 69
System-managed tape purge SFI 68
System-managed tape update SFI 69

T
TAC (’8A6000’) - Reject Type 69
Target Location Name SFI 65
Temporary Read Error SFI 69
Temporary Write Error SFI 69
time format 33
Total block count SFI 59
TRD (’8A7000’) - Temporary Read Errors 69
TVXP (’8A7900’) - Extradays retention 69
TWT (’8A8000’) - Temporary Write Errors 69
TYP (’8A9000’) - VRS Type 69
TYPE (’055200’) - Type To 57
Type From SFI 57
Type To SFI 57
Types of Structured Field Introducers 34
TYPF (’055000’) - Type From 57

U
UID (’8AB001’) - User ID 69
UNC (’8AC000’) - Uncatalog Option 69
Uncatalog Option SFI 69
USEC (’8AD000’) - Volume Use Count 69
USEM (’8AE000’) - Volume Usage (KB) 69
User ID SFI 69
User Notification SFI 65
using multiple parameter lists 16

V
VAC (’8AF001’) - Volume Access 70
VACT (’8B0000’) - VRSMIN Action 70
VANX (’8B0800’) - Next VRS Value 70
VCAP (’8B0B00’) - Volume capacity 70
VCHG (’8B1000’) - VRSCHANGE Value 70
VDD (’8B2000’) - VRS Delay Days 70
VDTJ (’8B3000’) - Last Inventory Management
Processing Date 70
VER (’8B4000’) - Software Product Version 70
Vital Record Count SFI 70
Vital Record Specification Delay Days SFI 70
Vital record specification name SFI 70
Vital Record Specification SFI 67
Vital Record Specification Type SFI 69
VJBN (’8B5000’) - Matching VRS Job Name 70

106 z/OS V1R3.0 DFSMSrmm Application Programming Interface

VLN (’8B6000’) - Number of Volumes 70
VM (’8B7000’) - VM Use 70
VM Use SFI 70
VMIN (’8B8000’) - VRSMIN Count Value 70
VMV (’8B9000’) - VRS Management Value 70
VNME (’8BA000’) - Matching VRS Name 70
VOL (’8BC000’) - Volume Serial 70
VOLT (’8BC200’) - Volume type 70
Volume Access SFI 70
volume availability SFI 59
Volume capacity 70
Volume Count SFI 59
Volume Description SFI 60
Volume Information Recorded at O/C/EOV Indicator
SFI 66
Volume Intransit Status SFI 62
Volume Label Type SFI 62
Volume percent full SFI 70
Volume Sequence SFI 68
Volume Serial SFI 70
Volume Status SFI 71
Volume type SFI 70
Volume Usage SFI 69
Volume Use Count SFI 69
VPCT (’8BC300’) - Volume percent full 70
VRC (’8BD000’) - Vital Record Count 70
VRJ (’8BE000’) - VRS Job Name 70
VRS (’8BF000’) - Vital Record Specification 69
VRS (’8BF000’) - Vital record specification name 70
VRS Description SFI 60
VRS Job Name SFI 70
VRS Management Value SFI 70
VRS Retained Status SFI 71
VRSCHANGE Value SFI 70
VRSEL Value SFI 70
VRSI (’8BF500’) - Scratch immediate 70
VRSL (’8BFA00’) - VRSEL Value 70
VRSMIN Action SFI 70
VRSMIN Count Value SFI 70
VRSR (’8C0000’) - VRS Retained Status 71
VRXI (’8C0800’) - Expiration Date Ignore 71
VSCD (’8C1000’) - Primary VRS Subchain Start
Date 71
VSCN (’8C1800’) - Primary VRS Subchain Name 71
VST (’8C2000’) - Volume Status 71
VTM (’8C3000’) - Last Inventory Management VRS
Time 71
VTYP (’8C4000’) - Matching VRS Type 71

X
XDC (’8C5000’) - Expiration Date Check 71
XDTJ (’8C6000’) - Expiration Date 71
XTM (’8C7000’) - Last Inventory Management Expiration
Time 71

Index 107

108 z/OS V1R3.0 DFSMSrmm Application Programming Interface

Readers’ Comments — We’d Like to Hear from You

z/OS
DFSMSrmm Application Programming Interface

Publication No. SC26-7403-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC26-7403-01

SC26-7403-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
RCF Processing Department
M86/050
5600 Cottle Road
SAN JOSE, CA U.S.A 95193-0001

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC26-7403-01

	Contents
	Figures
	Tables
	About This Book
	Required Product Knowledge
	Referenced Publications
	Accessing z/OS DFSMS Books on the Internet
	Using LookAt to look up message explanations
	Accessing Licensed Books on the Web
	How to Send Your Comments
	Notational Conventions
	How to Read Syntax Diagrams
	How to Abbreviate Commands and Operands
	How to Use Continuation Characters
	Delimiters
	Character Sets

	Summary of Changes
	Summary of Changes for SC26-7403-01 z/OS Version 1 Release 3
	New Information
	Changed Information

	Chapter 1. Using the DFSMSrmm Application Programming Interface
	Supported RMM TSO Subcommands
	Using the EDGXCI Macro
	EDGXCI: Calling the DFSMSrmm Interface
	EDGXCI Environment
	EDGXCI Programming Requirements
	EDGXCI Restrictions
	EDGXCI Input Register Information
	EDGXCI Output Register Information

	EDGXCI Syntax
	EDGXCI Parameters
	EDGXCI Return and Reason Codes
	EDGXCI Example

	Chapter 2. Programming Guidelines
	Specifying the Subcommand Input in EDGXCI
	Using the CONTINUE Operation in EDGXCI
	Using Parameter Lists
	Single Parameter List, Single Token Area
	Single Parameter List, Multiple Token Areas
	Multiple Parameter List, Single Token Area
	Multiple Parameter List, Multiple Token Areas

	Freeing Resources

	Chapter 3. Receiving Output Data in the Output Buffer
	Description of Structured Fields
	Requesting SFI Data Format
	Requesting Line Format
	Requesting Field Format

	Requesting Types of Output
	Requesting Standard Output
	Requesting Expanded Output

	Accessing Return and Reason Codes
	Accessing Messages and Message Variables
	Interpreting Date Format and Time Format
	Identifying Structured Field Introducers
	Begin and End Resource Groups
	System Return and Reason Code SFIs
	Messages and Message Variables SFIs
	SFIs for Output Data for Subcommands
	Add Type of Subcommands
	Change Type of Subcommands
	Delete Type of Subcommands
	GETVOLUME Subcommand
	List Type of Subcommands
	LISTBIN Structured Field Introducers
	LISTCONTROL Structured Field Introducers
	LISTDATASET Structured Field Introducers
	LISTOWNER Structured Field Introducers
	LISTPRODUCT Structured Field Introducers
	LISTRACK Structured Field Introducers
	LISTVOLUME Structured Field Introducers
	LISTVRS Structured Field Introducers
	Search Type of Subcommands
	SEARCHBIN Structured Field Introducers
	SEARCHDATASET Structured Field Introducers
	SEARCHPRODUCT Structured Field Introducers
	SEARCHRACK Structured Field Introducers
	SEARCHVOLUME Structured Field Introducers
	SEARCHVRS Structured Field Introducers

	Controlling Output from List and Search Type Requests
	Limiting the Search for a Request
	Output Buffer Examples
	First Output Buffer
	Second Output Buffer
	Third (Last) Output Buffer

	Appendix A. Structured Field Introducers
	SFI Format
	Structured Field Lengths
	SFIs for Begin and End Resource Groups
	SFIs for Return and Reason Codes
	SFIs for Messages and Message Variables
	SFIs for Subcommand Output Data

	Appendix B. Structured Field Introducers by Subcommand
	Appendix C. DFSMSrmm Application Programming Interface Mapping Macros
	EDGXCI: Parameter List
	EDGXSF: Structured Field Definitions
	EDGXSF Parameters
	EDGXSF Mapping
	EDGXSF Labeling Conventions
	Labeling: Begin and End Resource Groups
	Labeling: SFIs that Introduce Data
	Labeling: Flags
	Labeling: Bin(8) Data
	Unlabeled Data

	Appendix D. Hexadecimal Example of an Output Buffer
	Hexadecimal Representation of an Output Buffer
	Description of the Contents of an Output Buffer
	Processing the Contents of an Output Buffer

	Appendix E. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Programming Interface Information
	Trademarks

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

