
z/OS IBM

DCE
Application Development Guide:
Directory Services

 SC24-5906-00

z/OS IBM

DCE
Application Development Guide:
Directory Services

 SC24-5906-00

 Note

Before using this information and the product it supports, be sure to read the general information under Appendix A, “Notices”
on page 351.

First Edition (March 2001)

This edition, SC24-5906-00, applies to Version 1 Release 1 of z/OS DCE Base Services, z/OS DCE user Data Privacy (DES and
CDMF), z/OS DCE User Data Privacy (CDMF) (program number 5694-A01), and to all subsequent releases and modifications until
otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

IBM welcomes your comments. A form for reader's comments may be provided at the back of this publication, or you may address
your comments to the following address:

International Business Machines Corporation
Information Development, Dept. G60
1701 North Street
Endicott, NY 13760-5553
United States of America

FAX (United States & Canada): 1+607+752-2327
FAX (Other Countries):

Your International Access Code +1+607+752-2327

IBMLink (United States customers only): GDLVME(PUBRCF)
Internet e-mail: pubrcf@vnet.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

� Title and order number of this book

� Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use the information in any way it believes appropriate
without incurring any obligation to you.

 Copyright International Business Machines Corporation 1994, 2001. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

The following statements are provided by the Open Software Foundation.

The information contained within this document is subject to change without notice.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein, or for any direct or indirect, incidental, special or consequential damages in
connection with the furnishing, performance, or use of this material.

Copyright  1993, 1994 Open Software Foundation, Inc.

This documentation and the software to which it relates are derived in part from materials supplied by the following:

�  Copyright 1990, 1991 Digital Equipment Corporation
�  Copyright 1990, 1991 Hewlett-Packard Company
�  Copyright 1989, 1990, 1991 Transarc Corporation
�  Copyright 1990, 1991 Siemens Nixdorf Informationssysteme AG
�  Copyright 1990, 1991 International Business Machines Corporation
�  Copyright 1988, 1989 Massachusetts Institute of Technology
�  Copyright 1988, 1989 The Regents of the University of California

All Rights Reserved.

Printed in the U.S.A.

THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A LICENSE, AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. TITLE
TO AND OWNERSHIP OF THE DOCUMENT AND SOFTWARE REMAIN WITH OSF OR ITS LICENSORS.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the Open Software
Foundation, Inc.

UNIX is a registered trademark of The Open Group in the United States and other countries.

DEC, DIGITAL, and ULTRIX are registered trademarks of Digital Equipment Corporation.

DECstation 3100 and DECnet are trademarks of Digital Equipment Corporation.

HP, Hewlett-Packard, and LaserJet are trademarks of Hewlett-Packard Company.

Network Computing System and PasswdEtc are registered trademarks of Hewlett-Packard Company.

AFS and Transarc are registered trademarks of the Transarc Corporation.

Episode is a trademark of the Transarc Corporation.

Ethernet is a registered trademark of Xerox Corporation.

DIR-X is a trademark of Siemens Nixdorf Informationssysteme AG.

MX300i is a trademark of Siemens Nixdorf Informationssysteme AG.

NFS, Network File System, SunOS and Sun Microsystems are trademarks of Sun Microsystems, Inc.

X/Open is a trademark of The Open Group in the U.K. and other countries.

PostScript is a trademark of Adobe Systems Incorporated.

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED SOFTWARE

These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this computer software,
the rights of the Government regarding its use, reproduction and disclosure are as set forth in Section 52.227-19 of the FARS
Computer Software-Restricted Rights clause.

RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Government is subject to the restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013.

RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is subject to restrictions as set forth in
paragraph (b)(3)(B) of the rights in Technical Data and Computer Software clause in DAR 7-104.9(a). This computer software is
submitted with "restricted rights." Use, duplication or disclosure is subject to the restrictions as set forth in NASA FAR SUP
18-52.227-79 (April 1985) "Commercial Computer Software-Restricted Rights (April 1985)." If the contract contains the Clause at
18-52.227-74 "Rights in Data General" then the "Alternate III" clause applies.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule Contract.

Unpublished—All rights reserved under the Copyright Laws of the United States.

This notice shall be marked on any reproduction of this data, in whole or in part.

 iii

iv Application Development Guide: Directory Services

 Contents

About This Book . xvii
Who Should Use This Book . xvii

DCE Application Development Environment . xvii
Unsupported OSF DCE Functions . xviii

How This Book Is Organized . xix
Terminology Used in This Book . xix
Conventions Used in This Book . xxi
Where to Find More Information . xxi

Softcopy Publications . xxi
Internet Sources . xxii
Using LookAt to Look up Message Explanations . xxii
Accessing Licensed Books on the Web . xxii

Part 1. Using the DCE Directory APIs . 1

Chapter 1. DCE Directory Service Overview . 3
Using This Book . 3

Directory Service Tools . 3
Using the DCE Directory Service . 3
DCE Directory Service Concepts . 4
Structure of DCE Names . 6

DCE Name Prefixes . 7
Names of Cells . 7
CDS Names . 8
GDS Names . 9
Junctions in DCE Names . 9
Application Names . 9

The Federated DCE Namespace . 9
The GDS Namespace . 10
The CDS Namespace . 11
Other Namespaces . 12
Access to Objects in the Federated DCE Namespace . 12

Programming Interfaces to the DCE Directory Service . 12
The XDS Interface . 13
The RPC Name Service Interface . 13
Namespace Junction Interfaces . 13

Part 2. CDS Application Programming . 15

Chapter 2. Programming in the CDS Namespace . 17
Initial Cell Namespace Organization . 17

The Cell Profile . 18
The LAN Profile . 19
The CDS Clearinghouse . 19
The Hosts Directory . 19
The Subsystems Directory . 19
The /: DFS Alias . 20
DFS and Security Service Junctions . 20

Recommended Use of the CDS Namespace . 20

 Copyright IBM Corp. 1994, 2001 v

Storing Data in CDS Entries . 20
Access Control for CDS Entries . 23

Valid Characters and Naming Rules for CDS . 25
Metacharacters . 27
Additional Rules . 27
Maximum Name Sizes . 29

Use of Object Identifiers . 31

Chapter 3. XDS and the DCE Cell Namespace . 33
Introduction to Accessing CDS with XDS . 33

Using the Reference Material in this Chapter . 33
What You Cannot Do with XDS . 34
What Must Be Set Up . 34

XDS Objects . 34
Object Attributes . 36
Interface Objects and Directory Objects . 36
Directory Objects and Namespace Entries . 38
Values That an Object Can Contain . 39
Building a Name Object . 39
A Complete Object . 41
Class Hierarchy . 42
Class Hierarchy and Object Structure . 42
Public and Private Objects and XOM . 42
XOM Objects and XDS Library Functions . 43

Accessing CDS Using the XDS Step-by-Step Procedure . 43
Reading and Writing Existing CDS Entry Attributes Using XDS . 43
Creating New CDS Entry Attributes . 55

Object-Handling Techniques . 57
Using XOM to Access CDS . 58
Dynamic Creation of Objects . 59

XDS/CDS Object Recipes . 60
Input XDS/CDS Object Recipes . 60
Input Object Classes for XDS/CDS Operations . 61

Attribute and Data Type Translation . 72

Part 3. GDS Application Programming . 75

Chapter 4. GDS API: Concepts and Overview . 77
Directory Service Interfaces . 77
The X.500 Directory Information Model . 78

Directory Objects . 78
Attribute Types . 79
Object Identifiers . 80
Object Entries . 81

X.500 Naming Concepts . 83
Distinguished Names . 83
Relative Distinguished Names and Attribute Value Assertions . 84
Multiple AVAs . 84
Aliases . 85
Name Verification . 86

Schemas . 86
The GDS Standard Schema . 87
The Structure Rule Table . 87

vi Application Development Guide: Directory Services

The Object Class Table . 89
The Attribute Table . 92
Defining Subclasses . 93

Abstract Syntax Notation 1 . 93
ASN.1 Types . 94
Basic Encoding Rules . 95

Chapter 5. XOM Programming . 97
OM Objects . 97

OM Object Attributes . 97
Object Identifiers . 100
C Naming Conventions . 100
Public Objects . 102
Private Objects . 111
Object Classes . 111

Packages . 117
The Directory Service Package . 117
The Basic Directory Contents Package . 118
The Strong Authentication Package . 119
The Global Directory Service Package . 119
The MHS Directory User Package . 119
Package Closure . 120

Workspaces . 120
Storage Management . 121
OM Syntaxes for Attribute Values . 122

Enumerated Types . 123
Object Types . 123
Strings . 124
Other Syntaxes . 124

Service Interface Data Types . 124
The OM_descriptor Data Type . 125
Data Types for XDS API Function Calls . 127
Data Types for XOM API Calls . 127

OM Function Calls . 128
Summary of OM Function Calls . 128
Using the OM Function Calls . 129

XOM API Header Files . 133
XOM Type Definitions and Symbolic Constant Definitions . 133
XOM API Macros . 133

Chapter 6. XDS Programming . 137
XDS Interface Management Functions . 137

The ds_initialize() Function Call . 138
The ds_version() Function Call . 138
The ds_shutdown() Function Call . 140

Directory Connection Management Functions . 140
A Directory Session . 140
The ds_bind() Function Call . 140
The ds_unbind() Function Call . 141
Automatic Connection Management . 141

XDS Interface Class Definitions . 141
The DS_C_CONTEXT Parameter . 142

Directory Class Definitions . 142
Directory Operation Functions . 143

 Contents vii

Directory Read Operations . 143
Reading an Entry from the Directory . 144
Step 1: Export Object Identifiers for Required Directory Classes and Attributes 144
Step 2: Declare Local Variables . 145
Step 3: Build Public Objects . 145
Step 4: Create an Entry-Information-Selection Parameter . 146
Step 5: Perform the Read Operation . 147

Directory Search Operations . 150
Directory Modify Operations . 150

Modifying Directory Entries . 151
Step 1: Export Object Identifiers for Required Directory Classes and Attributes 152
Step 2: Declare Local Variables . 152
Step 3: Build Public Objects . 153
Step 4: Create Descriptor Lists for Attributes . 154
Step 5: Perform the Operations . 155

Return Codes . 157

Chapter 7. Example Application Programs . 159
General Programming Guidelines . 159
The example.c Program . 159

The example.c Code . 162
Error Handling . 168

The teldir.c Program . 170
Predefined Static Public Objects . 170
Partially Defined Static Public Objects . 171
Dynamically Defined Public Objects . 172
Main Program Procedural Steps . 173
The teldir.c Code . 174

Chapter 8. Using Threads with the XDS/XOM API . 191
Overview of Example Threads Program . 192

User Interface . 193
Input File Format . 193
Program Output . 193
Prerequisites . 194

Description of Thradd Example Program . 194
Detailed Description of Thread Specifics . 195
The thradd.c Code . 197
The thradd.h Header File . 205

Chapter 9. XDS/XOM Convenience Routines . 209
String Handling . 209

Strings Representing GDS Attribute Information . 210
Strings Representing Structured GDS Attribute Information . 210
Strings Representing a Structured GDS Attribute Value . 212
Strings Representing a Distinguished Name . 212
Strings Representing Expressions . 213
Examples of strings handled by omX_string_to_object() . 214
Examples of strings returned by omX_object_to_string() . 216

The teldir2.c Program . 217
The teldir2.c Code . 218

Part 4. XDS/XOM Supplementary Information . 231

viii Application Development Guide: Directory Services

Chapter 10. XDS Interface Description . 233
XDS Conformance to Standards . 233
The XDS Functions . 234

The XDS Negotiation Sequence . 235
The session Parameter . 235
The context Parameter . 236
The XDS Function Arguments . 236

Attribute and Attribute Value Assertion . 237
The Entry-Information-Selection Parameter . 237
The name Parameter . 238

XDS Function Call Results . 238
The invoke-id Parameter . 238
The result Parameter . 238
The DS_status Return Value . 239

Synchronous Operations . 239
Security and XDS . 240
Other Features of the XDS Interface . 240

Automatic Connection Management . 240
Automatic Continuation and Referral Handling . 240

Chapter 11. XDS Class Definitions . 241
Introduction to OM Classes . 241
XDS Errors . 241
OM Class Hierarchy . 242
DS_C_ABANDON_FAILED . 244
DS_C_ACCESS_POINT . 245
DS_C_ADDRESS . 245
DS_C_ATTRIBUTE . 245
DS_C_ATTRIBUTE_ERROR . 246
DS_C_ATTRIBUTE_LIST . 246
DS_C_ATTRIBUTE_PROBLEM . 247
DS_C_AVA . 248
DS_C_COMMON_RESULTS . 248
DS_C_COMMUNICATIONS_ERROR . 248
DS_C_COMPARE_RESULT . 249
DS_C_CONTEXT . 249
DS_C_CONTINUATION_REF . 252
DS_C_DS_DN . 253
DS_C_DS_RDN . 253
DS_C_ENTRY_INFO . 254
DS_C_ENTRY_INFO_SELECTION . 254
DS_C_ENTRY_MOD . 255
DS_C_ENTRY_MOD_LIST . 256
DS_C_ERROR . 256
DS_C_EXT . 258
DS_C_FILTER . 259
DS_C_FILTER_ITEM . 260
DS_C_LIBRARY_ERROR . 261
DS_C_LIST_INFO . 262
DS_C_LIST_INFO_ITEM . 263
DS_C_LIST_RESULT . 264
DS_C_NAME . 264
DS_C_NAME_ERROR . 265
DS_C_OPERATION_PROGRESS . 265

 Contents ix

DS_C_PARTIAL_OUTCOME_QUAL . 266
DS_C_PRESENTATION_ADDRESS . 267
DS_C_READ_RESULT . 268
DS_C_REFERRAL . 268
DS_C_RELATIVE_NAME . 268
DS_C_SEARCH_INFO . 268
DS_C_SEARCH_RESULT . 269
DS_C_SECURITY_ERROR . 270
DS_C_SERVICE_ERROR . 270
DS_C_SESSION . 271
DS_C_SYSTEM_ERROR . 272
DS_C_UPDATE_ERROR . 273

Chapter 12. Basic Directory Contents Package . 275
Selected Attribute Types . 275
Selected Object Classes . 282
OM Class Hierarchy . 283
DS_C_FACSIMILE_TELEPHONE_NUMBER . 284
DS_C_POSTAL_ADDRESS . 284
DS_C_SEARCH_CRITERION . 285
DS_C_SEARCH_GUIDE . 286
DS_C_TELETEX_TERMINAL_IDENTIFIER . 286
DS_C_TELEX_NUMBER . 287

Chapter 13. Strong Authentication Package . 289
SAP Attribute Types . 289
Strong Authentication Package Object Classes . 291
OM Class Hierarchy . 291
DS_C_ALGORITHM_IDENT . 291
DS_C_CERT . 292
DS_C_CERT_LIST . 293
DS_C_CERT_PAIR . 293
DS_C_CERT_SUBLIST . 294
DS_C_SIGNATURE . 294

Chapter 14. MHS Directory User Package . 297
MDUP Attribute Types . 297
MDUP Object Classes . 299
MDUP OM Class Hierarchy . 300
MH_C_OR_ADDRESS . 300
MH_C_OR_NAME . 310
DS_C_DL_SUBMIT_PERMS . 310

Chapter 15. Global Directory Service Package . 313
GDSP Attribute Types . 313
GDSP Object Classes . 316
GDSP OM Class Hierarchy . 316
DSX_C_GDS_ACL . 316
DSX_C_GDS_ACL_ITEM . 317
DSX_C_GDS_CONTEXT . 318
DSX_C_GDS_SESSION . 321

Chapter 16. Distributed Management Environment Support . 323
DME Attribute Types . 323

x Application Development Guide: Directory Services

DME Object Classes . 324

Chapter 17. Information Syntaxes . 325
Syntax Templates . 325
Syntaxes . 325
Strings . 326
Representation of String Values . 327
Relationship to ASN.1 Simple Types . 327
Relationship to ASN.1 Useful Types . 327
Relationship to ASN.1 Character String Types . 328
Relationship to ASN.1 Type Constructors . 328

Chapter 18. XOM Service Interface . 331
Standards Conformance . 331
XOM Data Types . 331

OM_boolean . 333
OM_descriptor . 333
OM_enumeration . 334
OM_exclusions . 334
OM_integer . 335
OM_modification . 335
OM_object . 335
OM_object_identifier . 335
OM_private_object . 337
OM_public_object . 337
OM_return_code . 337
OM_string . 338
OM_syntax . 339
OM_type . 339
OM_type_list . 340
OM_value . 340
OM_value_length . 341
OM_value_position . 341
OM_workspace . 341

XOM Functions . 341
XOM Return Codes . 343

Chapter 19. Object Management Package . 347
Class Hierarchy . 347
Class Definitions . 347

OM_C_ENCODING . 347
OM_C_EXTERNAL . 348
OM_C_OBJECT . 349

Appendix A. Notices . 351
Trademarks . 352
Programming Interface Information . 353

Glossary . 355

Bibliography . 373
z/OS DCE Publications . 373
z/OS SecureWay Security Server Publications . 373
Tool Control Language Publication . 374

 Contents xi

IBM C/C++ Language Publication . 374
z/OS DCE Application Support Publications . 374
Encina Publications . 375

Index . 377

xii Application Development Guide: Directory Services

 Figures

1. A Federated DCE Namespace . 10
2. GDS Namespace Entries and Directory Objects . 11
3. The Cell Namespace after Configuration . 18
4. A Possible Namespace Structure . 22
5. Valid Characters in CDS, GDS, and DNS Names . 26
6. T61 Syntax . 30
7. Combinations of Diacritical Characters and Basic Letters . 31
8. One Object Descriptor . 35
9. A Complete Object Represented . 35

10. A Three-Layer Compound Object . 36
11. Directory Objects and XDS Interface Objects . 37
12. Directory Objects and Namespace Entries . 38
13. DS_C_READ_RESULT Object Structure . 50
14. DS_C_ENTRY_INFO Object Structure . 52
15. DS_C_ATTRIBUTE Object Structure . 54
16. DS_C_ATTRIBUTE_LIST Object . 63
17. DS_C_DS_DN Object . 65
18. DS_C_ENTRY_MOD_LIST Object . 68
19. The DS_C_ENTRY_INFO_SELECTION Object . 71
20. XDS: Interface to GDS and CDS . 78
21. The Structure of the DIB . 79
22. Object Identifiers . 80
23. A Directory Entry Describing Organizational Person . 82
24. A Distinguished Name in a Directory Information Tree . 83
25. An Alias in the Directory Information Tree . 85
26. A Subtree Populated by Aliases . 86
27. SRT DIT Structure for the GDS Standard Schema . 88
28. A Partial Representation of the Object Class Table . 90
29. The Relationship Between Schemas and the DIT . 93
30. Mapping the Class Definition of DS_C_ENTRY_INFO_SELECTION 99
31. A Representation of a Public Object Using a Descriptor List . 103
32. A Descriptor List for the Public Object: country . 104
33. The Distinguished Name of Peter Piper in the DIT . 105
34. Building a Distinguished Name . 108
35. A Simplified View of the Structure of a Distinguished Name . 109
36. Client-Generated and Service-Generated Objects . 110
37. The OM Class DS_C_ENTRY_INFO_SELECTION . 112
38. A Comparison of Two Classes With and Without an Abstract OM Class 113
39. A Complete Description of the Concrete OM Class DS_C_ATTRIBUTE 116
40. Data Type: OM_descriptor_struct . 125
41. Initializing Descriptors . 126
42. An Object and a Subordinate Object . 127
43. Extracting Information Using om_get() . 132
44. Output from ds_read(): DS_C_READ_RESULT . 149
45. Sample Directory Tree . 151
46. OM Class DS_C_LIST_RESULT . 156
47. Issuing XDS/XOM Calls from within Different Threads . 191
48. Program Flow for the thradd Sample Program . 195
49. OM_String Elements . 338

 Copyright IBM Corp. 1994, 2001 xiii

xiv Application Development Guide: Directory Services

 Tables

1. Metacharacters and Their Meaning . 27
2. Summary of CDS, GDS, and DNS Characteristics . 27
3. Maximum Sizes of Directory Service Names . 29
4. Directory Service Functions with their Required Input Objects . 61
5. CDS Attributes to OM Syntax Translation . 72
6. OM Syntax to CDS Data Types Translation . 72
7. CDS Data Types to OM Syntax Translation . 73
8. Object Identifiers for Selected Attribute Types . 80
9. Structure Rule Table Entries . 87

10. Object Class Table Entries . 89
11. Object Identifiers for Selected Classes . 90
12. Attribute Table Entries . 92
13. Syntax for the Simple ASN.1 Types . 94
14. C Naming Conventions for XDS . 101
15. C Naming Conventions for XOM . 102
16. Comparison of Private and Public Objects . 111
17. Description of an OM Attribute Using Syntax Enum(*) . 123
18. Description of an OM Attribute with Syntax Object(*) . 123
19. Mapping of XDS API Functions to the Abstract Services . 143
20. The XDS Interface Functions . 234
21. OM Attributes of DS_C_ACCESS_POINT . 245
22. OM Attributes of DS_C_ATTRIBUTE . 245
23. OM Attributes of DS_C_ATTRIBUTE_ERROR . 246
24. OM Attributes of DS_C_ATTRIBUTE_LIST . 246
25. OM Attributes of DS_C_ATTRIBUTE_PROBLEM . 247
26. OM Attributes of DS_C_COMMON_RESULTS . 248
27. OM Attributes of DS_C_COMPARE_RESULT . 249
28. OM Attributes of DS_C_CONTEXT . 249
29. OM Attributes of DS_C_CONTINUATION_REF . 252
30. OM Attribute of DS_C_DS_DN . 253
31. OM Attribute of DS_C_DS_RDN . 254
32. OM Attributes of DS_C_ENTRY_INFO . 254
33. OM Attributes of DS_C_ENTRY_INFO_SELECTION . 255
34. OM Attributes of DS_C_ENTRY_MOD . 255
35. OM Attributes of DS_C_ENTRY_MOD_LIST . 256
36. OM Attributes of DS_C_ERROR . 256
37. OM Attributes of DS_C_EXT . 258
38. OM Attributes of DS_C_FILTER . 259
39. OM Attributes of DS_C_FILTER_ITEM . 260
40. OM Attributes of DS_C_LIST_INFO . 262
41. OM Attributes of DS_C_LIST_INFO_ITEM . 263
42. OM Attributes of DS_C_LIST_RESULT . 264
43. OM Attributes of DS_C_NAME_ERROR . 265
44. OM Attributes of DS_C_OPERATION_PROGRESS . 266
45. OM Attributes of DS_C_PARTIAL_OUTCOME_QUAL . 266
46. OM Attributes of DS_C_PRESENTATION_ADDRESS . 267
47. OM Attributes of DS_C_READ_RESULT . 268
48. OM Attributes of DS_C_SEARCH_INFO . 269
49. OM Attributes of DS_C_SEARCH_RESULT . 269
50. OM Attributes of DS_C_SESSION . 271

 Copyright IBM Corp. 1994, 2001 xv

51. Object Identifiers for Selected Attribute Types . 276
52. Representation of Values for Selected Attribute Types . 277
53. Object Identifiers for Selected Object Classes . 283
54. OM Attributes of DS_C_FACSIMILE_PHONE_NBR . 284
55. OM Attributes of DS_C_POSTAL_ADDRESS . 284
56. OM Attributes of DS_C_SEARCH_CRITERION . 285
57. OM Attributes of DS_C_SEARCH_GUIDE . 286
58. OM Attributes of DS_C_TELETEX_TERM_IDENT . 286
59. OM Attributes of DS_C_TELEX_NBR . 287
60. Object Identifiers for SAP Attribute Types . 290
61. Representation of Values for SAP Attribute Types . 290
62. Object Identifiers for SAP Object Classes . 291
63. OM Attributes of DS_C_ALGORITHM_IDENT . 291
64. OM Attributes of DS_C_CERT . 292
65. OM Attributes of DS_C_CERT_LIST . 293
66. OM Attributes of DS_C_CERT_PAIR . 293
67. OM Attributes of DS_C_CERT_SUBLIST . 294
68. OM Attributes of DS_C_SIGNATURE . 294
69. Object Identifiers for MDUP Attribute Types . 297
70. Representation of Values for MDUP Attribute Types . 298
71. Object Identifiers for MDUP Object Classes . 299
72. Attributes Specific to MH_C_OR_ADDRESS . 300
73. Forms of Originator/Recipient Address . 307
74. Attribute Specific to MH_C_OR_NAME . 310
75. OM Attributes of DS_C_DL_SUBMIT_PERMS . 310
76. Object Identifiers for GDSP Attribute Types . 313
77. Representation of Values for GDSP Attribute Types . 314
78. Object Identifiers for GDSP Object Classes . 316
79. OM Attributes of DSX_C_GDS_ACL . 316
80. OM Attributes of DSX_C_GDS_ACL_ITEM . 317
81. OM Attributes of a DSX_C_GDS_CONTEXT . 318
82. Default DSX_C_GDS_CONTEXT . 320
83. OM Attributes of DSX_C_GDS_SESSION . 321
84. Default DSX_C_GDS_SESSION . 321
85. Object Identifier for DME Attribute Type . 323
86. Representation of Values for DME Attribute Types . 324
87. Object Identifier for DME Object Class . 324
88. String Syntax Identifiers . 326
89. Syntax for ASN.1’s Simple Types . 327
90. Syntax for ASN.1’s Useful Types . 327
91. Syntax for ASN.1’s Character String Types . 328
92. Syntaxes for ASN.1’s Type Constructors . 328
93. XOM Service Interface Data Types . 331
94. Assigning Meanings to Values . 340
95. XOM Service Interface Functions . 341
96. OM Functions and Their Corresponding Abbreviation . 343
97. XOM Service Interface Return Codes . 343
98. Attributes Specific to OM_C_Encoding . 347
99. Attributes Specific to OM_C_External . 348
100. Attributes Specific to OM_C_Object . 349

xvi Application Development Guide: Directory Services

About This Book

The objective of this book is to assist you in designing, writing, compiling, linking, and running distributed
applications on the IBM z/OS operating system. Specifically, use this book for creating applications with
DCE running on the stand-alone z/OS system. The steps to develop a distributed application using DCE
services and application programming interfaces (API) are described in progressive detail. Also discussed
are the development decisions and tools that you need to consider when developing your distributed
application using z/OS DCE.

To create DCE applications that access IMS or CICS transactions, refer to z/OS DCE Application
Support Programming Guide.

Who Should Use This Book

This book assumes you are an experienced application developer or programmer with a working
knowledge of the C programming language and the z/OS operating system. You do not have to possess
prior knowledge of, or experience with, designing and writing distributed applications using the Open
Software Foundation (OSF) Distributed Computing Environment (DCE) services and APIs.

Ideally, you should be able to:

� Allocate z/OS data sets
� Edit, browse, and copy z/OS data sets and associated members
� Print data sets
� Write and submit batch jobs on z/OS
� Write, compile, link, and run C/C++ programs on z/OS
� Write and understand JCL to run on z/OS
� Understand Shell and TSO/E commands.

A good working knowledge and understanding of the following would be helpful:

� Interactive System Productivity Facility/Program Development Facility (ISPF/PDF)
� Concepts behind a distributed application
� Using the Spool Display and Search Facility (SDSF) to check on the status of your application.

Some exposure to the UNIX or AIX operating system is helpful but not essential to use this book.

You should be familiar with the concepts of the Distributed Computing Environment. If you are not, read
z/OS DCE Introduction.

DCE Application Development Environment

It is conceivable that you may develop your DCE applications on a platform other than the z/OS operating
system. Perhaps you may prefer to work on a UNIX-based workstation or a proprietary operating system.
If your goal is to ultimately run either the client or server portion of your DCE application on z/OS, ensure
that portion of your DCE application conforms to all recommendations contained in this book.

This book describes the development steps assuming you are developing your DCE applications on the
z/OS operating system. If you are developing DCE applications on the z/OS platform that are targeted to
run on another platform, consult the DCE application development documentation associated with that
platform.

 Copyright IBM Corp. 1994, 2001 xvii

Unsupported OSF DCE Functions

The following DCE technology functions, which may be available in the Distributed Computing
Environment product from OSF or on DCE offerings from other vendors, are not supported in z/OS DCE:

� DCE Directory Services

– X/Open Data Services (XDS) function (Global Directory Service (GDS) portion, DME routines)
– X/Open OSI-Abstract-Data Manipulation (XOM) function (GDS portion)

 – Global Directory

On z/OS, only CDS, XDS, and XOM access to CDS are supported. GDS, XDS, and XOM access to GDS
are not supported.

The following DCE daemon is not supported on z/OS DCE:

� DCE Security daemon

OSF DCE Programming Interfaces: The following programming interfaces are not supported:

 � pthread interfaces

– The following interfaces are not supported by z/OS DCE and return -1, errno ENOSYS:

 - pthread_attr_getinheritsched()
 - pthread_attr_getprio()
 - pthread_attr_getsched()
 - pthread_attr_setinheritsched()
 - pthread_attr_setprio()
 - pthread_attr_setsched()
 - pthread_getprio()
 - pthread_getscheduler()
 - pthread_setprio()
 - pthread_setscheduler()

– For all pthread interfaces (including mutexes, threads, condition variables and so on), the
interfaces do not accept copies of the objects as a parameter. The object returned from the
pthread interface to create the object must be used at all times.

– Unlike the OSF DCE implementation, the z/OS DCE implementation of the following functions can
raise an exception (exc_e_cpa_error) in error situations:

 - pthread_lock_global_np()
 - pthread_unlock_global_np()

– pthread_cond_timedwait() expects an absolute hardware time (that is, time-of-day clock value) for
the wait time instead of the DCE software clock time, which is what OSF/DCE expects.
pthread_get_expiration_np() returns a software adjusted time as in the OSF/DCE model, and is
used as input to pthread_cond_timedwait().

– exc_report() does not print out a message to stderr as expected. z/OS DCE uses Reliability,
Availability and Serviceability (RAS) services to log messages instead of this function.

 � Exceptions

– z/OS DCE catches z/OS abends in addition to the set of predefined exceptions and user defined
exceptions.

– TRY/CATCH/ENDTRY macros can raise an exc_e_insfmem exception if they cannot get enough
heap storage.

– TRY/CATCH/ENDTRY macros can raise an exc_e_uninitexc exception if they detect that the
CATCH does not specify a valid exception.

xviii Application Development Guide: Directory Services

� Remote Procedure Call

 – rpc_mgmt_set_server_stack_size()

 � Security Services

 – sec_login_get_pwent()
 – sec_login_init_first()

How This Book Is Organized

This guide describes how application developers can access the DCE Directory Service. From the
application programmer's perspective, the Directory Service has the following main parts:

� The DCE Cell Directory Service (CDS)

 � GDS

� XDS and XOM programming interfaces.

This is reflected in the organization of the book:

� Part 1, “Using the DCE Directory APIs” on page 1

� Part 2, “CDS Application Programming” on page 15

� Part 3, “GDS Application Programming” on page 75

� Part 4, “XDS/XOM Supplementary Information” on page 231

Part 2, CDS Application Programming and Part 3, GDS Application Programming contain conceptual
material on CDS and GDS with descriptions of programming tasks, including the use of programming
interfaces. Chapters in each of these parts contain annotated source code for sample applications.

Part 4, XDS/XOM Supplementary Information consists mostly of tables of values for the data structures
used by the XDS and XOM application interfaces, which are the interfaces used to directly access the
DCE Directory Service.

To find more information on topics related to application development not addressed in this book, consult
the following:

� z/OS DCE Application Development Reference, SC24-5908

� z/OS DCE Administration Guide, SC24-5904

� z/OS DCE Application Support Programming Guide, SC24-5902 (CICS and IMS)

� z/OS DCE Messages and Codes, SC24-5912

For example, the DCE CDS is discussed in detail as a separate component in the administration
documentation. Similarly, certain aspects of the DCE Security Service important to application developers
(such as adding new principals to the registry database) are found only in the administration books.

Terminology Used in This Book

Because DCE technology has been developed from the UNIX environment, many DCE concepts and
terms contained herein relate to that environment. z/OS terms and concepts are used throughout this
book wherever possible.

The following table explains how certain terms are used in this book and how they are related.

 About This Book xix

Related Terms Relationship

file

data set

sequential data set

partitioned data set member

hierarchical file system (HFS) file

Throughout this book, the term file can refer to a sequential data
set, a member of a partitioned data set, or a hierarchical file
system (HFS) file. For more information on hierarchical file
systems in z/OS, see z/OS UNIX System Services User's Guide,
SA22-7801.

user prefix

data set names

The term user prefix is used throughout this book when referring
to the names of data sets in a TSO/E environment. In that
environment, the user prefix is usually a user’s logon
identification. If desired, you can set the user prefix to a value
other than the your logon identification by using the TSO/E
PROFILE command. In z/OS batch mode, your user prefix
depends on whether Resource Access Control Facility (RACF),
a component of the SecureWay Security Server for z/OS, or
another security product is installed on your system. If RACF is
installed, and you are processing in batch mode, your user prefix
can be the same as your logon user identification. If RACF is
not installed and you are processing in batch mode under z/OS,
you may not have to use a prefix. See your systems
programmer to determine the RACF settings for your site.

Unless otherwise specified, when the full name of a data set is
referred to, the high-level qualifier for that data set will be
represented by USERPRFX. The USERPRFX is determined by
the application developer, and depends on the library where the
application is installed. For example,
USERPRFX.EXAMPLE.C(MEMBER) represents a partitioned data
set whose first-level qualifier is represented by USERPRFX,
whose second-level qualifier is EXAMPLE, and whose third-level
qualifier is C. Its member is MEMBER.

application programming interface (API)

call

function

routine

Throughout this book, the terms API, call, function, and routine
all refer to the same z/OS DCE application programming
interface. For example, rpc_binding_free() API,
rpc_binding_free() call, and rpc_binding_free() routine, all
refer to the same rpc_binding_free() function.

DCE components Throughout this book, all references to individual DCE
components (such as RPC) refer to that component with z/OS
DCE. For example, references to RPC, DCE RPC, and z/OS
DCE RPC all refer to the same z/OS DCE component.

z/OS SecureWay Security Server DCE In this book the term “DCE Security Server” (or simply “Security
Server”) refers to the z/OS SecureWay Security Server DCE or
to a DCE Security Server provided on another host in the DCE
cell. The z/OS SecureWay Security Server DCE is a component
of the SecureWay Security Server for z/OS.

daemon

process

started task

address space

The term daemon (originating from the UNIX operating system)
is used throughout this book. It is synonymous with a process.
Usually there is one process per address space, however the
DCEKERN started task is an exception as its address space
contains five processes (or daemons).

xx Application Development Guide: Directory Services

Conventions Used in This Book

This book uses the following typographic conventions:

Bold Bold words or characters represent system elements that you must enter into
the system literally, such as commands, options, or path names.

Italic Italic words or characters represent values for variables.

Example font Examples and information displayed by the system appear in constant width
type style.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and
syntax descriptions.

| A vertical bar separates items in a list of choices.

< > Angle brackets enclose the name of a key on the keyboard.

... Horizontal ellipsis points indicate that you can repeat the preceding item one
or more times.

\ A backslash is used as a continuation character when entering commands
from the shell that exceed one line (255 characters). If the command
exceeds one line, use the backslash character \ as the last non-blank
character on the line to be continued, and continue the command on the next
line.

This book uses the following keying conventions:

<Alt-c> The notation <Alt-c> followed by the name of a key indicates a control character
sequence.

<Return> The notation <Return> refers to the key on your keyboard that is labeled with the
word Return or Enter, or with a left arrow.

Entering commands When instructed to enter a command, type the command name and then press
<Return>.

Where to Find More Information

Where necessary, this book references information in other books using shortened versions of the book
title. For complete titles and order numbers of the books for all products that are part of z/OS, see the
z/OS Information Roadmap, SA22-7500. For complete titles and order numbers of the books for z/OS
DCE, refer to the publications listed in the “Bibliography” on page 373.

For information about installing z/OS DCE components, see the z/OS Program Directory.

 Softcopy Publications

The z/OS DCE library is available on a CD-ROM, z/OS Collection, SK3T-4269. The CD-ROM online
library collection is a set of unlicensed books for z/OS and related products that includes the IBM Library
Reader. This is a program that enables you to view the BookManager files. This CD-ROM also
contains the Portable Document Format (PDF) files. You can view or print these files with the Adobe
Acrobat reader.

 About This Book xxi

 Internet Sources

The Softcopy z/OS publications are also available for web-browsing and for viewing or printing PDFs using
the following URL:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

You can also provide comments about this book and any other z/OS documentation by visiting that URL.
Your feedback is important in helping to provide the most accurate and high-quality information.

Using LookAt to Look up Message Explanations

LookAt is an online facility that allows you to look up explanations for z/OS messages. You can also use
LookAt to look up explanations of system abends.

Using LookAt to find information is faster than a conventional search because LookAt goes directly to the
explanation.

LookAt can be accessed from the Internet or from a TSO command line.

You can use LookAt on the Internet at:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

To use LookAt as a TSO command, LookAt must be installed on your host system. You can obtain the
LookAt code for TSO from the LookAt Web site by clicking on the News and Help link or from the z/OS
Collection, SK3T-4269.

To find a message explanation from a TSO command line, simply enter: lookat message-id as in the
following:

lookat iec192i

This results in direct access to the message explanation for message IEC192I.

To find a message explanation from the LookAt Web site, simply enter the message ID and select the
release with which you are working.

Note: Some messages have information in more than one book. For example, IEC192I has routing and
descriptor codes listed in z/OS MVS Routing and Descriptor Codes, SA22-7624. For such
messages, LookAt prompts you to choose which book to open.

Accessing Licensed Books on the Web

z/OS licensed documentation in PDF format is available on the Internet at the IBM Resource Link site:

http://www.ibm.com/servers/resourcelink

Licensed books are available only to customers with a z/OS license. Access to these books requires an
IBM Resource Link user ID, password, and z/OS licensed book key code. The z/OS order that you
received provides a memo that includes your key code.

To obtain your IBM Resource Link user ID and password, logon to:

http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed books:

xxii Application Development Guide: Directory Services

1. Logon to Resource Link using your Resource Link user ID and password.
2. Select User Profiles located on the left-hand navigation bar.
3. Select Access Profile.
4. Select Request Access to Licensed books.
5. Supply your key code where requested and select the Submit button.

If you supplied the correct key code you will receive confirmation that your request is being processed.

After your request is processed you will receive an e-mail confirmation.

Note: You cannot access the z/OS licensed books unless you have registered for access to them and
received an e-mail confirmation informing you that your request has been processed.

To access the licensed books:

1. Logon to Resource Link using your Resource Link user ID and password.
 2. Select Library.
 3. Select zSeries.
 4. Select Software.
 5. Select z/OS.

6. Access the licensed book by selecting the appropriate element.

 About This Book xxiii

xxiv Application Development Guide: Directory Services

Part 1. Using the DCE Directory APIs

This part describes how application developers access the DCE Directory Service.

Chapter 1. DCE Directory Service Overview . 3
Using This Book 3

Directory Service Tools 3
Using the DCE Directory Service 3
DCE Directory Service Concepts 4
Structure of DCE Names 6

DCE Name Prefixes 7
Names of Cells 7
CDS Names 8
GDS Names 9
Junctions in DCE Names 9
Application Names 9

The Federated DCE Namespace 9
The GDS Namespace 10
The CDS Namespace 11
Other Namespaces 12
Access to Objects in the Federated DCE

Namespace 12
Programming Interfaces to the DCE Directory

Service . 12
The XDS Interface 13
The RPC Name Service Interface 13
Namespace Junction Interfaces 13

 Copyright IBM Corp. 1994, 2001 1

2 Application Development Guide: Directory Services

Chapter 1. DCE Directory Service Overview

This chapter is an overview of the DCE Directory Service for application developers. It introduces DCE
Directory Service concepts and describes the structure of DCE names and the DCE namespace. Finally,
an overview of the APIs used to access the DCE Directory Services is provided.

Using This Book

Before reading this book, you should have read the z/OS DCE Introduction. It contains overviews, with
illustrations, of all the DCE components and of DCE as a whole. Many concepts and details are explained
that are necessary for a complete understanding of what is described in this book.

At this point, you are ready to begin programming and can proceed to the chapters on XDS/XOM
supplementary information beginning at Chapter 10, “XDS Interface Description” on page 233. The
main purpose of this information is to serve as a convenient location to look up the details of object values
and structures required for coding applications.

If you do not find the information you need in either this guide or in z/OS DCE Application Development
Reference, see z/OS DCE Administration Guide and z/OS DCE Command Reference. Information that is
of interest to application developers may be found in the DCE Administration documentation.

Directory Service Tools

Both CDS and GDS have commands that allow system administrators to inspect and alter the contents of
the directory. These can be useful when developing applications that access the DCE namespace.

For information on performing administrative functions for CDS, see the “Managing the DCE Directory
Service” section in the z/OS DCE Administration Guide, which describes the DCE and CDS control
programs (dcecp and cdscp).

Note: GDS commands are not supported by z/OS DCE.

Using the DCE Directory Service

The DCE Directory Service can be used in many ways. It is used by the other DCE services to support
the DCE environment. For example, cells are registered in the global part of the Directory Service,
enabling users from different cells to share information and resources.

The DCE Directory Service is also useful to DCE applications. The client and server sides of an
application can use the Directory Service to find each other’s locations. The Directory Service can also
be used to store information that needs to be available in a globally accessible, well-known place.

For example, one DCE application could be a print service consisting of a client side application that
makes requests for jobs to be printed, and a server side that prints jobs on an available printer. The
Directory Service could be used as a central place where the print clients could look up the location of a
print server. Furthermore, the Directory Service could be used to store information about printers, for
example, the type of jobs a printer can accept, its current status, and its load.

In some ways, a Directory Service can be used in the same way as a file system has traditionally been
used, that is, for containing globally accessible information in a well-known place. An example is the use
of configuration information stored in files in a UNIX /etc directory. However, the Directory Service differs

 Copyright IBM Corp. 1994, 2001 3

in important ways. It can be replicated so that information is available even if one server goes down.
Replicas can be kept up-to-date automatically, so that, unlike multiple copies of a file on different
machines, the information in the replicas of the Directory Service can be kept current without manual
intervention.

The Directory Service can also secure data that is kept in a globally accessible place. It supports Access
Control Lists (ACLs) that control who can read, modify, create, and perform other operations on its data.

As you learn about the DCE Directory Service and how to access it, think about the ways your
applications can take advantage of the services it provides.

DCE Directory Service Concepts

This section describes DCE Directory Service concepts that are important to application developers.
Concepts specific to GDS are covered in more detail in Chapter 10, “XDS Interface Description” on
page 233. The following concepts are intended to convey general definitions that are applicable to the
DCE Directory Service as a whole rather than specific to a particular Directory Service component. For
more detailed definitions, see “Glossary” on page 355.

 � DCE Namespace

The DCE namespace is the collection of names in a DCE environment. It can be made up of several
domains, in which different types of servers own the names in different parts of the namespace. (See
“The Federated DCE Namespace” on page 9.) Typically, there are two high-level, or global, domains
to a DCE namespace: the GDS namespace and the Domain Name Service (DNS) namespace. At the
next level is the CDS namespace, with names contained in the cell’s CDS Server. A DCE
environment always contains a cell namespace, which is implemented by CDS. Parts of the DCE
namespace may not be contained in any of the Directory Services; for example, the Security
namespace contains principals and groups contained in the Security Server.

The term DCE namespace is used when referring to names, but not the information associated with
them. For example, it would include the name of a printer in the Directory Service, but not its
associated location attribute. The DCE namespace refers to all the names in the DCE environment.
You can refer to an object and its contents by using its name.

 � Cell Namespace

All of the names found in a single DCE cell comprise the cell’s namespace. These include names
managed by the cell’s CDS Server and Security Server, and any other names that reside within a
particular cell.

 � Hierarchy

The DCE namespace is organized into a hierarchy; that is, each name except the global root has a
parent node and may itself have child nodes or leaves. The leaves are called objects or entries, and
in the CDS namespace, the nodes are called directories.

 � Directory

The word directory has two meanings, which can be differentiated by their context. The first is the
node of a hierarchy as mentioned in the previous definition. The second is a collection of objects
managed by a directory service.

4 Application Development Guide: Directory Services

 � Directory Service

A directory service is software that manages names and their associated attributes. A directory
service can store information, be queried about information, and be requested to change information.
DCE contains two different directory services: CDS and GDS. It also interacts with a third directory
service, DNS, which is not part of DCE.

 � Junction

A junction is a specialized entry in the DCE namespace that contains binding information to enable
communications between different DCE services. For example, the point where the DCE Security
entries are mounted into a CDS namespace is a junction.

 � Object

The word object can have two meanings, depending on the context. Sometimes it means an entry in
a directory service. Sometimes it means a real object that an entry in a directory service describes,
such as a printer. In the context of XDS/XOM, the requested data is returned to the application in one
or more interface objects, which are data structures that the application can manipulate.

 � Entry

An entry is a unit of information in a directory service. It consists of a name and associated attributes.
For example, an entry could consist of the name of a printer, its capabilities, and its network address.

 – Class

In GDS, each entry has a class associated with it. The class determines what type of entry it is
and what attributes may be associated with it.

 – Link

A link is one type of object class. This type of object is a pointer to another object. A CDS link is
similar to a GDS alias.

 � Attribute

If an object is like a complex data structure, then its attributes are analogous to the separate member
fields within that structure. Some of an object’s attributes may be of significance only to the directory
service that manages it. With attributes such as these, a directory service implements objects that
contain various kinds of data about the directory itself, thus enabling the service to organize the
entries into a meaningful structure. For example, directory objects can contain attributes whose values
are other directory objects (called child directories or subdirectories) in the directory. Link objects can
contain attributes whose values are the names and internal identifiers of other directory entries,
making a link object’s entry name an alias of the other object to which its attributes indirectly refer.

 – Type

Every attribute is characterized as being of a certain type. The attribute is used to hold a certain
kind of data, such as a zip code or the name of a country. An attribute type indicates the class of
information given by an attribute. Examples of X.500 attribute types include: common name,
country name, organization name, street address, postal code, member, and presentation address.
Entries can also be classified by type; for entries, the term used is class.

 – Value

An attribute can have one or more values. The value is an instance of the class of information
indicated by the type. For example, M2B 4Y6 is an instance of a postal code.

 � Object Identifier

Directory attributes are uniquely identified by Object Identifiers (OIDs), which are administered by the
International Organization for Standardization (ISO). In GDS, OIDs are also used to identify object
classes. When you create new attribute types, you are responsible for tagging them with new,

 Chapter 1. DCE Directory Service Overview 5

properly allocated OIDs. See your Directory Service administrator for OID assignments. In CDS,
attribute types are identified by strings, which can be representations of OIDs.

 � Name

A DCE name corresponds to an entry in some service participating in the DCE namespace, usually a
directory service. (See “Structure of DCE Names.”)

 – Global Name

A global name is a name that contains a path through one of the global namespaces (GDS or
DNS).

 – Local Name

A local name is a name that uses the cell prefix /.: to indicate the cell name and therefore does
not have a specific path through a global namespace. The entry for a local name is always
contained in the local cell.

� Access Control List

Access to DCE namespace entries is determined by lists of entities that are attached through the DCE
Security Service to both the entries and the objects when they are created. The lists, called Access
Control Lists (ACLs), specify the privileges that an entity or group of entities has for the entry the ACL
is associated with. The DCE Security Service provides servers with authenticated identification of
every entity that contacts them; it is then the server’s responsibility to check the ACL attached to the
object that the potential client wants to access, and perform or refuse to perform the requested
operation on the basis of what it finds there. The ACLs are checked using Security Service library
routines.

Objects in the GDS namespace have ACLs associated with them, but they are not DCE Security
Service ACLs.

 � Replication

The DCE Directory Service can keep replicas (copies) of its data on different servers. This means
that if one server is unavailable, clients can still obtain information from another server.

 � Caching

Both the CDS and GDS components of the DCE Directory Service support caching of data on the
client machine. When a client requests a piece of data from the Directory Service for the first time,
the information must be obtained over the network from a server. However, the data can then be
cached (stored) on the local machine, and subsequent requests for the same data can be satisfied
more quickly by looking in the local cache instead of sending a request over the network. You need to
be aware of caching because, in some cases, you will want to bypass the cache to ensure that the
data you obtain is as up-to-date as possible.

Structure of DCE Names

The following subsections describe the structure of the names found in a DCE environment. DCE names
can consist of several different parts, which reflect the federated nature of the DCE namespace. (See
“The Federated DCE Namespace” on page 9.) A DCE name has some combination of the following
elements. They must occur in this order, but most elements are optional.

 � Prefix

� GDS cell name or DNS cell name

� GDS name or CDS name

 � Junction

6 Application Development Guide: Directory Services

 � Application name

A DCE name can be represented by a string that is a readable description of a specific entry in the DCE
namespace. The name is a string consisting of a series of elements separated by / (slashes). The
elements are read from left to right. Each consecutive element adds further specificity to the entry being
described, until finally one arrives at the rightmost element, which is the simple name of the entry itself.

In the discussion that follows, a DCE name element is the single piece of a name string enclosed between
a consecutive pair of slashes. For example, in the following string, the substring O=OSF is an element, and
so is abc and the entire name contains (counting the ... element) a total of seven elements.

/.../C=US/O=OSF/OU=DCE/hosts/abc/self

In GDS, an element is called a Relative Distinguished Name (RDN) and the entire name is called a
Distinguished Name (DN). In the preceding example, the attribute type O stands for the Organization type
OID, which is 2.5.4.10. OSF is the attribute value.

DCE Name Prefixes

The leftmost element of any valid DCE name is a root prefix. The appearance and meaning of each is as
follows:

/... This is the global root. It signifies that the immediately following elements form the name of a
global namespace entry. If the name is a DCE cell-name, the entry it represents contains binding
information for that cell (more specifically, for a CDS server in that cell). A cell-name does not
contain the CDS part of the entry (as described in the following subsections). The above example
of a global entry, /.../C=US/O=OSF/OU=DCE/hosts/abc/self does not contain the binding
information for the cell. The binding information for the cell is contained in
/.../C=US/O=OSF/OU=DCE, and is the name of the cell.

/.: This is the cell root. It is an alias for the global prefix plus the name of the local cell; that is, the
cell in which the prefix is being used. It signifies that the immediately following elements taken
together form the name of a cell namespace entry.

/: This is the filespace root. It is an alias for the global prefix, the name of the local cell, and the DFS
junction.

DCE also supports a junction into the Security Service namespace, but there is no alias for this junction.

A prefix by itself is a valid DCE name. For example, you can list the contents of the /.: directory to see
the top-level entries in the CDS namespace, and you can use a file system command to list the contents
of the /: directory to see the top-level entries in the filespace.

Names of Cells

After the global root prefix, the next section of a DCE name contains the name of the cell in which the
object’s name resides. The name of a cell can be expressed as either a GDS name or a DNS name,
depending on which global directory service (GDS or DNS) the cell is registered in. The following
descriptions provide examples.

 Chapter 1. DCE Directory Service Overview 7

GDS Cell Names: GDS elements always consist of a substring in which an abbreviation or acronym
in capital letters is followed by an = (equal sign), followed by a string value. As you will learn in more
detail in Chapter 2, “Programming in the CDS Namespace” on page 17. These substrings represent pairs
of attribute types and attribute values.

For example, in the following global DCE name, the attribute=value form of the leftmost elements after the
/... indicates that the global part of the name is a GDS namespace entry, and that it ends after the
OU=DCE element; therefore, the rest of the name is in the /.../C=DE/O=SNI/OU=DCE cell:

/.../C=DE/O=SNI/OU=DCE/subsys/druecker/docs

DNS Cell Names: If DNS is used as the global directory, a global name has a form like the following:

/.../cs.univ.edu/subsys/printers/docs

In the above name, the single element cs.univ.edu is the cell name, that is, the cell’s name in the DNS
namespace. The DNS name consists of up to four domain names (depending on the name assigned to
the cell), separated by dots.

Discovering the Name of Your Local Cell: A DCE cell consists of the machines that are
configured into it; each DCE machine belongs to one DCE cell. Your local cell is therefore the cell to
which the machine you are using belongs. Depending on the DCE name you are using, you can access
your own cell or other (foreign) cells. If the name you are accessing is global, then its cell is explicitly
named. If the name begins with the local cell prefix, then you are accessing a name within your local cell.
You can find out what cell you are in by calling the dce_cf_get_cell_name() function.

Using the global directory services, applications can access resources and services in foreign cells;
however, applications most frequently use resources from their local cell. If this is not the case, the cell
boundaries are not well chosen.

 CDS Names
Note: z/OS DCE supports all prefixes, GDS cell names or DNS cell names, CDS names, junctions, and

application names.

After the cell name or cell root prefix, the next part of a DCE name is often a CDS name. For example, in
the following name, the CDS part is /subsys/druecker/docs:

/.../C=DE/O=SNI/OU=DCE/subsys/druecker/docs

Or in the following name, the CDS part is /subsys/printers/docs:

/.../cs.univ.edu/subsys/printers/docs

The following strings show equivalent names using the cell root prefix, assuming that the name is used
from within the /.../C=DE/O=SNI/OU=DCE and /.../cs.univ.edu cells, respectively:

/.:/subsys/druecker/docs
/.:/subsys/printers/docs

8 Application Development Guide: Directory Services

 GDS Names
Note: z/OS DCE does not support GDS names. The GDS naming information presented here is

intended to increase your understanding of DCE name structure and concepts.

Some names fall entirely in the GDS namespace. These names are pure X.500 (and therefore GDS)
names, because each element consists of a type and an attribute. The entries for these names are
contained in a GDS server. The following is an example of a pure GDS name:

/.../C=US/L=Cambridge/CN=Kilroy

Junctions in DCE Names

Some junctions are implied in a DCE name; others can be seen. There is an implied junction between the
global prefix and either GDS or DNS. It occurs after the global prefix. The junction between either of the
global namespaces and the local cell namespace is also implied. It occurs after the cell name. The
junction between the local cell namespace and either the DFS namespace or the security namespace is
shown by the symbol /fs or /sec, respectively. The following are examples of visible junctions in DCE
names:

/.:/fs/usr/snowpaws
/.../dce.osf.org/sec/principal/ziggy

 Application Names

The part of a DCE name that occurs after a junction into a DCE application is the application name.
Security is the only supported example.

Security names occur after the SEC junction. They are typeless and resemble HFS names. The parts of
the name within the DCE Directory Service are resolved, and then the rest of the name is handled by the
Security Service. The entry is contained in the Security registry database. In the following example, the
Security part of the DCE name is /principal/ziggy:

/.:/sec/principal/ziggy

The Federated DCE Namespace

The DCE namespace is a single hierarchy of names, but the names can be contained in many different
services. Because several services cooperate to make the DCE namespace, it is a federated namespace.

Figure 1 on page 10 shows a typical DCE namespace and the different services in which names reside.

 Chapter 1. DCE Directory Service Overview 9

Root

GDS

CDS

DFS Sec Sec

DNS

CDS

Figure 1. A Federated DCE Namespace

The following sections describe the different domains of the DCE namespace.

The GDS Namespace

This section is a brief overview of the main characteristics of the GDS namespace regarded separately
from the XDS interface used to access it. More detailed information about GDS and XDS can be found in
the section on GDS application programming beginning at Chapter 4, “GDS API: Concepts and Overview”
on page 77, and the section on XDS/XOM supplemental information beginning at Chapter 10, “XDS
Interface Description” on page 233, respectively.

In a GDS name such as /.../C=US/O=OSF/OU=DCE, the C=US and O=OSF elements do not refer to
directory entries that are fundamentally different from the one represented by OU=DCE, unlike CDS or the
hierarchical file system.

Thus, in the name string /C=US/O=OSF/OU=DCE, the element C=US refers to a one-level-down Country entry
whose value is US, then to a two-levels-down Organization entry whose value is OSF, and then to a
three-levels-down Organization Unit entry whose value is DCE. Concatenating these elements results in a
valid path of entries from the directory root to the DCE entry. If the name of this entry is the cell name,
the entry contains the binding information for the /.../C=US/O=OSF/OU=DCE cell. If not, it would not
contain the binding information.

An Example GDS Namespace: Figure 2 on page 11 shows what a part of the DCE global
namespace could look like. Levels in the tree of entries are numbered; the global root is at Level 0. The
GDS structure rules as defined for DCE allow only country name entries at the next level under the root;
organization name and locality name entries can exist at the level below a country name. An
organizational unit name can be a child of an organizational name entry, and a common name can be a
child of a locality name. The details of the GDS rules for the valid types and locations of entries in the
directory tree can be found in the documentation of the host that offers the GDS service.

The object entry /C=US/O=OSF/OU=DCE belongs to the Organizational Unit class. One of the object’s
values is the CDS server binding information that is used to reach the cell from other DCE cells.

10 Application Development Guide: Directory Services

/.../

O=IBM

C=US

O=OSF L=Cambridge

OU=DCE CN=KilroyOU=Motif

OU=HP

OU=Apollo OU=West

Level 1

Level 2

Level 3

Level 4

Figure 2. GDS Namespace Entries and Directory Objects

The GDS Schema: The schema defines the shape and format of entries in the GDS directory. It
contains four types of rules, which describe the following:

� The legal hierarchy of entries. What entries may be subordinate of other entries. These rules are
what prevents, for example, countries from being subordinate to states.

� The allowable object classes, the mandatory and optional attributes of entries, and which attributes are
the naming attributes.

� The allowable attribute types, associating a unique OID and an attribute syntax with each attribute
type.

� The syntaxes of attributes that describe what attribute values look like, such as strings, numbers, or
OIDs.

By installing the proper schema, an entry of any particular object class can have the two attributes needed
to identify a cell. See the documentation for the host, in your cell, offering GDS services for a full
description of how to set up a cell entry using either GDS or DNS.

The CDS Namespace

The CDS namespace is the part of the DCE namespace that resides in the local cell’s CDS. DCE itself is
made up of components that, like the applications that use them, are distributed client/server applications.
These components rely on the Cell Directory Service to make themselves available as services to DCE
applications. The structure of the cell namespace must be stable, known, and have parts that are not
alterable by casual users or applications.

The CDS Schema: The cell namespace’s hierarchy model is different from the GDS model, and the
CDS rules do not enforce any particular model, CDS allows entries containing any kind of data to be
created anywhere in the namespace. Thus, CDS offers a free-form namespace in which entries and
directories can be organized as desired, and in which any entry or directory can contain any attributes.
The CDS administrator can create additional directories, and applications can add name entries as
needed. Applications cannot create CDS directory entries using the XDS/XOM set of APIs. Because of
this fact, and because the cell namespace is so important to the operation of the cell, application
developers and system administrators have more responsibility in planning and regulating their use of it.

The cell namespace has a structure similar to the hierarchical file system. The CDS namespace is a tree
of entries that grows from the root downward. The name entries are organized under directory entries,
which can themselves be subentries of other directories. The cell root (represented by the prefix /.:) can

 Chapter 1. DCE Directory Service Overview 11

be thought of as the location you get when you dereference the cell’s global name. New directories and
new entries within the directories can be added anywhere in the tree, subject to the restrictions.

CDS Entries and CDS Attributes: There are three different kinds of CDS entries that are of
significance to application programmers: object, soft link, and directory.

The object entries are the most primitive form. Data is stored in them. Directory entries contain other
entries (that is, can have children) just like UNIX file system directories. Soft link entries are essentially
alias names for other directory or object entries. Only object entries and soft links can be created by
applications (using the XDS/XOM APIs); directories have to be created and manipulated with the dcecp or
cdscp commands.

Thus, any CDS entry is defined as a directory, a soft link, or an object entry by the presence of a certain
combination of attributes belonging to that kind of entry. You can use the dcecp or cdscp commands to
get a display of all the attributes of any CDS entry.

The term attribute is information of a particular type concerning an object and appearing in an entry that
describes the object in the directory information database. It denotes the attribute’s type and a sequence
of one or more attribute values, each accompanied by an integer denoting the value’s syntax. As applied
to namespace entry objects, attribute has roughly the same meaning in CDS and GDS. The main
difference is that CDS does not restrict or control the combinations of attributes attached to entries written
in its namespace.

 Other Namespaces

For information about names contained in the Security namespace, refer to the z/OS DCE Application
Development Guide: Core Components.

Access to Objects in the Federated DCE Namespace

An application can access objects in the federated DCE namespace indirectly by attempting to reference
objects in a foreign cell's DCE namespace.

For example, if an application attempts to locate RPC binding information from the following CDS entry:

/.../C=US/O=IBM/OU=DEPTG71/servers/printers/prt1

and the application is located in a cell other than /.../C=US/O=IBM/OU=DEPTG71, then the GDA daemon will
look up the location of the foreign CDS server for the application.

LDAP support for the GDA daemon allows client applications to specify DCE cellnames that are in a typed
(or X.500) format and use the GDA daemon to lookup this DCE cellname information in an external
naming service which supports the Lightweight Directory Access Protocol (LDAP). Information about the
LDAP programming interface is in the z/OS SecureWay Security Server LDAP Client Programming.

Programming Interfaces to the DCE Directory Service

There are two programming interfaces for accessing the DCE Directory Service.

12 Application Development Guide: Directory Services

The XDS Interface

The main programming interface to all services within the DCE Directory Service is XDS/XOM, as defined
by X/Open. The calls correspond to the X.500 service requests, including Read, List (enumerate children),
Search, Add Entry, Modify Entry, Modify RDN, and Remove Entry. XDS uses XOM to define and
manipulate data structures (called objects) used as the parameters to these calls, and used to describe
the directory entries manipulated by the calls. XOM is extremely flexible, but also somewhat complex.
You use the interfaces in different ways, depending on the underlying directory service you are
addressing. For example, CDS entry names are typeless, however the attribute used at the XDS interface
is typed using a special type which indicates that it is typeless. GDS entry names are typed names. The
XDS/XOM interfaces are used in an identical manner regardless of whether the name service used is
GDS or CDS. The difference is that the name supplied in one case has a typeless portion to it. This
difference is reflected in the use of the interface.

The RPC Name Service Interface

The DCE RPC facility supports an interface to the Directory Service that is specific to RPC and is layered
on top of DCE Directory Service interfaces; it is called the Name Service Independent (NSI) interface. NSI
can manipulate three object classes: entries, groups, and profiles, which were created to store RPC
binding information. NSI data is stored in CDS. Programming using this interface is discussed in the
z/OS DCE Application Development Guide: Introduction and Style and the z/OS DCE Application
Development Guide: Core Components.

Namespace Junction Interfaces

For information about programming interfaces to names that occur in namespace junctions, see the
documentation for that component. For example, for information about using Security names, see the
z/OS DCE Application Development Guide: Core Components.

 Chapter 1. DCE Directory Service Overview 13

14 Application Development Guide: Directory Services

Part 2. CDS Application Programming

This part of the book describes DCE Directory Service application programming in the Cell Directory
Service (CDS) namespace. It describes the contents of the CDS namespace, where applications should
put their data, and what the valid CDS characters and names are. In addition, how to use the XDS
programming interface to access data in the CDS namespace is explained.

Chapter 2. Programming in the CDS
Namespace 17

Initial Cell Namespace Organization 17
The Cell Profile 18
The LAN Profile 19
The CDS Clearinghouse 19
The Hosts Directory 19
The Subsystems Directory 19
The /: DFS Alias 20
DFS and Security Service Junctions 20

Recommended Use of the CDS Namespace . 20
Storing Data in CDS Entries 20
Access Control for CDS Entries 23

Valid Characters and Naming Rules for CDS . 25
Metacharacters 27
Additional Rules 27
Maximum Name Sizes 29

Use of Object Identifiers 31

Chapter 3. XDS and the DCE Cell
Namespace 33

Introduction to Accessing CDS with XDS . . . 33
Using the Reference Material in this

Chapter 33
What You Cannot Do with XDS 34

What Must Be Set Up 34
XDS Objects . 34

Object Attributes 36
Interface Objects and Directory Objects . . . 36
Directory Objects and Namespace Entries . 38
Values That an Object Can Contain 39
Building a Name Object 39
A Complete Object 41
Class Hierarchy 42
Class Hierarchy and Object Structure 42
Public and Private Objects and XOM 42
XOM Objects and XDS Library Functions . 43

Accessing CDS Using the XDS Step-by-Step
Procedure 43

Reading and Writing Existing CDS Entry
Attributes Using XDS 43

Creating New CDS Entry Attributes 55
Object-Handling Techniques 57

Using XOM to Access CDS 58
Dynamic Creation of Objects 59

XDS/CDS Object Recipes 60
Input XDS/CDS Object Recipes 60
Input Object Classes for XDS/CDS

Operations 61
Attribute and Data Type Translation 72

 Copyright IBM Corp. 1994, 2001 15

16 Application Development Guide: Directory Services

Chapter 2. Programming in the CDS Namespace

This chapter provides information about writing applications that use the XDS/XOM interface to access the
portion of the DCE namespace contained in the Cell Directory Service.

The XDS/XOM interface provides generalized access to CDS. However, if you only need to use CDS to
store information related to RPC (for example, storing the location of a server so that clients can find it),
you should use the Name Service Independent (NSI) interface of DCE RPC. NSI implements
RPC-specific use of the namespace. For information on using RPC NSI, see the z/OS DCE Application
Development Guide: Core Components.

For information on the details of accessing the CDS namespace through the XDS/XOM interface, see
Chapter 3, “XDS and the DCE Cell Namespace” on page 33 and the section on XDS/XOM supplementary
information beginning at Chapter 10, “XDS Interface Description” on page 233. For information about
using XDS/XOM to access the GDS portion of the DCE namespace, see the section on GDS application
programming beginning at Chapter 4, “GDS API: Concepts and Overview” on page 77.

Initial Cell Namespace Organization

The following subsections describe the organization of a cell’s namespace after it has initially been
configured. For more information on configuring a cell, see z/OS DCE Administration Guide.

Every DCE cell is set up at configuration with the basic namespace structure necessary for the other DCE
components to be able to find themselves and to be accessible to applications. The vital parts of the
namespace are protected from being accessed by unauthorized entries by Access Control Lists (ACLs)
that are attached to the entries and directories.

Figure 3 on page 18 shows what the cell namespace looks like after a cell has been configured and
before any additional directories or entries have been added to it by system administrators or applications.
In the figure, ovals represent directories, rectangles represent simple entries, circles represent soft links,
and triangles represent namespace junctions.

All of the name entries shown in Figure 3 on page 18 are created for use with NSI routines; that is, they
all contain server-binding information, and exist to enable clients of one sort or another to find servers.
These are referred to as RPC entries.

Note that only the name entries (those in boxes) and junction entries (those in triangles, are RPC entries.
The subdirectories (entries indicated by ovals) are normal CDS directories.

Some of the namespace entries in the figure are intended to be used (if desired) directly by applications:
namely, /.:/cell-profile, /.:/lan-profile, and through the /: soft link alias, /.:/fs. The self and profile name
entries under /.:/hosts also fall into this category. Others, such as those under /.:/subsys/dce, are for the
internal use of the DCE components themselves.

Each of the entries is explained in detail in the following subsections. See z/OS DCE Administration
Guide for detailed information on the contents of the initial DCE cell namespace.

 Copyright IBM Corp. 1994, 2001 17

Figure 3. The Cell Namespace after Configuration

The Cell Profile

The /.:/cell-profile entry is an RPC profile entry that contains the default list of namespace entries to be
searched by clients trying to bind to certain basic services. An RPC profile is a class of namespace entry
used by the RPC NSI routines. When a client imports bindings from such an entry, it imports, through the
profile, from an ordered list of RPC entries containing appropriate bindings. The list of entries is keyed by
their interface UUID, so that only bindings to servers offering the interface sought by the client are
returned. The entries listed in the profile exist independently in the namespace, and can be accessed
directly using the RPC NSI in the normal way rather than using a profile. The profile is simply a way of
organizing clients’ searches. For further information, see the z/OS DCE Application Development Guide:
Core Components.

The main purpose of cell-profile is to have a path of last resort for prospective clients. All other profiles
in the cell namespace are required to have the cell-profile entry in their list of entries, so that if a client
exhausts a particular profile’s list of entries, it tries the entries in cell-profile.

18 Application Development Guide: Directory Services

The LAN Profile

The /.:/lan-profile is a LAN-oriented default list of namespace entries of services, that is used when
relative positions of the servers in the network topography are of important to their prospective clients.

The CDS Clearinghouse

The /.:/cdshostname_ch is the namespace entry for the clearinghouse cdshostname, where cdshostname
is the name of the host machine on which a CDS server has been installed.

A clearinghouse is the database managed by a CDS server; CDS directory replicas are physically stored
there. For more information about clearinghouses, see z/OS DCE Administration Guide. All
clearinghouse namespace entries lie at the cell root, and there must be at least one in a DCE cell. Only
/.:/cdshostname_ch is listed here, because it is the minimum necessary for a configured cell.

The Hosts Directory

The /.:/hosts is a directory containing entries for all of the host machines in the cell. Each host has a
separate subdirectory under /.:/hosts; its subdirectory has the same name as the host. Four entries are
created in each host’s directory:

self This entry contains bindings to the host’s RPC daemon (rpcd, also known as the endpoint
mapper), which is responsible for dynamically resolving the partial bindings that it receives
in incoming RPCs from clients attempting to reach servers resident on this host.

profile This entry is the default profile entry for the host. This profile contains in its list of entries
at least the /.:/cell-profile entry described in “The Cell Profile” on page 18.

cds-clerk This entry contains bindings to the host’s resident CDS clerk.

cds-server This entry contains bindings to a CDS server.

The Subsystems Directory

The /.:/subsys entry is the directory for subsystems. Subdirectories below subsys are used to hold
entries that contain location-independent information about services, particularly RPC binding information
for servers.

The dce subdirectory is created below /.:/subsys at configuration. This directory contains directories for
the DCE Security Service and Distributed File Service components. The functional difference between
these two directories and the fs and sec junctions described in “DFS and Security Service Junctions” on
page 20 is that the latter two entries are the access points for the components’ special databases. The
directories under /.:/subsys/dce contain the binding information of the services.

Subsystems that are added to DCE should place their system names in directories created beneath the
/.:/subsys directory. Companies adding subsystems should conform to the convention of creating a
unique directory below subsys by using their trademark as a directory name. Use these directories for
storage of location independent information about services. You should store server entries, groups, and
profiles for the entire cell in the directories below subsys. For example, International Air Freight-supplied
subsystems should be placed in /.:/subsys/IAF.

 Chapter 2. Programming in the CDS Namespace 19

The /: DFS Alias

The /: is created and set up as a soft link to the /.:/fs entry, which is the DFS database junction. Note,
however, that the name /: is well-known, whereas the name /.:/fs is not. Thus using /: makes an
application more portable. A CDS soft link entry is an alias to some other CDS entry. A soft link is
created through the dcecp or cdscp commands. The procedure is described in z/OS DCE Administration
Guide.

DFS and Security Service Junctions

The /.:/fs entry is the Distributed File Service junction entry. This is the entry for a server that manages
the DFS file location database.

The /.:/sec entry is the DCE Security Service junction entry. This is the entry for a server that manages
the Security Service database (also called the registry database).

Recommended Use of the CDS Namespace

CDS data is maintained in a loosely consistent manner. This means that when the writeable copy of a
replicated name is updated, the read-only copies may not be updated for some period of time, and
applications reading from those nonsynchronized copies can receive stale data. This contrasts with
distributed databases, which use multiphase commit protocols that prevent readers from accessing
potentially stale or inconsistent data while the write operations are being propagated to all copies of the
data. You can specifically request data from the master copy, which is guaranteed to be up-to-date, but
replication advantages are then lost. Only do so when it is important to obtain current data.

Note: This section is referring to the CDS clearinghouse, which includes the master and replicated copies
of the CDS database. It does not refer to the CDS cache.

Storing Data in CDS Entries

Some CDS entries may contain either information that is immediately useful or meaningful to applications.
Other entries may contain RPC information that enables application clients to reach application servers,
that is, binding handles for servers, which are stored and retrieved using the NSI routines. In either case,
the entry’s name should be a meaningful identification label for the information that the entry contains.
The reason is that the namespace entry names are the main clue that users and applications have to the
available set of resources in the DCE cell. Using the CDS namespace to store and retrieve binding
information for distributed applications is the function of DCE RPC NSI. See the z/OS DCE Application
Development Guide: Core Components for information on that aspect of namespace usage.

In general, applications can store data into CDS object entry attributes in any XDS-expressible form.
Table 5 on page 72 and Table 6 on page 72 contain XDS-to-CDS data type translations. If you add new
attributes to the cds_attributes file, together with a meaningful CDS syntax (that is, data type identifier)
and name, then the attribute is displayed by dcecp show operations and cdscp show commands when
executed on CDS entries containing instances of that attribute.

20 Application Development Guide: Directory Services

There are three main things to consider when using CDS to store miscellaneous data through application
calls to XDS:

1. Where in the CDS namespace should the new entries be placed?

You can create new subdirectories as long as you do not disturb the namespace’s configured
structure. Keep in mind that CDS directories must be created with the dcecp or cdscp commands;
they cannot be directly created by applications. An application can be written, however, which calls
the dcecp or cdscp commands to perform the action.

Only two root-level subdirectories are created at configuration: /.:/hosts and /.:/subsys. Applications
should not add entries under the /.:/hosts tree; the host’s default profile should be set up by a system
administrator. The /.:/subsys directory is intended to be populated by directories (for example,
/.:/subsys/dce) in which the servers and other components of independent vendors’ distributed
products are accessed. Thus, the typical cell should usually have a series of root-level CDS
directories that represent a reasonable division of categories.

One obvious division could be between entries intended for RPC use (that is, namespace entries that
contain bindings for distributed applications) and entries that contain data of other kinds. On the other
hand, it may be very useful to add supplementary data attributes to RPC entries, in which various
housekeeping or administrative data could be held. In this way, for example, performance data for
printers could be associated with the name entries for the print servers. You can add new attributes to
the server entries themselves, as in the following example of a name of a server entry that receives
the new attributes:

/.:/applications/printers/pr1

Or you could change the subtree structure so that: (1) new entries are added to hold the data, (2) the
server bindings are still held in separate wholly RPC entries, and (3) each group of entries was
located under a subdirectory named for the printer:

 /.:/applications/printers/pr1 —directory

 /.:/applications/printers/pr1/server —server bindings

 /.:/applications/printers/pr1/stats —extra data

In general, the same virtues of logic and order that apply to the organization of a filesystem are true of
the organization of a namespace. For example, server entries should not be created directly at the
namespace root because this is the place for default profiles, clearinghouse entries, and directories.

Figure 4 on page 22 illustrates some of the preceding suggestions, added to the initial configuration
namespace structure shown in Figure 3 on page 18.

 Chapter 2. Programming in the CDS Namespace 21

cell-profile

server stats

xyz-server xyz-view xyz-report

lan-profile

cdshostname

fs sec xyz

_ch

/.:/: Cell Root

Soft Link to DFS

hosts

applications

subsys

dce xyz

printers

pr1

Figure 4. A Possible Namespace Structure

In Figure 4, the vendor of the xyz subsystem has set up an xyz directory under /.:/subsys in which
the system’s servers are exported. This cell also has an /.:/applications directory, in which the
printers directory contains separate directories for each installed printer available on the system; the
directory for pr1 is illustrated in this figure. In the pr1 directory, server is an RPC entry containing
exported binding handles, and stats is an entry created and maintained through the XDS interface.

2. How should the entries be constructed?

Because CDS allows you to add as many attributes as you want to an object entry, it is up to you to
impose some restraint in doing so. In view of the XDS overhead involved in reading and writing single
CDS attributes, it makes sense to combine multiple related attributes under single entries (that is, in
the same directory object) where they can be read and written in single calls to ds_read() or
ds_modify_entry(). This way, for example, you only have to create one interface input object (to
pass to ds_read()) to read all the attributes, which you can do with one call to ds_read(). You can
then separate out the returned subobjects that you are interested in and ignore the rest. Chapter 3,
“XDS and the DCE Cell Namespace” on page 33 contains detailed discussions of XDS programming
techniques.

In any case, you should define object types for use in applications, so that namespace access
operations can be standardized and kept efficient. A CDS object type would consist of a specific set
of attributes that could belong to an object of that type, with no other attributes allowed. Note again
that CDS, unlike GDS, does not force you to do things this way. You could theoretically have
hundreds of CDS object entries, each of which would contain a different combination of attributes.

22 Application Development Guide: Directory Services

3. Should a directory or an entry be created?

When you consider adding information to the namespace, you can choose between creating a new
directory, possibly with entries in it, or creating simply one or more entries. When making your
decision, take into consideration the following:

a. Directories cannot be created using XDS; they must be created using administrative commands.
Directories are more expensive; they take up more space and take more time to access.
However, they can contain entries and can therefore be used to organize information in the
namespace.

b. Entries can be created using XDS and they are cheaper to create and use than directories.
However, they must be created in existing directories, and cannot themselves contain other
entries.

Access Control for CDS Entries

Each object in the CDS namespace is automatically equipped with a mechanism by which access to it can
be regulated by the object’s owner or by another authority. For each object, the mechanism is
implemented by a separate list of the entities that can access the object in some way; for example, to read
it, write to it, delete it, and so on. Associated with each entity in this list is a string which specifies which
operations are allowed for that entity on the object. The object’s list is automatically checked by CDS
whenever any kind of access is attempted on that object by any entity. If the entity can be found in the
object’s list, and if the kind of access the entity intends is found among its permissions, then CDS allows
the operation to proceed otherwise, it is not allowed.

DCE permission lists are called Access Control Lists (ACLs). ACLs are one of the features of the DCE
Security Service used by the Cell Directory Service. ACLs are used to test a principal's authorization to
access or manipulate objects. The authorization mechanism for all CDS entries is handled by CDS itself.
Associated with each CDS entry is a list of DCE principals, and attached to each principal is a list of
permissions, such as read, write, delete, and test. Users logged in as DCE principals must possess
sufficient permissions to be able to manipulate a given CDS entry. CDS keeps this information on
principals and their associated permissions, that is, the ACL, as attributes of the CDS entry. You can
access and maintain this information using the acl_edit tool.

Creating ACLs: Whenever you create a new entry in the CDS namespace, an ACL is created for it
implicitly, and its initial list of entries and their permission sets are determined by the ACL templates
associated with the CDS directory in which you create the entry.

Each CDS directory has the following two ACL templates associated with it:

Initial Container Used to generate the initial ACL for any directories created within the directory.

Initial Object Used to generate ACLs for entries created within the directory.

Every CDS directory also has its own ACL, just like any other CDS object. This ACL is generated from
the parent directory’s Initial Container template when the child directory is created. The Initial Container
template also serves as a template for the templates of child directories, and own Initial Container
templates.

 Chapter 2. Programming in the CDS Namespace 23

Manipulating ACLs: There are two ways to manipulate ACLs: either through the acl_edit command
(which is documented in z/OS DCE Command Reference) or through the DCE ACL application interface,
which consists of routines documented in z/OS DCE Application Development Reference. (These routines
have names in the form of sec_acl_...().)

Initializing ACLs: After creating a CDS directory using the dcecp or cdscp commands (in other
words, they cannot be created by applications), you usually will run the acl_edit command to set up the
new directory’s ACLs the way you want them. (The new directory will have inherited its ACLs and its
templates from the directory in which it was created, as explained in “Creating ACLs” on page 23.) In
addition to modifying the directory’s own ACL, you may want to modify its two templates. To edit the
latter, you can specify the -ic argument (for the Initial Container template) or the -io argument (for the
Initial Object template); otherwise, you will edit the object ACL.

You can modify a directory’s ACL templates from an application (assuming that you have control
permission for the object) with the same combination of sec_acl_lookup() and sec_acl_replace() calls as
for the object ACL. An argument to these routines lets you specify which of the three possible ACLs on a
directory object you want the call to apply. The ACLs themselves are in identical format.

The -e (entry) option to acl_edit can be used to make sure that you get the ACL for the specified
namespace entry object, and not the ACL (if any) for the object that is referenced by the entry. This
distinction has to be made clear to acl_edit because it finds the object (and hence the ACL) in question
by looking it up in the namespace and binding to its ACL manager. Essentially, the -e option tells acl_edit
whether it should bind to the CDS ACL manager (if the entry ACL is wanted), or to the manager
responsible for the referenced object’s ACL. This manager would be a part of the server application
whose binding information the entry contained.

An example of such an ambiguous name would be a CDS clearinghouse entry, such as the
cdshostname_ch entry discussed earlier in “ The CDS Clearinghouse” on page 19. With the -e option,
you would edit the ACL on the namespace entry, as follows:

acl_edit -e /.:/cdshostname_ch

Without the -e option you would edit the ACL on the clearinghouse itself, which you probably do not want
to do.

Similarly, there is a bind_to_entry parameter by which the caller of sec_acl_bind() can indicate whether
the entry object’s ACL is desired, or the ACL on the object for which the entry contains binding
information.

Namespace ACLs at Cell Configuration: The ACLs attached to the CDS namespace at
configuration are described in z/OS DCE Configuring and Getting Started. The following ACL permissions
are defined for CDS objects. The single letter in parentheses for each item represents the DCE notation
for that permission. These single letters are identical to the untokenized forms returned by
sec_acl_get_printstring().

read (r) Permits a principal to look up an object entry and view its attribute values

write (w) Permits a principal to change an object’s modifiable attributes, except for its ACLs

insert (i) Permits a principal to create new entries in a CDS directory. It is used with directory
entries only.

delete (d) Permits a principal to delete a name entry from the namespace.

24 Application Development Guide: Directory Services

test (t) Permits a principal to test whether an attribute of an object has a particular value, but
does not permit it to actually see any of the attribute values. In other words, read
permission for the object is not granted. The test permission allows an application to
verify the value of a particular CDS attribute without reading it.

control (c) Permits a principal to modify the entries in the object’s ACL. The control permission is
automatically granted to the creator of a CDS object.

administer (a) Permits a principal to issue dcecp and cdscp commands that control the replication of
directories. It is used with directory entries only.

Detailed instructions on the mechanics of setting up ACLs on CDS objects can be found in the z/OS DCE
Administration Guide.

For CDS directories, read and test permissions are sufficient for ordinary principals to access the directory
and to read (and test) the entries there. Principals that you want to be able to add entries in a CDS
directory should have insert permission for that directory. Entries created by the RPC NSI routines (for
example, when a server exports bindings for the first time) are automatically set up with the correct
permissions. However, if you are creating new CDS directories for NSI use, you should be sure to give
prospective user principals insert permission to the directory, so that servers can create entries when they
export their bindings. A general list of the permissions required for the various RPC NSI operations can
be found in the z/OS DCE Application Development Reference. Information on the separate RPC NSI
routines (all of whose names are in the form rpc_ns_...()) can be found in the z/OS DCE Application
Development Reference, where it describes the permissions required for the described operation.

Note that CDS names do not behave the same way as filesystem names. A principal does not need to
have access to an entire entry name path in order to have access to an entry at the end of that path. For
example, a principal can be granted read access to the following entry:

/.:/applications/utilities/pr2

Although it may not have read access to the utilities directory itself.

Valid Characters and Naming Rules for CDS

The following subsections discuss the valid character sets for DCE Directory Service names as used by
CDS interfaces. It also explains some characters that have special meaning and describes some
restrictions and rules regarding case matching, syntax, and size limits.

The use of names in the DCE often involves more than one directory service. For example, CDS interacts
with either GDS or DNS to find names outside the local cell.

Figure 5 on page 26 details the valid characters in CDS names, and the valid character GDS and DNS
names as used by CDS interfaces.

 Chapter 2. Programming in the CDS Namespace 25

SP

!

"

#

$

%

&

’

(

)

*

+

,

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

Key: Valid in CDS,GDS, and DNS names

Valid only in CDS and GDS names

Valid only in CDS names

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

’

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

Figure 5. Valid Characters in CDS, GDS, and DNS Names

Note: Because CDS, GDS, and DNS all have their own valid character sets and syntax rules, the best
way to avoid problems is to keep names short and simple, consisting of a minimal set of
characters common to all three services. The recommended set is the letters A to Z, a to z, and
the digits 0 to 9. In addition to making directory service operations easier, use of this subset
decreases the probability that users in a heterogeneous hardware and software environment will
encounter problems creating and using names.

26 Application Development Guide: Directory Services

Although spaces are valid in both CDS and GDS names, a CDS simple name containing a space must be
enclosed in " " (double quotation marks) when you enter it through the CDS control program. Additional
interface-specific rules are documented in the sections where they apply.

 Metacharacters
Certain characters have special meaning to the directory services; these are known as metacharacters.
Table 1 lists and explains the CDS, GDS, and DNS metacharacters.

Some metacharacters are not permitted as normal characters within a name. For example, a backslash
(\) cannot be used as anything but an escape character in GDS. You can use other metacharacters as
normal characters in a name, provided that you escape them with the backslash metacharacter.

 Additional Rules

Table 2 summarizes major points to remember about CDS, GDS, and DNS character sets,
metacharacters, restrictions, case-matching rules, internal storage of data, and ordering of elements in a
name. For additional details, see the documentation for each technology.

Table 1. Metacharacters and Their Meaning

Directory
Service

Character

Meaning

CDS / Separates elements of a name (simple names)

CDS * When used in the rightmost simple name of a name entered in a CDSCP show or list
command acts as a wild card, matching 0 or more characters

CDS ? When used in the rightmost simple name of a name entered in a CDSCP show or list
command acts as a wild card, matching exactly one character

CDS \ Used where necessary in front of a \(backslash), an * (asterisk), or a ? (question mark) to
escape the character (indicates that the following character is not a metacharacter)

GDS / Separates relative distinguished names (RDNs)

GDS , Separates multiple attribute type-value pairs (attribute value assertions) within an RDN

GDS = Separates an attribute type and value in an attribute value assertion

GDS \ Used in front of / (slash), a ,(comma), or = (equal sign) to escape the character (indicates
that the following character is not a metacharacter).

DNS . Separates elements of a name

Table 2 (Page 1 of 2). Summary of CDS, GDS, and DNS Characteristics

Characteristic CDS GDS DNS

Character set [a to z] [A to Z] [0 to 9] plus
space and special
characters shown in
Figure 5 on page 26

[a to z] [A to Z] [0 to 9] plus
. : , ' + − = () ? / and space

[a to z] [A to Z] [0 to 9] plus .
and −

Metacharacters / * ? \ / , = \ .

 Chapter 2. Programming in the CDS Namespace 27

Table 2 (Page 2 of 2). Summary of CDS, GDS, and DNS Characteristics

Characteristic CDS GDS DNS

Restrictions Simple names cannot
contain a / (slash).

The first simple name
following the global cell
name (or /.: prefix) cannot
contain an = (equal sign).

When entering a name as
part of a CDSCP show or
list command, you must use
a \ (backslash) to escape
any * (asterisk) or ?
(question mark) character in
the rightmost simple name.
Otherwise, the character is
interpreted as a wild card.

Relative distinguished
names cannot begin or end
with a / (slash).

Attribute types must begin
with an alphabetic character,
can contain only
alphanumerics, and cannot
contain spaces1 .

You must use a \
(backslash) to escape a /
(slash), a , (comma), and an
= (equal sign) when using
them as anything other than
metacharacters.

Multiple, consecutive,
unescaped occurrences of /
(slashes), , (commas), =
(equal signs) and \
(backslashes) are not
allowed.

Each attribute value
assertion contains exactly
one unescaped = (equal
sign).

The first character must be
alphabetic.

The first and last characters
cannot be a . (dot) or −
(dash).

Cell names in DNS must
contain at least one . (dot);
they must be more than one
level deep.

Case-matching
rules

Case exact Attribute types are matched
case-insensitive. The
case-matching rule for an
attribute value can be
case-exact or
case-insensitive, depending
on the rule defined for its
type at the DSA.

Case insensitive

Internal
Representation

Case exact Depends on the
case-matching rule defined
at DSA. If rule says case
insensitive, alphabetic
characters are converted to
all lowercase. Spaces are
removed regardless of the
case-matching rule.

Alphabetic characters are
converted to all lowercase
characters.

Ordering of name
elements.

Big-endian (left to right from
root to lower-level names).

Big-endian (left to right from
root to lower-level names).

Little-endian (right to left from
root to lower-level names).

Notes:

1. An alternative method of specifying attribute types is by object identifier, a sequence of digits separated by dots
(.).

28 Application Development Guide: Directory Services

Maximum Name Sizes

Table 3 lists maximum sizes for Directory Service names. Note that the limits are implementation specific,
not architectural.

Valid Characters for GDS Naming Attributes: This section describes the valid character sets
for the GDS naming attributes. Although GDS is not supported on z/OS DCE, you need to understand
this information because a cell can have a name which is partly in GDS. To construct the global name to
the entry in CDS, you should know the rules for the GDS portion.

The values of the country attributes are restricted to the ISO 3166 Alpha-2 code representation of country
names. (For more information, see z/OS DCE Administration Guide.)

The character set for all other naming attributes is the T61 graphical character set. It is described in “T61
Syntax” on page 30.

Table 3. Maximum Sizes of Directory Service Names

Name Type Maximum Size
(characters)

CDS simple name (character string between two slashes) 254 characters

CDS full name (including global or local prefix, cell name, and slashes separating simple
names)

1023 characters

GDS relative distinguished name 64 characters.

GDS distinguished name 1024 characters

DNS relative name (character string between two dots) 64 characters

DNS fully qualified name (sum of all relative names) 255 characters

 Chapter 2. Programming in the CDS Namespace 29

T61 Syntax: Figure 6 shows the T61 graphical character set.

Note: The 1) entry in the table indicates that you should not use the codes in column 2/row 3 and
column 2/row 4. Instead, use the appropriate code in column A.

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0 1 2

SP

!

"

1)

1)

%

&

(

)

*

+

,

-

.

/

3

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

4

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

5

P

Q

R

S

T

U

V

W

X

Y

Z

[

]

_

6

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

7

p

q

r

s

t

u

v

w

x

y

z

|

8 9 A

i

$

#

<<

B C D E F

’

’

’

c

+_

2

3

x

>>

1/4

1/2

3/4

?

-

_

"

v

a_

|J

L

L

O O

OE

’n

K

ae

Y

ij

l

l

l

oe

T t

Figure 6. T61 Syntax

The administration interface supports only characters smaller than 0x7e for names. The XDS Application
Programming Interface (API) supports the full T61 range as indicated in Figure 6.

Some T61 alphabetical characters have a two-byte representation. For example, a lowercase letter ‘a’
with acute accent is represented by 0xc2 (the code for acute accent) followed by 0x61 (the code for
lowercase ‘a’).

Only certain combinations of diacritical characters and basic letters are valid. They are shown in Figure 7
on page 31.

30 Application Development Guide: Directory Services

Name

grave accent

acute accent

circumflex accent

tilde

macron

breve

dot above

umlaut

ring

cedilla

double accent

ogonek

caron

Repr. Code

0xc1

0xc2

0xc3

0xc4

0xc5

0xc6

0xc7

0xc8

0xca

0xcb

0xcd

0xce

0xcf

Valid Basic Letters Following

a,A,e,E,i,I,o,O,u,U

a,A,c,C,e,E,g,i,I,l,L,n,N,o,O,r,R

s,S,u,U,y,Y,z,Z

a,A,c,C,e,E,g,G,h,H,i,I,j,J,o,O,s,S,

u,U,w,W,y,Y

a,A,i,I,n,N,o,O,u,U

a,A,e,E,i,I,o,O,u,U

a,A,g,G,u,U

c,C,e,E,g,G,I,z,Z

a,A,e,E,i,I,o,O,u,U,y,Y

a,A,u,U

c,C,G,k,K,l,L,n,N,r,R,s,S,t,T

o,O,u,U

a,A,e,E,i,I,u,U

c,C,d,D,e,E,l,L,n,N,r,R,s,S,t,T,z,Z

-

"

v

^

~

Figure 7. Combinations of Diacritical Characters and Basic Letters

The nonspacing underline (code 0xcc) must be followed by a Latin alphabetical character, such as a basic
letter (a to z or A to Z), or a valid diacritical combination.

Use of Object Identifiers

Object Identifiers (OIDs) are not seen by applications that restrict themselves to using only the RPC NSI
routines (rpc_ns_...()), but these identifiers are important for applications that use the XDS interface to
read entries directly or to create new attributes for use with namespace entries.

RPC makes use of only four different entry attributes in various application-specified or
administrator-specified combinations. CDS, however, contains definitions for many more than these.
They can be added by applications to RPC entries through the XDS interface. Attributes that already exist
are already properly identified so applications that use these attributes do not have to concern themselves
with the OIDs, except to the extent of making sure that they handle them properly.

Unlike UUIDs, OIDs are not generated by command or function call. They originate from the International
Organization for Standardization (ISO), which allocates them in hierarchically organized blocks to
recipients. Each recipient, typically some organization, is then responsible for ensuring that the OIDs it
receives are used uniquely.

For example, the OID block 1.3.22 was allocated to OSF by ISO. OSF can now generate, for example,
the OID 1.3.22.1.1.4 and allocate it to identify some DCE directory object. (The OID 1.3.22.1.1.4
identifies the RPC profile entry object attribute.)

OSF is responsible for making sure that 1.3.22.1.1.4 is not used to identify any other attribute. Thus, as
long as all OIDs are generated only from within each owner's properly obtained block, and as long as

 Chapter 2. Programming in the CDS Namespace 31

each block owner makes sure that the OIDs generated within its block are properly used, each OID will
always be a universally valid identifier for its associated value.

OIDs are encoded and internally represented as strings of hexadecimal digits, and comparisons of OIDs
have to be performed as hexadecimal string comparisons (not as comparisons on NULL-terminated
strings since OIDs can have NULL bytes as part of their value).

When applications have occasion to handle OIDs, they do so directly because the numbers do not change
and should not be reused. However, for users' convenience, CDS also maintains a file (called
cds_attributes, found in cds_attributes that lists string equivalents for all the OIDs in use in a cell in
entries like the following one:

1.3.22.1.1.4 RPC_Profile byte

This enables users to see RPC_Profile in output, rather than the meaningless string 1.3.22.1.1.4. Further
details about the cds_attributes file and OIDs can be found in the z/OS DCE Administration Guide.

In summary, the procedure you should follow to create new attributes on CDS entries consists of three
steps:

1. Request and receive the OIDs for the attributes you intend to create, from your locally designated
authority.

2. Update the cds_attributes file with the OIDs and labels of the new attributes if you want your
application to be able to use string name representations for OIDs in output.

3. Using XDS, write the routines to create, add, and access the attributes.

The name is a guaranteed-unique series of values for a global directory entry name. If the directory is
GDS, the name is a series of type/value pairs, such as:

C=US O=OSF

Note that there is no need for new OIDs in connection with cell names. The OIDs for Country Name and
Organization Name are part of the X.500 standard implemented in GDS; only the values associated with
the OIDs (the values of the objects) change from entry name to entry name. Instead, being able to
generate new OIDs gives you the ability to invent and add new details to the directory itself. For example,
you can create new kinds of CDS entry attributes by generating new OIDs to identify them. The same
thing can be done to GDS, although the procedure is more complicated because it involves altering the
directory schema.

32 Application Development Guide: Directory Services

Chapter 3. XDS and the DCE Cell Namespace

This chapter describes how you use the XDS programming interface to access the CDS namespace. Use
the XDS interface if you are interested in accessing the namespace for more than RPC information. If you
are not interested in such information, skip this section.

� “Introduction to Accessing CDS with XDS,” is an introduction to using XDS in the CDS namespace.

� “XDS Objects” on page 34 describes XDS objects and how they are used to access CDS data.

� “Accessing CDS Using the XDS Step-by-Step Procedure” on page 43 is a step-by-step procedure for
writing an XDS program to access CDS.

� “Object-Handling Techniques” on page 57 contains examples of using the XOM interface to
manipulate objects.

� “XDS/CDS Object Recipes” on page 60 contains details of the structure of XDS/CDS objects.

� Finally, “ Attribute and Data Type Translation” on page 72 contains translation tables between XDS
and CDS for attributes and data types.

Introduction to Accessing CDS with XDS

Outside of the DCE cells and their separate namespaces is the global namespace in which the cell names
themselves are entered and where all intercell references are resolved. Two directory services participate
in the global namespace. The first is the X.500 compliant Global Directory Service (GDS) supplied with
DCE. The second, is the Domain Name Service (DNS), which is not a part of DCE, but with which DCE
interacts.

The global and cell directory services are accessed implicitly by RPC applications using the NSI interface.
GDS and CDS can also be accessed explicitly using the XDS interface. With XDS, application
programmers can gain access to GDS, a powerful general-purpose distributed database service, which
can be used for many other things besides intercell binding. XDS can also be used to access the cell
namespace directly, as this chapter describes.

An XDS application looks very different from the RPC-based DCE applications. Partly, the reason is that
there is no dependency in XDS on the DCE RPC interface, although you can use both interfaces in the
same application. Also, XDS is a generalized directory interface, oriented more toward performing large
database operations than toward fine-tuning the contents of RPC entries. Nevertheless, XDS can be used
as a general access mechanism on the CDS namespace.

Using the Reference Material in this Chapter

Complete descriptions of all the XDS and XOM functions used in CDS operations can be found in the
z/OS DCE Application Development Reference, which you should have beside you as you read through
the examples in this chapter. Definitive descriptions of all XDS and XOM class types can be found in the
XDS/XOM supplementary material section beginning with Chapter 10, “XDS Interface Description” on
page 233. In particular, refer to “XDS Errors” on page 241 for information about XDS error objects, which
are not discussed in this chapter.

Complete descriptions for some of the objects required as input parameters by XDS functions when
accessing a CDS namespace can be found in “XDS/CDS Object Recipes” on page 60. Abbreviated
definitions for these same objects can be found with all the others in the supplementary XDS/XOM
material beginning at Chapter 10, “XDS Interface Description” on page 233. XOM functions are

 Copyright IBM Corp. 1994, 2001 33

general-purpose utility routines that operate on objects of any class, and take the rest of their input in
conventional form.

Slightly less detailed descriptions of the output objects you can expect to receive when accessing CDS
through XDS are also given in “XDS/CDS Object Recipes” on page 60. You do not have to construct
objects of these classes yourself; you just have to know their general structure so that you can
disassemble them using XOM routines.

No information is given in this chapter about the DS_status error objects that are returned by
unsuccessful XDS functions; a description of all the subclasses of DS_status requires a chapter in itself.
Code for a rudimentary general-purpose DS_status-handling routine can be found in “The teldir.c
Program” on page 170.

What You Cannot Do with XDS

XDS enables you to perform general operations on CDS entry attributes, something that you cannot do
using the DCE RPC NSI interface. However, there are certain things you cannot do to cell directory
entries even through XDS:

� You cannot create or modify directory entries; the ds_modify_rdn() function does not work in a CDS
namespace. These operations must be performed through the dcecp or cdscp commands. For more
information, see the z/OS DCE Command Reference.

� You cannot perform XDS searches on the cell namespace; the XDS function ds_search() does not
work. The reason is that the CDS has no concept of a hierarchy of entry attributes, such as the X.500
schema. The ds_compare() function, however, does work.

What Must Be Set Up

If you are planning to use XDS to access the cell namespace in a one-cell environment (that is, your cell
does not need to communicate with other DCE cells), you do not need to set up a cell entry in GDS for
your cell because the XDS functions simply call the appropriate statically linked CDS routines to access
the cell namespace. In these circumstances, XDS always tries to access the local cell when given an
untyped (non-X.500) name.

For XDS to be able to access any nonlocal cell namespace, that cell must be registered (that is, have an
entry) in the global namespace.

For information on setting up your cell name, see the z/OS DCE Administration Guide.

 XDS Objects

The XDS interface differs from the other DCE component interfaces in that it is object oriented. The
following subsections explain two things: first, what object-oriented programming means in terms of using
XDS; and second, how to use XDS to access the Cell Directory Service.

Imagine a generalized data structure that always has the same data type, and yet can contain any kind of
data, and any amount of it. Functions could pass these structures back and forth in the same way all the
time, and yet they could use the same structures for any kind of data they wanted to store or transfer.
Such a data structure, if it existed, would be a true object. Programming language constructs allow
interfaces to pretend that they use objects, although the realities of implementation are not usually so
simple.

34 Application Development Guide: Directory Services

XDS is such an interface. For the most part, XDS functions only accept or return values as objects. The
objects themselves are indeed always the same data type. Namely, pointers to arrays of object descriptor
(C struct) elements. Contained within these OM_descriptor element structures are unions that can
actually accommodate all the different kinds of values an object can be called on to hold. To allow the
interface to make sense of the unions, each OM_descriptor also contains a syntax field, which indicates
the data type of that descriptor’s union. There is also a record of what the descriptor’s value actually is,
for example, whether it is a name, a number, an address, a list, and so on. This information is held in the
descriptor’s type field.

These OM_descriptor elements, which are referred to as object descriptors or descriptors, are the basic
building blocks of all XDS objects; every actual XDS object reduces to arrays of them. Each descriptor
contains three items:

� A type field, which identifies the descriptor’s value

� A syntax field, which indicates the data type of the value field

� The value field, which is a union

Figure 8 illustrates one such object descriptor.

type: OM_CLASS
syntax: OID string
value: DS_C_DS_DN

Figure 8. One Object Descriptor

Note that, from an abstract point of view, syntax is just an implementation detail. The scheme really
consists only of a type/value pair. The type gives an identity to the object (something like CDS entry
attribute, CDS entry name, or DUA access point), and the value is some data associated with that identity,
just as a variable has a name that gives meaning to the value it holds, and the value itself.

To make the representation of objects as logical and as flexible as possible, these two logical components
of every object, type and value, are themselves each represented by separate object descriptors. Thus,
the first element of every complete object descriptor array is a descriptor whose type field identifies its
value field as containing the name of the kind (or class) of this object, and the syntax field indicates how
that name value should be read. Next is usually one (or more, if the object is multivalued) object
descriptor whose type field identifies its value field as containing some value appropriate for this class of
object. Finally, every complete object descriptor array ends with a descriptor element that is identified by
its fields as being a NULL-terminating element.

Thus, a minimum-size descriptor array consists of just two elements: the first contains its class identity,
and the second is a NULL. It is legitimate for objects not to have values. When an object does have a
value, it is held in the value field of a descriptor whose type field communicates the value’s meaning.

Figure 9 illustrates the arrangement of a complete object descriptor array.

type: OM_CLASS
syntax: OID string
value: DS_C_DS_DN

type: DS_RDNS
syntax: OM_S_OBJECT
value: rdn1

NULL

Figure 9. A Complete Object Represented

 Chapter 3. XDS and the DCE Cell Namespace 35

 Object Attributes

The generic term for any object value is attribute. In this sense, an object is nothing but a collection of
attributes, and every object descriptor describes one attribute. The first attribute’s value identifies the
object’s class, and this determines all the other attributes the object is supposed to have. One or more
other attributes follow, which contain the object’s working values. The NULL object descriptor at the end
is an implementation detail, and is not a part of the object.

Note that, depending on the attribute it represents, a descriptor’s value field can contain a pointer to
another array of object descriptors. In other words, an object’s value can be another object.

Figure 10 shows a three-layer compound object: the top-level superobject, dn_object, contains the
subobject rdn1, which in turn contains the subobject ava1.

Figure 10. A Three-Layer Compound Object

Interface Objects and Directory Objects

GDS is comprised of objects; these are directory objects, that reflect the X.500 design. The XDS interface
also works with objects. However, there is a big difference between directory and XDS objects.
Programmers do not work directly with the directory objects; they are composed of attributes that make up
the directory service’s implementation of entries.

Programmers work with XDS objects. XDS objects have explicit data representations that can be directly
manipulated with programming language operators. Some of these techniques are described in this
chapter; others can be found in Chapter 7, “Example Application Programs” on page 159.

XDS and GDS terminology sometimes suggests that XDS objects are somehow direct representations of
the directory objects to which they communicate information. This is not the case, however. You never
directly see or manipulate the directory objects; the XDS interface objects are used only to pass
parameters to the XDS calls, which in turn request GDS (or CDS) to perform operations on the directory
objects. The XDS objects are therefore somewhat arbitrary structures defined by the interface.

Figure 11 on page 37 illustrates the relationship between XDS (also called interface) objects and directory
objects. The figure shows an application passing several properly initialized XDS objects to some XDS

36 Application Development Guide: Directory Services

function; it then takes some action, which affects the attribute contents of certain directory objects. The
application never works with the directory objects; it works with the XDS interface objects.

A side effect of the existence of a separate XDS interface and GDS or CDS directory objects is the
existence of attributes for both kinds of objects as well, because the purpose of XDS objects is to feed
data into and extract data from directory objects, programmers work with XDS objects whose attributes
have directory object attributes as their values. You should keep in mind the distinction between directory
objects and interface objects.

DN attribute

attribute

attribute

attribute

Postal Code
attribute

attribute

attribute

ds_modify_entry()

XDS function

Object Class attribute
=

Entry Modification

Attribute Type
=

DS_A_POSTAL_CODE

Attribute Value
=

"77 Sunset Strip"

attribute

attribute

attribute

XDS Object

GDS Directory Objects

Figure 11. Directory Objects and XDS Interface Objects

 Chapter 3. XDS and the DCE Cell Namespace 37

Directory Objects and Namespace Entries

The GDS namespace is a hierarchical collection of entries. The name of each of these entries is an
attribute of a directory object. The object is accessed through XDS by stating its name attribute.

Figure 12 shows the relationship of entry names in the GDS namespace to the GDS directory objects to
which they refer.

DN attribute

attribute

attribute

attribute

attribute

attribute

attribute

GDS Directory Object

/.../C=US/O=OSF/OU=DCE

/.../C=US/L=Cambridge/CN=Killroy

GDS Namespace

Object Entries

Figure 12. Directory Objects and Namespace Entries

38 Application Development Guide: Directory Services

Values That an Object Can Contain

There are many different classes of objects defined for the XDS interface; still more are defined by the
X.500 standard for general directory use. But only a small number of classes are needed for XDS/CDS
operations, and only those classes are discussed in this chapter. Information about other classes can be
found in the GDS application programming section beginning at Chapter 4, “GDS API: Concepts and
Overview” on page 77.

The class that an object belongs to determines what sort of information the object can contain. Each
object class consists of a list of attributes that objects must have. For example, you would expect an
object in the directory entry name class to be required to have an attribute to hold the entry name string.
However, it is not sufficient to simply place a string like the following one into an object descriptor:

/.../C=US/O=OSF/OU=DCE/hosts/tamburlaine/self

In XDS, a full directory entry name such as the preceding one is called a Distinguished Name (DN),
meaning that the entry name is fully qualified (distinct) from root to entry name. To properly represent the
entry name in an object, you must look up the definition of the XDS distinguished name object class and
build an object that has the set of attributes that the definition prescribes.

Building a Name Object

Complete definitions for all the object classes required as input for XDS functions can be found in
“XDS/CDS Object Recipes” on page 60. Among them is the class for distinguished name objects, called
DS_C_DS_DN. There you will learn that this class of object has two attributes: its class attribute, which
identifies it as a DS_C_DS_DN object, and a second attribute, which occurs multiple times in the object.
Each instance of this attribute contains as its value one piece of the full name; for example, the directory
name hosts.

The DS_C_DS_DN attribute that holds the entry name piece, or Relative Distinguished Name, is defined
by the class rules to hold, not a string, but another object of the Relative Distinguished Name class
(DS_C_DS_RDN).

Thus, a static declaration of the descriptor array representing the DS_C_DS_DN object would look like the
following:

 Chapter 3. XDS and the DCE Cell Namespace 39

static OM_descriptor Full_Entry_Name_Object[] = {

 OM_OID_DESC(OM_CLASS, DS_C_DS_DN),
/B ^^^^^^^^^^^ B/
/B Macro to put an "OID string" in a descrip- B/
/B tor’s type field and fill its other B/
/B fields with appropriate values. B/

{DS_RDNS, OM_S_OBJECT, {H, Country_RDN}},
/B ^^^^^^^ ^^^^^^^^^^^ ^^^^^^^^^^^ B/
/B type syntax value B/
/B B/
/B (the "value" union is in fact here a B/
/B structure; the H fills a pad field in B/
/B that structure.) B/

{DS_RDNS, OM_S_OBJECT, {H, Organization_RDN}},
{DS_RDNS, OM_S_OBJECT, {H, Org_Unit_RDN}},
{DS_RDNS, OM_S_OBJECT, {H, Hosts_Dir_RDN}},
{DS_RDNS, OM_S_OBJECT, {H, Tamburlaine_Dir_RDN}},
{DS_RDNS, OM_S_OBJECT, {H, Self_Entry_RDN}},

 OM_NULL_DESCRIPTOR
/B ^^^^^^^^^^^^^^^^^^ B/
/B Macro to fill a descriptor with proper B/
/B null values. B/

};

The use of the OM_OID_DESC and OM_NULL_DESCRIPTOR macros slightly obscures the layout of this
declaration. However, each line contains code to initialize exactly one OM_descriptor object; the array
consists of eight objects.

The names (such as Country_RDN) in the descriptors’ value fields refer to the other descriptor arrays,
which separately represent the relative name objects. (The order of the C declaration in the source file is
opposite to the order described here.) Because DS_C_DS_RDN objects are now called for, the next step
is to look at what attributes that class requires.

The definition for DS_C_DS_RDN can be found in “The DS_C_DS_RDN Object” on page 66. This class
object is defined, like DS_C_DS_DN, to have only one attribute (with the exception of the OM_Object
attribute, which is mandatory for all objects). The one attribute, DS_AVAS, holds the value of one relative
name. The syntax of this value is OM_S_OBJECT, meaning that the value of DS_AVAS is a pointer to
yet another object descriptor array:

static OM_descriptor Country_RDN[] = {

 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{DS_AVAS, OM_S_OBJECT, {H, Country_Value}},
 /B ^^^^^^^^^^^^^ B/
 OM_NULL_DESCRIPTOR
};

40 Application Development Guide: Directory Services

Note that there should also be five other similar declarations, one for each of the other DS_C_DS_RDN
objects held in the DS_C_DS_DN.

The declarations have the same meanings as they did in the previous example. Country_Value is the
name of the descriptor array that represents the object of class DS_C_AVA, which we are now about to
look up.

The rules for the DS_C_AVA class can be found in “The DS_C_AVA Object” on page 66 following
DS_C_DS_RDN. They tell us that DS_C_AVA objects have two attributes aside from the omnipresent
OM_Object; namely:

 � DS_ATTRIBUTE_VALUES

This attribute holds the object’s value.

 � DS_ATTRIBUTE_TYPE

This attribute gives the meaning of the object’s value.

In this instance, the meaning of the string US is that it is a country name. There is a particular directory
service attribute value for this; it is identified by an OID that is associated with the label
DS_A_COUNTRY_NAME. The OIDs held in objects are represented in string form. Accordingly, the OID
is made the value of DS_ATTRIBUTE_TYPE, and the name string itself the value of
DS_ATTRIBUTE_VALUES:

static OM_descriptor Country_Value[] = {

 OM_OID_DESC(OM_CLASS, DS_C_AVA),

 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),

{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_S_LOCAL_STRING, OM_STRING("US")},
/B B/
/B Macro to properly B/
/B fill the "value" union with the null-terminated string. B/

 OM_NULL_DESCRIPTOR
};

There are also five other DS_C_AVA declarations, one for each of the five other separate name piece
objects referred to in the DS_C_DS_RDN superobjects.

A Complete Object

The previous sections described how an object is created: you look up the rules for the object class you
require, and then add the attributes called for in the definition. Whenever some attribute is defined to
have an object as its value, you have to look up the class rules for the new object and declare a further
descriptor array for it. In this way, you continue working down through layers of subobjects until you reach
an object class that contains no subobjects as values; at that point, you are finished.

Normally, you do not statically declare objects in real applications. The steps outlined in the preceding
text are given as a method for determining what an object looks like. Once you have done that, you can
then write routines to create the objects dynamically. An example of how to do this can be found in the
teldir.c example application in “The teldir.c Program” on page 170.

The process of object building is fairly easy. There are only five different object classes needed for input
to XDS functions when accessing CDS, and only one of those, the DS_C_DS_DN class, has more than

 Chapter 3. XDS and the DCE Cell Namespace 41

one level of subobjects. The rules for all five of these classes can be found in the GDS chapters of this
book. To use the GDS references, you should know a few things about class hierarchy.

 Class Hierarchy

Object classes are hierarchically organized so that some classes are located above some classes in the
hierarchy and below others in the hierarchy. In any such system of subordinate classes, each next lower
class inherits all the attributes prescribed for the class immediately above it, plus whatever attributes are
defined for it alone. If the hierarchy continues further down, the collection of attributes continues to
accumulate. If there were a class for every letter of the alphabet, starting at the highest level with A and
continuing down to the lowest level with Z, and if each succeeding letter was a subclass of its
predecessor, the Z class would possess all the attributes of all the other letters, as well as its own, while
the A class would possess only the A class attributes.

XDS/XOM classes are seldom nested more than two or, at most, three layers. All inherited attributes are
explicitly listed in the object descriptions that follow, so you do not have to worry about class hierarchies
here. However, the complete descriptions of XDS/XOM objects in the XDS/XOM supplementary
information section later in this book rely on statements of class inheritance to fill out their attribute lists for
the different classes. Refer to this section, beginning in Chapter 10, “XDS Interface Description” on
page 233 for information about the classes of objects that can be returned by XDS calls to handle those
returned objects.

Class Hierarchy and Object Structure

Note that class hierarchy is different from object structure. Object structure is the layering of object arrays
that was previously described in the DS_C_DS_DN declaration in “Building a Name Object” on page 39.
It occurs when one object contains another object as the value of one or more of its attributes.

For recursive objects, one object can point to another object as one of its attribute values. The layering of
subobjects below superobjects in this way is described in “XDS/CDS Object Recipes” on page 60.

The only practical significance of class hierarchy is in determining all the attributes a certain object class
must have. Once you have done this, you may find that a certain attribute requires as its value some
other object. The result is a compound object, but this is completely determined by the attributes for the
particular class you are looking at.

Public and Private Objects and XOM

In “Building a Name Object” on page 39, you saw how a multilevel XDS object can be statically declared
in C code. Now imagine that you have written an application that contains such a static DS_C_DS_DN
object declaration. From the point of view of your application, that object is nothing but a series of arrays,
and you can manipulate them with all the normal programming operators, just as you can any other data
type. Nevertheless, the object is syntactically acceptable to any XDS (or XOM) function that is prepared
to receive a DS_C_DS_DN object.

Objects are also created by the XDS functions themselves; this is the way they usually return information
to callers. However, there is a difference between objects generated by the XDS interface and objects
that are explicitly declared by the application: you cannot access the former, private, objects in the direct
way that you can the latter, public, objects.

These two kinds of objects are the same as far as their classes and attributes are concerned. The only
difference between them is in the way they are accessed. The public objects that an application explicitly
creates or declares in its own memory area are just as accessible as any of the other data storage it uses.
However, private objects are created and held in the system memory of the XDS interface. Applications

42 Application Development Guide: Directory Services

get handles to private objects, and in order to access the private objects’ contents, they have to pass the
handles to Object Management functions. The Object Management (XOM) functions make up a sort of
all-purpose companion interface to XDS. While XDS functions typically require some specific class object
as input, the XOM functions accept objects of any class and perform useful operations on them.

If a private object needs to be manipulated, one of the XOM functions, om_get(), can be called to make a
public copy of the private object. Private objects unlike public objects do not have to be explicitly operated
on; instead, you can access them through the XOM interface and let it do most of the work. You still have
to know something about the logical representation of objects, however, to use XOM.

Except for a few more details, which will be mentioned as needed, this is practically all there is to XDS
object representation.

XOM Objects and XDS Library Functions

To call an XDS library function, do the following:

1. Decide what input parameters you must supply to the function.

2. Bundle up these parameters in objects (that is, arrays of object descriptors) in an XDS format.

Almost all data returned to you by an XDS function is enclosed in objects, which you must parse to
recover the information that you want. This task is made almost automatic by a library function supplied
with the companion X/Open OSI-Abstract-Data Manipulation (XOM) interface.

With XDS, you have to perform a lot of call parameter management, but the interface is easy to use. The
dependence of the XDS functions on objects makes them easy to call, once the objects are correctly set
up.

Accessing CDS Using the XDS Step-by-Step Procedure
The following subsections provide a walk-through of the steps of some typical XDS/CDS operations. They
describe what is involved in using XDS to access existing CDS attributes and how you can create and
access new CDS entry attributes.

Reading and Writing Existing CDS Entry Attributes Using XDS

Suppose that you want to use XDS to read some information from the following CDS entry:

/.../C=US/O=OSF/OU=DCE/hosts/tamburlaine/self

The /.:/hosts/hostname/self entry, which is created at the time of cell configuration, contains binding
information for the machine hostname. This is a simple RPC NSI entry and as an example provides a
simple demonstration.

Following are the header inclusions and general data declarations.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <xom.h>
#include <xds.h>
#include <xdsbdcp.h>
#include <xdscds.h>

 Chapter 3. XDS and the DCE Cell Namespace 43

Note that the xom.h and xds.h header files must be included in the order shown in the preceding
example. Also note that the xdscds.h header file is brought in for the sake of DSX_TYPELESS_RDN.
This file is the location where the CDS-significant OIDs are defined. The xdsbdcp.h file contains
information necessary to the Basic Directory Contents Package, which is the basic version of the XDS
interface you can use in this program.

The XDS/XOM interface defines numerous object identifier string constants, which are used to identify the
many object classes, parts, and pieces (among other things) that it needs to know about. To make sure
that these OID constants do not collide with any other constants, the interface refers to them with the
string OMP_O_ prefixed to the user-visible form. For example, DS_C_DS_DN becomes
OMP_O_DS_C_DS_DN internally. To make application instances consistent with the internal form, use
OM_EXPORT to import all XDS-defined or XOM-defined OID constants used in your application.

OM_EXPORT(DS_A_COUNTRY_NAME)
OM_EXPORT(DS_A_OBJECT_CLASS)
OM_EXPORT(DS_A_ORG_UNIT_NAME)
OM_EXPORT(DS_A_ORG_NAME)

OM_EXPORT(DS_C_ATTRIBUTE)
OM_EXPORT(DS_C_ATTRIBUTE_LIST)
OM_EXPORT(DS_C_AVA)
OM_EXPORT(DS_C_DS_DN)
OM_EXPORT(DS_C_DS_RDN)
OM_EXPORT(DS_C_ENTRY_INFO_SELECTION)
OM_EXPORT(DSX_TYPELESS_RDN)

/B ...Special OID for an untyped (i.e., non-X.5HH) "Relative B/
/B Distinguished Name". Defined in xdscds.h header. B/

A further important effect of OM_EXPORT is that it builds an OM_string structure to hold the exported
Object Identifier hexadecimal string. As explained in Chapter 2, “Programming in the CDS Namespace”
on page 17, OIDs are not numeric values, but strings. Comparisons and similar operations on OIDs must
access them as strings. Once an OID has been exported, you can access it using its declared name. For
example, the hexadecimal string representation of DS_C_ATTRIBUTE is contained in
DS_C_ATTRIBUTE.elements, and the length of this string is contained in DS_C_ATTRIBUTE.length.

Significance of Typed and Untyped Entry Names: Next are the static declarations for the
lowest layer of objects that make up the global name (Distinguished Name) of the CDS directory entry you
want to read. These lowest-level objects contain the string values for each part of the name. Remember
that the first three parts of the name (excluding the global prefix /.../, which is not represented) constitute
the cell name:

/C=US/O=OSF/OU=DCE/

In this example, assume that GDS is being used as the cell’s global directory service, so the cell name is
represented in X.500 format, and each part of it is typed in the object representation. For example,
DS_A_COUNTRY_NAME is the DS_ATTRIBUTE_TYPE in the Country_String_Object. If you were
using DNS, and the cell name were something like:

osf.org.dce

Then the entire string osf.org.dce would be held in a single object whose DS_ATTRIBUTE_TYPE would
be DSX_TYPELESS_RDN.

DSX_TYPELESS_RDN is a special type that marks a name piece as not residing in an X.500 namespace.
If the object resides under a typed X.500 name, as is the case in the declared object structures, then it
serves as a delimiter for the end of the cell name GDS looks up, and the beginning of the name that is
passed to a CDS server in that cell, assuming that the cell has access to GDS. If it does not, such a

44 Application Development Guide: Directory Services

name cannot be resolved. If the untyped portion of the name is at the beginning, as would be the case
with the name:

/.../osf.org.dce/hosts/zenocrate/self

Then the name is passed immediately by XDS via the local CDS (and the GDA) to DNS for resolution of
the cell name. Thus, the typing of entry names determines which directory service a global directory entry
name is sent to for resolution.

Static Declarations: The following are the static declarations you need:

/BBB/
/B Here are the objects that contain the string values for each B/
/B part of the CDS entry’s global name... B/

static OM_descriptor Country_String_Object[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),
 {DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING|OM_S_LOCAL_STRING, OM_STRING("US")},
 OM_NULL_DESCRIPTOR
};

static OM_descriptor Organization_String_Object[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_NAME),
 {DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING|OM_S_LOCAL_STRING, OM_STRING("OSF")},
 OM_NULL_DESCRIPTOR
};

static OM_descriptor Org_Unit_String_Object[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_UNIT_NAME),
 {DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING|OM_S_LOCAL_STRING, OM_STRING("DCE")},
 OM_NULL_DESCRIPTOR
};

static OM_descriptor Hosts_Dir_String_Object[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_TYPELESS_RDN),
 {DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING|OM_S_LOCAL_STRING, OM_STRING("hosts")},
 OM_NULL_DESCRIPTOR
};

static OM_descriptor Tamburlaine_Dir_String_Object[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_TYPELESS_RDN),
 {DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING|OM_S_LOCAL_STRING, OM_STRING("tamburlaine")},
 OM_NULL_DESCRIPTOR }
;

static OM_descriptor Self_Entry_String_Object[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_TYPELESS_RDN),

 Chapter 3. XDS and the DCE Cell Namespace 45

 {DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING|OM_S_LOCAL_STRING, OM_STRING("self")},
 OM_NULL_DESCRIPTOR
};

The string objects are contained by a next-higher level of objects that identify the strings as being pieces
(RDNs) of a fully qualified directory entry name (DN). Thus, the Country_RDN object contains
Country_String_Object as the value of its DS_AVAS attribute; Organization_RDN contains
Organization_String_Object, and so on.

/BBB/
/B Here are the "Relative Distinguished Name" objects. B/

static OM_descriptor Country_RDN[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
 {DS_AVAS, OM_S_OBJECT, {H, Country_String_Object}},
 OM_NULL_DESCRIPTOR }
;

static OM_descriptor Organization_RDN[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
 {DS_AVAS, OM_S_OBJECT, {H, Organization_String_Object}},
 OM_NULL_DESCRIPTOR
};

static OM_descriptor Org_Unit_RDN[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
 {DS_AVAS, OM_S_OBJECT, {H, Org_Unit_String_Object}},
 OM_NULL_DESCRIPTOR
};

static OM_descriptor Hosts_Dir_RDN[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
 {DS_AVAS, OM_S_OBJECT, {H, Hosts_Dir_String_Object}},
 OM_NULL_DESCRIPTOR
};

static OM_descriptor Tamburlaine_Dir_RDN[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
 {DS_AVAS, OM_S_OBJECT, {H, Tamburlaine_Dir_String_Object}},
 OM_NULL_DESCRIPTOR
};

static OM_descriptor Self_Entry_RDN[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
 {DS_AVAS, OM_S_OBJECT, {H, Self_Entry_String_Object}},
 OM_NULL_DESCRIPTOR
};

At the highest level, all the subobjects are gathered together in the DN object named
Full_Entry_Name_Object.

More information on GDS (X.500) names is provided in “X.500 Naming Concepts” on page 83. That
information will clarify the need for the name complexity with RDNs and AVAs.

46 Application Development Guide: Directory Services

/BBB/

static OM_descriptor Full_Entry_Name_Object[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_DN),

{DS_RDNS, OM_S_OBJECT, {H, Country_RDN}},
{DS_RDNS, OM_S_OBJECT, {H, Organization_RDN}},
{DS_RDNS, OM_S_OBJECT, {H, Org_Unit_RDN}},
{DS_RDNS, OM_S_OBJECT, {H, Hosts_Dir_RDN}},
{DS_RDNS, OM_S_OBJECT, {H, Tamburlaine_Dir_RDN}},
{DS_RDNS, OM_S_OBJECT, {H, Self_Entry_RDN}},

 OM_NULL_DESCRIPTOR
};

Other Necessary Objects for ds_read(): The ds_read() procedure takes requests in the form
of a DS_C_ENTRY_INFO_SELECTION class object. However, if you refer to the recipe for this object
class in “XDS/CDS Object Recipes” on page 60, you will find that it is much simpler than the name object;
it contains no subobjects, and its declaration is straightforward.

The value of the DS_ALL_ATTRIBUTES attribute specifies that all attributes be read from the CDS entry,
which is specified in the Full_Entry_Name_Object variable.

Note that the term attribute is used slightly differently in CDS and XDS contexts. In XDS, attributes
describe the values that can be held by various object classes; you can consider them as object fields. In
CDS, attributes describe the values that can be associated with a directory entry. The following code
fragment shows the definition of a DS_C_ENTRY_INFO_SELECTION object.

static OM_descriptor Entry_Info_Select_Object[] = {

 OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),
{DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, OM_TRUE},
{DS_INFO_TYPE, OM_S_ENUMERATION, DS_TYPES_AND_VALUES},

 OM_NULL_DESCRIPTOR
};

Miscellaneous Declarations: The following are declarations for miscellaneous variables:

OM_workspace xdsWorkspace;
/B ...will contain handle to our "workspace" B/

DS_feature featureList[] = {

{ OM_STRING(OMP_O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE },
{ H }

};
/B ...list of service "packages" we will want from XDS B/

OM_private_object session;
/B ...will contain handle to a bound-to directory session B/

DS_status dsStatus;
/B ...status return from XDS calls B/

OM_return_code omStatus;
/B ...status return from XOM calls B/

OM_sint dummy;

 Chapter 3. XDS and the DCE Cell Namespace 47

/B ...for unsupported ds_read() argument B/

OM_private_object readResultObject;
/B ...to receive entry information read from CDS by "ds_read()" B/

OM_type I_want_entry_object[] = {DS_ENTRY, OM_NO_MORE_TYPES};
OM_type I_want_attribute_list[] = {DS_ATTRIBUTES, OM_NO_MORE_TYPES};
OM_type I_want_attribute_value[] = {DS_ATTRIBUTE_VALUES, OM_NO_MORE_TYPES};

/B ...arrays to pass to "om_get()" to extract subobjects B/
/B from the result object returned by "ds_read()" B/

OM_value_position number_of_descriptors;
/B ...to hold number of attribute descriptors returned B/
/B by "om_get() B/

OM_public_object entry;
/B ...to hold public object returned by "om_get()" B/

The Main Program: This section describes the main program. Three calls usually precede any use
of XDS.

First, ds_initialize() is called to set up a workspace. A workspace is a memory area in which XDS can
generate objects that will be used to pass information to the application. If the call is successful, it returns
a handle that must be saved for the ds_shutdown() call. If the call is unsuccessful, it returns NULL, but
this example does not check for errors.

xdsWorkspace = ds_initialize();

The service packages are specified next. Packages consist of groups of objects, together with the
associated supporting interface functionality, designed to be used for some specific end. For example, to
access the (X.500) Global Directory, specify DSX_GDS_PKG. This example uses the basic XDS service,
so DS_BASIC_DIR_CONTENTS_PKG is specified. The featureList parameter to ds_version() is an
array, not an object, because objects (which depend on the set of packages supported) are not being
handled yet:

dsStatus = ds_version(featureList, xdsWorkspace);

From this point on, status is returned by XDS functions via a DS_status variable. DS_status is a handle
to a private object, whose value is DS_SUCCESS (that is, NULL) if the call was successful. If the call is
unsuccessful, the information in the (possibly complex) private error object has to be analyzed through
calls to om_get(), which is one of the general-purpose object management functions that belongs to
XDS’s companion interface XOM. Usage of om_get() is demonstrated later on in this program, but return
status is not checked in this example.

The third necessary call is to ds_bind(). This call brings up the directory service, which binds to a
Directory System Agent (DSA), the GDS server, through a Directory User Agent (DUA), the GDS client.
The DS_DEFAULT_SESSION parameter calls for a default session. The alternative is to build and fill out
your own DS_C_SESSION object, specifying such things as DSA addresses, and pass that. The default
is used in this example:

dsStatus = ds_bind(DS_DEFAULT_SESSION, xdsWorkspace, &session);

48 Application Development Guide: Directory Services

Reading a CDS Attribute: At this point, you can read a set of object attributes from the cell
namespace entry. Call ds_read() with the two objects that specify the entry to be read and the specific
entry attribute you want:

dsStatus = ds_read(session, DS_DEFAULT_CONTEXT,
Full_Entry_Name_Object, Entry_Info_Select_Object,
&readResultObject, &dummy);

The DS_DEFAULT_CONTEXT parameter could be substituted with a DS_C_CONTEXT object, which
would typically be reused during a series of related XDS calls. This object specifies and records how
GDS should perform the operation, how much progress has been made in resolving a name, and so on.

If the call succeeds, the private object readResultObject contains a series of DS_C_ATTRIBUTE
subobjects, one for each attribute read from the cell name entry. More information for the
DS_C_READ_RESULT object can be found in Chapter 11, “XDS Class Definitions” on page 241, but the
following is an outline of the object’s structure:

DS_C_READ_RESULT
 DS_ENTRY: object(DS_C_ENTRY_INFO)
 DS_ALIAS_DEREFERENCED: OM_S_BOOLEAN
 DS_PERFORMER: object(DS_C_NAME)

 DS_C_ENTRY_INFO
 DS_FROM_ENTRY: OM_S_BOOLEAN
 DS_OBJECT_NAME: object(DS_C_NAME)

DS_ATTRIBUTES: one or more object(DS_C_ATTRIBUTE)

DS_C_NAME == DS_C_DS_DN
 DS_RDNS: object(DS_C_DS_RDN)

 DS_C_DS_RDN
 DS_AVAS: object(DS_C_AVA)

 DS_C_AVA
DS_ATTRIBUTE_TYPE: OID string

 DS_ATTRIBUTE_VALUES: anything

DS_C_ATTRIBUTE --one for each attribute read
DS_ATTRIBUTE_TYPE: OID string

 DS_ATTRIBUTE_VALUES: anything

 DS_C_ATTRIBUTE
DS_ATTRIBUTE_TYPE: OID string

 DS_ATTRIBUTE_VALUES: anything

Figure 13 on page 50 illustrates the general object structure of a DS_C_READ_RESULT, showing only
the object-valued attributes, and only one DS_C_ATTRIBUTE subobject.

 Chapter 3. XDS and the DCE Cell Namespace 49

DS_C_READ_RESULT

DS_C_ENTRY_INFO

DS_C_DS_DN

DS_C_DS_RDN

DS_C_AVA

DS_C_ATTRIBUTE

Figure 13. DS_C_READ_RESULT Object Structure

Handling the Result Object: The next goal is to extract the instances of the DS_C_ATTRIBUTE
subclass, one for each attribute read, from the returned object. The first step is to make a public copy of
readResultObject, which is a private object, and therefore does not allow access to the object descriptors
themselves. Using the XOM om_get() function, you can make a public copy of readResultObject, and at
the same time specify that only the relevant parts of it be preserved in the copy. Then with a couple of
calls to om_get(), you can reduce the object to manageable size, leaving a superobject whose immediate
subobjects are fairly easily accessed.

The om_get() function takes as its third input parameter an OM_type_list, which is an array of OM_type.
Possible parameters are DS_ENTRY, DS_ATTRIBUTES, DS_ATTRIBUTE_VALUES, and anything that

50 Application Development Guide: Directory Services

can legitimately appear in an object descriptor’s type field. The types specified in this parameter are
interpreted according to the options specified in the preceding parameter. For example, the relevant
attribute from the read result is DS_ENTRY. It contains the DS_C_ENTRY_INFO object, which in turn
contains the DS_C_ATTRIBUTE objects. The DS_C_ATTRIBUTE objects contain the data read from the
cell directory name entry. Therefore, you should specify the OM_EXCLUDE_ALL_BUT_THESE_TYPES
option, which has the effect of excluding everything but the contents of the object’s DS_ENTRY type
attribute.

The OM_EXCLUDE_SUBOBJECTS option is also ORed into the parameter. Why would you not preserve
the subobjects of DS_C_ENTRY_INFO? Because om_get() works only on private, not on public, objects.
If you were to use om_get() on the entire object substructure, you would not be able to continue getting
the subobjects, and instead you would have to follow the object pointers down to the
DS_C_ATTRIBUTEs. However, when om_get() excludes subobjects from a copy, it does not really leave
them out; it merely leaves the subobjects private, with a handle to the private objects where pointers
would have been. This allows you to continue to call om_get() as long as there are more subobjects.

The following is the first call:

/B The DS_C_READ_RESULT object that ds_read() returns has B/
/B one subobject, DS_C_ENTRY_INFO; it in turn has two sub- B/
/B objects, i.e. a DS_C_NAME which holds the object's di- B/
/B stinguished name (which we don't care about here), and B/
/B a DS_C_ATTRIBUTE which contains the attribute info we B/
/B read; that one we want. So we climb down to it... B/
/B This om_get() will "return" the entry-info object... B/

omStatus = om_get(readResultObject,
 OM_EXCLUDE_ALL_BUT_THESE_TYPES +
 OM_EXCLUDE_SUBOBJECTS,
 I_want_entry_object,
 OM_TRUE,
 OM_ALL_VALUES,
 OM_ALL_VALUES,
 &entry,
 &number_of_descriptors);

The number_of_descriptors parameter contains the number of attribute descriptors returned in the public
copy, not in any excluded subobjects.

If an XOM function is successful, it returns an OM_SUCCESS code. Unsuccessful calls to XOM functions
do not return error objects, but rather return simple error codes. The interface assumes that if the XOM
function does not accept your object, then you will not be able to get much information from any further
objects. The return status is not checked in this example.

The return parameter entry should now contain a pointer to the DS_C_ENTRY_INFO object with the
following immediate structure. (The number of instances of DS_ATTRIBUTES depends on the number of
attributes read from the entry.)

 Chapter 3. XDS and the DCE Cell Namespace 51

 DS_C_ENTRY_INFO
 DS_FROM_ENTRY: OM_S_BOOLEAN
 DS_OBJECT_NAME: object(DS_C_NAME)
 DS_ATTRIBUTES: object(DS_C_ATTRIBUTE)
 DS_C_ATTRIBUTE

DS_ATTRIBUTE_TYPE: OID string
 DS_ATTRIBUTE_VALUES: anything

 DS_ATTRIBUTES: object(DS_C_ATTRIBUTE)
 object(DS_C_ATTRIBUTE)
 DS_C_ATTRIBUTE

DS_ATTRIBUTE_TYPE: OID string
 DS_ATTRIBUTE_VALUES: anything.

The italics indicate private subobjects. Figure 14 shows the DS_C_ENTRY_INFO object. Only one
instance of a DS_C_ATTRIBUTE subobject is shown in the figure; usually there are several such
subobjects, all at the same level, each containing information about one of the attributes read from the
entry. These subobjects are represented in DS_C_ENTRY_INFO as a series of descriptors of type
DS_ATTRIBUTES, each of which has as its value a separate DS_C_ATTRIBUTE subobject.

DS_C_ENTRY_INFO

DS_C_DS_DN

DS_C_DS_RDN

DS_C_AVA

DS_C_ATTRIBUTE

Figure 14. DS_C_ENTRY_INFO Object Structure

52 Application Development Guide: Directory Services

Now extract the separate attribute values of the entry that was read. These were returned as separate
object values of DS_ATTRIBUTES; each one has an object class of DS_C_ATTRIBUTE. To return any
one of these subobjects, a second call to om_get() is necessary, as follows.

/B The second om_get() returns one selected sub-object B/
/B from the DS_C_ENTRY_INFO subobject we just got. The B/
/B contents of "entry" as we enter this call is the pri- B/
/B vate subobject which is the value of DS_ATTRIBUTES. If B/
/B we were to make the following call with the B/
/B OM_EXCLUDE_SUBOBJECTS and without the B/
/B OM_EXCLUDE_ALL_BUT_THESE_VALUES flags, we would get B/
/B back an object consisting of six private subobjects, B/
/B one for each of the attributes returned. Note the val- B/
/B ues for initial and limiting position: "2" specifies B/
/B that we want only the third DS_C_ATTRIBUTE subobject B/
/B to be gotten (the subobjects are numbered from H, not B/
/B from one), and the "3" specifies that we want no more B/
/B than that-- in other words, the limiting value must al- B/
/B ways be one more than the initial value if the latter B/
/B is to have any effect. OM_EXCLUDE_ALL_BUT_THESE_VALUES B/
/B is likewise required for the initial and limiting val- B/
/B ues to have any effect... B/

omStatus = om_get(entry->value.object.object,
 OM_EXCLUDE_ALL_BUT_THESE_TYPES
 + OM_EXCLUDE_SUBOBJECTS
 + OM_EXCLUDE_ALL_BUT_THESE_VALUES,
 I_want_attribute_list,
 OM_TRUE,
 ((OM_value_position) 2),
 ((OM_value_position) 3),
 &entry,
 &number_of_descriptors);

Note the value that is passed as the first parameter. Because om_get() does not work on public objects,
pass it the handle of the private subobject explicitly. You have to know the arrangement of the
descriptor’s value union, which is defined in xom.h.

Representation of Object Values: The following is the layout of the object field in a descriptor’s
value union:

typedef struct {
 OM_uint32 padding;
 OM_object object;
} OM_padded_object;

The following is the layout of the value union itself:

typedef union OM_value_union {
 OM_string string;
 OM_boolean boolean;
 OM_enumeration enumeration;
 OM_integer integer;
 OM_padded_object object;
} OM_value;

The following is the layout of the descriptor itself:

 Chapter 3. XDS and the DCE Cell Namespace 53

typedef struct OM_descriptor_struct {
 OM_type type;
 OM_syntax syntax;
 union OM_value_union value;
} OM_descriptor;

Thus, if entry is a pointer to the DS_C_ENTRY_INFO object, then
entry->value.object.object is the handle to the DS_C_ATTRIBUTE private object that you want next.

Extracting an Attribute Value: The last call yielded one separate DS_C_ATTRIBUTE subobject
from the original returned result object:

DS_C_ATTRIBUTE
DS_ATTRIBUTE_TYPE: OID string

 DS_ATTRIBUTE_VALUES: anything

Figure 15 illustrates what is left.

DS_C_ATTRIBUTE

Figure 15. DS_C_ATTRIBUTE Object Structure

A final call to om_get() returns the single object descriptor that contains the actual value of the single
attribute you selected from the returned object:

omStatus = om_get(entry->value.object.object,
 OM_EXCLUDE_ALL_BUT_THESE_TYPES,
 I_want_attribute_value,
 OM_TRUE,
 OM_ALL_VALUES,
 OM_ALL_VALUES,
 &entry,
 &number_of_descriptors);

At this point, the value of entry is the base address of an object descriptor whose entry->type is
DS_ATTRIBUTE_VALUES. Depending on the value found in entry->syntax, the value of the attribute
can be read from entry->value.string, entry->value.integer, entry->value.boolean, or
entry->value.enumeration. For example, suppose the value of entry->syntax is
OM_S_OCTET_STRING. The attribute value, represented as an octet string (not terminated by a NULL),
is found in entry->value.string.elements; its length is found in entry->value.string.length.

Note: The C declaration of the OM_string data type used for a data value of string syntax is:

typedef OM_uint32 OM_string_length;
typedef struct {
 OM_string_length length;
 void Belements;
} OM_string;

You can check any attribute value against the value you get from the dcecp command by entering:

dcecp object show /.:/hosts/tamburlaine/self

or by using the cdscp command and entering:

54 Application Development Guide: Directory Services

cdscp show object /.:/hosts/tamburlaine/self

For further information on dcecp and cdscp, see the z/OS DCE Command Reference.

Note that you can always call om_get() to get the entire returned object from an XDS call. This yields a
full structure of object descriptors that you can manipulate like any other data structure. To do this with
the ds_read() return object would have required the following call:

/B make a public copy of ENTIRE object.B B/

omStatus = om_get(readResultObject, OM_NO_EXCLUSIONS,
((OM_type_list) H), OM_TRUE, ((OM_value_position) H),

 ((OM_value_position) H),
 &entry,
 &number_of_descriptors);

At the end of every XDS session you have to unbind from the GDS, and then deallocate the XDS and
XOM structures and other storage. You must also explicitly deallocate any service-generated objects,
whether public or private, with calls to om_delete(), as follows:

/B delete service-generated public or private objects.BB/

omStatus = om_delete(readResultObject);
omStatus = om_delete(entry);

/B unbind from the GDS... B/
dsStatus = ds_unbind(session);

/B close down the workspace... B/
dsStatus = ds_shutdown(xdsWorkspace);

exit();

Creating New CDS Entry Attributes

The following subsections provide the procedure and some code examples for creating new CDS entry
attributes.

Creating New Attributes: To create new attributes of your own in cell namespace object entries,
you must:

1. Allocate a new ISO Object Identifier (OID) for the new attribute. For information on how to do this,
see Chapter 2, “Programming in the CDS Namespace” on page 17 and the z/OS DCE Administration
Guide.

2. Enter the new attribute’s name and OID in the cds_attributes file, found in cds_attributes. This text
file contains OID-to-readable string mappings that are used, for example, by the CDS administration
command cdscp when it displays CDS entry attributes. Each entry also gives a syntax for reading the
information in the entry itself. This should be congruent with the format of the data you intend to write
in the attribute. For more information about the cds_attributes file, see the z/OS DCE Administration
Guide.

3. In a C language header file, define an appropriate OID string constant to represent the new attribute.

For example, the following shows the xdscds.h definition for the CDS CDS_Class attribute:

#define OMP_O_DSX_A_CDS_Class "\x2B\x16\xH1\xH3\xHF"

 Chapter 3. XDS and the DCE Cell Namespace 55

Note the XDS internal form of the name. This is what DSX_A_CDS_Class looks like when it has
been exported using OM_EXPORT in an application, as all OIDs must be. Thus, if you wanted to
create a CDS attribute called DSX_A_CDS_Brave_New_Attrib, you would obtain an OID from your
administrator and add the following line to your header file:

#define OMP_O_DSX_A_CDS_Brave_New_Attrib "your_OID"

4. In an application, call the XDS ds_modify_entry() routine to add the attribute to the cell namespace
entry of your choice.

Coding Examples: For the following code fragments, a set of declarations similar to those in the
previous examples is assumed.

The ds_modify_entry() function, which is called to add new attributes to an entry or to write new values
into existing attributes, requires a DS_C_ENTRY_MOD_LIST input object whose contents specify the
attributes and values to be written to the entry. The name, as always, is specified in a DS_C_DS_DN
object. The following is a static declaration of such a list, which consists of two attributes:

static OM_descriptor Entry_Modification_Object_1[] = {
 OM_OID_DESC(OM_CLASS, DS_C_ENTRY_MOD),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_Brave_New_Attrib),

{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING|OM_S_LOCAL_STRING, OM_STRING("O brave new attribute")},
{DS_MOD_TYPE, OM_S_ENUMERATION, DS_ADD_ATTRIBUTE},

 OM_NULL_DESCRIPTOR
};

static OM_descriptor Entry_Modification_Object_2[] = {
 OM_OID_DESC(OM_CLASS, DS_C_ENTRY_MOD),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_Class),

{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING|OM_S_LOCAL_STRING, OM_STRING("Miscellaneous")},
{DS_MOD_TYPE, OM_S_ENUMERATION, DS_ADD_ATTRIBUTE},

 OM_NULL_DESCRIPTOR
};

static OM_descriptor Entry_Modification_List_Object[] = {
 OM_OID_DESC(OM_CLASS, DS_C_ENTRY_MOD_LIST),

{DS_CHANGES, OM_S_OBJECT, {H, Entry_Modification_Object_1}},
{DS_CHANGES, OM_S_OBJECT, {H, Entry_Modification_Object_2}},

 OM_NULL_DESCRIPTOR
};

A full description of this object can be found in “XDS/CDS Object Recipes” on page 60. There could be
any number of additional attribute changes in the list; this would mean additional DS_C_ENTRY_MOD
objects declared, and an additional DS_CHANGES descriptor declared and initialized in the
DS_C_ENTRY_MOD_LIST object.

With the DS_C_ENTRY_MOD_LIST class object having been declared as shown previously, the following
code fragment illustrates how to call XDS to write a new attribute value (actually two new values since two
attributes are contained in the list object). Note that any of the attributes may be new, although the entry
itself must already exist for the ds_modify_entry() call.

dsStatus = ds_modify_entry(session, /B Directory session from "ds_bind()" B/
DS_DEFAULT_CONTEXT, /B Usual directory context B/
Full_Entry_Name_Object, /B Entry name object B/
Entry_Modification_List_Object, /B Entry Modifi- B/

/B cation object B/
&dummy); /B Unsupported argument B/

56 Application Development Guide: Directory Services

If the entire entry is new, you must call ds_add_entry(). This function requires an input object of class
DS_C_ATTRIBUTE_LIST, whose contents specify the attributes (and values) to be attached to the new
entry. Following is the static declaration for an attribute list that contains three attributes:

static OM_descriptor Class_Attribute_Object[] = {
 OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_Class),

{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING|OM_S_LOCAL_STRING, OM_STRING("Printer")},
 OM_NULL_DESCRIPTOR
};

static OM_descriptor ClassVersion_Attribute_Object[] = {
 OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_ClassVersion),

{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING|OM_S_LOCAL_STRING, OM_STRING("1.H")},
 OM_NULL_DESCRIPTOR };

static OM_descriptor My_Own_Attribute_Object[] = {
 OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_My_OwnAttribute),

{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING|OM_S_LOCAL_STRING, OM_STRING("zorro")},
 OM_NULL_DESCRIPTOR
};

static OM_descriptor Attribute_List_Object[] = {
 OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),

{DS_ATTRIBUTES, OM_S_OBJECT, {H, Class_Attribute_Object}},
{DS_ATTRIBUTES, OM_S_OBJECT, {H, ClassVersion_Attribute_Object}},
{DS_ATTRIBUTES, OM_S_OBJECT, {H, My_Own_Attribute_Object}},

 OM_NULL_DESCRIPTOR
};

The ds_add_entry() function also requires a DS_C_DS_DN class object containing the new entry’s full
name. In the following example, every member of the name exists except for the last one, my_book:

/.../osf.org.dce/subsys/doc/my_book

Assuming that Full_Entry_Name_Object is a DS_C_DS_DN object, the following example code shows
what the call looks like:

dsStatus = ds_add_entry(session, /B Directory session from "ds_bind()" B/
DS_DEFAULT_CONTEXT, /B Usual directory context B/
Full_Entry_Name_Object, /B Name of new entry B/
Attribute_List_Object, /B Attributes to be attached B/

/B to new entry, with values B/
&dummy); /B Unsupported argument B/

 Object-Handling Techniques

The following subsections describe the use of XOM and discuss dynamic object creation.

 Chapter 3. XDS and the DCE Cell Namespace 57

Using XOM to Access CDS

The following code fragments demonstrate an alternative way to set up the entry modification object for a
ds_modify_entry() call, showing how the om_put() and om_write() functions are used.

The following technique is used to initialize the modification object:

1. The om_create() function is called to generate a private object of a specified class.

2. The om_put() function is called to copy statically declared attributes into a declared private object.

3. The om_write() function is called to write the value string, which is to be assigned to the attribute, into
the private object.

4. The om_get() function is called to make the private object public.

5. The object is now public, and its address is inserted into the DS_C_ENTRY_MOD_LIST object’s
DS_CHANGES attribute.

The following new declarations are necessary:

OM_private_object newAttributeMod_priv;
/B ...handle to a private object to "om_put()" to B/

OM_public_object newAttributeMod_pub;
/B ...to hold public object from "om_get()" B/

OM_type types_to_include[] = {DS_ATTRIBUTE_TYPE, DS_ATTRIBUTE_VALUES,
 DS_MOD_TYPE, OM_NO_MORE_TYPES};

/B ...i.e., all attribute values of the Entry Modification B/
/B object. For "om_put()" and "om_get()" B/

char Bmy_string = "O brave new attribute";
/B ...value I want to write into attribute B/

OM_value_position number_of_descriptors;
/B ...to hold value returned by "om_get()" B/

First, use XOM to generate a private object of the desired class:

omStatus = om_create(DS_C_ENTRY_MOD, /B Class of object B/
OM_TRUE, /B Initialize attributes per defaults B/
xdsWorkspace, /B Our workspace handle B/
&newAttributeMod_priv); /B Created object handle B/

Next, copy the public object’s attributes into the private object:

omStatus = om_put(newAttributeMod_priv, /B Private object to copy B/
/B attributes into B/

OM_REPLACE_ALL, /B Which attributes to replace in B/
/B destination object B/

Entry_Modification_Object_2, /B Source object to copy B/
/B attributes from B/

types_to_include, /B List of attribute types we want B/
 /B copied B/

H, H); /B Start-stop index for multivalued attri- B/
/B butes; ignored with OM_REPLACE_ALL B/

Because om_put() ignores the class of the source object (the object from which attributes are being
copied), it is not necessary to declare class descriptors for the source objects. In other words, the static

58 Application Development Guide: Directory Services

declarations could have omitted the OM_CLASS initializations if this technique were being used, for
example:

static OM_descriptor Entry_Modification_Object_2[] = {
/B OM_OID_DESC(OM_CLASS, DS_C_ENTRY_MOD), B/
/B Not needed for "om_put()"... B/

 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_Class),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING|OM_S_LOCAL_STRING, OM_STRING("Miscellaneous")},
{DS_MOD_TYPE, OM_S_ENUMERATION, DS_ADD_ATTRIBUTE},

 OM_NULL_DESCRIPTOR };

The OM_CLASS was already properly initialized by om_create().

Next, write the attribute value string into the private object:

omStatus = om_write(newAttributeMod_priv, /B Private object to write to B/
DS_ATTRIBUTE_VALUES, /B Attribute type whose value B/

/B we're writing B/
H, /B Descriptor index if attribute is multivalued B/
OM_S_PRINTABLE_STRING|OM_S_LOCAL_STRING, /B Syntax of value B/
H, /B Offset in source string to write from B/
my_string); /B Source string to write from B/

Now make the whole thing public again:

omStatus = om_get(newAttributeMod_priv, /B Private object to get B/
H, /B Get everything B/
types_to_include, /B All attribute types B/

 OM_TRUE, /B local_string B/
H, H, /B Start-stop descriptor index for multi-valued B/

/B attributes; ignored in this case B/
&newAttributeMod_pub, /B Pointer to returned copy B/
&number_of_descriptors); /B Number of attribute B/

/B descriptors returned B/

Finally, insert the address of the subobject into its superobject:

Entry_Modification_List_Object[1].value.object.object = newAttributeMod_pub;

Dynamic Creation of Objects

Objects can be completely dynamically allocated and initialized; however, you have to implement the
routines to do this yourself. The examples in this section are code fragments; for complete examples, see
Chapter 7, “Example Application Programs” on page 159.

Initialization of object structures can be automated by declaring macros or functions to do this. For
example, the following macro initializes one object descriptor with a full set of appropriate values:

/B Put a C-style (NULL-terminated) string into an object, and B/
/B set all the other descriptor fields to requested values... B/

#define FILL_OMD_STRING(desc, index, typ, syntx, val) \
desc[index].type = typ; \
desc[index].syntax = syntx; \
desc[index].value.string.length = (OM_element_position)strlen(val); \
desc[index].value.string.elements = val;

When generating objects, use malloc() or rpc_ss_allocate() to allocate space for the number of objects
desired, and then use macros (or functions) such as the preceding one to initialize the descriptors. The

 Chapter 3. XDS and the DCE Cell Namespace 59

following code fragment shows how this can be done for the top-level object of a DS_C_DS_DN, such as
the one described near the beginning of this chapter. Recall that the DS_C_DS_DN has a separate
DS_RDNS descriptor for each name piece in the full name.

/B Calculate number of "DS_RDNS" attributes there should be... B/
numberOfPieces = number_of_name_pieces;

/B Allocate space for that many descriptors, plus one for the B/
/B object class at the front, and a NULL descriptor at the B/
/B back... B/
Name_Object = (OM_object)malloc((numberOfPieces + 2) B sizeof(OM_descriptor));
if(Name_Object == NULL) /B "malloc()" failed B/
return OM_MEMORY_INSUFFICIENT;

/B Initialize it as a DS_C_DS_DN object by placing that class B/
/B identifier in the first position... B/

FILL_OMD_XOM_STRING(Name_Object, H, OM_CLASS,
 OM_S_OBJECT_IDENTIFIER_STRING, DS_C_DS_DN)

Note that all of these steps would have to be repeated for each of the DS_C_DS_RDN objects required as
attribute values of the DS_C_DS_DN. Then a tier of DS_C_AVA objects would have to be created in the
same way, because each of the DS_C_DS_RDNs requires one of them as its attribute value.

You can now use om_create() and om_put() to generate a private copy of this object, if so desired.

The application is responsible for managing the memory it allocates for such dynamic object creation.

XDS/CDS Object Recipes

The following subsections contain shorthand for object classes. For example, if you look at the
information about the ds_...() functions in the z/OS DCE Application Development Reference, you will see
that an object of class DS_C_NAME is required to hold entry names you want to pass to the call, not
DS_C_DS_DN as stated in this chapter. However, DS_C_NAME is in fact an abstract class with only one
subclass, DS_C_DS_DN, so in this chapter, DS_C_DS_DN is used.

Input XDS/CDS Object Recipes

In general, the objects you work with in an XDS/CDS application fall into two categories:

� Objects you have to supply as input parameters to XDS functions

� Objects returned to you as output by XDS functions.

This section describes only the first category, because you have to construct these input objects yourself.

Table 4 on page 61 shows XDS functions and the objects given to them as input parameters.

Only items significant to CDS are listed in the table. DS_C_SESSION and DS_C_CONTEXT are ignored.
DS_C_SESSION is returned by ds_bind(), which usually receives the DS_DEFAULT_SESSION constant
as input. DS_C_CONTEXT is usually substituted by the DS_DEFAULT_CONTEXT constant.

Note: DS_C_NAME is an abstract class that has the single subclass DS_C_DS_DN. Therefore,
DS_C_NAME is practically the same thing as DS_C_DS_DN.

60 Application Development Guide: Directory Services

Input Object Classes for XDS/CDS Operations

The following subsections contain information about all the object types required as input to any of the
XDS functions that can be used to access the CDS. In order to use these functions successfully, you
must be able to construct and modify the objects that the functions expect as their input parameters.
XDS functions require most of their input parameters to be wrapped in a nested series of data structures
that represent objects, and these functions deliver their output returns to callers in the same object form.

Objects that are returned to you by the interface are not difficult to manipulate because the om_get()
function allows you to go through them and retrieve only the value parts you are interested in and discard
the parts of data structures you are not interested in. Some examples of how to do this are given in
“Extracting the Data from the Read Result” on page 131. However, any objects you are required to
supply as input to an XDS or XOM function are another matter: you must build and initialize these object
structures yourself.

The basics of object building have already been explained earlier in this chapter. Each object described in
the following subsections is accompanied by a static declaration in C of a very simple instance of that
object class. The objects in an application are usually built dynamically (this technique was demonstrated
earlier in this chapter). The static declarations that follow give a simple example of what the objects look
like.

An object’s properties, such as what sort of values it can hold, how many of them it can hold, and so on,
are determined by the class the object belongs to. Each class consists of one or more attributes that an
object can have. The attributes hold whatever values the object contains. Thus, the objects are data
structures that all look the same (and can be handled in the same way) from the outside, but whose
specific data fields are determined by the class each object belongs to. At the abstract level, objects
consist of attributes, just as structures consist of fields.

Table 4. Directory Service Functions with their Required Input Objects

Function Input Object

ds_add_entry() DS_C_NAME
DS_C_ATTRIBUTE_LIST

ds_bind() None

ds_compare() DS_C_NAME
DS_C_AVA

ds_initialize() None

ds_list() DS_C_NAME

ds_modify_entry() DS_C_NAME
DS_C_ENTRY_MOD_LIST

ds_read() DS_C_NAME
DS_C_ENTRY_INFO_SELECTION

ds_remove_entry() DS_C_NAME

ds_shutdown() None

ds_unbind() None

ds_version() None

 Chapter 3. XDS and the DCE Cell Namespace 61

XDS/CDS Object Types: Following is a list of all the object types that are described in the following
subsections. Most of these objects are object structures; that is, compounds consisting of superobjects
that contain subobjects as some of their values. These latter may in turn contain other objects, and so
on. Subobjects are indicated by indentation. A DS_C_DS_DN object contains at least one
DS_C_DS_RDN object, and each of the latter contains one DS_C_AVA object. Note that subobjects
can, and often do, exist by themselves, depending on what object class is called for by a given function.
This list contains all the possible kinds of objects that can be required as input for any XDS/CDS
operation.

 � DS_C_ATTRIBUTE_LIST

 – DS_C_ATTRIBUTE

 � DS_C_DS_DN

 – DS_C_DS_RDN

 - DS_C_AVA

 � DS_C_ENTRY_MOD_LIST

 – DS_C_ENTRY_MOD

 - DS_C_ATTRIBUTE

 � DS_C_ENTRY_INFO_SELECTION

Note: The above list does not show the object class hierarchy; rather, it shows the object inclusions of
subobjects by superobjects.

In each section, information is provided for the described object’s attributes. All of its attributes are listed.

The illustrations in the following sections can be compared to the same object classes’ tabular definitions
in Chapter 11, “XDS Class Definitions” on page 241.

The DS_C_ATTRIBUTE_LIST Object: A DS_C_ATTRIBUTE_LIST class object is required as
input to ds_add_entry(). The object contains a list of the directory attributes you want associated with the
entry that is to be added.

Its general structure is as follows:

� Attribute List class type attribute

� Zero or more DS_C_ATTRIBUTE objects:

– Attribute class type attribute

– Attribute Type attribute

– Zero or more Attribute Value(s)

Thus, a DS_C_ATTRIBUTE_LIST object containing one attribute consists of two object descriptor arrays,
because each additional attribute in the list requires an additional descriptor array to represent it. The
names of the subobject arrays (that is, addresses) are the contents of the value fields in the
DS_ATTRIBUTES object descriptors.

Figure 16 on page 63 shows the attributes of the DS_C_ATTRIBUTE_LIST object.

62 Application Development Guide: Directory Services

type=OM_CLASS
syntax=OM_S_OBJECT_

IDENTIFIER_STRING
value=DS_C_

ATTRIBUTE

type=DS_ATTRIBUTE_
TYPE

syntax=OM_S_OBJECT_
IDENTIFIER_STRING

value=...

type=DS_ATTRIBUTE_
VALUES

syntax=any
value=any

type=OM_CLASS
syntax=OM_S_OBJECT_

IDENTIFIER_STRING
value=DS_C_

ATTRIBUTE_LIST

type=DS_ATTRIBUTES
syntax=OM_S_OBJECT

[DS_C_ATTRIBUTE]
value=[]

type=DS_ATTRIBUTES

type=DS_ATTRIBUTE_
VALUES

1 only 0 or more

DS_C_ATTRIBUTE_LIST Object

DS_C_ATTRIBUTE Object

1 only 1 only 0 or more

Figure 16. DS_C_ATTRIBUTE_LIST Object

 � OM_CLASS

The value of this attribute is an OID string that identifies the object’s class; its value is always
DS_C_ATTRIBUTE_LIST.

 � DS_ATTRIBUTES

This is an attribute whose value is a pointer to an object of class DS_C_ATTRIBUTE (see “The
DS_C_ATTRIBUTE Object”). The attribute is defined by a separate array of object descriptors whose
base address is the value of the DS_ATTRIBUTES attribute. There can be any number of instances
of this attribute, and therefore any number of subobjects.

The DS_C_ATTRIBUTE Object: An object of this class can be an attribute of a
DS_C_ATTRIBUTE_LIST object.

 � OM_CLASS

The value of this attribute is an OID string that identifies the object’s class; its value is always
DS_C_ATTRIBUTE.

 � DS_ATTRIBUTE_TYPE

The value of this attribute, which is an OID string, identifies the directory attribute whose value is
contained in this object.

 Chapter 3. XDS and the DCE Cell Namespace 63

 � DS_ATTRIBUTE_VALUES

These are the actual values for the directory attribute represented by this DS_C_ATTRIBUTE object.
Both the value syntax and the number of values depend on what directory attribute this is; that is, they
depend on the value of DS_ATTRIBUTE_TYPE.

Example Definition of a DS_C_ATTRIBUTE_LIST Object: The following code fragment is
a definition of a DS_C_ATTRIBUTE_LIST object.

static OM_descriptor Single_Attribute_Object[] = {
 OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_Class),
 {DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING|OM_S_LOCAL_STRING, OM_STRING("Printer")},
 OM_NULL_DESCRIPTOR
};

static OM_descriptor Attribute_List_Object[] = {
 OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
 {DS_ATTRIBUTES, OM_S_OBJECT, {H, Single_Attribute_Object}},
 OM_NULL_DESCRIPTOR
};

The DS_C_DS_DN Object: DS_C_DS_DN class objects are used to hold the full names of
directory entries (Distinguished Names). You need an object of this class to pass directory entry names to
the following XDS functions:

 � ds_add_entry()

 � ds_compare()

 � ds_list()

 � ds_modify_entry()

 � ds_read()

 � ds_remove_entry()

Figure 17 on page 65 shows the attributes of a DS_C_DS_DN object.

64 Application Development Guide: Directory Services

type=OM_CLASS
syntax=OM_S_OBJECT_

IDENTIFIER_STRING
value=DS_D_DS_RDN

type=OM_CLASS
syntax=OM_S_OBJECT_

IDENTIFIER_STRING
value=DS_C_AVA

type=DS_AVAS
syntax=OM_S_OBJECT_

[DS_C_AVA]
value=[]

type=DS_ATTRIBUTE_
TYPE

syntax=OM_S_OBJECT_
IDENTIFIER_STRING

value=...

type=DS_AVAS

type=DS_ATTRIBUTE_
VALUES

syntax=any
values=...

type=OM_CLASS
syntax=OM_S_OBJECT_

IDENTIFIER_STRING
value=DS_C_DS_DN

type=DS_RDNS
syntax=OM_S_OBJECT

[DS_C_DS_RDN]
value=[]

type=DS_RDNS

1 only 1 or more

DS_C_DS_DN Object

DS_C_DS_RDN Object

DS_C_AVA Object

1 only

1 only

1 or more

1 only 1 only

Figure 17. DS_C_DS_DN Object

 � OM_CLASS

The value of this attribute is an OID string that identifies the object’s class; its value is DS_C_DS_DN.

 � DS_RDNS

This is an attribute whose value is a pointer to an object of class DS_C_DS_RDN (see “The
DS_C_DS_RDN Object” on page 66). The DS_C_DS_RDN object is defined by a separate array of
object descriptors whose base address is the value of the DS_RDNS attribute.

There are as many DS_RDNS attributes in a DS_C_DS_DN object as there are separate name
components in the full directory entry name. For example, a total of six instances of the DS_RDNS
attribute are required in the DS_C_DS_DN object to represent the following CDS entry name:

/.../C=US/O=OSF/OU=DCE/hosts/brazil/self

The /.../ (global root prefix) is not represented. This means that another six object descriptor arrays
are required to hold the Relative Distinguished Name objects, as well as six object descriptors in the
present object, one to hold (as the value of a DS_RDNS attribute) a pointer to each array.

The order of these DS_RDNS attributes is significant. That is, the first DS_RDNS should contain as
its value a pointer to the array representing the C=US part of the name. The next DS_RDNS should
contain as its value a pointer to the array representing the O=OSF part, and so on. The root part of
the name is not represented at all.

 Chapter 3. XDS and the DCE Cell Namespace 65

The DS_C_DS_RDN Object: DS_C_DS_RDN class objects are required as values for the
DS_RDNS attributes of DS_C_DS_DN objects. RDN refers to the X.500 term Relative Distinguished
Name that is used to signify a part of a full entry name. Separate objects of this class are not usually
required as input to XDS functions.

The standard permits multiple AVAs in an RDN, but the DCE Directory and XDS API restrict an RDN to
one AVA. GDS and XDS actually support multi-valued RDNs but CDS (at least through XDS) does not.

 � OM_CLASS

The value of this attribute is an OID string that identifies the object’s class; its value is always
DS_C_DS_RDN.

 � DS_AVAS

This is an attribute whose value is a pointer to an object of class DS_C_AVA. The DS_C_AVA object
is defined by a separate array of object descriptors whose base address is the value of the DS_AVAS
attribute.

There can only be one instance of this attribute in the DS_C_RDN object. The object descriptor array
describing this object always consists of three object descriptor structures: the first describes the
object’s class, the second describes the DS_AVAS attribute, and the third descriptor is the terminating
NULL.

The DS_C_AVA Object: The DS_C_AVA class object is used to hold an actual value. The value
is usually in the form of one of the many different XOM string types. (For an illustration of its structure,
see Figure 17 on page 65.) AVA refers to the X.500 term Attribute Value Assertion.

In calls to ds_compare(), an object of this type is required to hold the type and value of the attribute that
you want compared with those in the entry you specify. It holds the type and value in a separate
DS_C_DS_DN object.

DS_C_AVA is also included here because it is a required subobject of DS_C_DS_DN itself. DS_C_AVA
is the subobject in which the name part’s actual literal value is held.

 � OM_CLASS

The value of this attribute is an OID string that identifies the object’s class; its value is always
DS_C_AVA.

 � DS_ATTRIBUTE_TYPE

The value of this attribute, which is an OID string, identifies the directory attribute whose value is
contained in this object.

 � DS_ATTRIBUTE_VALUES

This is the literal value of what is represented by this DS_C_AVA object.

If the DS_C_AVA object is a subobject of DS_C_DS_RDN (and therefore also of DS_C_DS_DN), then
the value is a string representing the part of the directory entry name represented by this object. For
example, if the DS_C_DS_RDN object contains the O=OSF part of an entry name, then the string
OSF is the value of the DS_ATTRIBUTE_VALUES attribute, and DS_A_ORGANIZATION is the value
of the DS_ATTRIBUTE_TYPE attribute.

On the other hand, if DS_C_AVA contains an entry attribute type and value to be passed to
ds_compare(), then DS_ATTRIBUTE_TYPE identifies the type of the attribute, and
DS_ATTRIBUTE_VALUES contains a value, which is appropriate for the attribute type, to be
compared with the entry value. It is used as an “assertion” for the ds_compare() test.

66 Application Development Guide: Directory Services

For example, suppose you wanted to compare a certain value with a CDS entry’s CDS_Class
attribute’s value. The identifiers for all the valid CDS entry attributes are found in the cds_attributes
file in cds_attributes. The value of DS_ATTRIBUTE_TYPE would be DSX_A_CDS_Class, which is
the label of an object identifier string, and DS_ATTRIBUTE_VALUES would contain some desired
value, in the correct syntax for CDS_Class. The syntax also is found in the cds_attributes file; for
CDS_Class it is byte; that is, a character string.

Example Definition of a DS_C_DS_DN Object: The following code fragment shows an
example definition for a DS_C_DS_DN object.

static OM_descriptor Entry_String_Object[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_TYPELESS_RDN),
 {DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING|OM_S_LOCAL_STRING, OM_STRING("brazil")},
 OM_NULL_DESCRIPTOR
};

static OM_descriptor Entry_Part_Object[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
 {DS_AVAS, OM_S_OBJECT, {H, Entry_String_Object}},
 OM_NULL_DESCRIPTOR
};

static OM_descriptor Entry_Name_Object[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_DN),
 {DS_RDNS, OM_S_OBJECT, {H, Entry_Part_Object}},
 OM_NULL_DESCRIPTOR
};

The DS_C_ENTRY_MOD_LIST Object: DS_C_ENTRY_MOD_LIST class objects, which contain
a list of changes to be made to some directory entry, must be passed to ds_modify_entry().
DS_C_ENTRY_MOD_LIST objects have the attributes shown in Figure 18 on page 68.

 Chapter 3. XDS and the DCE Cell Namespace 67

Figure 18. DS_C_ENTRY_MOD_LIST Object

 � OM_CLASS

The value of this attribute is an OID string that identifies the object’s class; its value is always
DS_C_ENTRY_MOD_LIST.

 � DS_CHANGES

This is an attribute whose value is a pointer to an object of class DS_C_ENTRY_MOD. The
DS_C_ENTRY_MOD object is defined by a separate array of object descriptors whose base address
is the value of the DS_CHANGES attribute.

There can be more than one instance of this attribute in the DS_C_ENTRY_MOD_LIST object. An
indication of this is given by the word LIST in the name DS_C_ENTRY_MOD_LIST. Each attribute
contains one separate entry modification. To learn how the modification itself is specified, see “The
DS_C_ENTRY_MOD Object” on page 69. If more than one modification is specified, the
modifications are performed by ds_modify_entry() in the order in which the DS_CHANGES attributes
appear in the DS_C_ENTRY_MOD_LIST object.

68 Application Development Guide: Directory Services

The DS_C_ENTRY_MOD Object: The DS_C_ENTRY_MOD class object holds the information
associated with a directory entry modification. (For an illustration of its structure, see Figure 18 on
page 68.) Each DS_C_ENTRY_MOD object describes one modification. To create a list of modifications
suitable to be passed to a ds_modify_entry() call, describe each modification in a separate
DS_C_ENTRY_MOD object, and then insert these objects as multiple instances of the DS_CHANGES
attribute in a DS_C_ENTRY_MOD_LIST object.

 Chapter 3. XDS and the DCE Cell Namespace 69

 � OM_CLASS

The value of this attribute is an OID string that identifies the object’s class; its value is always
DS_C_ENTRY_MOD.

 � DS_MOD_TYPE

The value of this attribute identifies the kind of modification requested. It can be one of the following:

 – DS_ADD_ATTRIBUTE

The attribute specified by DS_ATTRIBUTE_TYPE is not currently in the entry. It should be
added, along with the values specified by DS_ATTRIBUTE_VALUES, to the entry. The entry
itself is specified in a separate DS_C_DS_DN object, which is also passed to ds_modify_entry().

 – DS_ADD_VALUES

The specified attribute is currently in the entry. The value(s) specified by
DS_ATTRIBUTE_VALUES should be added to it.

 – DS_REMOVE_ATTRIBUTE

The specified attribute is currently in the entry and should be deleted from the entry. Any values
specified by DS_ATTRIBUTE_VALUES are ignored.

 – DS_REMOVE_VALUES

The specified attribute is currently in the entry. One or more values, specified by
DS_ATTRIBUTE_VALUES, should be removed from it.

 � DS_ATTRIBUTE_TYPE

The value of this attribute, which is an OID string, identifies the directory attribute whose modification
is described in this object.

 � DS_ATTRIBUTE_VALUES

These are the values required for the entry modification; their type and number depend on the entry
type and the modification requested.

Example Definition of a DS_C_ENTRY_MOD_LIST Object: The following code fragment is
an example definition of a DS_C_ENTRY_MOD_LIST object.

OM_string my_uuid;

static OM_descriptor Entry_Mod_Object[] = {
 OM_OID_DESC(OM_CLASS, DS_C_ENTRY_MOD),
 {DS_MOD_TYPE, OM_S_ENUMERATION, DS_ADD_ATTRIBUTE},
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_UUID),
 {DS_ATTRIBUTE_VALUES, OM_S_OCTET_STRING, my_uuid},
 OM_NULL_DESCRIPTOR
};

static OM_descriptor Entry_Mod_List_Object[] = {
 OM_OID_DESC(OM_CLASS, DS_C_ENTRY_MOD_LIST),
 {DS_CHANGES, OM_S_OBJECT, {H, Entry_Mod_Object}},
 OM_NULL_DESCRIPTOR
};

70 Application Development Guide: Directory Services

The DS_C_ENTRY_INFO_SELECTION Object: When you call ds_read() to read one or more
attributes from a CDS entry, you specify in the DS_C_ENTRY_INFO_SELECTION object the entry
attributes you want to read.

The DS_C_ENTRY_INFO_SELECTION object contains the attributes shown in Figure 19.

Figure 19. The DS_C_ENTRY_INFO_SELECTION Object

Note that this object class has no subobjects.

 � OM_CLASS

The value of this attribute is an OID string that identifies the object’s class; its value is always
DS_C_ENTRY_INFO_SELECTION.

 � DS_ALL_ATTRIBUTES

This attribute is a simple Boolean option whose value indicates whether all the entry’s attributes are to
be read, or only some of them. The possible values are as follows:

– OM_TRUE, meaning that all attributes in the directory entry should be read. Any values specified
by the DS_ATTRIBUTES_SELECTED attribute are ignored.

– OM_FALSE, meaning that only some of the entry attributes should be read; namely, those
specified by the DS_ATTRIBUTES_SELECTED attribute.

 � DS_INFO_TYPE

The value of this attribute specifies what information is to be read from each attribute specified by
DS_ATTRIBUTES_SELECTED. The two possible values are as follows:

– DS_TYPES_ONLY, meaning that only the attribute types of the selected attributes should be read.

– DS_TYPES_AND_VALUES, meaning that both the attribute types and the attribute values of the
selected attributes should be read.

 � DS_ATTRIBUTES_SELECTED

The value of this attribute, which is an OID string, identifies the entry attribute to be read. The value
of this attribute has meaning only if the value of DS_ALL_ATTRIBUTES is OM_FALSE. If it is
OM_TRUE, the value of DS_ATTRIBUTES_SELECTED is ignored.

 Chapter 3. XDS and the DCE Cell Namespace 71

There are multiple instances of this attribute if more than one, but not all, attributes contained in the
object are to be selected for reading. Each separate instance of DS_ATTRIBUTES_SELECTED has
as its value an OID string that identifies one directory entry attribute to be read. If
DS_ATTRIBUTES_SELECTED is present but does not have a value, ds_read() reads the entry but
does not return any attribute data; this technique can be used to verify the existence of a directory
entry.

Example Definition of a DS_C_ENTRY_INFO_SELECTION Object: The following code
fragment provides an example definition of a DS_C_ENTRY_INFO_SELECTION object:

static OM_descriptor Entry_Info_Select_Object[] = {
 OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),
 {DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, OM_FALSE},
 {DS_INFO_TYPE, OM_S_ENUMERATION, DS_TYPES_AND_VALUES},
 OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DSX_A_CDS_Class),
 OM_NULL_DESCRIPTOR
};

Attribute and Data Type Translation

This section provides translations between existing CDS and XDS for attributes and data types. Table 5
lists the OM syntax for CDS attributes. Table 6 lists the OM syntax for CDS data types. Table 7 on
page 73 defines the mapping of the CDS Data Types to OM Syntaxes.

Table 5. CDS Attributes to OM Syntax Translation

CDS Attribute OM Syntax

CDS_CTS OM_S_OCTET_STRING

CDS_UTS OM_S_OCTET_STRING

CDS_Class OM_S_OCTET_STRING

CDS_ClassVersion OM_S_INTEGER

CDS_ObjectUID OM_S_OCTET_STRING

CDS_AllUpTo OM_S_OCTET_STRING

CDS_Convergence OM_S_INTEGER

CDS_InCHName OM_S_INTEGER

CDS_DirectoryVersion OM_S_INTEGER

CDS_UpgradeTo OM_S_INTEGER

CDS_LinkTimeout OM_S_INTEGER

CDS_Towers OM_S_OCTET_STRING

Table 6 (Page 1 of 2). OM Syntax to CDS Data Types
Translation

OM Syntax CDS Data Type

OM_S_TELETEX_STRING cds_char

OM_S_OBJECT_IDENTIFIER_STRING cds_byte

OM_S_OCTET_STRING cds_byte

OM_S_PRINTABLE_STRING cds_char

72 Application Development Guide: Directory Services

Table 6 (Page 2 of 2). OM Syntax to CDS Data Types
Translation

OM Syntax CDS Data Type

OM_S_NUMERIC_STRING cds_char

OM_S_BOOLEAN cds_long

OM_S_INTEGER cds_long

OM_S_UTC_TIME_STRING cds_char

OM_S_ENCODING_STRING cds_byte

Table 7. CDS Data Types to OM Syntax Translation

CDS Data Type OM Syntax

cds_none OM_S_NULL

cds_long OM_S_INTEGER

cds_short OM_S_INTEGER

cds_small OM_S_INTEGER

cds_uuid OM_S_OCTET_STRING

cds_Timestamp OM_S_OCTET_STRING

cds_Version OM_S_INTEGER_STRING

cds_char OM_S_TELETEX_STRING

cds_byte OM_S_OCTET_STRING

 Chapter 3. XDS and the DCE Cell Namespace 73

74 Application Development Guide: Directory Services

Part 3. GDS Application Programming

This part of the book describes the Global Directory Service (GDS) and contains conceptual materials with
descriptions of programming tasks and the use of programming interfaces.

Note: z/OS DCE does not support GDS. The GDS naming information presented is intended to increase
your understanding of DCE name structure and concepts.

Chapter 4. GDS API: Concepts and
Overview 77

Directory Service Interfaces 77
The X.500 Directory Information Model 78

Directory Objects 78
Attribute Types 79
Object Identifiers 80
Object Entries 81

X.500 Naming Concepts 83
Distinguished Names 83
Relative Distinguished Names and Attribute

Value Assertions 84
Multiple AVAs 84
Aliases . 85
Name Verification 86

Schemas . 86
The GDS Standard Schema 87
The Structure Rule Table 87
The Object Class Table 89
The Attribute Table 92
Defining Subclasses 93

Abstract Syntax Notation 1 93
ASN.1 Types 94
Basic Encoding Rules 95

Chapter 5. XOM Programming 97
OM Objects . 97

OM Object Attributes 97
Object Identifiers 100
C Naming Conventions 100
Public Objects 102
Private Objects 111
Object Classes 111

Packages . 117
The Directory Service Package 117
The Basic Directory Contents Package . . 118
The Strong Authentication Package 119
The Global Directory Service Package . . 119
The MHS Directory User Package 119
Package Closure 120

Workspaces 120
Storage Management 121
OM Syntaxes for Attribute Values 122

Enumerated Types 123
Object Types 123

Strings . 124
Other Syntaxes 124

Service Interface Data Types 124
The OM_descriptor Data Type 125
Data Types for XDS API Function Calls . 127
Data Types for XOM API Calls 127

OM Function Calls 128
Summary of OM Function Calls 128
Using the OM Function Calls 129

XOM API Header Files 133
XOM Type Definitions and Symbolic

Constant Definitions 133
XOM API Macros 133

Chapter 6. XDS Programming 137
XDS Interface Management Functions 137

The ds_initialize() Function Call 138
The ds_version() Function Call 138
The ds_shutdown() Function Call 140

Directory Connection Management Functions 140
A Directory Session 140
The ds_bind() Function Call 140
The ds_unbind() Function Call 141
Automatic Connection Management 141

XDS Interface Class Definitions 141
The DS_C_CONTEXT Parameter 142

Directory Class Definitions 142
Directory Operation Functions 143
Directory Read Operations 143

Reading an Entry from the Directory . . . 144
Step 1: Export Object Identifiers for

Required Directory Classes and
Attributes 144

Step 2: Declare Local Variables 145
Step 3: Build Public Objects 145
Step 4: Create an

Entry-Information-Selection Parameter . 146
Step 5: Perform the Read Operation . . . 147

Directory Search Operations 150
Directory Modify Operations 150

Modifying Directory Entries 151
Step 1: Export Object Identifiers for

Required Directory Classes and
Attributes 152

Step 2: Declare Local Variables 152

 Copyright IBM Corp. 1994, 2001 75

Step 3: Build Public Objects 153
Step 4: Create Descriptor Lists for

Attributes 154
Step 5: Perform the Operations 155

Return Codes 157

Chapter 7. Example Application
Programs 159

General Programming Guidelines 159
The example.c Program 159

The example.c Code 162
Error Handling 168

The teldir.c Program 170
Predefined Static Public Objects 170
Partially Defined Static Public Objects . . 171
Dynamically Defined Public Objects 172
Main Program Procedural Steps 173
The teldir.c Code 174

Chapter 8. Using Threads with the
XDS/XOM API 191

Overview of Example Threads Program . . . 192
User Interface 193
Input File Format 193
Program Output 193

Prerequisites 194
Description of Thradd Example Program . . . 194
Detailed Description of Thread Specifics . . . 195
The thradd.c Code 197
The thradd.h Header File 205

Chapter 9. XDS/XOM Convenience
Routines . 209

String Handling 209
Strings Representing GDS Attribute

Information 210
Strings Representing Structured GDS

Attribute Information 210
Strings Representing a Structured GDS

Attribute Value 212
Strings Representing a Distinguished

Name . 212
Strings Representing Expressions 213
Examples of strings handled by

omX_string_to_object() 214
Examples of strings returned by

omX_object_to_string() 216
The teldir2.c Program 217

The teldir2.c Code 218

76 Application Development Guide: Directory Services

Chapter 4. GDS API: Concepts and Overview

Note: z/OS DCE does not support GDS. The information in this chapter is presented to enable you to
build the GDS portion of a DCE name. The GDS portion of a DCE name is used if the DCE cell
has a GDS (X.500) cell name.

The Global Directory Service (GDS) is a distributed, replicated directory service. It is distributed because
information is stored in different places in the network. Requests for information may be routed by the
GDS to directory servers throughout the network. It is replicated because information can be stored in
more than one location for easier and more efficient access by its users.

The GDS is based on the CCITT X.500/ISO 9594 (1988) international standard. The aim of this standard,
also referred to as the OSI Directory standard, is to provide a global directory that supports network users
and applications with information required for communication. The Directory plays a significant role in
allowing the interconnection of information processing systems from different manufacturers, under
different managements, of different levels of complexity, and of different ages.

GDS is the DCE implementation of the OSI Directory standard. Together with the Cell Directory Service
(CDS) it provides its users with a centralized place to store information required for communications, which
can be retrieved from anywhere in a distributed system. GDS maintains information describing objects
such as people, organizations, applications, distribution lists, network hardware, and other distributed
services dispersed over a large geographical area.

The CDS stores names and attributes of resources located in a DCE cell. A DCE cell consists of various
combinations of DCE machines connected by a network. Each DCE cell contains its own Cell Directory
Server, which provide access to local resource information. The Cell Directory Service is optimized for
local information access by its users. For a more detailed description of cells and their resource services,
see z/OS DCE Introduction.

The GDS serves as a general-purpose information repository. It provides information about resources
outside a DCE cell. It ties together the various cells by helping to find remote cells. A detailed discussion
of the DCE namespace, its various servers and their interaction is provided in Chapter 2, “Programming in
the CDS Namespace” on page 17.

Directory Service Interfaces

XDS and XOM are application programming interfaces. XOM and XDS application interfaces are based
on X/Open standards specifications. Together, these interfaces provide you with a library of functions you
can use develop applications that access the Directory Service.

The XOM Application Programming Interface (XOM API) is an interface for creating, deleting, and
accessing information objects. The XOM API defines an object-oriented information model. Objects
belong to classes and have attributes associated with them. The XOM API also defines basic data types,
such as Boolean, string, object, and so on. The representation of these objects is transparent to the
programmer. Objects can be manipulated through the XOM interface.

On DCE, you use the XDS API to make Directory Service calls. In DCE, XDS API directs the calls it
receives to either the GDS or the CDS by examining the names of the information objects to be looked up
as shown in Figure 20 on page 78. It uses the XOM interface for defining and handling information
objects. These objects are passed as parameters to the XDS routines, and from the XDS routines are
received as return values. The XDS API contains functions for managing connections with a Directory
Server: for reading, comparing, adding, removing, modifying, listing, and searching for directory entries.

 Copyright IBM Corp. 1994, 2001 77

The GDS Package provides additional information objects that provide for security and cache
management when using GDS.

Application

XDS API

GDS CDS

/.../C=US/O=OSF/OU=DCE /.../C=CA/O=IBM/OU=TID/dept833/mikey

Figure 20. XDS: Interface to GDS and CDS

The X.500 Directory Information Model

This section describes the directory information model of X.500, which GDS is based on. A directory is a
collection of information about some part of the world. The most familiar type of directory is the list of
names and numbers that make up a city telephone directory. A name is provided with some information
about the named object, such as an address and telephone number. The ISO and CCITT standards
define a directory information model that in turn defines the abstract structure of directory information,
services, and protocols for a computer network environment, such as DCE.

 Directory Objects

The Directory contains information about objects. The standard defines an object very broadly as anything
in some ‘world’, generally the world of telecommunications and information processing or some part
thereof, which is identifiable (can be named). Some examples of objects include people, corporations,
and application processes.

Each object known to the Directory is represented by an entry. The set of all entries is called the
Directory Information Base (DIB), which is a hierarchical tree. Each entry consists of a set of attributes
representing specific information about the object. Each attribute, in turn, has a type and one or more
values of that type. Attributes with more than one value are referred to as multi-valued or recurring.
attributes.

Figure 21 on page 79 shows the structure of the DIB.

78 Application Development Guide: Directory Services

Object Entry

Attribute Attribute

Attribute Attribute

Attribute

Type Values Type Values Type Values

Entry

......

Attribute

Root

alias entry

Figure 21. The Structure of the DIB

The attributes that comprise a single entry may be of various types. For example, an entry for a person
may contain that person’s name, address, and phone number. If the person has a second telephone
number, the attribute of type telephone number may have two values, one for each telephone number.

Object entries are composed of mandatory and optional attributes. Mandatory and optional attributes are
discussed in “The Object Class Table” on page 89.

 Attribute Types

All attributes in a particular entry must be of different attribute types. Each attribute type is assigned a
unique object identifier value. The Directory standard assigns object identifiers for several commonly used
attribute types, including surname, country name, telephone number, and presentation address. Other
international standards may define additional attribute types. For example, the X.400 Message Handling
standard defines mail specific attributes like O/R address. It is expected that various national and private
organizations will also define attribute types of their own. The CDS attributes (defined in the xdscds.h
header file) and the GDS Package attributes (defined in the xdsgds.h header file) are examples of
additional attribute definitions.

 Chapter 4. GDS API: Concepts and Overview 79

 Object Identifiers

Objects in a network environment, such as DCE, require unique names to distinguish them from one
another. To provide these names, object identifiers are allocated by an administrative organization, such
as a standards body. An object identifier is a hierarchical sequence of numbers uniquely identifying an
object. Associated with each object identifier is a character string to make it easier to document.

The possible values of object identifiers are defined in a tree. Part of this tree is shown in Figure 22. It
begins with three numbered branches coming from the root: branch 0, assigned to CCITT; branch 1,
assigned to ISO; and branch 2, a joint ISO-CCITT branch. Below each of these branches are other
numbered branches assigned to various standards such as the Directory Service (ds(5)) and Electronic
Mail Service (mhs-motis(6)) with each ending in a named object. Thus, the name of any of these objects
is a series of integers describing a path down this tree to the leaf node.

root

ccitt(0) iso(1) joint-iso-ccitt(2)

ds(5) mhs-motis(6)

attributeType(4) objectClass(6) arch(5)

oc(1) at(2)

Figure 22. Object Identifiers

The object identifier associated with the XDS Directory Service Package is defined as follows:

{iso(1) identified-organization(3) icd-ecma(12) member-company(2) dec(1H11) xopen(28) dsp(H)}.

All object classes and object attributes in the Directory Service Package have these numbered branches
associated with them. The classes and attributes, in turn, have their own unique numbers. These object
identifiers are defined in header files included as part of the XDS and XOM API software. For example,
the attribute type Common Name is identified by the object identifier 2.5.4.3.

Table 8 contains a sample list of object identifiers for selected attributes. The complete list is provided in
Chapter 12, “Basic Directory Contents Package” on page 275.

Table 8 (Page 1 of 2). Object Identifiers for
Selected Attribute Types

Attribute Type Object Identifier

Aliased Object Name 2.5.4.1

Business Category 2.5.4.15

Common Name 2.5.4.3

80 Application Development Guide: Directory Services

Note: The object identifiers in Table 8 on page 80 stem from the root {joint-iso-ccitt(2) ds(5)
attributeType(4)}.

 Object Entries

Entries are grouped into generic object classes based on the type of object they represent. Examples of
object classes are Country, Organization Person, and Application Entity. All entries contain a special
attribute, called the object class attribute, indicating to which object class (or classes) they belong.

Entries that model a certain object and contain information about the object in terms of attributes are
called object entries. The Directory contains a second type of entry which is a pointer to an object entry
called an alias entry. Alias entries are discussed in “Aliases” on page 85.

In summary (as shown in Figure 21 on page 79), the DIB is made up of entries, each of which contains
information about objects. Entries consist of attributes; each attribute has a type and one or more values.

“X.500 Naming Concepts” on page 83 describes how objects are organized in the DIB using the Directory
Information Tree (DIT). Figure 23 on page 82 shows an example of an entry describing Organizational
Person.

Table 8 (Page 2 of 2). Object Identifiers for
Selected Attribute Types

Attribute Type Object Identifier

Country Name 2.5.4.6

Description 2.5.4.13

 Chapter 4. GDS API: Concepts and Overview 81

Top/GDS-Top

617 289 4448

Person

Al Schmidt

800 289 4400

Organizational
Person

Alfred Schmidt

617 753 8871

Sales Manager

New York Sales

Object Class

Common Name

Telephone Number

Surname

Title

Organizational
Unit Name

Schmidt attribute values

attribute types

Figure 23. A Directory Entry Describing Organizational Person

82 Application Development Guide: Directory Services

X.500 Naming Concepts

Large amounts of information need to be organized in some way to make efficient retrieval possible and
ensure that names are unique. Information in the DIB is organized into a hierarchical structure known as
the Directory Information Tree (DIT). The structure and naming of the nodes in the DIT are specified by
registration authorities for a standardized set of X.500 names and by implementers of the directory service
(such as OSF) for implementation-specific names. The DIT hierarchy is described by a schema.
Schemas are described in more detail in “Schemas” on page 86.

Although the X.500 standard does not mandate a specific schema, it does make general
recommendations. For example, countries and organizations should be named close to the root of the
DIT; people, applications, and devices should be named further down in the hierarchy.

 Distinguished Names

A hierarchical path exists from the root of the DIT to any entry in the DIB. To access information stored in
an entry, a name that uniquely describes that entry must be given. An RDN distinguishes an entry from
other entries with the same superior node in the DIT. A sequence of RDNs, starting from the root of the
tree, can identify a unique path down the tree, and thus a unique entry. This sequence of RDNs, each of
which identifies a particular entry, is the distinguished name of that entry. Each entry in the DIB can be
referenced by giving its distinguished name.

Figure 24 shows an example of a distinguished name. The shaded boxes in the DIT represent the entries
that are named in the column labeled RDN (Relative Distinguished Name). The schema dictates that
countries are named directly below the root, followed by organizations, organization units, and people.

Figure 24. A Distinguished Name in a Directory Information Tree

 Chapter 4. GDS API: Concepts and Overview 83

Every entry in the DIB has a distinguished name, not just the leaf nodes. For example, the entry for the
Organization, Acme Enterprises is represented by the shaded box in the Organizations subtree. Its
distinguished name is the concatenation of the distinguished name of the entry above with its relative
distinguished name. The entry for People, Alfred Schmidt, is represented by the shaded box in the People
subtree.

Relative Distinguished Names and Attribute Value Assertions

Each entry has a unique Relative Distinguished Name (RDN), which distinguishes it from all other
entries with a particular immediate superior in the DIT.

An RDN consists of one or more assertions of the type and value of an attribute. A pair consisting of an
attribute type and a value of that type is known as an Attribute Value Assertion (AVA). All attribute types
in an RDN must be different. The attribute value of an attribute in an RDN’s AVA is called the
distinguished value of that attribute, as opposed to the other possible values of that attribute.

The assertion is TRUE if the entry contains an attribute of the specified type, and if one of that attribute’s
values matches the AVA’s distinguished attribute value. An entry commonly has a RDN which will consist
of a single AVA. In some cases, however, more than one AVA may be required to distinguish an entry.
(Multiple AVAs are discussed in “Multiple AVAs.”)

The entry shown in Figure 23 on page 82 contains the RDN: Common Name = Alfred Schmidt. The
attribute consists of three values: Alfred Schmidt, A. S. Schmidt, and Al Schmidt. The AVA Common
Name = Alfred Schmidt contains the value Alfred Schmidt, which has been designated as the
distinguished value in the AVA.

 Multiple AVAs

Frequently, as shown in the previous section, an entry contains a single distinguished value; the RDN
therefore comprises a single AVA. However, under certain circumstances, additional values (and hence
multiple AVAs) may be used.

Figure 23 on page 82 shows the contents of an entry describing Organizational Person. The RDN of an
Organizational Person entry is usually composed of a single AVA such as the Common Name attribute
type with a distinguished value (in Figure 24 on page 83, the AVA CN = Alfred Schmidt). Depending
on the schema, the RDN of an Organizational Person entry may contain more than one AVA. For
example, the RDN in Figure 24 on page 83 could contain the AVAs CN = Alfred Schmidt, OU = New
York Sales with Alfred Schmidt and New York Sales as distinguished values.

In summary:

� A DIT consists of a collection of distinguished names.

� Distinguished names result from a concatenation of the RDNs.

� RDNs consist of an unordered collection of attribute type and value pairs (AVAs).

84 Application Development Guide: Directory Services

 Aliases

An alternative name or alias is supported in the DIT by the use of special pointer entries called alias
entries. Alias entries do not contain any other attributes beyond their distinguished attributes, the object
class attribute, and the aliased object name attribute, that is, the distinguished name of the aliased object
entry. Furthermore, an alias entry has no subordinate entries, making it, by definition, a leaf entry of the
DIT as shown in Figure 25. Alias entries point to object entries and provide the basis for alternative
names for the corresponding objects.

Aliases are used to do such things as provide user-friendly names, direct the search for a particular entry,
reduce the scope of a search, provide for common alternative abbreviations and spellings, or provide
continuity after a name change.

Figure 25 demonstrates how an alias name provides continuity after a name change. The ABC
company’s branch office located originally in Osaka has moved to Tokyo. To make the transition easier
for Directory Service users and to guarantee that a search based on the old information will find its target,
an alias for O=ABC has been added to the directory beneath L=Osaka. This alias entry points to the
object entry O=ABC. A search for ABC under L=Osaka in the DIT finds the entry:
/C=Japan/L=Tokyo/O=ABC.

C=Japan

L=Osaka L=Tokyo

O=ABC

O=ABC

OU=Osaka Branch

Figure 25. An Alias in the Directory Information Tree

Another use of alias entries is as an alternative to filtering, that is, using assertions about particular
attributes to search through the DIT. Although this approach does not require any special information to
be set up in the DIT, it may be expensive to search where there is a large population of entries and
attributes. An alternative approach is to set up special subtrees whose naming structures are designed for
Yellow Pages type searching Figure 26 on page 86 shows an example of such a subtree populated by
alias entries only. In reality, the entries within these subtrees may be a mixture of object and alias entries,
so long as there exists only one object entry for each object stored in the directory.

 Chapter 4. GDS API: Concepts and Overview 85

Country

Organization Locality

Object within
the organization Aliases

Figure 26. A Subtree Populated by Aliases

An object with an entry in the DIT can have zero or more aliases. Several alias entries can point to the
same object entry. An alias entry can point to an object that is not a leaf entry. Only object entries can
have aliases. Thus, aliases of aliases are not permitted.

 Name Verification

A Directory user identifies an entry by supplying an ordered set of RDNs (each of which consists of an
unordered set of AVAs) forming a purported name. The purported name is mapped onto the desired entry
by the process of name verification, which performs a distributed tree walk through the DIT. When a
purported name is a valid name, a distinguished name exists with the same number of RDNs and
matching AVAs within the RDNs.

 Schemas

The structure of directory information is governed by a set of rules called a schema. Schemas specify
rules for the following:

� The structure of the DIT

� The contents of entries in terms of attributes

� The syntax of attribute values and rules for comparing and matching them

86 Application Development Guide: Directory Services

The GDS Standard Schema

The DCE software package includes a default or standard schema for GDS. This is the GDS proprietary
interpretation of the X.500 schema.

Each attribute in the schema is assigned a unique object identifier and the syntax of its value. In addition,
the schema specifies the mechanism by which attributes of this type are compared with one another.
Each entry in the DIT belongs to an object class governed by the schema. Object class definitions can be
used to derive subclasses, supporting the inheritance and refinement of the attribute types defined for the
super class.

Included with the GDS standard schema are the following tables that define the structure of the Directory.

� Structure Rule Table (SRT)

� Object Class Table (OCT)

� Attribute Table (AT)

The Structure Rule Table

The Structure Rule Table (SRT) specifies the relationship of object classes in the structure of the
Directory. The SRT supplied with the GDS standard schema contains the entries shown in Table 9.

Table 9. Structure Rule Table Entries

Rule
Number

Superior
Rule

Number

Acronyms of
Naming
Attribute

Object Class

1 0 CN Schema

2 0 C Country

3 2 O Organization

4 3 OU Organizational Unit

5 4 CN Organizational Person

6 4 CN,OU Organizational Person

7 4 CN Organizational Role

8 4 CN MHS Distribution List

9 4 CN Application Process

10 9 CN Application Entity

11 9 CN DSA

12 9 CN MHS Message Store

13 9 CN MHS Message Transfer Agent

14 9 CN MHS User Agent

15 2 L Locality

16 15 CN Residential Person

17 15 CN,STA Residential Person

The SRT determines how the object classes are laid out in the DIT by assigning rule numbers to each
object class. The Superior Rule Number of an object class specifies the object class directly above it in
the DIT.

 Chapter 4. GDS API: Concepts and Overview 87

For example, the object class Organization (ORG) has a Superior Rule Number of 2, indicating that is
located in the DIT beneath the object class Country (C), which has a Rule Number of 2. Organization Unit
(OU) is located beneath Organization because it has a Superior Rule Number of 3 and so forth.

The SRT only contains structured object classes, that is, classes forming branches in the DIT. Other
object classes, such as abstract and alias classes, are not included.

The SRT specifies the attributes used to name entries belonging to each object class. These attributes,
called naming attributes, are used to define the RDN and therefore the distinguished name of directory
entries.

Figure 27 shows the structure of the DIT as defined by the SRT of the GDS standard schema.

Root

Country

Organization

Organizational
Unit

Residential
Person

Organizational
Person

Schema

Locality

Residential
Person

Organizational
Person

MHS-Distribution-
List

Organizational
Role

Application
Process

MHS-Message-
Store

MHS-Message-
Transfer-Agent

MHS-User-
Agent

Application
Entity DSA

Figure 27. SRT DIT Structure for the GDS Standard Schema

88 Application Development Guide: Directory Services

The Object Class Table

The object classes that make up the GDS standard schema are defined in the OCT. Table 10 contains a
partial listing of the OCT. Refer to the z/OS DCE Administration Guide for a complete listing of the OCT
for the GDS standard schema. Each column in Table 10 contains information about an object class entry
in the schema.

Table 10. Object Class Table Entries

Object
Class
Acronym

Super
Class
Acronyms

Object
ID

Object
Class
Name

Object
Class
Kind

File
No.

Auxiliary
Object
Classes

Mandatory
Attributes

Optional Attributes

TOP None 85.6.0 Top Abstract -1 - OCL None

ALI TOP 85.6.1 Alias Alias -1 - AON None

C GTP 85.6.2 Country Structural 1 - C DSC SG CDC CDR

LOC GTP 85.6.3 Locality Structural 4 - None DSC L SPN STA
SEA SG CDC CDR

ORG GTP 85.6.4 Organization Structural 1 - O DSC L SPN STA
PDO PA PC POB
FTN IIN TN TTI TXN
X1A PDM DI RA SEA
UP BC SG CDC CDR

Note: All these object identifiers stem from the root {joint-iso-ccitt(2) ds(5) objectClass(6)}. The
joint-iso-ccitt(2) and the ds(5) are be combined to form the number 85 as shown in Table 10. In
general, first two decimal numbers of an OID are combined via the equation 40 * A + B to yield a
single number representing the first two numbers. In this case, 40*2+5=85.

Column 2, Superclass Acronyms, provides the class from which an object class inherits its attributes.
Using the information in Column 2, it is possible to derive a graphical representation of the inheritance
properties of object classes in the DIT as shown in Figure 28 on page 90.

The object class, Top, is the root of the tree, with Alias and GDS-Top as the main branches. Top contains
the attribute type object class, which is inherited by all the other object classes.

Do not confuse the information in the OCT with that presented in the SRT. There is no direct relationship
between the relative location of branches and leaves in the DIT structure and the inheritance properties of
classes with their superclasses and subclasses.

For example, when a Directory Service request is made by a directory user, such as a read operation, the
SRT is used by the Directory Service to indicate its position in the DIT. The Directory Service uses the
information defined in the SRT for tree traversal so that the requested object can be located in the
Directory. Figure 27 on page 88 shows the object class Organization located beneath Country in the DIT.

On the other hand, the OCT defines, among other things, the attributes of an object class along with its
inherited attributes from its superclass. The superclass, in turn, inherits the attributes from its superclass,
and so on until the root, Top, is reached (from which all classes derive their attributes). Figure 28 on
page 90 shows the object class Organization as a subclass of GDS-Top. As such, it inherits its attributes
from GDS-TOP, which in turn inherits from its superclass, Top.

 Chapter 4. GDS API: Concepts and Overview 89

Top

GDS-TopAliased-Object_Name - AON
Mandatory)

Country-Name - C
(Mandatory)

CDS-Cell - CDC
CDS-Replica - CDR
Description - DSC
Search-Guide - SG Description - DSC

CDS-Cell - CDC
CDS-Replica - CDR
Locality-Name - L
Search-Guide - SG
See-Also - SEA
State-or-Prov_Name - SPN

Master Knowledge
Access-Control-List

Object_Class - OCL
(Mandatory)

Alias

Country Organization

Locality
Organization_Name - O

(Mandatory)
Business-Category - BC
CDS-Cell - CDC
CDS-Replica - CDR
Description - DSC
Dest.-Indicator - DI
Facsimile-Phone-Nbr - FTN
Internat-ISDN-Nbr - IIN
Locality-Name - L
Phys.-Deliv-Off-Name -
PDO
Postal-Address - PA
Postal-Code - PC
Postal-Office-Box - POB
Pref.-Delivery-Method -
PDM
Registered-Address - RA
Search-Guide - SG
See-Also - SEA
State-or-Prov_Name - SPN
Street_Address - STA
Telephone_Nbr - TN
Telex-Nbr - TXN
TTX-Term-Ident - TTI
User-Password - UP
X121-Address - X1A

Street_Address - STA

Figure 28. A Partial Representation of the Object Class Table

The OCT also contains the unique object identifier of each class in the DIT. These numbers are defined
by various standards authorities and in the X.500 standards documents mentioned previously. The
Attribute Table (AT) contains the predefined object identifiers for each attribute in the Directory. These
object identifiers are defined in the header files that are included as part of the GDS API. Table 11
shows some examples of object identifiers for directory classes as defined in the X.500 standard.

Table 11 (Page 1 of 2). Object Identifiers for
Selected Classes

Object Class Type Object Identifier

Alias 85.6.1

Application Entity 85.6.12

Application Process 85.6.11

Country 85.6.2

Device 85.6.14

90 Application Development Guide: Directory Services

Note: All these object identifiers stem from the root {joint-iso-ccitt(2) ds(5) objectClass(6)}.

For each object class, there are four possible kinds: Abstract, Structural, Auxiliary, and Alias. Abstract
objects are used to provide inheritance, and do not exist. Structural objects, however, do exist, and are
found in the DIT and represent real-world objects. Auxiliary object classes are used to add attributes to an
entry of a standardized class. For instance, message handling systems use the auxiliary class MHS User
to add message handling attributes to the Organizational Person object. Alias object classes are used to
create entries that point to other entries.

The file number for an object determines the file in the Directory Information Base (DIB) that will store the
object. Abstract objects will have a value of -1 because they do not exist. The schema object is stored in
file 0, and all other objects are stored in files with a higher file ID.

The Auxiliary Object Classes column is used to specify the Auxiliary Object classes that are associated
with an object class.

Another important feature of the OCT is the distinction made between mandatory and optional attributes
for each object class. This distinction is based on recommendations from X.500 standards documents.
These documents (Recommendations X.520 and X.521) define selected object classes and associated
attribute types using ASN.1 notation. Most object classes have one or more mandatory attributes
associated with them for use by implementers who want to comply with the X.500 standards
recommendations. In addition, optional attributes are defined.

The following example provides a flavor of ASN.1 notation; it shows how the object class country is
described in Recommendation X.520 (The Directory: Selected Object Classes):

country OBJECT-CLASS
SUBCLASS of top
MUST CONTAIN {

 countryName}
MAY CONTAIN {

 description,
 searchGuide}

::= {objectClass 2}

This ASN.1 definition defines country as a subclass of superclass top. The class, country, must contain
the mandatory attribute countryName (or country-name as defined in the GDS standard schema), and

Table 11 (Page 2 of 2). Object Identifiers for
Selected Classes

Object Class Type Object Identifier

DSA 85.6.13

Group of Names 85.6.9

Locality 85.6.3

Organization 85.6.4

Organizational Person 85.6.7

Organizational Role 85.6.8

Organizational Unit 85.6.5

Person 85.6.6

Residential Person 85.6.10

Top 85.6.0

 Chapter 4. GDS API: Concepts and Overview 91

may contain the optional attributes, description and searchGuide. In addition, the DCE implementation
adds two more attributes, CDS-Cell and CDS-Replica, to incorporate other aspects of the DCE
environment that are implementation specific.

Country is assigned the object identifier 2.5.6.2. This number distinguishes it from the other object classes
defined by the standard. The Top superclass is designated as 2.5.6.0. The first three numbers, 2.5.6,
identify the object class as a member of a discrete set of object classes defined by X.500. The last
number in the object identifier distinguishes objects within that discrete set. Alias, a subclass of Top, is
assigned the number 2.5.6.1. Country is assigned the number 2.5.6.2, and so on. GDS-Top has no
object identifier because it is implementation specific and thus not identified by the standard.

The Attribute Table

The attributes that make up the entries in the GDS standard schema are defined in the Attribute Table
(AT). (Refer to the z/OS DCE Administration Guide for a complete listing of the AT.) The object
identifiers are in the range from 85.4.0 through 85.4.35 as defined by the X.500 standard, 86.5.2.0 through
86.5.2.10 as defined by the X.400 standard, and there are additional object identifiers for GDS specific
attributes.

Table 12 shows a partial listing of the attribute table for the GDS standard schema.

Note: The access class for every attribute listed in Table 12 is 0 (zero).

Table 12. Attribute Table Entries

Attribute
Acronym

Object
ID

Attribute Name Lower
Bound

Upper
Bound

No. of
Recurr.
Values

Attr.
Syntax

Phon.
Match.

Access
Class

Index
Level

OCL 85.4.0 Object-Class 1 28 0 2 0 0 0

AON 85.4.1 Aliased-Object-Name 1 1024 1 1 0 0 0

KNI 85.4.2 Knowledge-Information 1 1024 0 4 0 0 0

CN 85.4.3 Common-Name 1 64 2 4 1 0 1

SN 85.4.4 Surname 1 64 2 4 1 0 0

SER 85.4.5 Serial-Number 1 64 2 5 0 0 0

C 85.4.6 Country-Name 2 2 1 1010 1 0 1

L 85.4.7 Locality-Name 1 128 2 4 1 0 1

SPN 85.4.8 State-or-Province-Name 1 128 2 4 1 0 0

The columns with the headings Lower Bound and Upper Bound specify the range of the number of bytes
that the value of an attribute can contain. The schema puts constraints on the number of values that an
attribute can contain in the Number of Recurring Values column.

The Attribute Syntax column describes how the data is represented and relates to ASN.1 syntax
definitions for attributes. For example, a sample of ASN.1 notation for the Common-Name attribute:

commonName ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX
 caseignoreStringSyntax
 (SIZE(1..ub-common-name))

::= (attributeType 3)

The commonName attribute is defined as case insensitive. The size of the string is from 1 to the upper
bound defined by the schema for the commonName attribute in the Upper Bound column (in this case, 64
bytes).

92 Application Development Guide: Directory Services

Note also that the commonName attribute is assigned the number 3 by the standard. This corresponds
to the 3 in the object identifier 85.4.3.

The other columns in the AT refer to the phonetic matching flag, security access classes, and index level.
Security access classes refer to the three classes of attributes in the Directory Information Tree that have
been defined, for which access protection is available. These classes are Public, Standard and
Sensitive. An index level is used to determine the priority of an attribute in search queries of an object.

As mentioned for object classes, object identifier values specified in the AT are defined as constants in the
GDS header files.

 Defining Subclasses

The ability to define subclasses is a powerful feature of the Directory. Structure rules govern which object
classes can be children of which others in the DIT and therefore determine possible name forms.

The directory standard defines a number of standard attribute types and object classes. For example,
the attribute types Common Name and Description, and the object classes Country and Organization
Person are defined. Implementations of the directory standard, such as DCE, define their own schemas
following rules stated in the standard with additional attribute types and object classes.

Figure 29 shows the relationship between schemas and the directory information model.

Structure Rules

Object Class

Attribute Type

Attribute Syntax

uses

uses

uses

rules for

rules for

rules for

rules for

DIT

Entries

Attributes

Values

Definitions DIT Elements

Figure 29. The Relationship Between Schemas and the DIT

Abstract Syntax Notation 1

The need for Abstract Syntax Notation 1 (ASN.1) arises because different computer systems represent
information in different ways. For example, one computer may use EBCDIC character representation
while another may use ASCII. To transfer a file of characters from one system to another, common
representation must be used during the transfer. This transfer can be one representation or some
mutually agreed upon representation negotiated by the two systems. Similarly, floating-point values,
integers, and other types of data may be stored internally in different ways. To exchange information, a
common format must be agreed to before information can be exchanged.

 Chapter 4. GDS API: Concepts and Overview 93

There is also a need for mapping between the many diverse representations that may exist within a
network environment. To address this need, the ISO standards committee defined Abstract Syntax
Notation 1 (ASN.1) (documented in ISO 8824) and Basic Encoding Rules (BER) (documented in ISO
8825).

ASN.1 is based on the idea that the aspects of transferred information that are preserved are type, length,
and value. Data types are collections of values distinguished for some reason, such as characters,
integers, and floating point values. Records and structure types become more complex when they
combine several types into a single structure.

ASN.1 provides a way to group types into abstract syntaxes. An abstract syntax is a named group of
types. The standard defines abstract syntax as the notation rules that are independent of the encoding
technique used to represent them. Abstract syntax does not specify how to represent values of types, but
merely defines the types that make up the group of types.

Abstract syntaxes are not enough to define how values of the data types in a specific abstract syntax are
to be represented during communications. For this reason, ISO further defines a transfer syntax for each
abstract syntax. A transfer syntax is a set of rules for encoding values of some specified group of types.
These rules form the so-called basic encoding rules.

 ASN.1 Types

ASN.1 is similar to a high-level programming language. Unlike other high-level languages, ASN.1 has no
executable statements. It includes only language constructs required to define types and values. (This
language is completely specified in ISO 8824.)

ASN.1 defines a number of built-in types. Users of ASN.1 can then define their own types based on the
built-in types provided by the language. The ASN.1 standard defines four categories of types that are
commonly used in defining application interfaces such as XOM and XDS:

� ASN.1 Simple Types

� ASN.1 Useful Types

� ASN.1 Character String Types

� ASN.1 Type Constructors

ASN.1 simple types are Bit String, Boolean, Integer, Null, Object Identifier, Octet String, and Real.
Table 13 shows the relationship of OM syntaxes (syntaxes defined in XOM API) to ASN.1 simple types.
(Refer to Chapter 17, “Information Syntaxes” on page 325 for the complete set of tables for the four
categories of ASN.1 types.) As shown in Table 13, for every ASN.1 type except Real, there is an OM
syntax that is functionally equivalent to it. The simple types are listed in the first column of the table; the
corresponding syntaxes are listed in the second column.

Table 13 (Page 1 of 2). Syntax for the Simple ASN.1 Types

ASN.1 Type OM Syntax

Bit String String(BIT_STRING)

Boolean BOOLEAN

Integer INTEGER

Null NULL

Object Identifier String(OBJECT_IDENTIFIER_STRING)

Octet String String(OCTET_STRING)

94 Application Development Guide: Directory Services

An example illustrates how OM syntaxes are used to define the syntax of values for various attributes.

One of the simplest of the ASN.1 types is Boolean. There are only two possible values for a Boolean
type: TRUE and FALSE. The DS_FROM_ENTRY OM attribute of the DS_C_ENTRY_INFO object class
has a value syntax of OM_S_BOOLEAN. OM_S_BOOLEAN is the C language representation for the OM
syntax that corresponds to the ASN.1 Boolean type. The value of the DS_FROM_ENTRY OM attribute
indicates whether information from the Directory was extracted from the specified object’s entry (TRUE), or
from a copy of the entry (FALSE). The actual C language definition for OM_S_BOOLEAN is made in the
XOM API header file xom.h.

Basic Encoding Rules

It is possible to define a single transfer syntax that is powerful enough to encode values drawn from a
number of abstract syntaxes. ISO defines a set of rules for encoding values of many different types for
ASN.1. This set of encoding rules is called Basic Encoding Rules (BER). It is so powerful that values
from any abstract syntax described using ASN.1 can be encoded using the transfer syntax defined by
BER.

Although other transfer syntaxes could be used for representing values from ASN.1, BER is used most
often. The transfer syntax is completely described in ISO 8825.

Table 13 (Page 2 of 2). Syntax for the Simple ASN.1 Types

ASN.1 Type OM Syntax

Real None

 Chapter 4. GDS API: Concepts and Overview 95

96 Application Development Guide: Directory Services

 Chapter 5. XOM Programming

XOM API defines a general-purpose interface for use in conjunction with other application-specific APIs for
OSI services, such as XDS API to Directory Services or X.400 Application API to electronic mail service.
It presents the application programmer with a uniform information architecture based on the concept of
groups, classes, and similar information objects.

This chapter describes some of the basic concepts required to understand and use the XOM API.

Complete XDS example programs that you can find in Chapter 7, “Example Application Programs” on
page 159 are:

 � example.c (example.h)

 � teldir.c

 OM Objects

The purpose of XOM API is to provide an interface to manage complex information objects. These
information objects belong to classes and have attributes associated with them. There are two distinct
kinds of classes and attributes that are used throughout this part of this guide: directory classes and
attributes, and OM classes and attributes.

The directory classes and attributes defined for XDS API correspond to entries that make up the objects in
the directory. These classes and attributes are defined in the X.500 directory standard and by additional
GDS extensions created for DCE. Other APIs, such as the X.400 Application Interface, which is the
application interface for the industry standard X.400 electronic mail service, define their own set of objects
in terms of classes and attributes. OM classes and OM attributes are used to model the objects in the
directory.

XOM API provides a common information architecture so that the information objects defined for any API
that conforms to this architectural model can be shared. Different application service interfaces can
communicate using this common way of defining objects by means of workspaces. A workspace is simply
a common work area where objects defined by a service can be accessed and manipulated. In turn, XOM
API provides a set of standard functions that perform common operations on these objects in a
workspace. Two different APIs can share information by copying data from one workspace to another.

OM Object Attributes

OM objects are composed of OM attributes. OM objects may contain zero or more OM attributes. Every
OM attribute has zero or more values. An attribute comprises an integer denoting the attribute’s value.
Each value is accompanied by an integer denoting that value’s syntax.

An OM attribute type is a category into which all the values of an OM attribute are placed on the basis of
their purpose. Some OM attributes may either have zero, one, or multiple values. The OM attribute type
is used as the name of the OM attribute. An OM attribute value is an information item that can be viewed
as a characteristic or property of the OM object of which it is a part.

A syntax is a category into which a value is placed on the basis of its form. OM_S_PRINTABLE_STRING
is an example of a syntax.

OM Attribute types and syntaxes have integer values and symbolic equivalents assigned to them by
naming authorities in the various API specifications. The integers that are assigned to the OM attribute

 Copyright IBM Corp. 1994, 2001 97

type and syntax are fixed, but the attribute value may change. These OM attribute types and syntaxes are
defined in the DCE implementation of XDS and XOM APIs in header files that are included with the
software along with additional OM attributes specific to the GDS implementation.

For example, the tables in Figure 30 on page 99 show the OM attributes, syntax, and values for the OM
class, DS_C_ENTRY_INFO_SELECTION, and how the integer values are mapped to corresponding
names in the xom.h and xds.h header files. The GDS portion of Part 1, “Using the DCE Directory APIs”
contains a table for every OM class supported by the Directory Service. Refer to Chapter 11, “XDS Class
Definitions” on page 241 for a complete description of DS_C_ENTRY_INFO_SELECTION and the
accompanying table.

DS_C_ENTRY_INFO_SELECTION is a subclass of OM_C_OBJECT. This information is supplied in the
description of this OM class in Chapter 11, “XDS Class Definitions” on page 241. As such,
DS_C_ENTRY_INFO_SELECTION inherits the OM attributes of OM_C_OBJECT. The only OM attribute
of OM_C_OBJECT is OM_CLASS. It identifies the object’s OM class, which, in this case, is
DS_C_ENTRY_INFO_SELECTION. DS_C_ENTRY_INFO_SELECTION identifies information to be
extracted from a directory entry and has the following OM attributes, in addition to those inherited from
OM_C_OBJECT:

 � DS_ALL_ATTRIBUTES

 � DS_ATTRIBUTES_SELECTED

 � DS_INFO_TYPE.

As part of an XDS function call, DS_ALL_ATTRIBUTES specifies to the Directory Service whether all the
attributes of a directory entry are relevant to the application program. It can take the values OM_TRUE or
OM_FALSE. These values are defined to be of syntax OM_S_BOOLEAN. The value OM_TRUE
indicates that information is requested on all attributes in the directory entry. The value OM_FALSE
indicates that information is only requested on those attributes that are listed in the OM attribute
DS_ATTRIBUTES_SELECTED.

DS_ATTRIBUTES_SELECTED lists the types of attributes in the entry from which information is to be
extracted. The syntax of the value is specified as OM_S_OBJECT_IDENTIFIER_STRING.

OM_S_OBJECT_IDENTIFIER_STRING contains an octet string of integers that are BER encoded object
identifiers of the types of OM attributes in the OM attribute list. The value of
DS_ATTRIBUTES_SELECTED is only significant if the value of DS_ALL_ATTRIBUTES is OM_FALSE.

DS_INFO_TYPE identifies what information is to be extracted from each OM attribute identified. The
syntax of the value is specified as Enum(DS_Information_Type). DS_Info_Type is an enumerated type
that has two possible values: DS_TYPES_ONLY and DS_TYPES_AND_VALUES. DS_TYPES_ONLY
indicates that only the attribute types in the entry are returned by the Directory Service operation.
DS_TYPES_AND_VALUES indicates that both the attribute types and the values of the attributes in the
entry are returned.

98 Application Development Guide: Directory Services

Figure 30. Mapping the Class Definition of DS_C_ENTRY_INFO_SELECTION

A typical Directory Service operation, such as a read operation (ds_read()), requires the
entry-information-selection parameter to specify to the Directory Service the information to be extracted
from the directory entry. This entry-information-selection (a DS_C_ENTRY_INFO_SELECTION OM
object) parameter is built by the application program as a public object (“Public Objects” on page 102
describes how to create a public object), and is included as a parameter to the ds_read() function call, as
shown in the following code fragment from example.c :

 Chapter 5. XOM Programming 99

/B
 B Public Object ("Descriptor List") for Entry-Information-Selection
 B parameter to ds_read().
 B/
 OM_descriptor selection[] = {
 OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),
 { DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, { OM_FALSE, NULL } },
 OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A_PHONE_NBR),
 { DS_INFO_TYPE,OM_S_ENUMERATION, { DS_TYPES_AND_VALUES,NULL } },
 OM_NULL_DESCRIPTOR
 };

CHECK_DS_CALL(ds_read(session, DS_DEFAULT_CONTEXT,
name, selection, &result, &invoke_id));

 Object Identifiers

OM classes are uniquely identifiable by means of ASN.1 object identifiers. OM classes have mandatory
and optional OM attributes. Each OM attribute has a type, value, and syntax. OM objects are instances
of OM classes that are uniquely identifiable by means of ASN.1 object identifiers. The syntax of values
defined for these OM object classes and OM attributes are representations at a higher level of abstraction
so that implementers can provide the necessary high-level language binding for their own implementations
of the various application interfaces, such as XDS API.

The DCE implementation uses the C language to define the internal representation of OM classes and OM
attributes. These definitions are supplied in the header files that are included as part of the XDS and
XOM API.

OM classes are defined as symbolic constants that correspond to ASN.1 object identifiers. An ASN.1
object identifier is a sequence of integers that uniquely identifies a specific class. OM attribute type and
syntax are defined as integer constants. These standardized definitions provide application programs with
a uniform and stable naming environment in which to perform directory operations. Registration
authorities are responsible for allocating the unique object identifiers.

The following code fragment from the xdsbdcp.h (the Basic Directory Contents Package) header file
contains the symbolic constant OMP_O_DS_A_COUNTRY_NAME:

#ifndef dsP_attributeType /B joint-iso-ccitt(2) ds(5) attributeType(4) B/
#define dsP_attributeType(X) ("\x55\xH4" ##X)
#endif

#define OMP_O_DS_A_COUNTRY_NAME dsP_attributeType(\xH6)

It resolves to 2.5.4.6, which is the object identifier value for Country Name attribute type as defined in the
directory standard. Note that the “dotted decimal” and hexadecimal forms of the object identifier are
slightly different. This is due to the definition of the basic encoding rules for object identifiers (ISO 8825).

C Naming Conventions

In the DCE implementation of XDS and XOM APIs, all object identifiers start with letters ds, DS, MH, or
OMP. Note that the interface reserves all identifiers starting with the letters dsP and omP for internal use
by implementations of the interface. It also reserves all identifiers starting with the letters dsX, DSX, omX,
and OMX for vendor-specific extensions of the interface. Application programmers should not use any
identifier starting with these letters.

The C identifiers for interface elements are formed using the following conventions:

100 Application Development Guide: Directory Services

� XDS API function names are specified entirely in lowercase letters, and are prefixed by ds_ (for
example, ds_read()).

� XOM API Function names are specified entirely in lowercase letters, and are prefixed by om_ (for
example, om_get()).

� C function parameters are derived from the parameter and result names and are specified entirely in
lowercase letters. In addition, the names of results have _return added as a suffix (for example,
operation_status_return).

� OM class names are specified entirely in uppercase letters, and are prefixed by DS_C_ and MH_C_
(for example, DS_C_AVA).

� OM attribute names are specified entirely in uppercase letters, and are prefixed by DS_ and MH_ (for
example, DS_RDNS).

� OM syntax names are specified entirely in uppercase letters, and are prefixed by OM_S_ (for
example, OM_S_PRINTABLE_STRING).

� Directory class names are specified entirely in uppercase letters, and are prefixed by DS_O (for
example, DS_O_ORG_PERSON).

� Directory attribute names are specified entirely in uppercase letters, and are prefixed by DS_A (for
example, DS_A_COUNTRY_NAME).

� Errors are treated as a special case. Constants that are the possible values of the OM attribute
DS_PROBLEM of a subclass of the OM class DS_C_ERROR are specified entirely in uppercase
letters, and are prefixed by DS_E_ (for example, DS_E_BAD_CLASS).

� The constants in the Value Length and Value Number columns of the OM class definition tables are
also assigned identifiers. Where the upper limit in one of these columns is not 1 (one), it is given a
name consisting of the OM attribute name, prefixed by DS_VL_ for value length, or DS_VN_ for value
numbers.

� The sequence of octets for each object identifier is also assigned an identifier for internal use by
certain OM macros. These identifiers are all uppercase and are prefixed by OMP_O_.

Table 14 and Table 15 on page 102 summarize the XDS and XOM naming conventions.

Table 14. C Naming Conventions for XDS

Item Prefix

Reserved for implementers dsP

Reserved for interface extensions dsX

Reserved for interface extensions DSX

XDS functions ds_

Error "problem" values DS_E_

OM class names DS_C_ MH_C_

OM attribute names DS_ MH_

OM value length limits DS_VL_

OM value number limits DS_VN_

Other constants DS_ MH_

Attribute Type DS_A_

Object Class DS_O_

 Chapter 5. XOM Programming 101

 Public Objects

The ultimate aim of an application program is access to the directory to perform some operation on the
contents of the directory. A user may request the telephone number or electronic mail address of a fellow
employee. To access this information, the application performs a read operation on the directory so that
information is extracted about a target object in the directory and manipulated locally within the application.

XDS functions that perform directory operations, such as ds_read(), require public and/or
 private objects as input parameters. Typically, a public object is generated by an application program and
contains the information required to access a target directory object. This information includes the AVAs
and RDNs that make up a distinguished name of an entry in the directory. However, an application
program can also generate a private object. Private objects are described in “Private Objects” on
page 111.

A public object is created using OM classes and OM attributes. These OM classes and OM attributes
model the target object entry in the directory, and provide other information required by Directory Service
to access the directory.

Descriptor Lists: A public object is represented by a sequence of OM_descriptor data structures
that is built by the application program. A descriptor contains the type, syntax, and value for an OM
attribute in a public object.

The data structure, OM_descriptor, is defined in the xom.h header file as follows:

typedef struct OM_descriptor_struct {
 OM_type type;
 OM_syntax syntax;
 union OM_value_union value;
}OM_descriptor;

Figure 31 on page 103 shows the representation of a public object in a descriptor list. The first
descriptor in the list denotes the object’s OM class; the last descriptor is a NULL descriptor that signals

Table 15. C Naming Conventions for XOM

Item Prefix

Data type OM_

Data value OM_

Data value (Class) OM_C_

Data value (Syntax) OM_S_

Data value component (Structure member) None

Function om_

Function argument None

Function result None

Macro OM_

Reserved for use by implementers OMP

Reserved for use by implementers omP

Reserved for proprietary extension omX

Reserved for proprietary extension OMX

102 Application Development Guide: Directory Services

the end of the list of OM attributes. Between the first and the last descriptor are the descriptors for the
OM attributes of the object.

second descriptor

last descriptor

first descriptor

first OM attribute of object

last OM attribute of object

null descriptor
(end marker of descriptor list)

class of object

object

Figure 31. A Representation of a Public Object Using a Descriptor List

For example, the following represents the public object Country in example.c:

static OM_descriptor country[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),
 { DS_ATTRIBUTE_VALUES,OM_S_PRINTABLE_STRING,OM_STRING("US") },
 OM_NULL_DESCRIPTOR
 };

The descriptor list is an array of data type OM_descriptor that defines the OM class, OM attribute types,
syntax, and values that make up a public object.

The first descriptor gives the OM class of the object. The OM class of the object is defined by the OM
attribute type OM_CLASS. The OM_OID_DESC macro initializes the syntax and value of an object
identifier, in this case to OM class DS_C_AVA, with syntax of OM_S_OBJECT_IDENTIFIER_STRING.
OM_S_OBJECT_IDENTIFIER_STRING is an OM syntax type that is assigned by definition in the macro.

The second descriptor defines the first OM attribute type, DS_ATTRIBUTE_TYPE, which has as its value
DS_A_COUNTRY_NAME and syntax OM_S_OBJECT_IDENTIFIER_STRING.

The third descriptor specifies the attribute value of the AVA of an object entry in the directory. The
OM_OID_DESC macro is not used here because OM_OID_DESC is only used to initialize values having
OM_S_OBJECT_IDENTIFIER_STRING syntax. The OM attribute type is DS_ATTRIBUTE_VALUES, the
syntax is OM_S_PRINTABLE_STRING, and the value is US. The OM_STRING macro creates a data

 Chapter 5. XOM Programming 103

value for a string data type (data type OM_string), in this case OM_S_PRINTABLE_STRING. A string is
specified in terms of its length or whether or not it terminates with a NULL. (The OM_STRING macro is
described in “The OM_STRING Macro” on page 135.)

The last descriptor is a NULL descriptor that marks the end of the public object definition. It is defined in
the xom.h header file as follows:

#define OM_NULL_DESCRIPTOR
{ OM_NO_MORE_TYPES, OM_S_NO_MORE_SYNTAXES,
{ { H, OM_ELEMENTS_UNSPECIFIED } } }

OM_NULL_DESCRIPTOR has OM attribute type OM_NO_MORE_TYPES, syntax
OM_S_NO_MORE_SYNTAXES, and value OM_ELEMENTS_UNSPECIFIED.

Figure 32 shows the composition of a descriptor list representing a public object.

Directory attribute value

Directory attribute value

OM class

OM attribute types

OM syntax

OM_OID_DESC(OM_CLASS, DS_C_AVA),

OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),

{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("US") },
OM_NULL_DESCRIPTOR
};

static OM_descriptor country[] = {

Figure 32. A Descriptor List for the Public Object: country

104 Application Development Guide: Directory Services

Building the Distinguished Name as a Public Object: Recall that RDNs are built from
AVAs and a distinguished name is built from a series of RDNs. In a typical application program, several
AVAs are defined in descriptor lists as public objects. These public objects are incorporated into
descriptor lists that represent corresponding RDNs. Finally, the RDNs are incorporated into one descriptor
list that represents the distinguished name of an object in the directory as shown in Figure 33. This
descriptor list is included as one of the input parameters to a Directory Service function.

Country Name = "US"

Organization Name = "Acme Pepper Co"

Organization Unit = "Research"

Common Name = "Peter Piper"

Distinguished Name = {C=US, O=Acme Pepper Co, OU=Research, CN=Peter Piper}

RDNs

Figure 33. The Distinguished Name of Peter Piper in the DIT

Note: The above diagram shows how example.c works with GDS. To work with CDS, if your cell name
is {C=US,O=Acme Pepper Co,OU=Research}, you need to change the RDN CN="Peter Piper" to be
typeless. The example.c program used the typeless RDN form.

The following simplified code fragment from example.c (with the RDN with value “Peter Piper” changed to
be typeless and a CDS directory entry named “Phone Book” added in order to access the CDS directory)
shows how a distinguished name is built as a public object. The public object is the name parameter for a
subsequent read operation call to the directory. The representation of a distinguished name in the DIT is
shown in Figure 33.

The first section of code defines the five AVAs. These AVAs inform the Directory Service that the attribute
values in the distinguished name of “Peter Piper” are valid and can therefore be read from the directory.
The country name is “US,” the organization name is “Acme Pepper Co,” the organizational unit name is
“Research,” the CDS directory is “Phone Book,” and the CDS object name is “Peter Piper.”

Note: If the DCE cell name is a DNS type of name, then only three AVAs are required: the cell name,
the CDS directory “Phone Book” and the CDS object name “Peter Piper.”

 Chapter 5. XOM Programming 105

/B
 B Public Object ("Descriptor List") for Name parameter to
 B ds_read().
 B Build the Distinguished-Name of Peter Piper
 B/
static OM_descriptor country[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),
 { DS_ATTRIBUTE_VALUES,OM_S_PRINTABLE_STRING | OM_S_LOCAL_STRING,OM_STRING("US") },
 OM_NULL_DESCRIPTOR
 };
static OM_descriptor organization[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_NAME),
 { DS_ATTRIBUTE_VALUES,OM_S_PRINTABLE_STRING | OM_S_LOCAL_STRING,OM_STRING("Acme Pepper Co") },
 OM_NULL_DESCRIPTOR
 };
static OM_descriptor organizational_unit[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_UNIT_NAME),
 { DS_ATTRIBUTE_VALUES,OM_S_PRINTABLE_STRING | OM_S_LOCAL_STRING,OM_STRING("Research") },
 OM_NULL_DESCRIPTOR
 };
static OM_descriptor directory_name[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_TYPELESS_RDN),
 { DS_ATTRIBUTE_VALUES,OM_S_PRINTABLE_STRING | OM_S_LOCAL_STRING,OM_STRING("Phone Book") },
 OM_NULL_DESCRIPTOR
 };
static OM_descriptor common_name[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_TYPELESS_RDN),
 { DS_ATTRIBUTE_VALUES,OM_S_PRINTABLE_STRING | OM_S_LOCAL_STRING,OM_STRING("Peter Piper") },
 OM_NULL_DESCRIPTOR
 };

The next section of code is nested one level above the previously defined AVAs (though it appears after
the AVA declarations in the example). Each RDN has a descriptor with OM attribute type DS_AVAS
(indicating that it is OM attribute type AVA), a syntax of OM_S_OBJECT, and a value of the name of the
descriptor array defined in the previous section of code for an AVA. The rdn1 descriptor contains the
descriptor list for the AVA country, the rdn2 descriptor contains the descriptor list for the AVA organization,
and so on.

OM_S_OBJECT is a syntax that indicates that its value is a subobject. For example, the value for
DS_AVAS is the previously defined object, country. In this manner, a hierarchy of linked objects and
subobjects may be constructed.

static OM_descriptor rdn1[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
 { DS_AVAS, OM_S_OBJECT, { H, country } },
 OM_NULL_DESCRIPTOR
 };
static OM_descriptor rdn2[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
 { DS_AVAS, OM_S_OBJECT, { H, organization } },
 OM_NULL_DESCRIPTOR

106 Application Development Guide: Directory Services

 };
static OM_descriptor rdn3[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
 { DS_AVAS, OM_S_OBJECT, { H, organizational_unit } },
 OM_NULL_DESCRIPTOR
 };
static OM_descriptor rdn4[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
 { DS_AVAS, OM_S_OBJECT, { H, directory_name } },
 OM_NULL_DESCRIPTOR
 };
static OM_descriptor rdn5[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
 { DS_AVAS, OM_S_OBJECT, { H, object_name } },
 OM_NULL_DESCRIPTOR
 };

The next section of code contains the RDNs that make up the distinguished name, which is stored in the
array of descriptors called name. It is made up of the OM class DS_C_DS_DN (representing a
distinguished name) and five RDNs of OM attribute type DS_RDNS and syntax OM_S_OBJECT.

OM_descriptor name[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_DN),
 { DS_RDNS, OM_S_OBJECT, { H, rdn1 } },
 { DS_RDNS, OM_S_OBJECT, { H, rdn2 } },
 { DS_RDNS, OM_S_OBJECT, { H, rdn3 } },
 { DS_RDNS, OM_S_OBJECT, { H, rdn4 } },
 { DS_RDNS, OM_S_OBJECT, { H, rdn5 } },
 OM_NULL_DESCRIPTOR
 };

In summary, the distinguished name for Peter Piper is stored in the array of descriptors called name,
which is composed of three nested levels of arrays of descriptors (see Figure 34 on page 108). The
definitions for the AVAs are at the innermost level, the definitions for RDNs are at the next level up, and
the distinguished name is at the top level.

 Chapter 5. XOM Programming 107

static OM_descriptor

};

static OM_descriptor

};

static OM_descriptor

};

static OM_descriptor

};

static OM_descriptor

};

static OM_descriptor

};

static OM_descriptor

};

static OM_descriptor

};

static OM_descriptor

};

country[] = { rdn1[] = {

organization[] = { rdn2[] = {

organizational_unit[] = { rdn3[] = {

directory_name[] = { rdn4[] = {

name[] = {

descriptor list descriptor list

descriptor list descriptor list

descriptor list descriptor list

descriptor list descriptor list

descriptor list

distinguished name

CHECK_DS_CALL(ds_read(session, DS_DEFAULT_CONTEXT,
name, selection, &result, &invoke_id));

AVAs RDNs

static OM_descriptor

};

static OM_descriptor

};

common_name[] = { rdn5[] = {

descriptor list descriptor list

Figure 34. Building a Distinguished Name

Figure 35 on page 109 shows a more general view of the structure of a distinguished name.

108 Application Development Guide: Directory Services

Figure 35. A Simplified View of the Structure of a Distinguished Name

The name descriptor defines a public object that is provided as the name parameter required by the XDS
API read function call, ds_read(), as follows. (XDS API function calls are described in detail in
Chapter 6, “XDS Programming” on page 137.)

CHECK_DS_CALL(ds_read(session, DS_DEFAULT_CONTEXT,
name, selection, &result, &invoke_id));

The result of the ds_read() function call is in a private implementation-specific format; it is stored in a
workspace and pointed to by result. The application program must use XOM function calls (described in
“OM Function Calls” on page 128) to interpret the data and extract the information. This extraction
process involves uncovering the nested data structures in a series of XOM function calls.

Client-Generated and Service-Generated Public Objects: There are two types of public
objects: service-generated objects and client-generated objects. The distinguished name object described
in the previous section is a client-generated public object because an application program (the client)
created the data structure. As the creator of the public object, the application program should manage the
memory resources allocated for it.

Service-generated public objects are created by the XOM service. Service-generated public objects may
be generated as a result of an XOM request. An XOM API function, such as om_get(), converts a
private object into a service-generated public object. This change is necessary because XDS returns a
pointer to data in private format that can only be interpreted by XOM functions such as om_get().

For example, Figure 36 on page 110 shows how the read request described in the previous example
returns a pointer to an encoded data structure stored in result. This encoded data structure, referred to
as a private object (described in the next section), is one of the input parameters to om_get(). The
om_get() function provides a pointer to a public object (in this case, entry) as an output parameter. The
public object is a data structure that has been interpreted by om_get() and is accessible by the application
program (the client). The information requested by the application in the read request is contained in the
output parameter entry.

 Chapter 5. XOM Programming 109

selection

entry_list

entry

result

name

session

context

workspace

application program space

CHECK_DS_CALL(ds_read (session, DS_DEFAULT_CONTEXT,
name, selection, &result, &invoke));

CHECK_OM_CALL(om_get (result,
OM_EXCLUDE_ALL_BUT_THESE_TYPES
+ OM_EXCLUDE_SUBOBJECTS,
entry_list, OM_FALSE, 0, 0, &entry,
&total_num));

service-generated
private object

client-generated
public objects

service-generated
public object

Figure 36. Client-Generated and Service-Generated Objects

The application program is responsible for managing the storage (memory) for the service-generated
public object. This is an important point; the application must issue a series of om_delete() calls to delete
the service-generated public object from memory. Because the data structures involved with Directory
Service requests can be very large (often involving large subtrees of the DIT), it is imperative that the
application programmer build into any application program the efficient management of memory resources.

The following code fragment from example.c demonstrates how storage for public and private objects is
released using a series of om_delete() function calls after they are no longer needed by the application
program. The data (a list of phone numbers associated with the name Peter Piper required by the
application program) has already been extracted using a series of om_get() function calls:

110 Application Development Guide: Directory Services

 /B We can now safely release all the private objects
 B and the public objects we no longer need
 B/
CHECK_OM_CALL(om_delete(session));
CHECK_OM_CALL(om_delete(result));
CHECK_OM_CALL(om_delete(entry));
CHECK_OM_CALL(om_delete(attributes));
CHECK_DS_CALL(ds_shutdown(workspace));

 Private Objects

Private objects are created dynamically by the service interface. In Figure 36 on page 110, the ds_read()
function returns a pointer to the data structure result in the workspace. This service-generated data
structure is a private object in a private implementation-specific format, which requires a call to om_get()
to interpret the data. A private object is one of the required input parameters to XOM API functions (such
as om_get()), as shown in Figure 36 on page 110. Private objects are always service generated.

Table 16 compares private and public objects.

Table 16. Comparison of Private and Public Objects

Private Public

Representation is implementation specific. Representation is defined in the API specification.

Not directly addressable by client. Directly addressable by client.

Manipulated by client using OM functions. Manipulated by client using programming constructs.

Created in storage provided by the service. Is service generated if created by the service.

Is client generated if created by the client, in storage
provided by the client.

Cannot be modified by the client directly (except through
the service interface).

If client generated, can be modified directly by the client.

If service generated, cannot be modified directly by the
client (except through the service interface).

Storage allocated and released by the service. Storage allocated and released by the service if service
generated; storage allocated and released if client
generated.

Private objects can also be used as input to XOM and XDS API functions to improve program efficiency.
For example, the output of a ds_search() request can be used as input to a ds_read(). The search
request returns the name of each entry in the search. If the application program requires the address and
telephone number of each name, a ds_read() operation can be performed on each name as a private
object.

 Object Classes

Objects are categorized into OM classes based on their purpose and internal structure. An object is an
instance of its OM class. An OM class is characterized by OM attribute types that may appear in its
instances. An OM class is uniquely identified by an ASN.1 object identifier.

Later, this section shows how OM classes are organized into groups of OM classes, called packages, that
support some aspect of the Directory Service.

 Chapter 5. XOM Programming 111

OM Class Hierarchy and Inheritance Properties: OM Classes are related to each other in a
tree hierarchy whose root is a special OM class called OM_C_OBJECT. Each of the other OM classes is
the immediate subclass of precisely one other OM class. This tree structure is known as the OM class
hierarchy. It is important because of the property of inheritance. The OM class hierarchy is defined by
the XDS/XOM. DCE implements this hierarchy for GDS and adds its own set of OM classes defined in
the GDS Package.

The OM attribute types that exist in an instance of an OM class but not in an instance of the OM class
above in the tree hierarchy are said to be specific to that OM class. OM Attributes that appear in an
object are those specific to its OM class as well as those inherited from OM classes above it in the tree.
OM classes above an instance of an OM class in the tree are superclasses of that OM class. OM classes
below an instance of an OM class are subclasses of that OM class.

For example, as shown in Figure 37, DS_C_ENTRY_INFO_SELECTION inherits its OM attributes from its
superclass OM_C_OBJECT. The OM attributes, DS_ALL_ATTRIBUTES,
DS_ATTRIBUTES_SELECTED, and DS_INFO_TYPE are attributes specific to OM class
DS_C_ENTRY_INFO_SELECTION.

OM_C_OBJECT

OM_CLASS

DS_C_ENTRY_INFO_SELECTION

DS_ALL_ATTRIBUTES
DS_ATTRIBUTES_SELECTED
DS_INFO_TYPE

Figure 37. The OM Class DS_C_ENTRY_INFO_SELECTION

Another important point about OM class inheritance is that an instance of an OM class is also considered
to be an instance of each of its superclasses, and can appear wherever the interface requires an instance
of any of those superclasses.

For example, DS_C_DS_DN is a subclass of DS_C_NAME. Everywhere in an application program where
DS_C_NAME is expected at the interface (a parameter to a ds_read(), for example), you can supply
DS_C_DS_DN.

Abstract and Concrete Classes: OM Classes are defined as abstract or concrete.

An abstract OM class is an OM class in which instances are not permitted. An abstract OM class can be
defined so that subclasses can share a common set of OM attributes between them.

In contrast to abstract OM classes, instances of OM concrete classes are permitted. However, the
definition of each OM concrete class can include the restriction that a client not be allowed to create
instances of that OM class.

For example, consider two alternative means of defining the OM classes use in XDS: DS_C_LIST_INFO
and DS_C_READ_RESULT. DS_C_LIST_INFO and DS_C_READ_RESULT are subclasses of the
abstract OM class DS_C_COMMON_RESULT.

112 Application Development Guide: Directory Services

Figure 38 shows the relationship of DS_C_LIST_INFO and DS_C_READ_RESULT when the abstract OM
class DS_C_COMMON_RESULT is defined and when it is not defined. It demonstrates that the
presence of an abstract OM class enables the programmer to develop applications that process
information more efficiently.

Figure 38. A Comparison of Two Classes With and Without an Abstract OM Class

The following list contains the hierarchy of concrete and abstract OM classes in the Directory Service
Package. Abstract OM classes are shown in italics. The indentation shows the class hierarchy; for
example the abstract class OM_C_OBJECT is a superclass of the abstract class

 Chapter 5. XOM Programming 113

DS_C_COMMON_RESULTS, which in turn is a superclass of the concrete class
DS_C_COMPARE_RESULT.

OM_C_OBJECT

 � DS_C_ACCESS_POINT

 � DS_C_ADDRESS

 – DS_C_PRESENTATION_ADDRESS

 � DS_C_ATTRIBUTE

 – DS_C_AVA

 – DS_C_ENTRY_MOD

 – DS_C_FILTER_ITEM

 � DS_C_ATTRIBUTE_ERROR

 � DS_C_ATTRIBUTE_LIST

 – DS_C_ENTRY_INFO

 � DS_C_COMMON_RESULTS

 – DS_C_COMPARE_RESULT

 – DS_C_LIST_INFO

 – DS_C_READ_RESULT

 – DS_C_SEARCH_INFO

 � DS_C_CONTEXT

 � DS_C_CONTINUATION_REF

 – DS_C_REFERRAL

 � DS_C_ENTRY_INFO_SELECTION

 � DS_C_ENTRY_MOD_LIST

 � DS_C_ERROR

 – DS_C_ABANDON_FAILED

 – DS_C_ATTRIBUTE_PROBLEM

 – DS_C_COMMUNICATIONS_ERROR

 – DS_C_LIBRARY_ERROR

 – DS_C_NAME_ERROR

 – DS_C_SECURITY_ERROR

 – DS_C_SERVICE_ERROR

 – DS_C_SYSTEM_ERROR

 – DS_C_UPDATE_ERROR

 � DS_C_EXT

 � DS_C_FILTER

 � DS_C_LIST_INFO_ITEM

 � DS_C_LIST_RESULT

114 Application Development Guide: Directory Services

 � DS_C_NAME

 – DS_C_DS_DN

 � DS_C_OPERATION_PROGRESS

 � DS_C_PARTIAL_OUTCOME_QUAL

 � DS_C_RELATIVE_NAME

 – DS_C_DS_RDN

 � DS_C_SEARCH_RESULT

 � DS_C_SESSION

In summary, an OM class is defined with the following elements:

� OM Class Name (indicated by an object identifier)

� Identity of its immediate superclass

� Definitions of the OM attribute types specific to the OM class

� Indication whether the OM class is abstract or concrete

� Constraints on the OM attributes.

A complete description of OM classes, OM attributes, syntaxes, and values that are defined for XDS and
XOM APIs are described elsewhere in the GDS chapters, and in the XDS/XOM supplementary
information. Tables and textual descriptions, such as the one shown in Figure 39 on page 116 for the
concrete OM class DS_C_ATTRIBUTE, are provided for each OM class in these chapters.

 Chapter 5. XOM Programming 115

Figure 39. A Complete Description of the Concrete OM Class DS_C_ATTRIBUTE

The table shown in Figure 39 provides information under the following headings:

 � OM Attribute

The name of each of the OM attributes

 � Value Syntax

The syntaxes of each of the OM attribute’s values

 � Value Length

Any constraints on the number of bits, octets or bytes, or characters in each value that is a string

 � Value Number

Any constraints on the number of values

 � Value Initially

Any value with which the OM attribute can be initialized.

116 Application Development Guide: Directory Services

An OM class can be constrained to contain only one member of a set of OM attributes. In turn, OM
attributes can be restricted to having no more than a fixed number of values, either 0 (zero) or 1 as an
optional value, or exactly one mandatory value.

An OM attribute’s value can also be constrained to a single syntax. That syntax can be further restricted
to a subset of defined values.

An object passed as a parameter to an XOM and XDS function call needs to meet a minimum set of
conditions:

� The type of each OM attribute must be specific to the object’s OM class or one of its superclasses.

� The number of values of each OM attribute must be within OM class limits.

� The syntax of each value must be among those the OM class permits.

� The number of bits, octets, or characters in each string value must be within OM class limits.

 Packages

A package is a collection of OM classes that are grouped together, usually by function. The packages
themselves are features that are negotiated with the Directory Service using the XDS function
ds_version(). Consider what OM classes will be required for your application programs and determine
the packages that contain these OM classes.

A package is uniquely identified by an ASN.1 object identifier. DCE XDS API supports four packages of
which one is mandatory and three are optional:

� Directory Service Package (mandatory)

� Basic Directory Contents Package (optional)

� Strong Authentication Package (optional)

� Global Directory Service Extension Package (optional)

� MHS Directory User package (optional).

Note: All of the above packages included in the API; however, the objects and attributes supported by
the GDS extension package and the MHS Directory User package are complex and suited for
GDS and mail objects in GDS. z/OS DCE does not support GDS.

The Directory Service Package

The Directory Service Package is the default package and as such does not require negotiation. The
optional packages have to be negotiated with the Directory Service using the ds_version() function.

The object identifiers for specific packages are defined in header files that are part of the XDS API and
XOM API. An object identifier consists of a string of integers. The header files include #define
preprocessor statements that assign names to these constants to make them more readable. These
assignments alleviate the application programmer from the burden of maintaining these strings of integers.

For example, the object identifiers for the Directory Service Package are defined in xds.h. The xds.h
header file contains OM class and OM attribute names, OM object constants, and defines prototypes for
XDS API functions, as shown in the following code fragment from xds.h:

 Chapter 5. XOM Programming 117

/B DS package object identifier B/
/B {iso(1) identifier-organization(3) icd-ecma(12)
 B member-company(2)
 B dec(1H11) xopen(28) dsp(H) } B/

#define OMP_O_DS_SERVICE_PKG "\x2B\xHC\xH2\x87\x1C\xHH"

A ds_version() function call must be included within an application program to negotiate the optional
features (packages) with the Directory Service. The first step is to build an array of object identifiers for
the optional packages to be negotiated (the Basic Directory Contents Package) as shown in the following
code fragment from the teldir.c application:

/B
 B To identify which packages we need for this program. We only need
 B the basic package because we are not doing anything fancy with
 B session parameters, etc.
 B/
DS_feature featureList[] = {

{ OM_STRING(OMP_O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE },
{ H }

};

The OM_STRING macro is provided for creating a data value of data type OM_string for octet strings and
characters. XOM API macros are described in “XOM API Macros” on page 133.

The array of object identifiers is stored in featureList, and passed as an input parameter to ds_version(),
as shown in the following code fragment from teldir.c:

/B STEP 3
 B
 B Pull in the packages that contain the XDS features we need.
 B/
dsStatus = ds_version(featureList, xdsWorkspace);
if(dsStatus != DS_SUCCESS)
 handleDSError("ds_version()", dsStatus);

For information about workspaces, see the section entitled “Workspaces” on page 120.

The Basic Directory Contents Package

The Basic Directory Contents Package contains the object identifier definition of directory classes and
attribute types as defined by the X.500 Standard. These definitions allow the creation and maintenance of
directory entries for a number of common objects so that the representation of all such objects is the same
throughout the directory. Also included are the definitions of the OM classes and OM attributes required
to support the directory attribute types. Chapter 12, “Basic Directory Contents Package” on page 275
describes the Basic Directory Contents Package in detail.

The object identifier associated with the Basic Directory Contents Package is shown in the following code
fragment from the xdsbdcp.h header file:

/B BDC package object identifier B/
/B { iso(1) identifier-organization(3) icd-ecma(12)
 B member-company (2)
 B dec(1H11) xopen(28) bdcp(1) } B/

#define OMP_DS_BASIC_DIR_CONTENTS_PKG "\x2B\xHC\xH2\x87\x73\x1C\xH1"

118 Application Development Guide: Directory Services

The Strong Authentication Package

The Strong Authentication Package contains the object identifier definition of directory classes and
attribute types as defined by the X.500 standard for security purposes. Also included are the definitions of
the OM classes and OM attributes required to support these security attribute types. Chapter 13, “Strong
Authentication Package” on page 289 describes the Strong Authentication Package in detail.

The object identifier associated with the Strong Authentication Package is shown in the following code
fragment from the xdssap.h header file:

/B SA package object identifier B/
/B { iso(1) identifier-organization(3) icd-ecma(12)
 B member-company (2)
 B dec(1H11) xopen(28) sap(2) } B/

#define OMP_DS_STRONG_AUTHENT_PKG "\x2B\xHC\xH2\x87\x73\x1C\xH2"

The Global Directory Service Package

The Global Directory Service Package contains the definition of a DCE extension to the XDS API. It
contains the definitions of OM classes, OM attributes, and syntaxes to support extended functionality
specific to DCE. Chapter 15, “Global Directory Service Package” on page 313 describes the GDS
Package in detail.

Note: The XDS/XOM API supplied with z/OS DCE cannot access an X.500 directory. These attribute
definitions are provided in case applications wish to use them in CDS entries.

The following code fragment from the xdsgds.h header file shows the object identifier for the GDS
Package:

/B GDS package object identifier B/
/B { iso(1) identifier-organization(3) icd-ecma(12) member-company (2)
/B siemens-units(11H7) sni(1) directory(3) xds-api(1HH) gdsp(1) } B/

#define OMP_O_DSX_GDS_PKG "\x2B\xHC\xH2\x88\x53\xH1\xH3\x64\xH1"

The XDS/XOM supplementary information section describes in detail the attributes and data types that
make up the OM and Directory classes defined in the XDS API packages. Chapter 7, “Example
Application Programs” on page 159 examines in detail how these packages are used in developing the
sample application programs.

The MHS Directory User Package

The Message Handling System Directory User Package contains definitions to support the use of the
directory in accordance with the standard X.400 (1988) User Agents and Message Transfer Agents
(MTAs) for name resolution, Distribution List expansion, and capability assessment. The definitions are
based on the attribute types and syntaxes specified in X.402, Annex A. The definitions of the OM classes
and OM attributes required to support these MHS attribute types are also included with this package.
Chapter 14, “MHS Directory User Package” on page 297 describes the MHS Directory User Package in
detail.

Note: The XDS/XOM API supplied with z/OS DCE cannot access an X.500 directory. These attribute
definitions are provided in case applications wish to use them in CDS entries.

The object identifier associated with the MHS Directory User Package is shown in the following code
fragment from the xdsmdup.h header file:

 Chapter 5. XOM Programming 119

/B MDU package object identifier B/
/B { iso(1) identifier-organization(3) icd-ecma(12)
 B member-company (2)
 B dec(1H11) xopen(28) mdup(3) } B/

#define OMP_DS_MHS_DIR_USER_PKG "\x2B\xHC\xH2\x87\x73\x1C\xH3"

Part 4, “XDS/XOM Supplementary Information” on page 231 describes in detail the attributes and data
types that make up the OM and directory classes defined in the XDS API packages. Chapter 7, “Example
Application Programs” on page 159 examines in detail how these packages are used in developing the
sample application programs.

 Package Closure

An OM class can be defined to have an attribute that is an object whose OM class is defined in some
other package. This avoids duplication of OM classes. This gives rise to the concept of a package
closure. A package closure is the set of all OM classes that need to be supported so that all possible
instances of all OM classes can be defined in the package.

 Workspaces

Two application-specific APIs or two different implementations of the same service require work areas,
called workspaces, to maintain private and public (service-generated) objects. The workspace is required
because two implementations of the same service (or different services) can represent private objects
differently. Each one has its own workspace. Using functions provided by XOM API, such as om_get()
and om_copy(), objects can be copied and moved from one workspace to another.

Recall that private objects are returned by a service to a workspace in private implementation-specific
format. Using the OM functions (described in “OM Function Calls” on page 128), the data can be
extracted from the private object for further program processing.

Before a request to the directory can be made by an application program, a workspace must be created.
An application creates a workspace by performing the XDS API call, ds_initialize(). Once the workspace
is obtained, subsequent XDS API calls, such as ds_read(), return a pointer to a private object in the
workspace. When program processing is completed, the workspace is destroyed using the
ds_shutdown() XDS API function. Implicit in ds_shutdown() is a call to the XOM API function
om_delete() to delete each private object the workspace contains.

The programs in Chapter 7, “Example Application Programs” on page 159 demonstrate how to initialize
and shutdown a workspace. The XDS functions, ds_initialize() and ds_shutdown(), are described in
detail in “The ds_initialize() Function Call” on page 138 and “The ds_shutdown() Function Call” on
page 140 respectively.

The closures of one or more packages are associated with a workspace. A package can be associated
with any number of workspaces. An application program must obtain a workspace that supports an OM
class before it is able to create any instances of that OM class.

For example, some of these operations in an application may require involvement with GDS security,
ACLs, or the DUA cache. Therefore, in addition to the basic packages provided by the Directory Service
APIs, the workspace would have to support the GDSP package. The following code fragment
demonstrates how an application initializes a workspace and negotiates the packages to be associated
with that workspace:

120 Application Development Guide: Directory Services

/B Build up an array of object identifiers for the optional B/
/B packages to be negotiated. B/

DS_feature bdcp_package[] = {
 { OM_STRING(OMP_O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE },
 { OM_STRING(OMP_O_DSX_GDS_PKG), OM_TRUE },
 { H }
};

CHECK_DS_CALL((OM_object) !(workspace = ds_initialize));

CHECK_DS_CALL(ds_version(bdcp_package, workspace));

 Storage Management

An object occupies storage. The storage occupied by a public object is allocated by the client, and is,
therefore, directly accessible by the client and can be released by the client. (Note that a public object
created using the XOM function call om_get() on a private object should be released using the om_delete
XOM function.) The storage occupied by a private object is not accessible by the client and must be
managed indirectly using XOM function calls.

Objects are accessed by an application program via object handles. Object handles are used as input
parameters to functions by the client and returned as output parameters by the service. The object handle
for a public object is simply a pointer to the data structure (an array of descriptors) containing the object
OM attributes. The object handle for a private object is a pointer to a data structure that is in private
implementation-specific format and therefore inaccessible directly by the client.

The client creates a client-generated public object using normal programming language constructs, for
example, static initialization. The client is responsible for managing any storage involved. The service
creates service-generated public objects and allocates the necessary storage. As previously mentioned,
the client must destroy service-generated public objects and release the storage by applying the XOM
function om_delete() to it as shown in the following code fragment:

 /B We can now safely release all the private objects
 B and the public objects we no longer need
 B/
CHECK_OM_CALL(om_delete(session));
CHECK_OM_CALL(om_delete(result));
CHECK_OM_CALL(om_delete(entry));
CHECK_OM_CALL(om_delete(attributes));
CHECK_DS_CALL(ds_shutdown(workspace));

One of the input parameters to the ds_read() function call is name. The name parameter is a public
object created by the application from a series of nested data structures (RDNs and AVAs) to represent
the distinguished name which in the example contains Peter Piper. The ds_read() call returns the pointer
to a private object, result, deposited in the workspace by the service.

The program goes on to use the XOM function om_get() with the input parameter result as a pointer to
extract attribute values from the returned private object. The om_get() call returns the pointer, entry, as a
service-generated public object to the program so that the attribute values specified in the call can be
accessed by it. Once the value is extracted, the application program can continue processing; for
example, printing a message to a user with some extracted value like a phone number or postal address.
The service-generated public object becomes the responsibility of the application program. The program
goes on to release the resources allocated by the service by issuing a series of calls to om_delete(), as
shown in the following code fragment from example.c:

 Chapter 5. XOM Programming 121

/B
 B extract the telephone number(s) of "name" from the result
 B
 B There are 4 stages:
 B (1) get the Entry-Information from the Read-Result.
 B (2) get the Attributes from the Entry-Information.
 B (3) get the list of phone numbers.
 B (4) scan the list and print each number.
 B/

CHECK_OM_CALL(om_get(result,
OM_EXCLUDE_ALL_BUT_THESE_TYPES | OM_EXCLUDE_SUBOBJECTS,
entry_list, OM_TRUE, H, H, &entry, &total_num));

CHECK_OM_CALL(om_get(entry->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES | OM_EXCLUDE_SUBOBJECTS,
attributes_list, OM_TRUE, H, H, &attributes, &total_num));

CHECK_OM_CALL(om_get(attributes->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES | OM_EXCLUDE_SUBOBJECTS,
telephone_list, OM_TRUE, H, H, &telephones, &total_num));

/B We can now safely release all the private objects
 B and the public objects we no longer need
 B/
CHECK_OM_CALL(om_delete(session));
CHECK_OM_CALL(om_delete(result));
CHECK_OM_CALL(om_delete(entry));
CHECK_OM_CALL(om_delete(attributes));

If the client possesses a valid handle (or pointer) for an object, it has access to a private object. If the
client does not possess an object handle or the handle is not a valid one, a private object is inaccessible
to the client and an error is returned to the calling function. In the preceding code fragment, the handles
for the objects stored in entry, attributes, and telephones are the pointers &entry, &attributes, and
&telephones, respectively.

OM Syntaxes for Attribute Values

An OM attribute is made up of an integer uniquely defined within a package that indicates the OM
attribute’s type, an integer giving that value’s syntax, and an information item called a value. The
syntaxes defined by the XOM API standard are closely aligned with ASN.1 types and type constructors.

Some syntaxes are described in the standard in terms of syntax templates. A syntax template defines a
group of related syntaxes. The syntax templates that are defined are:

 � Enum(*)
 � Object(*)
 � String(*)

122 Application Development Guide: Directory Services

 Enumerated Types

An OM attribute with syntax template Enum(*) is an enumerated type (OM_S_ENUMERATION) and has a
set of values associated with that OM attribute. For example, one of the OM attributes of the OM class
DS_C_ENTRY_INFO_SELECTION is DS_INFO_TYPE. DS_INFO_TYPE is listed in the OM attribute
table for DS_C_ENTRY_INFO_SELECTION in Chapter 11, “XDS Class Definitions” on page 241 as
having a value syntax of Enum(DS_Information_Type), as shown in Table 17. DS_INFO_TYPE takes
one of the following values:

 � DS_TYPES_ONLY

 � DS_TYPES_AND_VALUES.

Table 17. Description of an OM Attribute Using Syntax Enum(*). OM Attributes of
DS_C_Entry_Info_SELECTION

OM Attribute Value Syntax Value
Length

Value
Number

Value Initially

DS_ALL_ATTRIBUTES OM_S_BOOLEAN - 1 OM_TRUE

DS_ATTRIBUTES_SELECTED String(OM_S_OBJECT_
IDENTIFIER_STRING)

- 0 or
more

-

DS_INFO_TYPE Enum(DS_INFORMATION_
TYPE)

- 1 DS_TYPES_AND_VALUES

The C language representation of the syntax of the OM attribute type DS_INFO_TYPE is
OM_S_ENUMERATION as defined in the xom.h header file. The value of the OM attribute is either
DS_TYPES_ONLY or DS_TYPES_AND_VALUES, as shown in the following code fragment from
example.c:

/B
 B Public Object ("Descriptor List") for Entry-Information-Selection
 B parameter to ds_read().
 B/
 OM_descriptor selection[] = {
 OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),
 { DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, { OM_FALSE, NULL } },
 OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A_PHONE_NBR),
 { DS_INFO_TYPE, OM_S_ENUMERATION, { DS_TYPES_AND_VALUES,NULL } },
 OM_NULL_DESCRIPTOR
 };

 Object Types

An OM attribute with syntax template Object(*) has OM_S_OBJECT as syntax and a subobject as a
value. For example, one of the OM attributes of the OM class DS_C_DS_DN is DS_RDNS. DS_RDNS is
listed in the OM attribute table for DS_C_DS_DN as having a value syntax of Object(DS_C_DS_RDN), as
shown in Table 18.

Table 18. Description of an OM Attribute with Syntax Object(*). OM Attributes of
DS_C_DS_DN

OM Attribute Value Syntax Value
Length

Value
Number

Value Initially

DS_RDNS Object(DS_C_DS_RDN) - 0 or
more

-

 Chapter 5. XOM Programming 123

The C language representation of the syntax of the OM attribute type DS_RDNS is OM_S_OBJECT, as
shown in following code fragment from example.c:

OM_descriptor name[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_DN),
 { DS_RDNS, OM_S_OBJECT, { H, rdn1 } },
 { DS_RDNS, OM_S_OBJECT, { H, rdn2 } },
 { DS_RDNS, OM_S_OBJECT, { H, rdn3 } },
 { DS_RDNS, OM_S_OBJECT, { H, rdn4 } },
 { DS_RDNS, OM_S_OBJECT, { H, rdn5 } },
 OM_NULL_DESCRIPTOR
 };

 Strings

An OM attribute with syntax template String(*) specifies the string syntax of its value. A string is
categorized as either a bit string, an octet string, or a character string. The bits of a bit string, the octets
of an octet string, or the octets of a character string constitute the elements of the string. (Refer to
Chapter 17, “Information Syntaxes” on page 325 for a list of the syntaxes that form the string group.)

The value length of a string is the number of elements in the string. Any constraints on the value length of
a string are specified in the appropriate OM class definitions.

The elements of the string are numbered. The position of the first element is 0 (zero). The positions of
successive elements are successive positive integers.

For example, one of the OM attributes of the OM class DS_C_ENTRY_INFO_SELECTION is
DS_ATTRIBUTES_SELECTED. DS_ATTRIBUTES_SELECTED is listed in the OM attribute table for
DS_C_ENTRY_INFO_SELECTION as having a value syntax of
String(OM_S_OBJECT_IDENTIFIER_STRING), as shown in Table 17 on page 123.

 Other Syntaxes

The other syntaxes are defined as follows:

OM_S_BOOLEAN A value of this syntax is a Boolean; that is, the value can be OM_TRUE or
OM_FALSE.

OM_S_INTEGER A value of this syntax is a positive or negative integer.

OM_S_NULL The one value of this syntax is a valueless place holder.

Service Interface Data Types

The local variables within an application program that contain the parameters and results of XDS and
XOM API function calls are declared using a standard set of data types. These data types are defined by
typedef statements in the xom.h header files. Some of the more commonly used data types are
described in the following subsections. A complete description of service interface data types is provided
in Chapter 18, “XOM Service Interface” on page 331, and in z/OS DCE Application Development
Reference.

124 Application Development Guide: Directory Services

The OM_descriptor Data Type

The OM_descriptor data type is used to describe an OM attribute type and value. A data value of this
type is a descriptor, which embodies an OM attribute value. An array of descriptors can represent all the
values of an object.

OM_descriptor is defined in the xom.h header file, as follows:

/B Descriptor B/

typedef struct OM_descriptor_struct {
 OM_type type;
 OM_syntax syntax;
 union OM_value_union value;
} OM_descriptor;

OM_descriptor is made up of a series of nested data structures, as shown in Figure 40.

Figure 40. Data Type: OM_descriptor_struct

Figure 40 shows that type and syntax are integer constants for an OM attribute type and syntax, as
shown in the following simplified code fragment from example.c:

 Chapter 5. XOM Programming 125

static OM_descriptor country[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),
 { DS_ATTRIBUTE_VALUES,OM_S_PRINTABLE_STRING|OM_S_LOCAL_STRING,OM_STRING("US") },
 OM_NULL_DESCRIPTOR
 };

The code fragment initializes four descriptors, as shown in Figure 41. The type and syntax evaluate to
integers for all four descriptors.

Figure 41. Initializing Descriptors

The value component is a little more complex. Figure 40 on page 125 shows that value is a union of
OM_value_union. OM_value_union has five members: string, boolean, enumeration, integer, and
object. The boolean, enumeration, and integer members have integer values. The string member
contains a string of type OM_string, which is a structure composed of a length and a pointer to a string of
characters. The object member is a structure of type OM_padded_object that points to another object
nested below it. Many OM attributes have other objects as values. These subobjects, in turn, may have
other subobjects, and so on.

For example, as shown in Figure 42 on page 127, the OM class DS_C_READ_RESULT has one OM
attribute: DS_ENTRY. The syntax of DS_ENTRY is OM_S_OBJECT with a value of
DS_C_ENTRY_INFO, indicating that it points to the subobject DS_C_ENTRY_INFO.
DS_C_ENTRY_INFO has the OM attribute DS_OBJECT_NAME with the syntax OM_S_OBJECT,
indicating that it points to the subobject DS_C_NAME.

126 Application Development Guide: Directory Services

OM Class

DS_C_READ_RESULT

DS_C_ENTRY_INFO

Attribute

DS_ENTRY

DS_FROM_ENTRY

DS_OBJECT_NAME

Syntax and Value

Object(DS_C_ENTRY_INFO)

OM_S_BOOLEAN

Object(DS_C_NAME)

Figure 42. An Object and a Subordinate Object

Data Types for XDS API Function Calls

The following code fragment from example.c shows how the data types are used to declare the variables
that contain the output parameters from the XDS API function calls:

int main(void)
{
 DS_status error; /B return value from DS functions B/
 OM_return_code return_code;/B return value from OM functions B/
 OM_workspace workspace; /B workspace for objects B/
 OM_private_object session; /B session for directory operations B/
 OM_private_object result; /B result of read operation B/
 OM_sint invoke_id; /B Invoke-ID of the read operation B/

The code fragment shows:

� The ds_initialize call returns a variable of type OM_workspace that contains a handle or pointer to a
workspace.

� The ds_bind() call returns a pointer to a variable of type OM_private_object. The private object
contains the session information required by all subsequent XDS API calls (except ds_shutdown()).

� The ds_read() call returns a pointer to the result of a directory read request in a variable of type
OM_private_object.

� The error handing macros CHECK_DS_CALL and CHECK_OM_CALL (defined in example.h header
file) use the data types DS_status and OM_return_code, respectively, as return values from XDS
and XOM API function calls.

Data Types for XOM API Calls

The following code fragment from example.c shows how the datatypes are used to declare the variables
that contain the input and output parameters for the XOM API function calls:

 Chapter 5. XOM Programming 127

/B
B variables to extract the telephone number(s)
B B/
OM_type entry_list[] = { DS_ENTRY, H };
OM_type attributes_list[] = { DS_ATTRIBUTES, H };
OM_type telephone_list[] = { DS_ATTRIBUTE_VALUES, H };
OM_public_object entry;
OM_public_object attributes;
OM_public_object telephones;
OM_descriptor B telephone; /B current phone number B/
OM_value_position total_num; /B number of Attribute Descriptors B/

The code fragment shows:

� The series of om_get() calls require a list of OM attribute types which identifies the types of OM
attributes to be included in the operation. The variables entry_list, attribute_list, and telephone_list are
declared as type OM_type.

� The series of om_get() calls provide as output pointers to variables of type OM_public_object.
om_get() generates public objects that are accessible to the application program.

� Where the variable total_num is type OM_value_position and is used to hold the number of OM
descriptors returned by om_get().

Chapter 17, “Information Syntaxes” on page 325 contains detailed descriptions of all the data types
defined by XOM API.

OM Function Calls

XOM API supports general-purpose OM functions defined by the X/Open standards body that allow an
application program to manipulate objects in a workspace. “Summary of OM Function Calls” lists the OM
function calls and gives a brief description of each. “Using the OM Function Calls” on page 129 illustrates
the use of OM function calls using the om_get() call as an example.

Summary of OM Function Calls

The following list of XOM API function calls contains a brief description of each function. Refer to the
z/OS DCE Application Development Reference for a detailed description of the input and output
parameters, return codes, and usage of each function.

 � om_copy()

Creates an independent copy of an existing private object and all of its subobjects into a specified
workspace.

 � om_copy_value()

Replaces an existing OM attribute value or inserts a new value into a target private object with a copy
of an existing OM attribute value found in a source private object.

 � om_create()

Creates a private object that is an instance of the specified OM class.

 � om_delete()

Deletes a private or service-generated public object.

 � om_get()

128 Application Development Guide: Directory Services

Creates a new public object that is an exact but independent copy of an existing private object; certain
exclusions and/or syntax conversion may be requested for the copy.

 � om_instance()

Tests to determine if an object is an instance of a specified OM class (includes the case when the
object is a subclass of that OM class).

 � om_put()

Places or replaces copies of the attribute values of the source private or public object into the target
private object.

 � om_read()

Reads a segment of a string attribute from a private object.

 � om_remove()

Removes and discards values of an attribute of a private object.

 � om_write()

Writes a segment of a string attribute to a private object.

 � om_encode()

Not supported by DCE XOM API.

 � om_decode()

Not supported by DCE XOM API.

Using the OM Function Calls

Most application programs require the use of a series of om_get() function calls to create
service-generated public objects from which the program can extract requested information. This section
uses the operation of om_get() as an example to describe how XOM API functions operate in general.

The following code fragment from example.c shows how a series of om_get() function calls extract a list
of telephone numbers from a workspace. The ds_read() function call deposits the private object stored in
result in the workspace and provides access to it by the pointer &result.

/B
 B extract the telephone number(s) of "name" from the result
 B
 B There are 4 stages:
 B (1) get the Entry-Information from the Read-Result.
 B (2) get the Attributes from the Entry-Information.
 B (3) get the list of phone numbers.
 B (4) scan the list and print each number.
 B/

CHECK_OM_CALL(om_get(result,
OM_EXCLUDE_ALL_BUT_THESE_TYPES | OM_EXCLUDE_SUBOBJECTS,
entry_list, OM_TRUE, H, H, &entry, &total_num));

CHECK_OM_CALL(om_get(entry->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES | OM_EXCLUDE_SUBOBJECTS,
attributes_list, OM_TRUE, H, H, &attributes, &total_num));

CHECK_OM_CALL(om_get(attributes->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES | OM_EXCLUDE_SUBOBJECTS,

 Chapter 5. XOM Programming 129

telephone_list, OM_TRUE, H, H, &telephones, &total_num));

/B We can now safely release all the private objects
 B and the public objects we no longer need
 B/
CHECK_OM_CALL(om_delete(session));
CHECK_OM_CALL(om_delete(result));
CHECK_OM_CALL(om_delete(entry));
CHECK_OM_CALL(om_delete(attributes));

for (telephone = telephones; telephone->type != OM_NO_MORE_TYPES; telephone++)
{

if (telephone->type != DS_ATTRIBUTE_VALUES)
 {

fprintf(stderr, "malformed telephone number\n");
 exit(EXIT_FAILURE);
 }

 /B
B copy and append '\H' to the telephone number, and then print

 B/
 strncpy(telephone_str, telephone->value.string.elements,
 min(33, telephone->value.string.length));

telephone_str[34] = '\H';
printf("Telephone number: %s\n", telephone_str);

}

CHECK_OM_CALL(om_delete(telephones));

The om_get() call makes a copy of all or a selected set of parts of a private object. The copy is a
service-generated public object that is accessible to the application program. The application program
extracts the list of telephone numbers from this copy.

Required Input Parameters: The om_get() function requires the following input parameters:

� A private object

� A set of exclusions

� A set of OM attributes to be included in the copy

� A flag to indicate whether local string processing is required

� The position of the first value to be copied (the base value)

� The position within each OM attribute that is one beyond the last attribute to be included in the copy
(indicating the scope of the copy)

� The public object that is a copy of the private object

� The number of OM attribute descriptors returned in the public object.

In the code fragment from example.c, the private object result, is input to om_get().

The next parameter, the exclusions parameter, reduces the copy to a prescribed portion of the original.
The exclusions apply to the OM attributes of the object, but not to those of subobjects. The possibilities
for determining the combinations of types, values, subobjects, and descriptors to be excluded depend on
the creativity of the programmer. For a detailed description of all the exclusion possibilities, see the z/OS
DCE Application Development Reference. The values chosen for the om_get() calls in example.c are
described below. These exclusion values are:

130 Application Development Guide: Directory Services

 � OM_EXCLUDE_ALL_BUT_THESE_TYPES

 � OM_EXCLUDE_SUBOBJECTS

Each value indicates an exclusion, as defined by om_get(), and is chosen from the set of exclusions;
alternatively, the single value OM_NO_EXCLUSIONS can be chosen, which selects the entire object.
Each value, except OM_NO_EXCLUSIONS, is represented by a distinct bit; the presence of the value is
represented as 1, and its absence as 0. Multiple exclusions are requested by adding or ORing the values
that indicate the individual exclusions.

OM_EXCLUDE_ALL_BUT_THESE_TYPES indicates that the OM attribute included are only the ones
defined in the list of included types supplied in the next parameter, entry_list.
OM_EXCLUDE_SUBOBJECTS indicates that for each value whose syntax is OM_S_OBJECT, a
descriptor containing an object handle for the original private subobject will be returned, rather than a
public copy of it. This handle makes that subobject accessible for use in subsequent function calls. This
exclusion provides a means to examine an object one level at a time. The object the handle points to is
used in the next om_get() call to get the next level.

The entry_list parameter is declared in example.c as data type OM_type and initialized as a two-cell array
with values DS_ENTRY and NULL terminator. DS_ENTRY specifies the single OM attribute type included
for that om_get() call. The 0 (zero) marks the end of the OM attribute list.

The next parameter, OM_TRUE, tells the interface to return string values in the local EBCDIC code page.

The next two parameters set the initial and limiting value to 0 (zero), meaning that no specific values are
to be excluded.

The final two parameters are output parameters: entry, a pointer to a service-generated public object
deposited by om_get() in the workspace, and total_num, an integer. Both entry and total_num are
available for examination by the application program.

Extracting the Data from the Read Result: The entry parameter contains the result of
processing by om_get() of the read parameter generated by the ds_read() operation. A successful call to
ds_read() returns an instance of OM class DS_C_READ_RESULT in the private object result.
DS_C_READ_RESULT contains the information extracted from the directory entry of the target object.

The om_get() function call creates a public object to make the information contained in result available to
the application program. The entry parameter is defined as data type OM_public_object. As such, it is
composed of several nested layers of subobjects that contain entry information, OM attributes, and OM
attribute values, as shown in Figure 43 on page 132. The series of om_get() calls removes these layers
of objects to extract a list of telephone numbers.

 Chapter 5. XOM Programming 131

result

entry

attributes

telephones

private object

private object

private object

read result handle

entry_information handle

attribute handle

"+49 89 636 12345"

DS_ENTRY

DS_ATTRIBUTES

DS_ATTRIBUTE_
VALUES

OM_S_OBJECT

OM_S_OBJECT

OM_S_PRINTABLE_
STRING

om_get

om_get

om_get

Figure 43. Extracting Information Using om_get()

Figure 43 also shows that the process of exposing the subobjects continues while the syntax of the
subobjects is OM_S_OBJECT. In effect, example.c is reversing the process of building up a series of
public objects as was necessary for providing input to ds_read(), namely the distinguished name of Peter
Piper and the descriptor list for entry_information_selection (the DS_C_ENTRY_INFO_SELECTION OM
object).

132 Application Development Guide: Directory Services

Return Codes: XOM API function calls return a value of type OM_return_code that indicates
whether the function succeeded. If the function is successful, the value of the return code is set to
OM_SUCCESS. If the function fails, it returns one of the values listed in Chapter 18, “XOM Service
Interface” on page 331. The constants for OM_return_code are defined in the xom.h header file. In the
example.c program, a C language macro named CHECK_OM_CALL is used to check the return code
from each XOM API function call.

XOM API Header Files

The XOM API includes the header file xom.h. This header file is composed of declarations defining the C
workspace interface. It supplies type definitions, symbolic constant definitions, and macro definitions.

XOM Type Definitions and Symbolic Constant Definitions

The xom.h header file includes typedef statements that define the data types of all OM objects used in
the interface. It also provides definitions of symbolic constants used by the interface.

Refer to z/OS DCE Application Development Reference for a listing of the xom.h header file.

XOM API Macros

XOM API provides several macros that are useful in defining public objects in your application programs.
These macros are defined in the xom.h header file:

 � OM_IMPORT

Makes object identifier symbolic constants available within a C source module.

 � OM_EXPORT

Allocates memory and initializes object identifier symbolic constants within a C source module.

 � OM_OID_DESC

Initializes the type, syntax, and value of an OM attribute that holds an object identifier.

 � OM_NULL_DESCRIPTOR

Marks the end of a client-generated public object.

 � OMP_LENGTH

 Calculates the length of an object identifier.

 � OM_STRING

Creates a data value of a string data type.

The OM_EXPORT and OM_IMPORT Macros: You may find it convenient to export all the
names used in your programs from the same C source module. OM_EXPORT allocates memory for the
constants that represent an object OM class or an object identifier as shown in the following code
fragment from example.c:

 Chapter 5. XOM Programming 133

/B Define necessary Object Identifier constants
 B/
OM_EXPORT(DS_A_COMMON_NAME)
OM_EXPORT(DS_A_COUNTRY_NAME)
OM_EXPORT(DS_A_ORG_NAME)
OM_EXPORT(DS_A_ORG_UNIT_NAME)
OM_EXPORT(DS_A_PHONE_NBR)
OM_EXPORT(DS_C_AVA)
OM_EXPORT(DS_C_DS_DN)
OM_EXPORT(DS_C_DS_RDN)
OM_EXPORT(DS_C_ENTRY_INFO_SELECTION)

In this code fragment, object identifier constants that represent OM classes that are defined in the xds.h
and xdsbdcp.h header files are exported to the main program module. The object identifier constants are
defined in xds.h with the OMP_O_ prefix followed by the variable name for the object identifier. The
constant itself provides the hexadecimal value of the object identifier string.

The OM_EXPORT macro takes the OM class name as input and creates two new data structures: a
character string and a structure of type OM_string. These are normally used outside of any C function
definitions, and so global variables are declared which represent the object identifiers. The structure of
type OM_string contains a length and a pointer to a string that can be used later in an application
program by the OM_OID_DESC macro to initialize the value of an object identifier.

OM_IMPORT marks the identifiers as external for the compiler. It is used if OM_EXPORT is called in a
different file from where its values are referenced. (OM_IMPORT is not used in example.c because
OM_EXPORT is called in the file where the object identifiers are referenced.) OM_IMPORT allows the
global variables defined in one C file for object identifiers to be used in another C C file which is part of
that same program.

The OM_OID_DESC Macro: The OM_OID_DESC macro initializes the type, syntax, and value of
an OM attribute that holds an object identifier; in other words, it initializes OM_descriptor. It takes as
input an OM attribute type and the name of an object identifier. The object identifier should have already
been exported to the program module, as shown in the previous section.

The output of the macro is an OM_descriptor composed of a type, syntax, and value. The type is the
name of the OM class. The syntax is OM_S_OBJECT_IDENTIFIER. The value is a two-member
structure with the length of the object identifier and a pointer to the actual object identifier string.

OM_OID_DESC calls OMP_LENGTH to calculate the length of the object identifier string.

The following code fragment from xom.h shows the OM_OID_DESC and OMP_LENGTH macros:

/B Private macro to calculate length
 B of an object identifier
 B/
#define OMP_LENGTH(oid_string) (sizeof(OMP_O_##oid_string)-1)

/B Macro to initialize the syntax and value
 B of an object identifier
 B/
#define OM_OID_DESC(type, oid_name)

{ (type), OM_S_OBJECT_IDENTIFIER_STRING,
{ OMP_LENGTH(oid_name) , OMP_D_##oid_name } }

134 Application Development Guide: Directory Services

The OM_NULL_DESCRIPTOR Macro: The OM_NULL_DESCRIPTOR macro marks the end of
a client-generated public object by setting the type to OM_NO_MORE_TYPES, the syntax to
OM_S_NO_MORE_SYNTAXES, and value to zero length and a NULL string.

The OM_STRING Macro: The OM_STRING macro creates a string data value. Data strings are of
type OM_string, as shown from this code fragment from the xom.h header file:

/B String B/

typedef struct {
 OM_string_length length;
 void Belements;
} OM_string;

#define OM_STRING(string) \
{ (OM_string_length)(sizeof(string)-1), string }

A string is specified in terms of its length or whether or not it terminates with a NULL. OM_string_length
is the number of octets by which the string is represented, or it is the OM_LENGTH_UNSPECIFIED value
if the string terminates with a NULL.

The bits of a bit string are represented as a sequence of octets. The first octet stores the number of
unused bits in the last octet. The bits in the bit string, beginning with the first bit and proceeding to the
trailing bit, are placed in bits 7 to 0 of the second octet. These are followed by bits 7 to 0 of the third
octet, then by bits 7 to 0 of each octet in turn, followed by as many bits as are required of the final octet
commencing with bit 7.

For example, a bit string representing the binary value ‘1HH1HH1111’B would have the form: \xH6\x93\xCH.
That is:

 x'H6' x'93' x'CH'

xxxxxxxx------xx---------> original bit string
 HHHHH11H 1HH1HH11 11HHHHHH

>>>>--->---------------------xxxxxx---> 6 unused bits

This describes the basic encoding rule for bit strings. For a complete description of the basic encoding
rules, see ISO 8825.

 Chapter 5. XOM Programming 135

136 Application Development Guide: Directory Services

 Chapter 6. XDS Programming

XDS API defines an application programming interface to directory services in the X/Open Common
Applications Environment as defined in the X/Open Portability Guide. This interface is based on the 1988
CCITT X.500 Series of Recommendations and the ISO 9594 Standard. This joint standard is referred to
from this point on simply as X.500.

This chapter describes the purpose and function of XDS API functions in a general way. Refer to the
z/OS DCE Application Development Reference for complete and detailed reference information on specific
function calls.

Subsequent sections describe the following types of XDS functions:

� XDS Interface Management Functions, which interact with the XDS interface

� Directory Connection Management Functions, which initiate, manage, and terminate connections with
the directory

� Directory Operation Functions, which perform operations on a directory.

Note:

The DCE XDS API does not support asynchronous operations from within the same thread. If an
application requires asynchronous XDS operations, then it should use multiple threads to achieve
this functionality. Please refer to Chapter 8, “Using Threads with the XDS/XOM API” on page
191 for information on using the XDS/XOM API in a multithreaded application.

Because of this, the ds_search() and ds_modify_rdn() routines are not supported. These
routines return DS_E_UNAVAILABLE if a GDS name is used in the call. A
DS_E_UNWILLING_TO_PERFORM is returned if a CDS name is used. A ds_abandon() call
returns a DS_C_ABANDON_FAILED (DS_E_TOO_LATE) error. A ds_receive_result() call
returns with DS_Status set to DS_SUCCESS, and the completion_flag_return parameter set to
DS_NO_OUTSTANDING_OPERATION.

Following are the names of the complete XDS example programs that you can find in Chapter 7,
“Example Application Programs” on page 159:

 � example.c (example.h)

 � teldir.c

XDS Interface Management Functions

XDS API defines a set of functions that only interact with the XDS interface and have no counterpart in the
Directory standard definition:

 � ds_initialize()

 � ds_version()

 � ds_shutdown().

These interface functions perform operations that involve the initialization, management, and termination of
sessions with the XDS interface service.

 Copyright IBM Corp. 1994, 2001 137

The ds_initialize() Function Call

Every application program must first call ds_initialize() to establish a workspace where objects returned
by the Directory Service are deposited. The ds_initialize() function must be called before any other
directory interface functions are called.

The ds_initialize() call returns a handle (or pointer) to a workspace. The application program performs
operations on OM objects in this workspace. OM objects created in this workspace can be used as input
parameters to the other directory interface functions. In addition, objects returned by the Directory Service
are deposited in the workspace.

Within the following code fragment from example.c, a workspace is initialized (the declaration of the
variable workspace and the call to ds_initialize() are found in different sections of the program):

int main(void)
{
DS_status error; /B return value from DS functions B/
OM_return_code return_code;/B return value from OM functions B/
OM_workspace workspace; /B workspace for objects B/
OM_private_object session; /B session for directory operations B/
OM_private_object result; /B result of read operation B/
OM_sint invoke_id; /B Invoke-ID of the read operation B/
OM_value_position total_num; /B Number of Attribute Descriptors B/

/B
 B Perform the Directory operations:
 B (1) Initialize the Directory Service and get an OM workspace.
 B (2) bind a default directory session.
 B (3) read the telephone number of "name".
 B (4) terminate the directory session.
 B/

 CHECK_DS_CALL((OM_object) !(workspace=ds_initialize()));

OM_workspace is a type definition in the xom.h header file defined as a pointer to void. A void pointer is
a generic pointer that can point to any data type. The variable workspace is declared as data type
OM_workspace. The return value is assigned to the variable workspace and the CHECK_DS_CALL
macro determines if the call is successful. CHECK_DS_CALL is an error handling macro that is defined
in example.h.

The ds_initialize() call returns a handle to a workspace in which OM objects can be created and
manipulated. The ds_initialize() call returns NULL if it fails.

The ds_version() Function Call

The ds_version() call negotiates features of the directory interface. These features are collected into
packages that define the scope of the service. Packages define such things as object identifiers for
Directory and OM classes and OM attributes, enumerated types, structures, and OM object constants.

XDS API defines the following packages in separate header files as part of the XDS API software product:

� Directory Service Package

The Directory Service Package contains the OM classes and OM attributes used to interact with the
Directory Service. This package is contained in the xds.h header file.

� Basic Directory Contents Package

138 Application Development Guide: Directory Services

The Basic Directory Contents Package contains OM classes and OM attributes that represent values
of selected attributes and selected objects defined in the X.500 standard. This package is contained
in the xdsbdcp.h header file.

� Strong Authentication Package

The Strong Authentication Package contains OM classes and OM attributes that represent values of
security attributes and objects defined in the X.500 standard. This package is contained in the
xdssap.h header file.

� Global Directory Service Extension Package

The Global Directory Service Extension Package contains the OM classes and OM attributes that are
required for GDS. This package is contained in the xdsgds.h header file.

� MHS Directory User Package

The MHS (Message Handling Systems) Directory User Package contains the OM classes and OM
attributes that are required for Electronic Mail API. This package is contained in the xdsmdup.h
header file.

The application program, the client, uses ds_version() to negotiate the scope of the services the Directory
Service will provide to the client. A ds_version() function call includes a list of features (or packages) that
the client wants to include as part of the interface. The features are object identifiers that represent
packages supported by the DCE XDS API. The service returns a list of boolean values to indicate if the
package was successfully negotiated.

These features are assigned to the workspace that an application program initialized (as described in “The
ds_initialize() Function Call” on page 138). In addition, an application program must include the header
files for the appropriate packages as part of the source code.

It is not necessary to negotiate the Directory Service Package. It is a mandatory requirement for XDS API
and as such it is included by default. The other packages listed previously are optional and require
negotiation using ds_version().

The following code fragment from teldir.c shows how an application builds up an array of object identifiers
for the optional package to be negotiated: the Basic Directory Contents Package.

/B
 B To identify which packages we need for this program. We only need
 B the basic package because we are not doing anything fancy with
 B session parameters, etc.
 B/
DS_feature featureList[] = {

{ OM_STRING(OMP_O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE },
{ H }

};

The OM_STRING macro is provided for creating a data value of data type OM_string for octet strings and
characters. The array of object identifiers is stored in featureList, the input parameter to ds_version(), as
shown in the following code fragment from teldir.c:

/B STEP 3
 B
 B Pull in the packages that contain the XDS features we need.
 B/
dsStatus = ds_version(featureList, xdsWorkspace);
if(dsStatus != DS_SUCCESS)
 handleDSError("ds_version()", dsStatus);

 Chapter 6. XDS Programming 139

The ds_shutdown() Function Call

The ds_shutdown() call deletes the workspace established by ds_initialize() and enables the Directory
Service to release resources. No other directory functions that reference that workspace can be called
after this function.

The following code fragment from teldir.c demonstrates how the application closes the directory
workspace by performing a ds_shutdown().

/B STEP 9 B/
dsStatus = ds_shutdown(xdsWorkspace);
if(dsStatus != DS_SUCCESS)
 handleDSError("ds_shutdown()", dsStatus);

Directory Connection Management Functions

The following subsections describe the XDS functions that initiate, manage, and terminate connections
with the Directory.

A Directory Session

A directory session identifies the DSA to which a directory operation is sent. It also defines the
characteristics of a session, such as the distinguished name of the requestor.

An application program can request a session with specific OM attributes tailored for the program's
requirements. The application passes an instance of OM class DC_C_SESSION with the appropriate OM
attributes, or it uses default parameters by passing the constant DS_DEFAULT_SESSION as a parameter
to the ds_bind() function call.

The ds_bind() Function Call

The ds_bind() call establishes a session with the Directory. The ds_bind() call corresponds to the
DirectoryBind function in the Abstract Service defined in the X.500 standard.

When a ds_bind() call is completed successfully, the directory returns a pointer to an OM private object of
OM class DC_C_SESSION. This parameter is then passed as the first parameter to most interface
function calls until a ds_unbind() is called to terminate the directory session.

XDS API supports multiple concurrent sessions so that an application can interact with the Directory using
several identities and interact directly and concurrently with different parts of the Directory Service.

The following code fragment from example.c shows how an application binds to the GDS server (without
credentials) using the default session:

CHECK_DS_CALL(ds_bind(DS_DEFAULT_SESSION, workspace, &session));

140 Application Development Guide: Directory Services

The ds_unbind() Function Call

The ds_unbind() call terminates a directory session and makes the session parameter unavailable for use
with other interface functions. However, the unbound session can be modified by OM functions and used
again as a parameter to ds_bind(). When the session parameter is no longer needed, it should be
deleted using OM functions (such as om_delete()).

The following code fragment from example.c shows how the application closes the connection to the GDS
server using ds_unbind():

/B Close the connection to the GDS server. B/

if (ds_unbind(bound_session) != DS_SUCCESS)
 printf("ds_unbind() error\n");

The ds_unbind() call corresponds to the DirectoryUnbind function in the Abstract Service defined in the
X.500 standard.

Automatic Connection Management

The XDS implementation does not support automatic connection management. A DSA connection is
established when ds_bind() is called and released when ds_unbind() is called.

XDS Interface Class Definitions

The XDS Interface Class Definitions are described in detail in Chapter 11, “XDS Class Definitions” on
page 241. The OM attribute types, syntax, and values and inheritance properties are described for each
OM class.

A good way to begin to understand how the OM class hierarchy is structured, and the relationship
between OM classes and OM attributes to the service provided by the Directory Service Package, is to
look up one of the OM classes listed in Chapter 11, “XDS Class Definitions” on page 241.

For example, DS_C_FILTER inherits the OM attributes from its superclass OM_C_OBJECT, as do all OM
classes. OM_C_OBJECT, as defined in Chapter 5, “XOM Programming” on page 97, has one OM
attribute, OM_CLASS, which has the value of an object identifier string that identifies the numeric
representation of the object's OM class. DS_C_FILTER, on the other hand, has several OM attributes.

The purpose of DS_C_FILTER is to select or reject an object on the basis of information in its directory
entry. It has the following OM attributes:

 � DS_FILTER_ITEMS

 � DS_FILTERS

 � DS_FILTER_TYPE.

Two of these OM attributes, DS_FILTER_ITEMS and DS_FILTERS, have values that are OM object
classes themselves. The value of the OM attribute DS_FILTER_ITEMS is DS_C_FILTER_ITEM, which is
an OM class. DS_C_FILTER_ITEM is a component of a filter and defines the nature of the filter. The
value of the OM attribute DS_FILTERS is DS_C_FILTER, an OM class. Thus, DS_FILTERS defines a
collection of filters. The OM attribute DS_FILTER_TYPE has a value that is an enumerated type, which
takes one of the values: DS_AND, DS_OR, or DS_NOT.

 Chapter 6. XDS Programming 141

The DS_C_CONTEXT Parameter

The OM class DS_C_CONTEXT is the second parameter to every Directory Service request.
DS_C_CONTEXT defines the characteristics of the Directory Service interaction that are specific to a
particular Directory Service operation. These characteristics are divided into three categories of OM
attributes: common parameters, service controls, and local controls. The XDS interface defines
DS_DEFAULT_CONTEXT to simplify usage of this parameter.

Common parameters affect the processing of each Directory Service operation.

Service controls indicate how the Directory Service should handle requests. Included in this category are
decisions about whether or not chaining is permitted, the priority of requests, the scope of referral, and the
maximum number of objects about which a function should return information.

Local controls include asynchronous support and automatic continuation; XDS does not support
asynchronous operations from within the same thread. Applications requiring asynchronous use of the
XDS/XOM API should use threads as defined in Chapter 8, “Using Threads with the XDS/XOM API” on
page 191.

Directory Class Definitions

The X.500 standards define a number of attribute types and classes. These definitions allow the creation
and maintenance of directory entries for a number of common objects so that the representation of all
such objects is the same throughout the directory. The Basic Directory Contents Package contains OM
classes and OM attributes that model the X.500 attribute types and classes.

The X.500 object classes and attributes are defined in the following documents published by CCITT.
These are the objects and the associated attributes that will be the targets of Directory Service operations
in your application programs.

� The Directory: Selected Attribute Types

� The Directory: Selected Object Classes

Table 52 on page 277 describes the OM classes and OM attributes and their object identifiers that model
these X.500 objects and attributes in detail.

The table contains similar categories of information as other attribute tables defined in the Directory
Service Package. These information categories include the following:

� OM Value syntax

 � Value Length

 � Multivalued

 � Matching Rules.

The OM Value Syntax describes the structure of the values of an OM attribute. The Value Length gives
the range of lengths permitted for the string types. Table 52 on page 277 also indicates if the attribute
can have multiple values.

The CCITT standards define matching rules that are used for determining whether two values are equal,
for ordering two values, or for identifying one value as a substring of another in Directory Service
operations.

142 Application Development Guide: Directory Services

The GDS administrator maintains the Directory Service and determines the structure of the DIT as defined
by the GDS schema. The GDS standard (or default) schema is based on the recommendations in the
CCITT documents mentioned previously.

Recall that the Structure Rule Table (SRT) of the GDS schema defines the structure of the DIT, the Object
Class Table (OCT) defines class inheritance properties, and the Attribute Table (AT) defines the
mandatory and optional attributes for each class. You will find it useful to familiarize yourself with the
existing schema when developing an application program that will access the directory. The public objects
that your programs will create (using OM classes and OM attributes) are modeled after objects and
attributes in the Directory.

Directory Operation Functions

The X.500 standard defines the operations provided by the directory in a document called the Abstract
Service Definition. DCE implements this standard with XDS API function calls. The XDS API functions
allow an application program to interact with the Directory Service. The standard divides these interactions
into three general categories: read, search, and modify.

The XDS API functions correspond to the Abstract Service functions defined in the X.500 standard, as
shown in Table 19.

Note: ds_search() and ds_modify_rdn() are not supported. These routines return
DS_E_UNAVAILABLE if a GDS name is used in the call, and DS_E_UNWILLING_TO_PERFORM
if a CDS name is used.

Directory Read Operations

Read functions retrieve information from specific named entries in the Directory where names are mapped
to attributes. This is analogous to looking up some information about a name in the White Pages phone
directory.

XDS API implements the following read functions:

 � ds_read()

The requester supplies a distinguished name and selection criteria that specify what information from
the entry is requested. The values of requested attributes or just the attribute types are returned by
the DSA.

Table 19. Mapping of XDS API Functions to the Abstract
Services

XDS Function Call Abstract Service Equivalent

ds_read() Read

ds_compare() Compare

ds_list() List

ds_search() Search

ds_add_entry() AddEntry

ds_remove_entry() RemoveEntry

ds_modify_entry() ModifyEntry

ds_modify_rdn() ModifyRDN

 Chapter 6. XDS Programming 143

 � ds_compare()

The requester gives a distinguished name and an Attribute Value Assertion (AVA). If the AVA is true
for the named entry, a value of TRUE is returned by the DSA.

For example, a typical read operation could request the telephone number of a particular employee. A
read request would submit the distinguished name of the employee with an indication to return its
telephone number: /C=us/O=sni/OU=sales/CN=John Smith.

Reading an Entry from the Directory

The following sections describe a typical read operation using the ds_read() function call. It includes a
description of tasks directly related to the read operation. They do not include service-related tasks such
as initializing the interface allocating an OM workspace, and binding to the directory. These tasks were
described earlier in this chapter. The following sections also do not describe the process of extracting
information from the workspace using XOM functions. Refer to Chapter 5, “XOM Programming” on
page 97 for a description of how to use XOM functions to access the workspace.

A typical read operation involves the following steps:

1. Define the necessary object identifier constants for the OM classes and OM attributes that will define
public objects for input to ds_read() using the OM_EXPORT macro.

2. Declare the variables that will contain the output from the XDS functions to be used in the application.

3. Build public objects (descriptor lists) for the name parameter to ds_read().

4. Create a descriptor list for the selection parameter to ds_read() that selects the type and scope of
information in your request.

5. Perform the read operation.

These steps are demonstrated in the following code fragments from example.c. (Refer to Chapter 7,
“Example Application Programs” on page 159 for a complete program listing.) The program reads the
telephone numbers of a given target entry.

Step 1: Export Object Identifiers for Required Directory Classes and
Attributes

In the following code fragment from example.c, the OM_EXPORT macro allocates memory for the
constants that represent the OM object identifiers for object classes and directory attributes required for
the read operation:

/B Define necessary Object Identifier constants
 B/
OM_EXPORT(DSX_TYPELESS_RDN)
OM_EXPORT(DS_A_COUNTRY_NAME)
OM_EXPORT(DS_A_ORG_NAME)
OM_EXPORT(DS_A_ORG_UNIT_NAME)
OM_EXPORT(DS_A_PHONE_NBR)
OM_EXPORT(DS_C_AVA)
OM_EXPORT(DS_C_DS_DN)
OM_EXPORT(DS_C_DS_RDN)
OM_EXPORT(DS_C_ENTRY_INFO_SELECTION)

The OM_EXPORT macro performs the following steps:

144 Application Development Guide: Directory Services

1. It defines a character array called OMP_D_class_name input argument. where class_name is the
input argument.

2. It initializes this array to the value of a character string called OMP_O_class_name where class_name
is the input parameter. This value has already been defined in a header file.

3. It defines an OM_string data structure with name class name.

4. It initializes the OM_string data structure's first component to the length of the array initialized in Step
2 above and initializes the second component to a pointer to the value of the array initialized in Step 2
above.

The net result is that a static OM_string structure is declared with name class_name. This structure is
quite useful when building OM objects.

Step 2: Declare Local Variables

The local variables session, result, and invoke_id are defined in the following code fragment from
example.c:

int main(void)
{
DS_status error; /B return value from DS functions B/
OM_return_code return_code;/B return value from OM functions B/
OM_workspace workspace; /B workspace for objects B/
OM_private_object session; /B session for directory operationsB/
OM_private_object result; /B result of read operation B/
OM_sint invoke_id; /B Invoke-ID of the read operation B/
OM_value_position total_num; /B Number of Attribute Descriptors B/

These data types are defined by typedef statements in the xom.h header file. The session and result
variables are defined as data type OM_private_object because they are returned by ds_bind() and
ds_read() as private objects. Because asynchronous operations are not supported, the invoke_id
parameter is ignored. The invoke_id parameter must be supplied to the XDS functions as described in the
z/OS DCE Application Development Reference but its return value should be ignored.

Values in error and return_code are returned by XOM and XDS functions to indicate whether a call was
successful. The workspace variable is of type OM_workspace and is used when establishing an OM
workspace. The total_num variable is of type OM_value_position to indicate the number of attribute
descriptors returned in the public object by the function om_get() based on the inclusion and exclusion
parameters specified.

Step 3: Build Public Objects

A ds_read() function call can take a public object as an input parameter. A public object is generated by
an application program and contains the information required to access a target directory object. This
information includes the AVAs and RDNs that make up a distinguished name of an entry in the directory.

A public object is created using OM classes and OM attributes. These OM classes and OM attributes
model the target object entry in the directory and provide other information required by the Directory
Service to access the directory. In this case, the target object entry in the Directory is the entry for Peter
Piper.

“Public Objects” on page 102 describes how to create the required public objects for the ds_read()
function call using macros and data structures defined in the XDS and XOM API header files.

 Chapter 6. XDS Programming 145

The purpose of building the public objects for AVAs and RDNs is to provide the public object that
represents a distinguished name. The distinguished name public object is stored in the array of
descriptors called name and provided as an input parameter to the ds_read() function call.

Step 4: Create an Entry-Information-Selection Parameter

The distinguished name for Peter Piper is an entry in the directory that the application is designed to
access. The selection parameter of the ds_read() operation function call tailors its results to obtain just
part of the required entry. Information on all attributes, no attributes, or a specific group of attributes can
be chosen. Attribute types are always returned, but the attribute values need not be returned.

The value of the parameter is a public object (descriptor list) that is an instance of OM class
DS_C_ENTRY_INFO_SELECTION as shown in the following code fragment from example.c:

/B
 B Public Object ("Descriptor List")
 B for Entry-Information-Selection
 B parameter to ds_read().
 B/
 OM_descriptor selection[] = {
 OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),
 { DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, { OM_FALSE, NULL } },
 OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A_PHONE_NBR),
 { DS_INFO_TYPE,OM_S_ENUMERATION, { DS_TYPES_AND_VALUES,NULL } },
 OM_NULL_DESCRIPTOR
 };

DS_C_ENTRY_INFO_SELECTION is a subclass of OM_C_OBJECT. (This information is supplied in the
description of this class in Chapter 11, “XDS Class Definitions” on page 241.) As such,
DS_C_ENTRY_INFO_SELECTION inherits the OM attributes of OM_C_OBJECT. The only OM attribute
of OM_C_OBJECT is OM_CLASS. OM_CLASS identifies an object's class, which in this case is
DS_C_ENTRY_INFO_SELECTION. DS_C_ENTRY_INFO_SELECTION identifies information to be
extracted from a directory entry and has the following OM attributes:

� OM_CLASS (inherited from OM_C_OBJECT)

 � DS_ALL_ATTRIBUTES

 � DS_ATTRIBUTES_SELECTED

 � DS_INFO_TYPE.

As part of a ds_read() or ds_search() function call, DS_ALL_ATTRIBUTES specifies to the Directory
Service which attributes of a directory entry are relevant to the application program. It can take the values
OM_TRUE or OM_FALSE because the DS_ALL_ATTRIBUTES descriptor is defined to be of syntax
OM_S_BOOLEAN. The value OM_TRUE indicates that information is requested on all attributes in the
directory entry. The value OM_FALSE used in the preceding sample code fragment indicates that
information is only requested on those attributes that are listed in the OM attribute
DS_ATTRIBUTES_SELECTED.

DS_ATTRIBUTES_SELECTED lists the types of attributes in the entry from which information is to be
extracted. The syntax of the value is specified as OM_S_OBJECT_IDENTIFIER_STRING.

OM_S_OBJECT_IDENTIFIER_STRING contains an octet string of BER-encoded integers. The integers
are decimal representations of object identifiers. The object identifiers represent attribute types that are
requested from the directory entry. In the preceding code fragment above, the string value is the attribute

146 Application Development Guide: Directory Services

name DS_A_PHONE_NBR because the purpose of the read call is to read a list of telephone numbers
from the directory.

DS_INFO_TYPE identifies what information is to be extracted from each attribute identified. The syntax of
the value is specified as Enum(DS_Information_Type). DS_INFO_TYPE is an enumerated type that has
two possible values: DS_TYPES_ONLY and DS_TYPES_AND_VALUES. DS_TYPES_ONLY indicates
that only the attribute types of the selected attributes in the entry are returned by the Directory Service
operation. DS_TYPES_AND_VALUES indicates that both the attribute types and the attribute values of
the selected attributes in the entry are returned. The code fragment from example.c shown previously
defines the value of DS_INFO_TYPE as DS_TYPES_AND_VALUES because the program wants to get
the actual telephone numbers.

Step 5: Perform the Read Operation

The following code fragment from example.c shows the ds_read() function call and the XDS calls that
precede it:

/B
 B Perform the Directory operations:
 B (1) Initialize the Directory Service
 B and get an OM workspace.
 B (2) bind a default directory session.
 B (3) read the telephone number of "name".
 B (4) terminate the directory session.
 B/

CHECK_DS_CALL((OM_object) !(workspace = ds_initialize()));

CHECK_DS_CALL(ds_version(bdcp_package, workspace));

CHECK_DS_CALL(ds_bind(DS_DEFAULT_SESSION, workspace,
 &session));

CHECK_DS_CALL(ds_read (session, DS_DEFAULT_CONTEXT,
name, selection, &result, &invoke_id));

CHECK_DS_CALL is an error-checking macro defined in the example.h header file that is included by
example.c. The ds_read() call returns a return code of type DS_status to indicate whether or not the
read operation was completed successfully. If the call was successful, ds_read() returns the value
DS_SUCCESS. If the call fails, it returns an error code. (Refer to “XDS Errors” on page 241 for a
comprehensive list of error codes.) CHECK_DS_CALL interprets this return value and returns
successfully to the program, or branches to an error-handling routine.

The session input parameter is a private object generated by ds_bind() prior to the ds_read() call as
shown in the preceding code fragment. The context input parameter describes the characteristics of a
Directory interaction. Most XDS API function calls require these two input parameters because they define
the operating parameters of a session with a GDS server. (Sessions are described in “A Directory
Session” on page 140; contexts are described in “The DS_C_CONTEXT Parameter” on page 142.)

The result of a Directory Service request is returned in a private object (in this case result) that is
appropriate to the type of operation. The components of the result are represented by OM attributes in
the operations result object:

 � DS_C_COMPARE_RESULT

Returned by ds_compare()

 Chapter 6. XDS Programming 147

 � DS_C_LIST_RESULT

Returned by ds_list()

 � DS_C_READ_RESULT

Returned by ds_read()

 � DS_C_SEARCH_RESULT

Returned by ds_search().

The OM class returned by ds_read() is DS_C_READ_RESULT. The OM class returned by the
ds_compare() call is DS_C_COMPARE_RESULT and so on. (Refer to z/OS DCE Application
Development Reference for a description of the OM classes associated with a particular function call; refer
to Chapter 11, “XDS Class Definitions” on page 241 for a full description of the OM attributes, syntaxes,
and values associated with these OM classes.)

The super-classes, subclasses, and OM attributes for DS_C_READ_RESULT are shown in Figure 44 on
page 149.

148 Application Development Guide: Directory Services

Figure 44. Output from ds_read(): DS_C_READ_RESULT

The result value is returned to the workspace in private implementation-specific format. As such, it cannot
be read directly by an application program, but requires a series of om_get() function calls to extract the
requested information from it. The following code fragment from example.c shows how a series of
om_get() calls extracts the list of telephone numbers associated with the distinguished name for Peter
Piper. “Using the OM Function Calls” on page 129 describes this extraction process in detail.

/B
 B extract the telephone number(s) of "name" from the result
 B
 B There are 4 stages:
 B (1) get the Entry-Information from the Read-Result.
 B (2) get the Attributes from the Entry-Information.
 B (3) get the list of phone numbers.
 B (4) scan the list and print each number.
 B/

CHECK_OM_CALL(om_get()(result,

 Chapter 6. XDS Programming 149

OM_EXCLUDE_ALL_BUT_THESE_TYPES + OM_EXCLUDE_SUBOBJECTS,
entry_list, OM_TRUE, H, H, &entry, &total_num));

CHECK_OM_CALL(om_get()(entry->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES + OM_EXCLUDE_SUBOBJECTS,
attributes_list, OM_TRUE, H, H, &attributes, &total_num));

CHECK_OM_CALL(om_get()(attributes->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES + OM_EXCLUDE_SUBOBJECTS,
telephone_list, OM_TRUE, H, H, &telephones, &total_num));

Directory Search Operations

Search functions can be used to browse through the Directory Information Tree (DIT). For example, a
search request could supply the distinguished name of an entry and request a list of the distinguished
names of the children of that entry that meets certain criteria.

XDS API implements the following search operations:

 � ds _list

The requestor supplies a distinguished name. The Directory Service returns a list of the immediate
subordinates of the named entry.

 � ds_search()

The requestor supplies search criteria known as a filter. The user names a subtree of the DIT,
specifies some target attribute types, and formulates an expression combining a number of attributes
using logical AND, OR, or NOT operators. The Directory Service returns information from all of the
entries within the specified portion of the DIT that match the filter.

Note: ds_search() is not supported.

Directory Modify Operations

Modify functions alter information in the directory. For example, if an employee of an Organizational Unit
transfers to a new Organizational Unit, a typical modify request would modify the OU name attribute in the
person's directory entry to reflect the change.

XDS API implements the following modify functions:

 � ds_modify_entry()

The requestor gives a distinguished name and a list of modifications to the named entry. The
Directory Service carries out the specified changes if the user requesting the change has the required
access rights.

 � ds_add_entry()

The requestor gives a distinguished name and values for a new entry. The entry is added as a leaf
node in the DIT if the user requesting the change has the required access rights.

 � ds_remove_entry()

The requestor gives a distinguished name. The entry with that name is removed if the user requesting
the change has the required access rights.

 � ds_modify_rdn()

150 Application Development Guide: Directory Services

The requestor gives a distinguished name and a new Relative Distinguished Name (RDN) for the
entry. The directory changes the entry's RDN if the user requesting the change has the required
access rights.

Note: ds_modify_rdn() is not supported.

Note that ds_add_entry(), ds_remove_entry(), and ds_modify_rdn() only apply to leaf entries. They are
not intended to provide a general facility for building and manipulating the DIT.

Modifying Directory Entries

This section describes a modification and subsequent listing of the DIT using the ds_add_entry(),
ds_list(), and ds_remove_entry() function calls. It includes a description of tasks directly related to these
operations and does not include service-related tasks. It does not include a ds_modify_entry() function
call. The modify operation is used in the context of the X.500 Abstract Service Definition.

A typical operation to add, remove, or list an entry involves following the same basic steps that were
defined previously for read and search operations:

1. Define the necessary object identifier constants for the OM classes and OM attributes that will define
public objects for input to the function calls by using the OM_EXPORT macro.

2. Declare the variables that will contain the output from the XDS functions you will use in your
application.

3. Build public objects (descriptor lists) for the name parameters to the function calls.

4. Create descriptor lists for the attributes to be added, removed, or listed.

5. Perform the operations.

These steps are demonstrated in the following code fragments. The program adds two entries to the
directory, then a list operation is performed on their superior entry, and finally the two entries are removed
from the directory. The directory tree shown in Figure 45 is used in the program.

Figure 45. Sample Directory Tree

 Chapter 6. XDS Programming 151

Step 1: Export Object Identifiers for Required Directory Classes and
Attributes

In the following code fragment, the OM_EXPORT macro declares global constants that represent the
object classes and attributes required for the add, list, and remove operations:

/B The application has to export the object identifiers B/
/B it requires. B/

OM_EXPORT (DS_C_AVA)
OM_EXPORT (DS_C_DS_RDN)
OM_EXPORT (DS_C_DS_DN)
OM_EXPORT (DS_C_ENTRY_INFO_SELECTION)
OM_EXPORT (DS_C_ATTRIBUTE)
OM_EXPORT (DS_C_ATTRIBUTE_LIST)

OM_EXPORT (DS_A_COUNTRY_NAME)
OM_EXPORT (DS_A_ORG_NAME)
OM_EXPORT (DS_A_COMMON_NAME)
OM_EXPORT (DS_A_OBJECT_CLASS)
OM_EXPORT (DS_A_PHONE_NBR)
OM_EXPORT (DS_A_USER_PASSWORD)
OM_EXPORT (DS_A_SURNAME)

OM_EXPORT (DS_O_TOP)
OM_EXPORT (DS_O_PERSON)
OM_EXPORT (DS_O_ORG_PERSON)

Step 2: Declare Local Variables

The local variables bound_session, result, and invoke_id are defined in the following sample code
fragment:

 OM_private_object bound_session; /B Holds the Session object B/
/B which is returned by B/

 /B ds_bind(). B/
 OM_private_object result; /B Holds the list result B/
 /B object. B/
 OM_sint invoke_id; /B Integer for the invoke id B/

/B returned by ds_search(). B/
/B This parameter must be B/
/B present even though it is B/

 /B ignored. B/

These data types are defined in typedef statements in the xom.h header file. The bound_session and
result variables are defined as data type OM_private_object because they are returned by ds_bind() and
ds_list() operations to the workspace as private objects. Because asynchronous operations are not
supported, the invoke_id parameter functionality is redundant. The invoke_id parameter must be supplied
to the XDS functions as described in the z/OS DCE Application Development Reference, but its return
value should be ignored.

152 Application Development Guide: Directory Services

Step 3: Build Public Objects

The public objects required by the ds_add_entry(), ds_list(), and ds_remove_entry() operations are
defined in the following code fragment:

/B Build up descriptor lists for the following distinguished names: B/
/B C=ie/O=sni B/
/B C=ie/O=sni/CN=brendan B/
/B C=ie/O=sni/CN=sinead B/

static OM_descriptor ava_ie[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),

{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("ie")},
 OM_NULL_DESCRIPTOR
};
static OM_descriptor ava_sni[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_NAME),

{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING("sni")},
 OM_NULL_DESCRIPTOR
};
static OM_descriptor ava_brendan[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COMMON_NAME),

{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING("brendan")},
 OM_NULL_DESCRIPTOR
};
static OM_descriptor ava_sinead[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COMMON_NAME),

{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING("sinead")},
 OM_NULL_DESCRIPTOR
};
static OM_descriptor rdn_ie[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{DS_AVAS, OM_S_OBJECT, {H, ava_ie}},
 OM_NULL_DESCRIPTOR
};
static OM_descriptor rdn_sni[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{DS_AVAS, OM_S_OBJECT, {H, ava_sni}},
 OM_NULL_DESCRIPTOR
};
static OM_descriptor rdn_brendan[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{DS_AVAS, OM_S_OBJECT, {H, ava_brendan}},
 OM_NULL_DESCRIPTOR
};
static OM_descriptor rdn_sinead[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{DS_AVAS, OM_S_OBJECT, {H, ava_sinead}},
 OM_NULL_DESCRIPTOR
};
static OM_descriptor dn_sni[] = {
 OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
 {DS_RDNS,OM_S_OBJECT,{H,rdn_ie}},

 Chapter 6. XDS Programming 153

 {DS_RDNS,OM_S_OBJECT,{H,rdn_sni}},
 OM_NULL_DESCRIPTOR
};
static OM_descriptor dn_brendan[] = {
 OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
 {DS_RDNS,OM_S_OBJECT,{H,rdn_ie}},
 {DS_RDNS,OM_S_OBJECT,{H,rdn_sni}},
 {DS_RDNS,OM_S_OBJECT,{H,rdn_brendan}},
 OM_NULL_DESCRIPTOR
};
static OM_descriptor dn_sinead[] = {
 OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
 {DS_RDNS,OM_S_OBJECT,{H,rdn_ie}},
 {DS_RDNS,OM_S_OBJECT,{H,rdn_sni}},
 {DS_RDNS,OM_S_OBJECT,{H,rdn_sinead}},
 OM_NULL_DESCRIPTOR
};

Step 4: Create Descriptor Lists for Attributes

The following code fragments show how the attribute lists are created for the attributes to be added to the
directory.

First, initialize the public object object_class to contain the representation of the classes in the DIT that are
common to both organizational person entries, top, person, and organizational person:

/B Build up an array of object identifiers for the B/
/B attributes to be added to the directory. B/

static OM_descriptor object_class[] = {
 OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS),
 OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_TOP),
 OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_PERSON),
 OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_ORG_PERSON),
 OM_NULL_DESCRIPTOR
};

Next, initialize the public objects that represent the attributes to be added; surname and telephone for the
distinguished name of Brendan, surname2 and password for the distinguished name of Sinead:

static OM_descriptor telephone[] = {
 OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_PHONE_NBR),
 {DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("+49 89 636 H")},
 OM_NULL_DESCRIPTOR
};

static OM_descriptor surname[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_SURNAME),
 {DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("Moloney")},
 OM_NULL_DESCRIPTOR
};

static OM_descriptor surname2[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),

154 Application Development Guide: Directory Services

 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_SURNAME),
 {DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("Murphy")},
 OM_NULL_DESCRIPTOR
};

static OM_descriptor password[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_USER_PASSWORD),
 {DS_ATTRIBUTE_VALUES, OM_S_OCTET_STRING, OM_STRING("secret")},
 OM_NULL_DESCRIPTOR
};

Finally, initialize the public objects that represent the list of attributes to be added to the directory, attr_list1
for the distinguished name Brendan, and attr_list2 for the distinguished name Sinead:

static OM_descriptor attr_list1[] = {
 OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
 {DS_ATTRIBUTES, OM_S_OBJECT, {H, object_class} },
 {DS_ATTRIBUTES, OM_S_OBJECT, {H, surname} },
 {DS_ATTRIBUTES, OM_S_OBJECT, {H, telephone} },
 OM_NULL_DESCRIPTOR
};

static OM_descriptor attr_list2[] = {
 OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
 {DS_ATTRIBUTES, OM_S_OBJECT, {H, object_class} },
 {DS_ATTRIBUTES, OM_S_OBJECT, {H, surname2} },
 {DS_ATTRIBUTES, OM_S_OBJECT, {H, password} },
 OM_NULL_DESCRIPTOR
};

The attr_list1 variable contains the public objects surname and telephone, the C representations of the
attributes of the distinguished name /C=ie/O=sni/CN=Brendan that are added to the Directory. The
attr_list2 variable contains the public objects surname2 and password, the C representations of the
attributes of the distinguished name /C=ie/O=sni/CN=sinead.

Step 5: Perform the Operations

The following code fragments show the ds_add_entry(), ds_list(), and the ds_remove_entry() calls:

First, the two ds_add_entry() function calls add the attribute lists contained in attr_list1 and attr_list2 to
the distinguished names represented by dn_brendan and dn_sinead, respectively:

/B Add two entries to the GDS server. B/

if (ds_add_entry(bound_session, DS_DEFAULT_CONTEXT, dn_brendan, attr_list1, &invoke_id) != DS_SUCCESS)
 printf("ds_add_entry() error\n");

if (ds_add_entry(bound_session, DS_DEFAULT_CONTEXT, dn_sinead, attr_list2, &invoke_id) != DS_SUCCESS)
 printf("ds_add_entry() error\n");

Next, list all the subordinates of the object referenced by the distinguished name /C=ie/O=sni:.

if (ds_list(bound_session, DS_DEFAULT_CONTEXT, dn_sni, &result, &invoke_id) != DS_SUCCESS)
 printf("ds_list() error\n");

 Chapter 6. XDS Programming 155

The ds_list() call returns the result in the private object result to the workspace. The components of
result are represented by OM attributes in the OM class DS_C_LIST_RESULT (as shown in Figure 46 on
page 156) and can only be read by a series of om_get() calls.

Figure 46. OM Class DS_C_LIST_RESULT

Finally, remove the two entries from the directory:

if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT, dn_brendan, &invoke_id) != DS_SUCCESS)
 printf("ds_remove_entry() error\n");

if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT, dn_sinead, &invoke_id) != DS_SUCCESS)
 printf("ds_remove_entry() error\n");

156 Application Development Guide: Directory Services

 Return Codes

XDS API function calls return a value of type DS_status, the exception being ds_initialize() which returns
a value of type OM_workspace. If the function is successful, then DS_status returns with a value of
DS_SUCCESS. If the function does not complete successfully, then DS_status is set to either the error
constant DS_NO_WORKSPACE or a private object which is a subclass of DS_C_ERROR (described in
Chapter 11, “XDS Class Definitions” on page 241).

 Chapter 6. XDS Programming 157

158 Application Development Guide: Directory Services

Chapter 7. Example Application Programs

This chapter contains two sample programs and the header file that is included (in parentheses):

 � example.c (example.h)

 � teldir.c

Most of the concepts that you will need to know to understand and use these programs have been
discussed in previous chapters in Part 1, “Using the DCE Directory APIs.” The programs are arranged so
that the simplest program, example.c, is presented first, and the most complex program, teldir.c, is
presented last. The two programs demonstrate basic XDS and XOM API principles and concepts in
operation. The teldir.c program is considerably more complex and uses a more sophisticated approach.
It allows the user to enter values dynamically, for example, a surname and phone number.

The source code for these example programs is stored in the following directories:

 � example.c: /usr/lpp/dce/examples/xdsxom/example
 � teldir.c: /usr/lpp/dce/examples/xdsxom/teldir

General Programming Guidelines

Writing an application program using XDS and XOM APIs involves the following general steps before you
begin coding:

1. Select the interface functions that you will need for your application and determine the parameters for
the function calls.

2. Check for abstract OM classes and superclasses of objects you will manipulate for inherited OM
attributes in the X/Open Directory Service API (XDS) material found in Part 1, “Using the DCE
Directory APIs.”

3. Find the correct symbolic constants of appropriate packages; these can be found in the header files
included with the GDS API, such as xdsbdcp.h.

4. Determine the error handling required.

The example.c Program

The example.c program uses XDS API in synchronous mode to read a telephone number or numbers
from a directory entry with a given distinguished name. The program consists of the following general
steps:

1. Define the required object identifier constants.

2. Declare the variables involved with Directory Service operations.

3. Build the distinguished name of Peter Piper as a public object for the input parameter to ds_read().

4. Build a public object for the selection parameter to ds_read().

5. Declare the variables to extract the telephone numbers using om_get().

6. Initialize the directory service and get an OM workspace.

7. Pull in the required packages.

8. Bind to a default directory session.

 Copyright IBM Corp. 1994, 2001 159

9. Perform the read operation to extract the telephone number of a distinguished name from the
directory.

10. Terminate the Directory Service session.

11. Extract the telephone numbers using a series of om_get() calls.

12. Release the storage occupied by private and public objects that are no longer needed.

13. Print the telephone number string.

14. Release the storage occupied by the public objects containing telephone numbers.

15. Do application-specific processing.

16. Shut down the directory service OM workspace.

17. Exit the program.

Note: The steps you follow are highlighted in bold so that you can follow the sequence as you examine
the example.c program.

Step 1 uses the OM_EXPORT macro to allocate memory for the object identifier constants that represent
an OM class or OM attribute. These constants are the OM attribute values that are used to build the
public objects that are required as input to ds_read().

Step 2 declares the variables for Directory Service operations and error handling. The session and
workspace variables are required for binding a session to a server and creating a workspace into which
ds_read() can deposit the results of the read operation on the directory.

The result variable is a pointer that is returned by ds_read() to the workspace. The information stored in
result is in implementation-specific private format not accessible directly by the application program.
Subsequent om_get() calls extract the telephone numbers requested by the program from result and
store the information in the variable telephones (declared in Step 5).

The error and return_code variables are used by the program for error handling. The error variable is
used for processing the return code from XDS API function calls. The return_code is used by the error
handling in header file example.h for processing return codes from om_get() function calls.

Step 3 builds the public object representing the distinguished name of Peter Piper. The program uses
statically defined public objects to demonstrate the basic principles of building public objects. The name
built differs depending on whether a DNS or an X.500-style cell name is in effect. (This is controlled by the
CELLNAME_TYPE pre-processor directive.) A more sophisticated approach is presented in another
example program, teldir.c. The teldir.c program dynamically defines a public object from a user-supplied
name in DCE string format.

In this program (example.c), the process starts with the definition of an array of descriptor lists as AVAs.
These AVAs are public objects that are included in the definition of RDNs. The RDNs, in turn, are
included in the distinguished name of Peter Piper stored in name.

Using the same method of static definition, Step 4 defines the DS_C_ENTRY_INFO_SELECTION public
object and stores it in the variable, selection. The name and selection variables are required as input
parameters to ds_read(). This process is described in detail in Chapter 6, “XDS Programming” on
page 137.

Step 5 declares the variables required by om_get() to extract the telephone numbers from result. The
entry_list, attributes_list, and telephone_list variables are of type OM_type and are initialized to the
values of OM attribute types: DS_ENTRY, DS_ATTRIBUTES, and DS_ATTRIBUTE_VALUES,
respectively. DS_ENTRY contains the selected list of entries; DS_ATTRIBUTES contains the selected list
of attribute types; and DS_ATTRIBUTE_VALUES contains the actual values of the telephone numbers.

160 Application Development Guide: Directory Services

The entry, attributes, and telephones variables are of type OM_public_object because they store the
output parameters of om_get(). The om_get() call makes these objects available to the application
program as public object data types. The program must remove layers of objects and subobjects to get at
the actual string data values of the telephone numbers. Another example program, teldir2.c, provides an
alternative to using om_get to remove layers of objects: it uses the XOM Convenience routines.

The telephones variable contains the actual string values of the telephone numbers. It is a descriptor in
the array of descriptors that make up the public object that contains the actual string data that the program
wants to extract from the directory.

Step 6 initializes the Directory Service and gets an OM workspace in which ds_read() deposits the result
of the read operation.

Step 7 pulls in the Basic Directory Contents Package into the program because it contains features that
are required by the program and not included in the default package (the Directory Service Package).

Step 8 binds the session to the default session. An application program can bind with a specifically
tailored session object using an instance of OM class DS_C_SESSION. In most cases, however, it is
sufficient to use the constant DS_DEFAULT_SESSION. DS_DEFAULT_SESSION uses the default
values of the OM class DS_C_SESSION.

Step 9 performs the read operation and deposits the result in the workspace in result. The result
variable is one of the input parameters for the om_get() function call. The session and
DS_DEFAULT_CONTEXT constant are the session and context parameters required to be present in the
ds_read() function call.

The name holds the public object representing the distinguished name of Peter Piper, and the selection
variable contains the public object indicating which attributes and values are to be selected by the read
operation from the entry. The invoke_id parameter is not used by the DCE-implementation of XDS API
and is ignored.

Step 10 terminates the directory session.

Step 11 uses a series of om_get() calls to extract the telephone numbers. The first om_get() extracts the
information about the entry from result and puts it in entry. The second om_get() extracts the attribute
types from entry and puts them in attributes. The third om_get() extracts the actual values of the
telephone numbers from attributes and puts them in telephones. The telephones variable contains the
string data values of the telephone numbers.

Step 12 releases the storage occupied by the private and public objects that are no longer needed. The
program has the data values in telephones that it needs to continue processing.

Step 13 prints out each telephone number associated with the distinguished name Peter Piper in the
directory, or returns an error message if the number is not in the correct format. It checks for an attribute
with type DS_ATTRIBUTE_VALUES.

Step 14 releases the storage occupied by telephones because it is no longer needed.

In Step 15 shows where application-specific processing can occur.

In Step 16 a ds_shutdown() is issued that shuts down the interface established by ds_initialize().

Step 17 continues processing and exits.

 Chapter 7. Example Application Programs 161

The example.c Code

The following code is a listing of the example.c program:

/B
 B Default this example to use a DNS style cell name.
 B/

#define DNS_TYPE 1
#define GDS_TYPE 2
#ifndef CELLNAME_TYPE
 #define CELLNAME_TYPE DNS_TYPE
#endif

#if CELLNAME_TYPE == DNS_TYPE
 #ifndef DNS_CELLNAME
 #define DNS_CELLNAME "cellname"
 #endif
#else
 #ifndef GDS_CELLNAME_C
 #define GDS_CELLNAME_C "US"
 #endif
 #ifndef GDS_CELLNAME_O

#define GDS_CELLNAME_O "Acme Pepper Co"
 #endif
 #ifndef GDS_CELLNAME_OU

#define GDS_CELLNAME_OU "Research"
 #endif
#endif

#ifndef CDS_DIR_NAME
 #define CDS_DIR_NAME "PhoneBook"
#endif
#ifndef CDS_OBJ_NAME
 #define CDS_OBJ_NAME "Peter Piper"
#endif

/B
 B sample application that uses XDS in synchronous mode
 B
 B This program reads the telephone number(s) of a given target name.
 B/

#ifdef THREADSAFE
 #include <pthread.h>
#endif
#include <stdio.h>

#include <xom.h>
#include <xds.h>
#include <xdsbdcp.h>
#include <xdscds.h>

#include "example.h" /B possible Error Handling header B/

/B Step 1
 B

162 Application Development Guide: Directory Services

 B Define necessary Object Identifier constants
 B/
OM_EXPORT(DSX_TYPELESS_RDN)
#if CELLNAME_TYPE == GDS_TYPE
 OM_EXPORT(DS_A_COUNTRY_NAME)
 OM_EXPORT(DS_A_ORG_NAME)
 OM_EXPORT(DS_A_ORG_UNIT_NAME)
#endif
OM_EXPORT(DS_A_PHONE_NBR)
OM_EXPORT(DS_C_AVA)
OM_EXPORT(DS_C_DS_DN)
OM_EXPORT(DS_C_DS_RDN)
OM_EXPORT(DS_C_ENTRY_INFO_SELECTION)

/B Step 2 B/

int main(void)
{
 DS_status error; /B return value from DS functions B/
 OM_return_code return_code; /B return value from OM functions B/
 OM_workspace workspace; /B workspace for objects B/
 OM_private_object session; /B session for directory operations B/
 OM_private_object result; /B result of read operation B/
 OM_sint invoke_id; /B Invoke-ID of the read operation B/
 OM_value_position total_num; /B Number of Attribute Descriptors B/

static DS_feature bdcp_package[] = {
{ OM_STRING(OMP_O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE },
 { { (OM_uint32)H, (void B)H }, OM_FALSE },
 };

/B Step 3
 B
 B Public Object ("Descriptor List") for Name argument to ds_read().
 B Build the Distinguished-Name of the form
 B /.../<cellname>/<cds_dir_name>/<cds_obj_name>
 B/

#if CELLNAME_TYPE == DNS_TYPE

static OM_descriptor cellname[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_TYPELESS_RDN),
 { DS_ATTRIBUTE_VALUES,OM_S_PRINTABLE_STRING | OM_S_LOCAL_STRING,
 OM_STRING(DNS_CELLNAME) },
 OM_NULL_DESCRIPTOR
 };

static OM_descriptor directory_name[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_TYPELESS_RDN),
 { DS_ATTRIBUTE_VALUES,OM_S_TELETEX_STRING | OM_S_LOCAL_STRING,
 OM_STRING(CDS_DIR_NAME) },
 OM_NULL_DESCRIPTOR
 };

static OM_descriptor object_name[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),

 Chapter 7. Example Application Programs 163

 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_TYPELESS_RDN),
 { DS_ATTRIBUTE_VALUES,OM_S_TELETEX_STRING | OM_S_LOCAL_STRING,
 OM_STRING(CDS_OBJ_NAME) },
 OM_NULL_DESCRIPTOR
 };

static OM_descriptor rdn1[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
 { DS_AVAS, OM_S_OBJECT, { H, cellname } },
 OM_NULL_DESCRIPTOR
 };

static OM_descriptor rdn2[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
 { DS_AVAS, OM_S_OBJECT, { H, directory_name } },
 OM_NULL_DESCRIPTOR
 };

static OM_descriptor rdn3[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
 { DS_AVAS, OM_S_OBJECT, { H, object_name } },
 OM_NULL_DESCRIPTOR
 };

OM_descriptor name[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_DN),
 { DS_RDNS, OM_S_OBJECT, { H, rdn1 } },
 { DS_RDNS, OM_S_OBJECT, { H, rdn2 } },
 { DS_RDNS, OM_S_OBJECT, { H, rdn3 } },
 OM_NULL_DESCRIPTOR
 };

#else

static OM_descriptor country[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),
 { DS_ATTRIBUTE_VALUES,OM_S_PRINTABLE_STRING | OM_S_LOCAL_STRING,
 OM_STRING(GDS_CELLNAME_C) },
 OM_NULL_DESCRIPTOR
 };

static OM_descriptor organization[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_NAME),
 { DS_ATTRIBUTE_VALUES,OM_S_TELETEX_STRING | OM_S_LOCAL_STRING,
 OM_STRING(GDS_CELLNAME_O) },
 OM_NULL_DESCRIPTOR
 };

static OM_descriptor organizational_unit[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_UNIT_NAME),
 { DS_ATTRIBUTE_VALUES,OM_S_TELETEX_STRING | OM_S_LOCAL_STRING,
 OM_STRING(GDS_CELLNAME_OU) },
 OM_NULL_DESCRIPTOR
 };

static OM_descriptor directory_name[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_TYPELESS_RDN),
 { DS_ATTRIBUTE_VALUES,OM_S_TELETEX_STRING | OM_S_LOCAL_STRING,
 OM_STRING(CDS_DIR_NAME) },

164 Application Development Guide: Directory Services

 OM_NULL_DESCRIPTOR
 };

static OM_descriptor object_name[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_TYPELESS_RDN),
 { DS_ATTRIBUTE_VALUES,OM_S_TELETEX_STRING | OM_S_LOCAL_STRING,
 OM_STRING(CDS_OBJ_NAME) },
 OM_NULL_DESCRIPTOR
 };

static OM_descriptor rdn1[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
 { DS_AVAS, OM_S_OBJECT, { H, country } },
 OM_NULL_DESCRIPTOR
 };

static OM_descriptor rdn2[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
 { DS_AVAS, OM_S_OBJECT, { H, organization } },
 OM_NULL_DESCRIPTOR
 };

static OM_descriptor rdn3[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
 { DS_AVAS, OM_S_OBJECT, { H, organizational_unit } },
 OM_NULL_DESCRIPTOR
 };

static OM_descriptor rdn4[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
 { DS_AVAS, OM_S_OBJECT, { H, directory_name } },
 OM_NULL_DESCRIPTOR
 };

static OM_descriptor rdn5[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
 { DS_AVAS, OM_S_OBJECT, { H, object_name } },
 OM_NULL_DESCRIPTOR
 };

OM_descriptor name[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_DN),
 { DS_RDNS, OM_S_OBJECT, { H, rdn1 } },
 { DS_RDNS, OM_S_OBJECT, { H, rdn2 } },
 { DS_RDNS, OM_S_OBJECT, { H, rdn3 } },
 { DS_RDNS, OM_S_OBJECT, { H, rdn4 } },
 { DS_RDNS, OM_S_OBJECT, { H, rdn5 } },
 OM_NULL_DESCRIPTOR
 };

#endif

/B Step 4 B/

 /B
 B

B Public Object ("Descriptor List") for
B for Entry-Information-Selection argument to ds_read().

 B/
 OM_descriptor selection[] = {
 OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),

 Chapter 7. Example Application Programs 165

{ DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, { OM_FALSE, NULL } },
 OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A_PHONE_NBR),

{ DS_INFO_TYPE,OM_S_ENUMERATION, { DS_TYPES_AND_VALUES,NULL } },
 OM_NULL_DESCRIPTOR
 };

/B Step 5 B/

 /B
B variables to extract the telephone number(s)

 B/
 OM_type entry_list[] = { DS_ENTRY, H };
 OM_type attributes_list[] = { DS_ATTRIBUTES, H };
 OM_type telephone_list[] = { DS_ATTRIBUTE_VALUES, H };
 OM_public_object entry;
 OM_public_object attributes;
 OM_public_object telephones;
 OM_descriptor Btelephone; /B current phone number B/

 /B
B Perform the Directory operations:
B (1) Initialize the Directory Service and get an OM workspace
B (2) bind a default directory session.
B (3) read the telephone number of "name".
B (4) terminate the directory session.

 B/

/B Step 6 B/
 CHECK_DS_CALL((OM_object) !(workspace=ds_initialize()));

/B Step 7 B/
 CHECK_DS_CALL(ds_version(bdcp_package, workspace));

/B Step 8 B/
CHECK_DS_CALL(ds_bind(DS_DEFAULT_SESSION, workspace, &session));

/B Step 9 B/
CHECK_DS_CALL(ds_read(session, DS_DEFAULT_CONTEXT, name, selection,

 &result, &invoke_id));
 /B

B NOTE: should check here for Attribute-Error (no-such-attribute)
B in case the "name" doesn't have a telephone.
B Then for all other cases call error_handler

 B/

/B Step 1� B/
 CHECK_DS_CALL(ds_unbind(session));

/B Step 11 B/

 /B
B extract the telephone number(s) of "name" from the result

 B
B There are 4 stages:
B (1) get the Entry-Information from the Read-Result.
B (2) get the Attributes from the Entry-Information.
B (3) get the list of phone numbers.
B (4) scan the list and print each number.

166 Application Development Guide: Directory Services

 B/

 CHECK_OM_CALL(om_get(result,
 OM_EXCLUDE_ALL_BUT_THESE_TYPES
 + OM_EXCLUDE_SUBOBJECTS,

entry_list, OM_FALSE, H, H, &entry,
 &total_num));

 CHECK_OM_CALL(om_get(entry->value.object.object,
 OM_EXCLUDE_ALL_BUT_THESE_TYPES
 + OM_EXCLUDE_SUBOBJECTS,

attributes_list, OM_FALSE, H, H,
 &attributes, &total_num));

 CHECK_OM_CALL(om_get(attributes->value.object.object,
 OM_EXCLUDE_ALL_BUT_THESE_TYPES
 + OM_EXCLUDE_SUBOBJECTS,

telephone_list, OM_TRUE, H, H,
 &telephones, &total_num));

/B Step 12 B/

/B We can now safely release all the private objects
B and the public objects we no longer need

 B/
 CHECK_OM_CALL(om_delete(session));
 CHECK_OM_CALL(om_delete(result));
 CHECK_OM_CALL(om_delete(entry));
 CHECK_OM_CALL(om_delete(attributes));

/B Step 13 B/

for (telephone = telephones;
telephone->type == DS_ATTRIBUTE_VALUES;

 telephone++)
 {

if ((telephone->type != DS_ATTRIBUTE_VALUES)
|| ((telephone->syntax & OM_S_SYNTAX) != OM_S_PRINTABLE_STRING

&& (telephone->syntax & OM_S_SYNTAX) != OM_S_TELETEX_STRING
)
)
 {

(void) fprintf(stderr, "malformed telephone number\n");
 exit(EXIT_FAILURE);
 }

 telephone->value.string.length,
 telephone->value.string.elements);
 }

/B Step 14 B/

 CHECK_OM_CALL(om_delete(telephones));

/B Step 15 B/

/B more application-specific processing can occur here...
 B/

 Chapter 7. Example Application Programs 167

/B Step 16 B/

/B We're done with all service generated public objects
B and done with the workspace

 B/
 CHECK_DS_CALL(ds_shutdown(workspace));

/B Step 17 B/

/B ... and finally exit. B/
 exit(EXIT_SUCCESS);
}

 Error Handling

The example.c program includes the header file example.h for error handling of XDS and XOM API
function calls. The example.h program contains two error handling functions: CHECK_DS_CALL for
handling XDS API errors and CHECK_OM_CALL for handling XOM API errors. Note that
CHECK_DS_CALL and CHECK_OM_CALL are created specifically for example.c and are not part of the
XDS or XOM APIs. They are included to demonstrate a possible method for error handling.

XDS and XOM API functions return a status code. In example.c, error contains the status code for XDS
API functions. If the call is successful, the function returns DS_SUCCESS. Otherwise, one of the error
codes described in “XDS Errors” on page 241 is returned.

The return_code variable contains the status code for XOM API functions. If the call is successful, the
function returns OM_SUCCESS. Otherwise, one of the error codes described in Chapter 18, “XOM
Service Interface” on page 331 is returned.

The contents of example.h are as follows:

#ifndef _EXAMPLE_H
#define _EXAMPLE_H

#ifdef __cplusplus
extern "C" {
#endif

/B
 B define some convenient exit codes
 B/

#define EXIT_FAILURE 1
#define EXIT_SUCCESS H

/B
 B declare an error handling function and
 B an error checking macro for DS
 B/

void handle_ds_error(DS_status error);

#define CHECK_DS_CALL(function_call) \
error = (function_call) \
if (error != DS_SUCCESS) \

168 Application Development Guide: Directory Services

 handle_ds_error(error);

/B
 B declare an error handling function and
 B an error checking macro for OM
 B/

void handle_om_error(OM_return_code return_code);

#define CHECK_OM_CALL(function_call) \
return_code = (function_call) \
if (return_code != OM_SUCCESS) \

 handle_om_error(return_code);

/B
 B the error handling code
 B
 B NOTE: any errors arising in these functions are ignored.
 B/

void handle_ds_error(DS_status error)
{

(void) fprintf(stderr, "DS error has occurred\n");

(void) om_delete((OM_object) error);

/B At this point, the error has been reported and storage cleaned
B up, so the handler could return to the main program now for it
B to take recovery action. But we choose the simple option ...

 B/

 exit(EXIT_FAILURE);
}

void handle_om_error(OM_return_code return_code)
{

(void) fprintf(stderr, "OM error %d has occurred\n", return_code);

/B At this point, the error has been reported and storage cleaned up,
B so the handler could return to the main program now for it to take
B recovery action. But we choose the simple option ...

 B/

 exit(EXIT_FAILURE);
}

#ifdef __cplusplus
}
#endif

#endif /B _EXAMPLE_H B/

 Chapter 7. Example Application Programs 169

The teldir.c Program

The sample program teldir.c permits a user to add, read, or delete entries in a CDS or GDS namespace
in any local or remote DCE cell (assuming that proper permissions have been granted to the user of the
program). The entry consists of a person’s surname and phone number. Each entry is of class
Organizational Person.

The program uses predefined static XDS public objects that are never altered, and partially defined static
XDS public objects so the user can dynamically enter values for the surname and phone number. It also
uses dynamic XDS public objects that are created and filled only as needed using the stringToXdsName
function. These techniques are a departure from the ones used in the first sample program where all
objects are predefined.

Predefined Static Public Objects

The predefined static object classes and attributes are shown in the following code fragment:

/B
 B To hold the attributes we want to attach to the name being added.
 B One attribute is the class of the object (DS_O_ORG_PERSON), the
 B rest of the attributes are the surname (required for all objects
 B of class DS_O_ORG_PERSON) and phone number. In addition, we need
 B an object to hold all this information to pass it into ds_add_entry().
 B/
static OM_descriptor xdsObjectClass[] = {

/B This object is an attribute--an object class. B/
 OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS),

/B List the class. It will inherit its superclasses B/
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_ORG_PERSON),

/B Null terminator B/
 OM_NULL_DESCRIPTOR
};
static OM_descriptor xdsAttributesToAdd[] = {

/B This object is an attribute list. B/
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),

/B These are "pointers" to the attributes in the list. B/
{ DS_ATTRIBUTES, OM_S_OBJECT, { H, xdsObjectClass } },
{ DS_ATTRIBUTES, OM_S_OBJECT, { H, xdsSurname } },
{ DS_ATTRIBUTES, OM_S_OBJECT, { H, xdsPhoneNum } },

/B Null terminator B/
 OM_NULL_DESCRIPTOR
};

/B
 B To hold the list of attributes we want to read.
 B/
static OM_descriptor xdsAttributeSelection[] = {

/B This is an entry information selection. B/

170 Application Development Guide: Directory Services

OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),

/B Get all attributes. B/
{ DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, OM_TRUE },

/B These are the ones we want to read. B/
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A_SURNAME),
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A_PHONE_NBR),

/B Give us both the types and their values. B/
{ DS_INFO_TYPE, OM_S_ENUMERATION, { DS_TYPES_AND_VALUES, NULL } },

/B Null terminator B/
 OM_NULL_DESCRIPTOR
};

Partially Defined Static Public Objects

The program partially defines static XDS objects with placeholders so that values for the surname and
telephone number entered by the user can be added later, as shown in the following code fragment:

static OM_descriptor xdsSurname[] = {

/B This object is an attribute--a surname. B/
 OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),

OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_SURNAME),

/B No default--so we need a place holder for the actual surname. B/
 OM_NULL_DESCRIPTOR,

/B Null terminator B/
 OM_NULL_DESCRIPTOR
};

static OM_descriptor xdsPhoneNum[] = {

/B This object is an attribute--a telephone number. B/
 OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),

OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_PHONE_NBR),

/B By default, phone numbers are unlisted. If the user specifies B/
/B an actual phone number, it will go into this position. B/
{ DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING|OM_S_LOCAL_STRING, OM_STRING("unlisted") },

/B Null terminator B/
 OM_NULL_DESCRIPTOR
};

The program prompts the user for the surname of the person whose number will be changed and uses the
FILL_OMD_STRING macro to fill in values, as shown in the following code fragment:

if (operation == 'a') { /B add operation requires additional input B/
 /B

B Get the person's real name from the user and place it in the
B XDS object already defined at the top of the program (xdsSurname).
B We are requiring a name, so we will loop until we get one.

 Chapter 7. Example Application Programs 171

 B/
 do {

printf("What is this person's surname? ");
gets(newSurname);
} while (BnewSurname == '\H');
FILL_OMD_STRING(xdsSurname, 2, DS_ATTRIBUTE_VALUES,

OM_S_TELETEX_STRING|OM_S_LOCAL_STRING, newSurname)

Dynamically Defined Public Objects

The program uses the function stringToXdsName to convert the DCE name entered by a user into an
XDS name object of OM class DS_C_DS_DN, which is the representation of a distinguished name. In the
other example program, example.c, arrays of descriptor lists are statically declared to represent the AVAs
and RDNs that make up the public object that represents a distinguished name. The function
stringToXdsName parses the DCE name and dynamically converts it to a public object.

For example, the following code fragment shows how space for a DS_C_AVA object is allocated and its
entries are filled using the FILL_OMD_XOM_STRING and FILL_OMD_NULL macros:

 /B
B Allocate space for a DS_C_AVA object and fill in its entries:
B DS_C_AVA class identifier

 B AVA's type
 B AVA's value
 B null terminator
 B/

ava = (OM_descriptor B)malloc(sizeof(OM_descriptor) B 4);
if(ava == NULL) /B malloc() failed B/

 return OM_MEMORY_INSUFFICIENT;
FILL_OMD_XOM_STRING(ava, H, OM_CLASS, OM_S_OBJECT_IDENTIFIER_STRING,

 DS_C_AVA)
splitNamePiece(start, &type, &value);
FILL_OMD_XOM_STRING(ava, 1, DS_ATTRIBUTE_TYPE, OM_S_OBJECT_IDENTIFIER_STRING,

 type)
FILL_OMD_STRING(ava, 2, DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING|OM_S_LOCAL_STRING,

 value)
FILL_OMD_NULL(ava, 3)

The program uses the same method to build the RDNs that make up the distinguished name. The
distinguished name is NULL terminated using the FILL_OMD_NULL macro and the location of the new
public object is provided for the calling routine (main) in the pointer xdsNameObj, as shown in the
following code fragment:

/B Add the DS_C_RDN object to the DS_C_DS_DN object. B/
FILL_OMD_STRUCT(dsdn, index, DS_RDNS, OM_S_OBJECT, rdn)

 }

 /B
B Null terminate the DS_C_DS_DN, tell the calling routine
B where to find it, and return.

 B/
FILL_OMD_NULL(dsdn, index)
BxdsNameObj = dsdn;
return(OM_SUCCESS);

} /B end stringToXdsName() B/

172 Application Development Guide: Directory Services

Main Program Procedural Steps

The program consists of the following general steps:

1. Examine the command-line argument to determine the type of operation (read, add, or delete entry)
that the user wants to perform.

2. Initialize a workspace.

3. Pull in the packages with the required XDS features.

4. Prompt the user for the name entry on which the operation will be performed.

5. Convert the DCE-formatted user input string to an XDS object name.

6. Bind (without credentials) to the default server.

7. Perform the requested operation (read, add, or delete entry).

8. Unbind from the server.

9. Shutdown the workspace, releasing resources back to the system.

Note: The steps that follow are highlighted in bold so that you can follow the sequence as you examine
the teldir.c program.

Step 1 simply involves determining which of the three options: r (read), a (add), or d (delete) the user has
entered. Step 2 initializes a workspace, an operation required by XDS API for every application program.
Step 3 is required because additional features not present in the Directory Service Package need to be
used by the application program. An additional package, the Basic Directory Contents Package, is defined
in featureList, as a static XDS object earlier in the program.

In Step 4, the user is prompted for the DCE-formatted name, which is the distinguished name of the
person on whose telephone number the operation is to be performed. The name must be a fully or
partially qualified name that begins with either the /... or /.: prefix. An example of a fully qualified, or
global, name is /.../C=de/O=sni/OU=ap/CN=klaus. An example of a partially qualified, or cell, name is
/.:/brad/sni/com. Additional information is requested in Step 5 if the user requests an add operation.

Step 5 converts the DCE-formatted name to an XDS object name (public object) using the
stringToXdsName function call. This function builds an XDS public object that represents the
distinguished name entered by the user.

Step 6 binds the session to the default server without credentials; user name and password are not
required.

In Step 7, the requested operation is performed using XDS API functions calls. For an add operation,
ds_add_entry() is performed; for a read operation, ds_read() is performed; and for a delete operation,
ds_remove_entry() is performed. The read operation requires a series of XOM API om_get() function
calls to extract the surname and phone number from the workspace. This is performed inside the
extractValue() function. (For a detailed description of the XDS and XOM API function calls, refer to z/OS
DCE Application Development Reference.

Step 8 and Step 9 are required for every XDS API application program in order to clean up before the
program exits. The session is unbound from the server, and the public and private objects are released to
the system that provided the memory allocated for them.

 Chapter 7. Example Application Programs 173

The teldir.c Code

The following is a listing of the file teldir.c:

/B
 B This sample program behaves like a simple telephone directory.
 B It permits a user to add, read or delete entries in a GDS
 B namespace or to a CDS namespace in any local or remote DCE cell
 B (assuming that permissions are granted by the ACLs).
 B
 B Each entry is of class Organizational-Person and simply contains
 B a person's surname and their phone number.
 B
 B The addition of an entry is followed by a read to verify that the
 B information was entered properly.
 B
 B All valid names should begin with one of the following symbols:
 B /... Fully qualified name (from global root).
 B e.g. /.../C=de/O=sni/OU=ap/CN=klaus
 B
 B /.: Partially qualified name (from local cell root).
 B e.g. /.:/brad/sni/com
 B
 B This program demonstrates the following techniques:
 B - Using completely static XDS public objects (pre-defined at the top
 B of the program and never altered). See xdsObjectClass,
 B xdsAttributesToAdd, and xdsAttributeSelection below.
 B - Using partially static XDS public objects (pre-defined at the top
 B of the program but altered later). See xdsSurname and xdsPhoneNum
 B below. See also the macros whose names begin with "FILL_OMD_".
 B - Using dynamic XDS public objects (created and filled in only as
 B needed). See the function stringToXdsName() below.
 B - Parsing DCE-style names and converting them into XDS objects. See
 B the function stringToXdsName() below.
 B - Getting the value of an attribute from an object read from the
 B namespace using ds_read(). See the function extractValue() below.
 B - Getting the numeric value of an error (type DS_status) returned by
 B one of the XDS calls. See the function handleDSError() below.
 B/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <xom.h>
#include <xds.h>
#include <xdsbdcp.h>
#include <xdsgds.h>
#include <xdscds.h>

OM_EXPORT(DS_A_COMMON_NAME)
OM_EXPORT(DS_A_COUNTRY_NAME)
OM_EXPORT(DS_A_LOCALITY_NAME)
OM_EXPORT(DS_A_OBJECT_CLASS)
OM_EXPORT(DS_A_ORG_UNIT_NAME)
OM_EXPORT(DS_A_ORG_NAME)
OM_EXPORT(DS_A_SURNAME)
OM_EXPORT(DS_A_PHONE_NBR)

174 Application Development Guide: Directory Services

OM_EXPORT(DS_A_TITLE)
OM_EXPORT(DS_C_ATTRIBUTE)
OM_EXPORT(DS_C_ATTRIBUTE_LIST)
OM_EXPORT (DS_A_STATE_OR_PROV_NAME)
OM_EXPORT(DS_C_AVA)
OM_EXPORT(DS_C_DS_DN)
OM_EXPORT(DS_C_DS_RDN)
OM_EXPORT(DS_C_ENTRY_INFO_SELECTION)
OM_EXPORT(DS_O_ORG_PERSON)
OM_EXPORT(DS_O_PERSON)
OM_EXPORT(DS_O_TOP)
OM_EXPORT(DSX_TYPELESS_RDN) /B For "typeless" pieces of a name, as B/

/B found in cells with bind-style names B/
/B and in the CDS namespace. B/

#define MAX_NAME_LEN 1H24

/B These values can be found in the Chapter
"Directory Class Definitions". B/

/B (One byte must be added for the null terminator.) B/
#define MAX_PHONE_LEN 33
#define MAX_SURNAME_LEN 66

/BBB
 B Macros for help filling in static XDS objects.
 BBB/
/B Put NULL value (equivalent to OM_NULL_DESCRIPTOR) in object B/
#define FILL_OMD_NULL(desc, index) \

desc[index].type = OM_NO_MORE_TYPES; \
desc[index].syntax = OM_S_NO_MORE_SYNTAXES; \
desc[index].value.object.padding = H; \
desc[index].value.object.object = OM_ELEMENTS_UNSPECIFIED;

/B Put C-style (null-terminated) string in object B/
#define FILL_OMD_STRING(desc, index, typ, syntx, val) \

desc[index].type = typ; \
desc[index].syntax = syntx; \
desc[index].value.string.length = strlen(val); \
desc[index].value.string.elements = val;

/B Put XOM string in object B/
#define FILL_OMD_XOM_STRING(desc, index, typ, syntx, val) \

desc[index].type = typ; \
desc[index].syntax = syntx; \
desc[index].value.string.length = val.length; \
desc[index].value.string.elements = val.elements;

/B Put other value in object B/
#define FILL_OMD_STRUCT(desc, index, typ, syntx, val) \

desc[index].type = typ; \
desc[index].syntax = syntx; \
desc[index].value.object.padding = H; \
desc[index].value.object.object = val;

/BBB
 B Static XDS objects.
 BBB/
/B

 Chapter 7. Example Application Programs 175

 B To identify which packages we need for this program. We only need
 B the basic package because we are not doing anything fancy with
 B session parameters, etc.
 B/
DS_feature featureList[] = {

{ OM_STRING(OMP_O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE },
{ H }

};

/B
 B To hold the attributes we want to attach to the name being added.
 B One attribute is the class of the object (DS_O_ORG_PERSON), the
 B rest of the attributes are the surname (required for all objects
 B of class DS_O_ORG_PERSON) and phone number. In addition, we need
 B an object to hold all this information to pass it into ds_add_entry().
 B/
static OM_descriptor xdsObjectClass[] = {

/B This object is an attribute--an object class. B/
 OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS),

/B List the class. It will inherit its superclasses B/
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_ORG_PERSON),

/B Null terminator B/
 OM_NULL_DESCRIPTOR
};

static OM_descriptor xdsSurname[] = {

/B This object is an attribute--a surname. B/
 OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),

OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_SURNAME),

/B No default--so we need a place holder for the actual surname. B/
 OM_NULL_DESCRIPTOR,

/B Null terminator B/
 OM_NULL_DESCRIPTOR
};

static OM_descriptor xdsPhoneNum[] = {

/B This object is an attribute--a telephone number. B/
 OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),

OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_PHONE_NBR),

/B By default, phone numbers are unlisted. If the user specifies B/
/B an actual phone number, it will go into this position. B/
{ DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING | OM_S_LOCAL_STRING,

OM_STRING("unlisted") },

/B Null terminator B/
 OM_NULL_DESCRIPTOR
};

static OM_descriptor xdsAttributesToAdd[] = {

176 Application Development Guide: Directory Services

/B This object is an attribute list. B/
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),

/B These are "pointers" to the attributes in the list. B/
{ DS_ATTRIBUTES, OM_S_OBJECT, { H, xdsObjectClass } },
{ DS_ATTRIBUTES, OM_S_OBJECT, { H, xdsSurname } },
{ DS_ATTRIBUTES, OM_S_OBJECT, { H, xdsPhoneNum } },

/B Null terminator B/
 OM_NULL_DESCRIPTOR
};

/B
 B To hold the list of attributes we want to read.
 B/
static OM_descriptor xdsAttributeSelection[] = {

/B This is an entry information selection. B/
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),

/B Get all attributes. B/
{ DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, OM_TRUE },

/B These are the ones we want to read. B/
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A_SURNAME),
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A_PHONE_NBR),

/B Give us both the types and their values. B/
{ DS_INFO_TYPE, OM_S_ENUMERATION, DS_TYPES_AND_VALUES },

/B Null terminator B/
 OM_NULL_DESCRIPTOR
};

/BB
 B showUsage()
 B Display "usage" information.
 BBB/
void
showUsage(

char B cmd /B In--Name of command being called B/
)
{

fprintf(stderr, "\nusage: %s [option]\n\n", cmd);
fprintf(stderr, "option: a : add an entry\n");
fprintf(stderr, " r : read an entry\n");
fprintf(stderr, " d : delete an entry\n");

} /B end showUsage() B/

/BBB
 B numNamePieces()
 B Returns the number of pieces in a string name.

 Chapter 7. Example Application Programs 177

 BB/
int
numNamePieces(

char B string /B In--String whose pieces are to be counted B/
)
{

int count; /B Number of pieces found B/
char B currSep; /B Pointer to separator between pieces B/

if(string == NULL) /B If nothing there, no pieces B/
return(H);
count = 1; /B Otherwise, there's at least one B/

 /B
B If the first character is a /, it's not really separating
B two pieces so we want to ignore it here.

 B/
if(Bstring == '/')
currSep = string + 1;

 else
currSep = string;

/B How many pieces are there? B/
while((currSep = strchr(currSep, '/')) != NULL) {

 count++;
currSep++; /B Begin at next character B/

 }

return(count);

} /B end numNamePieces() B/

/BB
 B splitNamePiece()
 B Divides a piece of a name (string) into its XDS attribute type
 B and value.
 BB/
void
splitNamePiece(

char B string, /B In--String to be broken down B/
OM_string B type, /B Out--XDS type of this piece of the name B/
char BB value /B Out--Pointer to beginning of the value part B/

) /B of string B/
{

char B equalSign; /B Location of the = within string B/

 /B
B If the string contains an equal sign, this is probably a
B typed name. Check for all the attribute types allowed by
B the default schema.

 B/
if((equalSign = strchr(string, '=')) != NULL) {

Bvalue = equalSign + 1;

if((strncmp(string, "C=", 2) == H) ||
(strncmp(string, "c=", 2) == H))

178 Application Development Guide: Directory Services

Btype = DS_A_COUNTRY_NAME;

else if((strncmp(string, "O=", 2) == H) ||
(strncmp(string, "o=", 2) == H))

Btype = DS_A_ORG_NAME;

else if((strncmp(string, "OU=", 3) == H) ||
(strncmp(string, "ou=", 3) == H))

Btype = DS_A_ORG_UNIT_NAME;

else if((strncmp(string, "LN=", 3) == H) ||
(strncmp(string, "ln=", 3) == H))

Btype = DS_A_LOCALITY_NAME;

else if((strncmp(string, "CN=", 3) == H) ||
(strncmp(string, "cn=", 3) == H))

Btype = DS_A_COMMON_NAME;

else if((strncmp(string, "S=", 2) == H) ||
(strncmp(string, "s=", 2) == H))

Btype = DS_A_STATE_OR_PROV_NAME;

 /B
B If this did not appear to be a type allowed by the
B default schema, consider the whole string as the
B value (whose type is "typeless").

 B/
 else {

Btype = DSX_TYPELESS_RDN;
Bvalue = string;

 }
 }

 /B
B If the string does not contain an equal sign, this is a
B typeless name.

 B/
 else {

Btype = DSX_TYPELESS_RDN;
Bvalue = string;

 }

} /B end splitNamePiece() B/

/BBB
 B extractValue()
 B Pulls the value of a particular attribute from a private object that
 B was received using ds_read().
 B Returns:
 B OM_SUCCESS If successful.
 B OM_NO_SUCH_OBJECT If no values for the attribute
 B were found.
 B other Any value returned by one of the
 B om_get() calls.
 BBB/
OM_return_code
extractValue(

 Chapter 7. Example Application Programs 179

OM_private_object object, /B In--Object to extract from B/
OM_string B attribute, /B In--Attribute to extract B/
char B value /B Out--Value found B/

)
{
 OM_public_object attrList;
 OM_public_object attrType;
 OM_public_object attrValue;
 OM_public_object entry;
 int i;
 OM_return_code omStatus;
 OM_value_position total;
 OM_value_position totalAttributes;

OM_type xdsIncludedTypes[] = { H, /B Place holder B/
H }; /B Null terminator B/

 /B
B Get the entry from the object returned by ds_read().

 B/
xdsIncludedTypes[H] = DS_ENTRY;
omStatus = om_get(object, /B Object to extract from B/

 OM_EXCLUDE_ALL_BUT_THESE_TYPES+OM_EXCLUDE_SUBOBJECTS,
/B Only want what is in B/
/B xdsIncludedTypes, don't B/
/B include subobjects B/

xdsIncludedTypes, /B What to get B/
OM_TRUE, /B Convert strings to local char set B/
OM_ALL_VALUES, /B Start with first value B/
OM_ALL_VALUES, /B End with last value B/
&entry, /B Put the entry here B/
&total); /B Put number of attribute B/

/B descriptors here B/
if(omStatus != OM_SUCCESS) {
fprintf(stderr, "om_get(entry) returned error %d\n", omStatus);
return(omStatus);

 }
if(total <= H) { /B Make sure something was returned B/

 fprintf(stderr,
"Number of descriptors returned by om_get(entry) was %d\n", total);

return(OM_NO_SUCH_OBJECT);
 }

 /B
B Get the attribute list from the entry.

 B/
xdsIncludedTypes[H] = DS_ATTRIBUTES;
omStatus = om_get(entry->value.object.object,

 OM_EXCLUDE_ALL_BUT_THESE_TYPES+OM_EXCLUDE_SUBOBJECTS,
xdsIncludedTypes, OM_TRUE, OM_ALL_VALUES,
OM_ALL_VALUES, &attrList, &totalAttributes);

if(omStatus != OM_SUCCESS) {
fprintf(stderr, "om_get(attrList) returned error %d\n", omStatus);
return(omStatus);

 }
if(totalAttributes <= H) { /B Make sure something was returned B/

 fprintf(stderr,
"Number of descriptors returned by om_get(attrList) was %d\n",

 total);

180 Application Development Guide: Directory Services

return(OM_NO_SUCH_OBJECT);
 }

 /B
B Search the list for the attribute with the proper type.

 B/
for(i = H; i < totalAttributes; i++) {

xdsIncludedTypes[H] = DS_ATTRIBUTE_TYPE;
omStatus = om_get((attrList+i)->value.object.object,

 OM_EXCLUDE_ALL_BUT_THESE_TYPES+OM_EXCLUDE_SUBOBJECTS,
xdsIncludedTypes, OM_TRUE, OM_ALL_VALUES,
OM_ALL_VALUES, &attrType, &total);

if(omStatus != OM_SUCCESS) {
fprintf(stderr, "om_get(attrType) [i = %d] returned error %d\n",

i, omStatus);
return(omStatus);

 }
if(total <= H) { /B Make sure something was returned B/

 fprintf(stderr,
"Number of descriptors returned by om_get(attrType) [i = %d] was %d\n",

i, total);
return(OM_NO_SUCH_OBJECT);

 }
if(strncmp(attrType->value.string.elements, attribute->elements,

attribute->length) == H)
break; /B If we found a match, quit looking. B/

 }
if(i == totalAttributes) { /B Verify that we found a match. B/

 fprintf(stderr,
"%s: extractValue() could not find requested attribute\n");

return(OM_NOT_PRESENT);
 }

 /B
B Get the attribute value from the corresponding item in the
B attribute list.

 B/
xdsIncludedTypes[H] = DS_ATTRIBUTE_VALUES;
omStatus = om_get((attrList+i)->value.object.object,

 OM_EXCLUDE_ALL_BUT_THESE_TYPES+OM_EXCLUDE_SUBOBJECTS,
xdsIncludedTypes, OM_TRUE, OM_ALL_VALUES,
OM_ALL_VALUES, &attrValue, &total);

if(omStatus != OM_SUCCESS) {
fprintf(stderr, "om_get(attrValue) returned error %d\n", omStatus);
return(omStatus);

 }
if(total <= H) { /B Make sure something was returned B/

 fprintf(stderr,
"Number of descriptors returned by om_get(attrValue) was %d\n", total);
return(OM_NO_SUCH_OBJECT);

 }

 /B
B Copy the value(s) into the buffer for return to the caller.

 B/
 for(i=H;;) {

strncpy(value, attrValue->value.string.elements,
 attrValue->value.string.length);

 Chapter 7. Example Application Programs 181

value += attrValue->value.string.length;
if (++i == total)

 break;
attrValue++; Bvalue++ = ';'; Bvalue++ = ' ';

 }
Bvalue = '\H';

 /B
B Free up the resources we don't need any more and return.

 B/
om_delete(attrValue);
om_delete(attrType);
om_delete(attrList);
om_delete(entry);
return(OM_SUCCESS);

} /B end extractValue() B/

/BBB
 B stringToXdsName()
 B Converts a string that is a DCE name to an XDS name object (class
 B DS_C_DS_DN). Returns one of the following:
 B OM_SUCCESS If successful.
 B OM_MEMORY_INSUFFICIENT If a malloc fails.
 B OM_PERMANENT_ERROR If the name is not in a valid format.
 B OM_SYSTEM_ERROR If the local cell's name cannot be
 B determined.
 B
 B Technically, the space obtained here through malloc() needs
 B to be returned to the system when it is no longer needed.
 B If this was a more complex application, this function would
 B probably malloc all the space it needs at once and require
 B calling routines to free the space when finished with it.
 BBB/
OM_return_code
stringToXdsName(

char B origString, /B In--String name to be converted B/
OM_object B xdsNameObj /B Out--Pointer to XDS name object B/

)
{

OM_descriptor B ava; /B DS_C_AVA object B/
char B cellName; /B Name of this cell B/
OM_object dsdn; /B DS_C_DS_DN object B/
char B end; /B End of name piece B/
int index; /B Index into DS_C_DS_DN object B/
int numberOfPieces; /B Number of pieces in the name B/
unsigned long rc; /B Return code for some functions B/
OM_descriptor B rdn; /B DS_C_RDN object B/
char B start; /B Beginning of piece of name B/
char B string; /B Copy of origString that

we can use B/
OM_string type; /B Type of one piece of the name B/
char B value; /B Piece of the name B/

 /B
B A DS_C_AVA object only contains pointers to the strings that
B represent the pieces of the name, not the contents of the strings

182 Application Development Guide: Directory Services

B themselves. So we'll make a copy of the string passed in to
B guarantee that these pieces survive in case the programmer alters
B or reuses the original string.

 B
B In addition, all valid names should begin with one of the
B following symbols:

 B /... Fully qualified name (from global root). For
B these, we need to ignore the /...

 B /.: Partially qualified name (from local cell root).
B For these, we must replace the /.: with the name
B of the local cell name
B If we see anything else, we'll return with an error. (Notice that
B /: is a valid DCE name, but refers to the file system's namespace.
B Filenames cannot be accessed through CDS, GDS, or XDS.)

 B/
if(strncmp(origString, "/.../" , 5) == H) {
string = (char B)malloc(strlen(origString+5) + 1);
if(string == NULL) /B malloc() failed B/

 return OM_MEMORY_INSUFFICIENT;
strcpy(string, origString+5);

 }
else if(strncmp(origString, "/.:/", 4) == H) {
dce_cf_get_cell_name(&cellName, &rc);
if(rc != H) /B Could not get cell name B/

 return OM_SYSTEM_ERROR;

 /B
B The cell name will have /.../ on the front, so we will skip
B over it as we add it to the string (by always starting at its
B fifth character).

 B/
string = (char B)malloc(strlen(origString+4) + strlen(cellName+5) + 2);
if(string == NULL) /B malloc() failed B/

 return OM_MEMORY_INSUFFICIENT;
strcpy(string, cellName+5);
strcat(string, "/");
strcat(string, origString+4);

 }
else /B Invalid name format B/

 return OM_PERMANENT_ERROR;

 /B
B Count the number of pieces in the name that will have to be dealt with.

 B/
numberOfPieces = numNamePieces(string);

 /B
B Allocate memory for the DS_C_DS_DN object. We will need an
B OM_descriptor for each name piece, one for the class identifier,
B and one for the null terminator.

 B/
dsdn = (OM_object)malloc((numberOfPieces + 2) B sizeof(OM_descriptor));
if(dsdn == NULL) /B malloc() failed B/

 return OM_MEMORY_INSUFFICIENT;

 /B
B Initialize it as a DS_C_DS_DN object by placing that class
B identifier in the first position.

 Chapter 7. Example Application Programs 183

 B/
FILL_OMD_XOM_STRING(dsdn, H, OM_CLASS,

OM_S_OBJECT_IDENTIFIER_STRING, DS_C_DS_DN)

 /B
B For each piece of string, do the following:

 B Break off the next piece of the string
 B Build a DS_C_AVA object to show the type and value
 B of this piece of the name
 B Wrap the DS_C_AVA up in a DS_C_RDN object
 B Add the DS_C_RDN to the DS_C_DS_DN object
 B/

for(start=string, index=1 ;
index <= numberOfPieces ; index++, start=end+1) {

 /B
B Find the next delimiter and replace it with a null byte
B so the piece of the name is effectively separated from
B the rest of the string.

 B/
end = strchr(start, '/');
if(end != NULL)

Bend = '\H';
else /B If this is the last piece, there won't be B/

/B a '/' at the end, just a null byte. B/
end = strchr(start, '\H');

 /B
B Allocate space for a DS_C_AVA object and fill in its entries:
B DS_C_AVA class identifier

 B AVA's type
 B AVA's value
 B null terminator
 B/

ava = (OM_descriptor B)malloc(sizeof(OM_descriptor) B 4);
if(ava == NULL) /B malloc() failed B/

 return OM_MEMORY_INSUFFICIENT;
FILL_OMD_XOM_STRING(ava, H, OM_CLASS,

OM_S_OBJECT_IDENTIFIER_STRING, DS_C_AVA)
splitNamePiece(start, &type, &value);
FILL_OMD_XOM_STRING(ava, 1, DS_ATTRIBUTE_TYPE,

OM_S_OBJECT_IDENTIFIER_STRING, type)
FILL_OMD_STRING(ava, 2, DS_ATTRIBUTE_VALUES,

OM_S_PRINTABLE_STRING | OM_S_LOCAL_STRING, value)
FILL_OMD_NULL(ava, 3)

 /B
B Allocate space for a DS_C_RDN object and fill in its entries:
B DS_C_RDN class identifier
B AVA it contains

 B null terminator
 B/

rdn = (OM_descriptor B)malloc(sizeof(OM_descriptor) B 3);
if(rdn == NULL) /B malloc() failed B/

 return OM_MEMORY_INSUFFICIENT;
FILL_OMD_XOM_STRING(rdn, H, OM_CLASS, OM_S_OBJECT, DS_C_DS_RDN)
FILL_OMD_STRUCT(rdn, 1, DS_AVAS, OM_S_OBJECT, ava)
FILL_OMD_NULL(rdn, 2)

184 Application Development Guide: Directory Services

/B Add the DS_C_RDN object to the DS_C_DS_DN object. B/
FILL_OMD_STRUCT(dsdn, index, DS_RDNS, OM_S_OBJECT, rdn)

 }

 /B
B Null terminate the DS_C_DS_DN, tell the calling routine
B where to find it, and return.

 B/
FILL_OMD_NULL(dsdn, index)
BxdsNameObj = dsdn;
return(OM_SUCCESS);

} /B end stringToXdsName() B/

/BB
 B handleDSError()
 B Extracts the error number from a DS_status return code, prints it
 B in an error message, then terminates the program.
 BBB/
void
handleDSError(

char B header, /B In--Name of function whose return code B/
/B is being checked B/

DS_status returnCode /B In--Return code to be checked B/
)
{

OM_type includeDSProblem[] = { DS_PROBLEM, H };
 OM_return_code omStatus;
 OM_public_object problem;
 OM_value_position total;

 /B
B A DS_status return code is an object. It will be one of the
B subclasses of the class DS_C_ERROR. What we want from it is
B the value of the attribute DS_PROBLEM.

 B/
omStatus = om_get(returnCode,

 OM_EXCLUDE_ALL_BUT_THESE_TYPES+OM_EXCLUDE_SUBOBJECTS,
 includeDSProblem,
 OM_TRUE,
 OM_ALL_VALUES,
 OM_ALL_VALUES,
 &problem,
 &total);

 /B
B Make sure we successfully extracted the problem number and print
B the error message before quitting.

 B/
if((omStatus == OM_SUCCESS) && (total > H))
printf("%s returned error %d\n", header, problem->value.enumeration);

 else
printf("%s failed for unknown reason\n", header);

exit(1);
}

 Chapter 7. Example Application Programs 185

/BB
 B Main program
 B/
void
main(
 int argc,
 char B argv[]
)
{
 DS_status dsStatus;
 OM_sint invokeID;
 char newName[MAX_NAME_LEN];
 char newPhoneNum[MAX_PHONE_LEN];
 char newSurname[MAX_SURNAME_LEN];
 OM_return_code omStatus;
 char phoneNumRead[MAX_PHONE_LEN];

int rc = H;
 OM_private_object readResult;
 OM_private_object session;
 char surnameRead[MAX_SURNAME_LEN];
 OM_object xdsName;
 OM_workspace xdsWorkspace;
 char operation;

/B STEP 1
 B

B Examine command-line argument.
 B/

operation = Bargv[1];
if ((operation != 'r') && (operation != 'a') && (operation != 'd')) {

showUsage(argv[H]);
exit(1);

 }

/B STEP 2
 B

B Initialize the XDS workspace.
 B/

xdsWorkspace = ds_initialize();
if(xdsWorkspace == NULL) {
fprintf(stderr, "ds_initialize() failed\n");
exit(1);

 }

/B STEP 3
 B

B Pull in the packages that contain the XDS features we need.
 B/

dsStatus = ds_version(featureList, xdsWorkspace);
if(dsStatus != DS_SUCCESS)
handleDSError("ds_version()", dsStatus);

/B STEP 4
 B

B Find out what name the user wants to use in the namespace and

186 Application Development Guide: Directory Services

B convert it to and XDS object. We do this conversion dynamically
B (not using static structures defined at the top of the program)
B because we don't know how long the name will be.

 B/
switch(operation) {
case 'r' :

printf("What name do you want to read? ");
 break;

case 'a' :
printf("What name do you want to add? ");

 break;
case 'd' :

printf("What name do you want to delete? ");
 break;
 }

/B STEP 5 B/

gets(newName);
omStatus = stringToXdsName(newName, &xdsName);
if(omStatus != OM_SUCCESS) {

 fprintf(stderr,
"stringToXdsName() failed with OM error %d\n", omStatus);

exit(1);
 }

if (operation == 'a') { /B add operation requires additional input B/
 /B

B Get the person's real name from the user and place it in the
B XDS object already defined at the top of the program (xdsSurname).
B We are requiring a name, so we will loop until we get one.

 B/
 do {

printf("What is this person's surname? ");
gets(newSurname);
} while (BnewSurname == '\H');
FILL_OMD_STRING(xdsSurname, 2, DS_ATTRIBUTE_VALUES,

OM_S_TELETEX_STRING | OM_S_LOCAL_STRING, newSurname)

 /B
B Get the person's phone number from the user and place it in the
B XDS object already defined at the top of the program (xdsPhoneNum).
B A phone number is not required, so if none is given we will use
B the default already stored in the structure.

 B/
printf("What is this person's phone number? ");
gets(newPhoneNum);
if(BnewPhoneNum != '\H') {
FILL_OMD_STRING(xdsPhoneNum, 2, DS_ATTRIBUTE_VALUES,

OM_S_PRINTABLE_STRING | OM_S_LOCAL_STRING, newPhoneNum)
 }
 }

/B STEP 6
 B

B Open the session with the namespace:
B bind (without credentials) to the default server.

 B/

 Chapter 7. Example Application Programs 187

dsStatus = ds_bind(DS_DEFAULT_SESSION, xdsWorkspace, &session);
if(dsStatus != DS_SUCCESS)
handleDSError("ds_bind()", dsStatus);

/B STEP 7 B/

switch(operation) { /B perform the requested operation B/

 /B
B Add entry to the namespace. The xdsSurname and xdsPhoneNum
B objects are already contained within an attribute list object

 B (xdsAttributesToAdd).
 B/

case 'a' :
dsStatus = ds_add_entry(session, DS_DEFAULT_CONTEXT, xdsName,

xdsAttributesToAdd, &invokeID);
if(dsStatus != DS_SUCCESS)
handleDSError("ds_add_entry()", dsStatus);

 break;
/B FALL THROUGH B/

 /B
B Read the entry of the name supplied.

 B/
case 'r' :

dsStatus = ds_read(session, DS_DEFAULT_CONTEXT, xdsName,
xdsAttributeSelection, &readResult, &invokeID);

if(dsStatus != DS_SUCCESS)
handleDSError("ds_read()", dsStatus);

 /B
B Get each attribute from the object read and print them.

 B/
omStatus = extractValue(readResult, &DS_A_SURNAME, surnameRead);
if(omStatus != OM_SUCCESS) {
printf("BB Surname could not be read\n");
strcpy(surnameRead, "(unknown)");
rc = 1;

 }
omStatus = extractValue(readResult, &DS_A_PHONE_NBR, phoneNumRead);
if(omStatus != OM_SUCCESS) {
printf("BB Phone number could not be read\n");

strcpy(phoneNumRead, "(unknown)");
rc = 1;

 }
printf("The phone number for %s is %s.\n",

surnameRead, phoneNumRead);

 break;

 /B
B delete the entry from the namespace.

 B/
case 'd' :

dsStatus = ds_remove_entry(session, DS_DEFAULT_CONTEXT, xdsName,
 &invokeID);

188 Application Development Guide: Directory Services

if(dsStatus != DS_SUCCESS)
handleDSError("ds_remove_entry()", dsStatus);

 else
printf("The entry has been deleted.\n");

 break;
 }

 /B
B Clean up and exit.

 B/
/B STEP 8 B/
dsStatus = ds_unbind(session);
if(dsStatus != DS_SUCCESS)
handleDSError("ds_unbind()", dsStatus);

/B STEP 9 B/
dsStatus = ds_shutdown(xdsWorkspace);
if(dsStatus != DS_SUCCESS)
handleDSError("ds_shutdown()", dsStatus);

exit(rc);

} /B end main() B/

 Chapter 7. Example Application Programs 189

190 Application Development Guide: Directory Services

Chapter 8. Using Threads with the XDS/XOM API

Some programs work well when they are structured as multiple flows of control. Other programs may
show better performance when they are multithreaded allowing the multiple threads to be mapped to
multiple processors when they are available.

XDS/XOM supports multithreaded applications. Writing multithreaded applications over XDS/XOM
imposes new requirements on programmers: they must manage the threads, synchronize threads' access
to global resources, and make choices about thread scheduling and priorities.

This chapter describes a simple XDS/XOM application that uses threads. (Refer to the z/OS DCE
Application Development Guide: Core Components for more information on DCE threads.)

The XDS/XOM API calls do not change when an application makes use of DCE threads. The service
underneath XDS/XOM API is designed to be:

� Thread-safe, to allow multiple threads to safely access shared data

� Cancel-safe, to handle unexpected cancelation of a thread in an application program

Figure 47 shows an example of how an application can issue XDS/XOM calls from within different
threads.

Figure 47. Issuing XDS/XOM Calls from within Different Threads

The order of thread completion is not defined; however, XDS/XOM has an inherent ordering.
Multithreaded XDS applications must adhere to the following order of execution:

 1. ds_initialize()

 2. ds_version() (optional)

 Copyright IBM Corp. 1994, 2001 191

 3. ds_bind()

4. other XDS calls in sequence or parallel from multiple threads

 5. ds_unbind()

 6. ds_shutdown()

Multithreaded XOM applications must adhere to the following order of execution:

 1. ds_initialize()

2. XOM calls in sequence or parallel from multiple threads

 3. ds_shutdown()

The XDS/XOM API will return an appropriate error code if these sequences are not adhered to. For
example the following errors are returned:

DS_E_BUSY If ds_unbind() is called while there are still outstanding operations,
or if ds_shutdown() is called before all directory connections have
been released by ds_unbind().

OM_NO_WORKSPACE If any XOM API calls are made before calling ds_initialize(), or if a
call to ds_shutdown() completes while there are outstanding XOM
operations on the same workspace. In the latter case, these XOM
operations will not be performed.

Overview of Example Threads Program

The example program is called thradd. The thradd program is a multithreaded XDS application that adds
CDS object entries to a CDS directory. Each thread performs a ds_add_entry() call. The information for
each entry to be added is read from an input file.

The thradd program can also be used to reset the directory to its original state. This is achieved by
invoking thradd with a -d command-line argument. In this case, thradd uses the same input file and
calls ds_remove_entry() for each entry. The ds_remove_entry() calls are also done in separate
threads.

To keep the program short and clear, it works with a fixed tree for the upper nodes (like example.c).
Static descriptors for both an X.500 and a DNS-type cell name are provided. The CELLNAME_TYPE
pre-processor directive is used to control which name format is in effect in the DCE cell. This fixed upper
tree is assumed to exist prior to running thradd. The input file contains the common name, the surname,
and the phone number of each Organizational-Person entry to be added.

For simplicity, only pthread_join() is used for synchronization purposes; mutexes are not used.

The thradd program could be enhanced to satisfy the following scenarios:

� As a server program for interactive directory actions from different users. The thradd program
simulates a server program which gets requests from different users to add entries to a directory. In
the case of thradd, the users' interactive input is simulated through the entries in the input file. Each
line of input represents a different directory entry, and thradd uses a separate thread for each line.

� Initialization of the directory with data from file. The thradd program could be enhanced to read
generic attribute information for a variety of directory object classes from a file, and to add the
corresponding entries to the directory.

192 Application Development Guide: Directory Services

 User Interface

The thradd program is called from the command line as follows:

thradd [-d] [-f file name]

-d If the option -d is set, the entries in the file that are found in the CDS directory used to
create the entries are deleted. If not specified, they are added.

-f file name The option -f specifies the name of the input file. If no input file is specified, then a
default file name of thradd.dat is used.

Input File Format

The input file can contain any number of lines. Each line represents a directory entry of an organizational
person. Each line must contain the following three attributes for each entry:

<common name> <surname> <phone number>

The attributes must be strings without space characters. Lines containing less than three strings are
rejected by the program; any input on a line after the first three strings is ignored and can be used for
comments. The attributes are separated by one or more space characters.

The input strings are not verified for their relevant attribute syntax. A wrong attribute syntax will result in
either a ds_add_entry() error or a ds_remove_entry() error.

The following would be a valid input file for thradd:

Anna Meister H1H1H1
Erwin Reiter H2H2H2
Gerhard Schulz H3H3H3
Gottfried Schmid H4H4H4
Heidrun Blum H5H5H5
Hermann Meier H6H6H6
Josefa Fischer H7H7H7
Jutta Arndt H8H8H8
Leopold Huber H9H9H9
Magdalena Schuster 1H1H1H
Margot Junge 111111

 Program Output

The thradd program writes messages to stdout for every action done by a thread. The order of the output
can differ from the order in the input file; it depends on the execution of the different threads.

Errors are reported to stderr.

 Chapter 8. Using Threads with the XDS/XOM API 193

 Prerequisites

The directory must be active before running thradd. The thradd program should always be invoked twice
with the same input file: first without and then with option -d. This guarantees that the directory is reset to
its original state.

Description of Thradd Example Program

The thradd program has a similar structure to the example XDS programs in the previous chapter.
Therefore, only a short general outline of the program is given here. The thread specifics are described in
detail in the next section.

The static descriptors for the fixed tree (depending on the CELLNAME_TYPE pre-processor directive.) are
declared in the thradd.h header file. Listings of both the thradd.c application and the thradd.h header
file are included in later sections of this chapter.

The main routine scans the command-line options, initializes the XDS workspace and, if working in adding
mode, binds to the directory without credentials, adds the fixed tree of upper nodes, and then unbinds
from the directory.

Each line of the input file is processed in turn by a while loop (until the end of file is reached). The while
loop contains two for loops. The first for loop creates a separate thread for each line of the input file, up to
a maximum of MAX_THREAD_NO of threads.

The add_or_remove() procedure, which adds an entry to or removes an entry from the directory, is the
starting point of each thread's processing.

The second for loop waits for termination of the threads and then releases the resources used by the
threads.

When the entire input file has been processed, thradd closes the connection to the directory server.

Finally, the XDS workspace is closed.

Figure 48 on page 195 shows the program flow.

The source code for this program can be found in the /usr/lpp/dce/examples/xdsxom/thradd directory.

194 Application Development Guide: Directory Services

Init routines

Bind to directory server

Create threads

Thread 1 Thread n

Wait for threads

Unbind from directory Server

End routines

Figure 48. Program Flow for the thradd Sample Program

Detailed Description of Thread Specifics

The program consists of the following general steps:

1. Include the header file pthread.h.

2. Define a parameter block structure type for the thread start routine, add_or_remove.

3. Declare arrays for thread handles and parameter blocks.

4. Read the input file line by line.

5. Update the parameter block.

6. Create the thread.

7. Wait for the termination of the thread.

8. Release the resources used by the thread.

9. Define the thread start routine.

10. Declare local variables needed for descriptors for the objects read from the input file.

 Chapter 8. Using Threads with the XDS/XOM API 195

The following paragraphs describe the corresponding step numbers from the program listing in the next
section:

Step 1 includes the header file pthread.h which is required for thread programming.

Step 2 defines a parameter block structure type for the thread start routine. A thread start routine must
have exactly one parameter. However, add_or_remove() requires three parameters (session object, input
line and operating mode). The structure pb_add_or_remove is defined as the parameter block for these
components. Therefore, the single parameter block contains the three parameters required by
add_or_remove().

Step 3 declares arrays for thread handles and parameter blocks. The routine which creates the thread
(main in this case) must maintain the following information for each thread:

� A thread handle of type pthread_t to identify the thread for join and detach calls.

� A thread specific parameter block that cannot be accessed by any other thread. This makes sure that
a parameter for one thread is not overwritten by another thread.

Step 4 reads the input file line by line. A thread is created for each line. A maximum MAX_THREAD_NO
of threads are created in parallel. The program then waits for the termination of the created threads so
that it can release the resources used by these threads, allowing it to create new threads for remaining
input lines (if any).

The absolute maximum number of threads working in parallel depends on system limits; for thradd a
value of 10 was chosen for MAX_THREAD_NO (see thradd.h), which is well below the maximum on
most systems.

Step 5 updates the parameter block. For each thread a different element of the array of parameter blocks
is used.

Step 6 creates the thread. The thread is created by using the function pthread_create(). The function
has four parameters:

� The thread handle (output) is stored in an element of the threads array which is of type pthread_t.

� For the thread characteristics, the default pthread_attr_default is used.

� The start routine for this thread is add_or_remove().

� The parameter passed to add_or_remove() is a pointer to an element of the array of parameter
blocks, one of the elements of the (param_block) array.

Step 7 waits for the termination of the thread. The pthread_join() routine is called with the thread handle
as the input parameter. The program waits for the termination of the thread. If the thread has already
terminated, then pthread_join() returns immediately. The second parameter of pthread_join() contains
the return value of the start function; here it is a dummy value because add_or_remove() returns a void.
add_or_remove() is designed as a void function because the calling routine does not have to deal with
error cases. The add_or_remove() routine prints status messages itself to show the processing order of
the threads. Normally a status should be returned to the application.

Step 8 releases the resources used by the thread. The thread handle is used as input for the function
pthread_detach(), which releases the resources (for example, memory) used by the thread.

Step 9 defines the thread start routine. As previously mentioned, the thread start routine must have
exactly one parameter. In this case, it is a pointer to the parameter block structure defined in Step 3.

196 Application Development Guide: Directory Services

Step 10 declares local variables needed for descriptors for the objects read from the input file. These
descriptors are variables and are declared as automatic because of the reentrancy requirement. In the
previous example program, descriptors were declared static. For this example, this is only possible for the
constant descriptors declared in thradd.h.

This example shows only a small part of the possibilities of multithreaded XDS programming.

The thradd.c Code

The following code is a listing of the thradd.c program:

/B
 B The program operates in two modes; it adds or removes entries of
 B object type organizational person to/from a directory. The information
 B about the entries is read from a file.
 B
 B The program requires that there exists a tree in the directory.
 B This must be set up prior to running the program. Consult the
 B README file for more information.
 B
 B Information about the organizational persons to be added or removed is
 B read from the input file. It may contain any number of lines, where
 B each line must have the following syntax:
 B
 B <common name> <surname> <phone number>
 B Each item must be a string without a blank.
 B
 B Lines containing less than 3 strings are rejected by the program.
 B The program does not check to see if the strings conform to the
 B appropiate attribute syntax; i.e. a wrong attribute syntax will
 B lead to a ds_add_entry error, or to a ds_remove_entry error.
 B
 B
 B Usage: thradd [-d] [-f<file name>]
 B -d If the option -d is set, the entries in the file and the
 B tree described above are removed, otherwise they are added.
 B -f<file name> The option -f specifies the name of the input file.
 B If left out, the default "thradd.dat" is used.
 B
 B/

/B Step 1 B/

/B
 B Header file for thread programming:
 B/
#include <pthread.h>
#include <dce/euvpdlws.h>

#include <stdio.h>
#include <xom.h>
#include <xds.h>
#include <xdsbdcp.h>
#include <xdsgds.h>
#include <xdscds.h>
#include "thradd.h" /B static data structures. B/

 Chapter 8. Using Threads with the XDS/XOM API 197

/B Step 2 B/

/B
 B typedef for parameter block of function add_or_remove
 B (this is necessary because start functions of a thread
 B takes only 1 parameter). The following 3 parameters are
 B passed to add_or_remove:
 B
 B Input - Session object from the ds_bind call
 B Input - Buffer with the entry information
 B Input - "adding" or "removing" mode?
 B/
typedef struct {
 OM_private_object session;
 char line[MAX_LINE_LEN+1];
 int do_remove;
} pb_add_or_remove;

/B
 B static constants:
 B
 B Default name for input file containing entry information.
 B/
static char fn_default[] = "thradd.dat";

/B
 B function declarations:
 B/
char Bown_fgets(char Bs, int n, FILE Bf);
void add_or_remove(pb_add_or_remove Bpb);

int
main(
 int argc,
 char Bargv[]
)
{

OM_workspace workspace; /B workspace for objects B/
OM_private_object bound_session; /B Holds the Session object which B/

/B is returned by ds_bind() B/
FILE Bfp; /B file pointer for input file B/
int do_remove = FALSE; /B option -d for remove set ? B/
int error = FALSE; /B error in options ? B/
int is_eof = FALSE; /B EOF in input file reached ? B/
int thread_count; /B actual number of created threads B/
char Bfile_name; /B pointer to input file name B/

 /B Step 3 B/

pthread_t threads[MAX_THREAD_NO]; /B thread table B/
pb_add_or_remove param_block[MAX_THREAD_NO]; /B 1 param block for start B/

/B routine per thread B/
 int dummy;

198 Application Development Guide: Directory Services

 int c;
 int i;

 /B
B scan options -d and -f

 B/
file_name = fn_default;

 i=1;
while ((i < argc) && (error == FALSE))

 {
if (argv[i][H] == '-')

 {
 switch (argv[i][1])
 {
 case 'd':

do_remove = TRUE;
 break;
 case 'f':

file_name = &argv[i][2];
 break;
 default:

error = TRUE;
 break;
 }
 }
 else
 {

error = TRUE;
 }
 i++;
 }

 if (error)
 {

printf("usage: %s [-d] [-f<file name>]\n", argv[H]);
 return(FAILURE);
 }

if ((fp = fopen(file_name, "r")) == (FILE B) NULL)
 {

printf("fopen() error, file name: %s\n", file_name);
 return(FAILURE);
 }

 /B
B Initialize a directory workspace for use by XOM.

 B/
if ((workspace = ds_initialize()) == (OM_workspace)H)

 printf("ds_initialize() error\n");

 /B
B Negotiate the use of the BDCP and GDS packages.

 B/

 Chapter 8. Using Threads with the XDS/XOM API 199

if (ds_version(features, workspace) != DS_SUCCESS)
 printf("ds_version() error\n");

 /B
B Bind to the default GDS server.
B The returned session object is stored in the private object variable
B bound_session and is used for further XDS function calls.

 B/
if (ds_bind(DS_DEFAULT_SESSION, workspace, &bound_session) != DS_SUCCESS)

 printf("ds_bind() error\n");

 /B Step 4 B/

 /B
B Add or remove entries described in input file.
B This is done in parallel, creating up to MAX_THREAD_NO threads
B at a time.

 B/
 while (!is_eof)
 {

for (thread_count=H; thread_count<MAX_THREAD_NO; thread_count++)
 {
 /B Step 5 B/

 /B
B Prepare parameter block:

 B/
is_eof = (own_fgets(param_block[thread_count].line,

MAX_LINE_LEN, fp) == NULL);
 if (is_eof)
 break;

 param_block[thread_count].session = bound_session;
param_block[thread_count].do_remove = do_remove;

 /B Step 6 B/

 /B
B Create thread with start routine add_or_remove:

 B/
if (pthread_create(&threads[thread_count], pthread_attr_default,

 (pthread_startroutine_t) add_or_remove,
 (pthread_addr_t) ¶m_block[thread_count])
 != SUCCESS)
 printf("pthread_create() error\n");

} /B end for B/

 /B
B Wait for termination of the created threads and release resources:

 B/
for (i=H; i<thread_count; i++)

 {

 /B Step 7 B/

 /B

200 Application Development Guide: Directory Services

B Wait for termination of thread
B (If thread has terminated already, the function returns

 B immediately):
 B/

if (pthread_join(threads[i], (pthread_addr_t) &dummy) != SUCCESS)
 printf("pthread_join() error\n");

 /B Step 8 B/

 /B
B Release resources used by the thread:

 B/
if (pthread_detach(&threads[i]) != SUCCESS)

 printf("pthread_detach() error\n");
} /B end for B/

} /B end while B/

 /B
B Close the connection to the GDS server.

 B/
if (ds_unbind(bound_session) != DS_SUCCESS)

 printf("ds_unbind() error\n");

if (om_delete(bound_session) != OM_SUCCESS)
 printf("om_delete() error\n");

 /B
B Close the directory workspace.

 B/
if (ds_shutdown(workspace) != DS_SUCCESS)

 printf("ds_shutdown() error\n");

 fclose(fp);
 return(SUCCESS);
} /B end main() B/

/B Step 9 B/

/B
 B Handle (add or remove) a directory entry
 B/
void
add_or_remove(
 pb_add_or_remove Bpb /B see typedef for parameter information B/
)
{

 /B
B further local variables:

 B/
 char common_name[MAX_AT_LEN+1];
 char phone_num[MAX_AT_LEN+1];
 char surname[MAX_AT_LEN+1];
 OM_sint invoke_id;

 Chapter 8. Using Threads with the XDS/XOM API 201

/B Step 1� B/

 /B
B local variables for descriptors for objects read from file

 B/
 OM_descriptor ava_genop[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_TYPELESS_RDN),

OM_NULL_DESCRIPTOR, /B place holder B/
 OM_NULL_DESCRIPTOR
 };

 OM_descriptor rdn_genop[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

OM_NULL_DESCRIPTOR, /B place holder B/
 OM_NULL_DESCRIPTOR
 };

#if CELLNAME_TYPE == DNS_TYPE

OM_descriptor dn_genop[] = {
 OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
 {DS_RDNS,OM_S_OBJECT,{H,rdn1}},
 {DS_RDNS,OM_S_OBJECT,{H,rdn2}},

OM_NULL_DESCRIPTOR, /B place holder B/
 OM_NULL_DESCRIPTOR
 };
 int obj_name_index=3;

#else

OM_descriptor dn_genop[] = {
 OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
 {DS_RDNS,OM_S_OBJECT,{H,rdn1}},
 {DS_RDNS,OM_S_OBJECT,{H,rdn2}},
 {DS_RDNS,OM_S_OBJECT,{H,rdn3}},
 {DS_RDNS,OM_S_OBJECT,{H,rdn4}},

OM_NULL_DESCRIPTOR, /B place holder B/
 OM_NULL_DESCRIPTOR
 };
 int obj_name_index=5;

#endif

 OM_descriptor att_phone_num[] = {
 OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_PHONE_NBR),

OM_NULL_DESCRIPTOR, /B place holder B/
 OM_NULL_DESCRIPTOR
 };

 OM_descriptor att_surname[] = {
 OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_SURNAME),

OM_NULL_DESCRIPTOR, /B place holder B/
 OM_NULL_DESCRIPTOR
 };

202 Application Development Guide: Directory Services

 OM_descriptor alist_OP[] = {
 OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),

{DS_ATTRIBUTES, OM_S_OBJECT, {H, obj_class_OP} },
OM_NULL_DESCRIPTOR, /B place holder B/
OM_NULL_DESCRIPTOR, /B place holder B/

 OM_NULL_DESCRIPTOR
 };

rdn_genop[1].type = DS_AVAS;
rdn_genop[1].syntax = OM_S_OBJECT;
rdn_genop[1].value.object.padding = H;
rdn_genop[1].value.object.object = ava_genop;

dn_genop[obj_name_index].type = DS_RDNS;
dn_genop[obj_name_index].syntax = OM_S_OBJECT;
dn_genop[obj_name_index].value.object.padding = H;
dn_genop[obj_name_index].value.object.object = rdn_genop;

alist_OP[2].type = DS_ATTRIBUTES;
alist_OP[2].syntax = OM_S_OBJECT;
alist_OP[2].value.object.padding = H;
alist_OP[2].value.object.object = att_surname;

alist_OP[3].type = DS_ATTRIBUTES;
alist_OP[3].syntax = OM_S_OBJECT;
alist_OP[3].value.object.padding = H;
alist_OP[3].value.object.object = att_phone_num;

if (sscanf(pb->line, "%s %s %s", common_name, surname, phone_num) != 3)
 {

printf("invalid input line: >%s<\n", pb->line);
 return;
 }
 /B

B Fill descriptor for common name
 B/

ava_genop[2].type = DS_ATTRIBUTE_VALUES;
ava_genop[2].syntax = OM_S_PRINTABLE_STRING | OM_S_LOCAL_STRING;
ava_genop[2].value.string.length = (OM_string_length)strlen(common_name);
ava_genop[2].value.string.elements = common_name;

if (!pb->do_remove) /B add B/
 {
 /B

B Fill descriptors for surname and phone number
 B/

att_surname[2].type = DS_ATTRIBUTE_VALUES;
att_surname[2].syntax = OM_S_TELETEX_STRING | OM_S_LOCAL_STRING;

 att_surname[2].value.string.length =
 (OM_string_length)strlen(surname);

att_surname[2].value.string.elements = surname;

att_phone_num[2].type = DS_ATTRIBUTE_VALUES;
att_phone_num[2].syntax = OM_S_PRINTABLE_STRING | OM_S_LOCAL_STRING;

 att_phone_num[2].value.string.length =
 (OM_string_length)strlen(phone_num);

att_phone_num[2].value.string.elements = phone_num;

 Chapter 8. Using Threads with the XDS/XOM API 203

 /B
B add entry

 B/
if (ds_add_entry(pb->session, DS_DEFAULT_CONTEXT, dn_genop,

alist_OP, &invoke_id) != DS_SUCCESS)
printf("ds_add_entry() error: %s %s %s\n", common_name,

 surname, phone_num);
 else

printf("entry added: %s %s %s\n", common_name, surname, phone_num);
 }

else /B remove B/
 {
 /B

B remove entry
 B/

if (ds_remove_entry(pb->session, DS_DEFAULT_CONTEXT, dn_genop,
&invoke_id) != DS_SUCCESS)

printf("ds_remove_entry() error: %s\n", common_name);
 else

printf("entry removed: %s\n", common_name);
} /B end if B/

} /B end add_or_remove() B/

/B
 B read one line with fgets and overwrite new line by a null character
 B/

char B
own_fgets(

char Bs, /B OUT--string read B/
int n, /B IN---maximum number of chars to be read B/
FILE Bf /B IN---input file B/

)
{
 char Bresult;

int i = H;

result = fgets(s, n, f);
if (result != NULL)

 {
i = strlen(s);

 if (s[i-1] == '\n')
s[i-1] = '\H';

 }
 return (result);
}

204 Application Development Guide: Directory Services

The thradd.h Header File
The following code is a listing of the thradd.h header file:

#ifndef THRADD_H
#define THRADD_H

#ifndef TRUE
#define TRUE (1)
#endif

#ifndef FALSE
#define FALSE (H)
#endif

#define SUCCESS H
#define FAILURE 1
#define MAX_LINE_LEN 1HH /B max length of line in input file B/
#define MAX_AT_LEN 1HH /B max length of an attribute value B/
#define MAX_THREAD_NO 1H /B max number of threads created B/

/B
 B Default this example to use a DNS style cell name.
 B/

#define DNS_TYPE 1
#define GDS_TYPE 2
#ifndef CELLNAME_TYPE
 #define CELLNAME_TYPE DNS_TYPE
#endif

#if CELLNAME_TYPE == DNS_TYPE
 #ifndef DNS_CELLNAME
 #define DNS_CELLNAME "cellname"
 #endif
#else
 #ifndef GDS_CELLNAME_C
 #define GDS_CELLNAME_C "US"
 #endif
 #ifndef GDS_CELLNAME_O

#define GDS_CELLNAME_O "Acme Pepper Co"
 #endif
 #ifndef GDS_CELLNAME_OU

#define GDS_CELLNAME_OU "Research"
 #endif
#endif

#ifndef CDS_DIR_NAME
 #define CDS_DIR_NAME "PhoneBook"
#endif

/B The application must export the object identfiers it requires. B/

OM_EXPORT (DS_C_AVA)
OM_EXPORT (DS_C_DS_RDN)
OM_EXPORT (DS_C_DS_DN)

 Chapter 8. Using Threads with the XDS/XOM API 205

OM_EXPORT (DS_C_ATTRIBUTE)
OM_EXPORT (DS_C_ATTRIBUTE_LIST)

#if CELLNAME_TYPE == GDS_TYPE
 OM_EXPORT(DS_A_COUNTRY_NAME)
 OM_EXPORT(DS_A_ORG_NAME)
 OM_EXPORT(DS_A_ORG_UNIT_NAME)
#endif
OM_EXPORT (DSX_TYPELESS_RDN)
OM_EXPORT (DS_A_OBJECT_CLASS)
OM_EXPORT (DS_A_PHONE_NBR)
OM_EXPORT (DS_A_SURNAME)

OM_EXPORT (DS_O_TOP)
OM_EXPORT (DS_O_PERSON)
OM_EXPORT (DS_O_ORG_PERSON)

static OM_descriptor cds_dir_name[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_TYPELESS_RDN),
 { DS_ATTRIBUTE_VALUES,OM_S_TELETEX_STRING | OM_S_LOCAL_STRING,
 OM_STRING(CDS_DIR_NAME) },
 OM_NULL_DESCRIPTOR
 };

#if CELLNAME_TYPE == DNS_TYPE

static OM_descriptor cellname[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_TYPELESS_RDN),
 { DS_ATTRIBUTE_VALUES,OM_S_PRINTABLE_STRING | OM_S_LOCAL_STRING,
 OM_STRING(DNS_CELLNAME) },
 OM_NULL_DESCRIPTOR
 };

static OM_descriptor rdn1[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
 { DS_AVAS, OM_S_OBJECT, { H, cellname } },
 OM_NULL_DESCRIPTOR
 };

static OM_descriptor rdn2[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
 { DS_AVAS, OM_S_OBJECT, { H, cds_dir_name } },
 OM_NULL_DESCRIPTOR
 };

#else

static OM_descriptor ava_C[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),
 {DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING(GDS_CELLNAME_C)},
 OM_NULL_DESCRIPTOR
 };

static OM_descriptor ava_O[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_NAME),
 {DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING(GDS_CELLNAME_U)},

206 Application Development Guide: Directory Services

 OM_NULL_DESCRIPTOR
 };

static OM_descriptor ava_OU[] = {
 OM_OID_DESC(OM_CLASS, DS_C_AVA),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_UNIT_NAME),
 {DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING(GDS_CELLNAME_OU)},
 OM_NULL_DESCRIPTOR
 };

static OM_descriptor rdn1[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
 {DS_AVAS, OM_S_OBJECT, {H, ava_C}},
 OM_NULL_DESCRIPTOR
 };

static OM_descriptor rdn2[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
 {DS_AVAS, OM_S_OBJECT, {H, ava_O}},
 OM_NULL_DESCRIPTOR
 };

static OM_descriptor rdn3[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
 {DS_AVAS, OM_S_OBJECT, {H, ava_OU}},
 OM_NULL_DESCRIPTOR
 };

static OM_descriptor rdn4[] = {
 OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
 {DS_AVAS, OM_S_OBJECT, {H, cds_dir_name}},
 OM_NULL_DESCRIPTOR
 };

#endif

/B Build up an array of object identifiers for the attributes to be B/
/B added to the directory. B/

static OM_descriptor obj_class_OP[] = {
 OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
 OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS),
 OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_TOP),
 OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_PERSON),
 OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_ORG_PERSON),
 OM_NULL_DESCRIPTOR
};

/B Build up an array of object identifiers for the optional packages B/
/B to be negotiated. B/

static DS_feature features[] = {
{ OM_STRING(OMP_O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE },
{ OM_STRING(OMP_O_DSX_GDS_PKG), OM_TRUE },
{ H }

};

#endif /B THRADD_H B/

 Chapter 8. Using Threads with the XDS/XOM API 207

208 Application Development Guide: Directory Services

Chapter 9. XDS/XOM Convenience Routines

This chapter describes functions which are available to XDS/XOM programmers to help simplify and speed
up the development of XDS applications. The convenience functions target two main areas:

� Filling, comparing and extracting objects

� Converting objects to and from strings

Six convenience functions are provided:

 � dsX_extract_attr_values()

 � omX_fill()

 � omX_fill_oid()

 � omX_extract()

 � omX_string_to_object()

 � omX_object_to_string()

Refer to the z/OS DCE Application Development Reference for a detailed description of these functions.

To demonstrate the power of the convenience functions, the teldir.c example program from Chapter 7,
“Example Application Programs” on page 159 is presented again in this chapter, but it has been modified
to make use of these functions. The modified example program is called teldir2.c.

 String Handling

The convenience functions provide the ability to specify OM objects in string format by means of
abbreviations. These abbreviations are defined in the XOM object information file xoischema.

X.500 attribute types can be specified either as abbreviations or object identifier strings. The mapping of
the attribute abbreviations and object identifier strings to BER encoded object identifiers and the
associated attribute syntaxes is determined by the XOM object information module with the help of the
xoischema file. For valid attribute abbreviations, please refer to the xoischema file in the following
directory:

/opt/dcelocal/etc

It is important that any schema changes to the DSA are reflected in the xoischema file.

The convenience functions are able to handle strings with special syntax. The strings can be broadly
classified into the following:

� Strings representing GDS attribute information

� Strings representing structured GDS attribute information

� Strings representing a structured GDS attribute value

� Strings representing a Distinguished Name (DN)

� Strings representing expressions

 Copyright IBM Corp. 1994, 2001 209

Strings Representing GDS Attribute Information

Strings that represent GDS attribute information are used to associate the attributes with their values.
They are of the form:

Attribute Type = Attribute Value

The attribute types can either be specified as abbreviations or object identifier strings. An object identifier
string is defined as a series of digits separated by the . (dot) character. If attribute abbreviations are
used, they are case insensitive. For example, specify cn=schmid or 85.4.3=schmid.

In the case of attributes with OM_S_OBJECT_IDENTIFIER_STRING syntax, the attribute value can also
be specified as an abbreviation string. For example, an object class for Residential Person can be
specified as OCL=REP or OCL='\x55\x06\x0A'.

All leading and trailing whitespace (surrounding the attribute type, the = (equal sign) character, and the
attribute value) is ignored.

The following are the reserved characters for such strings:

' Used to enclose the attribute values. If this character is used, all other reserved characters
within the quoted string except the \ character are not interpreted. For example:

cn='henry mueller'

; Separates multiple values of a recurring attribute. All leading and trailing whitespace
(surrounding the ; character) is ignored. For example:

TN=899898;979779

= Associates the attribute with its value.

\xnn Specifies hexadecimal data. After the \x, the next two characters are read as the hexadecimal
value.

\ Used to escape any of the other reserved characters.

Strings Representing Structured GDS Attribute Information

Strings that represent structured GDS attribute information are used to associate the structured attribute
and its components with their values. They are of the form:

Structured Attribute Type = {Comp1 = Value, Comp2 = Value, ...}

The structured attribute type can either be specified as abbreviations or object identifier strings. An object
identifier string is defined as a series of digits separated by the . (dot) character. If attribute abbreviations
are used, they are case insensitive. Comp1, Comp2, and so on, are the components of the structured
attribute. They should be specified as abbreviations. For example:

TXN={TN=977999, CC=345, AB=8444}

Recurring values for structured attributes can be specified with the help of the ; character. For example:

TXN={TN=977999, CC=345, AB=8444};{TN=123444,CC=345, AB=8444}

Recurring values for the components should be specified as:

TXN={TN=977999; 274424, CC=345, AB=8444}

210 Application Development Guide: Directory Services

If any of the components are further structured, they should be enclosed within braces as:

FTN={PA={FR=1,TD=1}, PN=67899}

All leading and trailing whitespace (surrounding the structured attribute type, the component abbreviation,
the = (equal sign) character, the { (left brace) character, the , (comma) character and the } (right brace)
character) is ignored.

Attributes and components with DN syntax should be specified as:

AON={/c=de/o=sni/ou=ap11/cn=mueller}
ACL={MPUB={INT=0, USR={/c=de/o=sni/cn=mueller, sn=schmid}}}

In the case of attributes with OM_S_OBJECT_IDENTIFIER_STRING syntax, the attribute value can also
be specified as an abbreviation string. For example:

SG={OCL=REP} or SG={OCL='\x55\x06\x0A'}

The following are the reserved characters for strings with structured attribute information:

' Used to enclose the attribute values. If this character is used, all other reserved characters
within the quoted string except the \ character are not interpreted. For example:

cn='henry mueller'

/ Specifies an attribute value with DN Syntax. For example:

AON = {/c=de/o=sni/ou=ap22/cn=mayer}

{ Indicates the start of a structured attribute value block.

} Indicates the end of a structured attribute value block.

, Separates the components of a structured attribute. For example:

TN=977999, CC=345, AB=8444

It can also be used to specify multiple AVAs in the case of attributes with DN syntax.

; Separates multiple values of a recurring attribute or the recurring components of the structured
attribute. All leading and trailing whitespace (surrounding the attribute type, = character, {
character, } character, the component abbreviation, the component value and the ; character) is
ignored. For example:

TXN={TN=977999,CC=345,AB=8444};{TN=53533,CC=242,AB=44242}

= Associates the components with their value, and associates the components to the structured
attribute.

\xnn Used to specify hexadecimal data. After the \x, the next two characters are read as the
hexadecimal value.

\ Used to escape any of the other reserved characters.

 Chapter 9. XDS/XOM Convenience Routines 211

Strings Representing a Structured GDS Attribute Value

Strings are used to represent the structured GDS attribute value. Only one structured attribute value can
be specified. They are of the form:

Comp1 = Value, Comp2 = Value, ...

Comp1, Comp2, and so on are the components of the structured attribute. They should be specified as
abbreviations. For example, to specify a value for DS_C_TELEX_NBR class, the string format is:

TN=977999, CC=345, AB=8444

Recurring values for the components can be specified as:

TN=977999; 274424, CC=345, AB=8444

If any of the components are further structured, they should be enclosed within braces and specified as:

FTP={FR=1,TD=1}, PN=67899

Components with DN syntax can be specified as:

MPUB={INT=0, USR={/c=de/o=sni/cn=mueller, sn=schmid}}

The reserved characters for such strings are the same as those for strings representing structured
attribute information (as described in “Strings Representing Structured GDS Attribute Information” on
page 210).

Strings Representing a Distinguished Name

Strings are used to represent the DN of the object. They are of the form:

/<Attribute Type> = <Naming Attribute Value> ...

or

/<Attribute Value>/<Attribute Value> ...

The attribute types can either be specified as abbreviations or object identifier strings. An object identifier
string is defined as a series of digits separated by the . (dot) character. If attribute abbreviations are
used, they are case insensitive. Multiple AVAs are represented by separating the naming attribute values
with the , (comma) character.

The first RDN can also be specified as the DCE global root string /..., which is a sequence of the / (slash)
character followed by three dot characters. In this case, the /... string is simply ignored and the rest of the
string is processed. For example:

/c=de/o=sni/ou=ap11, l=munich/85.4.3=schmid

or

/c=us/o=osf/ou=abc/subsytems/server/xyz

or

212 Application Development Guide: Directory Services

/.../c=us/o=osf/ou=abc/subsytems/server/xyz

The first nonspace character should always be the / character. All leading and trailing whitespace
(surrounding the / character, attribute type, the = character and the attribute value) is ignored.

Following are the reserved characters:

' Used to enclose the naming attribute values. If this character is used, all other reserved
characters within the quoted string except the \ character are not interpreted. For example:
cn='henry mueller'

/ Used as a delimiter between RDNs.

, Specifies multiple AVAs. All leading and trailing whitespace surrounding the , character is
ignored. For example:

/c=de/o=dbp/ou=dap11/cn=schmid, ou=ap11

= Associates the object with its naming attribute value.

\xnn Used to specify hexadecimal data. After the \x, the next two characters are read as the
hexadecimal value.

\ Used to escape any of the other reserved characters.

Strings Representing Expressions

Strings are used to specify an SQL-like expression in a search operation. For example:

(CN˜=schmid) && (OCL=ORP || OCL=REP) && !(SN=ronnie)

This is used to search for anybody who is an organizational person or a residential person, whose name
approximately matches schmid, but whose surname is not ronnie.

Object identifiers can also be used instead of attribute abbreviations. The object identifier string is a
series of numbers separated by the . (dot) character.

All leading and trailing whitespace (surrounding the attribute types, the operators, and the attribute values)
is ignored.

If spaces are part of the attribute value, then the complete attribute value must be enclosed in quotes.

Additionally, the presence of an attribute can also be tested in either of the following ways:

c = de && cn
c = de && cn = *

The following are the reserved characters:

' Used to indicate the start and end of an attribute value string. It can be used when spaces are
part of the data. If this character is used, all other reserved characters within the quoted string
except the \ character are not interpreted. For example:

OU=sni && cn='Henry Mueller' && tn=89989

/ Used to specify an attribute value with DN Syntax. For example: AON =
{/c=de/o=sni/ou=ap22/cn=mayer}

= Used to associate the attribute with its value.

&& Used to logically AND two conditions.

 Chapter 9. XDS/XOM Convenience Routines 213

|| Used to logically OR two conditions.

! Used to logically NEGATE a condition.

˜= Used to specify phonetic matching during a search operation.

> Used to match values greater than a specified value.

>= Used to match values greater than or equal to a specified value.

< Used to match values less than a specified value.

<= Used to match values less than or equal to a specified value.

Used to specify substrings during search.

(Used for nesting of filters.

) Used for nesting of filters.

{ Indicates the start of a structured attribute value block.

} Indicates the end of a structured attribute value block.

, Separates the components of a structured attribute. For example:

TN=977999, CC=345, AB=8444

It can also be used to specify multiple AVAs in the case of attributes with DN syntax.

\xnn Used to specify hexadecimal data. After the \x, the next two characters are read as the
hexadecimal value.

\ Used to escape any of the other reserved characters.

While evaluating complex expressions during search operations, the following precedence of operators
prevail:

 1. ()

 2. !

 3. &&

 4. ||

The () operators have the highest precedence, and || the lowest.

Examples of strings handled by omX_string_to_object()

Following are examples of strings that can be handled by omX_string_to_object():

Example 1: To create a DS_C_DS_DN object (Root):

/ or /...

214 Application Development Guide: Directory Services

Example 2: To create other DS_C_DS_DN objects:

 /c=de/o=sni/ou=ap11/cn=naik,sn=naik
 /c=de/o=sni/ou=ap11/85.4.3=naik,sn=naik
 /c=de/o=sni/ou=ap11/cn=naik,sn=na\x69k
 /c=de/o=sni/ou=ap11/cn=naik,loc=Muenchen\,8000
 /c=de/o=sni/ou=ap11/cn=naik,loc='Muenchen,8000'

/ C = de / O = sni / Ou = ap11/CN=naik, SN=naik

Example 3: To create a DS_C_DS_DN object (DCE name):

 /.../c=us/o=osf/ou=abc/subsystems/server/xyz

Example 4: To create a DS_C_DS_RDN object:

 cn=naik,sn=naik
 cn=naik,sn=na\x89k

CN = naik, SN = naik

Example 5: To create a DS_C_DS_RDN object (DCE name):

 server

Example 6: To create a DS_C_ATTRIBUTE object (containing, for example, Common-Name):

 cn=bhavesh naik
CN = bhavesh naik

 85.4.3=bhavesh na\x89k

Example 7: To create a DS_C_ATTRIBUTE object (containing an object class with multiple values of
Residential-Person and Organizational-Person):

 OCL=REP;ORP
OCL = '\x55\x06\x0a' ; '\x55\x06\x07'

Example 8: To create a DS_C_ATTRIBUTE object (containing a GDS structured attribute like
Telex-Number or Owner):

 TXN={TN=12345,CC=678,AB=90}
TXN = { TN = 12345, CC = 678, AB = 90}

 own={/c=de/o=sni/ou=ap11};{/c=de/o=sni/ou=ap22}
pa={pa='Wilhelm Riehl Str.85';'Munich')

Example 9: To create a DSX_C_GDS_ACL object:

MPUB={INT=0, USR={/c=de/o=sni/cn=naik, sn=bhavesh}}

 Chapter 9. XDS/XOM Convenience Routines 215

Example 10: To create a DS_C_FILTER object:

 c
 !c

C = de && CN = 'bha\x76esh naik'
 c=de&&cn˜=mueller

c = de && (cn = 'a*' || cn = b* || cn = c*)
 ACL={MPUB={INT=0,USR={/c=de/o=sni/cn=naik, sn=bhavesh}}}

c = de || cn = *aa*bb*cc*
(cn ˜=naik)&&((OCL=ORP)||(OCL=REP))&& !(SN='bhavesh naik')&&(L=*)

Example 11: Example of the error return when an erroneous string is supplied:

/c=de/o=sni,=de

The OM_return_code would be OM_WRONG_VALUE_MAKEUP.
The error_type would be OMX_MISSING_ABBRV.
The error_position would be 13.

Examples of strings returned by omX_object_to_string()

Following are examples of strings returned by omX_object_to_string():

Example 1: If a DS_C_DS_DN object is supplied:

 /
 /C=de/O=sni/OU=ap11/CN=naik,SN=naik
 /C=de/O=sni/OU=ap11/CN=naik,LOC=Muenchen\,8000

Example 2: If a DS_C_DS_RDN object is supplied:

 CN=naik,SN=naik
 server

Example 3: If a DS_C_ATTRIBUTE object is supplied:

 CN=bhavesh naik
 OCL=REP;ORP
 TXN={AB=90,CC=678,TN=12345}
 OWN={/C=de/O=sni/OU=ap11};{/C=de/O=sni/OU=ap22}

Example 4: If a DSX_C_GDS_ACL object is supplied:

 MPUB={INT=0,USR={/C=de/O=sni/CN=naik,SN=bhavesh}}

216 Application Development Guide: Directory Services

Example 5: If a DS_C_NAME_ERROR object is supplied with DS_PROBLEM of
DS_E_NO_SUCH_OBJECT:

The specified name does not match the name of any object in the directory

Example 6: If a DS_C_ATTRIBUTE_ERROR object is supplied with DS_C_ATTRIBUTE_PROBLEM
containing DS_E_ATTRIBUTE_OR_VALUE_EXISTS:

An attempt is made to add an attribute or value that already exists.

The teldir2.c Program

The teldir2.c file is a program that performs the same functionality as teldir.c. Please refer to Chapter 7
for a complete description of the program's functionality, including outputs. The purpose of teldir2.c is to
show how the XDS/XOM convenience functions can be used to reduce the complexity of a real
application.

The source code for this program can be found in directory /usr/lpp/dce/examples/xdsxom/teldir2.c.

The program consists of the following steps:

0. Initialize public OM objects.

1. Examine the command-line argument to determine the type of operation (read, add, or delete
entry) that the user wants to perform.

2. Initialize a workspace.

3. Pull in the packages with the required XDS features.

4. Prompt the user for the name entry on which the operation will be performed.

5. Convert the DCE-formatted user input string to an XDS object name.

6. Bind (without credentials) to the default server.

7. Perform the requested operation (read, add, or delete entry).

9. Unbind from the server.

10. Shutdown the workspace, releasing resources back to the system.

The teldir2.c program differs from the teldir.c program primarily because it makes use of the XOM
convenience routines. It shows how these routines can simplify a program that needs to use the
XDS/XOM APIs by aiding both the generation and parsing of OM objects. The following list of points
summarizes the program differences resulting from this approach:

� Step 0 replaces the declaration of static OM objects xdsSurname, xdsPhoneNum, and
xdsAttributesToAdd performed in teldir.c with dynamically created OM objects that are filled in at
the beginning of the program's processing. The omX_fill() and omX_fill_oid() convenience routines.
are used to initialize these OM objects.

� The extractValue() function defined in teldir2.c is quite different than the extractValue() function
defined in teldir.c. In teldir2.c, XOM convenience routine dsX_extract_attr_values() is used to aid in
parsing the DS_C_READ_RESULT OM object passed into extractValue(). The first om_get() call in
extractValue() extracts from the DS_C_READ_RESULT OM object a pointer to the
DS_C_ENTRY_INFO OM object. This pointer is then passed to the dsX_extract_attr_values()
function. In addition, the dsX_extract_attr_values() function takes an object identifier as input. This
object identifier indicates which attribute in the DS_C_ENTRY_INFO OM object should be extracted.

 Chapter 9. XDS/XOM Convenience Routines 217

The use of the dsX_extract_attr_values() XOM convenience routine replaces three om_get() function
calls in the teldir.c implementation.

� The stringToXdsName() function defined in teldir2.c is also very different (and much simpler) than in
that in teldir.c. In teldir2.c the omX_string_to_object() XOM convenience routine is used to replace
all the manual parsing done by the stringToXdsName() function defined in teldir.c. Furthermore, two
routines that support this parsing in teldir.c, numNamePieces() and splitNamePiece() are not
needed and not included in teldir2.c.

� The handleDSError() function defined in teldir2.c makes use of the omX_object_to_string() XOM
convenience routine to obtain a textual error message based on a DS_C_ERROR OM object passed
in to the omX_object_to_string() XOM convenience routine.

� When the add option in specified in teldir2.c, the omX_string_to_object() XOM convenience routine
is used to create a DS_C_ATTRIBUTE OM object. This OM object is then pointed to from the
xdsAttributesToAdd OM object (which is of OM class DS_C_ATTRIBUTE_LIST). The omX_fill()
XOM convenience routine is used to modify the xdsAttributesToAdd public OM object.

The teldir2.c Code

The following code is a listing of the teldir2.c program:

/B
 B This sample program behaves like a simple telephone directory.
 B It permits a user to add, read or delete entries in a GDS
 B namespace or to a CDS namespace in any local or remote DCE cell
 B (assuming that permissions are granted by the ACLs).
 B
 B Each entry is of class Organizational-Person and simply contains
 B a person's surname and their phone number.
 B
 B The addition of an entry is followed by a read to verify that the
 B information was entered properly.
 B
 B All valid names should begin with one of the following symbols:
 B /... Fully qualified name (from global root).
 B e.g. /.../C=de/O=sni/OU=ap/CN=klaus
 B
 B /.: Partially qualified name (from local cell root).
 B e.g. /.:/brad/sni/com
 B
 B This program demonstrates the following techniques:
 B - Using omX_fill and omX_fill_oid to update non-static XDS
 B public objects. See xdsObjectClass and xdsAttributesToAdd.
 B - Using omX_string_to_object to create DS_C_ATTRIBUTE type XDS
 B objects from their string representations. See xdsSurname
 B and xdsPhoneNum.
 B - Using omX_string_to_object to create a DS_C_DS_DN type XDS
 B object which represents an object name. See the function
 B stringToXdsName() below.
 B - Getting the value of an attribute from an object read from the
 B namespace using ds_read(). See the function extractValue() below.
 B omX_extract and dsX_extract_attr_values are used.
 B - Getting a string representation of the numeric DS_PROBLEM error
 B value which is returned within a DS_C_ERROR private object when an
 B error occurs during one of the XDS calls. See the function
 B handleDSError() below.
 B/

218 Application Development Guide: Directory Services

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <xom.h>
#include <xomext.h>
#include <xds.h>
#include <xdsext.h>
#include <xdsbdcp.h>
#include <xdsgds.h>
#include <xdscds.h>

OM_EXPORT(DS_BASIC_DIR_CONTENTS_PKG)
OM_EXPORT(DS_A_COMMON_NAME)
OM_EXPORT(DS_A_COUNTRY_NAME)
OM_EXPORT(DS_A_LOCALITY_NAME)
OM_EXPORT(DS_A_OBJECT_CLASS)
OM_EXPORT(DS_A_ORG_UNIT_NAME)
OM_EXPORT(DS_A_ORG_NAME)
OM_EXPORT(DS_A_SURNAME)
OM_EXPORT(DS_A_PHONE_NBR)
OM_EXPORT(DS_A_TITLE)
OM_EXPORT(DS_C_ATTRIBUTE)
OM_EXPORT(DS_C_ATTRIBUTE_LIST)
OM_EXPORT(DS_A_STATE_OR_PROV_NAME)
OM_EXPORT(DS_C_AVA)
OM_EXPORT(DS_C_DS_DN)
OM_EXPORT(DS_C_DS_RDN)
OM_EXPORT(DS_C_ENTRY_INFO_SELECTION)
OM_EXPORT(DS_O_ORG_PERSON)
OM_EXPORT(DS_O_PERSON)
OM_EXPORT(DS_O_TOP)
OM_EXPORT(DSX_TYPELESS_RDN) /B For "typeless" pieces of a name, as B/

/B found in cells with bind-style names B/
/B and in the CDS namespace. B/

#define MAX_NAME_LEN 1H24

/B These values can be found in the Chapter
"Directory Class Definitions". B/

/B (One byte must be added for the null terminator.) B/
#define MAX_PHONE_LEN 33
#define MAX_SURNAME_LEN 66

/BBB
 B Static XDS objects.
 BBB/
/B
 B To hold the list of attributes we want to read.
 B/
static OM_descriptor xdsAttributeSelection[] = {

/B This is an entry information selection. B/
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),

/B Get all attributes. B/
{ DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, OM_FALSE },

 Chapter 9. XDS/XOM Convenience Routines 219

/B These are the ones we want to read. B/
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A_SURNAME),
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A_PHONE_NBR),

/B Give us both the types and their values. B/
{ DS_INFO_TYPE, OM_S_ENUMERATION, DS_TYPES_AND_VALUES },

/B Null terminator B/
 OM_NULL_DESCRIPTOR
};

/BB
 B showUsage()
 B Display "usage" information.
 BBB/
void
showUsage(

char B cmd /B In--Name of command being called B/
)
{

fprintf(stderr, "\nusage: %s [option]\n\n", cmd);
fprintf(stderr, "option: a : add an entry\n");
fprintf(stderr, " r : read an entry\n");
fprintf(stderr, " d : delete an entry\n");

} /B end showUsage() B/

/BBB
 B extractValue()
 B Pulls the value of a particular attribute from a private object
 B that was received using ds_read().
 B Returns:
 B OM_SUCCESS If successful.
 B OM_NO_SUCH_OBJECT If no values for the attribute
 B were found.
 B other Any value returned by one of the
 B omX_extract() and dsX_extract_attr_values()
 B calls.
 BBB/
OM_return_code
extractValue(
 OM_private_object object, /B In--Object to extract from B/

OM_object_identifier attribute, /B In--Attribute to extract B/
char B value /B Out--Value found B/

)
{
 int i;
 OM_return_code omStatus;
 OM_descriptor BattrValue;
 OM_public_object outputValues;
 OM_value_position totalValues;
 OM_type navigationPath[1];
 OM_type typeList[2];
 OM_private_object entryInfo;

220 Application Development Guide: Directory Services

 /B
B the DS_ENTRY object is pointed to by the "root"
B DS_C_READ_RESULT object which is returned by ds_read().

 B/
navigationPath[H] = H;

 /B
B extract only the DS_ENTRY OM object which points
B to a DS_C_ENTRY_INFO object.

 B/
typeList[H] = DS_ENTRY;
typeList[1] = H;

 /B
B Get the DS_C_ENTRY_INFO entry from the object returned
B by ds_read().

 B/
omStatus = omX_extract(object,

 navigationPath,
 OM_EXCLUDE_ALL_BUT_THESE_TYPES
 | OM_EXCLUDE_SUBOBJECTS,
 typeList,

OM_TRUE, /B local_strings == OM_TRUE B/
 H,
 H,
 &entryInfo,
 &totalValues);

if(omStatus != OM_SUCCESS) {
fprintf(stderr, "omX_extract(entry) returned error %d\n",

 omStatus);
return(omStatus);

 }

 /B
B dsX_extract_attr_values() takes either a DS_C_ENTRY_INFO
B or DS_C_ATTRIBUTE_LIST object as input and will return
B the attribute values associated with the input attribute type.

 B/
omStatus = dsX_extract_attr_values((OM_private_object)

 entryInfo->value.object.object,
attribute, /B attribute type OID B/
OM_TRUE, /B local_strings == OM_TRUE B/

 &outputValues,
 &totalValues);

if(omStatus != OM_SUCCESS) {
fprintf(stderr, "dsX_extract_attr_values(entry) returned error %d\n",

 omStatus);
return(omStatus);

 }
if(totalValues <= H) { /B Make sure something was returned B/

 fprintf(stderr,
"Number of descriptors returned by dsX_extract_attr_values(entry) was %d\n",

 totalValues);
return(OM_NO_SUCH_OBJECT);

 }

 /B
B Copy the value(s) into the buffer for return to the caller.

 Chapter 9. XDS/XOM Convenience Routines 221

 B/
attrValue = outputValues;
for(i=H; i<totalValues; i++) {

if (i != H) {
Bvalue++ = ';'; Bvalue++ = ' ';

 }
strncpy(value, attrValue->value.string.elements,

 attrValue->value.string.length);
value += attrValue->value.string.length;

 attrValue++;
 }

Bvalue = '\H';

 /B
B Free up the resources we don't need any more and return.

 B/
om_delete(entryInfo);
om_delete(outputValues);
return(OM_SUCCESS);

} /B end extractValue() B/

/BBB
 B stringToXdsName()
 B Converts a string that is a DCE name to an XDS name object (class
 B DS_C_DS_DN). Returns one of the following:
 B OM_SUCCESS If successful.
 B OM_WRONG_VALUE_MAKEUP If the omX_string_to_object() fails.
 B
 B The name will be allocated by omX_string_to_object() as a private
 B OM object in the workspace supplied. As such, it will be cleaned
 B up when a ds_shutdown() is called.
 BBB/
OM_return_code
stringToXdsName(

char B origString, /B In--String name to be converted B/
OM_workspace B workspace, /B In--Workspace to use B/
OM_object B xdsNameObj /B Out--Pointer to XDS name object B/

)
{

char nameString[MAX_NAME_LEN]; /B slightly modified
 origString B/

char BcellName; /B output of dce_cf_get_cell_name() B/
unsigned long rc; /B output of dce_cf_get_cell_name() B/
OM_string inputString; /B input to omX_string_to_object() B/
OM_return_code omStatus; /B return from omX_string_to_object() B/
OM_integer errorPosition; /B output of omX_string_to_object() B/
OM_integer errorType; /B output of omX_string_to_object() B/

omStatus = OM_SUCCESS;

if (strncmp("/.:/",origString,4) == H) {
dce_cf_get_cell_name(&cellName, &rc);
if (rc == H) {

 strcpy(nameString, cellName);
 strcat(nameString, "/");
 strcat(nameString, origString+4);

222 Application Development Guide: Directory Services

} else {
omStatus = OM_SYSTEM_ERROR;

 }
} else {

 strcpy(nameString, origString);
 }

if (omStatus == OM_SUCCESS) {
inputString.length = strlen(nameString);
inputString.elements = nameString;

omStatus = omX_string_to_object(workspace,
 &inputString,
 DS_C_DS_DN,

OM_TRUE, /B local_strings == OM_TRUE B/
xdsNameObj, /B output - generated name object B/

 &errorPosition,
 &errorType);

if (omStatus != OM_SUCCESS) {
 fprintf(stderr,

"Error parsing supplied name, error_position:%d, error_type:%d\n",
 errorPosition, errorType);
 }

} else {
fprintf(stderr, "Error parsing supplied name\n");

 }

 return(omStatus);
} /B end stringToXdsName() B/

/BB
 B handleDSError()
 B Extracts the error number from a DS_status return code, prints it
 B in an error message, then terminates the program.
 BBB/
void
handleDSError(

char B header, /B In--Name of function whose return code B/
/B is being checked B/

DS_status returnCode /B In--Return code to be checked B/
)
{
 OM_return_code omStatus;
 OM_string outputString;

if (returnCode == DS_SUCCESS) {
/B do nothing B/

} else if ((returnCode == DS_NO_WORKSPACE) ||
(returnCode == DS_NO_WORKSPACE)) {

printf("%s failed due to a malformed workspace\n", header);
} else {

outputString.length = MAX_NAME_LEN;
outputString.elements = malloc(MAX_NAME_LEN);

if (outputString.elements != NULL) {

 Chapter 9. XDS/XOM Convenience Routines 223

 /B
B A DS_status return code is an object. It will be one of the
B subclasses of the class DS_C_ERROR. What we want from it is
B the value of the attribute DS_PROBLEM. The omX_object_to_string()
B routine will return a character string containing a text message
B describing the error.

 B/
omStatus = omX_object_to_string(returnCode,

OM_TRUE, /B local_strings == OM_TRUE B/
 &outputString);

 /B
B Make sure we successfully extracted the message text.

 B/
if(omStatus == OM_SUCCESS) {

printf("%s returned error %Bs\n", header,
 outputString.length, outputString.elements);

} else {
printf("%s failed for unknown reason\n", header);

 }

free(outputString.elements);
} else {

printf("handleDSError() could not obtain storage\n");
 }
 }

exit(1);
}

/BB
 B Main program
 B/
void
main(
 int argc,
 char B argv[]
)
{
 DS_status dsStatus;
 OM_sint invokeID;
 char newName[MAX_NAME_LEN];
 char newPhoneNum[MAX_PHONE_LEN];
 char newSurname[MAX_SURNAME_LEN];
 char objectStringElements[MAX_NAME_LEN];
 OM_string objectString;
 OM_return_code omStatus;
 char phoneNumRead[MAX_PHONE_LEN];

int rc = H;
 OM_private_object readResult;
 OM_private_object session;
 char surnameRead[MAX_SURNAME_LEN];
 OM_object xdsName;
 OM_workspace xdsWorkspace;
 char operation;
 OM_integer errorPosition;

224 Application Development Guide: Directory Services

 OM_integer errorType;
 DS_feature featureList[2];

 /B
B STEP �

 B
B Initialize the OM public objects to be used.

 B/

 OM_descriptor xdsObjectClass[4];
 OM_private_object xdsSurname;
 OM_private_object xdsPhoneNum;
 OM_descriptor xdsAttributesToAdd[5];

 /B
B Set up the DS_feature list. This is used to identify which
B packages we need for this program. We only need
B the basic package because we are not doing anything fancy with
B session parameters, etc.

 B/
featureList[H].feature = DS_BASIC_DIR_CONTENTS_PKG;
featureList[H].activated = OM_TRUE;
featureList[1].feature.length = H;
featureList[1].feature.elements = NULL;

/B set up a OM_string structure with storage to hold data B/
objectString.length = MAX_NAME_LEN;
objectString.elements = objectStringElements;

/B Fill in the parts of the xdsObjectClass OM object B/
omX_fill_oid(OM_CLASS, DS_C_ATTRIBUTE, &xdsObjectClass[H]);
omX_fill_oid(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS, &xdsObjectClass[1]);
omX_fill_oid(DS_ATTRIBUTE_VALUES, DS_O_ORG_PERSON, &xdsObjectClass[2]);
omX_fill(OM_NO_MORE_TYPES, OM_S_NO_MORE_SYNTAXES, H, OM_ELEMENTS_UNSPECIFIED,

 &xdsObjectClass[3]);

/B Fill in the non-variant parts of the xdsAttributesToAdd OM object B/
omX_fill_oid(OM_CLASS, DS_C_ATTRIBUTE_LIST, &xdsAttributesToAdd[H]);
omX_fill(DS_ATTRIBUTES, OM_S_OBJECT, H, xdsObjectClass,

 &xdsAttributesToAdd[1]);
omX_fill(OM_NO_MORE_TYPES, OM_S_NO_MORE_SYNTAXES, H, OM_ELEMENTS_UNSPECIFIED,

 &xdsAttributesToAdd[4]);

/B STEP 1
 B

B Examine command-line argument.
 B/

operation = Bargv[1];
if ((operation != 'r') && (operation != 'a') && (operation != 'd')) {

showUsage(argv[H]);
exit(1);

 }

/B STEP 2
 B

 Chapter 9. XDS/XOM Convenience Routines 225

B Initialize the XDS workspace.
 B/

xdsWorkspace = ds_initialize();
if(xdsWorkspace == NULL) {
fprintf(stderr, "ds_initialize() failed\n");
exit(1);

 }

/B STEP 3
 B

B Pull in the packages that contain the XDS features we need.
 B/

dsStatus = ds_version(featureList, xdsWorkspace);
if(dsStatus != DS_SUCCESS)
handleDSError("ds_version()", dsStatus);

/B STEP 4
 B

B Find out what name the user wants to use in the namespace and
B convert it to and XDS object. We do this conversion dynamically
B (not using static structures defined at the top of the program)
B because we don't know how long the name will be.

 B/
switch(operation) {
case 'r' :

printf("What name do you want to read? ");
 break;

case 'a' :
printf("What name do you want to add? ");

 break;
case 'd' :

printf("What name do you want to delete? ");
 break;
 }

/B STEP 5 B/

gets(newName);
omStatus = stringToXdsName(newName, xdsWorkspace, &xdsName);
if(omStatus != OM_SUCCESS) {

 fprintf(stderr,
"stringToXdsName() failed with OM error %d\n", omStatus);

exit(1);
 }

if (operation == 'a') { /B add operation requires additional input B/
 /B

B Get the person's real name from the user and, using
B omX_string_to_object(), create the xdsSurname OM object which
B will contain the data.

 B
B We are requiring a name, so we will loop until we get one.

 B/
 do {

printf("What is this person's surname? ");
gets(newSurname);
} while (BnewSurname == '\H');

226 Application Development Guide: Directory Services

sprintf((char B)(objectString.elements), "SN=%s",newSurname);
 objectString.length=strlen(objectString.elements);

omStatus = omX_string_to_object(xdsWorkspace,
 &objectString,
 DS_C_ATTRIBUTE,

OM_TRUE, /B local_strings == OM_TRUE B/
 &xdsSurname,
 &errorPosition,
 &errorType);

omX_fill(DS_ATTRIBUTES, OM_S_OBJECT, H, xdsSurname,
 &xdsAttributesToAdd[2]);

 /B
B Get the person's phone number from the user and, using
B omX_string_to_object(), create the xdsPhoneNum OM object which
B will contain the data.

 B
B A phone number is not required, so if none is given we will create
B the xdsPhoneNum OM object with "unlisted" as the telephone number.

 B/
printf("What is this person's phone number? ");
gets(newPhoneNum);
if(BnewPhoneNum != '\H') {

sprintf((char B)(objectString.elements), "TN=%s",
 newPhoneNum);

} else {
strcpy((char B)(objectString.elements), "TN=unlisted");

 }
 objectString.length=strlen(objectString.elements);

omStatus = omX_string_to_object(xdsWorkspace,
 &objectString,
 DS_C_ATTRIBUTE,

OM_TRUE, /B local_strings == OM_TRUE B/
 &xdsPhoneNum,
 &errorPosition,
 &errorType);

omX_fill(DS_ATTRIBUTES, OM_S_OBJECT, H, xdsPhoneNum,
 &xdsAttributesToAdd[3]);
 }

/B STEP 6
 B

B Open the session with the namespace:
B bind (without credentials) to the default server.

 B/
dsStatus = ds_bind(DS_DEFAULT_SESSION, xdsWorkspace, &session);
if(dsStatus != DS_SUCCESS)
handleDSError("ds_bind()", dsStatus);

/B STEP 7 B/

switch(operation) { /B perform the requested operation B/

 Chapter 9. XDS/XOM Convenience Routines 227

 /B
B Add entry to the namespace. The xdsSurname and xdsPhoneNum
B objects are already contained within an attribute list object

 B (xdsAttributesToAdd).
 B/

case 'a' :
dsStatus = ds_add_entry(session, DS_DEFAULT_CONTEXT, xdsName,

xdsAttributesToAdd, &invokeID);
if(dsStatus != DS_SUCCESS)
handleDSError("ds_add_entry()", dsStatus);

 break;
/B FALL THROUGH B/

 /B
B Read the entry of the name supplied.

 B/
case 'r' :

dsStatus = ds_read(session, DS_DEFAULT_CONTEXT, xdsName,
xdsAttributeSelection, &readResult, &invokeID);

if(dsStatus != DS_SUCCESS)
handleDSError("ds_read()", dsStatus);

 /B
B Get each attribute from the object read and print them.

 B/
omStatus = extractValue(readResult, DS_A_SURNAME, surnameRead);
if(omStatus != OM_SUCCESS) {
printf("BB Surname could not be read\n");
strcpy(surnameRead, "(unknown)");
rc = 1;

 }
omStatus = extractValue(readResult, DS_A_PHONE_NBR, phoneNumRead);
if(omStatus != OM_SUCCESS) {
printf("BB Phone number could not be read\n");

strcpy(phoneNumRead, "(unknown)");
rc = 1;

 }
printf("The phone number for %s is %s.\n",

surnameRead, phoneNumRead);

 break;

 /B
B delete the entry from the namespace.

 B/
case 'd' :

dsStatus = ds_remove_entry(session, DS_DEFAULT_CONTEXT, xdsName,
 &invokeID);

if(dsStatus != DS_SUCCESS)
handleDSError("ds_remove_entry()", dsStatus);

 else
printf("The entry has been deleted.\n");

 break;
 }

228 Application Development Guide: Directory Services

 /B
B Clean up and exit.

 B/
/B STEP 8 B/
dsStatus = ds_unbind(session);
if(dsStatus != DS_SUCCESS)
handleDSError("ds_unbind()", dsStatus);

/B STEP 9 B/
dsStatus = ds_shutdown(xdsWorkspace);
if(dsStatus != DS_SUCCESS)
handleDSError("ds_shutdown()", dsStatus);

exit(rc);

} /B end main() B/

 Chapter 9. XDS/XOM Convenience Routines 229

230 Application Development Guide: Directory Services

Part 4. XDS/XOM Supplementary Information

This part of the book consists mostly of tables of values for the data structures used by the XDS and XOM
application programming interfaces, which are the interfaces used to directly access the DCE Directory
Service. These chapters supplement the information on the XDS and XOM function calls which are
described in the z/OS DCE Application Development Reference.

Chapter 10. XDS Interface Description . . 233
XDS Conformance to Standards 233
The XDS Functions 234

The XDS Negotiation Sequence 235
The session Parameter 235
The context Parameter 236
The XDS Function Arguments 236

Attribute and Attribute Value Assertion . . 237
The Entry-Information-Selection Parameter 237
The name Parameter 238

XDS Function Call Results 238
The invoke-id Parameter 238
The result Parameter 238
The DS_status Return Value 239

Synchronous Operations 239
Security and XDS 240
Other Features of the XDS Interface 240

Automatic Connection Management 240
Automatic Continuation and Referral

Handling 240

Chapter 11. XDS Class Definitions 241
Introduction to OM Classes 241
XDS Errors . 241
OM Class Hierarchy 242
DS_C_ABANDON_FAILED 244
DS_C_ACCESS_POINT 245
DS_C_ADDRESS 245
DS_C_ATTRIBUTE 245
DS_C_ATTRIBUTE_ERROR 246
DS_C_ATTRIBUTE_LIST 246
DS_C_ATTRIBUTE_PROBLEM 247
DS_C_AVA . 248
DS_C_COMMON_RESULTS 248
DS_C_COMMUNICATIONS_ERROR 248
DS_C_COMPARE_RESULT 249
DS_C_CONTEXT 249
DS_C_CONTINUATION_REF 252
DS_C_DS_DN 253
DS_C_DS_RDN 253
DS_C_ENTRY_INFO 254
DS_C_ENTRY_INFO_SELECTION 254
DS_C_ENTRY_MOD 255
DS_C_ENTRY_MOD_LIST 256
DS_C_ERROR 256

DS_C_EXT . 258
DS_C_FILTER 259
DS_C_FILTER_ITEM 260
DS_C_LIBRARY_ERROR 261
DS_C_LIST_INFO 262
DS_C_LIST_INFO_ITEM 263
DS_C_LIST_RESULT 264
DS_C_NAME 264
DS_C_NAME_ERROR 265
DS_C_OPERATION_PROGRESS 265
DS_C_PARTIAL_OUTCOME_QUAL 266
DS_C_PRESENTATION_ADDRESS 267
DS_C_READ_RESULT 268
DS_C_REFERRAL 268
DS_C_RELATIVE_NAME 268
DS_C_SEARCH_INFO 268
DS_C_SEARCH_RESULT 269
DS_C_SECURITY_ERROR 270
DS_C_SERVICE_ERROR 270
DS_C_SESSION 271
DS_C_SYSTEM_ERROR 272
DS_C_UPDATE_ERROR 273

Chapter 12. Basic Directory Contents
Package . 275

Selected Attribute Types 275
Selected Object Classes 282
OM Class Hierarchy 283
DS_C_FACSIMILE_TELEPHONE_NUMBER .284
DS_C_POSTAL_ADDRESS 284
DS_C_SEARCH_CRITERION 285
DS_C_SEARCH_GUIDE 286
DS_C_TELETEX_TERMINAL_IDENTIFIER . 286
DS_C_TELEX_NUMBER 287

Chapter 13. Strong Authentication
Package . 289

SAP Attribute Types 289
Strong Authentication Package Object

Classes . 291
OM Class Hierarchy 291
DS_C_ALGORITHM_IDENT 291
DS_C_CERT 292
DS_C_CERT_LIST 293
DS_C_CERT_PAIR 293

 Copyright IBM Corp. 1994, 2001 231

DS_C_CERT_SUBLIST 294
DS_C_SIGNATURE 294

Chapter 14. MHS Directory User Package 297
MDUP Attribute Types 297
MDUP Object Classes 299
MDUP OM Class Hierarchy 300
MH_C_OR_ADDRESS 300
MH_C_OR_NAME 310
DS_C_DL_SUBMIT_PERMS 310

Chapter 15. Global Directory Service
Package . 313

GDSP Attribute Types 313
GDSP Object Classes 316
GDSP OM Class Hierarchy 316
DSX_C_GDS_ACL 316
DSX_C_GDS_ACL_ITEM 317
DSX_C_GDS_CONTEXT 318
DSX_C_GDS_SESSION 321

Chapter 16. Distributed Management
Environment Support 323

DME Attribute Types 323
DME Object Classes 324

Chapter 17. Information Syntaxes 325
Syntax Templates 325
Syntaxes . 325
Strings . 326
Representation of String Values 327
Relationship to ASN.1 Simple Types 327
Relationship to ASN.1 Useful Types 327
Relationship to ASN.1 Character String

Types . 328

Relationship to ASN.1 Type Constructors . . 328

Chapter 18. XOM Service Interface 331
Standards Conformance 331
XOM Data Types 331

OM_boolean 333
OM_descriptor 333
OM_enumeration 334
OM_exclusions 334
OM_integer 335
OM_modification 335
OM_object 335
OM_object_identifier 335
OM_private_object 337
OM_public_object 337
OM_return_code 337
OM_string 338
OM_syntax 339
OM_type . 339
OM_type_list 340
OM_value 340
OM_value_length 341
OM_value_position 341
OM_workspace 341

XOM Functions 341
XOM Return Codes 343

Chapter 19. Object Management Package 347
Class Hierarchy 347
Class Definitions 347

OM_C_ENCODING 347
OM_C_EXTERNAL 348
OM_C_OBJECT 349

232 Application Development Guide: Directory Services

Chapter 10. XDS Interface Description

The XDS interface consists of a number of functions, together with many OM classes of OM objects,
which are used as the arguments and results of the functions. Both the functions and the OM objects are
based closely on the Abstract Service that is specified in the standards. (See The Directory: Abstract
Service Definition, ISO 9594-3, CCITT X.511.)

The interface models the directory interactions as service requests made through a number of interface
functions, which take a number of input parameters. Each valid request causes an operation within the
Directory Service, which eventually returns a status and any result of the operation.

All interactions between the user and the Directory Service belong to a session, which is represented by
an OM object passed as the first parameter to most interface functions.

The other parameters to the functions include a context and various service-specific parameters. The
context includes a number of parameters that are common to many functions, and that seldom change
from operation to operation.

Each of the components of this model are described in this chapter along with other features of the
interface, such as security.

XDS Conformance to Standards

The XDS interface defines an API that application programs can use to access the underlying directory
service. The DCE XDS API conforms to the X/Open CAE Specification, API to Directory Services (XDS),
(November 1991).

The DCE XDS implementation supports the following features:

� A synchronous interface. Asynchronous operations are not supported.

� All synchronous interface functions are supported. The two asynchronous-specific functions are
handled as follows:

ds_abandon() This call does not issue a Directory Service abandon operation. It returns
with a DS_C_ABANDON_FAILED (DS_E_TOO_LATE) error.

ds_receive_result() This call returns DS_SUCCESS with the completion_flag_return parameter
set to DS_NO_OUTSTANDING_OPERATION.

� The ds_search() and ds_modify_rdn() routines are not supported by z/OS DCE. These routines
return DS_E_UNAVAILABLE if a GDS name is used in the call. A
DS_E_UNWILLING_TO_PERFORM is returned if a CDS name is used.

� Automatic connection management is not provided. The ds_bind() and ds_unbind() functions always
try to set up and release Directory Service connections immediately.

� The DS_FILE_DESCRIPTOR attribute of the DS_C_SESSION object is not used.

� The default values for OM attributes in the DS_C_CONTEXT and DS_C_SESSION object are
described in Chapter 11, “XDS Class Definitions” on page 241.

DCE XDS supports four packages: one is mandatory, and three are optional. Use of the optional
packages is negotiated using ds_version(). The packages are as follows:

� The Directory Service Package (as defined in Chapter 11, “XDS Class Definitions” on page 241),
which also includes the errors (as defined in “XDS Errors” on page 241). This package is mandatory.

 Copyright IBM Corp. 1994, 2001 233

� The Basic Directory Contents Package (as defined in Chapter 12, “Basic Directory Contents Package”
on page 275). This package is optional.

� The Global Directory Service Package. This package is optional.

� The MHS Directory User Package. This package is optional.

Note: You can use any of the above packages, however, the objects and attributes supported by the
Global Directory Service Package and the MHS Directory User package are complex and suited
for GDS and mail objects in GDS. z/OS DCE does not support GDS.

None of the OM classes defined in the above packages are encodable. Thus, DCE XDS application
programmers do not require use of the XOM functions om_encode() and om_decode(), which are not
supported by the DCE XOM API.

The XDS Functions

As mentioned already, the standards define Abstract Services that requestors use to interact with the
directory. Each of these Abstract Services maps to a single function call, and the detailed specifications
are given in the z/OS DCE Application Development Reference. The services and the function calls to
which they map are as follows:

� DirectoryBind (maps to ds_bind())

� DirectoryUnbind (maps to ds_unbind())

� Read (maps to ds_read())

� Compare (maps to ds_compare())

� Abandon (maps to ds_abandon())

� List (maps to ds_list())

� Search (maps to ds_search())

� AddEntry (maps to ds_add_entry())

� RemoveEntry (maps to ds_remove_entry())

� ModifyEntry (maps to ds_modify_entry())

� ModifyRDN (maps to ds_modify_rdn())

There is a function called ds_receive_result(), which has no counterpart in the Abstract Service. It is
used with asynchronous operations. (See the z/OS DCE Application Development Reference for
information on how the asynchronous functions ds_abandon() and ds_receive_result() are handled by
the DCE XDS API.)

The ds_initialize(), ds_shutdown(), and ds_version() functions are used to control the XDS API and do
not initiate any directory operations.

The interface functions are summarized in Table 20.

Table 20 (Page 1 of 2). The XDS Interface Functions

Name Description

ds_abandon() Abandons the result of a pending, asynchronous operation. This function is not supported.
(See the z/OS DCE Application Development Reference.)

ds_add_entry() Adds a leaf entry to the DIT.

234 Application Development Guide: Directory Services

The XDS Negotiation Sequence

The interface has an initialization and shutdown sequence that permits the negotiation of optional features.
This involves the ds_initialize(), ds_version(), and ds_shutdown() functions.

Every application program must first call ds_initialize(), which returns a workspace. The workspace can
be extended to support the optional Basic Directory Contents Package (see Chapter 12, “Basic Directory
Contents Package” on page 275) or the Global Directory Service Package, or the MHS Directory User
Package. These packages are identified by means of OSI Object Identifiers, and these Object Identifiers
are supplied to ds_version() to incorporate the extensions into the workspace.

After a workspace with the required features is negotiated in this way, the application can use the
workspace as required. It can create and manipulate OM objects using the OM functions, and can start
one or more directory sessions using ds_bind().

After completing its tasks, terminating all its directory sessions using ds_unbind(), and releasing all its OM
objects using om_delete()), the application needs to ensure that resources associated with the interface
are freed by calling ds_shutdown().

The session Parameter

A session identifies the DUA and the suite of DSAs to which a particular directory operation is sent. It
contains some DirectoryBindArguments, such as the distinguished name of the requestor. The session
parameter is passed as the first parameter to most interface functions.

A session is described by an OM object of OM class DS_C_SESSION. After it is created, appropriate
parameter values can be set using the OM functions. A directory session then starts with ds_bind() and
later terminates with ds_unbind(). A session with default parameters can be started by passing the
constant DS_DEFAULT_SESSION as the DS_C_SESSION parameter to ds_bind().

Table 20 (Page 2 of 2). The XDS Interface Functions

Name Description

ds_bind() Opens a session with a DUA that, in turn, connects to a DSA.

ds_compare() Compares a purported attribute value with the attribute value stored in the DIB for a
particular entry.

ds_initialize() Initializes the XDS interface.

ds_list() Enumerates the names of the immediate subordinates of a particular directory entry.

ds_modify_entry() Automatically modifies a directory entry.

ds_modify_rdn() Changes the RDN of a leaf entry. Not supported on z/OS DCE.

ds_read() Queries information on a particular directory entry by name.

ds_receive_result() Retrieves the result of an asynchronously executed function. This function is not supported.
(See z/OS DCE Application Development Reference.)

ds_remove_entry() Removes a leaf entry from the DIT.

ds_search() Finds entries of interest in a portion of the directory information tree. Not supported on
z/OS DCE.

ds_shutdown() Discards a workspace.

ds_unbind() Unbinds from a directory session.

ds_version() Negotiates features of the interface and service.

 Chapter 10. XDS Interface Description 235

The ds_bind() function must be called before DS_C_SESSION can be used as a parameter to any other
function in this interface. After ds_unbind() is called, ds_bind() must be called again if another session is
to be started.

The interface supports multiple concurrent sessions so that an application implemented as a single
process, such as a server in a client/server model, can interact with the directory using several identities,
and a process can interact directly and concurrently with different parts of the directory.

Details of the OM Class DS_C_SESSION are given in Chapter 11, “XDS Class Definitions” on page 241.

The context Parameter

The context defines the characteristics of the directory interaction that are specific to a particular directory
operation; nevertheless, the same characteristics are often used for many operations. Because these
parameters are assumed to be relatively static for a given directory user during a particular directory
interaction, these parameters are collected into an OM object of OM class DS_C_CONTEXT, which is
supplied as the second parameter of each Directory Service request. This reduces the number of
parameters passed to each function.

The context includes many administrative details, such as the CommonArguments defined in the
Abstract Service, which affect the processing of each directory operation. These include a number of
ServiceControls, which allow control over some aspects of the service. The ServiceControls include
options such as preferChaining, chainingProhibited, localScope, dontUseCopy, and
dontDereferenceAliases, together with priority, timeLimit, sizeLimit, and scopeOfReferral. Each of
these is mapped onto an OM attribute in the context. (See Chapter 11, “XDS Class Definitions” on
page 241 for more information.)

The effect of passing the context parameter is as if its contents were passed as a group of additional
arguments for every function call. The value of each component of the context is determined when the
interface function is called, and remains fixed throughout the operation.

All OM attributes in the class DS_C_CONTEXT have default values, some of which are administered
locally. The constant DS_DEFAULT_CONTEXT can be passed as the value of the DS_C_CONTEXT
parameter to the interface functions, and has the same effect as a context OM object created with default
values. The context must be a private object, unless it is DS_DEFAULT_CONTEXT.

See Chapter 11, “XDS Class Definitions” on page 241 for detailed specifications of the OM class
DS_C_CONTEXT.

The XDS Function Arguments

The Abstract Service defines specific parameters for each operation. These are mapped onto
corresponding parameters to each interface function, which are also called input parameters. Although
each service has different arguments, some specific arguments recur in several operations and these are
briefly introduced here. (For complete details of these parameters, see Chapter 11, “XDS Class
Definitions” on page 241.)

All parameters that are OM objects can generally be supplied to the interface functions as public objects
(that is, descriptor lists) or as private objects. Private objects must be created in the workspace that is
returned by ds_initialize(). In some cases, constants can be supplied instead of OM objects.

Note: Wherever a function can accept an instance of a particular OM class as the value of a parameter,
it also accepts an instance of any subclass of the OM class. For example, most functions have a

236 Application Development Guide: Directory Services

name parameter, which accepts values of OM class DS_C_NAME. It is always acceptable to
supply an instance of the subclass DS_C_DS_DN as the value of the parameter.

Attribute and Attribute Value Assertion

Each directory attribute is represented in the interface by an OM object of OM class DS_C_ATTRIBUTE.
The type of the directory attribute is represented by an OM attribute, DS_ATTRIBUTE_TYPE, within the
OM object. The values of the directory attribute are expressed as the values of the OM attribute
DS_ATTRIBUTE_VALUES.

The representation of the attribute value depends on the attribute type and is determined as indicated in
the following list. The list describes the way in which an application program must supply values to the
interface, for example, in the changes parameter to ds_modify_entry(). The interface follows the same
rules when returning attribute values to the application, for example, in the ds_read() result.

� The first possibility is that the attribute type and the representation of the corresponding values can be
defined in a package (for example, the selected attribute types from the standards that are defined in
Chapter 12, “Basic Directory Contents Package” on page 275). In this case, attribute values are
represented as specified. Additional directory attribute types and their OM representations are defined
by the Global Directory Service Package.

� If the attribute type is not known and the value is an ASN.1 simple type, such as IntegerType, the
representation is the corresponding type specified in Chapter 18, “XOM Service Interface” on
page 331.

� If the attribute type is not known and the value is an ASN.1 structured type, the value is represented in
the Basic Encoding Rules (BER) with OM syntax String(OM_S_ENCODING).

Note: The distinguished encoding specified in the Standards (see Clause 8.7 of The Directory:
Authentication Framework, ISO 9594-8, CCITT X.500) must be used if the request is to be
signed.

Where attribute values have OM syntax String(*), they can be long, segmented strings, and the functions
om_read() and om_write() need to be used to access them.

An Attribute Value Assertion (AVA) is an assertion about the value of an attribute of an entry, and can
be OM_TRUE, OM_FALSE, or undefined. It consists of an attribute type and a single value. In general,
the AVA is OM_TRUE if one of the values of the given attribute in the entry matches the given value. An
AVA is represented in the interface by an instance of OM class DS_C_AVA, which is a subclass of
DS_C_ATTRIBUTE and can only have one value.

Information used by ds_add_entry() to construct a new directory entry is represented by an OM object of
OM class DS_C_ATTRIBUTE_LIST, which contains a single multivalued OM attribute whose values are
OM objects of OM class DS_C_ATTRIBUTE.

The Entry-Information-Selection Parameter

The selection parameter of the ds_read() and ds_search() operations tailors its results to obtain just part
of the required entry. Information on all attributes, no attributes, or a specific group of attributes can be
chosen. Attribute types are always returned, but the attribute values are not necessarily returned.

The value of the parameter is an instance of OM class DS_C_ENTRY_INFORMATION_SELECTION, but
one of the constants in the following list can be used in simple cases:

� To verify the existence of an entry for the purported name, use the constant
DS_SELECT_NO_ATTRIBUTES.

� To return just the types of all attributes, use the constant DS_SELECT_ALL_TYPES.

 Chapter 10. XDS Interface Description 237

� To return the types and values of all attributes, use the constant
DS_SELECT_ALL_TYPES_AND_VALUES.

To choose a particular set of attributes, create a new instance of the OM class
DS_C_ENTRY_INFORMATION_SELECTION and set the appropriate OM attribute values using the OM
functions.

The name Parameter

Most operations take a name parameter to specify the target of the operation. The name is represented
by an instance of one of the subclasses of the OM class DS_C_NAME. The DCE XDS API defines the
subclass DS_C_DS_DN to represent distinguished names and other names.

For directory interrogations, any aliases in the name are dereferenced, unless prohibited by the
DS_DONT_DEREFERENCE_ALIASES service control. However, for modify operations, this service
control is ignored if set, and aliases are never dereferenced.

RDNs are represented by an instance of one of the subclasses of the OM class
DS_C_RELATIVE_NAME. The DCE XDS API defines the subclass DS_C_DS_RDN to represent RDNs.

XDS Function Call Results

All XDS functions return a DS_status, which is the C function result; most return data in an invoke-id
parameter and the result parameter. The invoke-id and result values are returned using pointers that are
supplied as parameters of the C function. These three types of function results are introduced in the
following subsections.

All OM objects returned by interface functions (results and status) are private objects in the workspace
returned by ds_initialize().

The invoke-id Parameter

All interface functions that invoke a Directory Service operation return an invoke-id parameter, which is an
integer that identifies the particular invocation of an operation. Because asynchronous operations are not
supported, the invoke-id return value is no longer relevant for operations. DCE application programmers
must still supply this parameter as described in the z/OS DCE Application Development Reference, but
should ignore the value returned.

The result Parameter

Directory Service interrogation operations return a result value only if they succeed. All errors from these
operations, including Directory Access Protocol (DAP) errors, are reported in DS_status (see “The
DS_status Return Value” on page 239), as are errors from all other operations.

The result of an interrogation is returned in a private object whose OM class is appropriate to the
particular operation. The format of directory operation results is driven by the Abstract Service. To
simplify processing, the result of a single operation is returned in a single OM object, which corresponds to
the abstract result defined in the standards. The components of the result of an operation are represented
by OM attributes in the operation’s result object. All information contained in the Abstract Service result is
made available to the application program. The result is inspected using the functions provided in the
Object Management API, (om_get()).

238 Application Development Guide: Directory Services

Only the interrogation operations produce results, and each type of interrogation has a specific OM class
of OM object for its result. These OM classes are as follows (see Chapter 11, “XDS Class Definitions” on
page 241 for their definitions):

 � DS_C_COMPARE_RESULT

 � DS_C_LIST_RESULT

 � DS_C_READ_RESULT

 � DS_C_SEARCH_RESULT.

The results of the different operations share several common components, including the CommonResults
defined in the standards (see The Directory: Abstract Service Definition, ISO 9594-3, CCITT X.511) by
inheriting OM attributes from the superclass DS_C_COMMON_RESULTS. An additional common
component is the full DN of the target object, after all aliases are dereferenced.

The actual OM class of the result can always be a subclass of that named to allow flexibility for
extensions. Thus, om_instance() always needs to be used when testing the OM class.

Any attribute values in the result are represented as discussed in “Attribute and Attribute Value Assertion”
on page 237.

The DS_status Return Value

Every interface function returns a DS_status value, which is either the constant DS_SUCCESS or an
error. Errors are represented by private objects whose OM class is a subclass of DS_C_ERROR. Details
of all errors are contained in “XDS Errors” on page 241.

Other results of functions are not valid unless the status result has the value DS_SUCCESS.

 Synchronous Operations

Because asynchronous use of the interface is not supported, the value of the DS_ASYNCHRONOUS OM
attribute in DS_C_CONTEXT is always OM_FALSE, causing all operations to be synchronous.

In synchronous mode, all functions wait until the operation is completed before returning. The thread of
control is blocked within the interface after calling a function, and it can use the result immediately after
the function returns.

Implementations define a limit on the number of asynchronous operations that can be outstanding at any
one time on any one session. The limit is given by the implementation-defined constant
DS_MAX_OUTSTANDING_OPERATIONS. It always has the value 0 (zero) because asynchronous
operations are not supported.

All errors occurring during a synchronous request are reported when the function returns. (See “XDS
Errors” on page 241 for complete details of error handling.)

 Chapter 10. XDS Interface Description 239

Security and XDS

The X/Open XDS specifications do not define a security interface because this can put constraints on
security features of existing directory implementations.

DCE GDS provides security by means of passwords. This is achieved at the XDS API level through a
new DSX_C_GDS_SESSION session object with an OM DSX_PASSWORD attribute. The GDS DSA
verifies this password for each directory operation.

Other Features of the XDS Interface

The following subsections describe these features of the interface:

� Automatic Connection Management

� Automatic Continuation and Referral Handling

Automatic Connection Management

An implementation can provide automatic management of the association or connection between the user
and the Directory Service, making and releasing connections at its discretion.

The DCE XDS implementation does not support automatic connection management. A DSA connection
is established when ds_bind() is called and released when ds_unbind() is called.

Automatic Continuation and Referral Handling

The interface provides automatic handling of continuation references and referrals in order to reduce the
burden on application programs. These facilities can be inhibited to meet special needs.

A continuation reference describes how the performance of all or part of an operation can be continued at
a different DSA or DSAs. A single continuation reference, returned as the entire response to an operation,
is called a referral and is classified as an error. One or more continuation references can also be returned
as part of DS_PARTIAL_OUTCOME_QUAL returned from a ds_list() or ds_search() operation.

A DSA returns a referral if it has administrative, operational, or technical reasons for preferring not to
chain. It can return a referral if DS_CHAINING_PROHIBITED is set in the DS_C_CONTEXT, or instead it
can report a service error (DS_E_CHAINING_REQUIRED) in this case.

By default, the implementation uses any continuation references it receives to try to contact the other DSA
or DSAs, and so continues the operation, whenever practical. It only returns the result, or an error, to the
application after it has made this attempt. Note that continuation references can still be returned to the
application, if the relevant DSA cannot be contacted, for example.

The default behavior is the simplest for most applications, but if necessary the application can cause all
continuation references to be returned to it. It does this by setting the value of the OM attribute
DS_AUTOMATIC_CONTINUATION in the DS_C_CONTEXT to OM_FALSE.

240 Application Development Guide: Directory Services

Chapter 11. XDS Class Definitions

When referring to classes and attributes in the Directory Service, the chapters on GDS programming
(Chapter 4, “GDS API: Concepts and Overview” on page 77 to Chapter 7, “Example Application
Programs” on page 159) make a clear distinction between OM classes and directory classes, and
between OM attributes and directory attributes. The former is a construct of the closely associated Object
Management interface, while the latter is a construct of the Directory Service to which the interface
provides access. The terms object class and attribute denote the directory constructs, while the phrases
OM class and OM attribute denote the Object Management constructs.

Introduction to OM Classes

This chapter defines the OM classes that constitute the Directory Service Package, in alphabetical order.
This package incorporates the OM classes for the errors which may be returned at the XDS interface.
The object identifier associated with this package is {iso(1) identified-organization(3) icd-ecma(0012)
member-company(2) dec(1011) xopen(28) dsp(0)} with the following encoding:

\x2B\xHC\xH2\x87\x73\x1C\xHH

This object identifier is represented by the constant DS_SERVICE_PKG.

The Object Management notation is briefly described in the following text. See Chapter 17, “Information
Syntaxes” on page 325 through Chapter 19, “Object Management Package” on page 347 for more
information on Object Management.

Each OM subclass is described in a separate section, which identifies the OM attributes specific to that
subclass. The OM classes and OM attributes for each OM class are listed in alphabetical order. The OM
attributes that can be found in an instance of an OM class are those OM attributes specific to that OM
class, as well as those inherited from each of its superclasses. The OM class-specific OM attributes are
defined in a table. The table indicates the name of each OM attribute, the syntax of each of its values,
any restrictions upon the length (in bits, octets or bytes, or characters) of each value, any restrictions upon
the number of values, and the value, if any, om_create() supplies.

The constants that represent the OM classes and OM attributes in the C binding are defined in the xds.h
header file (listed in the z/OS DCE Application Development Reference).

 XDS Errors

Errors are reported to the application program by means of DS_status, which is a result of most functions.
(It is the function result in the C language binding for most functions.) A function that is completed
successfully returns the value DS_SUCCESS, whereas one that is not successful returns an error. The
error is a private object containing details of the problem that occurred. The error constant
DS_NO_WORKSPACE can be returned by all Directory Service functions except ds_initialize() and
ds_shutdown(). DS_NO_WORKSPACE is returned if ds_initialize() is not invoked before calling any
other Directory Service function.

Errors are classified into ten OM classes. The standards (see The Directory: Abstract Service Definition,
ISO 9594-3, CCITT X.511) classify errors into eight different groups, as follows:

 � Abandoned
 � Abandon Failed
 � Attribute Error

 Copyright IBM Corp. 1994, 2001 241

 � Name Error
 � Referral
 � Security Error
 � Service Error
 � Update Error

The Directory Service interface never returns an Abandoned error. The interface also defines three more
kinds of errors: DS_C_LIBRARY_ERROR, DS_C_COMMUNICATIONS_ERROR, and
DS_C_SYSTEM_ERROR. Each of these kinds of errors is represented by an OM class. These OM
classes are detailed in subsequent sections of this chapter. All of them inherit the OM attribute
DS_PROBLEM from their superclass DS_C_ERROR, which is described in this chapter. The error OM
classes defined in this chapter are part of the Directory Service Package.

The ds_bind() operation returns a Security Error or a Service Error. All other operations can also return
the same errors as ds_bind(). Such errors can arise in the course of following an automatic referral list.

DS_C_REFERRAL is not a real error, and it is not a subclass of DS_C_ERROR, although it is reported in
the same way as a DS_status result. A DS_C_ATTRIBUTE_ERROR, also not a subclass of DS_C_
ERROR, is special because it can report several problems at once. Each one is reported in a
DS_C_ATTRIBUTE_PROBLEM, which is a subclass of DS_C_ERROR.

Note: The following errors referenced in this chapter do not apply to CDS:

 � DS_E_AFFECTS_MULTIPLE_DSAS
 � DS_E_ATTRIBUTE_OR_VALUE_EXISTS
 � DS_E_BAD_CLASS
 � DS_E_BAD_WORKSPACE
 � DS_E_INAPPROP_AUTHENTICATION
 � DS_E_INVALID_REF
 � DS_E_INVALID_SIGNATURE
 � DS_E_MISSING_TYPE
 � DS_E_MIXED SYNCHRONOUS
 � DS_E_NO_INFO
 � DS_E_NO_SUCH_OPERATION
 � DS_E_NOT_SUPPORTED
 � DS_E_OBJECT_CLASS_MOD_PROHIB
 � DS_E_PROTECTION_REQUIRED
 � DS_E_TOO_LATE
 � DS_E_TOO_MANY_OPERATIONS
 � DS_E_UNABLE_TO_PROCEED
 � DS_E_UNAVAILABLE_CRIT_EXT

OM Class Hierarchy

This section shows the hierarchical organization of the OM classes defined in this chapter and which OM
classes inherit additional OM attributes from their superclasses. In the following list, subclassification is
indicated by indentation, and the names of abstract classes are in italics. Thus, for example, the concrete
class DS_C_PRESENTATION_ADDRESS is an immediate subclass of the abstract class
DS_C_ADDRESS, which, in turn, is an immediate subclass of the abstract class OM_C_OBJECT.
(OM_C_OBJECT is defined in Chapter 5, “XOM Programming” on page 97.)

Note: In the following list of OM classes, DS_C_FILTER, DS_C_SEARCH_INFO and
DS_SEARCH_RESULT are GDS-specific, and therefore not supported.

OM_C_OBJECT

242 Application Development Guide: Directory Services

 � DS_C_ACCESS_POINT

 � DS_C_ADDRESS

 – DS_C_PRESENTATION_ADDRESS

 � DS_C_ATTRIBUTE

 – DS_C_AVA

 – DS_C_ENTRY_MOD

 – DS_C_FILTER_ITEM

 � DS_C_ATTRIBUTE_ERROR

 � DS_C_ATTRIBUTE_LIST

 – DS_C_ENTRY_INFO

 � DS_C_COMMON_RESULTS

 – DS_C_COMPARE_RESULT

 – DS_C_LIST_INFO

 – DS_C_READ_RESULT

 – DS_C_SEARCH_INFO

 � DS_C_CONTEXT

 � DS_C_CONTINUATION_REF

 – DS_C_REFERRAL

 � DS_C_ENTRY_INFO_SELECTION

 � DS_C_ENTRY_MOD_LIST

 � DS_C_ERROR

 – DS_C_ABANDON_FAILED

 – DS_C_ATTRIBUTE_PROBLEM

 – DS_C_COMMUNICATIONS_ERROR

 – DS_C_LIBRARY_ERROR

 – DS_C_NAME_ERROR

 – DS_C_SECURITY_ERROR

 – DS_C_SERVICE_ERROR

 – DS_C_SYSTEM_ERROR

 – DS_C_UPDATE_ERROR

 � DS_C_EXT

 � DS_C_FILTER

 � DS_C_LIST_INFO_ITEM

 � DS_C_LIST_RESULT

 � DS_C_NAME

 – DS_C_DS_DN

 � DS_C_OPERATION_PROGRESS

 Chapter 11. XDS Class Definitions 243

 � DS_C_PARTIAL_OUTCOME_QUAL

 � DS_C_RELATIVE_NAME

 – DS_C_DS_RDN

 � DS_C_SEARCH_RESULT

 � DS_C_SESSION

None of the classes in the preceding list are encodable using om_encode() and om_decode(). The
application is not permitted to create or modify instances of some OM classes because these OM classes
are only returned by the interface and never supplied to it. These OM classes are as follows:

DS_C_ACCESS_POINT
DS_C_ATTRIBUTE_ERROR
DS_C_COMPARE_RESULT
DS_C_CONTINUATION_REF
All subclasses of DS_C_ERROR
DS_C_LIST_INFO
DS_C_LIST_INFO_ITEM
DS_C_LIST_RESULT
DS_C_OPERATION_PROGRESS
DS_C_PARTIAL_OUTCOME_QUAL
DS_C_READ_RESULT
DS_C_REFERRAL
DS_C_SEARCH_INFO
DS_C_SEARCH_RESULT

 DS_C_ABANDON_FAILED

An instance of OM class DS_C_ABANDON_FAILED reports a problem encountered during an attempt to
abandon an operation.

An application is not permitted to create or modify instances of this OM class. An instance of this OM
class has the OM attributes of its superclasses, OM_C_OBJECT and DS_C_ERROR, and no additional
OM attributes.

The OM attribute DS_PROBLEM, which is inherited from the superclass, DS_C_ERROR, identifies the
problem. Its value is one of the following:

 � DS_E_CANNOT_ABANDON

An attempt is made to abandon an operation that is prohibited, or the abandon action cannot be
performed.

 � DS_E_NO_SUCH_OPERATION

The Directory Service has no knowledge of the operation that is to be abandoned.

 � DS_E_TOO_LATE

The operation is already completed, either successfully or erroneously.

The Directory Abandon operation is not supported by the DCE. Thus, a ds_abandon() XDS call always
returns a DS_E_TOO_LATE error for the DS_C_ABANDON_FAILED OM class.

244 Application Development Guide: Directory Services

 DS_C_ACCESS_POINT

An instance of OM class DS_C_ACCESS_POINT identifies a particular point at which a DSA can be
accessed.

An application is not permitted to create or modify instances of this OM class. An instance of this OM
class has the OM attributes of its superclass, OM_C_OBJECT, in addition to the OM attributes listed in
Table 21.

Table 21. OM Attributes of DS_C_ACCESS_POINT

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_ADDRESS Object(DS_C_ADDRESS) - 1 -

DS_AE_TITLE Object(DS_C_NAME) - 1 -

 � DS_ADDRESS

This attribute indicates the address of the DSA to be used when communicating with it.

 � DS_AE_TITLE

This attribute indicates the name of the DSA.

 DS_C_ADDRESS

The OM class DS_C_ADDRESS represents the address of a particular entity or service, such as a DSA.

It is an abstract class that has the OM attributes of its superclass, OM_C_OBJECT, and no other OM
attributes.

An address is an unambiguous name, label, or number that identifies the location of the entity or service.
All addresses are represented as instances of some subclass of this OM class. The only subclass defined
by the DCE XDS API is DS_C_PRESENTATION_ADDRESS, which is the presentation address of an OSI
application entity used for OSI communications with this subclass.

 DS_C_ATTRIBUTE

An instance of OM class DS_C_ATTRIBUTE is an attribute of an object, and is thus a component of its
directory entry.

An instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT, in addition to the
OM attributes listed in the following table:

Table 22. OM Attributes of DS_C_ATTRIBUTE

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_ATTRIBUTE_TYPE String(OM_S_OBJECT_IDENTIFIER_
STRING)

- 1 -

DS_ATTRIBUTE_VALUES Any - 0 or
more

-

 Chapter 11. XDS Class Definitions 245

 � DS_ATTRIBUTE_TYPE

The attribute type that indicates the class of information given by this attribute.

 � DS_ATTRIBUTE_VALUES

The attribute values. The OM value syntax and the number of values allowed for this OM attribute
are determined by the value of the DS_ATTRIBUTE_TYPE OM attribute in accordance with the rules
in “Attribute and Attribute Value Assertion” on page 237.

If the values of this OM attribute have the syntax String(*), the strings can be long and segmented.
For this reason, om_read() and om_write() need to be used to access all String(*) values.

Note: A directory attribute must always have at least one value, although it is acceptable for instances of
this OM class not to have any values.

 DS_C_ATTRIBUTE_ERROR

An instance of OM class DS_C_ATTRIBUTE_ERROR reports an attribute-related Directory Service error.

An application is not permitted to create or modify instances of this OM class. An instance of this OM
class has the OM attributes of its superclass, OM_C_OBJECT, in addition to the OM attributes listed in
Table 23.

Table 23. OM Attributes of DS_C_ATTRIBUTE_ERROR

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_OBJECT_NAME Object(DS_C_NAME) - 1 -

DS_PROBLEMS Object(DS_C_ATTRIBUTE _PROBLEM) - 1 or
more

-

 � DS_OBJECT_NAME

This attribute contains the name of the directory entry to which the operation is applied when the
failure occurs.

 � DS_PROBLEMS

This attribute documents the attribute-related problems encountered. A DS_C_ATTRIBUTE_ERROR
can report several problems at once. All problems are related to the preceding object.

 DS_C_ATTRIBUTE_LIST

An instance of OM class DS_C_ATTRIBUTE_LIST is a list of directory attributes.

An instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT, in addition to the
OM attributes listed in Table 24.

Table 24. OM Attributes of DS_C_ATTRIBUTE_LIST

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_ATTRIBUTES Object(DS_C_ATTRIBUTE) - 0 or
more

-

246 Application Development Guide: Directory Services

 � DS_ATTRIBUTES

The attributes that constitute a new object’s directory entry, or those selected from an existing entry.

 DS_C_ATTRIBUTE_PROBLEM

An instance of OM class DS_C_ATTRIBUTE_PROBLEM documents one attribute-related problem
encountered while performing an operation as requested on a particular occasion.

An application is not permitted to create or modify instances of this OM class. An instance of this OM
class has the OM attributes of its superclasses, OM_C_OBJECT and DS_C_ERROR in addition to the OM
attributes listed in Table 25.

Table 25. OM Attributes of DS_C_ATTRIBUTE_PROBLEM

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_ATTRIBUTE_TYPE String(OM_S_ OBJECT_IDENTIFIER_STRING) - 1 -

DS_ATTRIBUTE_VALUE Any - 0 or 1 -

 � DS_ATTRIBUTE_TYPE

This attribute identifies the type of attribute with which the problem is associated.

 � DS_ATTRIBUTE_VALUE

The attribute specifies the attribute value with which the problem is associated. Its syntax is
determined by the value of DS_ATTRIBUTE_TYPE. This OM attribute is present if it is necessary to
avoid ambiguity.

The OM attribute DS_PROBLEM, which is inherited from the superclass, DS_C_ERROR, identifies the
problem. Its value is one of the following:

 � DS_E_ATTRIBUTE_OR_VALUE_EXISTS

An attempt is made to add an attribute or value that is already present in the directory entry in
question.

 � DS_E_CONSTRAINT_VIOLATION

The attribute or attribute value does not conform to the constraints imposed by the standards (see The
Directory: Models, ISO 9594-2, CCITT X.501) or by the attribute definition; for example, the value
exceeds its upper bound.

 � DS_E_INAPPROP_MATCHING

An attempt is made to use a matching rule that is not defined for the attribute type.

 � DS_E_INVALID_ATTRIBUTE_SYNTAX

A value presented as an argument does not conform to the attribute syntax of the attribute type.

 � DS_E_NO_SUCH_ATTRIBUTE_OR_VALUE

The specified attribute or value is not found in the directory entry in question. This error is only
reported by a ds_read() or ds_search() operation if an explicit list of attributes is specified by the
selection argument, but none of them are present in the entry.

 � DS_E_UNDEFINED_ATTRIBUTE_TYPE

 Chapter 11. XDS Class Definitions 247

The attribute type, which is supplied as an argument to ds_add_entry() or ds_modify_entry(), is
undefined.

 DS_C_AVA

An instance of OM class DS_C_AVA (attribute value assertion) is a proposition concerning the values of a
directory entry.

An instance of this OM class has the OM attributes of its superclasses, OM_C_OBJECT and DS_C
ATTRIBUTE, and no other OM attributes. An additional restriction on this OM class is that there must be
exactly one value of the OM attribute DS_ATTRIBUTE_VALUES. The DS_ATTRIBUTE_TYPE remains
single valued. The OM value syntax of DS_ATTRIBUTE_VALUES must conform to the rules outlined in
“Attribute and Attribute Value Assertion” on page 237.

 DS_C_COMMON_RESULTS

The OM class DS_C_COMMON_RESULTS comprises results that are returned by, and are common to,
the directory interrogation operations.

It is an abstract OM class, which has the OM attributes of its superclass, OM_C_OBJECT, in addition to
the OM attributes listed in Table 26.

Table 26. OM Attributes of DS_C_COMMON_RESULTS

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_ALIAS_DEREFERENCED OM_S_BOOLEAN - 1 -

DS_PERFORMER Object(DS_C_NAME) - 0-1 -

 � DS_ALIAS_DEREFERENCED

This attribute indicates whether the name of the target object that is passed as a function argument
includes an alias that is dereferenced to determine the distinguished name (DN).

 � DS_PERFORMER

When present, this attribute gives the DN of the performer of a particular operation. It can be present
when the result is signed, and it holds the name of the DSA that signed the result. The DCE Directory
Service does not support the optional feature of signed results; therefore, this OM attribute is never
present.

 DS_C_COMMUNICATIONS_ERROR

An instance of OM class DS_C_COMMUNICATIONS_ERROR reports an error occurring in the other OSI
services supporting the Directory Service.

An application is not permitted to create or modify instances of this OM class. An instance of this OM
class has the OM attributes of its superclasses, OM_C_OBJECT and DS_C_ERROR, and no additional
OM attributes.

Communications errors include those arising in remote operation, association control, presentation,
session, and transport.

248 Application Development Guide: Directory Services

The OM attribute DS_PROBLEM, which is inherited from the superclass DS_C_ERROR, identifies the
problem. Its value is DS_E_COMMUNICATIONS_PROBLEM.

 DS_C_COMPARE_RESULT

An instance of OM class DS_C_COMPARE_RESULT comprises the results of a successful call to
ds_compare().

An application is not permitted to create or modify instances of this OM class. An instance of this OM
class has the OM attributes of its superclasses, OM_C_OBJECT and DS_C_COMMON_RESULTS, in
addition to the OM attributes listed in Table 27.

Table 27. OM Attributes of DS_C_COMPARE_RESULT

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_FROM_ENTRY OM_S_BOOLEAN - 1 -

DS_MATCHED OM_S_BOOLEAN - 1 -

DS_OBJECT_NAME Object(DS_C_NAME) - 0 or 1 -

 � DS_FROM_ENTRY

This attribute indicates whether the assertion is tested against the specified object’s entry, rather than
a copy of the entry.

 � DS_MATCHED

Indicates whether the assertion specified as an argument returns the value OM_TRUE. It takes the
value OM_TRUE if the values are compared and matched; otherwise, it takes the value OM_FALSE.

 � DS_OBJECT_NAME

This attribute contains the distinguished name of the target object of the operation. It is present if the
OM attribute DS_ALIAS_DEREFERENCED, inherited from the superclass,
DS_C_COMMON_RESULTS, is OM_TRUE.

 DS_C_CONTEXT

An instance of OM class DS_C_CONTEXT comprises per-operation arguments that are accepted by most
of the interface functions.

An instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT, in addition to the
OM attributes listed in Table 28.

Table 28 (Page 1 of 2). OM Attributes of DS_C_CONTEXT

OM Attribute Value Syntax Value
Length

Value
Number

Value Initially

Common Arguments:

DS_EXT Object(DS_C_EXT) - 0 or
more

-

DS_OPERATION_PROGRESS Object(DS_C_OPERATION
_PROGRESS)

- 1 DS_OPERATION
_NOT_STARTED

 Chapter 11. XDS Class Definitions 249

Table 28 (Page 2 of 2). OM Attributes of DS_C_CONTEXT

OM Attribute Value Syntax Value
Length

Value
Number

Value Initially

DS_ALIASED_RDNS OM_S_INTEGER - 0 or 1 0

Service Controls:

DS_CHAINING_PROHIB OM_S_BOOLEAN - 1 OM_TRUE

DS_DONT_DEREFERENCE_ALIASES OM_S_BOOLEAN - 1 OM_FALSE

DS_DONT_USE_COPY OM_S_BOOLEAN - 1 OM_TRUE

DS_LOCAL_SCOPE OM_S_BOOLEAN - 1 OM_FALSE

DS_PREFER_CHAINING OM_S_BOOLEAN - 1 OM_FALSE

DS_PRIORITY Enum(DS_priority) - 1 DS_MEDIUM

DS_SCOPE_OF_REFERRAL Enum(DS_Scope_Of_Referral) - 0 or 1 -

DS_SIZE_LIMIT OM_S_INTEGER - 0 or 1 -

DS_TIME_LIMIT OM_S_INTEGER - 0 or 1 -

Local Controls:

DS_ASYNCHRONOUS OM_S_BOOLEAN - 1 OM_FALSE

DS_AUTOMATIC_CONTINUATION OM_S_BOOLEAN - 1 OM_TRUE

The context gathers several arguments passed to interface functions, which are assumed to be relatively
static for a given directory user during a particular directory interaction. The context is passed as an
argument to each function that interrogates or updates the directory. Although it is generally assumed that
the context is changed infrequently, the value of each argument can be changed between every operation
if required. The DS_ASYNCHRONOUS argument must not be changed. Each argument is represented
by one of the OM attributes of the DS_C_CONTEXT OM class.

The context contains the common arguments defined in the standards (see The Directory: Abstract
Service Definition, ISO 9594-3, CCITT X.511), except that all security information is omitted for reasons
discussed in “Security and XDS” on page 240. These are made up of a number of service controls
explained in the following text. It also contains a number of arguments that provide local control over the
interface.

The OM attributes of the DS_C_CONTEXT OM class are:

 � Common Arguments

 – DS_EXT

This attribute represents any future standardized extensions that need to be applied to the
Directory Service operation. The DCE XDS implementation does not evaluate this optional OM
attribute.

 – DS_OPERATION_PROGRESS

This attribute represents the state that the Directory Service assumes at the start of the operation.
This OM attribute normally takes its default value, which is the value
DS_OPERATION_NOT_STARTED described in the DS_C_OPERATION_PROGRESS OM class
definition.

 – DS_ALIASED_RDNS

250 Application Development Guide: Directory Services

This attribute indicates to the Directory Service that the object component of the operation
parameter is created by dereferencing of an alias on an earlier operation attempt. This value is
set in the referral response of the previous operation.

 � Service Controls

 – DS_CHAINING_PROHIB

This attribute indicates that chaining and other methods of distributing the request around the
Directory Service are prohibited.

 – DS_DONT_DEREFERENCE_ALIASES

This attribute indicates that any alias used to identify the target entry of an operation is not
dereferenced. With this attribute, you can interrogate alias entries (aliases are never dereferenced
during updates).

 – DS_DONT_USE_COPY

This attribute indicates that the request can only be satisfied by accessing directory entries, and
not by using copies of entries. This includes both copies maintained in other DSAs by bilateral
agreement, and copies cached locally.

 – DS_LOCAL_SCOPE

This attribute indicates that the directory request will be satisfied locally. The meaning of this
option is configured by an administrator. This option typically restricts the request to a single
DSA.

 – DS_PREFER_CHAINING

This attribute indicates that chaining is preferred to referrals when necessary. The Directory
Service is not obliged to follow this preference, and can return a referral even if it is set.

 – DS_PRIORITY

This attribute indicates the priority, relative to other directory requests, according to which the
Directory Service attempts to satisfy the request. This is not a guaranteed service since there is
no queuing throughout the directory. Its value must be one of the following:

 - DS_LOW

 - DS_MEDIUM

 - DS_HIGH

 – DS_SCOPE_OF_REFERRAL

This attribute indicates the part of the directory to which referrals are limited. This includes referral
errors and partial outcome qualifiers. Its value must be one of the following:

- DS_COUNTRY, meaning DSAs within the country in which the request originates.

- DS_DMD, meaning DSAs within the DMD in which the request originates.

DS_SCOPE_OF_REFERRAL is an optional attribute. The lack of this attribute in a
DS_C_CONTEXT object indicates that the scope is not limited.

 – DS_SIZE_LIMIT

If present, this attribute indicates the maximum number of objects about which ds_list() or
ds_search() needs to return information. If this limit is exceeded, information is returned about
exactly this number of objects. The objects that are chosen are not specified because this can
depend on the timing of interactions between DSAs, among other reasons.

 – DS_TIME_LIMIT

 Chapter 11. XDS Class Definitions 251

If present, this attribute indicates the maximum elapsed time, in seconds, within which the service
needs to be provided (not the processing time devoted to the request). If this limit is reached, a
service error (DS_E_TIME_LIMIT_EXCEEDED) is returned, except for the ds_list() or
ds_search() operations, which return an arbitrary selection of the accumulated results.

 � Local Controls

– DS_ASYNCHRONOUS (NOT SUPPORTED)

The interface operates only synchronously as detailed in “Synchronous Operations” on page 239.
There is only one possible value:

- OM_FALSE indicates that the operation is performed sequentially (synchronously) with the
application being blocked until a result or error is returned.

 – DS_AUTOMATIC_CONTINUATION

This attribute indicates the requestor’s requirement for continuation reference handling, including
referrals and those in partial outcome qualifiers. The value is one of the following:

- OM_FALSE indicates that the interface returns all continuation references to the application
program.

- OM_TRUE indicates that continuation references are automatically processed, and the
subsequent results are returned to the application instead of the continuation references,
whenever practical. This is a much simpler option than OM_FALSE unless the application
has special requirements.

Note: Continuation references can still be returned to the application, if for example, the relevant DSA
cannot be contacted.

Applications can assume that an object of OM class DS_C_CONTEXT, created with default values of all
its OM attributes, works with all the interface functions. The DS_DEFAULT_CONTEXT constant can be
used as an argument to interface functions instead of creating an OM object with default values.

 DS_C_CONTINUATION_REF

An instance of OM class DS_C_CONTINUATION_REF comprises the information that enables a partially
completed directory request to be continued, for example, following a referral.

An application is not permitted to create or modify instances of this OM class. An instance of this OM
class has the OM attributes of its superclass, OM_C_OBJECT, in addition to the OM attributes listed in
Table 29.

Table 29. OM Attributes of DS_C_CONTINUATION_REF

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_ACCESS_POINTS Object(DS_C_ACCESS_POINT) - 1 or
more

-

DS_ALIASED_RDNS OM_S_INTEGER - 1 -

DS_OPERATION_PROGRESS Object(DS_C_OPERATION _PROGRESS) - 1 -

DS_RDNS_RESOLVED OM_S_INTEGER - 0 or 1 -

DS_TARGET_OBJECT Object(DS_C_NAME) - 1 -

 � DS_ACCESS_POINTS

252 Application Development Guide: Directory Services

This attribute indicates the names and presentation addresses of the DSAs from where the directory
request is continued.

 � DS_ALIASED_RDNS

This attribute indicates how many (if any) of the RDNs in the target name are produced by
dereferencing an alias. Its value is 0 (zero) if no aliases are dereferenced. This value needs to be
used in the DS_C_CONTEXT of any continued operation.

 � DS_OPERATION_PROGRESS

This attribute indicates the state at which the directory request must be continued. This value needs
to be used in the DS_C_CONTEXT of any continued operation.

 � DS_RDNS_RESOLVED

This attribute indicates the number of RDNs in the supplied object name that are resolved (using
internal references), and not just assumed to be correct (using cross-references).

 � DS_TARGET_OBJECT

This attribute indicates the name of the object upon which the continuation must focus.

 DS_C_DS_DN

An instance of OM class DS_C_DS_DN represents a name of a directory object.

An instance of this OM class has the OM attributes of its superclasses, OM_C_OBJECT and
DS_C_NAME, in addition to the OM attributes listed in Table 30.

Table 30. OM Attribute of DS_C_DS_DN

OM
Attribute

Value Syntax Value
Length

Value
Number

Value
Initially

DS_RDNS Object(DS_C_DS_RDN) - 0 or
more

-

 � DS_RDNS

This attribute indicates the sequence of RDNs that define the path through the DIT from its root to the
object that the DS_C_DS_DN indicates. The DS_C_DS_DN of the root of the directory is the null
name (no DS_RDNS values). The order of the values is significant; the first value is closest to the
root, and the last value is the RDN of the object.

 DS_C_DS_RDN

An instance of OM class DS_C_DS_RDN is a relative distinguished name. An RDN uniquely identifies an
immediate subordinate of an object whose entry is displayed in the DIT.

An instance of this OM class has the OM attributes of its superclasses, OM_C_OBJECT and
DS_C_RELATIVE_NAME, in addition to the OM attributes listed in Table 31.

 Chapter 11. XDS Class Definitions 253

Table 31. OM Attribute of DS_C_DS_RDN

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_AVAS Object(DS_C_AVA) - 1 or
more

-

 � DS_AVAS

This attribute indicates the DS_AVAS that are marked by the DIB as components of the object’s RDN.
The assertion is OM_TRUE of the object but not of any of its siblings, and the attribute type and value
are displayed in the object’s directory entry.

 DS_C_ENTRY_INFO

An instance of OM class DS_C_ENTRY_INFO contains selected information from a single directory entry.

An instance of this OM class has the OM attributes of its superclasses, OM_C_OBJECT and
DS_C_ATTRIBUTE_LIST, in addition to the OM attributes listed in Table 32.

Table 32. OM Attributes of DS_C_ENTRY_INFO

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_FROM_ENTRY OM_S_BOOLEAN - 1 -

DS_OBJECT_NAME Object(DS_C_NAME) - 1 -

The OM attribute DS_ATTRIBUTES is inherited from the superclass DS_C_ATTRIBUTE_LIST. It
contains the information extracted from the directory entry of the target object. The type of each attribute
requested and located is indicated in the list as are its values, if types and values are requested.

The OM class-specific OM attributes are as follows:

 � DS_FROM_ENTRY

This attribute indicates whether the information is extracted from the specified object’s entry, rather
than from a copy of the entry.

 � DS_OBJECT_NAME

This attribute contains the object’s distinguished name.

 DS_C_ENTRY_INFO_SELECTION

An instance of OM class DS_C_ENTRY_INFO_SELECTION identifies the information to be extracted from
a directory entry.

An instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT, in addition to the
OM attributes listed in Table 33.

254 Application Development Guide: Directory Services

Table 33. OM Attributes of DS_C_ENTRY_INFO_SELECTION

OM Attribute Value Syntax Value
Length

Value
Number

Value Initially

DS_ALL_ATTRIBUTES OM_S_BOOLEAN - 1 OM_TRUE

DS_ATTRIBUTES_SELECTED String(OM_S_OBJECT_IDENTIFIER
_STRING)

- 0 or
more

-

DS_INFO_TYPE Enum(DS_Information_Type) - 1 DS_TYPES_AND
_VALUES

 � DS_ALL_ATTRIBUTES

This attribute indicates which attributes are relevant. It can take one of the following values:

– OM_FALSE indicates that information is only requested on those attributes that are listed in the
OM attribute DS_ATTRIBUTES_SELECTED.

– OM_TRUE indicates that information is requested on all attributes in the directory entry. Any
values of the OM attribute DS_ATTRIBUTES_SELECTED are ignored in this case.

 � DS_ATTRIBUTES_SELECTED

This attribute lists the types of attributes in the entry from which information will be extracted. The
value of this OM attribute is only used if the value of DS_ALL_ATTRIBUTES is OM_FALSE. If an
empty list is supplied, no attribute data is returned that can be used to verify the existence of an entry
for a distinguished name.

 � DS_INFO_TYPE

This attribute identifies what information will be extracted from each attribute identified. It must take
one of the following values:

– DS_TYPES_ONLY indicates that only the attribute types of the selected attributes in the entry are
returned.

– DS_TYPES_AND_VALUES indicates that both the attribute types and the attribute values of the
selected attributes in the entry are returned.

 DS_C_ENTRY_MOD

An instance of OM class DS_C_ENTRY_MOD describes a single modification to a specified attribute of a
directory entry.

An instance of this OM class has the OM attributes of its superclasses, OM_C_OBJECT and
DS_C_ATTRIBUTE, in addition to the OM attributes listed in Table 34.

Table 34. OM Attributes of DS_C_ENTRY_MOD

OM Attribute Value Syntax Value
Length

Value
Number

Value Initially

DS_MOD_TYPE Enum(DS_Modification_Type) - 1 DS_ADD_ATTRIBUTE

The attribute type to be modified and the associated values are specified in the OM attributes
DS_ATTRIBUTE_TYPE and DS_ATTRIBUTE_VALUES that are inherited from the DS_C_ATTRIBUTE
superclass.

 � DS_MOD_TYPE

 Chapter 11. XDS Class Definitions 255

This attribute identifies the type of modification. It must have one of the following values:

– DS_ADD_ATTRIBUTE indicates that the specified attribute is absent and is to be added with the
specified values.

– DS_ADD_VALUES indicates that the specified attribute is present and that one or more specified
values are to be added to it.

– DS_REMOVE_ATTRIBUTE indicates that the specified attribute is present and will be removed.
Any values present in the OM attribute DS_ATTRIBUTE_VALUES are ignored.

– DS_REMOVE_VALUES indicates that the specified attribute is present and that one or more
specified values will be removed from it.

 DS_C_ENTRY_MOD_LIST

An instance of OM class DS_C_ENTRY_MOD_LIST comprises a sequence of changes to be made to a
directory entry.

An instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT, in addition to the
OM attributes listed in Table 35.

Table 35. OM Attributes of DS_C_ENTRY_MOD_LIST

OM Attribute Value Syntax Value
Length

Value
Number

Value Initially

DS_CHANGES Object(DS_C_ENTRY _MOD) - 1 or
more

-

 � DS_CHANGES

This attribute identifies the modifications to be made (in the order specified) to the directory entry of
the specified object.

 DS_C_ERROR

The OM class DS_C_ERROR comprises the parameters common to all errors.

It is an abstract OM class with the OM attributes of its superclass, OM_C_OBJECT, in addition to the OM
attribute listed in Table 36.

Table 36. OM Attributes of DS_C_ERROR

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_PROBLEM Enum(DS_Problem) - 1 -

Details of errors are returned in an instance of a subclass of this OM class. Each such subclass
represents a particular kind of error, and is one of the following:

 � DS_C_ABANDON_FAILED

 � DS_C_ATTRIBUTE_PROBLEM

 � DS_C_COMMUNICATIONS_ERROR

 � DS_C_LIBRARY_ERROR

256 Application Development Guide: Directory Services

 � DS_C_NAME_ERROR

 � DS_C_SECURITY_ERROR

 � DS_C_SERVICE_ERROR

 � DS_C_SYSTEM_ERROR

 � DS_C_UPDATE_ERROR

A number of possible values for the DS_PROBLEM attribute are defined for these subclasses. DCE XDS
does not return other values for error conditions described in this chapter. Information on system errors
can be found in “DS_C_SYSTEM_ERROR” on page 272. Each of the following standard values for the
DS_PROBLEM attribute is described under the relevant error OM class:

 � DS_E_ADMIN_LIMIT_EXCEEDED

 � DS_E_AFFECTS_MULTIPLE_DSAS

 � DS_E_ALIAS_DEREFERENCING_PROBLEM

 � DS_E_ALIAS_PROBLEM

 � DS_E_ATTRIBUTE_OR_VALUE_EXISTS

 � DS_E_BAD_ARGUMENT

 � DS_E_BAD_CLASS

 � DS_E_BAD_CONTEXT

 � DS_E_BAD_NAME

 � DS_E_BAD_SESSION

 � DS_E_BAD_WORKSPACE

 � DS_E_BUSY

 � DS_E_CANNOT_ABANDON

 � DS_E_CHAINING_REQUIRED

 � DS_E_COMMUNICATIONS_PROBLEM

 � DS_E_CONSTRAINT_VIOLATION

 � DS_E_DIT_ERROR

 � DS_E_ENTRY_EXISTS

 � DS_E_INAPPROP_AUTHENTICATION

 � DS_E_INAPPROP_MATCHING

 � DS_E_INSUFFICIENT_ACCESS_RIGHTS

 � DS_E_INVALID_ATTRIBUTE_SYNTAX

 � DS_E_INVALID_ATTRIBUTE_VALUE

 � DS_E_INVALID_CREDENTIALS

 � DS_E_INVALID_REF

 � DS_E_INVALID_SIGNATURE

 � DS_E_LOOP_DETECTED

 � DS_E_MISCELLANEOUS

 � DS_E_MISSING_TYPE

 Chapter 11. XDS Class Definitions 257

 � DS_E_MIXED_SYNCHRONOUS

 � DS_E_NAMING_VIOLATION

 � DS_E_NO_INFO

 � DS_E_NO_SUCH_ATTRIBUTE_OR_VALUE

 � DS_E_NO_SUCH_OBJECT

 � DS_E_NO_SUCH_OPERATION

 � DS_E_NOT_ALLOWED_ON_NON_LEAF

 � DS_E_NOT_ALLOWED_ON_RDN

 � DS_E_NOT_SUPPORTED

 � DS_E_OBJECT_CLASS_MOD_PROHIB

 � DS_E_OBJECT_CLASS_VIOLATION

 � DS_E_OUT_OF_SCOPE

 � DS_E_PROTECTION_REQUIRED

 � DS_E_TIME_LIMIT_EXCEEDED

 � DS_E_TOO_LATE

 � DS_E_TOO_MANY_OPERATIONS

 � DS_E_TOO_MANY_SESSIONS

 � DS_E_UNABLE_TO_PROCEED

 � DS_E_UNAVAILABLE

 � DS_E_UNAVAILABLE_CRIT_EXT

 � DS_E_UNDEFINED_ATTRIBUTE_TYPE

 � DS_E_UNWILLING_TO_PERFORM

 DS_C_EXT

An instance of OM class DS_C_EXT indicates a standardized extension to the Directory Service is
outlined in post-1988 versions of the standards. Therefore, this OM class is not used by the XDS API and
is only included for X/Open conformance purposes.

An instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT, in addition to the
OM attributes listed in Table 37.

Table 37. OM Attributes of DS_C_EXT

OM Attribute Value Syntax Value
Length

Value
Number

Value Initially

DS_CRIT OM_S_BOOLEAN - 1 OM_FALSE

DS_IDENT OM_S_INTEGER - 1 -

DS_ITEM_PARAMETERS Any - 1 -

 � DS_CRIT

This attribute must have one of the following values:

258 Application Development Guide: Directory Services

– OM_FALSE indicates that the originator permits the operation to be performed even if the
extension is not available.

– OM_TRUE indicates that the originator mandates that the extended operation be performed. If the
extended operation is not performed, an error is reported.

 � DS_IDENT

This attribute identifies the service extension.

 � DS_ITEM_PARAMETERS

This OM attribute supplies the parameters of the extension. Its syntax is determined by the value of
DS_IDENT.

 DS_C_FILTER
Note: DS_C_FILTER is not useful for CDS applications. It is intended for use with ds_search(), which is

not supported.

An instance of OM class DS_C_FILTER is used to select or reject an object on the basis of information in
its directory entry. At any point, an attribute filter has a value relative to every object. The value is
OM_FALSE, OM_TRUE, or undefined. The object is selected if, and only if, the filter’s value is
OM_TRUE.

An instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT, in addition to the
OM attributes listed in Table 38.

Table 38. OM Attributes of DS_C_FILTER

OM Attribute Value Syntax Value
Length

Value
Number

Value Initially

DS_FILTER_ITEMS Object(DS_C_FILTER_ITEM) - 0 or
more

-

DS_FILTERS Object(DS_C_FILTER) - 0 or
more

-

DS_FILTER_TYPE Enum(DS_Filter_Type) - 1 DS_AND

A filter is a collection of less elaborate filters and elementary DS_FILTER_ITEMS together with a Boolean
operation. The filter value is undefined if, and only if, all the component DS_FILTERS and
DS_FILTER_ITEMS are undefined. Otherwise, the filter has a Boolean value with respect to any directory
entry, which can be determined by evaluating each of the nested components and combining their values
using the Boolean operation. The components whose values are undefined are ignored.

 � DS_FILTER_ITEMS

This attribute is a collection of assertions, each relating to just one attribute of a directory entry.

 � DS_FILTERS

This attribute is a collection of simpler filters.

 � DS_FILTER_TYPE

This attribute is the filter’s type. It can have any of the following values:

– DS_AND indicates that the filter is the logical conjunction of its components. The filter is
OM_TRUE unless any of the nested filters or filter items is OM_FALSE If there are no nested
components, the filter is OM_TRUE.

 Chapter 11. XDS Class Definitions 259

– DS_OR indicates that the filter is the logical disjunction of its components. The filter is
OM_FALSE unless any of the nested filters or filter items is OM_TRUE If there are no nested
components, the filter is OM_FALSE.

– DS_NOT indicates that the result of this filter is reversed. There must be exactly one nested filter
or filter item. The filter is OM_TRUE if the enclosed filter or filter item is OM_FALSE, and is
OM_FALSE if the enclosed filter or filter item is OM_TRUE.

 DS_C_FILTER_ITEM
Note: DS_C_FILTER_ITEMS is not useful for CDS applications. It is intended for use with ds_search(),

which is not supported.

An instance of OM class DS_C_FILTER_ITEM is a component of DS_C_FILTER. It is an assertion about
the existence or values of a single attribute type in a directory entry.

An instance of this OM class has the OM attributes of its superclasses, OM_C_OBJECT and
DS_C_ATTRIBUTE, in addition to the OM attributes listed in Table 39.

Table 39. OM Attributes of DS_C_FILTER_ITEM

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_FILTER_ITEM_TYPE Enum(DS_Filter_Item_Type) - 1 -

DS_FINAL_SUBSTRING String(*) 1 or
more

0 or 1 -

DS_INITIAL_SUBSTRING String(*) 1 or
more

0 or 1 -

Note: OM attributes DS_ATTRIBUTE_TYPE and DS_ATTRIBUTE_VALUES are inherited from the
superclass DS_C_ATTRIBUTE.

The value of the filter item is undefined in the following cases:

� The DS_ATTRIBUTE_TYPE is not known.

� None of the DS_ATTRIBUTE_VALUES conform to the attribute syntax defined for that attribute type.

� The DS_FILTER_ITEM_TYPE uses a matching rule that is not defined for the attribute syntax.

Access control restrictions can also cause the value to be undefined.

 � DS_FILTER_ITEM_TYPE

This attribute identifies the type of filter item and thus, the nature of the filter. The filter item can adopt
any of the following values:

– DS_APPROXIMATE_MATCH indicates that the filter is OM_TRUE, if the directory entry contains
at least one value of the specified type that is approximately equal to that specified (the meaning
of approximately equal is implementation dependent). Otherwise, the filter is OM_FALSE.

Rules for approximate matching are defined locally. For example, an approximate match may
take into account spelling variations or employ phonetic comparison rules. In the absence of any
such capabilities, a DSA needs to treat an approximate match as a test for equality. DCE GDS
supports phonetic comparisons. There must be exactly one value of the OM attribute
DS_ATTRIBUTE_VALUES.

260 Application Development Guide: Directory Services

– DS_EQUALITY indicates that the filter is OM_TRUE, if the entry contains at least one value of the
specified type that is equal to the value specified, according to the equality matching rule in force.
Otherwise, the filter is OM_FALSE. There must be exactly one value of the OM attribute
DS_ATTRIBUTE_VALUES.

– DS_GREATER_OR_EQUAL indicates that the filter item is OM_TRUE if, and only if, at least one
value of the attribute is greater than or equal to the supplied value (using the appropriate ordering
algorithm). There must be exactly one value of the OM attribute DS_ATTRIBUTE_VALUES.

– DS_LESS_OR_EQUAL indicates that the filter item is OM_TRUE if, and only if, at least one value
of the attribute is less than or equal to the supplied value. There must be exactly one value of the
OM attribute DS_ATTRIBUTE_VALUES.

– DS_PRESENT indicates that the filter is OM_TRUE, if the entry contains an attribute of the
specified type. Otherwise, it is OM_FALSE. Any values of the OM attribute
DS_ATTRIBUTE_VALUES are ignored.

– DS_SUBSTRINGS indicates that the filter is OM_TRUE, if the entry contains at least one value of
the specified attribute type that contains all of the specified substrings in the given order.
Otherwise, the filter is OM_FALSE.

Any number of substrings can be given as values of the OM attribute DS_ATTRIBUTE_VALUES.
Similarly, no substrings can be specified as values of the OM attribute DS_ATTRIBUTE_VALUES.
There can also be a substring in DS_INITIAL_SUBSTRING or DS_FINAL_SUBSTRING, or both.
The substrings do not overlap, but they can be separated from each other or from the ends of the
attribute value by zero or more string elements. However, at least one attribute of type
DS_ATTRIBUTE_VALUES, DS_INITIAL_SUBSTRING, or DS_FINAL_SUBSTRING must exist.

 � DS_FINAL_SUBSTRING

If present, this attribute is the substring that will match the final part of an attribute value in the entry.
This attribute can only exist if the DS_FILTER_ITEM_TYPE is equal to DS_SUBSTRINGS.

 � DS_INITIAL_SUBSTRING

If present, this attribute is the substring that will match the initial part of an attribute value in the entry.
This attribute can only exist if the DS_FILTER_ITEM_TYPE is equal to DS_SUBSTRINGS.

 DS_C_LIBRARY_ERROR

An instance of OM class DS_C_LIBRARY_ERROR reports an error detected by the interface function
library.

An application is not permitted to create or modify instances of this OM class. An instance of this OM
class has the OM attributes of its superclasses, OM_C_OBJECT and DS_C_ERROR, and no additional
OM attributes.

Each function has several possible errors that can be detected by the library itself and that are returned
directly by the subroutine. These errors occur when the library cannot perform an action, submit a service
request, or decipher a response from the Directory Service.

The OM attribute DS_PROBLEM, which is inherited from the superclass DS_C_ERROR, identifies the
particular library error that occurred. (In the z/OS DCE Application Development Reference, the ERRORS
section of each function description lists the errors that the respective function can return.) Its value is
one of the following:

 � DS_E_BAD_ARGUMENT

 Chapter 11. XDS Class Definitions 261

An invalid argument (other than name) was supplied. Use of an instance of OM class
DS_C_ATTRIBUTE with no values of the OM attribute DS_ATTRIBUTE_VALUES as an input
argument to a Directory Service function results in this error. Directory attributes always have at least
one value.

 � DS_E_BAD_CLASS

The OM class of an argument is not supported for this operation.

 � DS_E_BAD_CONTEXT

An invalid context parameter was supplied.

 � DS_E_BAD_NAME

An invalid name parameter was supplied.

 � DS_E_BAD_SESSION

An invalid session parameter was supplied.

 � DS_E_MISCELLANEOUS

A miscellaneous error occurred in interacting with the Directory Service. This error is returned if the
interface cannot clear a transient system error by retrying the affected system call.

 � DS_E_MISSING_TYPE

The attribute type is not included in an AVA that is passed as part of a distinguished name argument.

 � DS_E_MIXED_SYNCHRONOUS

An attempt is made to start a synchronous operation when there are outstanding asynchronous
operations.

 � DS_E_NOT_SUPPORTED

An attempt is made to use an optional function that is not available in this implementation.

 � DS_E_TOO_MANY_OPERATIONS

No more Directory Service operations can be performed until at least one asynchronous operation is
completed.

 � DS_E_TOO_MANY_SESSIONS

No more Directory Service sessions can be started.

Note: Both DS_E_MIXED_SYNCHRONOUS and DS_E_TOO_MANY_OPERATIONS are asynchronous
errors. These two errors are not returned by z/OS DCE.

 DS_C_LIST_INFO

An instance of OM class DS_C_LIST_INFO is part of the results of ds_list().

An application is not permitted to create or modify instances of this OM class. An instance of this OM
class has the OM attributes of its superclasses, OM_C_OBJECT and DS_C_COMMON_RESULTS, in
addition to the OM attributes listed in Table 40.

Table 40 (Page 1 of 2). OM Attributes of DS_C_LIST_INFO

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_OBJECT_NAME Object(DS_C_NAME) - 0 or 1 -

262 Application Development Guide: Directory Services

Table 40 (Page 2 of 2). OM Attributes of DS_C_LIST_INFO

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_PARTIAL_OUTCOME_QUAL Object(DS_C_PARTIAL
_OUTCOME_QUAL)

- 0 or 1 -

DS_SUBORDINATES Object(DS_C_LIST_INFO_ITEM) - 0 or
more

-

 � DS_OBJECT_NAME

This attribute is the distinguished name of the target object of the operation. It is present if the OM
attribute DS_ALIAS_DEREFERENCED, inherited from the superclass DS_C_COMMON_RESULTS, is
OM_TRUE.

 � DS_PARTIAL_OUTCOME_QUAL

This OM attribute value is present if the list of subordinates is incomplete. The DSA or DSAs that
provided this list did not complete the search for some reason. The partial outcome qualifier contains
details of why the search was not completed and which areas of the directory have not been
searched.

 � DS_SUBORDINATES

This attribute contains information about zero or more subordinate objects identified by ds_list().

 DS_C_LIST_INFO_ITEM

An instance of OM class DS_C_LIST_INFO_ITEM comprises details returned by ds_list() of a single
subordinate object.

An application is not permitted to create or modify instances of this OM class. An instance of this OM
class has the OM attributes of its superclass, OM_C_OBJECT, in addition to the OM attributes listed in
Table 41.

Table 41. OM Attributes of DS_C_LIST_INFO_ITEM

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_ALIAS_ENTRY OM_S_BOOLEAN - 1 -

OM_S_BOOLEAN OM_S_BOOLEAN - 1 -

DS_RDN Object(DS_C_RELATIVE_NAME) - 1 -

 � DS_ALIAS_ENTRY

This attribute indicates whether the object is an alias.

 � DS_FROM_ENTRY

This attribute indicates whether information about the object was obtained directly from its directory
entry, rather than from a copy of the entry.

 � DS_RDN

This attribute contains the RDN of the object. If this is the name of an alias entry, as indicated by
DS_ALIAS_ENTRY, it is not dereferenced.

 Chapter 11. XDS Class Definitions 263

 DS_C_LIST_RESULT

An instance of OM class DS_C_LIST_RESULT comprises the results of a successful call to ds_list().

An application is not permitted to create or modify instances of this OM class. An instance of this OM
class has the OM attributes of its superclass, OM_C_OBJECT, in addition to the OM attributes listed in
Table 42.

Table 42. OM Attributes of DS_C_LIST_RESULT

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_LIST_INFO Object(DS_C_LIST_INFO) - 0 or 1 -

DS_UNCORRELATED_ LIST_INFO Object(DS_C_LIST_RESULT) - 0 or
more

-

Note: No instance contains values of both OM attributes.

 � DS_LIST_INFO

This attribute contains the full results of ds_list(), or just part of them.

 � DS_UNCORRELATED_LIST_INFO

When the DUA requests a protection request of signed, the information returned can consist of a
number of sets of results originating from, and signed by, different components of the directory.
Implementations can reflect this structure by nesting DS_LIST_RESULT OM objects as values of this
OM attribute. Alternatively, they can collapse all results into a single value of the OM attribute
DS_LIST_INFO. The DCE Directory Service does not support the optional feature of signed results;
therefore, this OM attribute is never present.

 DS_C_NAME

The OM class DS_C_NAME represents a name of an object in the directory, or a part of such a name.

It is an abstract class, that has the attributes of its superclass, OM_C_OBJECT, and no other OM
attributes.

A name uniquely distinguishes the object from all other objects whose entries are displayed in the DIT.
However, an object can have more than one name; that is, a name need not be unique. A DN is unique;
there are no other DNs that identify the same object. An RDN is part of a name, and only distinguishes
the object from others that are its siblings.

Most of the interface functions take a name parameter, the value of which must be an instance of one of
the subclasses of this OM class. Thus, this OM class is useful for amalgamating all possible
representations of names.

The DCE XDS implementation defines one subclass of this OM class, and thus, a single representation for
names; that is DS_C_DS_DN, which provides a representation for names, including distinguished names.

264 Application Development Guide: Directory Services

 DS_C_NAME_ERROR

An instance of OM class DS_C_NAME_ERROR reports a name-related Directory Service error.

An application is not permitted to create or modify instances of this OM class. An instance of this OM
class has the OM attributes of its superclasses, OM_C_OBJECT and DS_C_ERROR, in addition to the
OM attributes listed in Table 43.

Table 43. OM Attributes of DS_C_NAME_ERROR

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_MATCHED Object(DS_C_NAME) - 1 -

 � DS_MATCHED

This attribute identifies the initial part (up to, but excluding, the first RDN that is unrecognized) of the
name that is supplied, or of the name resulting from dereferencing an alias. It names the lowest entry
(object or alias) in the DIT that is matched.

The OM attribute DS_PROBLEM, which is inherited from the superclass DS_C_ERROR, identifies the
cause of the failure. Its value is one of the following:

 � DS_E_ALIAS_DEREFERENCING_PROBLEM

An alias is encountered where an alias is not permitted, for example, in a modification operation when
the DS_DONT_DEREFERENCE_ALIASES service control is set or when one alias points to another
alias.

 � DS_E_ALIAS_PROBLEM

An alias is dereferenced that names an object that does not exist, that is, for which no directory entry
can be found.

 � DS_E_INVALID_ATTRIBUTE_VALUE

The attribute value in an AVA of an RDN contained in the name does not conform to the attribute
syntax prescribed for the attribute type in the AVA. This problem is called invalidAttributeSyntax in
the standards, but that name is used only for a DS_C_ATTRIBUTE_PROBLEM in this interface.

 � DS_E_NO_SUCH_OBJECT

The specified name does not match the name of any object in the directory.

 DS_C_OPERATION_PROGRESS

An instance of OM class DS_C_OPERATION_PROGRESS specifies the progress or processing state of a
directory request.

An application is not permitted to create or modify instances of this OM class. An instance of this OM
class has the OM attributes of its superclass, OM_C_OBJECT, in addition to the OM attributes listed in
Table 44.

 Chapter 11. XDS Class Definitions 265

Table 44. OM Attributes of DS_C_OPERATION_PROGRESS

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_NAME_RESOLUTION_PHASE Enum(DS_Name_Resolution_Phase) - 1 -

DS_NEXT_RDN_TO_BE_RESOLVED OM_S_INTEGER - 0 or 1 -

The target name is the name upon which processing of the directory request is currently focused.

 � DS_NAME_RESOLUTION_PHASE

This attribute indicates what phase is reached in handling the target name. It must have one of the
following values:

– DS_COMPLETED indicates that the DSA holding the target object is reached.

– DS_NOT_STARTED indicates that so far a DSA is not reached with a naming context containing
the initial RDNs of the name.

– DS_PROCEEDING indicates that the initial part of the name has been recognized, although the
DSA holding the target object has not yet been reached.

 � DS_NEXT_RDN_TO_BE_RESOLVED

This attribute indicates to the DSA which of the RDNs in the target name is next to be resolved. It
takes the form of an integer in the range from 1 to the number of RDNs in the name. This OM
attribute only has a value if the value of DS_NAME_RESOLUTION_PHASE is DS_PROCEEDING.

The constant DS_OPERATION_NOT_STARTED can be used in the DS_C_CONTEXT of an operation
instead of an instance of this OM class.

 DS_C_PARTIAL_OUTCOME_QUAL

An instance of OM class DS_C_PARTIAL_OUTCOME_QUAL explains to what extent the results of a call
to ds_list() or ds_search() are incomplete and the reason.

An application is not permitted to create or modify instances of this OM class. An instance of this OM
class has the OM attributes of its superclass, OM_C_OBJECT, in addition to the OM attributes listed in
Table 45.

Table 45. OM Attributes of DS_C_PARTIAL_OUTCOME_QUAL

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_LIMIT_PROBLEM Enum(DS_Limit_Problem) - 1 -

DS_UNAVAILABLE_CRIT_EXT OM_S_BOOLEAN - 1 -

DS_UNEXPLORED Object(DS_C_CONTINUATION _REF) - 0 or
more

-

 � DS_LIMIT_PROBLEM

This attribute explains fully or partly why the results are incomplete. It can have one of the following
values:

– DS_ADMINISTRATIVE_LIMIT_EXCEEDED indicates that an administrative limit is reached.

– DS_NO_LIMIT_EXCEEDED indicates that there is no limit problem.

266 Application Development Guide: Directory Services

– DS_SIZE_LIMIT_EXCEEDED indicates that the maximum number of objects specified as a
service control is reached.

– DS_TIME_LIMIT_EXCEEDED indicates that the maximum number of seconds specified as a
service control is reached.

 � DS_UNAVAILABLE_CRIT_EXT

If OM_TRUE, this attribute indicates that some part of the Directory Service cannot provide a
requested critical service extension. The user requested one or more standard service extensions by
including values of the OM attribute DS_EXT in the DS_C_CONTEXT supplied for the operation.
Furthermore, the user indicated that some of these extensions are essential by setting the OM
attribute DS_CRIT in the extension to OM_TRUE. Some of the critical extensions cannot be
performed by one particular DSA or by a number of DSAs. In general, it is not possible to determine
which DSA could not perform which particular extension.

Note: Because DS_EXT is not supported, this OM attribute will always be set to OM_FALSE.

 � DS_UNEXPLORED

This attribute identifies any regions of the Directory that are left unexplored in a way that the directory
request can be continued. Only continuation references within the scope specified by the
DS_SCOPE_OF_REFERRAL service control are included.

 DS_C_PRESENTATION_ADDRESS

An instance of OM class DS_C_PRESENTATION_ADDRESS is a presentation address of an OSI
application entity, which is used for OSI communications with this instance.

An instance of this OM class has the OM attributes of its superclasses, OM_C_OBJECT and
DS_C_ADDRESS, in addition to the OM attributes listed in Table 46.

Table 46. OM Attributes of DS_C_PRESENTATION_ADDRESS

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_N_ADDRESSES String(OM_S_OCTET_STRING) - 1 or
more

-

DS_P_SELECTOR String(OM_S_OCTET_STRING) - 0 or 1 -

DS_S_SELECTOR String(OM_S_OCTET_STRING) - 0 or 1 -

DS_T_SELECTOR String(OM_S_OCTET_STRING) - 0 or 1 -

 � DS_N_ADDRESSES

This attribute is the network addresses of the application entity.

 � DS_P_SELECTOR

This attribute is the presentation selector.

 � DS_S_SELECTOR

This attribute is the session selector.

 � DS_T_SELECTOR

This attribute is the transport selector.

 Chapter 11. XDS Class Definitions 267

 DS_C_READ_RESULT

An instance of OM class DS_C_READ_RESULT comprises the result of a successful call to ds_read().

An application is not permitted to create or modify instances of this OM class. An instance of this OM
class has the OM attributes of its superclasses, OM_C_OBJECT and DS_C_COMMON_RESULTS, in
addition to the OM attributes listed in Table 47.

Table 47. OM Attributes of DS_C_READ_RESULT

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_ENTRY Object(DS_C_ENTRY_INFO) - 1 -

 � DS_ENTRY

This attribute contains the information extracted from the directory entry of the target object.

 DS_C_REFERRAL

An instance of OM class DS_C_REFERRAL reports failure to perform an operation and redirects the
requestor to one or more access points better equipped to perform the operation.

An application is not permitted to create or modify instances of this OM class. An instance of this OM
class has the OM attributes of its superclasses, OM_C_OBJECT and DS_C_CONTINUATION_REF, and
no additional OM attributes.

The referral is a continuation reference by means of which the operation can proceed.

 DS_C_RELATIVE_NAME

The OM class DS_C_RELATIVE_NAME represents the RDNs of objects in the Directory. It is an abstract
class that has the attributes of its superclass, OM_C_OBJECT, and no other OM attributes.

An RDN is part of a name, and only distinguishes the object from others that are its siblings. This OM
class is used to accumulate all possible representations of RDNs. An argument of interface functions that
is an RDN, or an OM attribute value that is an RDN, is an instance of one of the subclasses of this OM
class.

The DCE XDS API defines one subclass of this OM class, and thus, a single representation for RDNs,
that is, DS_C_DS_RDN, which provides a representation for RDNs.

 DS_C_SEARCH_INFO
Note: Because DS_C_SEARCH_INFO is GDS-specific, it is not supported.

An instance of OM class DS_C_SEARCH_INFO is part of the results of ds_search().

An application is not permitted to create or modify instances of this OM class. An instance of this OM
class has the OM attributes of its superclasses, OM_C_OBJECT and DS_C_COMMON_RESULTS, in
addition to the OM attributes listed in Table 48.

268 Application Development Guide: Directory Services

Table 48. OM Attributes of DS_C_SEARCH_INFO

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_ENTRIES Object(DS_C_ENTRY_INFO) - 0 or
more

-

DS_OBJECT_NAME Object(DS_C_NAME) - 0 or 1 -

DS_PARTIAL_OUTCOME_QUAL Object(DS_C_PARTIAL
_OUTCOME_QUAL)

- 0 or 1 -

 � DS_ENTRIES

This attribute contains information about zero or more objects found by ds_search() that matched the
given selection criteria.

 � DS_OBJECT_NAME

This attribute contains the distinguished name of the target object of the operation. It is present if the
OM attribute DS_ALIAS_DEREFERENCED, inherited from the superclass,
DS_C_COMMON_RESULTS, is OM_TRUE.

 � DS_PARTIAL_OUTCOME_QUAL

This OM attribute value is only present if the list of entries is incomplete. The DSA or DSAs that
provided this list did not complete the search for some reason. The partial outcome qualifier contains
details of why the search was not completed and which areas of the directory were not searched.

 DS_C_SEARCH_RESULT
Note: Because DS_C_SEARCH_RESULT is GDS-specific, it is not supported.

An instance of OM class DS_C_SEARCH_RESULT comprises the results of a successful call to
ds_search().

An application is not permitted to create or modify instances of this OM class. An instance of this OM
class has the OM attributes of its superclass, OM_C_OBJECT, in addition to the OM attributes listed in
Table 49.

Table 49. OM Attributes of DS_C_SEARCH_RESULT

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_SEARCH_INFO Object(DS_C_SEARCH_INFO) - 0 or 1 -

DS_UNCORRELATED_SEARCH
_INFO

Object(DS_C_SEARCH_RESULT) - 0 or
more

-

Note: No instance contains values of both OM attributes.

 � DS_SEARCH_INFO

This attribute contains the full results of ds_search(), or part of the results.

 � DS_UNCORRELATED_SEARCH_INFO

When the DUA requests a protection request of signed, the information returned can consist of a
number of sets of results originating from and signed by different components of the Directory Service.
Implementations can reflect this structure by nesting DS_C_SEARCH_RESULT OM objects as values

 Chapter 11. XDS Class Definitions 269

of this OM attribute. Alternatively, they can collapse all results into a single value of the OM attribute
DS_SEARCH_INFO.

 DS_C_SECURITY_ERROR

An instance of OM class DS_C_SECURITY_ERROR reports a security-related Directory Service error.

An application is not permitted to create or modify instances of this OM class. An instance of this OM
class has the OM attributes of its superclasses, OM_C_OBJECT and DS_C_ERROR, and no additional
OM attributes.

The OM attribute DS_PROBLEM, which is inherited from the superclass DS_C_ERROR, identifies the
cause of this failure. Its value is one of the following:

 � DS_E_INAPPROP_AUTHENTICATION

The level of security attached to the requestor’s credentials is inconsistent with the level of protection
requested; for example, simple credentials are supplied whereas strong credentials are required.

 � DS_E_INSUFFICIENT_ACCESS_RIGHTS

The requestor does not have permission to perform the operation. A ds_read() operation only returns
this error when access rights preclude the reading of all requested attribute values.

 � DS_E_INVALID_CREDENTIALS

The requestor’s credentials are invalid.

 � DS_E_INVALID_SIGNATURE

The signature affixed to the request is invalid.

 � DS_E_NO_INFO

The request produced a security error for which no other information is available.

 � DS_E_PROTECTION_REQUIRED

The Directory Service cannot perform the operation because it is unsigned.

 DS_C_SERVICE_ERROR

An instance of OM class DS_C_SERVICE_ERROR reports a Directory Service error related to the
provision of the service.

An application is not permitted to create or modify instances of this OM class. An instance of this OM
class has the OM attributes of its superclasses, OM_C_OBJECT and DS_C_ERROR, and no additional
OM attributes.

The OM attribute DS_PROBLEM, which is inherited from the superclass DS_C_ERROR, identifies the
cause of the failure. Its value is one of the following:

 � DS_E_ADMIN_LIMIT_EXCEEDED

The operation could not be performed within the administrative constraints on the directory, and no
partial results are available.

 � DS_E_BUSY

Some part of the Directory Service is temporarily too busy to perform the operation, but will be
available after a short while.

270 Application Development Guide: Directory Services

 � DS_E_CHAINING_REQUIRED

Chaining is required to perform the operation, but is prohibited by the DS_CHAINING_PROHIBITED
service control.

 � DS_E_DIT_ERROR

An inconsistency is detected in the DIT that can be localized to a particular entry or set of entries.

 � DS_E_INVALID_REF

The DSA cannot perform the request as directed, that is through DS_C_OPERATION_PROGRESS in
the DS_C_CONTEXT. The cause can be an invalid referral.

 � DS_E_LOOP_DETECTED

A DSA detected a loop within the directory.

 � DS_E_OUT_OF_SCOPE

The Directory Service cannot provide a referral or partial outcome qualifier within the required scope.

 � DS_E_TIME_LIMIT_EXCEEDED

The operation could not be performed within the time specified by the DS_TIME_LIMIT service control,
and no partial results are available.

 � DS_E_UNABLE_TO_PROCEED

A DSA without administrative authority over a particular naming context is asked to resolve a name in
that context.

 � DS_E_UNAVAILABLE

Some part of the directory is not currently available.

 � DS_E_UNAVAILABLE_CRIT_EXT

One or more critical extensions are requested, but are not available.

 � DS_E_UNWILLING_TO_PERFORM

Some part of the Directory Service cannot perform the operation because it requires excessive
resources, or because doing so violates administrative policy.

 DS_C_SESSION

An instance of OM class DS_C_SESSION identifies a particular link from the application program to a
DUA.

An instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT, in addition to the
OM attributes listed in Table 50

Table 50 (Page 1 of 2). OM Attributes of DS_C_SESSION

OM Attribute Value Syntax Value
Length

Value
Number

Value Initially

DS_DSA_ADDRESS Object(DS_C_ADDRESS) - 0 or 1 local1

DS_DSA_NAME Object(DS_C_NAME) - 0 or 1 local1

DS_FILE_DESCRIPTOR OM_S_INTEGER - 1 see the text

 Chapter 11. XDS Class Definitions 271

Table 50 (Page 2 of 2). OM Attributes of DS_C_SESSION

OM Attribute Value Syntax Value
Length

Value
Number

Value Initially

DS_REQUESTOR Object(DS_C_NAME) - 0 or 1 -

Notes:

1. The default values of these OM attributes are administered locally.

The DS_C_SESSION gathers all the information that describes a particular directory interaction. The
parameters that control such a session are set up in an instance of this OM class, which is then passed
as an argument to ds_bind(). This sets the OM attributes that describe the actual characteristics of this
session, and then starts the session. A session started in this way must pass as the first argument to
each interface function. The result of modifying an initiated session is unspecified. Finally, ds_unbind()
is used to terminate the session, after which the parameters can be modified and a new session started
using the same instance, if required. Multiple concurrent sessions can run using multiple instances of this
OM class.

The OM attributes of a session are as follows:

 � DS_DSA_ADDRESS

This attribute indicates the address of the default DSA named by DS_DSA_NAME.

 � DS_DSA_NAME

This attribute indicates the distinguished name of the DSA that is used by default to service directory
requests.

� DS_FILE_DESCRIPTOR (NOT SUPPORTED)

This OM attribute is not used by DCE XDS and is always set to DS_NO_VALID_FILE_DESCRIPTOR.

 � DS_REQUESTOR

This attribute is the distinguished name of the user of this Directory Service session.

Applications can assume that an object of OM class DS_C_SESSION, created with default values of all its
OM attributes, works with all the interface functions. Local administrators need to ensure that this
assumption is true. Such a session can be created by passing the constant DS_DEFAULT_SESSION as
an argument to ds_bind().

 DS_C_SYSTEM_ERROR

An instance of OM class DS_C_SYSTEM_ERROR reports an error that occurred in the underlying
operating system.

An application is not permitted to create or modify instances of this OM class. An instance of this OM
class has the OM attributes of its superclasses, OM_C_OBJECT and DS_C_ERROR, and no additional
OM attributes, although there can be additional implementation-defined OM attributes.

The OM attribute DS_PROBLEM, which is inherited from the superclass DS_C_ERROR, identifies the
cause of the failure. Its value is the same as that of errno defined in the C language.

The standard names of system errors are defined in Volume 2 of the X/Open Portability Guide.

If such an error persists, a DS_C_LIBRARY_ERROR (DS_E_MISCELLANEOUS) is reported.

272 Application Development Guide: Directory Services

 DS_C_UPDATE_ERROR

An instance of OM class DS_C_UPDATE_ERROR reports a Directory Service error peculiar to a
modification operation.

An application is not permitted to create or modify instances of this OM class. An instance of this OM
class has the OM attributes of its superclasses, OM_C_OBJECT and DS_C_ERROR, and no additional
OM attributes.

The OM attribute DS_PROBLEM, which is inherited from the superclass DS_C_ERROR, identifies the
cause of the failure. Its value is one of the following:

 � DS_E_AFFECTS_MULTIPLE_DSAS

The modification affects several DSAs, and such a modification is prohibited. Local agreement
between DSAs can allow modifications that affect multiple DSAs, for example, adding entries whose
immediate superior entry is in a different DSA. This problem is not reported in such cases.

 � DS_E_ENTRY_EXISTS

The name passed to ds_add_entry() already exists.

 � DS_E_NAMING_VIOLATION

The modification leaves the DIT structured incorrectly. That is, it adds an entry as the subordinate of
an alias, or in a region of the DIT not permitted to a member of its object class, or it defines an RDN
that includes a forbidden attribute type.

 � DS_E_NOT_ALLOWED_ON_NON_LEAF

The modification would be to an interior node of the DIT, and such a modification is prohibited.

 � DS_E_NOT_ALLOWED_ON_RDN

The modification alters an object’s RDN.

 � DS_E_OBJECT_CLASS_MOD_PROHIB

The modification alters an entry’s object class attribute.

 � DS_E_OBJECT_CLASS_VIOLATION

The modification leaves a directory entry inconsistent with its object class definition.

 Chapter 11. XDS Class Definitions 273

274 Application Development Guide: Directory Services

Chapter 12. Basic Directory Contents Package

The standards define a number of attribute types (known as the selected attribute types), attribute
syntaxes, attribute sets, and object classes (known as the selected object classes). These definitions
allow the creation and maintenance of directory entries for a number of common objects so that the
representation of all such objects is the same throughout the directory.1 They include such objects as
Country, Person, and Organization.

Note: z/OS DCE does not support GDS. The GDS naming information presented is intended to increase
your understanding of DCE name structure and concepts.

This chapter outlines names for each of these items, and defines OM classes to represent those that are
not represented directly by OM syntaxes. The values of attributes in the directory are not restricted to
those discussed in this chapter, and new attribute types and syntaxes can be created at any time. (For
further information on how the values of other syntaxes are represented in the interface, see “Attribute and
Attribute Value Assertion” on page 237.)

The constants and OM classes in this chapter are defined in addition to those in Chapter 11, “XDS Class
Definitions” on page 241, because they are not essential to the working of the interface, but instead allow
directory entries to be utilized. The definitions belong to the Basic Directory Contents Package (BDCP),
which is supported by the DCE XDS API following negotiation of its use with ds_version().

The object identifier associated with the BDC Package is {iso(1) identified-organization(3)
icd-ecma(0012) member-company(2) dec(1011) xopen(28) bdcp(1)} with the following encoding:

\x2B\xHC\xH2\x87\x73\x1C\xH1

This identifier is represented by the constant DS_BASIC_DIRECTORY_CONTENTS_PKG. The C
constants associated with this package are in the xdsbdcp.h header file. (See the z/OS DCE Application
Development Reference to see the contents of this header file.)

The concepts and notation used are introduced in the introductory section of Chapter 11, “XDS Class
Definitions” on page 241. A complete explanation of the meaning of the attributes and object classes is
not given. The purpose here is simply to present the representation of these items in the interface.

The selected attribute types are presented first, followed by the selected object classes. Next, the OM
class hierarchy and OM class definitions required to support the selected attribute types are presented.

Selected Attribute Types

This section presents the attribute types defined in the standards to be used in directory entries. Each
directory entry is composed of a number of attributes, each of which comprises an attribute type together
with one or more attribute values. The form of each value of an attribute is determined by the attribute
syntax associated with the attribute’s type.

In the interface, attributes are displayed as instances of OM class DS_C_ATTRIBUTE with the attribute
type represented as the value of the OM attribute DS_ATTRIBUTE_TYPE, and the attribute value (or
values) represented as the value (or values) of the OM attribute DS_ATTRIBUTE_VALUES. Each
attribute type has an object identifier, assigned in the standards, which is the value of the OM attribute

1 These definitions are chiefly in The Directory: Selected Attribute Types {ISO 9594-6, CCITT X.520} and The Directory: Selected
Object Classes {ISO 9594-7, CCITT X.521}, with additional material in The Directory: Overview of Concepts, Models and Services
{ISO 9594-1, CCITT X.500} and The Directory: Authentication Framework {ISO 9594-8, CCITT X.509}.

 Copyright IBM Corp. 1994, 2001 275

DS_ATTRIBUTE_TYPE. These object identifiers are represented in the interface by constants with the
same name as the directory attribute, and are prefixed with DS_A_ so that they can be easily identified.

Table 51 shows the names of the attribute types defined in the standards, together with the Basic
Encoding Rules (BERs) for encoding the object identifiers associated with each of them. Table 52 on
page 277 shows the names of the attribute types, together with the OM Value Syntax that is used in the
interface to represent values of that attribute type. Table 52 on page 277 also includes the range of
lengths permitted for the string types. This indicates whether the attribute can have multiple values and
which matching rules are provided for the syntax. Following the table is a brief description of each
attribute.

Note: Referring to Table 52 on page 277, any attribute of an entry in the CDS namespace that has been
added using the X/Open interface is assumed to be multi-valued, and the length and matching
rules do not apply (except for DS_A_ALIASED_OBJECT_NAME). Some of these attributes
cannot be added to CDS as noted in Table 52.

The standards define matching rules that are used for deciding whether two values are equal (E), for
ordering (O) two values, and for identifying one value as a substring (S) of another in Directory Service
operations. Specific matching rules are given in this chapter for certain attributes. In addition, the
following general rules apply as indicated:

� Differences between attribute values whose syntax is String(OM_S_NUMERIC_STRING),
String(OM_S_PRINTABLE_STRING), or String(OM_S_TELETEX_STRING) are considered
insignificant for the following reasons:

– Differences caused by the presence of spaces preceding the first printing character

– Spaces following the last printing character

– More than one consecutive space anywhere within the value.

� For all attribute values whose syntax is String(OM_S_TELETEX_STRING), differences in the case of
alphabetical characters are considered insignificant.

Note: The third and fourth columns of Table 51 contain the contents octets of the BER encoding of
the object identifier. All these object identifiers stem from the root {joint-iso-ccitt(2) ds(5)
attributeType(4)}. Basic encoding rules state that the first two decimal numbers be combined
according to the formula x*4H+y to form the first hexadecimal value. Thus 2.5.4 	 85.4 	
\x55\x04.

Table 51 (Page 1 of 2). Object Identifiers for Selected Attribute Types

Package Attribute Type Object Identifier BER

DECIMAL HEXADECIMAL

BDCP DS_A_ALIASED_OBJECT_NAME 85.4.1 \x55\x04\x01

BDCP DS_A_BUSINESS_CATEGORY 85.4.15 \x55\x04\x0F

BDCP DS_A_COMMON_NAME 85.4.3 \x55\x04\x03

BDCP DS_A_COUNTRY_NAME 85.4.6 \x55\x04\x06

BDCP DS_A_DESCRIPTION 85.4.13 \x55\x04\x0D

BDCP DS_A_DEST_INDICATOR 85.4.27 \x55\x04\x1B

BDCP DS_A_FACSIMILE_PHONE_NBR 85.4.23 \x55\x04\x17

BDCP DS_A_INTERNAT_ISDN_NBR 85.4.25 \x55\x04\x19

BDCP DS_A_KNOWLEDGE_INFO 85.4.2 \x55\x04\x02

BDCP DS_A_LOCALITY_NAME 85.4.7 \x55\x04\x07

276 Application Development Guide: Directory Services

Table 51 (Page 2 of 2). Object Identifiers for Selected Attribute Types

Package Attribute Type Object Identifier BER

DECIMAL HEXADECIMAL

BDCP DS_A_MEMBER 85.4.31 \x55\x04\x1F

BDCP DS_A_OBJECT_CLASS 85.4.0 \x55\x04\x00

BDCP DS_A_ORG_NAME 85.4.10 \x55\x04\x0A

BDCP DS_A_ORG_UNIT_NAME 85.4.11 \x55\x04\x0B

BDCP DS_A_OWNER 85.4.32 \x55\x04\x20

BDCP DS_A_PHYS_DELIV_OFF_NAME 85.4.19 \x55\x04\x13

BDCP DS_A_POST_OFFICE_BOX 85.4.18 \x55\x04\x12

BDCP DS_A_POSTAL_ADDRESS 85.4.16 \x55\x04\x10

BDCP DS_A_POSTAL_CODE 85.4.17 \x55\x04\x11

BDCP DS_A_PREF_DELIV_METHOD 85.4.28 \x55\x04\x1C

BDCP DS_A_PRESENTATION_ADDRESS 85.4.29 \x55\x04\x1D

BDCP DS_A_REGISTERED_ADDRESS 85.4.26 \x55\x04\x1A

BDCP DS_A_ROLE_OCCUPANT 85.4.33 \x55\x04\x21

BDCP DS_A_SEARCH_GUIDE 85.4.14 \x55\x04\x0E

BDCP DS_A_SEE_ALSO 85.4.34 \x55\x04\x22

BDCP DS_A_SERIAL_NBR 85.4.5 \x55\x04\x05

BDCP DS_A_STATE_OR_PROV_NAME 85.4.8 \x55\x04\x08

BDCP DS_A_STREET_ADDRESS 85.4.9 \x55\x04\x09

BDCP DS_A_SUPPORT_APPLIC_CONTEXT 85.4.30 \x55\x04\x1E

BDCP DS_A_SURNAME 85.4.4 \x55\x04\x04

BDCP DS_A_PHONE_NBR 85.4.20 \x55\x04\x14

BDCP DS_A_TELETEX_TERM_IDENT 85.4.22 \x55\x04\x16

BDCP DS_A_TELEX_NBR 85.4.21 \x55\x04\x15

BDCP DS_A_TITLE 85.4.12 \x55\x04\x0C

BDCP DS_A_USER_PASSWORD 85.4.35 \x55\x04\x23

BDCP DS_A_X121_ADDRESS 85.4.24 \x55\x04\x18

Table 52 (Page 1 of 3). Representation of Values for Selected Attribute Types

Attribute Type OM Value Syntax Value
Length

Multi-
Valued

Matching
Rules

DS_A_ALIASED_OBJECT_NAME Object(DS_C_NAME) - No E

DS_A_BUSINESS_CATEGORY String(OM_S_TELETEX_STRING) 1-128 Yes E, S

DS_A_COMMON_NAME String(OM_S_TELETEX_STRING) 1-64 Yes E, S

DS_A_COUNTRY_NAME String(OM_S_PRINTABLE_STRING)1 2 No E

DS_A_DESCRIPTION String(OM_S_TELETEX_STRING) 1-1024 Yes E, S

DS_A_DEST_INDICATOR String(OM_S_PRINTABLE_STRING)2 1-128 Yes E, S

 Chapter 12. Basic Directory Contents Package 277

Table 52 (Page 2 of 3). Representation of Values for Selected Attribute Types

Attribute Type OM Value Syntax Value
Length

Multi-
Valued

Matching
Rules

DS_A_FACSIMILE_PHONE_NBR Object(DS_C_FACSIMILE
_PHONE_NBR)

- Yes

DS_A_INTERNAT_ISDN_NBR String(OM_S_NUMERIC_STRING)3 1-16 Yes -

DS_A_KNOWLEDGE_INFO String(OM_S_TELETEX_STRING) - Yes E, S

DS_A_LOCALITY_NAME String(OM_S_TELETEX_STRING) 1-128 Yes E, S

DS_A_MEMBER Object(DS_C_NAME) - Yes E

DS_A_OBJECT_CLASS String(OM_S_OBJECT_IDENTIFIER
_STRING)

- yes E

DS_A_ORG_NAME String(OM_S_TELETEX_STRING) 1-64 Yes E, S

DS_A_ORG_UNIT_NAME String(OM_S_TELETEX_STRING) 1-64 Yes E, S

DS_A_OWNER Object(DS_C_NAME) - Yes E

DS_A_PHYS_DELIV_OFF_NAME String(OM_S_TELETEX_STRING) 1-128 Yes E, S

DS_A_POST_OFFICE_BOX String(OM_S_TELETEX_STRING) 1-40 Yes E, S

DS_A_POSTAL_ADDRESS Object(DS_C_POSTAL_ADDRESS) - Yes E

DS_A_POSTAL_CODE String(OM_S_TELETEX_STRING) 1-40 Yes E, S

DS_A_PREF_DELIV_METHOD Enum(DS_Preferred_Delivery
_Method)

- Yes -

DS_A_PRESENTATION_ADDRESS Object(DS_C_PRESENTATION
_ADDRESS)

- No E

DS_A_REGISTERED_ADDRESS Object(DS_C_POSTAL_ADDRESS) - Yes

DS_A_ROLE_OCCUPANT Object(DS_C_NAME) - Yes E

DS_A_SEARCH_GUIDE Object(DS_C_SEARCH_GUIDE) - Yes

DS_A_SEE_ALSO Object(DS_C_NAME) - Yes E

DS_A_SERIAL_NBR String(OM_S_PRINTABLE_STRING) 1-64 Yes E, S

DS_A_STATE_OR_PROV_NAME String(OM_S_TELETEX_STRING) 1-128 Yes E, S

DS_A_STREET_ADDRESS String(OM_S_TELETEX_STRING) 1-128 Yes E, S

DS_A_SUPPORT_APPLIC_CONTEXT String(OM_S_OBJECT_IDENTIFIER
_STRING)

- Yes E

DS_A_SURNAME String(OM_S_TELETEX_STRING) 1-64 Yes E, S

DS_A_PHONE_NBR String(OM_S_PRINTABLE_STRING)4 1-32 Yes E, S

DS_A_TELETEX_TERM_IDENT Object(DS_C_TELETEX_TERM
_IDENT)

- Yes

DS_A_TELEX_NBR Object(DS_C_TELEX_NBR) - Yes

DS_A_TITLE String(OM_S_TELETEX_STRING) 1-64 Yes E, S

DS_A_USER_PASSWORD String(OM_S_OCTET_STRING) 0-128 Yes -

278 Application Development Guide: Directory Services

Table 52 (Page 3 of 3). Representation of Values for Selected Attribute Types

Attribute Type OM Value Syntax Value
Length

Multi-
Valued

Matching
Rules

DS_A_X121_ADDRESS String(OM_S_NUMERIC_STRING)5 1-15 Yes E, S

Notes:

1. As permitted by ISO 3166.

2. As permitted by CCIT Recommendations F.1 and F.31.

3. As permitted by CCIT E.164.

4. As permitted by CCIT E.123 (for example, +44 582 10101).

5. As permitted by CCIT X.121.

Throughout the descriptions that follow, the term object indicates the directory object whose directory entry
contains the corresponding directory attributes.

 � DS_A_ALIASED_OBJECT_NAME

This attribute occurs only in alias entries. It assigns the Distinguished Name (DN) of the object
provided with an alias using the entry in which this attribute occurs. An alias is an alternative to an
object’s DN. Any object can (but need not) have one or more aliases. The Directory Service is said
to dereference an alias whenever it replaces the alias during name processing with the distinguished
name associated with it by means of this attribute.

 � DS_A_BUSINESS_CATEGORY

This attribute provides descriptions of the businesses in which the object is engaged.

 � DS_A_COMMON_NAME

This attribute provides the names by which the object is commonly known in the context defined by its
position in the DIT. The names can conform to the naming convention of the country or culture with
which the object is associated. They can be ambiguous.

 � DS_A_COUNTRY_NAME

This attribute identifies the country in which the object is located or with which it is associated in some
other important way. The matching rules require that differences in the case of alphabetical
characters be considered insignificant. It has a length of two characters, and its values are those
listed in ISO 3166.

 � DS_A_DESCRIPTION

This attribute gives informative descriptions of the object.

 � DS_A_DEST_INDICATOR

This attribute gives the country-city pairs by which the object can be reached via the public telegram
service. The matching rules require that differences in the case of alphabetical characters be
considered insignificant.

 � DS_A_FACSIMILE_PHONE_NBR

This attribute provides the telephone numbers for facsimile terminals (and their parameters, if required)
by which the object can be reached or with which it is associated in some other important way.

 � DS_A_INTERNAT_ISDN_NBR

This attribute provides the international ISDN numbers by means of which the object can be reached
or with which it is associated in some other important way. The matching rules require that
differences caused by the presence of spaces be considered insignificant.

 Chapter 12. Basic Directory Contents Package 279

 � DS_A_KNOWLEDGE_INFO

This attribute occurs only in entries that describe a DSA. It provides a human-intelligible accumulated
description of the directory knowledge possessed by the DSA.

 � DS_A_LOCALITY_NAME

This attribute identifies geographical areas or localities. When used as part of a directory name, it
specifies the localities in which the object is located or with which it is associated in some other
important way.

 � DS_A_MEMBER

This attribute gives the names of objects that are considered members of the present object, for
example, a distribution list for electronic mail.

 � DS_A_OBJECT_CLASS

This attribute identifies the object classes to which the object belongs, and also identifies their
superclasses. All such object classes that have object identifiers assigned to them are present, except
that object class DS_O_TOP need not (but can) be present provided that some other value is present.
This attribute must be present in every entry and cannot be modified. For further discussion, see
“Selected Object Classes” on page 282.

 � DS_A_ORG_NAME

This attribute identifies organizations. When used as part of a directory name, it specifies an
organization with which the object is affiliated. Several values can identify the same organization in
different ways.

 � DS_A_ORG_UNIT_NAME

This attribute identifies organizational units. When used as part of a directory name, it specifies an
organizational unit with which the object is affiliated. The units are understood to be parts of the
organization that the DS_A_ORG_NAME attribute indicates. Several values can identify the same unit
in different ways.

 � DS_A_OWNER

This attribute gives the names of objects that have responsibility for the object.

 � DS_A_PHYS_DELIV_OFF_NAME

This attribute gives the names of cities, towns, villages, and so on that contain physical delivery offices
through which the object can take delivery of physical mail.

 � DS_A_POST_OFFICE_BOX

This attribute identifies post office boxes at which the object can take delivery of physical mail. This
information is also displayed as part of the DS_A_POSTAL_ADDRESS attribute, if it is present.

 � DS_A_POSTAL_ADDRESS

This attribute gives the postal addresses at which the object can take delivery of physical mail. The
matching rules require that differences in the case of alphabetical characters be considered
insignificant.

 � DS_A_POSTAL_CODE

This attribute gives the postal codes assigned to areas or buildings through which the object can take
delivery of physical mail. This information is also displayed as part of the DS_A_POSTAL_ADDRESS
attribute, if it is present.

 � DS_A_PREF_DELIV_METHOD

280 Application Development Guide: Directory Services

This attribute gives the object’s preferred methods of communication, in the order of preference. The
values are as follows:

– DS_ANY_DELIV_METHOD indicates that the object has no preference.

– DS_G3_FACSIMILE_DELIV indicates communication using Group 3 facsimile.

– DS_G4_FACSIMILE_DELIV indicates delivery using Group 4 facsimile.

– DS_IA5_TERMINAL_DELIV indicates delivery using IA5 text.

– DS_MHS_DELIV indicates delivery using X.400.

– DS_PHYS_DELIV indicates delivery using the postal or other physical delivery system.

– DS_PHONE_DELIV indicates delivery using telephone.

– DS_TELETEX_DELIV indicates delivery using teletex.

– DS_TELEX_DELIV indicates delivery using telex.

– DS_VIDEOTEX_DELIV indicates delivery using videotex.

 � DS_A_PRESENTATION_ADDRESS

This attribute contains the OSI presentation address of the object, which is an OSI application entity.
The matching rule for a presented value to match a value stored in the directory is that the P-Selector,
S-Selector, and T-Selector of the two presentation addresses must be equal, and the N-Addresses of
the presented value must be a subset of those of the stored value.

 � DS_A_REGISTERED_ADDRESS

This attribute contains mnemonics by which the object can be reached via the public telegram service,
according to CCIT Recommendation F.1. A mnemonic identifies an object in the context of a
particular city, and is registered in the country containing the city. The matching rules require that
differences in the case of alphabetical characters be considered insignificant.

 � DS_A_ROLE_OCCUPANT

This attribute occurs only in entries that describe an organizational role. It gives the names of objects
that fulfill the organizational role.

 � DS_A_SEARCH_GUIDE

This attribute contains the criteria that can be used to build filters for conducting searches in which the
object is the base object.

 � DS_A_SEE_ALSO

This attribute contains the names of objects that represent other aspects of the real-world object that
the present object represents.

 � DS_A_SERIAL_NBR

This attribute contains the serial numbers of a device.

 � DS_A_STATE_OR_PROV_NAME

This attribute specifies a state or province. When used as part of a directory name, it identifies states,
provinces, or other geographical regions in which the object is located or with which it is associated in
some other important way.

 � DS_A_STREET_ADDRESS

This attribute identifies a site for the local distribution and physical delivery of mail. When used as
part of a directory name, it identifies the street address (for example, street name and house number)
at which the object is located or with which it is associated in some other important way.

 � DS_A_SUPPORT_APPLIC_CONTEXT

 Chapter 12. Basic Directory Contents Package 281

This attribute occurs only in entries that describe an OSI application entity. It identifies OSI application
contexts supported by the object.

 � DS_A_SURNAME

This attribute occurs only in entries that describe individuals. The surname by which the individual is
commonly known, normally inherited from the individual’s parent (or parents) or taken at marriage, as
determined by the custom of the country or culture with which the individual is associated.

 � DS_A_PHONE_NBR

This attribute identifies telephones by means of which the object can be reached or with which it is
associated in some other important way. The matching rules require that differences caused by the
presence of spaces and dashes be considered insignificant.

 � DS_A_TELETEX_TERM_IDENT

This attribute contains descriptions of teletex terminals by which the object can be reached or with
which it is associated in some other important way.

 � DS_A_TELEX_NBR

This attribute contains descriptions of telex terminals by means of which the object can be reached or
with which it is associated in some other important way.

 � DS_A_TITLE

This attribute identifies positions or functions of the object within its organization.

 � DS_A_USER_PASSWORD

This attribute contains the passwords assigned to the object.

 � DS_A_X121_ADDRESS

This attribute identifies points on the public data network at which the object can be reached or with
which it is associated in some other important way. The matching rules require that differences
caused by the presence of spaces be considered insignificant.

Selected Object Classes

This section presents the object classes that are defined in the standards. Object classes are groups of
directory entries that share certain characteristics. The object classes are arranged into a lattice, based
on the object class DS_O_TOP. In a lattice, each element, except a leaf, has one or more immediate
subordinates but also has one or more immediate superiors. This contrasts with a tree, where each
element has exactly one immediate superior. Object classes closer to DS_O_TOP are called
superclasses, and those further away are called subclasses.

Each directory entry belongs to an object class, and to all the superclasses of that object class. Each
entry has an attribute named DS_A_OBJECT_CLASS, which was discussed in the previous section, and
which identifies the object classes to which the entry belongs. The values of this attribute are object
identifiers, which are represented in the interface by constants with the same name as the object class,
prefixed by DS_O_.

Associated with each object class are zero or more mandatory and zero or more optional attributes. Each
directory entry must contain all the mandatory attributes and can (but need not) contain the optional
attributes associated with the object class and its superclasses.

The object classes defined in the standards are shown in Table 53 on page 283, together with their object
identifiers.

282 Application Development Guide: Directory Services

Note: The third and fourth columns of Table 53 on page 283 contain the contents octets of the BER
encoding of the object identifier. All these object identifiers stem from the root {joint-iso-ccitt(2)
ds(5) objectClass(6)}. Basic encoding rules state that the first two decimal numbers be combined
according to the formula x*4H+y to form the first hexadecimal value. Thus 2.5.4 	 85.4 	 \x55\x04.

Table 53. Object Identifiers for Selected Object Classes

Package Object Class Object Identifier BER

DECIMAL HEXADECIMAL

BDCP DS_O_ALIAS 85.6.1 \x55\x06\x01

BDCP DS_O_APPLIC_ENTITY 85.6.12 \x55\x06\x0C

BDCP DS_O_APPLIC_PROCESS 85.6.11 \x55\x06\x0B

BDCP DS_O_COUNTRY 85.6.2 \x55\x06\x02

BDCP DS_O_DEVICE 85.6.14 \x55\x06\x0E

BDCP DS_O_DSA 85.6.13 \x55\x06\x0D

BDCP DS_O_GROUP_OF_NAMES 85.6.9 \x55\x06\x09

BDCP DS_O_LOCALITY 85.6.3 \x55\x06\x03

BDCP DS_O_ORG 85.6.4 \x55\x06\x04

BDCP DS_O_ORG_PERSON 85.6.7 \x55\x06\x07

BDCP DS_O_ORG_ROLE 85.6.8 \x55\x06\x08

BDCP DS_O_ORG_UNIT 85.6.5 \x55\x06\x05

BDCP DS_O_PERSON 85.6.6 \x55\x06\x06

BDCP DS_O_RESIDENTIAL_PERSON 85.6.10 \x55\x06\x0A

BDCP DS_O_TOP 85.6.0 \x55\x06\x00

OM Class Hierarchy

The remainder of this chapter defines the additional OM classes used to represent values of the selected
attributes described in “Selected Attribute Types” on page 275. Some of the selected attributes are
represented by OM classes that are used in the interface itself, and hence are defined in Chapter 11,
“XDS Class Definitions” on page 241, for example, DS_C_NAME.

This section shows the hierarchical organization of the OM classes that are defined in the following
sections, and it shows which OM classes inherit additional OM attributes from their OM superclasses. In
the following list, subclassification is indicated by indentation, and the names of abstract OM classes are in
italics. For example, DS_C_POSTAL_ADDRESS is an immediate subclass of the abstract OM class
OM_C_OBJECT.

OM_C_OBJECT

 � DS_C_FACSIMILE_PHONE_NBR

 � DS_C_POSTAL_ADDRESS

 � DS_C_SEARCH_CRITERION

 � DS_C_SEARCH_GUIDE

 � DS_C_TELETEX_TERM_IDENT

 � DS_C_TELEX_NBR

 Chapter 12. Basic Directory Contents Package 283

None of the OM classes in the preceding list are encodable using om_encode() and om_decode().

 DS_C_FACSIMILE_TELEPHONE_NUMBER

An instance of OM class DS_C_FACSIMILE_PHONE_NBR identifies and describes a facsimile terminal, if
required.

An instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT, in addition to the
OM attributes listed in Table 54.

Table 54. OM Attributes of DS_C_FACSIMILE_PHONE_NBR

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_PARAMETERS Object(MH_C_G3_FAX_NBPS)1 - 0 or 1 -

DS_PHONE_NBR String(OM_S_PRINTABLE_ STRING)2 1-32 1 -

Notes:

1. As defined in the X.400 API Specifications.

2. As permitted by E.123 (for example, +44 582 10101).

 � DS_PARAMETERS

If present, this attribute identifies the non-basic capabilities of the facsimile terminal.

 � DS_PHONE_NBR

This attribute contains a telephone number by which the facsimile terminal is accessed.

 DS_C_POSTAL_ADDRESS

An instance of OM class DS_C_POSTAL_ADDRESS is a postal address.

An instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT, in addition to the
OM attributes listed in Table 55.

Table 55. OM Attributes of DS_C_POSTAL_ADDRESS

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_POSTAL_ADDRESS String(OM_S_TELETEX_STRING) 1-30 1-6 -

 � DS_POSTAL_ADDRESS

Each value of this OM attribute is one line of the postal address. It typically includes a name, street
address, city name, state or province name, postal code, and possibly a country name.

284 Application Development Guide: Directory Services

 DS_C_SEARCH_CRITERION

An instance of OM class DS_C_SEARCH_CRITERION is a component of a DS_C_SEARCH_GUIDE OM
object.

An instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT, in addition to the
OM attributes listed in Table 56.

Table 56. OM Attributes of DS_C_SEARCH_CRITERION

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_ATTRIBUTE_TYPE String(OM_S_OBJECT_ IDENTIFIER_STRING) - 0 or 1 -

DS_CRITERIA Object(DS_C_SEARCH _CRITERION) - 0 or
more

-

DS_FILTER_ITEM_TYPE Enum(DS_Filter_Item_Type) - 0 or 1 -

DS_FILTER_TYPE Enum(DS_Filter_Type) - 1 DS_ITEM

A DS_C_SEARCH_CRITERION suggests how to build part of a filter to be used when searching the
directory. Its meaning depends on the value of its OM attribute DS_FILTER_TYPE. If the value is
DS_ITEM, the criterion suggests building an instance of OM class DS_C_FILTER_ITEM. If
DS_FILTER_TYPE has any other value, it suggests building an instance of OM class DS_C_FILTER.

 � DS_ATTRIBUTE_TYPE

This attribute indicates the attribute type to be used in the suggested DS_C_FILTER_ITEM. This OM
attribute is only present when the value of DS_FILTER_TYPE is DS_ITEM.

 � DS_CRITERIA

This attribute contains nested search criteria. This OM attribute is not present when the value of
DS_FILTER_TYPE is DS_ITEM.

 � DS_FILTER_ITEM_TYPE

This attribute indicates the type of suggested filter item. Its value can be one of the following:

 – DS_APPROXIMATE_MATCH

 – DS_EQUALITY

 – DS_GREATER_OR_EQUAL

 – DS_LESS_OR_EQUAL

 – DS_SUBSTRINGS

The filter item cannot have the value DS_PRESENT. This OM attribute is only present when the
value of DS_FILTER_TYPE is DS_ITEM.

 � DS_FILTER_TYPE

This attribute indicates the type of suggested filter. The value DS_ITEM means that the suggested
component is a filter item, not a filter. The other values suggest the corresponding type of filter. Its
value is one of the following:

 – DS_AND

 – DS_ITEM

 – DS_NOT

 Chapter 12. Basic Directory Contents Package 285

 – DS_OR

 DS_C_SEARCH_GUIDE

An instance of OM class DS_C_SEARCH_GUIDE suggests a criterion for searching the Directory for
particular entries. It can be used to build a DS_C_FILTER for ds_search() operations that are based on
the object in whose entry the search guide occurs.

An instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT, in addition to the
OM attributes listed in Table 57.

Table 57. OM Attributes of DS_C_SEARCH_GUIDE

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_OBJECT_CLASS String(OM_S_OBJECT _IDENTIFIER_STRING) - 0 or 1 -

DS_CRITERIA Object(DS_C_SEARCH _CRITERION) - 1 -

 � DS_OBJECT_CLASS

This attribute identifies the object class of the entries to which the search guide applies. If this OM
attribute is absent, the search guide applies to objects of any class.

 � DS_CRITERIA

This attribute contains the suggested search criteria.

 DS_C_TELETEX_TERMINAL_IDENTIFIER

An instance of OM class DS_C_TELETEX_TERM_IDENT identifies and describes a teletex terminal.

An instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT, in addition to the
OM attributes listed in Table 58.

Table 58. OM Attributes of DS_C_TELETEX_TERM_IDENT

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_PARAMETERS Object(MH_C_TELETEX_NBPS)1 - 0 or 1 -

DS_TELETEX_TERM String(OM_S_PRINTABLE STRING)2 1-1024 1 -

Notes:

1. As defined in the X.400 API Specifications.

2. As permitted by F.200.

 � DS_PARAMETERS

This attribute identifies the nonbasic capabilities of the teletex terminal.

 � DS_TELETEX_TERMINAL

This attribute identifies the teletex terminal.

286 Application Development Guide: Directory Services

 DS_C_TELEX_NUMBER

An instance of OM class DS_C_TELEX_NBR identifies and describes a telex terminal.

An instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT, in addition to the
OM attributes listed in Table 59.

Table 59. OM Attributes of DS_C_TELEX_NBR

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_ANSWERBACK String(OM_S_PRINTABLE STRING) 1-8 1 -

DS_COUNTRY_CODE String(OM_S_PRINTABLE STRING) 1-4 1 -

DS_TELEX_NBR String(OM_S_PRINTABLE STRING) 1-14 1 -

 � DS_ANSWERBACK

This attribute contains the code with which the telex terminal acknowledges calls placed to it.

 � DS_COUNTRY_CODE

This attribute contains the identifier of the country through which the telex terminal is accessed.

 � DS_TELEX_NBR

This attribute contains the number by means of which the telex terminal is addressed.

 Chapter 12. Basic Directory Contents Package 287

288 Application Development Guide: Directory Services

Chapter 13. Strong Authentication Package

This chapter describes the Strong Authentication Package (SAP). In addition to the attribute types,
attribute syntaxes, and object classes defined in the Basic Directory Contents Package, the standards also
contain definitions to support authentication mechanisms.2 They include such objects as
Strong-Authentication-User.

Note: z/OS DCE does not support GDS. The GDS naming information presented is intended to increase
your understanding of DCE name structure and concepts.

This chapter outlines names for each of these items, and it defines OM classes to represent those that are
not represented directly by OM syntaxes. The values of attributes in the directory are not restricted to
those discussed in this chapter, and new attribute types and syntaxes can be created at any time. (For
further information on how the values of other syntaxes are represented in the interface, see “Attribute and
Attribute Value Assertion” on page 237.)

The constants and OM classes in this chapter are defined in addition to those in Chapter 11, “XDS Class
Definitions” on page 241, since they are not essential to the working of the interface, but instead allow
directory entries to be utilized. The definitions belong to the Strong Authentication Package (SAP), which
is supported by the DCE XDS API following negotiation of its use with ds_version().

The object identifier associated with the SA Package is {iso(1) identified-organization(3) icd-ecma(0012)
member-company(2) dec(1011) xopen(28) sap(2)} with the following encoding:

\x2B\xHC\xH2\x87\x73\x1C\xH2

This identifier is represented by the constant DS_STRONG_AUTHENT_PKG. The C constants
associated with this package are in the xdssap.h header file.

The concepts and notation used are introduced in “Introduction to OM Classes” on page 241. They are
also fully explained in these chapters:

� Chapter 17, “Information Syntaxes” on page 325
� Chapter 18, “XOM Service Interface” on page 331
� Chapter 19, “Object Management Package” on page 347

SAP Attribute Types
This section presents the additional attribute types defined in the standards that are to be used with the
Strong Authentication Package. Each attribute type has an object identifier, which is the value of the OM
attribute DS_ATTRIBUTE_TYPE. These object identifiers are represented in the interface by constants
with the same name as the directory attribute, and they are prefixed with DS_A_ so that they can be
easily identified.

This section contains two tables that are used to indicate the object identifiers for Strong Authentication
Package attribute types (see Table 60 on page 290), and the values for Strong Authentication Package
attribute types (see Table 61 on page 290), respectively. Following these two tables is a brief description
of each attribute. (See “Selected Attribute Types” on page 275 for information on general matching rules.)

2

These definitions are chiefly in The Directory: Selected Attribute Types (ISO 9594-6, CCITT X.520) and The Directory: Selected
Object Classes (ISO 9594-7, CCITT X.521) with additional material in The Directory: Overview of Concepts, Models, and Services
(ISO 9594-1, CCITT X.500) and The Directory: Authentication Framework (ISO 9594-8, CCITT X.509).

 Copyright IBM Corp. 1994, 2001 289

Note: The third and fourth columns of Table 60 on page 290 contain the contents octets of the BER
encoding of the object identifier. All these object identifiers stem from the root {joint-iso-ccitt(2)
ds(5) attributeType(4)}. Basic encoding rules state that the first two decimal numbers be
combined according to the formula x*4H+y to form the first hexadecimal value. Thus 2.5.4 	 85.4 	
\x55\x04.

Table 60. Object Identifiers for SAP Attribute Types

Package Attribute Type Object Identifier BER

DECIMAL HEXADECIMAL

SAP DS_A_AUTHORITY_REVOC_LIST 85.4.38 \x55\x04\x26

SAP DS_A_CA_CERT 85.4.37 \x55\x04\x25

SAP DS_A_CERT_REVOC_LIST 85.4.39 \x55\x04\x27

SAP DS_A_CROSS_CERT_PAIR 85.4.40 \x55\x04\x28

SAP DS_A_USER_CERT 85.4.36 \x55\x04\x24

Table 61. Representation of Values for SAP Attribute Types

Attribute Type OM Value Syntax Value
Length

Multi-
Valued

Matching
Rules

DS_A_AUTHORITY_REVOC_LIST Object(DS_C_CERT_LIST) - yes -

DS_A_CA_CERT Object(DS_C_CERT) - yes -

DS_A_CERT_REVOC_LIST Object(DS_C_CERT_LIST) - yes -

DS_A_CROSS_CERT_PAIR Object(DS_C_CERT_PAIR) - yes -

DS_A_USER_CERT Object(DS_C_CERT) - yes -

Throughout the descriptions that follow, the term object indicates the directory object whose directory entry
contains the corresponding directory attributes.

 � DS_A_AUTHORITY_REVOC_LIST

This attribute occurs only in entries that describe a Certification Authority (CA). It lists all the
certificates issued to any of the CAs known to this CA, and later revoked. Each value of this OM
attribute is signed by the CA.

 � DS_A_CA_CERT

This attribute specifies the certificates assigned to the object, which is a Certification Authority.

 � DS_A_CERT_REVOC_LIST

This attribute occurs only in entries that describe a CA. It lists the certificates issued by this CA and
later revoked. Each value of this OM attribute is signed by the CA.

 � DS_A_CROSS_CERT_PAIR

This attribute specifies one or two certificates, held in the entry of a CA. The first certificate is that of
one CA, guaranteed by a second CA; whereas, the second certificate is that of the second CA,
guaranteed by the first CA.

 � DS_A_USER_CERT

This attribute specifies the user certificates assigned to the object, which may be any user certificate
including a CA certificate.

290 Application Development Guide: Directory Services

Strong Authentication Package Object Classes
This section presents the Strong Authentication Package object classes that are defined in the standards.
(See Table 62.)

Note: The third and fourth columns of Table 62 contain the contents octets of the BER encoding of the
object identifier. All these object identifiers stem from the root {joint-iso-ccitt(2) ds(5)
objectClass(6)}.

Table 62. Object Identifiers for SAP Object Classes

Package Object Class Object Identifier BER

DECIMAL HEXADECIMAL

SAP DS_O_CERT_AUTHORITY 85.6.16 \x55\x06\x10

SAP DS_O_STRONG_AUTHENT_USER 85.6.15 \x55\x06\x0F

OM Class Hierarchy
The remainder of this chapter defines the additional OM classes used by SAP. This section shows the
hierarchical organization of the OM classes that are defined in the following sections, and it shows which
OM classes inherit additional OM attributes from their OM superclasses. In the following list,
subclassification is indicated by indentation, and the names of abstract OM classes are in italics.

OM_C_OBJECT

 � DS_C_ALGORITHM_IDENT

 � DS_C_CERT_PAIR

 � DS_C_SIGNATURE

 – DS_C_CERT

 – DS_C_CERT_LIST

 – DS_C_CERT_SUBLIST

None of the OM classes in the preceding list are encodable by using om_encode() and om_decode().

 DS_C_ALGORITHM_IDENT
An instance of OM class DS_C_ALGORITHM_IDENT records the encryption algorithm that an object uses
to digitally sign messages, together with the parameters of the algorithm.

An instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT, in addition to the
OM attributes listed in Table 63.

Table 63. OM Attributes of DS_C_ALGORITHM_IDENT

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_ALGORITHM String(OM_S_OBJECT
_IDENTIFIER_STRING)

- 1 -

DS_ALGORITHM_PARAMETERS Any - 0 or 1 -

 Chapter 13. Strong Authentication Package 291

 � DS_ALGORITHM

This attribute specifies an object identifier that uniquely identifies the algorithm used by some object.

 � DS_ALGORITHM_PARAMETERS

This attribute specifies the values of the algorithm's parameters that are used by the object. The
syntax of the parameters is determined by each individual algorithm.

 DS_C_CERT
An instance of OM class DS_C_CERT comprises a user's DN, public key, and additional information, all of
which is digitally signed by the issuing CA in order to make the certificate unforgeable. The OM attributes
associated with DS_C_SIGNATURE (a superclass of DS_C_CERT) are present.

An instance of this OM class has the OM attributes of its superclasses, OM_C_OBJECT and
DS_C_SIGNATURE, in addition to the OM attributes listed in Table 64.

Table 64. OM Attributes of DS_C_CERT

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_SERIAL_NUMBER OM_S_INTEGER - 1 -

DS_SUBJECT Object(DS_C_NAME) - 1 -

DS_SUBJECT_ALGORITHM Object(DS_C_ALGORITHM_IDENT) - 1 -

DS_SUBJECT_SUBJECT
_PUBLIC_KEY

String(OM_S_BIT_STRING) - 1 -

DS_VALIDITY_NOT_AFTER String(OM_S_UTC_TIME_STRING) 0-17 1 -

DS_VALIDITY_NOT_BEFORE String(OM_S_UTC_TIME_STRING) 0-17 1 -

DS_VERSION Enum(DS_Version) - 1 DS_V1988

 � DS_SERIAL_NUMBER

This attribute distinguishes the certificate from all other certificates that have been or will be issued by
the CA which issued this certificate.

 � DS_SUBJECT

This attribute specifies the subject's name.

 � DS_SUBJECT_ALGORITHM

This attribute specifies the algorithm that is used by the subject and is associated with the public key.

 � DS_SUBJECT_PUBLIC_KEY

This attribute specifies the subject's public key associated with the algorithm.

 � DS_VALIDITY_NOT_AFTER

This attribute specifies the last day on which the certificate is valid.

 � DS_VALIDITY_NOT_BEFORE

This attribute specifies the first day on which the certificate is valid.

 � DS_VERSION

This attribute identifies the certificate's design. Its value is as follows:

– DS_V1988, meaning the design specified in the 1988 version of the standards.

292 Application Development Guide: Directory Services

 DS_C_CERT_LIST
An instance of OM class DS_C_CERT_LIST documents the revocation of zero or more certificates. The
documentation is provided by the object, which is a CA whose signature is affixed to the instance.

An instance of this OM class has the OM attributes of its superclasses, OM_C_OBJECT and
DS_C_SIGNATURE, in addition to the OM attributes listed in Table 65.

Table 65. OM Attributes of DS_C_CERT_LIST

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_LAST_UPDATE String(OM_S_UTC_TIME_STRING) 0-17 1 -

DS_REVOKED_CERTS Object(DS_C_CERT_SUBLIST) - 0 or
more

-

 � DS_LAST_UPDATE

This attribute indicates the time at which the revocation list was updated to its current state.

 � DS_REVOKED_CERTS

This attribute identifies the revoked certificates.

 DS_C_CERT_PAIR
An instance of OM class DS_C_CERT_PAIR contains one or both of a forward and reverse certificate,
that assists users in building a certification path.

An instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT, in addition to the
OM attributes listed in Table 66.

Table 66. OM Attributes of DS_C_CERT_PAIR

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_FORWARD Object(DS_C_CERT) - 0 or 1 -

DS_REVERSE Object(DS_C_CERT) - 0 or 1 -

Notes:

1. At least one of these OM attributes must be present.

 � DS_FORWARD

This attribute specifies the certificate of the first CA which was issued by a second CA.

 � DS_REVERSE

This attribute specifies the certificate of the second CA which was issued by the first CA.

 Chapter 13. Strong Authentication Package 293

 DS_C_CERT_SUBLIST
An instance of OM class DS_C_CERT_SUBLIST documents the revocation of zero or more certificates
issued by the CA whose signature is affixed to the instance.

An instance of this OM class has the OM attributes of its superclasses, OM_C_OBJECT and
DS_C_SIGNATURE, in addition to the OM attributes listed in Table 67.

Table 67. OM Attributes of DS_C_CERT_SUBLIST

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_REVOCATION_DATE String(OM_S_UTC_TIME_STRING) 0-17 0 or
more

-

DS_SERIAL_NUMBERS OM_S_INTEGER - 0 or
more

-

Notes:

1. The values of these two OM attributes parallel one another and shall be equal in number.

 � DS_REVOCATION_DATE

This attribute specifies the epoch at which each of the certificates was revoked. The serial numbers of
the certificates are the corresponding values of the OM attribute DS_SUBJECT of a corresponding
OS_C_CERT OM object.

 � DS_SERIAL_NUMBERS

This attribute specifies the serial numbers assigned to the revoked certificates.

 DS_C_SIGNATURE
An instance of the abstract OM class DS_C_SIGNATURE contains the algorithm identifier used to produce
a digital signature and the name of the object that produced it. The scope of the signature is any instance
of any subclass of this OM class.

An instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT, in addition to the
OM attributes listed in Table 68.

Table 68. OM Attributes of DS_C_SIGNATURE

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_ISSUER Object(DS_C_NAME) - 1 -

DS_SIGNATURE Object(DS_C_ALGORITHM_INDENT) - 1 -

DS_SIGNATURE_VALUE String(OM_S_OCTET_STRING) - 1 -

 � DS_ISSUER

This attribute indicates the name of the object that produced the digital signature.

 � DS_SIGNATURE

This attribute identifies the algorithm that was used to produce the digital signature, and any
parameters of the algorithm.

294 Application Development Guide: Directory Services

 � DS_SIGNATURE_VALUE

An enciphered summary of the information to which the signature is appended. The summary is
produced by means of a one-way hash function, while the enciphering is carried out by using the
secret key of the signer.

 Chapter 13. Strong Authentication Package 295

296 Application Development Guide: Directory Services

Chapter 14. MHS Directory User Package

The Message Handling Systems Directory User Package (MDUP) contains definitions to support the use
of the directory in accordance with the 1988 X.400 User Agents and Message Transfer Agents (MTAs) for
name resolution, Distribution List (DL) expansion, and capability assessment. The definitions are based
upon the attribute types and syntaxes specified in X.402, Annex A.

Note: z/OS DCE does not support GDS. The GDS naming information presented is intended to increase
your understanding of DCE name structure and concepts.

The MDUP is an optional package that can be used by the XDS interface. Applications must negotiate
use of this package with ds_version() before using any of the MDUP features. If an application attempts
to use features specific to the package without first negotiating its use, an appropriate error (for example,
OM_NO_SUCH_CLASS) is returned by the Object Management (OM) function.

The object identifier associated with the MDUP is {iso(1) identified-organization(3) icd-ecma(0012)
member-company(2) dec(1011) xopen(28) mdup(3)} with the following encoding:

\x2B\xHC\xH2\x87\x73\x1C\xH3

This identifier is represented by the constant DS_MHS_DIR_USER_PKG. The C constants associated
with this package are defined in the xdsmdup.h, xmhp.h, and xmsga.h header files (see the z/OS DCE
Application Development Reference).

The concepts and notation used are first mentioned in Chapter 11, “XDS Class Definitions” on page 241.
They are also fully explained in Chapter 17, “Information Syntaxes” on page 325 through Chapter 19,
“Object Management Package” on page 347. The attribute types are introduced first, followed by the
object classes. Next, the OM class hierarchy and OM class definitions required to support the new
attribute types are described.

MDUP Attribute Types

This section presents additional directory attribute types that are used with the MDUP. Each attribute type
has an object identifier, which is the value of the OM attribute DS_ATTRIBUTE_TYPE. These object
identifiers are represented in the interface by constants with the same name as the directory attribute and
are prefixed by DS_A_ so that they can be easily identified.

This section contains two tables that are used to indicate the object identifiers for MDUP attribute types
(see Table 69), and the values for MDUP attribute (see Table 70 on page 298) types respectively.
Following these two tables is a brief description of each attribute. (See Chapter 12, “Basic Directory
Contents Package” on page 275 for information on general matching rules.)

Note: The third and fourth columns of Table 69 contain the contents octets of the BER encoding of the
object identifier. All these object identifiers stem from the root {joint-iso-ccitt(2) mhs-motis(6)
arch(5) at(2)}. Basic encoding rules state that the first two decimal numbers be combined
according to the formula x*4H+y to form the first hexadecimal value. Thus 2.5.4 	 85.4 	 \x55\x04.

Table 69 (Page 1 of 2). Object Identifiers for MDUP Attribute Types

Package Attribute Type Object Identifier BER

DECIMAL HEXADECIMAL

MDUP DS_A_DELIV_CONTENT_LENGTH 86.5.2.0 \x56\x05\x02\x00

 Copyright IBM Corp. 1994, 2001 297

Table 69 (Page 2 of 2). Object Identifiers for MDUP Attribute Types

Package Attribute Type Object Identifier BER

DECIMAL HEXADECIMAL

MDUP DS_A_DELIV_CONTENT_TYPES 86.5.2.1 \x56\x05\x02\x01

MDUP DS_A_DELIV_EITS 86.5.2.2 \x56\x05\x02\x02

MDUP DS_A_DL_MEMBERS 86.5.2.3 \x56\x05\x02\x03

MDUP DS_A_DL_SUBMIT_PERMS 86.5.2.4 \x56\x05\x02\x04

MDUP DS_A_MESSAGE_STORE 86.5.2.5 \x56\x05\x02\x05

MDUP DS_A_OR_ADDRESSES 86.5.2.6 \x56\x05\x02\x06

MDUP DS_A_PREF_DELIV_METHODS 86.5.2.7 \x56\x05\x02\x07

MDUP DS_A_SUPP_AUTO_ACTIONS 86.5.2.8 \x56\x05\x02\x08

MDUP DS_A_SUPP_CONTENT_TYPES 86.5.2.9 \x56\x05\x02\x09

MDUP DS_A_SUPP_OPT_ATTRIBUTES 86.5.2.10 \x56\x05\x02\x0A

Table 70. Representation of Values for MDUP Attribute Types

Attribute Type OM Value Syntax Value
Length

Multi-
Valued

Matching
Rules

DS_A_DELIV_CONTENT_LENGTH INTEGER - No -

DS_A_DELIV_CONTENT_TYPES String(OM_S_OBJECT_IDENTIFIER
_STRING)

- Yes -

DS_A_DELIV_EITS String(OM_S_OBJECT_IDENTIFIER
_STRING)

- Yes -

DS_A_DL_MEMBERS Object(DS_C_OR_NAME) - Yes -

DS_A_DL_SUBMIT_PERMS Object(DS_C_DL_SUBMIT_PERMS) - Yes -

DS_A_MESSAGE_STORE Object(DS_C_DS_DN) - No -

DS_A_OR_ADDRESSES Object(MH_C_OR_ADDRESS) - Yes -

DS_A_PREF_DELIV_METHODS Enum(MH_Delivery_Mode) - No E

DS_A_SUPP_AUTO_ACTIONS String(OM_S_OBJECT_IDENTIFIER
_STRING)

- Yes -

DS_A_SUPP_CONTENT_TYPES String(OM_S_OBJECT_IDENTIFIER
_STRING)

- yes -

DS_A_SUPP_OPT_ATTRIBUTES String(OM_S_OBJECT_IDENTIFIER
_STRING)

- yes -

Throughout the descriptions that follow, the term object indicates the directory object whose directory entry
contains the corresponding directory attributes.

 � DS_A_DELIV_CONTENT_LENGTH

This attribute identifies the maximum content length of the messages whose delivery a user will
accept.

 � DS_A_DELIV_CONTENT_TYPES

This attribute identifies the content types of the messages whose delivery a user will accept.

 � DS_A_DELIV_EITS

298 Application Development Guide: Directory Services

This attribute identifies the Encoded Information Types (EITs) of the messages whose delivery a user
will accept.

 � DS_A_DL_MEMBERS

This attribute identifies the members of a DL.

 � DS_A_DL_SUBMIT_PERMS

This attribute identifies the users and DLs that may submit messages to a DL.

 � DS_A_MESSAGE_STORE

This attribute identifies a user’s Message Store (MS) by name.

 � DS_A_OR_ADDRESSES

This attribute specifies a user’s or DL’s Originator/Recipient (O/R) addresses.

 � DS_A_PREF_DELIV_METHODS

This attribute identifies, in the order of decreasing preference, the methods of delivery a user prefers.

 � DS_A_SUPP_AUTO_ACTIONS

This attribute identifies the automatic actions that an MS fully supports.

 � DS_A_SUPP_CONTENT_TYPES

This attribute identifies the content types of the messages whose syntax and semantics an MS fully
supports.

 � DS_A_SUPP_OPT_ATTRIBUTES

This attribute identifies the optional attributes that an MS fully supports.

MDUP Object Classes
There are five MDUP object classes, and their associated object identifiers (see Table 71).

Note: The third and fourth columns of Table 71 contain the contents octets of the BER encoding of the
object identifier. MDUP object identifiers stem from the root {joint-iso-ccitt(2) mhs-motis(6)
arch(5) oc(1)}. Basic encoding rules state that the first two decimal numbers be combined
according to the formula x*4H+y to form the first hexadecimal value. Thus 2.5.4 	 85.4 	 \x55\x04.

Table 71. Object Identifiers for MDUP Object Classes

Package Object Class Object Identifier BER

DECIMAL HEXADECIMAL

MDUP DS_O_MHS_DISTRIBUTION_LIST 86.5.1.0 \x56\x05\x01\x00

MDUP DS_O_MHS_MESSAGE_STORE 86.5.1.1 \x56\x05\x01\x01

MDUP DS_O_MHS_MESSAGE_TRANS_AG 86.5.1.2 \x56\x05\x01\x02

MDUP DS_O_MHS_USER 86.5.1.3 \x56\x05\x01\x03

MDUP DS_O_MHS_USER_AG 86.5.1.4 \x56\x05\x01\x04

 Chapter 14. MHS Directory User Package 299

MDUP OM Class Hierarchy

The remainder of this chapter defines the additional OM classes used by MDUP. This section shows the
hierarchical organization of the OM classes that are defined in the following sections, and shows which
classes inherit additional OM attributes from their OM superclasses. In the following list, subclassification
is indicated by indentation and the names of abstract OM classes are represented in italic font.

 � MH_C_OR_ADDRESS

 – MH_C_OR_NAME

 � DS_C_DL_SUBMIT_PERMS

None of the OM classes in the preceding list are encodable using om_encode() and om_decode().

 MH_C_OR_ADDRESS

An instance of class MH_C_OR_ADDRESS distinguishes one user or DL from another, and identifies its
point of access to the Message Transfer System (MTS). Every user or DL is assigned one or more MTS
access points and thus one or more originator/recipient (O/R) addresses.

The attributes specific to this class are listed in Table 72. The 1988 column indicates that the attribute
applies only to the 1988 standard.

Table 72 (Page 1 of 3). Attributes Specific to MH_C_OR_ADDRESS

Attribute Value Syntax Value
Length

Value
Number

1988?

MH_T_ADMD_NAME1 String(PRINTABLE_STRING) 0-16 0 or 1 -

MH_T_COMMON_NAME String(OM_S_PRINTABLE_STRING)
or String(OM_S_TELETEX_STRING)2

1-64 0-2 1988

MH_T_COUNTRY_NAME1 String(OM_S_PRINTABLE_STRING) 2-3 0 or 1 -

MH_T_DOMAIN_TYPE_1 String(OM_S_PRINTABLE_STRING)
or String(OM_S_TELETEX_STRING)2,3

1-8 0-24 -

MH_T_DOMAIN_TYPE_2 String(OM_S_PRINTABLE_STRING)
or String(OM_S_TELETEX_STRING)2,3

1-8 0-24 -

MH_T_DOMAIN_TYPE_3 String(OM_S_PRINTABLE_STRING)
or String(OM_S_TELETEX_STRING)2,3

1-8 0-24 -

MH_T_DOMAIN_TYPE_4 String(OM_S_PRINTABLE_STRING)
or String(OM_S_TELETEX_STRING)2,3

1-8 0-24 -

MH_T_DOMAIN_VALUE_1 String(OM_S_PRINTABLE_STRING)
or String(OM_S_TELETEX_STRING)2,3

1-128 0-24 -

MH_T_DOMAIN_VALUE_2 String(OM_S_PRINTABLE_STRING)
or String(OM_S_TELETEX_STRING)2,3

1-128 0-24 -

MH_T_DOMAIN_VALUE_3 String(OM_S_PRINTABLE_STRING)
or String(OM_S_TELETEX_STRING)2,3

1-128 0-24 -

MH_T_DOMAIN_VALUE_4 String(OM_S_PRINTABLE_STRING)
or String(OM_S_TELETEX_STRING)2,3

1-128 0-24 -

MH_T_GENERATION String(OM_S_PRINTABLE_STRING)
or String(OM_S_TELETEX_STRING)2,3

1-3 0-24 -

300 Application Development Guide: Directory Services

Table 72 (Page 2 of 3). Attributes Specific to MH_C_OR_ADDRESS

Attribute Value Syntax Value
Length

Value
Number

1988?

MH_T_GIVEN_NAME String(OM_S_PRINTABLE_STRING)
or String(OM_S_TELETEX_STRING)2,3

1-16 0-24 -

MH_T_INITIALS String(OM_S_PRINTABLE_STRING)
or String(OM_S_TELETEX_STRING)2,3

1-5 0-24 -

MH_T_ISDN_NUMBER String(OM_S_NUMERIC_STRING) 1-15 0 or 1 1988

MH_T_ISDN_SUBADDRESS String(OM_S_NUMERIC_STRING) 1-40 0 or 15 1988

MH_T_NUMERIC_USER_IDENTIFIER String(NUMERIC_STRING) 1-32 0 or 1 -

MH_T_ORGANIZATION_NAME String(OM_S_PRINTABLE_STRING)
or String(OM_S_TELETEX_STRING)2,3

1-64 0-24,6 -

MH_T_ORGANIZATIONAL_
UNIT_NAME_1

String(OM_S_PRINTABLE_STRING)
or String(OM_S_TELETEX_STRING)2,3

1-32 0-24 -

MH_T_ORGANIZATIONAL_
UNIT_NAME_2

String(OM_S_PRINTABLE_STRING)
or String(OM_S_TELETEX_STRING)2,3

1-32 0-24 -

MH_T_ORGANIZATIONAL_
UNIT_NAME_3

String(OM_S_PRINTABLE_STRING)
or String(OM_S_TELETEX_STRING)2,3

1-32 0-24 -

MH_T_ORGANIZATIONAL_
UNIT_NAME_4

String(OM_S_PRINTABLE_STRING)
or String(OM_S_TELETEX_STRING)2,3

1-32 0-24 -

MH_T_POSTAL_ADDRESS_
DETAILS

String(OM_S_PRINTABLE_STRING)
or String(OM_S_TELETEX_STRING)2

1-30 0-2 1988

MH_T_POSTAL_ADDRESS_
IN_FULL

String(OM_S_TELETEX_STRING) 1-185 0 or 1 1988

MH_T_POSTAL_ADDRESS_
IN_LINES

String(OM_S_PRINTABLE_STRING) 1-30 0-6 1988

MH_T_POSTAL_CODE String(OM_S_PRINTABLE_STRING) 1-16 0 or 1 1988

MH_T_POSTAL_COUNTRY_
NAME

String(OM_S_PRINTABLE_STRING) 2-3 0 or 1 1988

MH_T_POSTAL_DELIVERY_
POINT_NAME

String(OM_S_PRINTABLE_STRING)
or String(OM_S_TELETEX_STRING)2

1-30 0-2 1988

MH_T_POSTAL_DELIV_
SYSTEM_NAME

String(OM_S_PRINTABLE_STRING) 1-16 0 or 1 1988

MH_T_POSTAL_GENERAL_
DELIV_ADDR

String(OM_S_PRINTABLE_STRING)
or String(OM_S_TELETEX_STRING)2

1-30 0-2 1988

MH_T_POSTAL_LOCALE String(OM_S_PRINTABLE_STRING)
or String(OM_S_TELETEX_STRING)2

1-30 0-2 1988

MH_T_POSTAL_OFFICE_
BOX_NUMBER

String(OM_S_PRINTABLE_STRING)
or String(OM_S_TELETEX_STRING)2,3

1-30 0-2 1988

MH_T_POSTAL_OFFICE_
NAME

String(OM_S_PRINTABLE_STRING)
or String(OM_S_TELETEX_STRING)2

1-30 0-2 1988

MH_T_POSTAL_OFFICE_
NUMBER

String(OM_S_PRINTABLE_STRING)
or String(OM_S_TELETEX_STRING)2,3

1-30 0-2 1988

MH_T_POSTAL_ORGANIZATION_
NAME

String(OM_S_PRINTABLE_STRING)
or String(OM_S_TELETEX_STRING)23

1-30 0-2 1988

MH_T_POSTAL_PATRON_
DETAILS

String(OM_S_PRINTABLE_STRING)
or String(OM_S_TELETEX_STRING)2

1-30 0-2 1988

 Chapter 14. MHS Directory User Package 301

Table 72 (Page 3 of 3). Attributes Specific to MH_C_OR_ADDRESS

Attribute Value Syntax Value
Length

Value
Number

1988?

MH_T_POSTAL_PATRON_
NAME

String(OM_S_PRINTABLE_STRING)
or String(OM_S_TELETEX_STRING)2

1-30 0-2 1988

MH_T_POSTAL_STREET_
ADDRESS

String(OM_S_PRINTABLE_STRING)
or String(OM_S_TELETEX_STRING)2

1-30 0-2 1988

MH_T_PRESENTATION_
ADDRESS

Object(DS_C_PRESENTATION_
ADDRESS)

- 0 or 1 1988

MH_T_PRMD_NAME1 String(OM_S_PRINTABLE_STRING) 1-16 0 or 1 -

MH_T_SURNAME String(OM_S_PRINTABLE_STRING)
or String(OM_S_TELETEX_STRING)2,3

1-40 0-24 -

MH_T_TERMINAL_
IDENTIFIER

String(OM_S_PRINTABLE_STRING) 1-24 0 or 1 -

MH_T_TERMINAL_TYPE Enum(MH_Terminal_Type) - 0 or 1 1988

MH_T_X121_ADDRESS String(NUMERIC_STRING) 1-15 0 or 1 -

Notes:

1. The value initially is the current session’s attribute of the same name.

2. If only one value is present in international communication, its syntax is String(OM_S_PRINTABLE_STRING). If
two values are present, in either domestic or international communication, the syntax of the first is
String(OM_S_PRINTABLE_STRING), the syntax of the second is String(OM_S_TELETEX_STRING), and the two
convey the same information such that either can be safely ignored. For example, Teletex strings allow inclusion
of the accented characters commonly used in many countries. Not all input/output devices, however, permit the
entry and display of such characters. Printable strings are required internationally to ensure that such device
limitations do not prevent communications.

3. For 1984 the syntax of the value is String(OM_S_PRINTABLE_STRING).

4. For 1984, at most one value shall is present.

5. This attribute is present only if the ISDN Number attribute is present.

6. For 1988, this attribute is required if any Organization Name is present.

 � MH_T_ADMD_NAME

The name of the user’s or DL’s Administration Management Domain (ADMD). It identifies the ADMD
relative to the country that the MH_T_COUNTRY_NAME attribute indicates. Its values are defined by
that country.

Note that the attribute value that comprises a single space is reserved. If permitted by the country
that the MH_T_COUNTRY_NAME attribute indicates, a single space designates “any;” that is, all
ADMDs within the country. This affects both the identification of users and DLs within the country and
the routing of messages, probes, and reports to and among the ADMDs of that country. Regarding
the former, it requires that the O/R addresses of users and DLs within the country be chosen so as to
ensure they are not ambiguousness, even in the absence of the actual names of the users' and DLs'
ADMDs. Regarding the latter, it permits both Private Management Domains (PRMD) within, and
ADMDs outside the country to route messages, probes, and reports to any of the ADMDs within the
country indiscriminately. It also requires that the ADMDs within the country interconnect themselves in
such a way that the messages, probes, and reports are conveyed to their destinations.

 � MH_T_COMMON_NAME

302 Application Development Guide: Directory Services

This attribute contains the name commonly used to refer to the user or DL. It identifies the user or
DL relative to the entity indicated by another attribute; for example MH_T_ORGANIZATION_NAME.
Its values are defined by that entity.

 � MH_T_COUNTRY_NAME

This attribute contains the name of the user’s or DL’s country. Its defined values are the numbers that
X.121 assigns to the country, or the character pairs that ISO 3166 assigns to it.

 � MH_T_DOMAIN_TYPE_1

This attribute contains the name of a class of information. Its values are defined by the user’s or DL’s
ADMD and PRMD, if any, in combination.

 � MH_T_DOMAIN_TYPE_2

This attribute contains the name of a class of information. Its values are defined by the user’s or DL’s
ADMD and PRMD, if any, in combination.

 � MH_T_DOMAIN_TYPE_3

This attribute contains the name of a class of information. Its values are defined by the user’s or DL’s
ADMD and PRMD, if any, in combination.

 � MH_T_DOMAIN_TYPE_4

This attribute contains the name of a class of information. Its values are defined by the user’s or DL’s
ADMD and PRMD, if any, in combination.

 � MH_T_DOMAIN_VALUE_1

This attribute is an instance of the class of information that the MH_T_DOMAIN_TYPE_1 attribute
indicates.

 � MH_T_DOMAIN_VALUE_2

This attribute is an instance of the class of information that the MH_T_DOMAIN_TYPE_2 attribute
indicates.

 � MH_T_DOMAIN_VALUE_3

This attribute is an instance of the class of information that the MH_T_DOMAIN_TYPE_3 attribute
denotes.

 � MH_T_DOMAIN_VALUE_4

This attribute is an instance of the class of information that the MH_T_DOMAIN_TYPE_4 attribute
indicates.

 � MH_T_GENERATION

This attribute contains the user’s generation; for example Jnr.

 � MH_T_GIVEN_NAME

This attribute contains the user’s given name; for example Robert.

 � MH_T_INITIALS

This attribute contains the initials of all of the user’s names except the user’s surname; for example
RE.

 � MH_T_ISDN_NUMBER

This attribute contains the ISDN number of the user’s terminal. Its values are defined by CCITT E.163
and E.164.

 � MH_T_ISDN_SUBADDRESS

 Chapter 14. MHS Directory User Package 303

This attribute contains the ISDN subaddress, if any, of the user’s terminal. Its values are defined by
CCITT E.163 and E.164.

 � MH_T_NUMERIC_USER_IDENTIFIER

This attribute numerically identifies the user or DL relative to the ADMD that the MH_T_ADMD_NAME
attribute indicates. Its values are defined by that ADMD.

 � MH_T_ORGANIZATION_NAME

This attribute contains the name of the user’s or DL’s organization. As a national matter, such names
may be assigned by the country that the MH_T_COUNTRY_NAME attribute indicates, the ADMD that
the MH_T_ADMD_NAME attribute indicates, the PRMD that the MH_T_PRMD_NAME attribute
indicates, or the latter two organizations together.

 � MH_T_ORGANIZATIONAL_UNIT_NAME_1

This attribute contains the name of a unit (for example, a division or department) of the organization
that the MH_T_ORGANIZATION_NAME attribute indicates. The attribute’s values are defined by that
organization.

 � MH_T_ORGANIZATIONAL_UNIT_NAME_2

This attribute contains the name of a subunit (for example, a division or department) of the unit that
the MH_T_ORGANIZATIONAL_UNIT_NAME_1 attribute indicates. The attribute’s values are defined
by the latter unit.

 � MH_T_ORGANIZATIONAL_UNIT_NAME_3

This attribute contains the name of a subunit (for example, a division or department) of the unit that
the DS_A_ORGANIZATIONAL_UNIT_NAME_2 attribute indicates. The attribute’s values are defined
by the latter unit.

 � MH_T_ORGANIZATIONAL_UNIT_NAME_4

This attribute contains the name of a subunit (for example, a division or department) of the unit that
the MH_T_ORGANIZATIONAL_UNIT_NAME_3 attribute indicates. The attribute’s values are defined
by the latter unit.

 � MH_T_POSTAL_ADDRESS_DETAILS

This attribute contains the means (for example, room and floor numbers in a large building) for
identifying the exact point at which the user takes delivery of physical messages.

 � MH_T_POSTAL_ADDRESS_IN_FULL

This attribute contains the free-form and possibly multiline postal address of the user as a single
Teletex string with the lines being separated as prescribed for Teletex strings.

 � MH_T_POSTAL_ADDRESS_IN_LINES

This attribute contains the free-form postal address of the user in a sequence of printable strings, each
representing a line of text.

 � MH_T_POSTAL_CODE

This attribute contains the postal code for the geographical area in which the user takes delivery of
physical messages. It identifies the area relative to the country that the
MH_T_POSTAL_COUNTRY_NAME attribute indicates. Its values are defined by the postal
administration of that country.

 � MH_T_POSTAL_COUNTRY_NAME

This attribute contains the name of the country in which the user takes delivery of physical messages.
Its defined values are the numbers X.121 assigns to the country, or the character pairs ISO 3166
assigns to it.

304 Application Development Guide: Directory Services

 � MH_T_POSTAL_DELIVERY_POINT_NAME

This attribute identifies the locus of distribution, other than that indicated by the
MH_T_POSTAL_OFFICE_NAME attribute (for example, a geographical area) of the user’s physical
messages.

 � MH_T_POSTAL_DELIV_SYSTEM_NAME

This attribute contains the name of the Postal Delivery System (PDS) through which the user is to
receive physical messages. It identifies the PDS relative to the ADMD that the MH_T_ADMD_NAME
attribute indicates. Its values are defined by that ADMD.

 � MH_T_POSTAL_GENERAL_DELIV_ADDRESS

This attribute contains the code that the user gives to the post office to collect the physical messages
awaiting delivery to the user. The post office is indicated in the MH_T_POSTAL_OFFICE_NAME
attribute. The values for the MH_T_POSTAL_GENERAL_DELIV_ADDRESS attribute are defined by
that post office.

 � MH_T_POSTAL_LOCALE

This attribute identifies the point of delivery, other than that indicated by the following attributes:

 – MH_T_POSTAL_GENERAL_DELIV_ADDR

 – MH_T_POSTAL_OFFICE_BOX_NUMBER

 – MH_T_POSTAL_STREET_ADDRESS.

For example, a building or a hamlet of the user’s physical messages.

 � MH_T_POSTAL_OFFICE_BOX_NUMBER

This attribute contains the number of the post office box by which the user takes delivery of physical
messages. The box is located at the post office that the MH_T_POSTAL_OFFICE_NAME attribute
indicates. The attribute’s values are defined by that post office.

 � MH_T_POSTAL_OFFICE_NAME

This attribute contains the name of the municipality (for example, city or village) where the post office
is situated through which the user takes delivery of physical messages.

 � MH_T_POSTAL_OFFICE_NUMBER

This attribute contains the means of distinguishing among several post offices indicated by the
MH_T_POSTAL_OFFICE_NAME attribute.

 � MH_T_POSTAL_ORGANIZATION_NAME

This attribute contains the name of the organization through which the user takes delivery of physical
messages.

 � MH_T_POSTAL_PATRON_DETAILS

This attribute contains additional information (for example, the name of the organizational unit through
which the user takes delivery of physical messages) necessary to identify the user for purposes of
physical delivery.

 � MH_T_POSTAL_PATRON_NAME

This attribute contains the name under which the user takes delivery of physical messages.

 � MH_T_POSTAL_STREET_ADDRESS

This attribute contains the street address (for example, 43 Primrose Lane) at which the user takes
delivery of physical messages.

 � MH_T_PRESENTATION_ADDRESS

 Chapter 14. MHS Directory User Package 305

This attribute contains the presentation address of the user’s terminal.

 � MH_T_PRMD_NAME

This attribute contains the name of the user’s PRMD. As a national matter, such names may be
assigned by the country that the MH_T_COUNTRY_NAME attribute indicates or the ADMD that the
MH_T_ADMD_NAME attribute indicates.

 � MH_T_SURNAME

This attribute contains the user’s surname; for example, Lee.

 � MH_T_TERMINAL_IDENTIFIER

This attribute contains the terminal identifier of the user’s terminal; for example, a Telex answer back
or a Teletex terminal identifier.

 � MH_T_TERMINAL_TYPE

This attribute contains the type of the user’s terminal. Its value is selected from the following:

 – MH_TT_G3_FAX

 – MH_TT_G4_FAX

 – MH_TT_IA5_TERMINAL

 – MH_TT_TELETEX

 – MH_TT_TELEX

 – MH_TT_VIDEOTEX.

The meaning of each value is indicated by its name.

 � X121_ADDRESS

This attribute contains the network address of the user’s terminal. Its values are defined by X.121.

Note: The strings admitted by X.121 include a telephone number preceded by the telephone escape
digit (9), and a Telex number preceded by the Telex escape digit (8).

Certain attributes are grouped together for reference as follows:

� Personal Name attributes

These comprise the following:

 – MH_T_GIVEN_NAME

 – MH_T_INITIALS

 – MH_T_SURNAME

 – MH_T_GENERATION

� Organizational Unit Name attributes

These comprise the following:

 – MH_T_ORGANIZATIONAL_UNIT_NAME_1

 – MH_T_ORGANIZATIONAL_UNIT_NAME_2

 – MH_T_ORGANIZATIONAL_UNIT_NAME_3

 – MH_T_ORGANIZATIONAL_UNIT_NAME_4

� Network Address attributes

These comprise the following:

306 Application Development Guide: Directory Services

 – MH_T_ISDN_NUMBER

 – MH_T_ISDN_SUBADDRESS

 – MH_T_PRESENTATION_ADDRESS

 – MH_T_X121_ADDRESS

For any i in the interval [1, 4], the Domain Type i and Domain Value i attributes constitute a
Domain-Defined Attribute (DDA).

Note: The widespread avoidance of DDAs produces more uniform and thus more user-friendly O/R
addresses. However, it is anticipated that not all Management Domains (MD) will be able to avoid
such attributes immediately. The purpose of DDAs is to permit an MD to retain its existing native
addressing conventions for a time. It is intended, however, that all MDs migrate away from the
use of DDAs, and thus that DDAs are used only for an interim period.

An O/R address may take any of the forms summarized in Table 73. Table 73 indicates the attributes
that may be present in an O/R address of each form. It also indicates whether it is mandatory (M) or
conditional (C) that they do so. When applied to a group of attributes (the network address attributes, for
example), mandatory (M) means that at least one member of the group must be present, while conditional
(C) means that no members of the group need necessarily be present.

The presence or absence in a particular O/R address of conditional attributes is determined as follows: if a
user or DL is accessed through a PRMD, the ADMD that the MH_T_COUNTRY_NAME and
MH_T_ADMD_NAME attributes indicate governs whether attributes used to route messages to the PRMD
are present, but it imposes no other constraints on attributes; if a user or DL is not accessed through a
PRMD, the same ADMD governs whether all conditional attributes, except those specific to postal O/R
addresses, are present. All conditional attributes specific to postal O/R addresses are present or absent
so as to satisfy the postal addressing requirements of the users they identify.

Table 73 (Page 1 of 2). Forms of Originator/Recipient Address

Attribute Mnem1 Num2 Spost3 Upost4 Term5

MH_T_ADMD_NAME M M M M C

MH_T_COMMON_NAME C - - - -

MH_T_COUNTRY_NAME M M M M C

Domain-Defined Attributes C C - - C

Network Address Attributes - - - - M

MH_T_NUMERIC_USER_IDENTIFIER - M - - -

MH_T_ORGANIZATION_NAME C - - - -

Organizational Unit Name Attributes C - - - -

Personal Name Attributes C - - - -

MH_T_POSTAL_ADDRESS_DETAILS - - C - -

MH_T_POSTAL_ADDRESS_IN_FULL - - - M -

MH_T_POSTAL_CODE - - M M -

MH_T_POSTAL_COUNTRY_NAME - - M M -

MH_T_POSTAL_DELIVERY_POINT_NAME - - C - -

MH_T_POSTAL_DELIV_SYSTEM_NAME - - C C -

MH_T_POSTAL_GENERAL_DELIV_ADDR - - C - -

MH_T_POSTAL_LOCALE - - C - -

 Chapter 14. MHS Directory User Package 307

Table 73 (Page 2 of 2). Forms of Originator/Recipient Address

Attribute Mnem1 Num2 Spost3 Upost4 Term5

MH_T_POSTAL_OFFICE_BOX_NUMBER - - C - -

MH_T_POSTAL_OFFICE_NAME - - C - -

MH_T_POSTAL_OFFICE_NUMBER - - C - -

MH_T_POSTAL_ORGANIZATION_NAME - - C - -

MH_T_POSTAL_PATRON_DETAILS - - C - -

MH_T_POSTAL_PATRON_NAME - - C - -

MH_T_POSTAL_STREET_ADDRESS - - C - -

MH_T_PRMD_NAME C C6 C C C6

MH_T_TERMINAL_IDENTIFIER - - - - C

MH_T_TERMINAL_TYPE - - - - C

Notes:

1. Mnemonic. X.400 (1984) calls this Form 1 Variant 1.

2. Numeric. X.400 (1984) calls this Form 1 Variant 1.

3. Structured postal. For 1984, this O/R address form is undefined.

4. Unstructured postal. For 1984 this O/R address form is undefined.

5. X.400 (1984) calls this Form 1 Variant 3 and Form 2.

6. For 1984, this attribute is absent(-). For 1988, it is conditional(C).

� Mnemonic O/R Address

This address mnemonically identifies a user or DL. Using the MH_T_ADMD_NAME and
MH_T_COUNTRY_NAME attributes, it identifies an ADMD. Using the MH_T_COMMON_NAME
attribute or the personal name attributes, the MH_T_ORGANIZATION_NAME attribute, the
Organizational Unit Name attributes, the MH_T_PRMD_NAME attribute, or a combination of these,
and optionally DDAs, it identifies a user or DL relative to the ADMD.

The personal name attributes identify a user or DL relative to the entity indicated by another attribute;
for example, MH_T_ORGANIZATION_NAME. The MH_T_SURNAME attribute will be present if any
of the other three personal name attributes are present.

� Numeric O/R Address

This address numerically identifies a user or DL. Using the MH_T_ADMD_NAME and
MH_T_COUNTRY_NAME attributes, it identifies an ADMD. Using the
MH_T_NUMERIC_USER_IDENTIFIER attribute and possibly the MH_T_PRMD_NAME attribute, it
identifies the user or DL relative to the ADMD. Any DDAs provide information that is additional to that
required to identify the user or DL.

� Postal O/R Address

This address identifies a user by means of its postal address. Two kinds of postal O/R address are
distinguished:

 – Structured

Said of a postal O/R address that specifies a user’s postal address by means of several attributes.
The structure of the postal address is described in the following text in some detail.

 – Unstructured

308 Application Development Guide: Directory Services

Said of a postal O/R address that specifies a user’s postal address in a single attribute. The
structure of the postal address is left largely unspecified in the following text.

Whether structured or unstructured, a postal O/R address does the following. Using the
MH_T_ADMD_NAME and MH_T_COUNTRY_NAME attributes, it identifies an ADMD. Using the
MH_T_POSTAL_CODE and MH_T_POSTAL_COUNTRY_NAME attributes, it identifies the
geographical region in which the user takes delivery of physical messages. Using the
MH_T_POSTAL_DELIV_SYSTEM_NAME or MH_T_PRMD_NAME attribute or both, it also may
identify the PDS by means of which the user is to be accessed.

An unstructured postal O/R address also includes the MH_T_POSTAL_ADDRESS_IN_FULL attribute.
A structured postal O/R address also includes every other postal addressing attribute that the PDS
requires to identify the postal patron.

Note: The total number of characters in the values of all attributes, except for MH_T_ADMD_NAME,
MH_T_COUNTRY_NAME, and MH_T_POSTAL_DELIV_SYSTEM_NAME, in a postal O/R
address should be small enough to permit their rendition in 6 lines of 30 characters, the size of
a typical physical envelope window. The rendition algorithm, while defined by the Physical
Delivery Access Unit (PDAU), is likely to include inserting delimiters (for example, spaces)
between some attribute values.

� Terminal O/R Address

This address identifies a user by identifying the user’s terminal, using the network address attributes.
It also may identify the ADMD through which the terminal is accessed by using the
MH_T_ADMD_NAME and MH_T_COUNTRY_NAME attributes. The MH_T_PRMD_NAME attribute
and any DDAs, which shall be present only if the MH_T_ADMD_NAME and MH_T_COUNTRY_NAME
attributes are present, provide information additional to that required to identify the user.

If the terminal is a Telematic terminal, it gives the terminal’s network address and possibly, using the
MH_T_TERMINAL_TYPE and MH_T_TERMINAL_IDENTIFIER attributes, its terminal type and
identifier. If the terminal is a Telex terminal, it gives the terminal’s Telex number.

Whenever two O/R addresses are compared for equality, the following differences are ignored:

� Whether an attribute has a value whose syntax is String(OM_S_PRINTABLE_STRING), a value
whose syntax is String(OM_S_TELETEX_STRING), or both.

� Whether a letter in a value of an attribute not used in DDAs is an uppercase or lowercase letter.

� All leading, all trailing, and all but one consecutive embedded spaces in an attribute value.

Note: An MD may impose additional equivalence rules upon the O/R addresses it assigns to its own
users and DLs. It may define, for example, rules concerning punctuation characters in attribute
values, the case of letters in attribute values, or the relative order of DDAs.

As a national matter, MDs may impose additional rules regarding any attribute that may have a
value whose syntax is String(OM_S_PRINTABLE_STRING), a value whose syntax is
String(OM_S_TELETEX_STRING), or both. In particular, the rules for deriving from a Teletex
string the equivalent printable string may be nationally prescribed.

 Chapter 14. MHS Directory User Package 309

 MH_C_OR_NAME

An instance of class MH_C_OR_NAME comprises a directory name, an O/R address, or both. The name
is considered present if, and only if, the MH_T_DIRECTORY_NAME attribute is present. The address
comprises the attributes specific to the MH_C_OR_ADDRESS class and is considered present if, and only
if, at least one of those attributes is present.

An O/R name’s composition is context sensitive. At submission, the name, the address, or both may be
present. At transfer or delivery, the address is present and the name can (but need not) be present.
Whether at submission, transfer or delivery, the MTS uses the name, if it is present, only if the address is
absent or invalid.

The attributes specific to this class are listed in Table 74.

Table 74. Attribute Specific to MH_C_OR_NAME

Attribute Value Syntax Value
Length

Value
Number

Value
Initially

1988?

MH_T_DIRECTORY_NAME Object(DS_C_NAME) - 0 or 1 - 1988

 � MH_T_DIRECTORY_NAME

This attribute contains the name assigned to the user or DL by the worldwide X.500 directory.

 DS_C_DL_SUBMIT_PERMS

An instance of OM class DS_C_DL_SUBMIT_PERMS characterizes an attribute each of whose values are
a submit permission. An instance of this OM class has the OM attributes of its superclass,
OM_C_OBJECT, and additionally the OM attributes listed in Table 75.

Table 75. OM Attributes of DS_C_DL_SUBMIT_PERMS

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DS_PERM_TYPE Enum(DS_Permission_Type) - 1 -

DS_INDIVIDUAL Object(MH_C_OR_NAME) - 0 or 1 -

DS_MEMBER_OF_DL Object(MH_C_OR_NAME) - 0 or 1 -

DS_PATTERN_MATCH Object(MH_C_OR_NAME) - 0 or 1 -

DS_MEMBER_OF_GROUP Object(DS_C_DS_DN) - 0 or
more

-

 � DS_PERM_TYPE

This attribute contains the type of the permission specified herein. Its value can be one of the
following:

 – DS_PERM_INDIVIDUAL

 – DS_PERM_MEMBER_OF_DL

 – DS_PERM_PATTERN_MATCH

 – DS_PERM_MEMBER_OF_GROUP

 � DS_INDIVIDUAL

310 Application Development Guide: Directory Services

This attribute contains the user or unexpanded DL,any of whose O/R names is equal to the specified
O/R Name.

 � DS_MEMBER_OF_DL

This attribute contains each member of the DL, any of whose O/R names is equal to the specified O/R
name, or of each nested DL, recursively.

 � DS_PATTERN_MATCH

This attribute contains each user or unexpanded DL, any of whose O/R names matches the specified
O/R name pattern.

 � DS_MEMBER_OF_GROUP

This attribute contains each member of the group-of-names whose name is specified, or of each
nested group-of-names, recursively.

Note that exactly one of the four Name attributes will be present at any time, according to the value of the
DS_PERM_TYPE attribute.

 Chapter 14. MHS Directory User Package 311

312 Application Development Guide: Directory Services

Chapter 15. Global Directory Service Package

The Global Directory Service Package (GDSP) is an OSF extension to the XDS interface. Applications
must negotiate use of this package with ds_version() before using any of the additional features. If an
application attempts to use features specific to the package without first negotiating its use, then an
appropriate error (for example, OM_NO_SUCH_CLASS) is returned by the Object Management function.

Note: z/OS DCE does not support GDS. The GDS naming information presented is intended to increase
your understanding of DCE name structure and concepts.

The object identifier associated with the GDSP package is {iso(1)identified-organization(3)
icd-ecma(0012) member-company(2) siemens-units(1107) sni(1) directory(3) xdsapi(100) gdsp(0)}
with the following encoding:

\x2B\xHC\xH2\x88\x53\xH1\xH3\x64\xHH

The identifier is represented by the constant DSX_GDS_PKG. The C constants associated with this
package are contained in the xdsgds.h header file (see z/OS DCE Application Development Reference).

The concepts and notation used are first mentioned in Chapter 11, “XDS Class Definitions” on page 241.
They are also fully explained in Chapter 17, “Information Syntaxes” on page 325 through Chapter 19,
“Object Management Package” on page 347. The attribute types are introduced first, followed by the
object classes. Next, the OM class hierarchy and OM class definitions required to support the new
attribute types are described.

GDSP Attribute Types

This section presents the additional directory attribute types that are used with GDSP. Each attribute
type has an object identifier, which is the value of the OM attribute DS_ATTRIBUTE_TYPE. These object
identifiers are represented in the interface by constants with the same name as the directory attribute, and
are prefixed by DSX_A_ so that they can be easily identified.

This section contains two tables that are used to indicate the object identifiers for GDSP attribute types
(see Table 76) and the values for GDSP attribute types (see Table 77 on page 314), respectively.
Following these two tables is a brief description of each attribute. (See “Selected Attribute Types” on
page 275 for information on general matching rules.)

Table 76 shows the names of the GDSP attribute types, together with the BER encoding of the object
identifiers associated with each of them.

Note: The third column of Table 76 contains the contents octets of the BER encoding of the object
identifier in hexadecimal. All these object identifiers stem from the root {iso(1)
identified-organization(3) idc-ecma(0012) member-company(2) siemens-units(1107) sni(1)
directory(3) attribute-type(4)}. Basic encoding rules state that the first two decimal numbers be
combined according to the formula x*4H+y to form the first hexadecimal value. Thus 2.5.4 	 85.4 	
\x55\x04.

Table 76 (Page 1 of 2). Object Identifiers for GDSP Attribute Types

Package Attribute Type Object Identifier BER

HEXADECIMAL

GDSP DSX_A_ACL \x2B\x0C\x02\x88\x53\x01\x03\x04\x01

GDSP DSX_A_AT \x2B\x0C\x02\x88\x53\x01\x03\x04\x06

 Copyright IBM Corp. 1994, 2001 313

Table 76 (Page 2 of 2). Object Identifiers for GDSP Attribute Types

Package Attribute Type Object Identifier BER

HEXADECIMAL

GDSP DSX_A_CACHE_ATTR \x2B\x0C\x02\x88\x53\x01\x03\x04\x07

GDSP DSX_A_CDS_CELL \x2B\x0C\x02\x88\x53\x01\x03\x04\x0D

GDSP DSX_A_CDS_REPLICA \x2B\x0C\x02\x88\x53\x01\x03\x04\x0E

GDSP DSX_A_CLIENT \x2B\x0C\x02\x88\x53\x01\x03\x04\x0A

GDSP DSX_A_DEFAULT_DSA \x2B\x0C\x02\x88\x53\x01\x03\x04\x08

GDSP DSX_A_DNLIST \x2B\x0C\x02\x88\x53\x01\x03\x04\x0B

GDSP DSX_A_LOCDSA \x2B\x0C\x02\x88\x53\x01\x03\x04\x09

GDSP DSX_A_MASTER_KNOWLEDGE \x2B\x0C\x02\x88\x53\x01\x03\x04\x00

GDSP DSX_A_OCT \x2B\x0C\x02\x88\x53\x01\x03\x04\x05

GDSP DSX_A_SHADOWED_BY \x2B\x0C\x02\x88\x53\x01\x03\x04\x03

GDSP DSX_A_SHADOWING_JOB \x2B\x0C\x02\x88\x53\x01\x03\x04\x0C

GDSP DSX_A_SRT \x2B\x0C\x02\x88\x53\x01\x03\x04\x04

GDSP DSX_A_TIME_STAMP \x2B\x0C\x02\x88\x53\x01\x03\x04\x02

Table 77 shows the names of the attribute types, together with the OM Value Syntax used in the interface
to represent values of that attribute type. The table also includes the range of lengths permitted for the
string types, indicates whether the attribute can be multivalued, and lists which matching rules are
provided for the syntax.

Table 77. Representation of Values for GDSP Attribute Types

Attribute Type OM Value Syntax Value
Length

Multi-
Valued

Matching
Rules

DSX_A_ACL Object(DSX_C_GDS_ACL) - No E

DSX_A_AT String(OM_S_PRINTABLE_STRING) 101 Yes E, S

DSX_A_CACHE_ATTR No syntax, no values - - -

DSX_A_CDS_CELL String(OM_S_OCTET_STRING) 36 No E

DSX_A_CDS_REPLICA String(OM_S_OCTET_STRING) 45 Yes E

DSX_A_CLIENT Only a cache entry - - -

DSX_A_DEFAULT_DSA Only a cache entry - - -

DSX_A_DNLIST Object(DS_C_DS_DN) 1K
max.

Yes E, S

DSX_A_LOCDSA Only a cache entry - - -

DSX_A_MASTER_KNOWLEDGE Object(DS_C_DS_DN) 1K
max.

No E, S

DSX_A_OCT String(OM_S_PRINTABLE_STRING) 310 Yes E, S

DSX_A_SHADOWED_BY Not used yet - - -

DSX_A_SHADOWING_JOB Not used yet - - -

DSX_A_SRT String(OM_S_PRINTABLE_STRING) 56 Yes E, S

DSX_A_TIME_STAMP String(OM_S_UTC_TIME_STRING) 18 No E, 0

314 Application Development Guide: Directory Services

Note: With the exception of the DSX_A_ACL attribute, the GDSP attributes in the Table 77 are only to
be manipulated through the GDS administration interface

Descriptions of the GDS attributes follow:

 � DSX_A_ACL

This attribute describes the access rights for one or more Directory Service users.

 � DSX_A_AT

This attribute describes the attribute types permitted in GDS.

 � DSX_A_CACHE_ATTR

This attribute is used internally by GDS to separate return values that can be cached from those that
cannot be cached.

� DSX_A_CDS_CELL and DSX_A_CDS_REPLICA

These two attributes always exist together in the same object. They describe the information
necessary for contacting a remote CDS cell.

 � DSX_A_CLIENT

This attribute is a cache entry. This naming attribute allows the DUA to retrieve its own PSAP
address.

 � DSX_A_DEFAULT_DSA

This attribute is a cache entry. This naming attribute allows the DUA to retrieve the PSAP address of
its default DSA.

 � DSX_A_DNLIST

This attribute is used internally by the GDS DSA.

 � DSX_A_LOCDSA

This attribute is a cache entry. This naming attribute allows the DSA to retrieve its own PSAP
address.

 � DSX_A_MASTER_KNOWLEDGE

This attribute contains the Distinguished Name (DN) of the DSA that holds the master copy of this
entry.

 � DSX_A_OCT

This attribute describes the object classes supported by the GDS DSA.

� DSX_A_SHADOWED_BY and DSX_A_SHADOWING_JOB

These two GDSP attributes are intended for future use.

 � DSX_A_SRT

This attribute describes the structure of the DNs permitted in GDS.

 � DSX_A_TIME_STAMP

This attribute is part of the DSX_O_SCHEMA object. It contains the creation time of the
DSX_O_SCHEMA object.

 Chapter 15. Global Directory Service Package 315

GDSP Object Classes

The only additional GDSP object class is DSX_O_SCHEMA (see Table 78). It is stored in GDS as an
object directly under root. The most important attributes of the DSX_O_SCHEMA object are the three
recurring attributes DSX_A_OCT, DSX_A_AT, and DSX_A_SRT. These three objects describe the GDS
DIT structure.

Note: The third column of Table 78 contains the contents octets of the BER encoding of the object
identifier (in hex). This object identifier stems from the root {iso(1) identified-organization(3)
idc-ecma(12) member-company(2) siemens-units(1107) sni(1) directory(3) object-class(6)}..
Basic encoding rules state that the first two decimal numbers be combined according to the
formula x*4H+y to form the first hexadecimal value. Thus 2.5.4 	 85.4 	 \x55\x04.

Table 78. Object Identifiers for GDSP Object Classes

Package Object Class Object Identifier BER

HEXADECIMAL

GDSP DSX_O_SCHEMA \x2B\x0C\x02\x88\x53\x01\x03\x06\x00

GDSP OM Class Hierarchy

The remainder of this chapter defines the additional OM classes used by GDSP. This section shows the
hierarchical organization of the OM classes that are defined in the following sections, and it shows which
classes inherit additional OM attributes from their OM superclasses. In the following list, subclassification
is indicated by indentation, and the names of abstract OM classes are represented in italics.

OM_C_OBJECT (defined in the OM package)

� DS_C_SESSION (defined in the Directory Service Package)

 – DSX_C_GDS_SESSION

� DS_C_CONTEXT (defined in the Directory Service Package)

 – DSX_C_GDS_CONTEXT

 � DSX_C_GDS_ACL

 � DSX_C_GDS_ACL_ITEM

None of the OM classes in the preceding list are encodable using om_encode() and om_decode().

 DSX_C_GDS_ACL

An instance of OM class DSX_C_GDS_ACL describes up to five categories of rights for one or more
directory users.

An instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT, in addition to the
OM attributes listed in Table 79.

Table 79 (Page 1 of 2). OM Attributes of DSX_C_GDS_ACL

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DSX_MODIFY_PUBLIC Object(DSX_C_GDS_ACL_ITEM) - 1 - 4 -

316 Application Development Guide: Directory Services

Table 79 (Page 2 of 2). OM Attributes of DSX_C_GDS_ACL

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DSX_READ_STANDARD Object(DSX_C_GDS_ACL_ITEM) - 1 - 4 -

DSX_MODIFY_STANDARD Object(DSX_C_GDS_ACL_ITEM) - 1 - 4 -

DSX_READ_SENSITIVE Object(DSX_C_GDS_ACL_ITEM) - 1 - 4 -

DSX_MODIFY_SENSITIVE Object(DSX_C_GDS_ACL_ITEM) - 1 - 4 -

The OM attributes of DSX_C_GDS_ACL are as follows:

 � DSX_MODIFY_PUBLIC

This attribute specifies the user, or subtree of users, that can modify attributes classified as public
attributes.

 � DSX_READ_STANDARD

This attribute specifies the user, or subtree of users, that can read attributes classified as standard
attributes.

 � DSX_MODIFY_STANDARD

This attribute specifies the user, or subtree of users, that can modify attributes classified as standard
attributes.

 � DSX_READ_SENSITIVE

This attribute specifies the user, or subtree of users, that can read attributes classified as sensitive
attributes.

 � DSX_MODIFY_SENSITIVE
Specifies the user, or subtree of users, that can modify attributes classified as sensitive attributes.

 DSX_C_GDS_ACL_ITEM

An instance of OM class DSX_C_GDS_ACL_ITEM is a component of a DSX_C_GDS_ACL. It specifies
the user, or subtree of users, to whom an access right applies.

An instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT, in addition to the
OM attributes listed in Table 80.

Table 80. OM Attributes of DSX_C_GDS_ACL_ITEM

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DSX_INTERPRETATION Enum(DSX_Interpretation) - 1 -

DSX_USER Object(DS_C_DS_DN) - 1 -

The OM attributes of a DSX_C_GDS_ACL_ITEM are as follows:

 � DSX_INTERPRETATION

This attribute specifies the scope of the access right. It can have one of the following values:

– DSX_SINGLE_OBJECT, Meaning that the access right is granted to the user specified in the
DSX_USER OM attribute.

 Chapter 15. Global Directory Service Package 317

– DSX_ROOT_OF_SUBTREE, meaning that the access right is granted to all users in the subtree
below the name specified in the DSX_USER OM attribute.

 � DSX_USER

This attribute is the DN of the user, or subtree of users, to whom an access right applies.

 DSX_C_GDS_CONTEXT

An instance of OM class DSX_C_GDS_CONTEXT comprises per-operation arguments that are accepted
by most of the interface functions. GDSP supports additional service controls that are defined by the
DSX_C_GDS_CONTEXT OM class.

An instance of this OM class has the OM attributes of its superclasses, OM_C_OBJECT and
DS_C_CONTEXT, in addition to the OM attributes listed in Table 81.

Table 81. OM Attributes of a DSX_C_GDS_CONTEXT

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DSX_DUAFIRST OM_S_BOOLEAN - 1 OM_FALSE

DSX_DONT_STORE OM_S_BOOLEAN - 1 OM_TRUE

DSX_NORMAL_CLASS OM_S_BOOLEAN - 1 OM_FALSE

DSX_PRIV_CLASS OM_S_BOOLEAN - 1 OM_FALSE

DSX_RESIDENT_CLASS OM_S_BOOLEAN - 1 OM_FALSE

DSX_USEDSA OM_S_BOOLEAN - 1 OM_TRUE

DSX_DUA_CACHE OM_S_BOOLEAN - 1 OM_FALSE

DSX_PREFER_ADM_FUNCS OM_S_BOOLEAN - 1 OM_FALSE

The OM attributes of the DSX_C_GDS_CONTEXT OM class are as follows:

 � DSX_DUAFIRST

This attribute defines whether the DUA cache or the DSA needs to be read first for query operations.
The default value is OM_FALSE; that is, search DSA first, if not found then search DUA cache.

 � DSX_DONT_STORE

This attribute specifies whether the information read from the DSAs by the query functions also needs
to be stored in the DUA cache. When this service control is set to OM_TRUE (default value), nothing
is stored in the DUA cache.

When this service control is set to OM_FALSE, the information read is stored in the DUA cache. The
objects returned by ds_list() and ds_compare() are stored in the cache without their associated
attribute information. The objects returned by ds_read() and ds_search() are stored in the cache with
all the cacheable attributes; These are all public attributes that do not exceed 4 Kbytes in length.

This information is only cached when a list of requested attributes is supplied. If all attributes are
requested, then nothing is stored in the cache.

The DUA cache categorizes the information stored into three different memory classes. The user
specifies the category with the following service controls:

 – DSX_NORMAL_CLASS

318 Application Development Guide: Directory Services

If this attribute is set to OM_TRUE, The entry in the DUA cache is assigned to the class of normal
objects. If the number of entries in this class exceeds a maximum value, the entry that is not
addressed for the longest period of time is removed from the DUA cache.

 – DSX_PRIV_CLASS

If this attribute is set to OM_TRUE, the entry in the DUA cache is assigned to the class of
privileged objects. Entries can be removed from the class in the same way as normal objects.
By using this memory sparingly, the user can protect entries from deletion.

 – DSX_RESIDENT_CLASS

If this attribute is set to OM_TRUE, the entry in the DUA cache is assigned to the class of resident
objects. An entry in this memory class is never removed automatically, rather it can only be
removed with ds_remove_entry(). The number of entries is limited; if this limit is exceeded,
ds_add_entry() reports an error.

Only the service control of one memory class can be set. The ds_add_entry() function also evaluates
these service control bits if the function is used on the DUA cache.

� DSX_DUA_CACHE and DSX_USEDSA

These attributes define whether the entries in the DUA cache or in the DSA, or both, need to be used
when providing the service. Depending on the values of these attributes, the following situations can
arise:

– DSX_DUA_CACHE=OM_TRUE and DSX_USEDSA=OM_TRUE

The ds_add_entry() and ds_remove_entry() functions report an error.

The query functions evaluate the service controls DS_DONT_USE_COPY and DSX_DUAFIRST.
When DS_DONT_USE_COPY is OM_FALSE, then DSX_DUAFIRST determines whether the
DUA cache or the DSA is read first. When DS_DONT_USE_COPY is OM_TRUE, information
from the DSA only is read.

– DSX_DUA_CACHE=OM_TRUE and DSX_USEDSA=OM_FALSE

The ds_add_entry() and ds_remove_entry() functions, and the query functions only go to the
DUA cache.

– DSX_DUA_CACHE=OM_FALSE and DSX_USEDSA=OM_TRUE

The ds_add_entry() and ds_remove_entry() functions and the query functions only go to the
DSA.

– DSX_DUA_CACHE=OM_FALSE and DSX_USEDSA=OM_FALSE

The ds_add_entry() and ds_remove_entry() functions and the query functions report an error.

All other functions always operate on the DSA currently connected.

 � DSX_PREFER_ADM_FUNCS

GDS uses the three following optional attributes:

– DSX_A_MASTER_KNOWLEDGE, which contains the Distinguished Name of the DSA that holds
the master copy of an entry.

– DSX_A_ACL, which is used for GDS access control.

– DS_A_USER_PASSWORD as an attribute of the DS_O_DSA object class, which is used by the
GDS shadowing mechanism.

The DSX_A_MASTER_KNOWLEDGE, and DSX_A_ACL attributes are present in every GDS entry.

When an application requests all attributes, it can prevent any of these three optional attributes from
being returned by setting this service control to OM_FALSE.

 Chapter 15. Global Directory Service Package 319

If GDS applications, for example, GDS administration, require these attributes, they are obtained by
setting this service control to OM_TRUE.

Applications can assume that an object of OM class DSX_C_GDS_CONTEXT, created with default values
of all its OM attributes, work with all the interface functions. The constant DS_DEFAULT_CONTEXT can
be used as an argument to functions instead of creating an OM object with default values.

The default DSX_C_GDS_CONTEXT is defined in Table 82

Table 82. Default DSX_C_GDS_CONTEXT

OM Attribute Default Value

Common Arguments:

DS_EXT NULL

DS_OPERATION_PROGRESS DS_OPERATION_NOT_STARTED

DS_ALIASED_RDNS 0

Service Controls:

DS_CHAINING_PROHIB OM_TRUE

DS_DONT_DEREFERENCE_ALIASES OM_FALSE

DS_DONT_USE_COPY OM_TRUE

DS_LOCAL_SCOPE OM_FALSE

DS_PREFER_CHAINING OM_FALSE

DS_PRIORITY DS_MEDIUM

DS_SCOPE_OF_REFERRAL —

DS_SIZE_LIMIT -1

DS_TIME_LIMIT -1

Local Controls:

DS_ASYNCHRONOUS OM_FALSE

DS_AUTOMATIC_CONTINUATION OM_TRUE

Private Extensions:

DSX_DUAFIRST OM_FALSE

DSX_DONT_STORE OM_TRUE

DSX_NORMAL_CLASS OM_FALSE

DSX_PRIV_CLASS OM_FALSE

DSX_RESIDENT_CLASS OM_FALSE

DSX_USEDSA OM_TRUE

DSX_DUA_CACHE OM_FALSE

DSX_PREFER_ADM_FUNCS OM_FALSE

320 Application Development Guide: Directory Services

 DSX_C_GDS_SESSION

An instance of OM class DSX_C_GDS_SESSION identifies a particular link from an application program to
a GDSP DUA. This additional OM class is necessary if the user either wants to specify a password as
part of the user credentials, or wants to specify the GDSP directory identifier, or alternatively wants to
specify both a password and the directory identifier. DSX_C_GDS_SESSION can be passed as an
argument to ds_bind().

An instance of this OM class has the OM attributes of its superclasses, OM_C_OBJECT and
DS_C_SESSION, in addition to the OM attributes listed in Table 83.

Table 83. OM Attributes of DSX_C_GDS_SESSION

OM Attribute Value Syntax Value
Length

Value
Number

Value
Initially

DSX_PASSWORD String(OM_S_OCTET_STRING) - 0 or 1 -

DSX_DIR_ID OM_S_INTEGER - 1 1

The OM attributes of DSX_C_GDS_SESSION are as follows:

 � DSX_PASSWORD

This attribute indicates the password for the user credentials.

 � DSX_DIR_ID

This attribute contains an identifier for distinguishing between several configurations of the Directory
Service within a GDS installation. The valid range is from 1 to 20.

Applications can assume that an object of OM class DSX_C_GDS_SESSION, created with default values
of all its OM attributes, works with all the interface functions. Such a session can be created by passing
the constant DS_DEFAULT_SESSION as an argument to ds_bind(), having already negotiated the GDSP
package.

Table 84 defines DS_DEFAULT_SESSION.

Table 84. Default DSX_C_GDS_SESSION

OM Attribute Default Value

DS_DSA_ADDRESS Value obtained from the cache or absent.

DS_DSA_NAME Value obtained from the cache or absent.

DS_FILE_DESCRIPTOR DS_NO_VALID_FILE_DESCRIPTOR

DSX_DIR_ID 1

Note: The values of DS_DSA_ADDRESS and DS_DSA_Name are taken from the cache of Directory ID
1.

 Chapter 15. Global Directory Service Package 321

322 Application Development Guide: Directory Services

Chapter 16. Distributed Management Environment Support

The Distributed Management Environment (DME) Network Management Option (NMO) provides access to
network management protocols. One of the protocols it supports is the CMIP protocol. CMIP uses names
to identify and locate managed objects and management applications. GDS is used to provide this name
to address resolution.

Note: z/OS DCE does not support DME. The DME naming information presented is intended to increase
your understanding of DCE name structure and concepts.

DME has a requirement to support opaque address forms to cater to instances where CMIP is not running
over pure OSI protocols. For this purpose, GDS contains some enhancements that are described in this
chapter.

To support DME an additional directory object class, and an additional directory attribute were required.
Additional OM classes or OM attributes were not necessary. Therefore, GDS supports DME without
having to negotiate a specific XDS/DME package. An application must include xdsdme.h when using the
new directory object class and attribute.

The concepts and notation used are first mentioned in “Introduction to OM Classes” on page 241. They
are also fully explained in the following chapters:

� Chapter 17, “Information Syntaxes” on page 325
� Chapter 18, “XOM Service Interface” on page 331
� Chapter 19, “Object Management Package” on page 347

DME Attribute Types
This section presents the additional directory attribute type that DME uses. Each attribute type has an
object identifier, which is the value of the OM attribute DS_ATTRIBUTE_TYPE. These object identifiers
are represented in the interface by constants with the same name as the directory attribute, and they are
prefixed by DSX_A_ so that they can be easily identified.

This section contains two tables that are used to indicate the object identifier for the DME attribute type
(see Table 85), and the values for the DME attribute type (see Table 86 on page 324), respectively.
Following these two tables is a brief description of the attribute.

Table 85 shows the name and object identifier of the DME attribute type.

Note: This object identifier stems from the root {iso(1) identified-organization(3) osf(22) dme(2)
components(1) nmo(2) dmeNmoAttributeType(1)}. Basic encoding rules state that the first two
decimal numbers be combined according to the formula x*4H+y to form the first hexadecimal value.
Thus 1.3.	 43 	 \x2B\x18.

Table 85. Object Identifier for DME Attribute Type

Attribute Type Object Identifier BER

HEXADECIMAL

DSX_A_ALTERNATE_ADDRESS \x2B\x18\x02\x01\x02\x01

Table 86 on page 324 shows the name of the attribute type, together with the OM value syntax used in
the interface to represent values of that attribute type. The table also includes the range of lengths
permitted for the string type, indicates whether the attribute can be multi-valued, and lists which matching
rules are provided for the syntax.

 Copyright IBM Corp. 1994, 2001 323

Table 86. Representation of Values for DME Attribute Types

Attribute Type OM Value Syntax Value
Length

Multi-
Valued

Matching
Rules

DSX_A_ALTERNATE_ADDRESS String(OM_S_OCTET_STRING) 1-800 yes E

The following is a description of the DME attribute:

 � DSX_A_ALTERNATE_ADDRESS

This attribute is used by DME to store opaque address formats. In Table 86, it can be seen that the
AlternateAddress attribute is stored internally by GDS as an octet string. The application expects the
following syntax:

AlternateAddress ::= SEQUENCE {
 address OCTET STRING,

protocol SET OF OBJECT IDENTIFIER }

DME Object Classes

The only additional DME object class is DSX_O_DME_NMO_AGENT (see Table 87). This object class
has the same structure rules in the default schema as the application entity object class.
DSX_O_DME_NMO_AGENT is a subclass of DS_O_APPLIC_ENTITY (inherits the mandatory
DS_A_PRESENTATION_ADDRESS and DS_A_COMMON_NAME attributes) and contains one attribute,
DSX_A_ALTERNATE_ADDRESS.

Note: This object identifier stems from the root {iso(1) identified-organization(3) osf(22) dme(2)
components(1) nmo(2) dmeNmoObjectClass(2)}. Basic encoding rules state that the first two
decimal numbers be combined according to the formula x*4H+y to form the first hexadecimal value.
Thus 1.3.	 43 	 \x2B\x18.

Table 87. Object Identifier for DME Object Class

Object Class Object Identifier BER

HEXADECIMAL

DSX_O_DME_NMO_AGENT \x2B\x18\x02\x01\x02\x02

324 Application Development Guide: Directory Services

 Chapter 17. Information Syntaxes

This chapter defines the syntaxes permitted for attribute values. The syntaxes are closely aligned with the
types and type constructors of ASN.1. The OM_value data type specifies how a value of each syntax is
represented in the C interface. (See “XOM Data Types” on page 331 for more information.)

 Syntax Templates

The names of certain syntaxes are constructed from syntax templates. A syntax template is a lexical
construct comprising a primary identifier followed by an asterisk enclosed in parentheses, as follows:

identifier (*)

A syntax template encompasses a group of related syntaxes. Any member of the group, without
distinction, is indicated by the primary identifier (identifier) alone. A particular member is indicated by the
template with the asterisk (*) replaced by one of a set of secondary identifiers associated with the
template:

identifier1 (identifier2)

 Syntaxes

A variety of syntaxes are defined. Most are functionally equivalent to ASN.1 types, as documented in the
following sections in this chapter:

“Relationship to ASN.1 Simple Types” on page 327

“Relationship to ASN.1 Useful Types” on page 327

“Relationship to ASN.1 Character String Types” on page 328

“Relationship to ASN.1 Type Constructors” on page 328.

The following syntaxes are defined:

OM_S_BOOLEAN A value of this syntax is a Boolean; that is, can be OM_TRUE or OM_FALSE.

Enum(*) A value of any syntax encompassed by this syntax template is one of a set of values
associated with the syntax. The only significant characteristic of the values is that
they are distinct.

The group of syntaxes encompassed by this template is open ended. Zero or more
members are added to the group by each package definition. The secondary
identifiers that indicate the members are also assigned there.

OM_S_INTEGER A value of this syntax is a positive or negative integer.

OM_S_NULL The one value of this syntax is a valueless place holder.

Object(*) A value of any syntax encompassed by this syntax template is an object, which is
any instance of a class associated with the syntax.

The group of syntaxes encompassed by this template is open ended. One member
is added to the group by each class definition. The secondary identifier that indicates
the member is the name of the class.

 Copyright IBM Corp. 1994, 2001 325

String(*) A value of any syntax encompassed by this syntax template is a string (as defined in
“Strings” on page 326) whose form and meaning are associated with the syntax.

The group of syntaxes encompassed by this template is closed. One syntax is
defined for each ASN.1 string type. The secondary identifier that indicates the
member is, in general, the first word of the type’s name.

 Strings

A string is an ordered sequence of zero or more bits, octets, or characters. A string is categorized as
either a bit string, an octet string, or a character string, depending upon whether it contains bits, octets, or
characters, respectively.

The value length of a string is the number of bits in a bit string, octets in an octet string, or characters in a
character string. It is confined to the interval 0 to 232. Any constraints on the value length of a string are
specified in the appropriate class definitions.

The syntaxes that form the String group are identified in Table 88, which shows the secondary identifier
assigned to each such syntax. The identifiers in the first, second, and third columns indicate the syntaxes
of bit, octet, and character strings, respectively. The String group comprises all syntaxes identified in the
table.

Table 88. String Syntax Identifiers

Bit String Identifier Octet String Identifier Character String Identifier

OM_S_BIT_STRING OM_S_ENCODING1 OM_S_GENERAL_STRING2

 OM_S_OBJECT_IDENTIFIER_STRING3 OM_S_GENERALISED_TIME_STRING2

 OM_S_OCTET_STRING OM_S_GRAPHIC_STRING2

OM_S_IA5_STRING2

OM_S_NUMERIC_STRING2

OM_S_OBJECT_DESCRIPTOR2

OM_S_PRINTABLE_STRING2

OM_S_TELETEX_STRING2

OM_S_UTC_TIME_STRING2

OM_S_VIDEOTEX_STRING2

OM_S_VISIBLE_STRING2

Notes:

1. The octets are those the BER permits for the contents octets of the encoding of a value of any ASN.1 type.

2. The characters are those permitted by ASN.1’s type of the same name. Values of these syntaxes are represented
in their BER encoded form.

3. The octets are those the BER permits for the contents octets of the encoding of a value of ASN.1’s object
identifier type.

326 Application Development Guide: Directory Services

Representation of String Values

In the service interface, a string value is represented by a string data type. This is defined in “Strings” on
page 326. The length of a string is the number of octets by which it is represented at the interface, in the
range 0 to 232.

The length of a character string does not need to be equal to the number of characters it comprises
because, for example, a single character can be represented using several octets.

Relationship to ASN.1 Simple Types

As shown in Table 89, for every ASN.1 simple type except Real, there is an OM syntax that is functionally
equivalent to it. The simple types are listed in the first column of the table; the corresponding syntaxes in
the second column.

Table 89. Syntax for ASN.1’s Simple Types

Type Syntax

Bit String String(OM_S_BIT_STRING)

Boolean OM_S_BOOLEAN

Integer OM_S_NULL

Null OM_S_NULL

Object Identifier OM_S_OBJECT_IDENTIFIER_STRING

Octet String OM_S_OCTET_STRING

Real None

Relationship to ASN.1 Useful Types

As shown in Table 90, for every ASN.1 useful type, there is an OM syntax that is functionally equivalent to
it. The useful types are listed in the first column of the table; the corresponding syntaxes in the second
column.

Table 90. Syntax for ASN.1’s Useful Types

Type Syntax

External Object (OM_C_EXTERNAL)

Generalized Time OM_S_GENERALISED_TIME_STRING

Object Descriptor OM_S_OBJECT_DESCRIPTOR_STRING

Universal Time OM_S_UTC_TIME_STRING

 Chapter 17. Information Syntaxes 327

Relationship to ASN.1 Character String Types

As shown in Table 91, for every ASN.1 character string type, there is an OM syntax that is functionally
equivalent to it. The ASN.1 character string types are listed in the first column of the table; the
corresponding syntax in the second column.

Relationship to ASN.1 Type Constructors

As shown in Table 92, there are functionally equivalent OM syntaxes for some (but not all) ASN.1 type
constructors. The constructors are listed in the first column of the table; the corresponding syntaxes are
listed in the second column.

Table 91. Syntax for ASN.1’s Character
String Types

Type Syntax

General String OM_S_GENERAL_STRING

Graphic String OM_S_GRAPHIC_STRING

IA5 String OM_S_IA5_STRING

- OM_S_LOCAL_STRING

Numeric String OM_S_NUMERIC_STRING

Printable String OM_S_PRINTABLE_STRING

Teletex String OM_S_TELETEX_STRING

Videotex String OM_S_VIDEOTEX_STRING

Visible String OM_S_VISIBLE_STRING

Table 92. Syntaxes for ASN.1’s Type Constructors

Type
Constructor

Syntax

Choice OM_S._OBJECT

Enumerated OM_S_ENUMERATION

Selection none1

Sequence OM_S._OBJECT

Sequence Of OM_S._OBJECT

Set OM_S._OBJECT

Set Of OM_S._OBJECT

Tagged none2

Notes:

1. This type constructor, a purely specification-time phenomenon, has
no corresponding syntax.

2. This type constructor is used to distinguish the alternatives of a
choice or the elements of a sequence or set. This function is
performed by attribute types.

328 Application Development Guide: Directory Services

The effects of the principal type constructors can be achieved, in any of a variety of ways, using objects to
group attributes or using attributes to group values. An OM application designer can (but need not) model
these constructors as classes of the following kinds:

Choice An attribute type can be defined for each alternative, with just one being
permitted in an instance of the class.

Sequence or Set An attribute type can be defined for each sequence or set element. If an
element is optional, then the attribute has zero or one values.

Sequence Of or Set Of A single, multi-valued attribute can be defined.

An ASN.1 definition of an Enumerated Type component of a structured type is generally mapped to an
OM attribute with an OM syntax OM_S_ENUMERATION in this interface.

 Chapter 17. Information Syntaxes 329

330 Application Development Guide: Directory Services

Chapter 18. XOM Service Interface

This chapter describes the following aspects of the XOM service interface:

� The conformance of the DCE X/Open OSI-Abstract-Data Manipulation implementation to the X/Open
specification.

� The data types whose data values are the parameters and results of the functions that the service
makes available to the client.

� An overview of the functions that the service makes available to the client. For a complete description
of these functions, see the z/OS DCE Application Development Reference.

� The return codes that indicate the outcomes (in particular, the exceptions) that the functions can
report.

See Chapter 7, “Example Application Programs” on page 159 for examples on using the XOM interface.

Note: In this chapter, the following notation [a, b) indicates a range from the integer a to integer b - 1.
That is, the parenthesis indicates the value less one, whereas the square bracket indicates the value as it
is.

 Standards Conformance

The DCE XOM implementation conforms to the following specification:

X/Open CAE Specification, OSI-Abstract-Data Manipulation (XOM) (November 1991)

The following apply to the DCE XOM implementation:

� Multiple workspaces for XDS objects are supported.

� The OM package is supported.

� The om_encode() and om_decode() functions are not supported. The OM classes used by the DCE
XDS/XOM API are not encodable.

� Translation to local character sets is provided.

XOM Data Types

The data types of the XOM service interface are defined in this section and in Table 93. These data
types are repeated in the in z/OS DCE Application Development Reference.

Table 93 (Page 1 of 2). XOM Service Interface Data Types

Data Type Description

OM_boolean Type definition for a Boolean data value.

OM_descriptor Type definition for describing an attribute type and value.

OM_enumeration Type definition for an Enumerated data value.

OM_exclusions Type definition for the exclusions parameter for om_get().

OM_integer Type definition for an Integer data value.

OM_modification Type definition for the modification parameter for om_put().

 Copyright IBM Corp. 1994, 2001 331

Table 93 (Page 2 of 2). XOM Service Interface Data Types

Data Type Description

OM_object Type definition for a handle to either a private or a public object.

OM_object_identifier Type definition for an Object Identifier data value.

OM_private_object Type definition for a handle to an object in an implementation-defined, or private,
representation.

OM_public_object Type definition for a defined representation of an object that can be directly interrogated
by a programmer.

OM_return_code Type definition for a value returned from all OM functions indicating either that the function
succeeded or why it failed.

OM_string Type definition for a data value of String syntaxes.

OM_syntax Type definition for identifying a syntax type.

OM_type Type definition for identifying an OM attribute type.

OM_type_list Type definition for enumerating a sequence of OM attribute types.

OM_value Type definition for representing any data value.

OM_value_position Type definition for designating a particular location within a String data value.

OM_workspace Type definition for identifying an application-specific API that implements OM, such as
directory or message handling.

Some data types are defined in terms of the following intermediate data types, whose precise definitions in
C are defined by the system:

OM_sint The positive and negative integers that can be represented in 16 bits

OM_sint16 The positive and negative integers that can be represented in 16 bits

OM_sint32 The positive and negative integers that can be represented in 32 bits

OM_uint The nonnegative integers that can be represented in 16 bits

OM_uint16 The nonnegative integers that can be represented in 16 bits

OM_uint32 The nonnegative integers which can be represented in 32 bits

Note: The OM_sint and OM_uint data types are defined by the range of integers they must
accommodate. As typically declared in the C interface, they are defined by the range of integers
permitted by the host machine’s word size. The latter range, however, always encompasses the
former.

The type definitions for these data types are as follows:

typedef int OM_sint;
typedef short OM_sint16;
typedef long int OM_sint32;
typedef unsigned OM_uint;
typedef unsigned short OM_uint16;
typedef long unsigned OM_uint32;

332 Application Development Guide: Directory Services

 OM_boolean

The C declaration for an OM_boolean data value is as follows:

typedef OM_uint32 OM_boolean;

A data value of this data type is a Boolean, that is, either FALSE or TRUE.

FALSE (OM_FALSE) is indicated by O (zero). TRUE is indicated by any other integer, although the
symbolic constant OM_TRUE refers to the integer 1 specifically.

 OM_descriptor

The OM_descriptor data type is used to describe an attribute type and value. Its C declaration is as
follows:

typedef struct OM_descriptor_struct
{
 OM_type type;
 OM_syntax syntax;
 OM_value value;
} OM_descriptor;

Note: Other components are encoded in the high bits of the syntax member.

A data value of this type is a descriptor, that embodies an attribute value. An array of descriptors can
represent all the values of all the attributes of an object, and is the representation called
OM_public_object. A descriptor has the following components:

type An OM_type data type. It identifies the data type of the attribute value.

syntax An OM_syntax data type. It identifies the syntax of the attribute value. Components
3 to 7 (that is, the components long_string through private that follow) are encoded in
the high-order bits of this structure member. Therefore, the syntax always needs to
be masked with the constant OM_S_SYNTAX. For example:

my_syntax = my_public_object[3].syntax & OM_S_SYNTAX;

my_public_object[4].syntax = my_syntax + (my_public_object[4].syntax & OM_S_SYNTAX);

long-string It is set only if the descriptor is a service-generated descriptor and the length of the
value is greater than an implementation-defined limit.

This component occupies bit 15 (0x8000) of the syntax and is represented by the
constant OM_S_LONG_STRING.

no-value It is set only if the descriptor is a service-generated descriptor and the value is not
present because OM_EXCLUDE_VALUES or OM_EXCLUDE_MULTIPLES is set in
om_get().

This component occupies bit 14 (0x4000) of the syntax and is represented by the
constant OM_S_NO_VALUE.

local-string Significant only if the syntax is one of the string syntaxes.

It is set only if the string is represented in an implementation-defined local character
set. The local character set may be more amenable for use as keyboard input or
display output than the nonlocal character set, and can include specific treatment of
line termination sequences. Certain interface functions can convert information in
string syntaxes to or from the local representation, which may result in a loss of
information.

 Chapter 18. XOM Service Interface 333

This component occupies bit 13 (0x2000) of the syntax and is represented by the
constant OM_S_LOCAL_STRING.

service-generated It is set only if the descriptor is a service-generated descriptor and the first descriptor
of a public object, or the defined part of a private object. (See the z/OS DCE
Application Development Reference for more information.)

This component occupies bit 12 (0x1000) of the syntax and is represented by the
constant OM_S_SERVICE_GENERATED.

private It is set only if the descriptor in the service-generated public object contains a
reference to the handle of a private subobject, or in the defined part of a private
object.

Note: This applies only when the descriptor is a service-generated descriptor. The
client need not set this bit in a client-generated descriptor that contains a
reference to a private object.

This component occupies bit 11 (0x0800) of the syntax and is represented by the
constant OM_S_PRIVATE.

value An OM_value data type. It identifies the attribute value.

 OM_enumeration

The OM_enumeration data type is used to indicate an Enumerated data value. Its C declaration is as
follows:

typedef OM_sint32 OM_enumeration;

A data value of this data type is an attribute value whose syntax is OM_S_ENUMERATION.

 OM_exclusions

The OM_exclusions data type is used for the exclusions parameter of om_get(). Its C declaration is as
follows:

typedef OM_uint OM_exclusions;

A data value of this data type is an unordered set of one or more values, all of which are distinct. Each
value indicates an exclusion, as defined by om_get(), and is chosen from the following set:

 � OM_EXCLUDE_ALL_BUT_THESE_TYPES

 � OM_EXCLUDE_MULTIPLES

 � OM_EXCLUDE_ALL_BUT_THESE_VALUES

 � OM_EXCLUDE_VALUES

 � OM_EXCLUDE_SUBOBJECTS

 � OM_EXCLUDE_DESCRIPTORS

Alternatively, the single value OM_NO_EXCLUSIONS can be chosen; this selects the entire object.

Each value except OM_NO_EXCLUSIONS is represented by a distinct bit. The presence of the value is
represented as 1; its absence is represented as 0 (zero). Thus, multiple exclusions are requested by
ORing the values that indicate the individual exclusions.

334 Application Development Guide: Directory Services

 OM_integer

The OM_integer data type is used to indicate an integer data value. Its C declaration is as follows:

typedef OM_sint32 OM_integer;

A data value of this data type is an attribute value whose syntax is OM_S_INTEGER.

 OM_modification

The OM_modification data type is used for the modification parameter of om_put(). Its C declaration is
as follows:

typedef OM_uint OM_modification;

A data value of this data type indicates a kind of modification, as defined by om_put(). It is chosen from
the following set:

 � OM_INSERT_AT_BEGINNING

 � OM_INSERT_AT_CERTAIN_POINT

 � OM_INSERT_AT_END

 � OM_REPLACE_ALL

 � OM_REPLACE_CERTAIN_VALUES

 OM_object

The OM_object data type is used as a handle to either a private or a public object. Its C declaration is as
follows:

typedef struct OM_descriptor_struct BOM_object;

A data value of this data type represents an object, which can be either public or private. It is an ordered
sequence of one or more instances of the OM_descriptor data type. See the OM_private_object and
OM_public_object data types for restrictions on that sequence (“OM_private_object” on page 337 and
“OM_public_object” on page 337, respectively).

 OM_object_identifier

The OM_object_identifier data type is used as an ASN.1 object identifier. Its C declaration is as follows:

typedef OM_string OM_object_identifier;

A data value of this data type contains an octet string that comprises the contents octets of the BER
encoding of an ASN.1 object identifier.

C Declaration of Object Identifiers: Every application program that uses a class or other object
identifier must explicitly import it into every compilation unit (C source module) that uses it. Each such
class or object identifier name must be explicitly exported from just one compilation module. Most
application programs find it convenient to export all the names they use from the same compilation unit.
Exporting and importing is performed using the following two C macros:

� The importing macro makes the class or other object identifier constants available within a compilation
unit.

 – OM_IMPORT(class_name)

 Chapter 18. XOM Service Interface 335

 – OM_IMPORT(OID_name)

� The exporting macro allocates memory for the constants that represent the class or another object
identifier.

 – OM_EXPORT(class_name)

 – OM_EXPORT(OID_name)

Object identifiers are defined in the appropriate header files, with the definition identifier having the prefix
OMP_O_ followed by the variable name for the object identifier. The constant itself provides the
hexadecimal value of the object identifier string.

Use of Object Identifiers in C: The following C macro initializes an OM descriptor with syntax
OM_S_OBJECT_IDENTIFIER_STRING:

 OM_OID_DESC(type, OID_name)

It sets the type component to that given, sets the syntax component to
OM_S_OBJECT_IDENTIFIER_STRING, and sets the value component to the specified object identifier.

The following macro initializes a descriptor to mark the end of a client-allocated public object:

 OM_NULL_DESCRIPTOR

For each class, there is a global variable of type OM_STRING with the same name; for example, the
External class has a variable called OM_C_EXTERNAL.) This is also the case for other object identifiers;
for example, the object identifier for BER rules has a variable called OM_BER. This global variable can
be supplied as a parameter to functions when required.

This variable is valid only when it is exported by an OM_EXPORT macro and imported by an
OM_IMPORT macro in the compilation units that use it. This variable cannot form part of a descriptor,
but the value of its length and elements components can be used. The following code fragment provides
examples of the use of the macros and constants:

/B Examples of the use of the macros and constants B/

#include <xom.h>

OM_IMPORT(OM_C_ENCODING)
OM_IMPORT(OM_CANONICAL_BER)

/B The following sequence must appear in just one compilation
 B unit in place of the above:
 B
 B #include <xom.h>
 B
 B OM_EXPORT(OM_C_ENCODING)
 B OM_EXPORT(OM_CANONICAL_BER)
 B/

main()
{
/B Use #1 - Define a public object of class Encoding
 B (Note: xxxx is a Message Handling class which can be
 B encoded)
 B/
OM_descriptor my_public_object[] = {
 OM_OID_DESC(OM_CLASS, OM_C_ENCODING),
 OM_OID_DESC(OM_OBJECT_CLASS, MA_C_xxxx),

{ OM_OBJECT_ENCODING, OM_S_ENCODING, some_BER_value },
 OM_OID_DESC(OM_RULES, OM_CANONICAL_BER),

336 Application Development Guide: Directory Services

 OM_NULL_DESCRIPTOR
 };

/B Use #2 - Pass class Encoding as an argument to om_instance()
 B/
return_code = om_instance(my_object, OM_C_ENCODING, &boolean_result);
}

 OM_private_object

The OM_private_object data type is used as a handle to an object in an implementation-defined or
private representation. Its C declaration is as follows:

typedef OM_object OM_private_object;

A data value of this data type is the designator or handle to a private object. It consists of a single
descriptor whose type component is OM_PRIVATE_OBJECT and whose syntax and value components
are unspecified.

Note: The descriptor’s syntax and value components are essential to the service’s proper operation with
respect to the private object.

 OM_public_object

The OM_public_object data type is used to define an object that can be directly accessed by a
programmer. Its C declaration is as follows:

typedef OM_object OM_public_object;

A data value of this data type is a public object. It consists of one or more (usually more) descriptors; all
but the last represent values of attributes of the object.

The descriptors for the values of a particular attribute with two or more values are adjacent to one another
in the sequence. Their order is that of the values they represent. The order of the resulting groups of
descriptors is unspecified.

Because the Class attribute specific to the Object class is represented among the descriptors, it must be
represented before any other attributes. Regardless of whether or not the Class attribute is present, the
syntax field of the first descriptor must have the OM_S_SERVICE_GENERATED bit set or cleared
appropriately.

The last descriptor signals the end of the sequence of descriptors. The last descriptor’s type component
is OM_NO_MORE_TYPES, and its syntax component is OM_S_NO_MORE_SYNTAXES. The last
descriptor’s value component is unspecified.

 OM_return_code

The OM_return_code data type is used for a value that is returned from all OM functions, indicating either
that the function succeeded or the reason it failed. Its C declaration is as follows:

typedef OM_uint OM_return_code;

A data value of this data type is the integer in the range 0 to 216 that indicates an outcome of an interface
function. It is chosen from the set specified in “XOM Return Codes” on page 343.

Integers in the narrower range 0 to 215 are used to indicate the return codes they define.

 Chapter 18. XOM Service Interface 337

 OM_string

The OM_string data type is used for a data value of String syntax. Its C declaration is as follows:

typedef OM_uint32 OM_string_length;
typedef struct {
 OM_string_length length;
 void Belements;
} OM_string;

#define OM_STRING(string)\
{ (OM_string_length)(sizeof(string)-1), (string) }

A data value of this data type is a string, that is, an instance of a String syntax. A string is specified
either in terms of its length or whether or not it terminates with NULL. A string has the following
components:

length An OM_string_length data type. It is the number of octets by means of
which the string is represented, or the OM_LENGTH_UNSPECIFIED value if
the string terminates with null.

elements The string’s elements (that is, the octets that make up its value).

The bits of a bit string are represented as a sequence of octets, as shown in
Figure 49. The first octet stores the number of unused bits in the last octet.
The bits in the bit string, commencing with the first bit and proceeding to the
trailing bit, are placed in bits 7 to 0 of the second octet. These are followed
by bits 7 to 0 of the third octet, then by bits 7 to 0 of each octet in turn,
followed by as many bits as are required of the final octet, commencing with
bit 7.

position in bit string: H 1 2 3 4 5 6 7 8 9 . . .

bit position in octet: 7 6 5 4 3 2 1 H 7 6 . . .
 a a

│ 2nd Octet │ 3rd Octet
 │ │
 ' '
 most least
 significant significant
 bit bit

Figure 49. OM_String Elements

The service supplies a string value with a specified length. The client can supply a string value to the
service in either form, either with a specified length or terminated with NULL.

The characters of a character string are represented as any sequence of octets permitted as the primitive
contents octets of the BER encoding of an ASN.1 type value. The ASN.1 type defines the type of
character string. A 0 value character follows the characters of the character string, but is not
encompassed by the length component. Thus, depending upon the type of character string, the 0 value
character can delimit the characters of the character string.

The OM_STRING macro is provided for creating a data value of this data type, given only the value of its
elements component. The macro, however, applies to octet strings and character strings, but not to bit
strings.

338 Application Development Guide: Directory Services

 OM_syntax

The OM_syntax data type is used to identify a syntax type. Its C declaration is as follows:

typedef OM_uint16 OM_syntax;

A data value of this data type is an integer in the range 0 to 210 that indicates an individual syntax or a set
of syntaxes taken together.

The data value is chosen from among the following:

 � OM_S_BIT_STRING

 � OM_S_BOOLEAN

 � OM_S_ENCODING

 � OM_S_ENUMERATION

 � OM_S_GENERAL_STRING

 � OM_S_GENERALISED_TIME_STRING

 � OM_S_GRAPHIC_STRING

 � OM_S_IA5_STRING

 � OM_S_INTEGER

 � OM_S_NULL

 � OM_S_NUMERIC_STRING

 � OM_S_OBJECT

 � OM_S_OBJECT_DESCRIPTOR_STRING

 � OM_S_OBJECT_IDENTIFIER_STRING

 � OM_S_OCTET_STRING

 � OM_S_PRINTABLE_STRING

 � OM_S_TELETEX_STRING

 � OM_S_VIDEOTEX_STRING

 � OM_S_VISIBLE_STRING

 � OM_S_UTC_TIME_STRING

The integers in the range 29 to 210 are reserved for vendor extensions. Wherever possible, the integers
used are the same as the corresponding ASN.1 universal class number.

 OM_type

The OM_type data type is used to identify an OM attribute type. Its C declaration is as follows:

typedef OM_uint16 OM_type;

A data value of this data type is an integer in the range 0 to 216 that indicates a type in the context of a
package. The following values in Table 94 on page 340 are assigned meanings by the respective data
types:

 Chapter 18. XOM Service Interface 339

Table 94. Assigning Meanings to Values

Value Data Type

OM_NO_MORE_TYPES OM_type_list

OM_PRIVATE_OBJECT OM_private_object

 OM_type_list

The OM_type_list data type is used to enumerate a sequence of OM attribute types. Its C declaration is
as follows:

typedef OM_type BOM_type_list;

A data value of this data type is an ordered sequence of zero or more type numbers, each of which is an
instance of the OM_type data type.

An additional data value, OM_NO_MORE_TYPES, follows and thus delimits the sequence. The C
representation of the sequence is an array.

 OM_value

The OM_value data type is used to represent any data value. Its C declaration is as follows:

typedef struct {
 OM_uint32 padding;
 OM_object object;
} OM_padded_object;

typedef union OM_value_union {
 OM_string string;
 OM_boolean boolean;
 OM_enumeration enumeration;
 OM_integer integer;
 OM_padded_object object;
} OM_value;

Note: The first type definition (in particular, its padding component) aligns the object component with
the elements component of the string component in the second type definition. This facilitates
initialization in C.

The identifier OM_value_union is defined for reasons of compilation order. It is used in the
definition of the OM_descriptor data type.

A data value of this data type is an attribute value. It has no components if the value’s syntax is
OM_S_NO_MORE_SYNTAXES or OM_S_NO_VALUE. Otherwise, it has one of the following
components:

string The value if its syntax is a string syntax.

boolean The value if its syntax is OM_S_BOOLEAN.

enumeration The value if its syntax is OM_S_ENUMERATION.

integer The value if its syntax is OM_S_INTEGER.

object The value if its syntax is OM_S_OBJECT.

Note: A data value of this data type is only displayed as a component of a descriptor. Thus, it is always
accompanied by indicators of the value’s syntax. The latter indicator reveals which component is
present.

340 Application Development Guide: Directory Services

 OM_value_length

The OM_value_length data type is used to indicate the number of bits, octets, or characters in a string.
Its C declaration is as follows:

typedef OM_uint32 OM_value_length;

A data value of this data type is an integer in the range 0 to 232 that represents the number of bits in a bit
string, octets in an octet string, or characters in a character string.

Note: This data type is not used in the definition of the interface. It is provided for use by client
programmers for defining attribute constraints.

 OM_value_position

The OM_value_position data type is used to indicate an attribute value’s position within an attribute. Its
C declaration is as follows:

typedef OM_uint32 OM_value_position;

A data value of this data type is an integer in the range 0 to 232 - 1 that indicates the position of a value
within an attribute. The value OM_ALL_VALUES has the meaning assigned to it by om_get().

 OM_workspace

The OM_workspace data type is used to identify an application-specific API that implements OM, for
example, directory or message handling. Its C declaration is as follows:

typedef void BOM_workspace;

A data value of this data type is the designator or handle for a workspace.

 XOM Functions

This section provides an overview of the XOM service interface functions as listed in Table 95. For a full
description of these functions, see the z/OS DCE Application Development Reference.

Table 95 (Page 1 of 2). XOM Service Interface Functions

Function Description

om_copy() Copies a private object.

om_copy_value() Copies a string between private objects.

om_create() Creates a private object.

om_decode() This function is not supported by the DCE XOM interface; it returns with an
OM_FUNCTION_DECLINED error.

om_delete() Deletes a private or service-generated object.

om_encode() This function is not supported by the DCE XOM interface; it returns with an
OM_FUNCTION_DECLINED error.

om_get() Gets copies of attribute values from a private object.

om_instance() Tests an object’s class.

om_put() Puts attribute values into a private object.

om_read() Reads a segment of a string in a private object.

 Chapter 18. XOM Service Interface 341

Table 95 (Page 2 of 2). XOM Service Interface Functions

Function Description

om_remove() Removes attribute values from a private object.

om_write() Writes a segment of a string into a private object.

The purpose and range of capabilities of the service interface functions can be summarized as follows:

om_copy() This function creates an independent copy of an existing private object and all its
subobjects. The copy is placed in the workspace of the original object, or in another
workspace specified by the DCE client.

om_copy_value() This function replaces an existing attribute value or inserts a new value in one private
object with a copy of an existing attribute value found in another. Both values must
be strings.

om_create() This function creates a new private object that is an instance of a particular class.
The object can be initialized with the attribute values specified as initial in the class
definition.

The service does not permit the client to explicitly create instances of all classes, but
rather only those indicated by a package’s definition as having this property.

om_delete() This function deletes a service-generated public object, or makes a private object
inaccessible.

om_get() This function creates a new public object that is an exact but independent copy of an
existing private object. The client can request certain exclusions, each of which
reduces the copy to a part of the original. The client can also request that values be
converted from one syntax to another before they are returned.

The copy can exclude: attributes of types other than those specified, values at
positions other than those specified within an attribute, the values of multi-valued
attributes, copies of (not handles for) subobjects, or all attribute values. Excluding
all attributes values reveals only an attribute’s presence.

om_instance() This function determines whether an object is an instance of a particular class. The
client can determine an object’s class simply by inspection. This function is useful
because it reveals that an object is an instance of a particular class, even if the
object is an instance of a subclass of that class.

om_put() This function places or replaces in one private object copies of the attribute values of
another public or private object.

The source values can be inserted before any existing destination values, before the
value at a specified position in the destination attribute, or after any existing
destination values. Alternatively, the source values can be substituted for any
existing destination values or for the values at specified positions in the destination
attribute.

om_read() This function reads a segment of a value of an attribute of a private object. The
value must be a string. The value can first be converted from one syntax to another.

om_remove() This function removes and discards particular values of an attribute of a private
object. The attribute itself is removed if no values remain.

om_write() This function writes a segment of an attribute value to a private object. The value
must be a string. The segment can first be converted from one syntax to another.
The written segment becomes the value’s last segment since any elements beyond it
are discarded.

342 Application Development Guide: Directory Services

XOM Return Codes

This section defines the return codes of the service interface, and thus the exceptions that can prevent the
successful completion of an interface function. Table 96 identifies the abbreviated column headings that
are used in Table 97; see Table 96 for the complete function names of the abbreviated column heads
used in Table 97.

Table 97 lists the XOM return codes and the functions to which they apply. (The information in this table
also appears in the ERRORS sections of the XOM function descriptions in the in z/OS DCE Application
Development Reference.) The first column of Table 97 lists the return codes. The other columns identify
the return codes that apply to each function by means of an x.

Table 96. OM Functions and Their
Corresponding Abbreviation

Function Abbreviation

om_copy() Cop

om_copy_value() CoV

om_create() Cre

om_decode() Dec

om_delete() Del

om_encode() Enc

om_get() Get

om_instance() Ins

om_put() Put

om_read() Rea

om_remove() Rem

om_write() Wri

Table 97 (Page 1 of 2). XOM Service Interface Return Codes

Return Code Cop CoV Cre Dec Del Enc Get Ins Put Rea Rem Wri

OM_SUCCESS x x x x x x x x x x x x
OM_ENCODING_INVALID - - - x - - - - - - - -
OM_FUNCTION_DECLINED - x x - - x - - x - x x
OM_FUNCTION_INTERRUPTED x x x x x x x x x x x x
OM_MEMORY_INSUFFICIENT x x x x x x x x x x x x
OM_NETWORK_ERROR x x x x x x x x x x x x
OM_NO_SUCH_CLASS x - x x - - - x x - - -
OM_NO_SUCH_EXCLUSION - - - - - - x - - - - -
OM_NO_SUCH_MODIFICATION - - - - - - - - x - - -
OM_NO_SUCH_OBJECT x x - x x x x x x x x x
OM_NO_SUCH_RULES - - - x - x - - - - - -
OM_NO_SUCH_SYNTAX - - - - x - - x x - - x
OM_NO_SUCH_TYPE - x - - x - x - x x x x
OM_NO_SUCH_WORKSPACE x - x - - - - - - - - -
OM_NOT_AN_ENCODING - - - x - - - - - - - -
OM_NOT_CONCRETE - - x - - - - - x - - -
OM_NOT_PRESENT - x - - - - - - x x - x
OM_NOT_PRIVATE x x - x - x x - x x x x
OM_NOT_THE_SERVICES - - - - x - - x - - - -
OM_PERMANENT_ERROR x x x x x x x x x x x x
OM_POINTER_INVALID x x x x x x x x x x x x
OM_SYSTEM_ERROR x x x x x x x x x x x x
OM_TEMPORARY_ERROR x x x x x x x x x x x x
OM_TOO_MANY_VALUES x - - x - - - - x - - -
OM_VALUES_NOT_ADJACENT - - - - - - - - x - - -

 Chapter 18. XOM Service Interface 343

Table 97 (Page 2 of 2). XOM Service Interface Return Codes

Return Code Cop CoV Cre Dec Del Enc Get Ins Put Rea Rem Wri

OM_WRONG_VALUE_LENGTH - x - x - - - - x - - x
OM_WRONG_VALUE_MAKEUP - - - x - - - - x - - x
OM_WRONG_VALUE_NUMBER - - - x - - - - x - - -
OM_WRONG_VALUE_SYNTAX - x - x - - x - x x - x
OM_WRONG_VALUE_TYPE - x - x - - x - x - - -

The return code values are as follows:

OM_SUCCESS The function was completed successfully.

OM_ENCODING_INVALID The octets that constitute the value of an encoding’s Object Encoding
attribute are invalid.

OM_FUNCTION_DECLINED The function does not apply to the object to which it is addressed.

OM_FUNCTION_INTERRUPTED The function is aborted by an external force; for example, a keystroke
designated for this purpose, at a user interface.

OM_MEMORY_INSUFFICIENT The service cannot allocate the main memory it needs to complete
the function.

OM_NETWORK_ERROR The service could not successfully employ the network upon which its
implementation depends.

OM_NO_SUCH_CLASS A purported class identifier is not defined.

OM_NO_SUCH_EXCLUSION A purported exclusion identifier is not defined.

OM_NO_SUCH_MODIFICATION A purported modification identifier is not defined.

OM_NO_SUCH_OBJECT A purported object is nonexistent, or the purported handle is invalid.

OM_NO_SUCH_RULES A purported rules identifier is not defined.

OM_NO_SUCH_SYNTAX A purported syntax identifier is not defined.

OM_NO_SUCH_TYPE A purported type identifier is not defined.

OM_NO_SUCH_WORKSPACE A purported workspace is nonexistent.

OM_NOT_AN_ENCODING An object is not an instance of the Encoding class.

OM_NOT_CONCRETE A class is abstract, not concrete.

OM_NOT_PRESENT An attribute value is absent, not present.

OM_NOT_PRIVATE An object is public, not private.

OM_NOT_THE_SERVICES An object is a client-generated object, rather than a service-generated
or private object.

OM_PERMANENT_ERROR The service encountered a permanent difficulty other than those
indicated by other return codes.

OM_POINTER_INVALID In the C interface, an invalid pointer is supplied as a function
parameter, or as the receptacle for a function result.

OM_SYSTEM_ERROR The service could not successfully employ the operating system upon
which its implementation depends.

OM_TEMPORARY_ERROR The service encountered a temporary difficulty other than those
indicated by other return codes.

OM_TOO_MANY_VALUES An implementation limit prevents a further attribute value from being
added to an object. This limit is undefined.

344 Application Development Guide: Directory Services

OM_VALUES_NOT_ADJACENT The descriptors for the values of a particular attribute are not
adjacent.

OM_WRONG_VALUE_LENGTH An attribute has, or would have, a value that violates the value length
constraints in force.

OM_WRONG_VALUE_MAKEUP An attribute has, or would have, a value that violates a constraint on
the value’s syntax.

OM_WRONG_VALUE_NUMBER An attribute has, or would have, a value that violates the value
number constraints in force.

OM_WRONG_VALUE_POSITION The use defined for value position in the parameter or parameters of
a function is invalid.

OM_WRONG_VALUE_SYNTAX An attribute has, or would have, a value whose syntax is not
permitted.

OM_WRONG_VALUE_TYPE An object has, or would have, an attribute whose type is not
permitted.

 Chapter 18. XOM Service Interface 345

346 Application Development Guide: Directory Services

Chapter 19. Object Management Package

This chapter defines the Object Management Package (OMP). The object identifier (referred to as OM)
assigned to the package, as defined in this book, is the object identifier specified in ASN.1 as
{joint-iso-ccitt(2) mhs-motis(6) group(6) white(1) api(2) om(4)}.

 Class Hierarchy

This section shows the hierarchical organization of the OM classes. Subclassification is indicated by
indentation, and the names of abstract classes are in italics. Thus, for example, OM_C_ENCODING is
an immediate subclass of OM_C_OBJECT, an abstract class. The names of classes to which
om_encode() applies are in bold. (DCE XOM does not support the encoding of any OM classes.) The
om_create() function applies to all concrete classes.

 � OM_C_OBJECT

 – OM_C_ENCODING

 – OM_C_EXTERNAL

 Class Definitions

The following subsections defines the OM classes.

 OM_C_ENCODING

An instance of class OM_C_ENCODING is an object represented in a form suitable for transmission
between workspaces, for transport via a network, or for storage in a file. Encoding can also be a suitable
way of indicating to an intermediate service provider (for example, a directory, or message transfer
system) an object that it does not recognize.

This class has the attributes of its superclass, OM_C_OBJECT, in addition to the specific attributes listed
in Table 98.

Table 98. Attributes Specific to OM_C_Encoding

Attribute Value Syntax Value
Length

Value
Number

Value
Initially

OM_OBJECT_CLASS String(OM_S_OBJECT_IDENTIFIER_STRING) - 1 -

OM_OBJECT_ENCODING String1 - 1 -

OM_RULES String(OM_S_OBJECT_IDENTIFIER_STRING) - 1 OM_BER

Notes:

1. If the Rules attribute is ber or canonical-ber, the syntax of the present attribute must be
OM_S_ENCODING_STRING.

OM_OBJECT_CLASS This attribute identifies the class of the object that the Object Encoding
attribute encodes. The class must be concrete.

OM_OBJECT_ENCODING This attribute is the encoding itself.

 Copyright IBM Corp. 1994, 2001 347

OM_RULES This attribute identifies the set of rules that are followed to produce the
Object Encoding attribute. Among the defined values of this attribute are
those represented as follows:

OM_BER This value is specified in ASN.1 as
{joint-iso-ccitt(2) asn1(1) basic-encoding(1)}.
This value indicates the BER.3

OM_CANONICAL_BER This value is specified in ASN.1 as
{joint-iso-ccitt(2) mhs-motis(6) group(6)
white(1) api(2) om(4) canonical-ber(4)}. This
value indicates the canonical BER.4

 OM_C_EXTERNAL

An instance of class OM_C_EXTERNAL is a data value and one or more information items that describe
the data value and identify its data type. This class corresponds to ASN.1’s External type, and thus the
class and the attributes specific to it are more fully described indirectly in the specification of ASN.1.5

This class has the attributes of its superclass (OM_C_OBJECT) in addition to the OM attributes specific to
this class that are listed in Table 99.

Table 99. Attributes Specific to OM_C_External

Attribute Value Syntax Value
Length

Value
Number

Value
Initially

OM_ARBITRARY_ENCODING) String(OM_S_BIT_STRING) - 0-11 -

OM_ASN1_ENCODING String(OM_S_ENCODING_STRING) - 0-11 -

OM_DATA_VALUE_DESCRIPTOR String(OM_S_OBJECT_DESCRIPTOR_STRING) - 0-1 -

OM_DIRECT_REFERENCE String(OM_S_OBJECT_IDENTIFIER_STRING) - 0-1 -

OM_INDIRECT_REFERENCE String(OM_S_INTEGER) - 0-1 -

OM_OCTET_ALIGNED_ENCODING String(OM_S_OCTET_STRING) - 0-11 -

Notes:

1. Only one of these three attributes is present.

OM_ARBITRARY_ENCODING This attribute is a representation of the data value as a bit string.

OM_ASN1_ENCODING The data value. This attribute can be present only if the data type
is an ASN.1 type.

If this attribute value’s syntax is an Object syntax, the data value’s
representation is that produced by om_encode() when its Object
parameter is the attribute value and its Rules parameter is ber.
Thus, the Object’s class must be one to which om_encode()
applies.

OM_DATA_VALUE_DESCRIPTOR This attribute contains a description of the data value.

3 See Clause 25.2 of Recommendation X.209, Specification of Basic Encoding Rules for Abstract Syntax Notation 1 (ASN.1), CCITT
Blue Book, Fascicle VIII.4, International Telecommunications Union, 1988. Also published by ISO as ISO 8825.

4 See Clause 8.7 of Recommendation X.509, The Directory: Authentication Framework, CCITT Blue Book, International
Telecommunications Union, 1988. Also published by ISO as ISO 9594-8.

5 See Clause 34 of Recommendation X.208, Specification of Abstract Syntax Notation 1 (ASN.1), CCITT Blue Book, Fascicle VIII.4,
International Telecommunications Union, 1988. Also published by ISO as ISO 8824.

348 Application Development Guide: Directory Services

OM_DIRECT_REFERENCE This attribute contains a direct reference to the data type.

OM_INDIRECT_REFERENCE This attribute contains an indirect reference to the data type.

OM_OCTET_ALIGNED_ENCODING This attribute contains a representation of the data value as an
octet string.

 OM_C_OBJECT

The class OM_C_OBJECT represents information objects of any variety. This abstract class is
distinguished by the fact that it has no superclass and that all other classes are its subclasses.

The attributes specific to this class are listed in Table 100.

Table 100. Attributes Specific to OM_C_Object

Attribute Value Syntax Value
Length

Value
Number

Value
Initially

OM_CLASS String(OM_S_OBJECT_IDENTIFIER_STRING) - 1 -

OM_CLASS This attribute identifies the object’s class.

 Chapter 19. Object Management Package 349

350 Application Development Guide: Directory Services

 Appendix A. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part
of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

 Copyright IBM Corp. 1994, 2001 351

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie, NY 12601-5400
U.S.A

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any
equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application programs conforming to
IBM's application programming interfaces.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

 Trademarks

The following terms are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

IBM AIX BookManager
CICS CICS/ESA IBMLink
IMS IMS/ESA Library Reader
RACF Resource Link SecureWay
z/OS

352 Application Development Guide: Directory Services

Programming Interface Information

This z/OS DCE Application Development Guide: Directory Services documents intended Programming
Interfaces that allow the customer to write programs to obtain services of z/OS DCE.

 Appendix A. Notices 353

354 Application Development Guide: Directory Services

 Glossary

This glossary defines technical terms and abbreviations
used in z/OS DCE documentation. If you do not find the
term you are looking for, refer to the index of the
appropriate z/OS DCE manual or view the IBM
Glossary of Computing Terms, located at:

http://www.ibm.com/ibm/terminology

This glossary includes terms and definitions from:

� IBM Dictionary of Computing, SC20-1699.

� Information Technology—Portable Operating
System Interface (POSIX), from the POSIX series of
standards for applications and user interfaces to
open systems, copyrighted by the Institute of
Electrical and Electronics Engineers (IEEE).

� American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies may be purchased from the
American National Standards Institute, 11 West
42nd Street, New York, New York 10036.
Definitions are identified by the symbol (A) after the
definition.

� Information Technology Vocabulary, developed by
Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC1.SC1).

� CCITT Sixth Plenary Assembly Orange Book,
Terms and Definitions and working documents
published by the International Telecommunication
Union, Geneva, 1978.

� Open Software Foundation (OSF).

The following abbreviations indicate terms that are
related to a particular DCE service:

CDS Cell Directory Service

CICS/ESA Customer Information Control
System/ESA

DTS Distributed Time Service

GDS Global Directory Service

IMS/ESA Information Management
System/ESA

RPC Remote Procedure Call

Security Security Service

Threads Threads Service

XDS X/Open Directory Services

XOM X/Open OSI-Abstract-Data
Manipulation

A
absolute time. A point on a time scale.

abstract class. GDS: An object management (OM)
class of an OM object that forbids instances. An
abstract class typically serves to describe the
similarities between instances of two or more concrete
classes.

abstract syntax notation one (ASN.1). A data
representation scheme that enables complicated types
to be defined and enables values of these types to be
specified.

access control list (ACL). (1) GDS: Specifies the
users with their access rights to an object. (2) Security:
Data that controls access to a protected object. An
ACL specifies the privilege attributes needed to access
the object and the permissions that may be granted, to
the protected object, to principals that possess such
privilege attributes.

access point. GDS, XDS: The point at which an
abstract service is obtained. A connection between a
directory user agent (DUA) and a directory system
agent (DSA).

access right. Synonym for permission.

accessible. Pertaining to an object whose client
possesses a valid designator or handle.

account. Data in the Registry database that allows a
principal to log in. An account is a registry object that
relates to a principal.

ACF. Attribute configuration file.

ACL. Access control list.

active context handle. RPC: A context handle in RPC
applications that the RPC has set to a non-null value
and passed back to the calling program. The calling
program supplies the active context handle in any future
calls to procedures that share the same client context.
See client context and context handle.

address. An unambiguous name, label, or number that
identifies the location of a particular entity or service.
See presentation address.

alias. Synonym for alias name.

 Copyright IBM Corp. 1994, 2001 355

alias entry. GDS: A directory entry, of object class
alias, containing information used to provide an
alternative name for an object.

alias name. (1) GDS: A name for a directory object
that consists of one or more alias entries in the
directory information tree (DIT). (2) Security: An
optional alternate for a principal’s primary name.
Synonymous with alias. The alias shares the same
UUID with the primary name.

aliased object. GDS: An object to which an alias entry
refers.

anonymous user. A user who is not entered in the
directory as an object and who logs in to the Global
Directory Service without giving a name and password.

API. Application program interface.

application program interface (API). A functional
interface supplied by the operating system or by a
separately orderable licensed program that allows an
application program written in a high-level language to
use specific data or functions of the operating system or
the licensed program.

application thread. A thread of execution created and
managed by application code. See client application
thread, local application thread, RPC thread, and server
application thread.

architecture. (1) The organizational structure of a
computer system, including the interrelationships among
its hardware and software. (2) The logical structure
and operating principles of a computer network. The
operating principles of a network include those of
services, functions, and protocols.

ASN.1. Abstract syntax notation one.

association (connection-oriented). A connection
between a client and a server.

asynchronous. Without a regular time relationship;
unexpected or unpredictable with respect to the running
of program instructions.

asynchronous operation. An operation that occurs
without a regular or predictable time relationship to a
specified event; for example, the calling of an error
diagnostic routine that may receive control at any time
during the running of a computer program.

attribute. (1) RPC: An Interface Definition Language
(IDL) or attribute configuration file (ACF) that conveys
information about an interface, type, field, parameter, or
operation. (2) DTS: A qualifier used with DTS
commands. DTS has four attribute categories:
characteristics, counters, identifiers, and status.

(3) XDS: Information of a particular type concerning an
object and appearing in an entry that describes the
object in the directory information base (DIB). It
denotes the attribute’s type and a sequence of one or
more attribute values, each accompanied by an integer
denoting the value’s syntax.

attribute configuration file (ACF). RPC: An optional
companion to an interface definition file that changes
how the Interface Definition Language (IDL) compiler
locally interprets the interface definition. See also
interface definition and Interface Definition Language.

attribute syntax. GDS: A definition of the set of
values that an attribute may assume. Attribute syntax
includes the data type, in ASN.1, and usually one or
more matching rules by which values may be
compared.

attribute table. GDS: A recurring attribute of the
directory schema with the description of the attribute
types that are permitted.

attribute type. (1) XDS: The component of an
attribute that indicates the type of information given by
that attribute. Because it is an object identifier, it is
unique among other attribute types. (2) XOM: Any of
various categories into which the client dynamically
groups values on the basis of their semantics. It is an
integer unique only within the package.

attribute value. XDS, XOM: A particular instance of
the type of information indicated by an attribute type.

attribute value assertion (AVA). GDS: An attribute
type and attribute value pair. A relative distinguished
name is comprised of one or more AVAs.

attribute value syntax. See attribute syntax and
syntax.

authentication. In computer security, a method used
to verify the identity of a principal.

authentication level. Synonym for protection level.

authentication protocol. A formal procedure for
verifying a principal’s network identity. Kerberos is an
instance of a shared-secret authentication protocol.

Authentication Service. One of three services
provided by the Security Service: it verifies principals
according to a specified authentication protocol. The
other Security services are the Privilege Service and the
Registry Service.

authorization. (1) The determination of a principal’s
permissions with respect to a protected object. (2) The
approval of a permission sought by a principal with
respect to a protected object.

356 Application Development Guide: Directory Services

authorization protocol. A formal procedure for
establishing the authorization of principals with respect
to protected objects. Authorization protocols supported
by the Security Service include DCE authorization and
name-based authorization.

authorization service. RPC: An implementation of an
authorization protocol.

AVA. Attribute value assertion.

B
Basic Encoding Rules (BER). A set of rules used to
encode ASN.1 values as strings of octets.

BER. Basic Encoding Rules.

big endian. An attribute of data representation that
reflects how multi-octet data is stored. In big endian
representation, the lowest addressed octet of a
multi-octet data item is the most significant. See little
endian.

binary timestamp. An opaque 128-bit (16-octet)
structure that represents a DTS time value.

binding. RPC: A relationship between a client and a
server involved in a remote procedure call.

binding handle. RPC: A reference to a binding. See
binding information.

binding information. RPC: Information about one or
more potential bindings, including an RPC protocol
sequence, a network address, an endpoint, at least one
transfer syntax, and an RPC protocol version number.
See binding. See also endpoint, network address, RPC
protocol, RPC protocol sequence, and transfer syntax.

broadcast. A notification sent to all members within an
arbitrary grouping such as nodes in a network or
threads in a process. See also signal.

Browser. CDS: A Motif-based program that lets users
view the contents and structure of a cell name space.

C
C interface. The interface that is defined at a level
that depends on the variant of C standardized by ANSI.

cache. (1) CDS: The information that a CDS clerk
stores locally to optimize name lookups. The cache
contains attribute values resulting from previous
lookups, as well as information about other
clearinghouses and namespaces. (2) Security:
Contains the credentials of a principal after the DCE
login. (3) GDS: See DUA cache.

call thread. RPC: A thread created by an RPC
server’s runtime to run remote procedures. When
engaged by a remote procedure call, a call thread
temporarily forms part of the RPC thread of the call.
See application thread and RPC thread.

cancel. (1) Threads: A mechanism by which a thread
informs either itself or another thread to stop the thread
as soon as possible. If a cancel arrives during an
important operation, the canceled thread may continue
until it can end the thread in a controlled manner.
(2) RPC: A mechanism by which a client thread notifies
a server thread (the canceled thread) to end the thread
as soon as possible. See also thread.

CCITT. Consultative Committee on International
Telegraphy and Telephone

CDS. Cell Directory Service.

CDS clerk. The software that provides an interface
between client applications and CDS servers.

CDS control program (CDSCP). A command
interface that CDS administrators use to control CDS
servers and clerks and manage the name space and its
contents. See also manager.

CDSCP. CDS control program.

cell. The basic unit of operation in the distributed
computing environment. A cell is a group of users,
systems, and resources that are grouped around a
common purpose and that share common DCE
services.

Cell Directory Service (CDS). A DCE component. A
distributed replicated database service that stores
names and attributes of resources located in a cell.
CDS manages a database of information about the
resources in a group of machines called a DCE cell.

cell-relative name. Synonym for local name.

chaining. GDS, XDS: A mode of interaction optionally
used by a directory system agent (DSA) that cannot
perform an operation itself. The DSA chains by calling
the operation in another DSA and then relaying the
outcome to the original requester.

child directory. CDS: A CDS directory that has a
directory immediately above it is considered a child of
that directory.

CICS. Customer Information Control System.

class. A category into which objects are placed on the
basis of their purpose and internal structure.

clearinghouse. CDS: A collection of directory replicas
on one CDS server. A clearinghouse takes the form of

 Glossary 357

a database file. It can exist only on a CDS server
node; it cannot exist on a node running only CDS clerk
software. Usually only one clearinghouse exists on a
server node.

clerk. (1) DTS: A software component that
synchronizes the clock for its client system by
requesting time values from servers, calculating a new
time from the values, and supplying the computed time
to client applications. (2) CDS: A software component
that receives CDS requests from a client application,
ascertains an appropriate CDS server to process the
requests, and returns the results of the requests to the
client application.

client. A computer or process that accesses the data,
services, or resources of another computer or process
on the network. Contrast with server.

client application thread. RPC: A thread executing
client application code that makes one or more remote
procedure calls. See application thread, local
application thread, RPC thread, and server application
thread.

client binding information. Information about a
calling client provided by the client runtime to the server
runtime, including the address where the call originated,
the RPC protocol used for the call, the requested object
UUID, and client authentication information. See
binding information and server binding information.

client context. RPC: The state within an RPC server
generated by a set of remote procedures and
maintained across a series of calls for a particular
client. See context handle. See also manager.

client stub. RPC: The surrogate code for an RPC
interface that is linked with and called by the client
application code. In addition to general operations such
as marshalling data, a client stub calls the RPC runtime
to perform remote procedure calls and, optionally, to
manage bindings. See server stub.

client/server model. A form of computing where one
system, the client, requests something, and another
system, the server, responds.

clock. The combined hardware interrupt timer and
software register that maintains the system time.

code page. (1) A table showing codes assigned to
character sets. (2) An assignment of graphic
characters and control function meanings to all code
points. (3) Arrays of code points representing
characters that establish numeric order of characters.
[OSF] (4) A particular assignment of hexadecimal
identifiers to graphic elements. (5) Synonymous with
code set. (6) See also code point, extended character.

collapse. CDS: To remove the contents of a directory
from the display (close it) using the CDS Browser. To
collapse an open directory, double-click on its icon.
Double-clicking on a closed directory expands it.
Contrast with expand.

compatible server. RPC: A server that offers the
requested RPC interface and RPC object and that is
accessible over a valid combination of network and
transport protocols. It is supported by both the client
and server RPC run times.

computed time. DTS: The resulting time after a DTS
clock synchronization. The time value that the clerk or
server process computes according to the values it
receives from several servers.

concrete class. XOM: An OM class that permits
instances.

condition variable. Threads: A synchronization object
used in conjunction with a mutex. It allows a thread to
suspend running until some condition is true.

connectionless protocol. RPC: A transport protocol
such as UDP that does not require a connection to be
established prior to data transfer. Contrast with
connection-oriented protocol.

connection-oriented protocol. RPC: An RPC
protocol that runs over a connection-based transport
protocol. It is a connection-based, reliable, virtual-circuit
transport protocol, such as TCP. Contrast with
connectionless protocol.

Consultative Committee on International Telegraphy
and Telephone (CCITT). A United Nations Specialized
Standards group whose membership includes common
carriers concerned with devising and proposing
recommendations for international telecommunications
representing alphabets, graphics, control information,
and other fundamental information interchange issues.

context handle. RPC: A reference to state (client
context) maintained across remote procedure calls by a
server on behalf of a client. See client context.

continuation reference. GDS, XDS: A reference that
describes how the performance of all or part of an
operation can be continued at a different directory
system agent (DSA) or DSAs. See also referral.

control access. CDS: An access right that grants
users the ability to change the access control on a
name and to perform other powerful management tasks,
such as replicate a directory or move a clearinghouse.

convergence. CDS: The degree to which CDS
attempts to keep all replicas of a directory consistent.
Two factors control the persistence and speed at which
CDS keeps directory replicas up to date: the setting of a

358 Application Development Guide: Directory Services

directory’s CDS_Convergence attribute (high, medium,
or low) and the background skulk time. By default,
every directory inherits the convergence setting of its
parent.

conversation key. Synonym for session key.

copy. GDS, XDS: Either a copy of an entry stored in
other DSAs through bilateral agreement or a locally and
dynamically stored copy of an entry resulting from a
request (a cache copy).

creation timestamp (CTS). An attribute of all CDS
clearinghouses, directories, soft links, child pointers,
and object entries that contains a unique value
reflecting the date and time the name was created. The
timestamp consists of two parts; a time portion and a
portion containing the system identifier of the node on
which the name was created. These two parts
guarantee uniqueness among timestamps generated on
different nodes.

credentials. Security: A general term for privilege
attribute data that has been certified by a trusted
privilege certification authority.

CTS. Creation timestamp.

Customer Information Control System (CICS). An
IBM licensed program that enables transactions entered
at remote terminals to be processed concurrently by
user-written application programs. It includes facilities
for building, using, and maintaining databases.

D
daemon. (1) A long-lived process that runs
unattended to perform continuous or periodic
system-wide functions such as network control Some
daemons are triggered automatically to perform their
task; others operate periodically. An example is the
cron daemon, which periodically performs the tasks
listed in the crontab file. Many standard dictionaries
accept the spelling demon. (2) A DCE server process.

DAP. Directory access protocol.

Data Encryption Standard (DES). The National
Institute of Standards and Technology (NIST) Data
Encryption Standard, adopted by the U.S. government
as Federal Information Processing Standard (FIPS)
Publication 46, which allows only hardware
implementations of the data encryption algorithm.

datagram. RPC: A network data packet that is
independent of all other packets and does not
guarantee delivery or sequentiality.

datagram protocol. RPC: A datagram-based transport
protocol, such as User Datagram Protocol (UDP), that
runs over a connectionless transport protocol.

DCE. Distributed Computing Environment.

DCEKERN. The address space that contains the DCE
daemons.

decrypt. Security: To decipher data.

default DSA. GDS: The directory system agent (DSA)
generally used when the user does not specify any
particular DSA when connecting to the directory system.

default element. RPC: An optional profile element that
contains a nil interface identifier and object UUID and
that specifies a default profile. Each profile can contain
only one default element. See default profile, profile,
and profile element.

default profile. RPC: A backup profile referred to by
the default element in another profile. The NSI import
and lookup operations use the default profile, if present,
whenever a search based on the current profile fails to
find any useful binding information. See default
element and profile.

DES. Data Encryption Standard.

descriptor. (1) XOM: The means by which the client
and service exchange an attribute value and the
integers that denote its representation, type, and syntax.
(2) XDS: A defined data structure that is used to
represent an OM attribute type and a single value.

descriptor list. GDS: An ordered sequence of
descriptors that is used to represent several OM
attribute types and values.

destructor. A user-supplied routine that is expected to
finalize and then deallocate a per-thread context value.

DFS. Distributed File Service.

DIB. Directory information base.

directory. (1) A logical unit for storing entries under
one name (the directory name) in a CDS namespace.
Each physical instance of a directory is called a replica.
(2) A collection of open systems that cooperates to hold
a logical database of information about a set of objects
in the real world.

directory access protocol (DAP). GDS: The protocol
used by a DUA to access a DSA.

directory ID. Directory identifier.

 Glossary 359

directory identifier. GDS: An identifier for
distinguishing several configurations of the directory
service within an installation.

directory information base (DIB). GDS: The
complete set of information to which the directory
provides access, which includes all of the pieces of
information that can be read or manipulated using the
operations of the directory.

directory information tree (DIT). GDS: The directory
information base (DIB) considered as a tree, whose
vertices (other than the root) are the directory entries.

directory schema. GDS: The set of rules and
constraints concerning directory information tree (DIT)
structure, object class definitions, attribute types, and
syntaxes that characterize the directory information
base (DIB).

Directory Service. A DCE component. The Directory
Service is a central repository for information about
resources in a distributed system. See Cell Directory
Service and Global Directory Service.

directory system. GDS: A system for managing a
directory, consisting of one or more DSAs. Each DSA
manages part of the DIB.

directory system agent (DSA). GDS: An open
systems interconnection (OSI) application process that
is part of the directory.

directory system protocol (DSP). GDS: The protocol
used by a directory system agent (DSA) to access
another DSA. The DSA runs in the GDS server
machine and manages the GDS data base.

directory user agent (DUA). GDS: An open systems
interconnection (OSI) application process that
represents a user accessing the directory.

distinguished encoding. GDS, XDS: The restrictions
to the Basic Encoding Rules designed to ensure a
unique encoding of each ASN.1 value, defined in the
X.500 Directory Standards (CCITT X.509).

distinguished name (DN). GDS: One of the names of
an object, formed from the sequence of RDNs of its
object entry and each of its superior entries.

distinguished value. GDS: An entry’s attribute value
that has been designated to appear in the RDN of the
entry.

distributed computing. A type of computing that
allows computers with different hardware and software
to be combined on a network, to function as a single
computer, and to share the task of processing
application programs.

Distributed Computing Environment (DCE). A
comprehensive, integrated set of services that supports
the development, use, and maintenance of distributed
applications. DCE is independent of the operating
system and network; it provides interoperability and
portability across heterogeneous platforms.

Distributed File Service (DFS). A DCE component.
DFS joins the local file systems of several file server
machines making the files equally available to all DFS
client machines. DFS allows users to access and share
files stored on a file server anywhere in the network,
without having to consider the physical location of the
file. Files are part of a single, global name space, so
that a user can be found anywhere in the network by
means of the same name.

distributed service. A DCE service that is used
mainly by administrators to manage a distributed
environment. These services include DTS, Security,
and Directory.

Distributed Time Service (DTS). A DCE component.
It provides a way to synchronize the times on different
hosts in a distributed system.

DIT. Directory information tree.

DN. Distinguished name.

DNS. Domain Name System.

Domain Name System (DNS). A hierarchical scheme
for giving meaningful names to hosts in a TCP/IP
network.

domain name. A unique network name that is
associated with a network’s unique address.

DSA. Directory system agent.

DSP. Directory system protocol.

DTS. Distributed Time Service.

DTS entity. DTS: The server or clerk software on a
system.

DUA. Directory user agent.

DUA cache. GDS: The part of the DUA that stores
information to optimize name lookups. Each cache
contains copies of recently accessed object entries as
well as information about DSAs in the directory.

dynamic endpoint. RPC: An endpoint that is
generated by the RPC runtime for an RPC server when
the server registers its protocol sequences. It expires
when the server stops running. See endpoint and
well-known endpoint.

360 Application Development Guide: Directory Services

E
effective permissions. Security: The permissions
granted to a principal as a result of a masking
operation.

element. RPC: Any of the bits of a bit string, the
octets of an octet string, or the octets by means of
which the characters of a character string are
represented.

encrypt. To systematically encode data so that it
cannot be read without knowing the coding key.

encryption key. A value used to encrypt data so that
only possessors of the encryption key can decipher it.

endian. An attribute of data representation that reflects
how certain multi-octet data is stored in memory. See
big endian and little endian.

endpoint. RPC: An address of a specific server
instance on a host.

endpoint map. RPC: A database local to a node
where local RPC servers register binding information
associated with their interface identifiers and object
identifiers. The endpoint map is maintained by the
endpoint map service of the DCE daemon.

endpoint map service. RPC: A service that maintains
a system’s endpoint map for local RPC servers. When
an RPC client makes a remote procedure call using a
partially bound binding handle, the endpoint map
service looks up the endpoint of a compatible local
server. See endpoint map.

entity. (1) CDS: Any manageable element through the
CDS namespace. Manageable elements include
directories, object entries, servers, replicas, and clerks.
The CDS control program (CDSCP) commands are
based on directives targeted for specific entities.
(2) DTS: See DTS entity.

entry. GDS, XDS: The part of the DIB that contains
information relating to a single directory object. Each
entry consists of directory attributes.

entry point vector (EPV). RPC: A list of addresses for
the entry points of a set of remote procedures that
starts the operations declared in an interface definition.
The addresses are listed in the same order as the
corresponding operation declarations.

ENV. environment variable

envelope. Security: Used to transport authentication
data and conversation keys between the security server
and principals.

environment variable (ENV). A variable included in
the current software environment that is available to any
called program that requests it.

EPV. Entry point vector.

exception. (1) An abnormal condition such as an I/O
error encountered in processing a data set or a file.
(2) One of five types of errors that can occur during a
floating-point exception. These are valid operation,
overflow, underflow, division by zero, and inexact
results. [OSF] (3) Contrast with interrupt, signal.

expand. CDS: To display the contents of (open) a
directory using the CDS Browser. A directory that is
closed can be expanded by double-clicking on its icon.
Double-clicking on an expanded directory collapses it.
Contrast with collapse.

expiration age. RPC: The amount of time that a local
copy of name service data from a NSI attribute remains
unchanged before a request from an RPC application
for the attribute requires its updating. See also NSI
attribute.

export. (1) RPC: To place the server binding
information associated with an RPC interface or a list of
object UUIDs or both into an entry in a name service
database. (2) To provide access information for an
RPC interface. Contrast with unexport.

F
filter. An assertion about the presence or value of
certain attributes of an entry to limit the scope of a
search.

FIFO. first-in-first-out

first-in-first-out (FIFO). A queueing technique in
which the next item to be retrieved is the item that has
been in the queue the longest time.

foreign cell. A cell other than the one to which the
local machine belongs. A foreign cell and its binding
information are stored in either GDS or the Domain
Name System (DNS). The act of contacting a foreign
cell is called intercell. Contrast with local cell.

full name. CDS: The complete specification of a CDS
name, including all parent directories in the path from
the cell root to the entry being named.

full pointer. RPC: A pointer without the restrictions of
a reference pointer.

fully bound binding handle. RPC: A server binding
handle that contains a complete server address
including an endpoint. Contrast with partially bound
binding handle.

 Glossary 361

G
General-Use Programming Interface (GUPI). An
interface, with few restrictions, for use in
customer-written programs. The majority of
programming interfaces are general-use programming
interfaces, and are appropriate in a wide variety of
application programs. A general-use programming
interface requires the knowledge of the externals of the
interface and perhaps the externals of related
programming interfaces. Knowledge of the detailed
design or implementation of the software product is not
required.

GDA. Global Directory Agent.

GDS. Global Directory Service.

Global Directory Agent (GDA). A DCE component
that makes it possible for the local CDS to access
names in foreign cells. The GDA provides a connection
to foreign cells through either the GDS or the Domain
Name System (DNS).

Global Directory Service (GDS). A DCE component.
A distributed replicated directory service that provides a
global namespace that connects the local DCE cells
into one worldwide hierarchy. DCE users can look up a
name outside a local cell with GDS.

global name. A name that is universally meaningful
and usable from anywhere in the DCE naming
environment. The prefix /... indicates that a name is
global.

group. (1) RPC: A name service entry that
corresponds to one or more RPC servers that offer
common RPC interfaces, RPC objects, or both. A
group contains the names of the server entries, other
groups, or both that are members of the group. See
NSI group attribute. (2) Security: Data that associates
a named set of principals that can be granted common
access rights. See subject identifier.

group member. (1) RPC: A name service entry
whose name occurs in the group. (2) Security: A
principal whose name appears in a security group. See
group.

H
handle. RPC: An opaque reference to information.
See binding handle, context handle, interface handle,
name service handle, and thread handle.

heterogeneous. Pertaining to a collection of dissimilar
host computers such as those from different
manufacturers. Contrast with homogeneous.

home cell. Synonym for local cell.

homogeneous. Pertaining to a collection of similar
host computers such as those of one model or one
manufacturer. Contrast with heterogeneous.

host ID. Synonym for network address.

I
IDL. Interface Definition Language.

IDL compiler. RPC: A compiler that processes an
RPC interface definition and an optional attribute
configuration file (ACF) to generate client and server
stubs, and header files See Interface Definition
Language.

immediate subclass. GDS: A subclass, of a class C,
having no superclasses that are themselves subclasses
of C.

immediate subordinate. GDS: In the directory
information tree (DIT), an entry is an immediate
subordinate of another if its distinguished name is
formed by appending its relative distinguished name
(RDN) to the distinguished name of the other entry.

immediate superclass. GDS: The superclass, of a
class C, having no subclasses that are themselves
superclasses of C.

immediate superior. GDS: In the directory information
tree (DIT), an entry is the immediate superior of another
if its distinguished name, followed by the relative
distinguished name (RDN) of the other, forms the
distinguished name of the other entry.

import. (1) RPC: To obtain binding information from a
name service database about a server that offers a
given RPC interface by calling the RPC NSI import
operation. (2) RPC: To incorporate constant, type, and
import declarations from one RPC interface definition
into another RPC interface definition by means of the
IDL import statement.

IMS. Information Management System.

inaccessible. Pertaining to an object for which the
client does not possess a valid designator or handle.

inaccuracy. DTS: The bounded uncertainty of a clock
value as compared to a standard reference.

information architecture. GDS: The representation of
the information stored in object management (OM)
objects and the hierarchical relationships between
different classes of OM objects.

362 Application Development Guide: Directory Services

Information Management System (IMS). A database
and data communication system capable of managing
complex databases and networks in virtual storage.

instance. XOM: An object in the category represented
by a class.

interface. RPC: A shared boundary between two or
more functional units, defined by functional
characteristics, signal characteristics, or other
characteristics, as appropriate. The concept includes
the specification of the connection of two devices
having different functions. See RPC interface.

interface definition. RPC: A description of an RPC
interface written in the DCE Interface Definition
Language (IDL). See RPC interface.

Interface Definition Language (IDL). A high-level
declarative language that provides syntax for interface
definitions.

interface handle. RPC: A reference in code to an
interface specification. See binding handle and
interface specification.

interface identifier. RPC: A string containing the
interface Universal Unique Identifier (UUID) and major
and minor version numbers of a given RPC interface.
See RPC interface.

interface specification. RPC: An opaque data
structure that is generated by the DCE IDL compiler
from an interface definition. It contains identifying and
descriptive information about an RPC interface. See
interface definition, interface handle, and RPC interface.

interface UUID. RPC: The Universal Unique Identifier
(UUID) generated for an RPC interface definition using
the UUID generator. See interface definition and RPC
interface.

intermediate data type. Any of the basic data types in
terms of which the other, substantive data types of the
interface are defined.

International Organization for Standardization
(ISO). An international body composed of the national
standards organizations of 89 countries. ISO issues
standards on a vast number of goods and services
including networking software.

Internet address. The 32-bit address assigned to
hosts in a TCP/IP network.

Internet Protocol (IP). In TCP/IP, a protocol that
routes data from its source to its destination in an
Internet environment. IP provides the interface from the
higher level host-to-host protocols to the local network
protocols. Addressing at this level is usually from host
to host.

interval. DTS: The combination of a time value and
the inaccuracy associated with it; the range of values
represented by a combined time and inaccuracy
notation. As an example, the interval 08:00.00I00:05:00
(eight o’clock, plus or minus five minutes) contains the
time 07:57.00.

invoke ID. XDS: An integer used to distinguish one
asynchronous (directory) operation from all other
outstanding ones.

IP. Internet Protocol

ISO. International Organization for Standardization

J
junction. A specialized entry in the DCE namespace
that contains binding information to enable
communications between different DCE services.

K
Kerberos. The authentication protocol used to carry
out DCE private key authentication. Kerberos was
developed at the Massachusetts Institute of Technology.

key. A value used to encrypt and decrypt data.

key file. A file that contains encryption keys for
noninteractive principals.

L
LAN. Local area network.

layer. In network architecture, a group of services,
functions, and protocols that is complete from a
conceptual point of view, that is one out of a set of
hierarchically arranged groups, and that extends across
all systems that conform to the network architecture.

LDAP. The Lightweight Directory Access Protocol API.

leaf entry. A directory entry that has no subordinates.
It can be an alias entry or an object entry.

LFS. local file system

Lightweight Directory Access Protocol (LDAP). An
interface that provides access through TCP/IP to
directory services which accept the LDAP protocol.

little endian. An attribute of data representation that
reflects how multi-octet data is stored. In little endian
representation, the lowest addressed octet of a
multi-octet data item is the least significant. See big
endian.

 Glossary 363

local. (1) Pertaining to a device directly connected to
a system without the use of a communication line.
(2) Pertaining to devices that have a direct, physical
connection. Contrast with remote.

local application thread. RPC: An application thread
that runs within the confines of one address space on a
local system and passes control exclusively among
local code segments. See application thread, client
application thread, RPC thread and server application
thread.

local area network (LAN). A network in which
communication is limited to a moderate-sized
geographical area (1 to 10 km) such as a single office
building, warehouse, or campus, and which does not
generally extend across public rights-of-way. A local
network depends on a communication medium capable
of moderate to high data rate (greater than 1Mbps), and
normally operates with a consistently low error rate.

local cell. The cell to which the local machine
belongs. Synonymous with home cell. Contrast with
foreign cell.

local file system (LFS). An organized collection of
data in the form of a root directory and its subdirectories
and files. An LFS supports special features useful in a
distributed environment: the ability to replicate data; to
log file system data, enabling quick recovery after a
crash; to simplify administration by dividing the file
system into easily managed units called filesets; and to
associate access control lists (ACLs) with files and
directories. An LFS is located on a disk that is
physically attached to a machine In other file systems, a
single disk partition contains only one file system. In
DCE LFS an aggregate can contain multiple file
systems (filesets). See also access control list (ACL).

local name. A name that is meaningful and usable
only within the cell where an entry exists. The local
name is a shortened form of a global name. Local
names begin with the prefix /.: and do not contain a cell
name. Synonymous with cell-relative name.

local server. DTS: A server that synchronizes with its
peers and provides its clock value to other servers and
clerks in the same network.

logical unit (LU). A host port through which a user
gains access to the services of a network.

M
manager. RPC: A set of remote procedures that
implement the operations of an RPC interface and that
can be dedicated to a given type of object. See also
object and RPC interface.

manager entry point vector. RPC: The runtime code

on the server side uses this entry point vector to
dispatch incoming remote procedure calls. See entry
point vector and manager.

marshalling. RPC: The process by which a stub
converts local arguments into network data and
packages the network data for transmission. Contrast
with unmarshalling.

mask. (1) A pattern of characters used to control the
retention or deletion of portions of another pattern of
characters (2) Security: Used to establish maximum
permissions that can then be applied to individual ACL
entries. (3) GDS: The administration screen interface
menus.

master entry. GDS: The original entry of an object.
This is the entry in the directory system agent (DSA)
that is specified in the master knowledge attribute of the
entry.

master replica. CDS: The first instance of a specific
directory in the namespace. After copies of the
directory have been made, a different replica can be
designated as the master, but only one master replica
of a directory can exist at a time. CDS can create,
update, and delete object entries and soft links in a
master replica.

mutex. Mutual exclusion. A read/write lock that grants
access to only a single thread at any one time. A
mutex is often used to ensure that shared variables are
always seen by other threads in a consistent way.

N
name. GDS, CDS: A construct that singles out a
particular (directory) object from all other objects. A
name must be unambiguous (denote only one object);
however, it need not be unique (be the only name that
unambiguously denotes the object).

name service. A central repository of named
resources in a distributed system. In DCE, this is the
same as Directory Service.

name service handle. RPC: An opaque reference to
the context used by the series of next operations called
during a specific name service interface (NSI) search or
inquiry.

name service interface (NSI). RPC: A part of the
application program interface (API) of the RPC run time.
NSI routines access a name service, such as CDS, for
RPC applications.

namespace. CDS: A complete set of CDS names that
one or more CDS servers look up, manage, and share.
These names can include directories, object entries,
and soft links.

364 Application Development Guide: Directory Services

naming attribute. GDS: An attribute used to form the
relative distinguished name (RDN) of an entry.

NCA. Network Computing Architecture.

NDR. Network Data Representation.

network. A collection of data processing products
connected by communications lines for exchanging
information between stations.

network address. An address that identifies a specific
host on a network. Synonymous with host ID.

Network Computing Architecture (NCA). RPC: An
architecture for distributing software applications across
heterogeneous collections of networks, computers, and
programming environments using UDP. NCA specifies
part of the DCE Remote Procedure Call architecture.

network data. RPC: Data represented in a format
defined by a transfer syntax. See also transfer syntax.

Network Data Representation (NDR). RPC: The
transfer syntax defined by the Network Computing
Architecture. See transfer syntax.

network protocol. A communications protocol from
the Network Layer of the Open Systems Interconnection
(OSI) network architecture, such as the Internet
Protocol (IP).

node. (1) An endpoint of a link, or a junction common
to two or more links in a network. Nodes can be
preprocessors, controllers, or workstations, and they
can vary in routing and other functional capabilities.
(2) In network topology, the point at an end of a
branch. It is usually a physical machine.

nonspecific subordinate reference. GDS: A
knowledge reference that holds information about the
directory system agent (DSA) that holds one or more
unspecified subordinate entries.

NSI. Name service interface.

NSI attribute. RPC: An RPC-defined attribute of a
name service entry used by the RPC name service
interface. A name service interface (NSI) attribute
stores one of the following: binding information, object
Universal Unique Identifiers (UUIDs), a group, or a
profile. See NSI binding attribute, NSI group attribute,
NSI object attribute, and NSI profile attribute.

NSI binding attribute. RPC: An RPC-defined attribute
(NSI attribute) of a name service entry; the binding
attribute stores binding information for one or more
interface identifiers offered by an RPC server and
identifies the entry as an RPC server entry. See

binding information and NSI object attribute. See also
server entry.

NSI group attribute. RPC: An RPC-defined attribute
(NSI attribute) of a name service entry that stores the
entry names of the members of an RPC group and
identifies the entry as an RPC group. See group.

NSI object attribute. RPC: An RPC-defined attribute
(NSI attribute) of a name service entry that stores the
object UUIDs of a set of RPC objects. See object.

NSI profile attribute. RPC: An RPC-defined attribute
(NSI attribute) of a name service entry that stores a
collection of RPC profile elements and identifies the
entry as an RPC profile. See profile.

NULL. In the C language, a pointer that does not point
to a data object.

O
object. (1) A data structure that implements some
feature and has an associated set of operations.
(2) RPC: For RPC applications, anything that an RPC
server defines and identifies to its clients using an
object Universal Unique Identifier (UUID). An RPC
object is often a physical computing resource such as a
database, directory, device, or processor. Alternatively,
an RPC object can be an abstraction that is meaningful
to an application, such as a service or the location of a
server. See object UUID. (3) XDS: Anything in the
world of telecommunications and information processing
that can be named and for which the directory
information base (DIB) contains information. (4) XOM:
Any of the complex information objects created,
examined, changed, or destroyed by means of the
interface.

object class. GDS, CDS: An identified family of
objects that share certain characteristics. An object
class can be specific to one application or shared
among a group of applications. An application
interprets and uses an entry’s class-specific attributes
based on the class of the object that the entry
describes.

object class table (OCT). A recurring attribute of the
directory schema with the description of the object
classes permitted.

object entry. CDS: The name of a resource (such as
a node, disk, or application) and its associated
attributes, as stored by CDS. CDS administrators,
client application users, or the client applications
themselves can give a resource an object name. CDS
supplies some attribute information (such as a creation
timestamp) to become part of the object, and the client
application may supply more information for CDS to
store as other attributes. See entry.

 Glossary 365

object identifier (OID). A value (distinguishable from
all other such values) that is associated with an
information object. It is formally defined in the CCITT
X.208 standard.

object management (OM). The creation, examination,
change, and deletion of potentially complex information
objects.

object name. CDS: A name for a network resource.

object UUID. RPC: The Universal Unique Identifier
(UUID) that identifies a particular RPC object. A server
specifies a distinct object UUID for each of its RPC
objects. To access a particular RPC object, a client
uses the object UUID to find the server that offers the
object. See object.

OCT. Object class table.

octet. A byte that consists of eight bits.

OID. Object identifier.

OM. Object management.

OM attribute. XOM: An object management (OM)
attribute consists of one or more values of a particular
type (and therefore syntax).

OM class. XOM: A static grouping of object
management (OM) objects, within a specification, based
on both their semantics and their form.

opaque. A datum or data type whose contents are not
visible to the application routines that use it.

Open Software Foundation (OSF). A nonprofit
research and development organization set up to
encourage the development of solutions that allow
computers from different vendors to work together in a
true open-system computing environment.

open system. A system whose characteristics comply
with standards made available throughout the industry
and that can be connected to other systems complying
with the same standards.

open systems interconnection (OSI). The
interconnection of open systems in accordance with
standards of the International Organization for
Standardization (ISO) for the exchange of information.

operation. (1) GDS: Processing performed within the
directory to provide a service, such as a read operation.
(2) RPC: The task performed by a routine or procedure
that is requested by a remote procedure call.

organization. (1) The third field of a subject identifier.
(2) Security: Data that associates a named set of users

who can be granted common access rights that are
usually associated with administrative policy.

OSF. Open Software Foundation.

OSI. Open systems interconnection

P
PAC. Privilege attribute certificate.

package. XOM: A specified group of related object
management (OM) classes, denoted by an object
identifier.

package closure. XOM: The set of classes that need
to be supported to create all possible instances of all
classes defined in the package.

packet. (1) In data communication, a sequence of
binary digits, including data and control signals, that is
transmitted and switched as a composite whole. [1]
The data, call control signals, and error control
information are arranged in a specific format. (2) See
call-accepted packet, call-connected packet, call-request
packet. See clear-confirmation packet, clear-indication
packet, clear-request packet. See data packet,
incoming-call packet.

parent directory. CDS: Any directory that has one or
more levels of directories beneath it in a cell name
space. A directory is the parent of any directory
immediately beneath it in the hierarchy.

partially bound binding handle. RPC: A server
binding handle that contains an incomplete server
address lacking an endpoint. Contrast with fully bound
binding handle.

Partitioned data set (PDS). A data set in direct
access storage that is divided into partitions, called
members, each of which can contain a program, part of
a program, or data.

password. A secret string of characters shared
between a computer system and a user. The user must
specify the character string to gain access to the
system.

PDS. Partitioned data set

permission. (1) The modes of access to a protected
object. The number and meaning of permissions with
respect to an object are defined by the access control
list (ACL) Manager of the object. (2) GDS: One of five
groups that assigns modes of access to users: MODIFY
PUBLIC, READ STANDARD, MODIFY STANDARD,
READ SENSITIVE, or MODIFY SENSITIVE.
Synonymous with access right. See also access control
list.

366 Application Development Guide: Directory Services

person. See principal.

pipe. (1) RPC: A mechanism for passing large
amounts of data in a remote procedure call. (2) The
data structure that represents this mechanism.

plaintext. The input to an encryption function or the
output of a decryption function. Encryption transforms
plaintext to ciphertext and decryption transforms
ciphertext into plaintext.

platform. The operating system environment in which
a program runs.

port. (1) Part of an Internet Protocol (IP) address
specifying an endpoint. (2) To make the programming
changes necessary to allow a program that runs on one
type of computer to run on another type of computer.

position (within a string). XOM: The ordinal position
of one element of a string relative to another.

position (within an attribute). XOM: The ordinal
position of one value relative to another.

predicate. A Boolean logic term denoting a logical
expression that determines the state of some variables.
For example, a predicate can be an expression stating
that variable A must have the value 3. The control
expression used in conjunction with condition variables
is based on a predicate. A condition variable can be
used to wait for some predicate to become true, for
example, to wait for something to be in a queue.

presentation address. An unambiguous name that is
used to identify a set of presentation service access
points. Loosely, it is the network address of an open
systems interconnection (OSI) service.

presentation service access point (PSAP). Address
of an open systems interconnection (OSI)
communications partner. It addresses an application in
a computer.

primary name. The string name of an object to which
any aliases for that object refer. The DCE refers to
objects by their primary names, although DCE users
may refer to them by their aliases.

principal. Security: An entity that can communicate
securely with another entity. In the DCE, principals are
represented as entries in the Registry database and
include users, servers, computers, and authentication
surrogates.

privacy. RPC: A protection level that encrypts RPC
argument values. in secure RPC communications.

private key. See secret key.

private object. (1) XDS: An OM object created in a
work space using the object management functions.
Contrast with public object. (2) XOM: An object that is
represented in an unspecified fashion.

privilege attribute. Security: An attribute of a principal
that may be associated with a set of permissions. DCE
privilege attributes are identity-based and include the
principal’s name, group memberships, and local cell.

privilege attribute certificate (PAC). Security: Data
describing a principal’s privilege attributes that has been
certified by an authority. In the DCE, the Privilege
Service is the certifying authority; it seals the privilege
attribute data in a ticket. The authorization protocol,
DCE Authorization, determines the permissions granted
to principals by comparing the privilege attributes in
PACs with entries in an access control list.

privilege service. Security: One of three services
provided by the Security Service; the Privilege Service
certifies a principal’s privileges. The other services are
the Registry Service and the Authentication Service.

privilege ticket. Security: A ticket that contains the
same information as a simple ticket, and also includes a
privilege attribute certificate. See service ticket, simple
ticket, and ticket-granting ticket.

procedure declaration. RPC: The syntax for an
operation, including its name, the data type of the value
it returns (if any), and the number, order, and data
types of its parameters (if any).

product-sensitive programming interface (PSPI).
(1) A special interface that is intended only to be used
for a specialized task such as diagnosis, modification,
monitoring, repairing, tailoring, or tuning. (2) A special
interface that is dependent on or requires the customer
to understand significant aspects of the detailed design
and implementation of the IBM software product.

profile. RPC: An entry in a name service database
that contains a collection of elements from which name
service interface (NSI) search operations construct
search paths for the database. Each search path is
composed of one or more elements that refer to name
service entries corresponding to a given RPC interface
and, optionally, to an object. See NSI profile attribute
and profile element.

profile element. RPC: A record in an RPC profile that
maps an RPC interface identifier to a profile member (a
server entry, group, or profile in a name service
database). See profile. See also group, interface
identifier and server entry.

profile member. RPC: A name service entry whose
name occupies the member field of an element of the
profile. See profile.

 Glossary 367

programming interface. The supported method
through which customer programs request software
services. The programming interface consists of a set
of callable services provided with the product.

proprietary. Pertaining to the holding of the exclusive
legal rights in making, using, or marketing a product.

protection level. The degree to which secure network
communications are protected. Synonymous with
authentication level.

protocol. A set of semantic and syntactic rules that
determines the behavior of functional units in achieving
communication.

protocol sequence. Synonym for RPC protocol
sequence.

protocol sequence vector. RPC: A data structure that
contains an array-size count and an array of pointers to
RPC protocol-sequence strings. See RPC protocol
sequence.

PSAP. Presentation service access point.

public object. (1) XOM: An object that is represented
by a data structure whose format is part of the service’s
specification. (2) XDS: A descriptor list that contains all
the OM attributes of an OM object.

purported name. A construct that is syntactically a
name, but has not yet been shown to be a valid name.

R
RACF. Resource Access Control Facility.

RDN. Relative distinguished name.

read access. CDS: An access right that grants the
ability to view data.

read-only replica. (1) CDS: A copy of a CDS
directory in which applications cannot make changes.
Although applications can look up information (read)
from it, they cannot create, change, or delete entries in
a read-only replica. Read-only replicas become
consistent with other, changeable replicas of the same
directory during skulks and routine propagation of
updates. (2) Security: A replicated Registry server.

realm. Security: A cell, considered exclusively from the
point of view of Security; this term is used in Kerberos
specifications. The term cell designates the basic unit
of DCE configuration and administration and
incorporates the notion of a realm.

recurring attribute. An attribute with several attribute
values.

reference monitor. Code that controls access to an
object. In the DCE, servers control access to the
objects they maintain; for a given object, the ACL
manager associated with that object makes
authorization decisions concerning the object.

reference pointer. RPC: A non-null pointer whose
value is invariant during a remote procedure call and
cannot point at aliased storage.

referral. GDS: An outcome that can be returned by a
DSA that cannot perform an operation itself. The
referral identifies one or more other DSAs more able to
perform the operation.

register. (1) RPC: To list an RPC interface with the
RPC runtime. (2) To place server-addressing
information into the local endpoint map. (3) To insert
authorization and authentication information into binding
information. See endpoint map and RPC interface.

Registry database. Security: A database of security
information about principals, groups, organizations,
accounts, and security policies.

Registry Service. Security: One of three services
provided by the Security Service; the Registry Service
manages information about principals, accounts, and
security policies. The other services are the Privilege
Service and the Authentication Service.

relative distinguished name (RDN). GDS, XDS: A
set of Attribute Value Assertions (AVAs).

relative time. A discrete time interval that is usually
added to or subtracted from an absolute time. See
absolute time.

remote. Pertaining to a device, file or system that is
accessed by your system through a communications
line. Contrast with local.

remote procedure. RPC: An application procedure
located in a separate address space from calling code.
See remote procedure call.

remote procedure call. RPC: A client request to a
service provider located anywhere in the network.

Remote Procedure Call (RPC). A DCE component. It
allows requests from a client program to access a
procedure located anywhere in the network.

replica. CDS: A directory in the CDS namespace.
The first instance of a directory in the name space is
the master replica. See master replica and read-only
replica.

replication. The making of a shadow of a database to
be used by another node. Replication can improve
availability and load-sharing.

368 Application Development Guide: Directory Services

request. A command sent to a server over a
connection.

resource. Items such as printers, plotters, data
storage, or computer services. Each has a unique
identifier associated with it for naming purposes.

Resource Access Control Facility (RACF). An IBM
licensed program, that provides for access control by
identifying and verifying the users to the system,
authorizing access to protected resources, and logging
the detected unauthorized access to protected
resources.

return value. A function result that is returned in
addition to the values of any output or input/output
arguments.

ROM. Read-only memory.

RPC. Remote Procedure Call.

RPC control program (RPCCP). An interactive
administrative facility for managing name service entries
and endpoint maps for RPC applications.

RPCCP. RPC control program

RPC interface. A logical group of operations, data
types, and constant declarations that serves as a
network contract for a client to request a procedure in a
server. See also interface definition and operation.

RPC protocol. An RPC-specific communications
protocol that supports the semantics of the DCE RPC
API and runs over either connectionless or
connection-oriented communications protocols.

RPC protocol sequence. A valid combination of
communications protocols represented by a character
string. Each RPC protocol sequence typically includes
three protocols: a network protocol, a transport protocol,
and an RPC protocol that works with the network and
transport protocols. See network protocol, RPC
protocol, and transfer protocol. Synonymous with
protocol sequence.

RPC runtime. A set of operations that manages
communications, provides access to the name service
database, and performs other tasks, such as managing
servers and accessing security information, for RPC
applications. See RPC runtime library.

RPC runtime library. A group of routines of the RPC
runtime that support the RPC applications on a system.
The runtime library provides a public interface to
application programmers, the application programming
interface (API), and a private interface to stubs, the stub
programming interface (SPI). See RPC runtime.

RPC thread. A logical thread within which a remote
procedure call is executed. See thread.

S
schema. See directory schema.

secret key. Security: A long-lived encryption key
shared between a principal and the Authentication
Service.

Security Service. A DCE component that provides
trustworthy identification of users, secure
communications, and controlled access to resources in
a distributed system.

segment. One or more contiguous elements of a
string.

server. (1) On a network, the computer that contains
programs, data, or provides the facilities that other
computers on the network can access. (2) The party
that receives remote procedure calls. Contrast with
client.

server addressing information. RPC: An RPC
protocol sequence, network address, and endpoint that
represent one way to access an RPC server over a
network; a part of server binding information. See
network address. See also binding information,
endpoint, and RPC protocol sequence.

server application thread. RPC: A thread running the
server application code that initializes the server and
listens for incoming calls. See application thread, client
application thread, local application thread, and RPC
thread.

server binding information. RPC: Binding information
for a particular RPC server. See binding information
and client binding information.

server entry. RPC: A name service entry that stores
the binding information associated with the RPC
interfaces of a particular RPC server and object
Universal Unique Identifiers (UUIDs) for any objects
offered by the server. See also binding information,
NSI binding attribute, NSI object attribute, object and
RPC interface.

server instance. RPC: A server running in a specific
address space. See server.

server stub. RPC: The surrogate calling code for an
RPC interface that is linked with server application code
containing one or more sets of remote procedures
(managers) that implement the interface. See client
stub. See also manager.

 Glossary 369

service. In network architecture, the capabilities that
the layers closer to the physical media provide to the
layers closer to the end user.

service controls. GDS, XDS: A group of parameters,
applied to all directory operations, that direct or
constrain the provision of the service.

service ticket. Security: A ticket for a specified service
other than the ticket-granting service. See privilege
ticket, simple ticket, and ticket-granting ticket.

session. GDS: A sequence of directory operations
requested by a particular user of a particular directory
user agent (DUA) using the same session object
management (OM) object.

session key. Security: A short-lived encryption key
provided by the Authentication Service to two principals
for the purpose of ensuring secure communications
between them. Synonymous with conversation key.

shadow entry. GDS: A copy entry of an object. This
is an entry of an object in a directory system agent
(DSA) other than the master DSA.

SID. Subject identifier.

signal. Threads: To wake only one thread waiting on a
condition variable. See broadcast.

signed. Security: Pertaining to information that is
appended to an enciphered summary of the information.
This information is used to ensure the integrity of the
data, the authenticity of the originator, and the
unambiguous relationship between the originator and
the data.

simple name. CDS: One element in a CDS full name.
Simple names are separated by slashes in the full
name.

simple ticket. Security: A ticket that contains the
principal’s identity, a session key, a timestamp and
other information, sealed using the target’s secret key.
See privilege ticket, service ticket, and ticket-granting
ticket.

socket. A unique host identifier created by the
concatenation of a port identifier with a TCP/IP address.

soft link. CDS: A pointer that provides an alternative
name for an object entry, directory, or other soft link in
the name space. A soft link can be permanent or it can
expire after a specific period of time. The CDS server
also can delete it after the name that the link points to
is deleted.

specific. XOM: The attribute types that can appear in
an instance of a given class, but not in an instance of
its superclasses.

SPI. (1) System programming interface. (2) Stub
programming interface.

SRT. Structure rule table.

standard. A model that is established and widely
used.

string. An ordered sequence of bits, octets, or
characters, accompanied by the string’s length.

structure rule table (SRT). GDS: A recurring attribute
of the directory schema with the description of the
permitted structures of distinguished names.

stub. RPC: A code module specific to an RPC
interface that is generated by the Interface Definition
Language (IDL) compiler to support remote procedure
calls for the interface. RPC stubs are linked with client
and server applications and hide the intricacies of
remote procedure calls from the application code. See
client stub and server stub.

Stub programming interface (SPI). RPC : A private
runtime interface whose routines are unavailable to
application code.

subclass. GDS, XOM: One of the classes whose
attribute types are a superset of those of another class.

subject identifier (SID). A string that identifies a user
or set of users. Each SID consists of three fields in the
form person.group.organization. In an account, each
field must have a specific value; in an access control list
(ACL) entry, one or more fields may use a wildcard.

subobject. XOM: An object that is in a subordinate
relationship to a given object.

subordinate. GDS, XDS: In the directory information
tree (DIT), an entry whose distinguished name includes
that of the other as a prefix.

superclass. GDS, XOM: One of the classes,
designated as such, whose attribute types are a subset
of those of another class.

superior. XDS: In the directory information tree (DIT),
an entry whose distinguished name is included as a
prefix of the distinguished name of the other. Each
entry has exactly one immediate superior.

superobject. XOM: An object that is in a superior
relationship to a given object.

synchronization. DTS: The process by which a
Distributed Time Service entity requests clock values
from other systems, computes a new time from the
values, and adjusts its system clock to the new time.

370 Application Development Guide: Directory Services

syntax. (1) XOM: An object management (OM) syntax
is any of the various categories into which the OM
specification statically groups values on the basis of
their form. These categories are additional to the OM
type of the value. (2) A category into which an attribute
value is placed on the basis of its form. See attribute
syntax.

syntax template. XOM: A lexical construct containing
an asterisk from which several attribute syntaxes can be
derived by substituting text for the asterisk.

System programming interface (SPI). A private
interface reserved for use by other services within a
system and not available to application code. Contrast
with API.

system time. The time value maintained and used by
the operating system.

T
TCP. Transmission Control Protocol

TCP/IP. Transmission Control Protocol/Internet
Protocol

TDF. Time differential factor.

terminal-owning region (TOR). CICS/ESA: A CICS
address space whose primary purpose is to manage
terminals.

thread. A single sequential flow of control within a
process.

thread handle. RPC: A data item that enables threads
to share a storage management environment.

Threads Service. A DCE component that provides
portable facilities that support concurrent programming.
The threads service includes operations to create and
control multiple threads of execution in a single process
and to synchronize access to global data within an
application.

ticket. Security: An application-transparent mechanism
that transmits the identity of an initiating principal to its
target. See privilege ticket, service ticket, simple ticket
and ticket-granting ticket.

ticket-granting ticket. Security: A ticket to the
ticket-granting service. See privilege ticket, service
ticket, and simple ticket.

time differential factor (TDF). DTS: The difference
between universal time coordinated (UTC) and the time
in a particular time zone.

TOR. Terminal-owning region.

transfer syntax. RPC: A set of encoding rules used
for transmitting data over a network and for converting
application data to and from different local data
representations. See also Network Data
Representation.

Transmission Control Protocol (TCP). A
communications protocol used in Internet and any other
network following the U.S. Department of Defense
standards for inter-network protocol. TCP provides a
reliable host-to-host protocol in packet-switched
communication networks and in an interconnected
system of such networks. It assumes that the Internet
Protocol is the underlying protocol. The protocol that
provides a reliable, full-duplex, connection-oriented
service for applications.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of non-proprietary communications
protocols that support peer-to-peer connectivity
functions for both local and wide area networks.

transport layer. A network service that provides
end-to-end communications between two parties, while
hiding the details of the communications network. The
Transmission Control Protocol (TCP) and International
Organization for Standardization (ISO) TP4 transport
protocols provide full-duplex virtual circuits on which
delivery is reliable, error free, sequenced, and duplicate
free. User Datagram Protocol (UDP) provides no
guarantees. The connectionless RPC protocol provides
some guarantees on top of UDP.

transport protocol. A communications protocol, such
as the Transmission Control Protocol (TCP) or the User
Datagram Protocol (UDP).

type. XOM: A category into which attribute values are
placed on the basis of their purpose. See attribute
type.

type UUID. RPC: The Universal Unique Identifier
(UUID) that identifies a particular type of object and an
associated manager. See also manager and object.

U
UDP. User Datagram Protocol.

unexport. RPC: To remove binding information from a
server entry in a name service database. Contrast with
export.

Universal Time Coordinated (UTC). The basis of
standard time throughout the world. Synonymous with
Greenwich mean time (GMT).

Universal Unique Identifier (UUID). RPC: An
identifier that is immutable and unique across time and
space. A UUID can uniquely identify an entity such as

 Glossary 371

an object or an RPC interface. See interface UUID,
object UUID, and type UUID.

unmarshalling. RPC: The process by which a stub
disassembles incoming network data and converts it
into local data in the appropriate local data
representation. Contrast with marshalling.

update timestamp (UTS). CDS: An attribute that
identifies the time at which the most recent change was
made to any attribute of a particular CDS name. For
directories, the UTS reflects changes made only to
attributes that apply to the actual directory (not one of
its replicas).

user. A person who requires the services of a
computing system.

User Datagram Protocol (UDP). In TCP/IP, a
packet-level protocol built directly on the Internet
protocol layer. UDP is used for
application-to-application programs between TCP/IP
host systems.

UTC. Universal Time Coordinated

UTS. Update timestamp.

UUID. Universal unique identifier

V
value. XOM: An arbitrary and complex information
item that can be viewed as a characteristic or property
of an object. See attribute value.

vector. RPC: An array of references to other
structures.

vendor. Supplier of software products.

W
well-known endpoint. RPC: A preassigned, stable
endpoint that a server can use every time it runs.
Well-known endpoints typically are assigned by a
central authority responsible for a transport protocol.
An application declares a well-known endpoint either as
an attribute in an RPC interface header or as a variable
in the server application code. See dynamic endpoint
and endpoint.

work space. XDS, XOM: A space in which OM objects
of certain OM classes can be created, together with an
implementation of the object management functions that
supports those OM classes.

workstation. A device that enables users to transmit
information to or receive information from a computer,
for example, a display station or printer.

X
X.500. The CCITT/ISO standard for the open systems
interconnection (OSI) application-layer directory. It
allows users to register, store, search, and retrieve
information about any objects or resources in a network
or distributed system.

XDS. The X/Open Directory Services API.

X/Open Directory Services (XDS). An application
program interface that DCE uses to access its directory
service components. XDS provides facilities for adding,
deleting, and looking up names and their attributes.
The XDS library detects the format of the name to be
looked up and directs the calls it receives to either GDS
or CDS. XDS uses the XOM API to define and manage
its information.

XOM. The X/Open OSI-Abstract-Data Manipulation
API.

372 Application Development Guide: Directory Services

 Bibliography

This bibliography is a list of publications for z/OS DCE and other products. The complete title, order number, and a
brief description is given for each publication.

z/OS DCE Publications

This section lists and provides a brief description of each publication in the z/OS DCE library.

 Overview
� z/OS DCE Introduction, GC24-5911

This book introduces z/OS DCE. Whether you are
a system manager, technical planner, z/OS system
programmer, or application programmer, it will help
you understand DCE and evaluate the uses and
benefits of including z/OS DCE as part of your
information processing environment.

 Planning
� z/OS DCE Planning, GC24-5913

This book helps you plan for the organization and
installation of z/OS DCE. It discusses the benefits
of distributed computing in general and describes
how to develop plans for a distributed system in a
z/OS environment.

 Administration
� z/OS DCE Configuring and Getting Started,

SC24-5910

This book helps system and network administrators
configure z/OS DCE.

� z/OS DCE Administration Guide, SC24-5904

This book helps system and network administrators
understand z/OS DCE and tells how to administer it
from the batch, TSO, and shell environments.

� z/OS DCE Command Reference, SC24-5909

This book provides reference information for the
commands that system and network administrators
use to work with z/OS DCE.

� z/OS DCE User's Guide, SC24-5914

This book describes how to use z/OS DCE to work
with your user account, use the directory service,

work with namespaces, and change access to
objects that you own.

 Application Development
� z/OS DCE Application Development Guide:

Introduction and Style, SC24-5907

This book assists you in designing, writing,
compiling, linking, and running distributed
applications in z/OS DCE.

� z/OS DCE Application Development Guide: Core
Components, SC24-5905

This book assists programmers in developing
applications using application facilities, threads,
remote procedure calls, distributed time service, and
security service.

� z/OS DCE Application Development Guide:
Directory Services, SC24-5906

This book describes the z/OS DCE directory service
and assists programmers in developing applications
for the cell directory service and the global directory
service.

� z/OS DCE Application Development Reference,
SC24-5908

This book explains the DCE Application Program
Interfaces (APIs) that you can use to write
distributed applications on z/OS DCE.

 Reference
� z/OS DCE Messages and Codes, SC24-5912

This book provides detailed explanations and
recovery actions for the messages, status codes,
and exception codes issued by z/OS DCE.

z/OS SecureWay Security Server Publications

This section lists and provides a brief description of books in the z/OS SecureWay Security Server library that may be
needed for z/OS SecureWay Security Server DCE and for RACF interoperability.

 Copyright IBM Corp. 1994, 2001 373

� z/OS SecureWay Security Server DCE Overview,
GC24-5921

This book describes the z/OS SecureWay Security
Server DCE and provides z/OS SecureWay Security
Server DCE information about the z/OS DCE
library.

� z/OS SecureWay Security Server LDAP Client
Programming, SC24-5924

This book describes the Lightweight Directory
Access Protocol (LDAP) client APIs that you can
use to write distributed applications on z/OS DCE
and gives you information on how to develop LDAP
applications.

� z/OS SecureWay Security Server RACF Security
Administrator's Guide, SA22-7683.

This book explains RACF concepts and describes
how to plan for and implement RACF.

� z/OS SecureWay Security Server LDAP Server
Administration and Use, SC24-5923

This book describes how to install, configure, and
run the LDAP server. It is intended for
administrators who will maintain the server and
database.

� z/OS SecureWay Security Server Firewall
Technologies, SC24-5922

This book provides the configuration, commands,
messages, examples and problem determination for
the z/OS Firewall Technologies. It is intended for
network or system security administrators who
install, administer and use the z/OS Firewall
Technologies.

Tool Control Language Publication

� Tcl and the Tk Toolkit, John K. Osterhout, (c)1994,
Addison—Wesley Publishing Company.

This non-IBM book on the Tool Control Language is
useful for application developers, DCECP script
writers, and end users.

IBM C/C++ Language Publication

� z/OS C/C++ Programming Guide, SC09-4765 This book describes how to develop applications in
the C/C++ language in z/OS.

z/OS DCE Application Support Publications

This section lists and provides a brief description of each publication in the z/OS DCE Application Support library.

� z/OS DCE Application Support Configuration and
Administration Guide, SC24-5903

This book helps system and network administrators
understand and administer Application Support.

� z/OS DCE Application Support Programming Guide,
SC24-5902

This book provides information on using Application
Support to develop applications that can access
CICS and IMS transactions.

374 Application Development Guide: Directory Services

 Encina Publications

� z/OS Encina Toolkit Executive Guide and
Reference, SC24-5919

This book discusses writing Encina applications for
z/OS.

� z/OS Encina Transactional RPC Support for IMS,
SC24-5920

This book is to help software designers and
programmers extend their IMS transaction
applications to participate in a distributed,
transactional client/server application.

 Bibliography 375

376 Application Development Guide: Directory Services

 Index

A
abstract OM class 112, 113
Abstract Service 233
Abstract Service Definition 143
Abstract Syntax Notation One (ASN.1)

abstract syntaxes 93
ASN.1 simple types 94
ASN.1 types 94
encoding 348
relating to Basic Encoding Rules 93
sample definition 91
transfer syntaxes 93

abstract syntaxes 93
add attribute 256
address 245
ADMD (administration management domain)

See administration management domain (ADMD)
administration management domain (ADMD) 302
administrative limit exceeded 266
alias entry 85
API (Application Program Interface)

See Application Program Interface (API)
Application Program Interface (API)

XDS 234
approximate match 260
arbitrary encoding 348
arguments 233
ASN.1 (Abstract Syntax Notation One)

See Abstract Syntax Notation One (ASN.1)
AT (attribute table)

See attribute table (AT)
attribute 245, 247

cacheable 318
error 246
list 246
matching rules 142
multi-valued 142
OM syntax 122

enumerated type 123
object type 123
string type 124

OM value syntax 142
selected 255
syntax template 122
type 246, 333, 339, 340
value 122
value length 142
values 246

attribute table (AT) 92
attribute type

directory 79

attribute type (continued)
mandatory 91
OM 97
optional 91

attribute value assertion (AVA) 248
multiple AVAs 84
relationship to RDN 84

audience skills xvii
automatic connection management 141
automatic continuation 252
AVA (attribute value assertion) 248, 254

B
Basic Directory Contents package 118
Basic Encoding Rules (BER) 95
bibliography 373
bit string 326
book organization xix
books, list of DCE and related 373
Boolean 340

C
C programming language

interface to 325
naming conventions

XDS and XOM APIs 100
canonical-ber 347
CCITT 348
chaining prohibited 251
character set 333
character string 326, 328, 338, 341
class 347, 349

abstract OM class 112
concrete OM class 112
OM class hierarchy 112
OM class inheritance 112
OM object 111

closure, package 120
common results 248
communications error 248
compare result 249
concrete OM class 112, 113
context 142, 233, 249

common arguments 142
local controls 142
service controls 142

continuation reference 240, 252

 Copyright IBM Corp. 1994, 2001 377

D
data

type
Boolean 333

data value descriptor 348
DC_C_SESSION 140
DDA (domain-defined attribute)

See domain-defined attribute (DDA)
default

context 236, 252
session 235, 272

descriptor list 102
initializing 126
OM_descriptor data structure 102, 125
representation of public object 103

descriptor, service-generated 334
descriptors 333
direct reference 349
directory

alias entry 85
attribute table 92
attribute type 79
attribute types

mandatory 91
optional 91

automatic connection management 141
building a distinguished name 105
context 142
defining subclasses 93
DIB (Directory Information Base) 78
Directory Class Definitions 142
Directory Service Package 142
distinguished name 83, 105
ds_add_entry 151
ds_list 151
ds_remove_entry 151
example of directory entry 81
filter 150
GDS standard schema 87
modify operations 150
modifying entries 151
name verification 86
naming attributes 88
Object Class Table 89
object entries 81
object identifiers 80
objects 78
reading an entry 144
relationship between schemas and the DIT 93
relative distinguished name (RDN) 84
search criteria 150
selected attribute types 142
selected object classes 142
session 140
structure of the DIB 78

directory (continued)
Structure Rule Table (SRT) 87

Directory Class Definitions 142
Directory class, DL-Submit-Permission 310
Directory Connection Management Functions 137,

140
directory information base, schema 83
Directory Information Model 78
directory information tree

example of a distinguished name 83
GDS standard schema 87
relationship between schemas and the DIT 93

directory modify operations 150
ds_add_entry 150
ds_modify_entry 150
ds_modify_rdn 150
ds_remove_entry 150

Directory operation functions 143
directory read operations 143
directory search operations 150
Directory Service

functions 137
Package 142

Directory System Agent (DSA)
address 245, 272
name

XDS attribute 272
distinguished encoding 237
distinguished name 83

as a public object 105
building 105
example of distinguished name 83
structure 105

distribution list (DL) 297
DL (distribution list)

See distribution list (DL)
DL-Submit-Permission 310
DMD 251
domain-defined attribute (DDA) 307
DS_A_ALIASED_OBJECT_NAME 279
DS_A_BUSINESS_CATEGORY 279
DS_A_COMMON_NAME 279
DS_A_COUNTRY_NAME 279
DS_A_DELIV_CONTENT_LENGTH 298
DS_A_DELIV_CONTENT_TYPES 298
DS_A_DELIVERABLE_EITS 298
DS_A_DESCRIPTION 279
DS_A_DESTINATION_INDICATOR 279
DS_A_DL_MEMBERS 299
DS_A_DL_SUBMIT_PERMS 299
DS_A_FACSIMILE_TELEPHONE_NUMBER 279
DS_A_INTERNATIONAL_ISDN_NUMBER 279
DS_A_KNOWLEDGE_INFORMATION 280
DS_A_LOCALITY_NAME 280
DS_A_MEMBER 280

378 Application Development Guide: Directory Services

DS_A_MESSAGE_STORE 299
DS_A_OBJECT_CLASS 280
DS_A_OR_ADDRESSES 299
DS_A_ORGANIZATION_NAME 280
DS_A_ORGANIZATIONAL_UNIT_NAME 280
DS_A_OWNER 280
DS_A_PHYSICAL_DELIVERY_OFFICE_NAME 280
DS_A_POST_OFFICE_BOX 280
DS_A_POSTAL_ADDRESS 280
DS_A_POSTAL_CODE 280
DS_A_PREF_DELIV_METHODS 299
DS_A_PREFERRED_DELIVERY_METHOD 280
DS_A_PRESENTATION_ADDRESS 281
DS_A_REGISTERED_ADDRESS 281
DS_A_ROLE_OCCUPANT 281
DS_A_SEARCH_GUIDE 281
DS_A_SEE_ALSO 281
DS_A_SERIAL_NUMBER 281
DS_A_STATE_OR_PROVINCE_NAME 281
DS_A_STREET_ADDRESS 281
DS_A_SUPP_AUTO_ACTIONS 299
DS_A_SUPP_CONTENT_TYPES 299
DS_A_SUPP_OPT_ATTRIBUTES 299
DS_A_SUPPORTED_APPLICATION_CONTEXT 281
DS_A_SURNAME 282
DS_A_TELEPHONE_NUMBER 282
DS_A_TELETEX_TERMINAL_IDENTIFIER 282
DS_A_TELEX_NUMBER 282
DS_A_TITLE 282
DS_A_USER_PASSWORD 282
DS_A_X121_ADDRESS 282
ds_abandon 137
DS_ADD_ATTRIBUTE 256
ds_add_entry 150, 155
DS_ADD_VALUES 256
DS_ADMINISTRATIVE_LIMIT_EXCEEDED 266
DS_AE_TITLE 245
DS_ALIAS_DEREFERENCED 248
DS_ALIAS_ENTRY 263
DS_ALIASED_RDNS 253
DS_ALL_ATTRIBUTES 255
DS_AND 259
DS_ANY_DELIVERY_METHOD 281
DS_APPROXIMATE_MATCH 260
DS_ASYNCHRONOUS 252
DS_ATTRIBUTE_TYPE 246, 247, 276, 285
DS_ATTRIBUTE_VALUE 247
DS_ATTRIBUTE_VALUES 246, 276
DS_ATTRIBUTES_SELECTED 255
DS_AUTOMATIC_CONTINUATION 252
DS_AVAS 254
DS_BASIC_DIRECTORY_CONTENTS_PACKAGE 275
ds_bind 127, 140

automatic connection management 141
DS_C_ABANDON_FAILED 244

DS_C_ACCESS_POINT 245
DS_C_ADDRESS 245
DS_C_ATTRIBUTE 245, 276
DS_C_ATTRIBUTE_ERROR 246
DS_C_ATTRIBUTE_LIST 246
DS_C_ATTRIBUTE_PROBLEM 265
DS_C_ATTRIBUTES 247
DS_C_AVA 248
DS_C_COMMON_RESULTS 248
DS_C_COMMUNICATIONS_ERROR 248
DS_C_COMPARE_RESULT 249
DS_C_CONTEXT 142, 249
DS_C_CONTINUATION_REF 252
DS_C_DS_DN 253
DS_C_DS_RDN 253
DS_C_ENTRY_INFO 254
DS_C_ENTRY_INFO_SELECTION 254
DS_C_ENTRY_MODIFICATION 255
DS_C_ENTRY_MODIFICATION_LIST 256
DS_C_ERROR 239, 256
DS_C_EXTENSION 258
DS_C_FACSIMILE_TELEPHONE_NUMBER 284
DS_C_FILTER 259
DS_C_FILTER_ITEM 260
DS_C_LIBRARY_ERROR 261
DS_C_LIST_INFO 262
DS_C_LIST_INFO_ITEM 263
DS_C_LIST_RESULT 156, 264
DS_C_NAME 264
DS_C_NAME_ERROR 265
DS_C_OPERATION_PROGRESS 265
DS_C_PARTIAL_OUTCOME_QUAL 266
DS_C_POSTAL_ADDRESS 284
DS_C_PRESENTATION_ADDRESS 267
DS_C_READ_RESULT 148, 268
DS_C_REFERRAL 268
DS_C_RELATIVE_NAME 268
DS_C_SEARCH_CRITERION 285
DS_C_SEARCH_GUIDE 285, 286
DS_C_SEARCH_INFO 268, 269
DS_C_SEARCH_RESULT 269
DS_C_SECURITY_ERROR 270
DS_C_SESSION 271
DS_C_SYSTEM_ERROR 272
DS_C_TELETEX_TERMINAL_IDENTIFIER 286
DS_C_TELEX_NUMBER 287
DS_C_UPDATE_ERROR 273
DS_CHAINING_PROHIBITED 251
DS_CHANGES 256
ds_compare 143, 147
ds_compare, DS_C_COMPARE_RESULT 147
DS_COMPLETED 266
DS_COUNTRY 251
DS_COUNTRY_CODE 287
DS_CRIT 258

 Index 379

DS_CRITERIA 285, 286
DS_DEFAULT_CONTEXT 236, 252, 320
DS_DEFAULT_SESSION 140, 235, 272, 321
DS_DMD 251
DS_DN 253
DS_DONT_DEREFERENCE_ALIASES 251
DS_DONT_USE_COPY 251
DS_DSA_ADDRESS 272
DS_DSA_NAME 272
DS_E_ADMINISTRATIVE_LIMIT_EXCEEDED 270
DS_E_AFFECTS_MULTIPLE_DSAS 273
DS_E_ALIAS_DEREFERENCING_PROBLEM 265
DS_E_ALIAS_PROBLEM 265
DS_E_BAD_ARGUMENT 261
DS_E_BAD_CLASS 262
DS_E_BAD_CONTEXT 262
DS_E_BAD_NAME 262
DS_E_BAD_SESSION 262
DS_E_BUSY 270
DS_E_CANNOT_ABANDON 244
DS_E_COMMUNICATIONS_PROBLEM 249
DS_E_CONSTRAINT_VIOLATION 247
DS_E_DIT_ERROR 271
DS_E_ENTRY_ALREADY_EXISTS 273
DS_E_INAPPROP_AUTHENTICATION 270
DS_E_INAPPROP_MATCHING 247
DS_E_INSUFFICIENT_ACCESS 270
DS_E_INVALID_ATTRIBUTE_SYNTAX 247
DS_E_INVALID_ATTRIBUTE_VALUE 265
DS_E_INVALID_CREDENTIALS 270
DS_E_INVALID_REFERENCE 271
DS_E_INVALID_SIGNATURE 270
DS_E_LOOP_DETECTED 271
DS_E_MISCELLANEOUS 262
DS_E_MISSING_TYPE 262
DS_E_MIXED_SYNCHRONOUS 262
DS_E_NAMING_VIOLATION 273
DS_E_NO_INFORMATION 270
DS_E_NO_SUCH_ATTRIBUTE_OR_VALUE 247
DS_E_NO_SUCH_OBJECT 265
DS_E_NO_SUCH_OPERATION 244
DS_E_NOT_ALLOWED_ON_NON_LEAF 273
DS_E_NOT_ALLOWED_ON_RDN 273
DS_E_NOT_SUPPORTED 262
DS_E_OBJECT_CLASS_VIOLATION 273
DS_E_OUT_OF_SCOPE 271
DS_E_PROTECTION_REQUIRED 270
DS_E_TIME_LIMIT_EXCEEDED 271
DS_E_TOO_LATE 244
DS_E_TOO_MANY_OPERATIONS 262
DS_E_TOO_MANY_SESSIONS 262
DS_E_UNABLE_TO_PROCEED 271
DS_E_UNAVAILABLE 271
DS_E_UNAVAILABLE_CRITICAL_EXTENSION 271
DS_E_UNDEFINED_ATTRIBUTE_TYPE 247

DS_E_UNWILLING_TO_PERFORM 271
DS_ENTRIES 269
DS_ENTRY 268
DS_EQUALITY 261
DS_EXT 250
DS_FILE_DESCRIPTOR 272
DS_FILTER_ITEM_TYPE 260, 285
DS_FILTER_ITEMS 259
DS_FILTER_TYPE 259, 285
DS_FILTERS 259
DS_FINAL_SUBSTRING 261
DS_FROM_ENTRY 249, 254, 263
DS_G3_FACSIMILE_DELIVERY 281
DS_G4_FACSIMILE_DELIVERY 281
DS_GREATER_OR_EQUAL 261
DS_HIGH 251
DS_IA5_TERMINAL_DELIVERY 281
DS_IDENTIFIER 259
DS_INDIVIDUAL 310
DS_INFORMATION_TYPE 255
DS_INITIAL_SUBSTRING 261
ds_initialize 127, 138
DS_ITEM_PARAMETERS 259
DS_LESS_OR_EQUAL 261
DS_LIMIT_PROBLEM 266
ds_list 147, 150, 155
DS_LIST_INFO 264
ds_list, DS_C_LIST_RESULT 147, 156
DS_LOCAL_SCOPE 251
DS_LOW 251
DS_MATCHED 249, 265
DS_MAX_OUTSTANDING_OPERATIONS 239
DS_MEDIUM 251
DS_MEMBER_OF_DL 311
DS_MEMBER_OF_GROUP 311
DS_MHS_DELIVERY 281
DS_MODIFICATION_TYPE 255
ds_modify_entry 150
ds_modify_rdn 150
DS_N_ADDRESSES 267
DS_NAME_RESOLUTION_PHASE 266
DS_NEXT_RDN_TO_BE_RESOLVED 266
DS_NO_LIMIT_EXCEEDED 266
DS_NOT 260
DS_NOT_STARTED 266
DS_O_ALIAS 283
DS_O_APPLICATION_ENTITY 283
DS_O_APPLICATION_PROCESS 283
DS_O_COUNTRY 283
DS_O_DEVICE 283
DS_O_DSA 283
DS_O_GROUP_OF_NAMES 283
DS_O_LOCALITY 283
DS_O_ORGANIZATION 283
DS_O_ORGANIZATIONAL_PERSON 283

380 Application Development Guide: Directory Services

DS_O_ORGANIZATIONAL_ROLE 283
DS_O_ORGANIZATIONAL_UNIT 283
DS_O_PERSON 283
DS_O_RESIDENTIAL_PERSON 283
DS_O_TOP 280, 282
DS_OBJECT_CLASS 286
DS_OBJECT_NAME 246, 249, 254, 263, 269
DS_OPERATION_NOT_STARTED 250, 266
DS_OPERATION_PROGRESS 250, 253
DS_OR 260
DS_P_SELECTOR 267
DS_PARAMETERS 284, 286
DS_PARTIAL_OUTCOME_QUALIFIER 263, 269
DS_PATTERN_MATCH 311
DS_PERFORMER 248
DS_PERM_TYPE 310
DS_PHYSICAL_DELIVERY 281
DS_POSTAL_ADDRESS 284
DS_PREFER_CHAINING 251
DS_PRESENT 261
DS_PRIORITY 251
DS_PROBLEM 244, 247, 256, 265, 270, 273
DS_PROCEEDING 266
DS_RDN 253, 263
DS_RDNS_RESOLVED 253
ds_read 127

completion status 147
data structure 111
distinguished name 132
DS_C_READ_RESULT 147, 148
functions implemented 143
input 111
input parameters 102
name parameter 109
OM class returned 147
output 148
parameter to 112
performing a read operation 147
pointer returned 121
private objects 145
public object 145

code example 99
read parameter 131
read result 148
reading an entry 144
returning a pointer 120
selection parameter 146
summary of OM calls 128

ds_receive_result 137
DS_REMOVE_ATTRIBUTE 256
ds_remove_entry 150
DS_REQUESTOR 272
DS_S_SELECTOR 267
DS_SCOPE_OF_REFERRAL 251
ds_search 147, 150

DS_C_SEARCH_RESULT 147

ds_search (continued)
filter 150

DS_SELECT_ALL_TYPES 237
DS_SELECT_ALL_TYPES_AND_VALUES 238
DS_SELECT_NO_ATTRIBUTES 237
DS_SERVICE_PKG 241
ds_shutdown 140
DS_SIZE_LIMIT 251
DS_SIZE_LIMIT_EXCEEDED 267
DS_SUBORDINATES 263
DS_SUBSTRINGS 261
DS_SUCCESS 239, 241
DS_T_SELECTOR 267
DS_TARGET_OBJECT 253
DS_TELEPHONE_DELIVERY 281
DS_TELEPHONE_NUMBER 284
DS_TELETEX_DELIVERY 281
DS_TELETEX_TERMINAL 286
DS_TELEX_DELIVERY 281
DS_TIME_LIMIT 251
DS_TIME_LIMIT_EXCEEDED 252, 267
DS_TYPES_AND_VALUES 255
DS_TYPES_ONLY 255
DS_UNAVAILABLE_CRITICAL_EXTENSIONS 267
ds_unbind 141
ds_unbind, automatic connection management 141
DS_UNCORRELATED_LIST_INFO 264
DS_UNCORRELATED_SEARCH_INFO 269
DS_UNEXPLORED 267
ds_version 138

Basic Directory Contents Package 138
Directory Service Package 138
Global Directory Service Extension Package 138
MHS Directory User Package 138
negotiating features 118
package 118
xds.h header file 138
xdsbdcp.h header file 138
xdsgds.h header file 138
xdsmdup.h header file 138
xmhp.h header file 138
xmsga.h header file 138

DS_VIDEOTEX_DELIVERY 281
DSA (Directory System Agent)

See Directory System Agent (DSA)
DSX_C_GDS_ACL 317
DSX_C_GDS_CONTEXT 318
DSX_C_GDS_SESSION 321
DSX_DIR_ID 321
DSX_DONT_STORE 318
DSX_DUA_CACHE 319
DSX_DUAFIRST 318
DSX_NORMAL_CLASS 318
DSX_PASSWORD 321
DSX_PRIV_CLASS 319

 Index 381

DSX_RESIDENT_CLASS 319
DSX_USEDSA 319

E
EIT (encoded information types)

See encoded information types (EIT)
elements 338
encoded

information
encoded information type (EIT) 298
type 298

encoded information types (EIT) 298
encoding 339
entries 268, 269
entry

information 254
selection 254

modification 255
modification, list 256

Enum(*) 325
enumerated type 123
enumeration 334, 340
equality 261
example.c 159
exclusions 334
extensions 250, 258
external 348

F
facsimile telephone number 284
federated DCE namespace 9, 12
filter 150, 259

item 259
item type 260
type 259

final substring 261
from entry 249, 254, 263

G
GDS (Global Directory Service)

See Global Directory Service (GDS)
Global Directory Service (GDS)

context 318
DUA 321
session 321
standard schema 87

attribute table 92
naming attributes 88
Object Class Table 89
Structure Rule Table (SRT) 87
structured object classes 88

XDS Application Programming Interface 77
XOM Application Programming Interface 77

Global Directory Service Extension Package 119
glossary 355
greater or equal 261

H
high priority 251

I
identifier 259
indirect reference 349
information type 255
initial substring 261
integer

OM 335, 340
interface

to C 325
intermediate data type 332
ISO (International Organization for

Standardization) 348
item

filter 260
parameters 259

L
length-unspecified 338
less than or equal to, XDS 261
library error 261
limit problem 266
list

info 262, 264
info item 263
result 264

local scope 251
local-string 333
low priority 251

M
management domain (MD) 307
matched 249
max outstanding operations 239
MD (management domain)

See management domain (MD)
MDUP (MHS Directory User Package)

See MHS Directory User Package (MDUP)
medium priority 251
message handling system 297
message handling system (MHS) 297
message store (MS) 299
message transfer agent (MTA) 297
metacharacters 27

in CDS 27
in DNS 27
in GDS 27

382 Application Development Guide: Directory Services

MH class, OR-ADDRESS 300
MH_T_ADMD_NAME 302
MH_T_COMMON_NAME 302, 303
MH_T_DOMAIN_TYPE_1 303
MH_T_DOMAIN_TYPE_2 303
MH_T_DOMAIN_TYPE_3 303
MH_T_DOMAIN_TYPE_4 303
MH_T_DOMAIN_VALUE_1 303
MH_T_DOMAIN_VALUE_2 303
MH_T_DOMAIN_VALUE_3 303
MH_T_DOMAIN_VALUE_4 303
MH_T_GENERATION 303
MH_T_GIVEN_NAME 303
MH_T_INITIALS 303
MH_T_ISDN_NUMBER 303
MH_T_ISDN_SUBADDRESS 303
MH_T_NUMERIC_USER_IDENTIFIER 304
MH_T_ORGANIZATION_NAME 304
MH_T_ORGANIZATIONAL_UNIT_NAME_1 304
MH_T_ORGANIZATIONAL_UNIT_NAME_2 304
MH_T_ORGANIZATIONAL_UNIT_NAME_3 304
MH_T_ORGANIZATIONAL_UNIT_NAME_4 304
MH_T_POSTAL_ADDRESS_DETAILS 304
MH_T_POSTAL_ADDRESS_IN_FULL 304
MH_T_POSTAL_ADDRESS_IN_LINES 304
MH_T_POSTAL_CODE 304
MH_T_POSTAL_COUNTRY_NAME 304
MH_T_POSTAL_DELIV_SYSTEM_NAME 305
MH_T_POSTAL_DELIVERY_POINT_NAME 305
MH_T_POSTAL_GENERAL_DELIV_ADDRESS 305
MH_T_POSTAL_LOCALE 305
MH_T_POSTAL_OFFICE_BOX_NUMBER 305
MH_T_POSTAL_OFFICE_NAME 305
MH_T_POSTAL_OFFICE_NUMBER 305
MH_T_POSTAL_ORGANIZATION_NAME 305
MH_T_POSTAL_PATRON_DETAILS 305
MH_T_POSTAL_PATRON_NAME 305
MH_T_POSTAL_STREET_ADDRESS 305
MH_T_PRESENTATION_ADDRESS 305
MH_T_PRMD_NAME 306
MH_T_SURNAME 306
MH_T_TERMINAL_IDENTIFIER 306
MH_T_TERMINAL_TYPE 306
MHS (message handling system)

See message handling system (MHS)
MHS Directory User Package 119
MHS Directory User Package (MDUP) 297
Mnemonic O/R Address 308
modification parameter 335
modification type 255
MS (message store)

See message store (MS)
MTA (message transfer agent)

See message transfer agent (MTA)

N
name 264

error 265
maximum name sizes 29
naming rules 25
resolution phase 266
valid characters 25

namespace, federated DCE 9, 12
naming attributes 88
network addresses 267
no limit exceeded 266
Numeric O/R Address 308

O
O/R (originator/recipient)

See originator/recipient (O/R)
object 340

accessing in federated DCE namespace 12
class 347
class hierarchy 112
directory 78
dynamically defined static public 172
encoding 347
identifier 335
name

directory entry 246
distinguished, XDS 254
target 263
XDS attribute 249, 269

object type 123
OM 97

syntax 97
OM attribute type 97
OM class 111
partially defined static public 171
predefined static public 170
private

attribute type 340
declaration 335
XOM 337

public
attribute type 340
declaration 335
description 102
descriptor 333

representation of public object 103
selected attribute types 142
selected object classes 142
subordinate 263
subordinate object 126
value 97

object class attribute 81
Object Class Table (OCT)

acronyms of super class 89

 Index 383

Object Class Table (OCT) (continued)
class inheritance 89
description 89
mandatory attributes 91
optional attributes 91
partial representation of the OCT 89

object entry
class attribute 81
directory 81
example of directory entry 81
reading an entry 144

object identifier
directory 80
Object Class Table 90
OM class 100
XDS Directory Service Package 80

object OM class inheritance 112
Object(*) syntax template 325
OCT (Object Class Table)

See Object Class Table (OCT)
octet

aligned encoding 349
string 326

OM attribute types
mandatory 100
optional 100

OM class
abstract 112
concrete 112
defining 115
hierarchy 112
inheritance 112
initial value 116
mapping the class definition 98
object identifier 100
OM attribute 116
value length 116
value number 116
value syntax 116

OM objects 97
OM value syntax 142
OM_C_SERVICE_ERROR 270
om_copy_value() 128, 342
om_copy() 128, 342
om_create() 128, 342
om_decode() 128, 342
om_delete 110
om_delete() 128, 342
OM_descriptor 125
om_encode() 128, 342
OM_ENCODING_INVALID 344
OM_EXPORT 133, 134, 144
OM_FUNCTION_DECLINED 344
OM_FUNCTION_INTERRUPTED 344
om_get 109, 110, 111, 120, 121, 128, 130, 131

exclusions parameter 130

om_get (continued)
extracting data from DS_C_READ_RESULT 131
input parameters 130

om_get() 128, 342
OM_IMPORT 133, 134
om_instance() 128, 342
OM_MEMORY_INSUFFICIENT 344
OM_NETWORK_ERROR 344
OM_NO_SUCH_CLASS 344
OM_NO_SUCH_EXCLUSION 344
OM_NO_SUCH_MODIFICATION 344
OM_NO_SUCH_OBJECT 344
OM_NO_SUCH_RULES 344
OM_NO_SUCH_SYNTAX 344
OM_NO_SUCH_TYPE 344
OM_NO_SUCH_WORKSPACE 344
OM_NOT_AN_ENCODING 344
OM_NOT_CONCRETE 344
OM_NOT_PRESENT 344
OM_NOT_PRIVATE 344
OM_NOT_THE_SERVICES 344
OM_NULL_DESCRIPTOR 135
OM_OID_DESC 134
OM_PERMANENT_ERROR 344
OM_POINTER_INVALID 344
om_put() 128, 342
om_read() 128, 342
om_remove() 128, 342
OM_S_BOOLEAN 325
OM_S_ENCODING 339
OM_S_ENUMERATION 329, 339
OM_S_GENERAL_STRING 339
OM_S_GENERALISED_TIME_STRING 339
OM_S_GRAPHIC_STRING 339
OM_S_IA5_STRING 339
OM_S_INTEGER 325, 339
OM_S_NULL 325, 339
OM_S_NUMERIC_STRING 339
OM_S_OBJECT_DESCRIPTOR_STRING 339
OM_S_OBJECT_IDENTIFIER_STRING 339
OM_S_OCTET_STRING 339
OM_S_PRINTABLE_STRING 339
OM_S_TELETEX_STRING 339
OM_S_UTC_TIME_STRING 339
OM_S_VIDEOTEX_STRING 339
OM_S_VISIBLE_STRING 339
OM_sint 332
OM_sint16 332
OM_sint32 332
OM_STRING 135, 338
OM_SUCCESS 344
OM_SYSTEM_ERROR 344
OM_TEMPORARY_ERROR 344
OM_TOO_MANY_VALUES 344
OM_uint 332

384 Application Development Guide: Directory Services

OM_uint16 332
OM_uint32 332
OM_VALUES_NOT_ADJACENT 345
om_write() 128, 342
OM_WRONG_VALUE_LENGTH 345
OM_WRONG_VALUE_MAKEUP 345
OM_WRONG_VALUE_NUMBER 345
OM_WRONG_VALUE_POSITION 345
OM_WRONG_VALUE_SYNTAX 345
OM_WRONG_VALUE_TYPE 345
Open Systems Interconnection (OSI)

application contexts 282
application entity 245, 281
communications 245
presentation address 281

operation
Directory service 233
not started 250, 266
performer 248
progress 250, 253, 265

OR-NAME 310
originator/recipient (O/R) 299
OSI (Open Systems Interconnection)

See Open Systems Interconnection (OSI)

P
package 117

Basic Directory Contents 117, 118, 138
closure 120
Directory Service 117, 138
ds_version 118
Global Directory Service 117
Global Directory Service Extension 119, 138
MHS Directory User 117, 119, 138
negotiating features 118
Strong Authentication 119
Strong Authentication Package 117

partial outcome qualifier 263, 266, 269
postal address 284
Postal O/R Address 308
preface xvii
prefer chaining 251
presentation

address 267
selector 267

priority 251
private management domain 302
private management domain, PRMD 302
private object

comparison with public objects 111
XDS, description 111

private representation 337
PRMD 302
public object 102

client-generated 109

public object (continued)
comparison with private objects 111
creating 145
dynamically defined static 172
partially defined static 171
predefined static 170
representation using descriptor list 103
service-generated 109

R
RDN (Relative Distinguished Name)

See ?
read result 148, 268
referral 240, 268
relative distinguished name (RDN)

determining sequence 253
distinguishing an entry 84
relationship to AVA 84
resolving 253
uniqueness of 84

relative name 268
remove attribute 256
requestor 272
return codes 337, 343
rules

object encoding attribute 348

S
scope of referral

XDS attribute 251
search

criterion 285
guide 286
info 268
result 269

security
error, OM class 270

selected attribute type 275
sequence 329
service

controls 251, 318
error 270
package 241

service controls 319
service interface data types 124
session 140, 233, 271

DC_C_SESSION 140
DS_DEFAULT_SESSION 140
multiple concurrent 140
selector 267

set 329
size limit

exceeded 267
maximum objects 251

 Index 385

skills, for audience xvii
standards

Directory 233
Directory OM classes 241

status
directory service 233
DS_status, return value 239

storage
management, XOM API 121

string
length, XOM 338
octet and bit 326
syntax 340

string type
OM attribute 124

string(*) syntax template 326
Strong Authentication Package 119
structure of book xix
Structure Rule Table (SRT)

GDS standard schema 87
naming attributes 88
structured object classes 88

structured object classes 88
structured postal address 308
subclass 282
substring 261
superclass

DS_O_TOP 282
OM 283

superclasses, OM 291
syntax template 122
system error 272

T
target object 253
teldir.c 170
teldir2.c 217
teletex terminal identifier 286
telex number 287
Terminal O/R Address 309
terminology

in this book xix
time limit

exceeded 252, 267
XDS attribute 251

transfer syntax 93
ASN.1 93

transport selector 267
type

only 255
values 255

U
unavailable critical extensions 267
uncorrelated

list info 264
search info 269

unexplored
directory attribute 267

unstructured postal address 308
update error 273

V
value 334, 340

length 341
position 341

W
workspace 97, 120, 341

X
X.500 Directory Information Model 78
X.500, naming concepts 83
X121_ADDRESS 306
XDS API 77
XDS Application Interface 137

acl.c 159
acl.h 159
automatic connection management 141
Basic Directory Contents Package 117, 138
C naming conventions 100
client-generated public objects 109
context 142
data types for function calls 127
DC_C_SESSION 140
Directory Class Definitions 142
Directory Connection Management Functions 137,

140
directory modify operations 150
Directory operation functions 143
directory read operations 143
directory search operations 150
Directory Service 117
Directory Service functions 137
Directory Service Package 138
ds_abandon 137
ds_add_entry 151, 155
ds_bind 127, 140
DS_C_CONTEXT 142
DS_C_LIST_RESULT 156
ds_compare 143, 147
DS_DEFAULT_SESSION 140
ds_initialize 127, 138
ds_list 147, 150, 151, 155
ds_read

code example 147

386 Application Development Guide: Directory Services

XDS Application Interface (continued)
ds_read (continued)

completion status 147
data structure 111
distinguished name 132
functions implemented 143
input 111
input parameters 102
name parameter 109
OM class returned 147
output 148
parameter to 112
pointer returned 121
private objects 145
public object 99, 145
read parameter 131
returning a pointer 120
selection parameter 146
summary of OM calls 128

ds_receive_result 137
ds_remove_entry 151
ds_search 147, 150
ds_shutdown 140
ds_unbind 141
ds_version 138
dynamically defined static public objects 172
example.c 159
example.h 159
filter 150
Global Directory Service 117
Global Directory Service Extension Package 138
MHS Directory User Package 117, 138
modifying entries 151
multiple concurrent sessions 140
partially defined static public objects 171
performing a read operation 147
predefined static public objects 170
private objects 111
programming guidelines 159
sample programs 159, 170
session 140
Strong Authentication Package 117
teldir.c 159, 170
XDS Interface Class Definitions 141
XDS Interface Management Functions 137
xds.h header file 138
xdsbdcp.h header file 138
xdsgds.h header file 138
xdsmdup.h header file 138
xmhp.h header file 138
xmsga.h header file 138

XDS Application Programming Interface 77
XDS Directory Service Package, object identifier 80
XDS Interface Class Definitions 141
XDS Interface Management Functions 137

xds.h 241
xdsbdcp.h 275
XOM API 77
XOM Application Interface

abstract OM class 112
ASN.1 100
C naming conventions 100
client-generated public objects 109
data types for function calls 127
defining an OM class 115
description 97
enumerated type 123
header files 133
initializing descriptors 126
macros 133, 144
object identifier 100
object type 123
OM

attributes 97
class 111
class inheritance 112
concrete class 112
functions 128
objects 97

OM attribute type 97
OM syntax 97
om_copy 120
om_copy_value() 128
om_copy() 128
om_create() 128
om_decode() 128
om_delete 110
om_delete() 128
OM_descriptor data structure 125
OM_descriptor structure 102
om_encode() 128
OM_EXPORT macro 133, 134, 144
om_get 109, 110, 111, 120, 121, 128, 130, 131
om_get () 130
om_get() 128
OM_IMPORT macro 133, 134
om_instance() 128
OM_NULL_DESCRIPTOR macro 135
OM_OID_DESC macro 134
om_put() 128
om_read() 128
om_remove() 128
OM_STRING macro 135
om_write() 128
package closure 120
private objects 111
public object

creating 145
description 102
representation of 103

return codes 133

 Index 387

XOM Application Interface (continued)
service interface data types 124
storage management 121
string type 124
syntax template 122
using functions 129
value 97
workspace 97, 120
xom.h header file 133

XOM Application Programming Interface 77
xom.h header file 133

388 Application Development Guide: Directory Services

 Readers' Comments

z/OS
DCE
Application Development Guide:
Directory Services

Publication No. SC24-5906-00

You may use this form to report errors, to suggest improvements, or to express your opinion on
the appearance, organization, or completeness of this book.

IBM may use or distribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you.

 Note

Report system problems to your IBM representative or the IBM branch office serving you.
U.S. customers can order publications by calling the IBM Software Manufacturing Solutions at
1-800-879-2755.

In addition to using this postage-paid form, you may send your comments by:

Would you like a reply? YES NO If yes, please tell us the type of response you prefer.

 Electronic address:

 FAX number:

 Mail: (Please fill in your name and address below.)

Name Address

Company or Organization

Phone No.

Date:

FAX 1-607-752-2327 Internet pubrcf@vnet.ibm.com
IBMLink GDLVME(PUBRCF)

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
SC24-5906-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Department G60
International Business Machines Corporation
Information Development
1701 North Street
ENDICOTT NY 13760-5553

Fold and Tape Please do not staple Fold and Tape

SC24-5906-00

IBM

Program Number: 5694-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC24-59H6-HH

S
pine inform

ation:

IB
M

z/O
S D

C
E

A
pplication D

evelopm
ent G

uide: D
irectory Services

	Contents
	Figures
	Tables
	About This Book
	Who Should Use This Book
	DCE Application Development Environment
	Unsupported OSF DCE Functions
	OSF DCE Programming Interfaces

	How This Book Is Organized
	Terminology Used in This Book
	Conventions Used in This Book
	Where to Find More Information
	Softcopy Publications
	Internet Sources
	Using LookAt to Look up Message Explanations
	Accessing Licensed Books on the Web

	Part 1. Using the DCE Directory APIs
	Chapter 1. DCE Directory Service Overview
	Using This Book
	Directory Service Tools

	Using the DCE Directory Service
	DCE Directory Service Concepts
	Structure of DCE Names
	DCE Name Prefixes
	Names of Cells
	GDS Cell Names
	DNS Cell Names
	Discovering the Name of Your Local Cell

	CDS Names
	GDS Names
	Junctions in DCE Names
	Application Names

	The Federated DCE Namespace
	The GDS Namespace
	An Example GDS Namespace
	The GDS Schema

	The CDS Namespace
	The CDS Schema
	CDS Entries and CDS Attributes

	Other Namespaces
	Access to Objects in the Federated DCE Namespace

	Programming Interfaces to the DCE Directory Service
	The XDS Interface
	The RPC Name Service Interface
	Namespace Junction Interfaces

	Part 2. CDS Application Programming
	Chapter 2. Programming in the CDS Namespace
	Initial Cell Namespace Organization
	The Cell Profile
	The LAN Profile
	 The CDS Clearinghouse
	The Hosts Directory
	The Subsystems Directory
	The /: DFS Alias
	DFS and Security Service Junctions

	Recommended Use of the CDS Namespace
	Storing Data in CDS Entries
	Access Control for CDS Entries
	Creating ACLs
	Manipulating ACLs
	Initializing ACLs
	Namespace ACLs at Cell Configuration

	Valid Characters and Naming Rules for CDS
	Metacharacters
	Additional Rules
	Maximum Name Sizes
	Valid Characters for GDS Naming Attributes
	T61 Syntax

	Use of Object Identifiers

	Chapter 3. XDS and the DCE Cell Namespace
	Introduction to Accessing CDS with XDS
	Using the Reference Material in this Chapter
	What You Cannot Do with XDS
	What Must Be Set Up

	XDS Objects
	Object Attributes
	Interface Objects and Directory Objects
	Directory Objects and Namespace Entries
	Values That an Object Can Contain
	Building a Name Object
	A Complete Object
	Class Hierarchy
	Class Hierarchy and Object Structure
	Public and Private Objects and XOM
	XOM Objects and XDS Library Functions

	Accessing CDS Using the XDS Step-by-Step Procedure
	Reading and Writing Existing CDS Entry Attributes Using XDS
	Significance of Typed and Untyped Entry Names
	Static Declarations
	Other Necessary Objects for ds_read()
	Miscellaneous Declarations
	The Main Program
	Reading a CDS Attribute
	Handling the Result Object
	Representation of Object Values
	Extracting an Attribute Value

	Creating New CDS Entry Attributes
	Creating New Attributes
	Coding Examples

	Object-Handling Techniques
	Using XOM to Access CDS
	Dynamic Creation of Objects

	XDS/CDS Object Recipes
	Input XDS/CDS Object Recipes
	Input Object Classes for XDS/CDS Operations
	XDS/CDS Object Types
	The DS_C_ATTRIBUTE_LIST Object
	The DS_C_ATTRIBUTE Object
	Example Definition of a DS_C_ATTRIBUTE_LIST Object
	The DS_C_DS_DN Object
	The DS_C_DS_RDN Object
	The DS_C_AVA Object
	Example Definition of a DS_C_DS_DN Object
	The DS_C_ENTRY_MOD_LIST Object
	The DS_C_ENTRY_MOD Object
	Example Definition of a DS_C_ENTRY_MOD_LIST Object
	The DS_C_ENTRY_INFO_SELECTION Object
	Example Definition of a DS_C_ENTRY_INFO_SELECTION Object

	 Attribute and Data Type Translation

	Part 3. GDS Application Programming
	Chapter 4. GDS API: Concepts and Overview
	Directory Service Interfaces
	The X.500 Directory Information Model
	Directory Objects
	Attribute Types
	Object Identifiers
	Object Entries

	X.500 Naming Concepts
	Distinguished Names
	Relative Distinguished Names and Attribute Value Assertions
	Multiple AVAs
	Aliases
	Name Verification

	Schemas
	The GDS Standard Schema
	The Structure Rule Table
	The Object Class Table
	The Attribute Table
	Defining Subclasses

	Abstract Syntax Notation 1
	ASN.1 Types
	Basic Encoding Rules

	Chapter 5. XOM Programming
	OM Objects
	OM Object Attributes
	Object Identifiers
	C Naming Conventions
	Public Objects
	Descriptor Lists
	Building the Distinguished Name as a Public Object
	Client-Generated and Service-Generated Public Objects

	Private Objects
	Object Classes
	OM Class Hierarchy and Inheritance Properties
	Abstract and Concrete Classes

	Packages
	The Directory Service Package
	The Basic Directory Contents Package
	The Strong Authentication Package
	The Global Directory Service Package
	The MHS Directory User Package
	Package Closure

	Workspaces
	Storage Management
	OM Syntaxes for Attribute Values
	Enumerated Types
	Object Types
	Strings
	Other Syntaxes

	Service Interface Data Types
	The OM_descriptor Data Type
	Data Types for XDS API Function Calls
	Data Types for XOM API Calls

	OM Function Calls
	Summary of OM Function Calls
	Using the OM Function Calls
	Required Input Parameters
	Extracting the Data from the Read Result
	Return Codes

	XOM API Header Files
	XOM Type Definitions and Symbolic Constant Definitions
	XOM API Macros
	The OM_EXPORT and OM_IMPORT Macros
	The OM_OID_DESC Macro
	The OM_NULL_DESCRIPTOR Macro
	The OM_STRING Macro

	Chapter 6. XDS Programming
	XDS Interface Management Functions
	The ds_initialize() Function Call
	The ds_version() Function Call
	The ds_shutdown() Function Call

	Directory Connection Management Functions
	A Directory Session
	The ds_bind() Function Call
	The ds_unbind() Function Call
	Automatic Connection Management

	XDS Interface Class Definitions
	The DS_C_CONTEXT Parameter

	Directory Class Definitions
	Directory Operation Functions
	Directory Read Operations
	Reading an Entry from the Directory
	Step 1: Export Object Identifiers for Required Directory Classes and Attributes
	Step 2: Declare Local Variables
	Step 3: Build Public Objects
	Step 4: Create an Entry-Information-Selection Parameter
	Step 5: Perform the Read Operation

	Directory Search Operations
	Directory Modify Operations
	Modifying Directory Entries
	Step 1: Export Object Identifiers for Required Directory Classes and Attributes
	Step 2: Declare Local Variables
	Step 3: Build Public Objects
	Step 4: Create Descriptor Lists for Attributes
	Step 5: Perform the Operations

	Return Codes

	Chapter 7. Example Application Programs
	General Programming Guidelines
	The example.c Program
	The example.c Code
	Error Handling

	The teldir.c Program
	Predefined Static Public Objects
	Partially Defined Static Public Objects
	Dynamically Defined Public Objects
	Main Program Procedural Steps
	The teldir.c Code

	Chapter 8. Using Threads with the XDS/XOM API
	Overview of Example Threads Program
	User Interface
	Input File Format
	Program Output
	Prerequisites

	Description of Thradd Example Program
	Detailed Description of Thread Specifics
	The thradd.c Code
	The thradd.h Header File

	Chapter 9. XDS/XOM Convenience Routines
	String Handling
	Strings Representing GDS Attribute Information
	Strings Representing Structured GDS Attribute Information
	Strings Representing a Structured GDS Attribute Value
	Strings Representing a Distinguished Name
	Strings Representing Expressions
	Examples of strings handled by omX_string_to_object()
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9
	Example 10
	Example 11

	Examples of strings returned by omX_object_to_string()
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	The teldir2.c Program
	The teldir2.c Code

	Part 4. XDS/XOM Supplementary Information
	Chapter 10. XDS Interface Description
	XDS Conformance to Standards
	The XDS Functions
	The XDS Negotiation Sequence

	The session Parameter
	The context Parameter
	The XDS Function Arguments
	Attribute and Attribute Value Assertion
	The Entry-Information-Selection Parameter
	The name Parameter

	XDS Function Call Results
	The invoke-id Parameter
	The result Parameter
	The DS_status Return Value

	Synchronous Operations
	Security and XDS
	Other Features of the XDS Interface
	Automatic Connection Management
	Automatic Continuation and Referral Handling

	Chapter 11. XDS Class Definitions
	Introduction to OM Classes
	XDS Errors
	OM Class Hierarchy
	DS_C_ABANDON_FAILED
	DS_C_ACCESS_POINT
	DS_C_ADDRESS
	DS_C_ATTRIBUTE
	DS_C_ATTRIBUTE_ERROR
	DS_C_ATTRIBUTE_LIST
	DS_C_ATTRIBUTE_PROBLEM
	DS_C_AVA
	DS_C_COMMON_RESULTS
	DS_C_COMMUNICATIONS_ERROR
	DS_C_COMPARE_RESULT
	DS_C_CONTEXT
	DS_C_CONTINUATION_REF
	DS_C_DS_DN
	DS_C_DS_RDN
	DS_C_ENTRY_INFO
	DS_C_ENTRY_INFO_SELECTION
	DS_C_ENTRY_MOD
	DS_C_ENTRY_MOD_LIST
	DS_C_ERROR
	DS_C_EXT
	DS_C_FILTER
	DS_C_FILTER_ITEM
	DS_C_LIBRARY_ERROR
	DS_C_LIST_INFO
	DS_C_LIST_INFO_ITEM
	DS_C_LIST_RESULT
	DS_C_NAME
	DS_C_NAME_ERROR
	DS_C_OPERATION_PROGRESS
	DS_C_PARTIAL_OUTCOME_QUAL
	DS_C_PRESENTATION_ADDRESS
	DS_C_READ_RESULT
	DS_C_REFERRAL
	DS_C_RELATIVE_NAME
	DS_C_SEARCH_INFO
	DS_C_SEARCH_RESULT
	DS_C_SECURITY_ERROR
	DS_C_SERVICE_ERROR
	DS_C_SESSION
	DS_C_SYSTEM_ERROR
	DS_C_UPDATE_ERROR

	Chapter 12. Basic Directory Contents Package
	Selected Attribute Types
	Selected Object Classes
	OM Class Hierarchy
	DS_C_FACSIMILE_TELEPHONE_NUMBER
	DS_C_POSTAL_ADDRESS
	DS_C_SEARCH_CRITERION
	DS_C_SEARCH_GUIDE
	DS_C_TELETEX_TERMINAL_IDENTIFIER
	DS_C_TELEX_NUMBER

	Chapter 13. Strong Authentication Package
	SAP Attribute Types
	Strong Authentication Package Object Classes
	OM Class Hierarchy
	DS_C_ALGORITHM_IDENT
	DS_C_CERT
	DS_C_CERT_LIST
	DS_C_CERT_PAIR
	DS_C_CERT_SUBLIST
	DS_C_SIGNATURE

	Chapter 14. MHS Directory User Package
	MDUP Attribute Types
	MDUP Object Classes
	MDUP OM Class Hierarchy
	MH_C_OR_ADDRESS
	MH_C_OR_NAME
	DS_C_DL_SUBMIT_PERMS

	Chapter 15. Global Directory Service Package
	GDSP Attribute Types
	GDSP Object Classes
	GDSP OM Class Hierarchy
	DSX_C_GDS_ACL
	DSX_C_GDS_ACL_ITEM
	DSX_C_GDS_CONTEXT
	DSX_C_GDS_SESSION

	Chapter 16. Distributed Management Environment Support
	DME Attribute Types
	DME Object Classes

	Chapter 17. Information Syntaxes
	Syntax Templates
	Syntaxes
	Strings
	Representation of String Values
	Relationship to ASN.1 Simple Types
	Relationship to ASN.1 Useful Types
	Relationship to ASN.1 Character String Types
	Relationship to ASN.1 Type Constructors

	Chapter 18. XOM Service Interface
	Standards Conformance
	XOM Data Types
	OM_boolean
	OM_descriptor
	OM_enumeration
	OM_exclusions
	OM_integer
	OM_modification
	OM_object
	OM_object_identifier
	C Declaration of Object Identifiers
	Use of Object Identifiers in C

	OM_private_object
	OM_public_object
	OM_return_code
	OM_string
	OM_syntax
	OM_type
	OM_type_list
	OM_value
	OM_value_length
	OM_value_position
	OM_workspace

	XOM Functions
	XOM Return Codes

	Chapter 19. Object Management Package
	Class Hierarchy
	Class Definitions
	OM_C_ENCODING
	OM_C_EXTERNAL
	OM_C_OBJECT

	Appendix A. Notices
	Trademarks
	Programming Interface Information

	Glossary
	Bibliography
	z/OS DCE Publications
	Overview
	Planning
	Administration
	Application Development
	Reference

	z/OS SecureWay® Security Server Publications
	Tool Control Language Publication
	IBM C/C++ Language Publication
	z/OS DCE Application Support Publications
	Encina Publications

	Index

