

Software Delivery IBM

Standard Packaging Rules for
MVS-Based Products

 SC23-3695-09

Software Delivery IBM

Standard Packaging Rules for
MVS-Based Products

 SC23-3695-09

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page ix.

| Tenth Edition, September 1999

| This book replaces the previous edition, SC23-3695-08, which is now obsolete. Significant changes or additions to text and illus-
trations are indicated by a vertical line to the left of the change.

This edition applies to the following licensed programs:

� OS/390 Version 1, program number 5645-001

� OS/390 Version 2, program number 5647-A01

� System Modification Program Extended (SMP/E) Release 8.1, program number 5668-949

Order IBM publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked
at the address given below.

IBM welcomes your comments. A form for readers' comments appears at the back of this publication. If the form has been
removed, address your comments to:

 IBM Corporation
Owner, Standard Rules for Packaging MVS-Based Products
Department 31RA, Mail Station P526
522 South Road

 Poughkeepsie, NY 12601-5400
United States of America

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

� Title and order number of this book
� Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1986, 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . ix
Trademarks . ix

About This Book . xi
How this Book Is Organized . xi
Conventions for Rules, Restrictions, and Recommendations xii

Summary of Changes . xv
Revision SC23-3695-09 (September 1999) . xv
Revision SC23-3695-08 (March 1999) . xv
Revision SC23-3695-07 (March 1998) . xvii
Revision SC23-3695-06 (September 1997) . xvii
Revision SC23-3695-05 (March 1997) . xvii

Chapter 1. Introduction to MVS Product Processes 1
1.1 What Is Product Packaging? . 1
1.2 Evolution of Product Packaging . 1
1.3 Getting Products and Service from Development Libraries onto Users'

Systems . 2
1.3.1 Packaging and Distributing the SYSMODs 2
1.3.2 Writing the Installation Documentation . 4
1.3.3 Installing the SYSMODs . 5

1.4 A Simple Packaging Example . 7

Chapter 2. Assessing Your Product's Packaging Requirements and
Considerations . 9

Chapter 3. Rules for Packaging Methods . 11
3.1 Relative File Tapes . 11

3.1.1 Format and Contents of the RELFILE Tape 12
3.1.2 Creating the RELFILE Tape . 15

3.2 Inline Data . 15
3.2.1 Example of Inline Element Updates . 16
3.2.2 Example of Inline JCLIN Data . 16

3.3 Indirect Libraries . 17
3.3.1 Example of a RELFILE Tape with JCLIN Data in an Indirect Library . 18
3.3.2 Example of Using Indirect Libraries Instead of a RELFILE Tape 19

Chapter 4. SYSMOD Types and Relationships 21
4.1 Types of SYSMODs . 21

4.1.1 Functions . 21
4.1.2 PTFs . 23
4.1.3 APAR Fixes . 24
4.1.4 USERMODs . 24

4.2 Defining SYSMOD Relationships . 24
4.2.1 Conditional and Unconditional Relationships 25
4.2.2 Hierarchy of SYSMOD Types . 25
4.2.3 Specific SYSMOD Relationships . 26
4.2.4 Coexisting SYSMODs . 29

 Copyright IBM Corp. 1986, 1999 iii

Chapter 5. Fundamental Packaging Considerations 33
5.1 Installation Methods . 33
5.2 Evaluating SYSMOD Relationships . 35
5.3 Adding FMIDs . 36
5.4 Record Length, Record Format, and Block Size Requirements 36
5.5 Shared Libraries . 39
5.6 Avoiding UCLIN . 40

Chapter 6. Elements and Load Modules . 43
6.1 General Packaging Rules, Restrictions, and Recommendations for

Elements . 44
6.2 Element Ownership . 45
6.3 Using Aliases for Elements . 45
6.4 Data Element Types . 45
6.5 Hierarchical File System (HFS) Element Types 47
6.6 Shared Load Modules . 48
6.7 Sample JCL and Data . 49
6.8 Language-Sensitive Elements . 52

Chapter 7. Using MCS Statements to Define Products 53
7.1 ++FUNCTION Statement . 54

7.1.1 Specifying the SYSMOD ID (sysmod_id) 54
7.1.2 Identifying the REWORK Date (REWORK) 54
7.1.3 Specifying the Prefix for RELFILE Data Sets (RFDSNPFX) 54
7.1.4 Specifying Copyright Information . 55

7.2 ++VER Statement . 56
7.2.1 General Packaging Rules (++VER) . 56
7.2.2 Identifying the SREL . 57
7.2.3 Identifying a SYSMOD's Base Function (FMID) 57
7.2.4 Deleting SYSMODs (DELETE) . 57
7.2.5 Specifying Mutually Exclusive SYSMODs (NPRE) 60
7.2.6 Specifying Prerequisite Relationships (PRE) 60
7.2.7 Superseding SYSMODS (SUP) . 61
7.2.8 Defining Ownership (VERSION) . 64

7.3 ++IF Statement . 67
7.3.1 Specifying the Function to which the Condition Applies (FMID) 67
7.3.2 Specifying Requisite Conditions (REQ) 67

7.4 ++HOLD Statement . 70
7.5 ++element Statement . 71

Chapter 8. Using MCS Statements to Manipulate Elements and Load
Modules . 73

8.1 Moving Elements and Load Modules (++MOVE) 75
8.2 Renaming Load Modules (++RENAME) . 78
8.3 Deleting Load Modules (++DELETE) . 81
8.4 Deleting Elements from Libraries and SMP/E Data Sets 83
8.5 Enabling Load Module Changes at the CSECT Level (++MOD CSECT) . . 84
8.6 Defining Ownership of Elements (++element VERSION) 84

iv MVS Packaging Rules

Chapter 9. Using JCLIN . 87
9.1 Providing JCLIN Data for Function SYSMODs 87
9.2 When Do You Need JCLIN? . 88
9.3 General Packaging Rules for JCLIN Data 89
9.4 Assembler Steps . 90
9.5 Copy Steps . 91

9.5.1 Considerations for the SELECT Statement for Copy Operations 92
9.6 Link-Edit Steps . 94

9.6.1 JCLIN Processing of DD Statements in Link-Edit Steps 96
9.6.2 Link-Edit Control Statements . 97
9.6.3 Link-Edit Attribute Parameters . 106
9.6.4 Cross-Product Load Modules for Products Installed in the Same

Zone . 107
9.6.5 Cross-Product Load Modules for Products Installed in Different Zones 109
9.6.6 Adding or Changing Load Modules in a PTF 111

9.7 Examples of JCLIN Data . 112
9.7.1 JCLIN Data for Modules . 112
9.7.2 JCLIN Data for Macros and Source . 116
9.7.3 JCLIN Data for an Assembler Step to Create a Module from Source . 116
9.7.4 JCLIN for Using the Link-Edit Automatic Library Call Function 117
9.7.5 JCLIN Data for Load Modules Residing in a Hierarchical File System . 119

Chapter 10. Naming Conventions . 121
10.1 Component Codes . 121
10.2 SYSMOD IDs for Functions . 121
10.3 Element, Alias, and Load Module Names 122

10.3.1 NLS Considerations for Element Types 123
10.3.2 Elements with the Same Name . 123
10.3.3 Alias Names . 123

10.4 Library Names . 124

Chapter 11. Packaging for National Language Support (NLS) 127
11.1 Element Types for Translated Elements . 128

Chapter 12. Packaging for Special Situations 131
12.1 High-Level Languages . 131

12.1.1 Support in SMP/E Release 8 and Later for the Automatic Library
Call Facility . 131

12.1.2 If You Cannot Use the Automatic Library Call Facility 131
12.2 Using the C Language Prelinker . 134

12.2.1 Example of a Product Requiring the C Prelinker 135
12.3 Packaging Workstation Code to Be Installed on the Host 136
12.4 Hierarchical File System (HFS) . 136

Chapter 13. SYSMOD Packaging Examples 137
13.1 Conventions Used in This Chapter . 137
13.2 Example 1: A Stand-Alone Function . 138

13.2.1 Initial Release . 138
13.2.2 PTF Service for the Initial Release . 138
13.2.3 PTF Service That Depends on Previous Service 139
13.2.4 Ensuring That a Fix for a Previous Release Is Not Lost 140
13.2.5 Replacing the Initial Release . 141

13.3 Example 2: Corequisite Base Functions 142

 Contents v

13.3.1 Initial Releases of Corequisite Functions 142
13.3.2 PTF Service for One of the Base Functions 143
13.3.3 Cross-Product Service between Corequisite Base Functions 143
13.3.4 Deleting and Superseding a Base Function 144

13.4 Example 3: Dependent Functions . 145
13.4.1 Initial Release of a Dependent Function 146
13.4.2 PTF Service for a Dependent Function 146
13.4.3 Corequisite PTFs with an Element Common to the Base and

Dependent Functions . 147
13.4.4 Corequisite PTFs with All Elements Common to Base and

Dependent Functions . 149
13.4.5 Deleting a Dependent Function Without Superseding It 152
13.4.6 Establishing the Order of Additional Dependent Functions 152
13.4.7 Conditional Corequisite Dependent Functions 153

13.5 Example 4: Base Functions with Prerequisites 153
13.5.1 Initial Release of a Base Function with a Functional Prerequisite . . 153
13.5.2 Dependency on an SPE or Service for Another Base Function . . . 154
13.5.3 Cross-Product Service for a Base Function with a Prerequisite . . . 155

13.6 Example 5: Mutually Exclusive Dependent Functions 156
13.7 Example 6: Functions Supporting More Than One Language 157

13.7.1 A Base Function Supporting Two Languages 157
13.7.2 PTF Service for Language-Sensitive Elements 158
13.7.3 Supporting Two Languages for a Base Function and Its Related

Dependent Function . 159
13.7.4 PTF Service for Common Language-Sensitive Elements 160

13.8 Changing the Contents of Products . 161
13.8.1 Adding Elements . 162
13.8.2 Combining Elements . 162
13.8.3 Migrating Elements by Updating Both Functions 163
13.8.4 Migrating Elements by Using a PTF 164

Appendixes . 165

Appendix A. Summary of Rules, Restrictions, and Recommendations . . 167
A.1 Rules . 167
A.2 Restrictions . 191
A.3 Recommendations . 194

Appendix B. MVS Service Packaging Rules 209
B.1 Introduction . 209

B.1.1 Service Terminology . 210
B.2 MVS Service Packaging Rules . 212

B.2.1 PTF Size, Format, and Content . 212
B.2.2 Standard PTF Structure . 213
B.2.3 PTF Cover Letter . 222

B.3 IBM Service Delivery . 234
B.3.1 Service Process Initialization . 234
B.3.2 PTF Submission . 235

B.4 Naming Conventions for Service . 236

Appendix C. Mapping of Old Rule Numbers to New Rule Numbers 237

vi MVS Packaging Rules

Glossary . 243

Bibliography and Classes . 249
SMP/E Books in the OS/390 Library . 249
The SMP/E Release 8.1 Library . 249
Classes and Self-Study Courses for SMP/E . 250

Index . 253

 Contents vii

viii MVS Packaging Rules

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM's intellec-
tual property rights may be used instead of the IBM product, program, or service.
Evaluation and verification of operation in conjunction with other products, except
those expressly designated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie, NY 12601-5400
USA
Attention: Information Request

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

 BookManager
 CBIPO
 CBPDO
 DB2
 IBM
 MVS/ESA
 MVS/SP
 MVS/XA
 OS/390

OS/390 Security Server

 Copyright IBM Corp. 1986, 1999 ix

x MVS Packaging Rules

About This Book

This publication references the Release 8.1 and OS/390 manuals using generic
titles. See Table 20 on page 249 and Table 21 on page 249 to map to the
appropriate reference manual for your system.

This publication is designed to help you package software that can be installed by
System Modification Program Extended (SMP/E) on an MVS system. It is directed
at two groups of users:

� Packagers outside of IBM whose software will be distributed through IBM Soft-
ware Delivery.

These packagers must follow the rules and restrictions in this publication. They
must also adhere to SMP/E's requirements, as described in the SMP/E Refer-
ence manual and the SMP/E User's Guide that apply to your release of SMP/E
or OS/390, and (for OS/390) the OS/390 SMP/E Commands.

� Packagers whose software will not be distributed through IBM Software
Delivery.

These packagers can follow the rules and restrictions in this publication, but are
not required to. However, they need to adhere to SMP/E's requirements, as
described in the SMP/E Reference manual and the SMP/E User's Guide that
apply to your release of SMP/E or OS/390, and (for OS/390) the OS/390
SMP/E Commands.

This publication is not intended for IBM packagers whose programs will be distrib-
uted through IBM Software Delivery. They should contact the owner of this publica-
tion for more information.

Before using this publication, you should be familiar with the SMP/E User's Guide,
to acquire a general understanding of SMP/E and how to use it to install
SYSMODs. You should also be familiar with the SMP/E Reference manual, which
contains more detail about SMP/E syntax.

By following the rules, recommendations, and restrictions in this book, you can:

� Improve customer acceptance of your products

� Make it easier for customers to install and maintain your product on an IBM
system

� Reduce the time and effort spent to analyze packaging problems, rework
product packages, and test the associated deliverables

� Ensure that your product can be processed by IBM's common installation and
distribution vehicles for MVS-based products

How this Book Is Organized
Table 1 on page xii describes the way this book is organized and what each
chapter contains.

 Copyright IBM Corp. 1986, 1999 xi

Table 1. Organization of This Book

Chapter Description

Chapter 1, “Introduction to MVS
Product Processes”

Provides an introduction for developers who are relatively new to the MVS
product processes, or who need only general information.

Chapter 2, “Assessing Your Pro-
duct's Packaging Requirements
and Considerations”

Lists questions that you can answer to help plan your packaging require-
ments.

Chapter 3, “Rules for Packaging
Methods”

Describes the methods that can be used to package SYSMODs.

Chapter 4, “SYSMOD Types and
Relationships”

Introduces you to SMP/E packaging concepts.

Chapter 5, “Fundamental Pack-
aging Considerations”

Describes some fundamental topics for software packaging.

Chapter 6, “Elements and Load
Modules”

Describes considerations for packaging the elements that make up a
product.

Chapter 7, “Using MCS State-
ments to Define Products”

Describes how to use MCS statements to package a product.

Chapter 8, “Using MCS State-
ments to Manipulate Elements and
Load Modules”

Describes how to perform basic operations on elements.

Chapter 9, “Using JCLIN” Describes when to use JCLIN and how to use JCLIN.

Chapter 10, “Naming Conventions” Describes the naming conventions for components, elements, libraries,
and SYSMOD IDs.

Chapter 11, “Packaging for
National Language Support (NLS)”

Provides information about NLS packaging considerations.

Chapter 12, “Packaging for Special
Situations”

Provides information about some packaging areas that require special
handling.

Chapter 13, “SYSMOD Packaging
Examples”

Provides examples of SYSMOD packaging.

Appendix A, “Summary of Rules,
Restrictions, and
Recommendations”

Is a summary list of all the packaging rules, restrictions, and recommenda-
tions.

Appendix B, “MVS Service Pack-
aging Rules”

Summarizes the rules for packaging service.

“Glossary” Describes the terms used in this book.

“Bibliography and Classes” Lists books and classes that provide additional useful information.

Conventions for Rules, Restrictions, and Recommendations
Rules, restrictions, and recommendations for the various packaging processes
follow particular conventions.

For rules:

� The text of rules is enclosed in a box.
� “Must” is used instead of “should.”

xii MVS Packaging Rules

Following is an example of how a rule would be indicated:

Restrictions are based on the limitations of SMP/E or IBM processes.

Recommendations indicate a preferred method of handling a situation; however,
there may be other acceptable alternatives.

Restrictions and recommendations are indicated with text indicating the beginning
and end of a small section of recommendations or restrictions; for example:

IBM Software Delivery Solutions Restriction

The IBM Software Delivery Solutions process does not support ...

End of IBM Software Delivery Solutions Restriction

Packaging Recommendation

It is recommended that all products ...

End of Packaging Recommendation

Rules and restrictions that have been deleted in previous versions of this book do
not appear in the text of the book.

Also, note that ++element and ++hfs_element are the generic terms for the MCS
that identify data elements and hierarchical file system (HFS) elements.

Packaging Rule

Ø n. All elements must....

 About This Book xiii

xiv MVS Packaging Rules

Summary of Changes

This section summarizes the changes made to this book.

Revision SC23-3695-09 (September 1999)
This edition was updated with the following changes:

� Information used in contacting IBM for component code registration was modi-
fied.

� The following rules were changed:

– 2710 (return code from ACCEPT processing)
– 3700 (packaging elements as members of a partitioned data set)
– 3800 (Record Format for elements)

� Restrictions have been deleted from the following sections:

3.1.1, “Format and Contents of the RELFILE Tape” on page 12:

– RELFILEs must not be partitioned data sets extended (PDSEs).

� Recommendations have been added to the following sections:

6.7, “Sample JCL and Data” on page 49

� Recommendations have been changed in the following sections:

6.7, “Sample JCL and Data” on page 49

Revision SC23-3695-08 (March 1999)
This edition was updated with the following changes:

� The numbering scheme for rules has been changed to allow for future addition
of rules while avoiding the use of decimal numbers wherever possible. Refer to
Appendix C, “Mapping of Old Rule Numbers to New Rule Numbers” on
page 237 for a mapping of the previous rule numbers to the new ones.

� Service Packaging Rule numbers were changed by prefacing the rule number
with the letter "S".

� The following rules were added:

– Rule 2330 (negative prerequisite SYSMODs)
– Rule 3410 (distribution libraries must be partitioned)
– Rule 3510 (changing existing dataset attributes)
– Rule 5820 (DDDEF jobs for products installing into the HFS)
– Rule 5830 (specifying /etc with DDDEF entries)
– Rule 14260 (using CALLLIBS)
– Rule 14270 (handling return code 8 from APPLY processing)
– Rule 15810 (++PROGRAM elements pre-bound with parts from another

product)
– Rule 18810 (symbolic links must not exist in the /tmp, /dev, /var or /etc

directories)
– Rule 18820 (installing directly into the /etc directory during APPLY proc-

essing)

 Copyright IBM Corp. 1986, 1999 xv

– Rule 18830 (permission bits settings for files or directories in the HFS)

� The following rules were changed:

– Rule 800 (packaging sequential datasets as members of partitioned data
sets)

– Rule 2200 (common elements): This has been changed to a recommenda-
tion

– Rule 13200 (DDNAME rules for JCLIN data)

� The following rules were deleted:

– Rule 2300 (was 18)

– Rule 5100 (was 34)

– Rule 15700 (was 149)

– Rule 15800 (was 150)

� The following restrictions have been added to the following sections

3.1.2, “Creating the RELFILE Tape” on page 15:

– Record format for RELFILEs

 – ++MOD elements

9.3, “General Packaging Rules for JCLIN Data” on page 89:

– Requiring macro libraries during APPLY processing

� Restrictions have been changed in the following sections:

6.1, “General Packaging Rules, Restrictions, and Recommendations for
Elements” on page 44 - ++MAC and ++SRC restrictions

� Restrictions have been deleted from the following sections:

4.1.1.3, “Choosing between Base and Dependent Functions” on page 22

6.1, “General Packaging Rules, Restrictions, and Recommendations for
Elements” on page 44

6.6, “Shared Load Modules” on page 48

� Recommendations have been added to the following sections:

4.2.4, “Coexisting SYSMODs” on page 29:

5.1, “Installation Methods” on page 33:

5.4, “Record Length, Record Format, and Block Size Requirements” on
page 36:

6.7, “Sample JCL and Data” on page 49:

� Table 13 on page 47 was added, which lists the MCS statements for hierar-
chical file system (HFS) elements.

� Various editorial and technical corrections have been made.

xvi MVS Packaging Rules

Revision SC23-3695-07 (March 1998)
This edition was updated with the following changes:

� The following rule was deleted:

– Rule 15410 (was 146) (Language-sensitive elements)

This rule was replaced by additional packaging recommendations.

� Various editorial and technical corrections have been made.

Revision SC23-3695-06 (September 1997)
This edition was updated with the following changes:

� This book now applies to OS/390 Version 2 (5647-A03)

� The following rules were changed:

– Rule 1320 (was 14) (use of VOLSER on tapes)
– Rule 9300 (was 72) (function specifying its own FMID)
– Rule 100 (was 79) (conditional and unconditional relationships)
– Rule S193 (PTF SYSMOD value)

� Various editorial and technical corrections have been made.

Revision SC23-3695-05 (March 1997)
This edition was updated with the following changes:

� The following rules were added:

– Rule 5810 (was 39.1) (avoid invoking SMP/E in catalogued or instream pro-
cedures)

� The following rules were changed:

– Rule 14230 (was 131.1) (INCLUDE statements)
– Rule 14500 (was 134) (unique names for load modules)
– Rule 14900 (was 137) (exceptions for library names)
– Rule 15010 (was 140) (exceptions for library names)

� The following rules were deleted:

– Rule 9400 (was 73) (specifying a SYSMOD for new release of base func-
tion

– Rule 5300 (was 36) (using ++DELETE on JCLIN for load
– Rule 12320 (was 108.1) (DELETE for elements) (The SMP/E that made

this rule necessary was corrected by APAR IR32416.)

� Various editorial and technical corrections have been made.

 Summary of Changes xvii

xviii MVS Packaging Rules

 What is Product Packaging?

Chapter 1. Introduction to MVS Product Processes

This chapter explains the following:

� What is meant by product packaging
� How packaging and processes for MVS products evolved
� How a program gets from development libraries onto the users' systems
� A simple example of a packaging program

1.1 What Is Product Packaging?
A program consists of elements such as modules, macros, and other types of data.
Packaging is the science of building these elements into a deliverable product that
can be installed and maintained on a computer system.

For MVS systems, System Modification Program Extended (SMP/E) is used to
install a product, install changes (service, user modifications, new functions) to the
product, and track the current status of each of the elements of the product. All
products and service for MVS-installable products must be packaged so that they
can be installed and maintained by SMP/E.

For SMP/E to install a product and service for that product, you must code SMP/E
modification control statements (MCS) for the elements. MCS statements describe
the elements of the product and any relationships the product has with other pro-
ducts that may also be installed on the same MVS system. The combination of
elements and MCS statements is called a system modification (SYSMOD).

Product packaging includes combining the appropriate MCS statements with the
elements of a program to create one or more SYSMODs, then putting the
SYSMODs in the proper format on a relative file tape (RELFILE tape). This relative
file tape is used to distribute the product to customers.

1.2 Evolution of Product Packaging
The way in which MVS systems have provided products has changed through the
years. From the total system replacements of the early days, packaging has
evolved to individual products, and to custom-built packages of multiple products.

� Individual Products – To make the software even more independent from the
hardware and to allow a broader scope of independent software development,
MVS release 3.8 restructured the software into many discrete functional areas
identified by one or more function modification identifiers (FMIDs).

� SMP4 – MVS 3.8 included SMP Release 4 (SMP4), which supported function,
PTF, APAR, and USERMOD SYSMODs. With SMP4, each functional area
became separately installable and could be developed on asynchronous sched-
ules (with proper considerations for dependencies on other functional areas).
These functional areas are internally referred to as “products.”

� SMP/E – To further enhance SYSMOD processing, SMP/E was developed,
which uses zones in a VSAM data set (the SMPCSI) to manage the system's
target and distribution libraries. These zones can be defined by the user to
manage the increasingly complex relationships between products.

 Copyright IBM Corp. 1986, 1999 1

 What is Product Packaging?

To install an individual product, the customer uses SMP/E to install function
SYSMODs, which contain the software, install logic, and JCLIN data for the
product. For some products, the customer must also do a system, subsystem,
or product generation to provide some job streams and SMP/E JCLIN data.
SMP/E is also used to install preventive service and corrective service, with
improved handling of exception SYSMODs.

� Custom-Built Product Packages – To further reduce the resources required to
install products and service, IBM now provides custom-built packages of pro-
ducts as an alternative to individual products. Customers can order custom-
built replacements, as well as custom-built updates for their systems or
subsystems. Examples of these offerings include Custom-Built Installation
Process Offering (CBIPO), Custom-Built Product Delivery Offering (CBPDO),
and CustomPac.

1.3 Getting Products and Service from Development Libraries onto
Users' Systems

To provide your users with products and service that can be processed by SMP/E,
you must package the elements, the JCL used to install them (JCLIN data), and the
associated MCSs into SYSMODs. The distribution medium can be a relative file
tape or tape with inline data if the users will not have access to the data sets con-
taining the elements and JCLIN data, or it can be the actual libraries containing the
elements and JCLIN data if the users will have access to those data sets. (For a
description of these methods, see Chapter 3, “Rules for Packaging Methods” on
page 11.) The users will use the installation documentation you provide to install
the SYSMODs onto their MVS systems.

1.3.1 Packaging and Distributing the SYSMODs
Figure 1 on page 3 is a summary of the steps you should follow to get the ele-
ments and JCLIN data from the development libraries into the SYSMOD format that
will be used to distribute your product and service. Once the elements for the
program have been coded, follow these steps:

.1/ Integrate the code: Use the available tools and procedures to create a set of
data sets that SMP/E can process.

a. Create any required JCLIN data.

b. Collect the elements and JCLIN data from the various development
libraries.

Note: If you plan to distribute updates for macros or source later on,
make sure they are initially shipped with sequence numbers in
columns 73–80. Otherwise, SMP/E is not able to install the
updates.

c. If you plan to distribute modules, compile and assemble the macros
and source to create the object modules.

d. Link-edit the resulting object modules. The format of the link-edited
modules must be the same as the format produced by the MVS/370,
MVS/XA, or MVS/ESA linkage editor.

2 MVS Packaging Rules

 What is Product Packaging?

.2/ Build the SYSMOD package: Use the available tools and procedures to
create files and a relative file tape that SMP/E can process.

a. Create a sequential data set that contains the MCS statements for the
elements.

b. Create the relative files by unloading the integrated data sets. The
format of the unloaded data sets must be the same as the format
produced by the IEBCOPY utility.

 ┌───────────────┐
 │Packaging Steps│
 └───────────────┘

 Development ────5 .1/ Integrate the ────5 Integrated ────┐
 Libraries Code Data Sets │
 │
─────────── ┌────────────────────────┐ ─────────── │
() │ │ () │
┌───────────┐ │ a. Create any required │ ┌───────────┐ │
│ Macro(M) │ │ JCLIN data. │ │ JCLIN data│ │
└───────────┘ │ │ ├───────────┤ │

│ b. Collect the JCLIN │ │ Macro(M) │ │
 ─────────── │ data and elements. │ ├───────────┤ │
() │ │ │ Sample(X) │ │
┌───────────┐ │ c. Compile or assemble │ ├───────────┤ │
│ Sample(X) │ │ any macros and │ │ Module(A) │ │
└───────────┘ │ source. │ ├───────────┤ │

│ │ │ Module(B) │ │
 ─────────── │ d. Link─edit the │ └───────────┘ │
() │ resulting object │ │
┌───────────┐ │ modules. │ │
│ Source(A) │ └────────────────────────┘ │
├───────────┤ │
│ Source(B) │ │
└───────────┘ │
 │
 │
 │
 ┌──┘
 │
 6
Figure 1 (Part 1 of 2). Getting Code from Development Libraries into SYSMOD Format

 Chapter 1. Introduction to MVS Product Processes 3

 What is Product Packaging?

 │
└─5 .2/ Build the

 SYSMOD.

 ┌────────────────────────┐
 │ │

│ a. Create the MCS file │
│ (a sequential data │
│ set with the SMP/E │
│ MCS statements and │
│ any inline data). │

 │ │
│ b. Create the relative │
│ files needed for │
│ the RELFILE tape. │
│ (These are unloaded │

 │ partitioned data │
│ sets created during │

 │ integration.) │
 │ │
 └───────────┬────────────┘
 │
 │
 6

 Relative
 File Tape

 ┌────────────────┐
│ MCS file that │
│ points to the │
│ relative files │

 ├────────────────┤
│ JCLIN file │

 ├────────────────┤
│ Element file │

 ├────────────────┤
│ Element file │

 ├────────────────┤
 │ ... │
 └────────────────┘

Figure 1 (Part 2 of 2). Getting Code from Development Libraries into SYSMOD Format

1.3.2 Writing the Installation Documentation
The installation documentation provided with a product should tell the users every-
thing they need to know to install the product onto their systems.

Note: If you are packaging service, you should not have to provide any installation
documentation. These procedures are described for users in the SMP/E
User's Guide.

For product installation, you should include the following information:

� The product name, release, and SYSMOD IDs of the associated function
SYSMODs.

� A description of the distribution medium.

Include the volume serial number, the file number, data set name, and contents
of each file on the relative file (RELFILE) tapes.

4 MVS Packaging Rules

 What is Product Packaging?

� Requirements for hardware, software, and storage.

Also include a list of any requisites that cannot be defined in the MCSs.

For requisites defined in the MCSs, but which might be installed in a different
zone from your product, instruct the users to run the REPORT CROSSZONES
command to see if these requisites are installed.

� A list of all fixes that have been incorporated (if this is a new release of an
existing product).

� A description of the installation method for the product.

These methods are described for users in the SMP/E User's Guide. Instead of
writing detailed installation instructions, you may be able to select one of these
methods and refer users to the SMP/E User's Guide for detailed steps.
However, you should provide any installation instructions that are unique
to your product.

Subsequent chapters of this publication will help you provide this information.

1.3.3 Installing the SYSMODs
Figure 2 on page 6 is a summary of the steps users would follow to install
SYSMODs onto their system using the standard SMP/E RECEIVE-APPLY-ACCEPT
method. Once the users have access to the distribution medium, they should
follow these steps:

.1/ Receive the SYSMODs. Use the SMP/E RECEIVE command to:

a. Store the SMP/E MCSs and any inline JCLIN data or inline elements in
the SMPPTS data set.

b. Store the elements and JCLIN data in SMPTLIB data sets if the
SYSMOD was distributed on a relative file tape,

.2/ Apply the SYSMODs. Use the SMP/E APPLY command to:

a. Process JCLIN data and save descriptions of the elements in the target
zone.

b. Install the elements in the target libraries. The target libraries contain
the executable code that constitutes the running system.

.3/ Accept the SYSMODs. Use the SMP/E ACCEPT command to:

a. Save descriptions of the elements in the distribution zone.
b. Install the elements in the distribution libraries. The distribution libraries

(DLIBs) contain the master copy of each element for a system. They
are used by SMP/E for backup when elements in the target libraries
need to be replaced or updated.

 Chapter 1. Introduction to MVS Product Processes 5

 What is Product Packaging?

 ┌──────────────┐
 │ User Steps │
 └──────────────┘

.1/ Receive the ─────────5 SMPPTS ──────────5 SMPTLIB
 SYSMOD. Data Set Data Sets

 ┌────────────────────────┐ ─────────── ───────────
 │ a. The MCS file is │ () ()
 │ stored in the │ ┌───────────┐ ┌───────────┐
 │ SMPPTS and the │ │ MCS │ │ JCLIN data│
 │ global zone is │ │ statements│ ├───────────┤
 │ updated. │ └───────────┘ │ Macro(M) │
 │ │ ├───────────┤
 │ b. The relative files │ │ Sample(X) │
 │ are stored in the │ ├───────────┤
 │ SMPTLIBS. │ │ Source(A) │
 └───────────┬────────────┘ ├───────────┤

│ │ Source(B) │
 │ ├───────────┤

│ │ Module(A) │
 │ ├───────────┤

│ │ Module(B) │
 │ └───────────┘
 │
 6

.2/ Apply the ─────────5 SMPCSI ──────────5 Target
 SYSMOD. Target Zone Libraries

 ┌────────────────────────┐ ─────────── ───────────
 │ a. JCLIN data is used │ () ()
 │ to create target │ ┌───────────┐ ┌───────────┐
 │ zone entries. │ │ Entries │ │ Macro(M) │
 │ │ │ for: │ ├───────────┤
 │ b. Elements are │ │ SYSMODs, │ │ Sample(X) │
 │ installed in the │ │ elements │ ├───────────┤
 │ target libraries. │ │ load │ │ Source(A) │
└───────────┬────────────┘ │ modules │ ├───────────┤

│ └───────────┘ │ Source(B) │
 │ ├───────────┤
 │ │ LMOD │
 │ │ Module(A)│
 │ │ Module(B)│
 │ └───────────┘
 6
Figure 2 (Part 1 of 2). Getting Code from the SYSMOD onto the Users' Systems

6 MVS Packaging Rules

 What is Product Packaging?

.3/ Accept the ─────────5 SMPCSI ──────────5 Distribution
 SYSMOD. DLIB Zone Libraries

 ┌────────────────────────┐ ─────────── ───────────
 │ a. JCLIN data may be │ () ()
 │ used to create │ ┌───────────┐ ┌───────────┐
 │ distribution zone │ │ Entries │ │ Macro(M) │
 │ entries. │ │ for: │ ├───────────┤
 │ │ │ SYSMODs, │ │ Sample(X) │
 │ b. Elements are │ │ elements │ ├───────────┤
 │ installed in the │ │ (optional:│ │ Source(A) │
 │ distribution │ │ load │ ├───────────┤
 │ libraries. │ │ modules) │ │ Source(B) │
 └────────────────────────┘ └───────────┘ ├───────────┤

│ Object(A) │
 ├───────────┤

│ Object(B) │
 └───────────┘

Figure 2 (Part 2 of 2). Getting Code from the SYSMOD onto the Users' Systems

1.4 A Simple Packaging Example
This section describes a simple example of packaging code as a SYSMOD.
Assume that you have developed a product consisting of the following elements:

� A macro, M

� Sample code, X

� Two source modules, A and B, that can be updated, assembled, and link-edited
by users

� Two modules, A and B, that are the assembled and link-edited versions of the
source code

You have decided to call the product “A,” and it will be part of an MVS system (as
opposed, for example, to an NCP subsystem). You have also determined that the
following JCLIN data is needed to install the elements:

� A copy step for the macro
� A copy step for the sample code
� A copy step for the source code
� A link-edit step for the modules

Because the users will have access to the integrated data sets, you have decided
to create an MCS data set that points to those integrated data sets. Figure 3 on
page 8 shows how to package your product in SYSMOD format.

 Chapter 1. Introduction to MVS Product Processes 7

 What is Product Packaging?

┌─────────────┐ ┌───────────────────┐ ┌────────────────┐
│ Input │ │ MCS Statements to │ │ Package to Be │
│ Information │ │ Be Coded │ │ Created │
└─────────────┘ └───────────────────┘ └────────────────┘

Product A ──────────5 ++FUNCTION ──────┐
Applicable to MVS ──5 ++VER │
 │
 Integrated │
 Data Sets │
 │
 ─────────── │
() │
┌───────────┐ │
│JCLIN data:├───────5 ++JCLIN │
│ Copy steps│ │
│ (macro, │ │
│ sample, │ │
│ source) │ │ ┌────────────────┐
│ Link-edit │ │ │ ++FUNCTION(A1).│
│ step │ │ │ ++VER(Zð38). │
│ (modules) │ │ │ ++JCLIN... │
└───────────┘ │ │ ++MAC(M)... │
 ├────────5│ ++SAMP(X)... │
 ─────────── │ │ ++SRC(A)... │
() │ │ ++SRC(B)... │
┌───────────┐ │ │ ++MOD(A)... │
│ Macro(M) ├───────5 ++MAC │ │ ++MOD(B)... │
├───────────┤ │ └────────────────┘
│ Sample(X) ├───────5 ++SAMP │
├───────────┤ │
│ Source(A) ├───────5 ++SRC │
├───────────┤ │
│ Source(B) ├───────5 ++SRC │
└───────────┘ │
 │
 ─────────── │
() │
┌───────────┐ │
│ Module(A) ├───────5 ++MOD │
├───────────┤ │
│ Module(B) ├───────5 ++MOD ──────┘
└───────────┘

Figure 3. A Simple SYSMOD Packaging Example

8 MVS Packaging Rules

 What is Product Packaging?

Chapter 2. Assessing Your Product's Packaging
Requirements and Considerations

The following questions help you determine:

� Your packaging requirements
� Areas you need to address
� Where to find the information you need

1. Does the product use the standard SMP/E installation path (RECEIVE,
APPLY, ACCEPT)?

If so, see 9.3, “General Packaging Rules for JCLIN Data” on page 89

2. Is the product a base or dependent function?

See 4.1.1, “Functions” on page 21

3. What SRELs does the product install in?

See 7.2.2, “Identifying the SREL” on page 57

4. Do you require language support?

See the following:

� Chapter 11, “Packaging for National Language Support (NLS)” on
page 127

� 13.4, “Example 3: Dependent Functions” on page 145

5. Is this a new version, release, modification, or replacement?

See the following:

� 4.2.3.4, “Deleting and Superseding SYSMODs” on page 27
� 5.2, “Evaluating SYSMOD Relationships” on page 35

6. Do you use high-level languages?

See 12.1, “High-Level Languages” on page 131

7. Does your product use modules from another product?

See the following:

� 4.2.3.2, “Corequisite SYSMODs” on page 27

� 6.6, “Shared Load Modules” on page 48

� 8.5, “Enabling Load Module Changes at the CSECT Level (++MOD
CSECT)” on page 84

� Chapter 12, “Packaging for Special Situations” on page 131

� 13.3.3, “Cross-Product Service between Corequisite Base Functions” on
page 143

� 13.5.3, “Cross-Product Service for a Base Function with a Prerequisite”
on page 155

� 13.8, “Changing the Contents of Products” on page 161

 Copyright IBM Corp. 1986, 1999 9

 What is Product Packaging?

8. Are there dependencies on other products, either within the same zone or
residing in different zones?

See the following:

� 5.5, “Shared Libraries” on page 39

� 13.3.3, “Cross-Product Service between Corequisite Base Functions” on
page 143

� 13.5.3, “Cross-Product Service for a Base Function with a Prerequisite”
on page 155

10 MVS Packaging Rules

Chapter 3. Rules for Packaging Methods

This chapter describes the rules to follow when putting SYSMODs on a tape or
direct access data set to distribute the code to your users. This is the final pack-
aging step after coding the MCSs needed for your SYSMODs. The following pack-
aging methods are discussed:

� Relative file tapes
 � Inline data
 � Indirect libraries

A SYSMOD can be packaged using more than one method. Table 2 summarizes
each of these methods and when each is used.

Table 2. Comparison of SYSMOD Packaging Methods

Method Description When to Use

Relative file tapes Elements and JCLIN data are in
separate relative files from the
MCSs.

� Allowed for anything except
element updates

� Used mostly for function
SYSMODs

Inline data Elements and JCLIN data imme-
diately follow the associated
MCSs.

� Only method allowed for
element updates

� Used for most IBM PTFs

Indirect libraries Elements and JCLIN data are in
partitioned data sets that are sepa-
rate from the MCSs.

� Allowed for anything except
element updates

� Used when users have access
to the integrated data sets con-
taining the elements

IBM Software Delivery Restrictions

The IBM Software Delivery Solutions process supports only functions packaged
in relative files that can be processed with SMP/E. Functions packaged in TXLIB
or LKLIB data sets are not supported.

End of IBM Software Delivery Restrictions

3.1 Relative File Tapes

Packaging Rules (RELFILE Tapes)

Ø 110. A RELFILE tape can contain only files that can be installed by SMP/E
and that meet the requirements for the format and contents of a RELFILE
tape.

Ø 120. All files on an MVS-installable product tape must be SMP/E-install-
able.

 Copyright IBM Corp. 1986, 1999 11

A relative file tape, or RELFILE tape, is a standard label tape made up of two or
more files. It contains a file of the MCS statements for one or more functions, and
one or more relative files containing unloaded source data sets and unloaded, link-
edited data sets containing executable modules. The relative files may also contain
other data, such as sample procedures. These unloaded partitioned data sets must
be in a format that can be installed on an MVS system or subsystem by SMP/E.

Note: You can create a RELFILE tape as either an actual tape or as a tape
image. When you see references to “RELFILE tape,” they apply to tape
images as well as to tapes.

Also, bear in mind that creating a RELFILE tape does not force users to
receive the SYSMOD from tape. For example, a user may choose to load
the RELFILE tape to DASD data sets, and then receive the SYSMODs from
DASD. Or, a user may be sent a SYSMOD electronically, read the files into
DASD data sets, and receive the SYSMOD from DASD.

The following sections discuss these topics:

� The format and contents of the RELFILE tape
� Creating the RELFILE tape

3.1.1 Format and Contents of the RELFILE Tape
Table 3 is an example of a RELFILE tape for two function SYSMODs: WLBZ100
(a base function) and XLBZ1B0 (a dependent function for the base function).

Table 3 (Page 1 of 2). Example of a RELFILE Tape

File Data Set Name Contents

1 SMPMCS ++FUNCTION(WLBZ1ðð) REWORK(199716ð) FILES(3) RFDSNPFX(PROD)
 /\\\/
/\ product copyright statement \/

 /\\\/
 .
++VER(Zð38).
++JCLIN RELFILE(1).
++MOD(A) DISTLIB(AGIMMODS) RELFILE(2).
++MOD(B) DISTLIB(AGIMMODS) RELFILE(2).
++MAC(X) DISTLIB(AGIMMACS) RELFILE(3).

++FUNCTION(XLBZ1Bð) REWORK(199716ð) FILES(3) RFDSNPFX(PROD)
 /\\\/
/\ product copyright statement \/

 /\\\/
 .
++VER(Zð38) FMID(WLBZ1ðð).
++JCLIN RELFILE(1).
++MOD(A) DISTLIB(AGIMMODS) RELFILE(2).
++MOD(C) DISTLIB(AGIMMODS) RELFILE(2).
++MAC(Y) DISTLIB(AGIMMACS) RELFILE(3).

2 PROD.WLBZ100.F1 Unloaded partitioned data set containing member WLBZ100, which is JCLIN
data for function WLBZ100

3 PROD.WLBZ100.F2 Unloaded partitioned data set containing modules A and B for function
WLBZ100

4 PROD.WLBZ100.F3 Unloaded partitioned data set containing macro X for function WLBZ100

12 MVS Packaging Rules

 RELFILE Tapes

Table 3 (Page 2 of 2). Example of a RELFILE Tape

File Data Set Name Contents

5 PROD.XLBZ1B0.F1 Unloaded partitioned data set containing member XLBZ1B0, which is JCLIN
data for function XLBZ1B0

6 PROD.XLBZ1B0.F2 Unloaded partitioned data set containing modules A and C for function
XLBZ1B0

7 PROD.XLBZ1B0.F3 Unloaded partitioned data set containing macro Y for function XLBZ1B0

Packaging Rules (RELFILE Tape: Format and
Contents)

Ø 300. The SMPMCS file must be a sequential data set consisting of
80-byte, fixed-length records.

Ø 400. All the other files on the tape or set of tapes must be relative files for
the functions defined in the SMPMCS file.

Ø 500. All the elements for a function SYSMOD must be on the same logical
tape as the SMPMCS file that defines the function.

Ø 600. There can be only one element with the same name in a given rela-
tive file. This includes element names and element alias names.

Ø 700. Each relative file must contain partitioned data sets that were
unloaded in IEBCOPY format.

Ø 800. Sequential data sets must be packaged as members of a partitioned
data set so that they can be unloaded by IEBCOPY into a relative file. A
postinstallation job can be provided to copy such an element into a sequen-
tial data set. OS/390 Release 7 SMP/E or later can also be used to copy
such an element into a sequential data set.

Ø 900. Modules must be in link-edited format. (This is RECFM=U, undefined
record format.) The input parameters used for the link-edited format must
include NCAL. Providing modules in link-edited format eliminates the need
for the LEPARM operand and other data that is required on the ++MOD
statement when modules are provided inline. Contrast with the restriction in
9.3, “General Packaging Rules for JCLIN Data” on page 89 regarding what
to do for a PTF that introduces a new ++MOD requiring link-edit parameters
other than the default.

Ø 1000. VSAM data set elements must be in AMS REPRO format.

Ø 1100. The partitioned data sets to be unloaded must have a member for
each element MCS, plus a directory entry for each ALIAS associated with
an element MCS. Likewise, each member in a RELFILE must be defined
by an element MCS.

Ø 1300. If a member in a relative file contains JCLIN data for a SYSMOD,
the member name must match the function's FMID.

Ø 1310. Follow the requirements in Table 11 on page 38 when specifying
the MCS statements and data set attributes for elements being packaged in
RELFILEs.

 Chapter 3. Rules for Packaging Methods 13

 RELFILE Tapes

SMP/E assumes that modules on RELFILE tapes are link-edited and were
unloaded in IEBCOPY format. SMP/E invokes the IEBCOPY utility, not the linkage
editor, when copying LMODs. The IEBCOPY utility requires that all partitioned data
sets have the same format.

IBM Software Delivery Restrictions

� Sequential data sets may not be used as target libraries. As long as this
restriction exists, post-APPLY jobs may be provided to copy elements into a
sequential data set. This is a restriction of the IBM Software Delivery Sol-
utions process.

� RELFILEs containing a RECFM=U must specify a BLKSIZE of 6144, so that
they can be reblocked upwards at installation.

� ++MOD elements must not contain linkage editor ALIAS statements inline.

End of IBM Software Delivery Restrictions

Packaging Recommendations

To provide a consistent standard for customers so that they will not have to manu-
ally modify JCL, the files should be in this order:

� The SMPMCS file (only one)

Notes:

1. If the package consists of several tapes, there must be one SMPMCS file
per logical RELFILE tape.

2. If the package consists of a base function and related dependent functions,
the MCS statements for a base function must precede those for all its
related dependent functions.

� The relative files

Note: If the tape contains more than one function, the relative files must be in
this order:

1. The relative files for the first SYSMOD defined in the SMPMCS file.
The order of each of these files must correspond to the value of the
RELFILE operand specified on ++JCLIN and element statements.

2. The relative files for the second SYSMOD defined in the SMPMCS
file, and so on.

End of Packaging Recommendations

Packaging Recommendations

Modules should be single-CSECT load modules.

End of Packaging Recommendations

14 MVS Packaging Rules

 Inline Data

3.1.2 Creating the RELFILE Tape
Any tool can be used to create the RELFILE tape, provided that the output has the
required format and contents. The RELFILE tape that is created must follow
certain rules for volume serial numbers and data set names.

Packaging Recommendations

The data set name of the first file should be SMPMCS.

End of Packaging Recommendations

Packaging Rules (RELFILE Tape: Volume
Serial Numbers)

Ø 1320. If two tapes have the same volume serial number (VOLSER), they
must contain the same FMIDs. It is permissible for different SUP levels of
the same FMIDs to use the same VOLSER.

Packaging Rules (RELFILE Tape: Data Set
Names)

Ø 1350. The data set name of each relative file must be
rfdsnpfx.sysmod_id.Fnnnn, where:

rfdsnpfx
is the prefix, if any, for the relative file data set names.

If a prefix is used in the data set names, that value must also be
defined by the RFDSNPFX operand on the header MCS for the
SYSMOD. RFDSNPFX tells SMP/E what prefix to use when allocating
the data set names for the relative files being loaded.

If no prefix is used in the data set names, no RFDSNPFX value should
be specified on the header MCS for the SYSMOD.

Note: Do not use “IBM” as the prefix.

sysmod_id
is the FMID of the function to which the file is related.

Fnnnn
is the letter F followed by the number specified on the RELFILE
operand of the corresponding MCS statement in the SYSMOD. Do not
use leading zeroes in the RELFILE number.

 3.2 Inline Data
With inline data, the MCSs, JCLIN data, and elements are in a single package.
The JCLIN data and elements immediately follow the associated MCS, instead of
being packaged in a separate relative file or data set. The RELFILE, TXLIB, or
LKLIB operand is not coded on the element or ++JCLIN statement.

 Chapter 3. Rules for Packaging Methods 15

 Inline Data

Note: Data packaged inline must be in fixed-block 80 format. However, HFS ele-
ments and data elements are not always in fixed-block 80 format. If the
original format of such an element is not fixed-block 80, you can use
GIMDTS (a service routine provided with SMP/E) to transform the element
so it can be packaged inline. Later, when the element is installed, SMP/E
retransforms it to its original format. For more information about data ele-
ments, hierarchical file system (HFS) elements, and GIMDTS, see the
SMP/E Reference manual.

With inline data, users will need extra storage for the SMPPTS and work data sets
used to process the updates. When users receive a SYSMOD with inline data,
SMP/E writes the entire SYSMOD to the SMPPTS. Later, when the SYSMOD is
installed, SMP/E reads the element data from the SMPPTS and writes the data to
the appropriate work data set before calling the utility programs to update the target
or distribution libraries.

3.2.1 Example of Inline Element Updates
In Table 4, changes for macro USRMAC2 are packaged inline in a USERMOD.

Table 4. Example of an Inline Element Update

DDNAME of Data Set Contents

SMPMCS ++USERMOD(USRððð2).
++VER(Zð38) FMID(QUSRðð1).
++MACUPD(USRMAC2) DISTLIB(AUSRMACS)
 SYSLIB(USRMACS)
 MALIAS(TERMINAL)
 ASSEM(USRASMð1,USRASMð2,
 USRSRCð1,USRSRCð2).
./ CHANGE NAME=USERMAC2
...
... IEBUPDTE control cards and data go here
...

3.2.2 Example of Inline JCLIN Data
In Table 5 on page 17, the JCLIN data is packaged inline, and the elements are in
relative files.

16 MVS Packaging Rules

 Indirect Libraries

Table 5. Example of Inline JCLIN Data

File Data Set Name Contents

1 SMPMCS ++FUNCTION(PCC31ðð) FILES(2)
 RFDSNPFX(ABC).
++VER(Zð38).
++JCLIN.
//JOB JOB 'accounting info',
// MSGLEVEL=(1,1)
//STEP1 EXEC PGM=IEWL
//SYSLMOD DD DSN=SYS1.LINKLIB,DISP=SHR
//ACCDLIB DD DSN=SYS1.ACCDLIB,DISP=SHR
//SYSLIN DD \
 INCLUDE ACCDLIB(A)
 ENTRY A
 ENTRY A1
 ALIAS A1
 NAME LA(R)
 INCLUDE ACCDLIB(B)
 ENTRY B
 ENTRY B1
 ALIAS B1
 NAME LB(R)
/\
++MOD(A) DISTLIB(ACCDLIB) RELFILE(1).
++MOD(B) DISTLIB(ACCDLIB) RELFILE(1).
++MAC(X) DISTLIB(ACCMACS) RELFILE(2).

2 ABC.PCC3100.F1 Unloaded partitioned data set containing modules A
and B for function PCC3100

3 ABC.PCC3100.F2 Unloaded partitioned data set containing macro X for
function PCC3100

 3.3 Indirect Libraries
With indirect libraries, elements and JCLIN data are in partitioned data sets instead
of on a RELFILE tape, and are separate from the file containing the MCSs. These
data sets (called indirect libraries) are pointed to by the MCSs for the elements or
JCLIN data contained in those data sets. Indirect libraries may be text libraries or
link libraries.

� Text libraries may contain JCLIN data, macros, source code, data elements, or
modules that have not been link-edited. They are pointed to by the TXLIB
operand on the ++JCLIN or element statement.

If JCLIN data is in a text library, the name of the member containing it must
match the SYSMOD ID that the JCLIN is for.

� Link libraries contain link-edited modules. They are pointed to by the LKLIB
operand on the ++MOD statement.

Indirect libraries can be used with a RELFILE tape or instead of a RELFILE tape.
You might want to use indirect libraries:

� If users must supply the JCLIN data describing the function.

In this case, you could provide the elements on the RELFILE tape and point to
the indirect library that will contain the JCLIN data.

 Chapter 3. Rules for Packaging Methods 17

 Indirect Libraries

� If users will have access to the integrated data sets containing the JCLIN data
and elements.

In this case, there is no need to ship a tape. You could simply point to the
integrated data sets containing the JCLIN data and elements.

This method has advantages over the inline data method because the data in the
indirect libraries is not copied into the SMPPTS data set. Performance is improved
because elements and JCLIN data do not have to be moved into work data sets
when the SYSMOD is applied and accepted, and less space is needed for the
SMPPTS.

3.3.1 Example of a RELFILE Tape with JCLIN Data in an Indirect
Library

Instead of having a SYSMOD supply JCLIN data, you may need to have the user
supply it. For example, if a function SYSMOD is installed using a generation proce-
dure and it deletes the previous release of the function, users will have to save the
Stage 1 generation output JCL and use it as JCLIN data when they apply the
SYSMOD. In this case, you would use the TXLIB operand on the ++JCLIN state-
ment to point to the data set in which the users must supply the JCLIN data. The
macros and modules could still be in relative files. The following example shows a
RELFILE tape where the JCLIN data will be provided by the users in a TXLIB data
set.

After receiving and accepting the function, the users will do a Stage 1 generation
and save the output JCL in the data set pointed to by DDTXLIB1. When applying
the function, the users must then provide a DD statement or DDDEF entry for that
data set to process the JCLIN data that was saved. For example:

//DDTXLIB1 DD DSN=PDD32ðð.DDTXLIB1,DISP=SHR

Be sure to mention this requirement in the installation documentation for the func-
tion.

Table 6. Example of JCLIN Data in an Indirect Library

File Data Set Name Contents

1 SMPMCS ++FUNCTION(PDD32ðð) FILES(2)
 RFDSNPFX(ABC).
++VER(Zð38) DELETE(PDD31ðð).
++JCLIN TXLIB(DDTXLIB1).
++MOD(A) DISTLIB(ADDDLIB) RELFILE(1).
++MOD(B) DISTLIB(ADDDLIB) RELFILE(1).
++MAC(X) DISTLIB(ADDMACS) RELFILE(2).

2 ABC.PDD3200.F1 Unloaded partitioned data set containing modules A
and B for function PDD3200

3 ABC.PDD3200.F2 Unloaded partitioned data set containing macro X for
function PDD3200

18 MVS Packaging Rules

 Indirect Libraries

3.3.2 Example of Using Indirect Libraries Instead of a RELFILE Tape
A SYSMOD may be packaged in indirect libraries instead of on a RELFILE tape if
users will have access to the integrated data sets containing the code. The fol-
lowing example shows a set of indirect libraries where JCLIN data is contained in a
TXLIB data set, link-edited modules are contained in an LKLIB data set, and
macros are contained in a TXLIB data set.

When applying and accepting a SYSMOD packaged in indirect libraries, the users
must provide DD statements or DDDEF entries for the TXLIB and LKLIB data sets
so SMP/E knows where to find the code. Be sure to mention this requirement in
the installation documentation for the SYSMOD. Here is an example of DD state-
ments for the TXLIB and LKLIB data sets specified above.

//DDTXLIB1 DD DSN=PDD32ðð.DDTXLIB1,DISP=SHR
//DDLKLIB1 DD DSN=PDD32ðð.DDLKLIB1,DISP=SHR
//DDTXLIB2 DD DSN=PDD32ðð.DDTXLIB2,DISP=SHR

Table 7. Example of Elements and JCLIN Data in Indirect Libraries

DDNAME of Data Set Contents

SMPMCS ++FUNCTION(PDD32ðð).
++VER(Zð38) DELETE(PDD31ðð).
++JCLIN TXLIB(DDTXLIB1).
++MOD(A) LKLIB(DDLKLIB1).
++MOD(B) LKLIB(DDLKLIB1).
++MAC(X) TXLIB(DDTXLIB2).

DDTXLIB1 Partitioned data set containing JCLIN data for function
PDD3200

DDLKLIB1 Partitioned data set containing modules A and B for func-
tion PDD3200

DDTXLIB2 Partitioned data set containing macro X for function
PDD3200

 Chapter 3. Rules for Packaging Methods 19

 Indirect Libraries

20 MVS Packaging Rules

 SYSMODs

Chapter 4. SYSMOD Types and Relationships

A program is made up of elements such as macros, modules, or other types of
data. For SMP/E to install and service software, you must code modification
control statements (MCS statements) for the software elements. MCS statements
describe the elements and any relationships the software has with other software
that may also be installed on the same MVS system or subsystem. The combina-
tion of elements and MCS statements is called a system modification, or SYSMOD.

The following sections describe fundamental SMP/E concepts about SYSMODs and
how they relate to product packaging.

4.1 Types of SYSMODs
Before coding any MCS statements for software changes, you must decide what
type of SYSMOD to use. The SYSMOD type you choose depends on how the
changes affect the system on which they are installed.

� A function introduces a new base or dependent function, or a new version or
release (or both) of a function.

� A program temporary fix (PTF) corrects a problem that may affect all cus-
tomers.

� An APAR fix corrects a problem that affects a specific user.

� A user modification (USERMOD) makes a change to an IBM product or to a
user-written product.

Function SYSMODs for base functions define the environment for other SYSMODs
that may be installed. All other SYSMODs are applicable to the base or dependent
function that they support. For example, a PTF may fix an element that was intro-
duced by a function SYSMOD for a particular base function—the PTF SYSMOD is
therefore applicable to that function SYSMOD.

The following sections describe the various types of SYSMODs.

Note: Refer to Chapter 10, “Naming Conventions” on page 121 for information
about the required naming conventions for SYSMODs.

 4.1.1 Functions
Software products can be differentiated by the type of SYSMOD, or by their
relationship to other functions. The two relationships are base and dependent func-
tions. Each of these types of functions are packaged as function SYSMODs.

 4.1.1.1 Base Functions
A base function is a collection of elements (such as source, macros, modules, and
CLISTs) that provides a general user function and is packaged independently from
other functions.

A base function is packaged as a function SYSMOD on a RELFILE tape, identified
by an FMID. The FMID is described under 10.2, “SYSMOD IDs for Functions” on
page 121. For more information on the implications of National Language Support

 Copyright IBM Corp. 1986, 1999 21

 SYSMODs

on base functions, see Chapter 11, “Packaging for National Language Support
(NLS)” on page 127.

Function SYSMODs for base functions are applicable to any MVS environment,
although they may have interface requirements that require the presence of other
base functions.

 4.1.1.2 Dependent Functions
A dependent function is a collection of elements (such as source, macros, modules,
and CLISTs) that provides an enhancement to a base function. It may provide
optional, additional function for a base function—this is called an “additive
dependent function.” A dependent function may also provide language support for
a base function or for an additive dependent function—this is called a “language-
support dependent function.” A dependent function is identified with one, and only
one, base function. On the other hand, there may be several dependent functions
identified with the same base function.

A dependent function that provides language support may be for only one lan-
guage. While one language may span multiple FMIDs, one FMID may not contain
multiple languages. For more information, see Chapter 11, “Packaging for National
Language Support (NLS)” on page 127.

A dependent function is packaged as a function SYSMOD on a RELFILE tape,
identified by an FMID. FMIDs are described in 10.2, “SYSMOD IDs for Functions”
on page 121.

Function SYSMODs for dependent functions are only applicable to the parent base
function. Each dependent function specifies an FMID operand on the ++VER MCS
to indicate the base function to which it is applicable. (The FMID is described in
10.2, “SYSMOD IDs for Functions” on page 121.) The hierarchy defined by this
relationship determines the order in which the function SYSMODs must be
installed: the base function specified on the FMID operand must be installed before
or concurrently with the dependent function that contains that FMID operand. For
more information, see 4.2.2, “Hierarchy of SYSMOD Types” on page 25.

4.1.1.3 Choosing between Base and Dependent Functions
Depending on the needs of your product and your customers, you may need to
package your product as a combination of base and dependent functions. In addi-
tion, you may need to consider how to define these functions as features for your
product, as well as the charges (and terms and conditions) that will apply to your
product.

Remember these points when making your decision:

Table 8 (Page 1 of 2). Comparison of Base and Dependent Functions

Base Function Dependent Function

Is installable without its dependent func-
tions. May require another base function.

Must be installed with its parent base
function.

Can have no, one, or more than one
dependent function

Must be associated with only one base
function.

22 MVS Packaging Rules

 SYSMODs

Table 8 (Page 2 of 2). Comparison of Base and Dependent Functions

Base Function Dependent Function

Can be explicitly deleted by another base
function.

Can be explicitly deleted by another
dependent function. Can be explicitly
deleted by a base function.

4.1.1.4 General Packaging Rules for Functions

Packaging Recommendations

Common elements should be packaged in a common SYSMOD.

End of Packaging Recommendations

Packaging common elements in a single SYSMOD makes it easier to service ele-
ments. When the common elements are packaged in the base function instead of
in each language-support dependent function, you reduce the number of copies of
that element that have to be updated when the element is serviced.

Packaging Rules (Functions)

Ø 2100. All elements included in an MVS-based product that is installed on
an MVS system must be SMP/E-installable.

Ø 2200. This rule has been changed to a recommendation (see below).

Ø 2300. This rule has been deleted.

Ø 2305. All unique elements for a given language must be packaged in a
unique SYSMOD for that language.

 4.1.2 PTFs
A PTF SYSMOD provides preventive service, corrective service, or enhancements
to a function.

Preventive service is service for a problem that a customer may not have yet
encountered. CBPDO and ESO tapes provide preventive service PTFs to cus-
tomers. By applying these PTFs, a customer may prevent problems from occurring
on the system.

Corrective service is service explicitly requested by a customer to fix a problem that
has occurred on the system.

A given PTF may be applicable to one or more releases of a function. Likewise,
there may be more than one PTF for a given release of a function. Each PTF fixes
one or more problems associated with the function.

Each PTF has a unique, 7-character name called a SYSMOD ID. The format of
this SYSMOD ID is described under B.4, “Naming Conventions for Service” on
page 236.

 Chapter 4. SYSMOD Types and Relationships 23

 SYSMOD Relationships

 4.1.3 APAR Fixes
An APAR fix provides corrective service for a function. Corrective service is service
explicitly requested by a customer to fix a problem that has occurred on the
system.

An APAR fix is applicable to one, and only one, release of a function. Likewise,
there may be more than one APAR fix for a given release of a function.

Each APAR fix has a unique, 7-character name. The format of this SYSMOD ID is
described under B.4, “Naming Conventions for Service” on page 236.

 4.1.4 USERMODs
You may want to provide a sample USERMOD with your product to let customers
tailor your product to their needs. For example, you may want to include a
USERMOD to help your customers change or add such things as:

� A procedure in PROCLIB
� A parameter or table in PARMLIB
� A sample job in SAMPLIB
� A user exit routine

By making your product tailorable through a USERMOD, you and the user benefit
from SMP/E, which does the following:

� Keeps a record of the changes
� Reports any intersections with other SYSMODs
� Makes sure the changes are not regressed
� Makes sure the changes are installed properly in the correct libraries
� Allows the users to remove the changes, if necessary

Use the ++SAMP MCS statement to package the USERMOD as an element for the
associated function. Define the element as being installed in an appropriate data
set for sample code. Use the same 7-character name for both the element in
which the USERMOD is packaged and the USERMOD SYSMOD ID. (See 10.3,
“Element, Alias, and Load Module Names” on page 122 for more information about
element naming conventions.)

The USERMOD can be installed by the customer as is, or it can be changed before
it is installed.

For examples of packaging USERMODs, see the SMP/E User's Guide.

4.2 Defining SYSMOD Relationships
Understanding the relationships between SYSMODs is one of the most important
aspects of planning how to package SYSMODs. A SYSMOD can only be installed
properly and run correctly if its requirements regarding other SYSMODs on the
system are met. For example, one SYSMOD may require the presence of
another—a dependent function requires a particular base function. This section
describes the types of SYSMOD relationships you may have to define in the course
of developing and servicing a product. Specifically, it discusses the following:

� Conditional and unconditional SYSMOD relationships
� The hierarchy of SYSMOD types

24 MVS Packaging Rules

 SYSMOD Relationships

� An overview of specific types of SYSMOD relationships
 � Coexisting SYSMODs

4.2.1 Conditional and Unconditional Relationships
All SYSMOD relationships are either conditional or unconditional. Table 9 con-
trasts these two types of relationships.

Table 9. Comparison of Conditional and Unconditional SYSMOD Relationships

Conditional Relationships Unconditional Relationships

Specified on ++IF statements Specified on ++VER statements

Enforced if the specified function
SYSMOD is present

Always enforced

4.2.2 Hierarchy of SYSMOD Types
When defining SYSMOD relationships, take into account the hierarchy of SYSMOD
types. SMP/E uses this hierarchy to determine which version of an element to
install, if the element is contained in several SYSMODs. Figure 4 on page 26
shows this hierarchy, from the lowest functional level to the highest.

All of the SYSMODs in the hierarchy are part of the same product version. The
product version includes all SYSMODs that have the same product version in the
FMID specified on their ++FUNCTION or ++VER statements. (This convention is
described under 10.2, “SYSMOD IDs for Functions” on page 121.) For example,
SYSMODs with these statements would be in the same product version because
they all have the same product version code (MX1):

++FUNCTION(WMX12ðð).

++FUNCTION(XMX121ð).
++VER(Zð38) FMID(WMX12ðð).

++PTF(UZ1ðððð).
++VER(Zð38) FMID(WMX12ðð).

++FUNCTION(WMX13ðð).

For SMP/E to process SYSMODs in the correct order, you must define that order to
SMP/E. As Figure 4 on page 26 shows, if a dependent function has an element in
common with its base function, the element in the dependent function is used
instead of the one in the base—it is functionally higher.

You define SYSMOD hierarchy with operands on the ++VER statement.

� Base functions are the lowest level in the hierarchy. Therefore, they do not
specify an FMID on the ++VER statement.

� Dependent functions specify the FMID of a base function on the ++VER state-
ment. This base function must not be for a different product.

� PTFs and APAR fixes specify the FMID of a base or dependent function on the
++VER statement.

 Chapter 4. SYSMOD Types and Relationships 25

 SYSMOD Relationships

 ┌───────┐
 │ │ PRE Highest
 │ APAR ├───────┐ Functional

│ │ │ Level
 └───┬───┘ │ &
 │ │ │
 │ │ │
 │ 6 │
┌───────┐ │ ┌───────┐ │
│ │ PRE │ │ │ │
│ APAR ├───────┐ │ │ PTF │ │
│ │ │ │ │ │ │
└───┬───┘ │ │ └───┬───┘ │
 │ │ │ │ │
 │ │ │ FMID │ FMID │
 │ │ │ │ │
 │ 6 6 6 │
 │ ┌───────┐ ┌──────────────────────────┐ │

│ │ │ │ │ │
│ │ PTF │ │ Dependent Function │ │
│ │ │ │ │ │

 │ └───┬───┘ └────────────┬─────────────┘ │
 │ │ │ │
 │ FMID │ FMID │ FMID │
 │ │ │ │
 6 6 6 │
┌───┐ 6
│ │ Lowest
│ Base Function │ Functional
│ │ Level
└───┘

Figure 4. Hierarchy of SYSMOD Types

4.2.3 Specific SYSMOD Relationships
These are the types of relationships that may exist between SYSMODs:

 � Prerequisite SYSMODs
 � Corequisite SYSMODs
� Negative prerequisite SYSMODs
� Deleting and superseding SYSMODs

 4.2.3.1 Prerequisite SYSMODs
Prerequisite SYSMODs have a relationship where one SYSMOD requires another.

If SYSMOD(2) needs SYSMOD(1) for proper operation, but SYSMOD(1) does not
need SYSMOD(2), SYSMOD(1) is a prerequisite for SYSMOD(2). These are some
cases when you would define a SYSMOD as a prerequisite:

� Defining the base function for a dependent function
� Defining the order of dependent functions
� Defining one product that is needed for another product
� Defining service for one product that is needed for another product

See 7.2.6, “Specifying Prerequisite Relationships (PRE)” on page 60 for information
about how to specify this relationship, and 13.2.3, “PTF Service That Depends on
Previous Service” on page 139 and 13.4.6, “Establishing the Order of Additional
Dependent Functions” on page 152 for more examples.

26 MVS Packaging Rules

 SYSMOD Relationships

 4.2.3.2 Corequisite SYSMODs
Corequisite SYSMODs have a relationship where the two SYSMODs require each
other.

If SYSMOD(2) and SYSMOD(1) need each other for proper operation, they are
corequisites of each other. These are some cases when you would define
SYSMODs as corequisites:

� Defining two products that need each other
� Defining two dependent functions for different products that need each other
� Defining related service for a dependent function and its parent base function

Packaging Recommendations

When you are building SYSMODs that may be installed as a group, such as pre-
requisite or corequisite SYSMODs, do not construct the SYSMODs in such a way
that their proper installation depends on the internal processing order within SMP/E.
From time to time, the processing order may be changed and SYSMODs that
depend on that order may not be installed correctly. Follow the packaging rules in
this book to define how the SYSMODs should be installed.

End of Packaging Recommendations

4.2.3.3 Negative Prerequisite SYSMODs
Negative prerequisite SYSMODs have a relationship where one SYSMOD requires
the absence of another.

If SYSMOD(2) can be installed only if SYSMOD(1) is not also on the system,
SYSMOD(1) and SYSMOD(2) are negative prerequisites. For example, you might
define dependent functions as negative prerequisites if they are mutually exclusive
because they tailor a product to two different environments.

Note: All negative prerequisites are unconditional and may be specified only in
function SYSMODs.

Packaging Rules (Negative Prerequisite SYSMODs)

Ø 2330. If two function SYSMODS cannot be installed in the same zone, the
MCS of the function SYSMOD with the later availability date must have an
NPRE for the other function SYSMOD. If both function SYSMODS have
the same availability date, then the MCS for each one must have an NPRE
for the other.

4.2.3.4 Deleting and Superseding SYSMODs
Deleting and superseding SYSMODS have a relationship where one SYSMOD
replaces another.

� If other functions have a relationship with the function to be replaced, you
should evaluate those relationships.

� If SYSMOD(2) takes the place of SYSMOD(1), it can delete SYSMOD(1),
supersede SYSMOD(1), or both delete and supersede SYSMOD(1). For
example, if Function A2 is a later release of Function A1, it can delete Function

 Chapter 4. SYSMOD Types and Relationships 27

 SYSMOD Relationships

A1, supersede it, or both. The differences between deleting a SYSMOD,
superseding a SYSMOD, or doing both are shown in Table 10 on page 28.

See 7.2.7, “Superseding SYSMODS (SUP)” on page 61 for more information about
deleting and superseding SYSMODs.

Packaging Recommendations

� A new release of a function should both delete and supersede the previous
release if all of the following are true:

– The new release contains at least all the function that was in the previous
release.

– If other products specified the deleted function as a requisite, all the
internal and external interfaces used by those other products are
unchanged in the new release.

– Other products that specified the previous release as a requisite can run
with the new release.

� Evaluate a replacement function using Table 10 as a guide. If the replacement
function matches that description, then the preferred and recommended way to
replace the previous function is to both delete and supersede it.

End of Packaging Recommendations

By both deleting and superseding the previous function, you gain the combined
benefits of the DEL and SUP operands of the ++VER MCS.

� The DELETE operand is required in order to ensure that previous releases of
the product are removed. This prevents accidental mixture of old and new ele-
ments in the same library.

� The SUP operand specifies that the new function completely and compatibly
replaces all functions of the old function.

� The DELETE/SUP combination allows you to replace a function without dis-
turbing any other SYSMODs that depend on that function. By specifying SUP,
you are saying that the new function meets all dependencies identified by these
dependent functions. You must ensure that this is the case before using the
DELETE/SUP combination.

Table 10 (Page 1 of 2). Comparison of Deleting, Superseding, and Both Deleting and Superseding a SYSMOD

Delete Supersede Delete and Supersede

The new SYSMOD specifies
DELETE on its ++VER statement.

The new SYSMOD specifies SUP
on its ++VER statement.

The new SYSMOD specifies
DELETE and SUP on its ++VER
statement.

SMPCSI entries for the deleted
SYSMOD are deleted. SMP/E no
longer considers the deleted
SYSMOD to be installed on the
system.

SMPCSI entries for the super-
seded SYSMOD are saved.
SMP/E considers the new
SYSMOD to be a substitute for the
superseded SYSMOD.

SMPCSI entries for the deleted
and superseded SYSMOD are
deleted. SMP/E considers the new
SYSMOD to be a substitute for the
deleted and superseded SYSMOD.

28 MVS Packaging Rules

 SYSMOD Relationships

Table 10 (Page 2 of 2). Comparison of Deleting, Superseding, and Both Deleting and Superseding a SYSMOD

Delete Supersede Delete and Supersede

Elements for the deleted SYSMOD
are deleted from the target and
distribution libraries.

Elements for the superseded
SYSMOD are not deleted from the
target and distribution libraries.

Elements for the deleted and
superseded SYSMOD are deleted
from the target and distribution
libraries.

Note: The new SYSMOD may replace some elements at the same or higher functional level than the deleted,
superseded, or deleted and superseded SYSMOD. The new SYSMOD may also add new elements.

Using the previous example, if no other functions have a relationship with Function
A1, Function A2 can delete Function A1. On the other hand, if some other function
specified A1 as a requisite, A2 should both delete and supersede A1. This ensures
that the requisite relationship is satisfied by both A1 and A2; no missing requisite
prevents the other function from being installed.

Note: All deleting and superseding relationships are unconditional.

For specific examples of defining these relationships, see Chapter 13, “SYSMOD
Packaging Examples” on page 137.

 4.2.4 Coexisting SYSMODs
If two function SYSMODs can be installed in the same zone, they are said to
“coexist.” Two function SYSMODs can coexist if they meet all these requirements:

� They apply to the same SREL.
� Neither SYSMOD deletes nor supersedes the other.
� Neither SYSMOD is a negative prerequisite of the other.
� If the SYSMODs are base functions, they are for different products.

Packaging Recommendations

Products should not require the customer to install them into their own unique
zones; every product should be installable in the same target and distribution zones
as any other product in the SREL. This gives the customer the ability to decide
which combinations of products will reside together.

The installation information may suggest that the customer use new zones initially
to avoid deleting previous releases of the product, but this should not be required.

Products should not require any function or service to be accepted before another
function can be applied.

End of Packaging Recommendations

Although you cannot control the specific zone where a SYSMOD is installed, you
can help users install the SYSMOD in the correct zone by packaging the SYSMOD
correctly and by providing any additional information in the installation material. To
provide this information, you must understand the rules for coexistence.

There are two ways for SYSMODs to coexist:

 Chapter 4. SYSMOD Types and Relationships 29

 SYSMOD Relationships

� Unconditionally: SYSMOD(A) is required by SYSMOD(B), and must be
installed in a zone that contains SYSMOD(B). SYSMOD(A) “unconditionally
coexists” with SYSMOD(B).

� Conditionally: SYSMOD(A) is not required by SYSMOD(B), and need not be
installed in a zone that contains SYSMOD(B). SYSMOD(A) “conditionally coex-
ists”with SYSMOD(B).

4.2.4.1 SYSMODs that Unconditionally Coexist
A requisite must be installed before (or concurrently with), and in the same zone
as, the SYSMOD that specifies the requisite. The specifying SYSMOD cannot be
installed without its requisite. Therefore, the requisite “unconditionally coexists” with
the SYSMOD that specifies the requisite.

 Reminder

“Unconditionally coexists with” means “must be installed before (or concurrently
with) and in the same zone as.”

These are some examples of types of SYSMODs that “unconditionally coexist” with
a dependent function:

� Its parent base function
� Any prerequisite dependent functions
� Any corequisite dependent functions.

4.2.4.2 SYSMODs that Conditionally Coexist
A SYSMOD that specifies a requisite is generally not required to be installed con-
currently with, and in the same zone as, the SYSMOD it specifies as a requisite.
Most requisites are one-way: SYSMOD(B) requires SYSMOD(A), but SYSMOD(A)
does not require SYSMOD(B). The requisite (A) can be installed without the
SYSMOD that needs it (B).

Likewise, any function SYSMODs that can coexist but do not require each other (or
that do not even define any relationship to each other) are said to “conditionally
coexist.” They can be installed either with or without each other.

 Reminder

“Conditionally coexists with” means “can be installed with but is not needed for.”

4.2.4.3 Example: Conditional and Unconditional Coexistence
Look at the following example:

┌────┐ PRE ┌────┐ REQ ┌────┐ Assume that all these
 │ A │%──────│ B │%─────5│ C │ functions coexist.

└────┘ └────┘ └────┘ – A is a prerequisite of B.
– B and C are corequisites.
– D has no relationship with

┌────┐ any other function.
│ D │ – A and D can be installed
└────┘ without the other functions.

30 MVS Packaging Rules

 SYSMOD Relationships

Based on these relationships:

� A unconditionally coexists with B and C.
� B and C unconditionally coexist with each other.
� B and C conditionally coexist with A.
� A, B, and C conditionally coexist with D.
� D conditionally coexists with A, B, and C.

 Chapter 4. SYSMOD Types and Relationships 31

 SYSMOD Relationships

32 MVS Packaging Rules

 Fundamental Packaging

Chapter 5. Fundamental Packaging Considerations

This chapter presents the following basic considerations for product packaging:

� Installation methods for function SYSMODs
� Evaluating SYSMOD relationships

 � Adding FMIDs
� Record length, record format, and block size requirements

 � Shared libraries
 � Avoiding UCLIN

 5.1 Installation Methods
A product is completely SMP/E-installable when it can be installed with both of
these methods:

 � RECEIVE–APPLY–ACCEPT

 � RECEIVE–ACCEPT BYPASS(APPLYCHECK)–GENERATE.

The installation method using GENERATE reveals problems that may occur only
when the entire system is generated together; these problems may be masked in
the RECEIVE–APPLY–ACCEPT scenario. Also, GENERATE is more strict about
product dependencies. For example, GENERATE does not allow DD statements to
override DDDEFs; as a result, duplicate library names may be exposed when a
system is generated and might not be visible when an individual product is
installed.

Figure 5 on page 34 provides an overview of these methods. You should plan to
test both of these installation paths to ensure that the results are identical. For
details on all the steps in each method, see the SMP/E User's Guide.

 Copyright IBM Corp. 1986, 1999 33

 Fundamental Packaging

 ┌─────────────────────┐
│ Receive the SYSMODs.│

 └──────────┬──────────┘
 ┌─────────────┴─────────────┐
 │ │
 6 6
┌─────────────────────┐ ┌─────────────────────┐
│ Apply the SYSMODs │ │ Accept the SYSMODs │
│ to target libraries.│ │ into distribution │
└──────────┬──────────┘ │ libraries. │

│ │ ─ BYPASS(APPLYCHECK)│
 │ └──────────┬──────────┘
 │ │
 6 6
┌─────────────────────┐ Is Stage 1 NO
│ Accept the SYSMODs │ needed? ──────────┐
│ into distribution │ │ │
│ libraries. │ │ │
└─────────────────────┘ YES │
 RECEIVE-APPLY-ACCEPT 6 │
 ┌─────────────────────┐ │

│ Do a Stage 1 │ │
 │ generation. Save │ │

│ the output JCL for │ │
│ later use. │ │

 └──────────┬──────────┘ │
 │ │
 6 │
 ┌─────────────────────┐ │

│ Run JCLIN using the │ │
│ Stage 1 output JCL │ │
│ as input. │ │

 └──────────┬──────────┘ │
 │ │
 │%──────────────┘
 │
 │ ┌────────────────┐

└───5│ Complete using │
 │ GENERATE. │
 └────────────────┘
 RECEIVE-ACCEPT-GENERATE

Figure 5. Overview of Methods for Installing Functions

Packaging Rules (Installation)

Ø 2600. All files on an MVS-installable product tape must be SMP/E-install-
able.

Ø 2700. All products must be packaged so that they can be individually
installed using both the RECEIVE–APPLY–ACCEPT method and the
RECEIVE–ACCEPT BYPASS(APPLYCHECK)–GENERATE method.

34 MVS Packaging Rules

 Fundamental Packaging

Packaging Recommendations

A PTF should not increase its product's driving system requirements beyond what
is documented in the installation instructions.

End of Packaging Recommendations

Packaging Rules (Installation)

Ø 2710. The return code from ACCEPT processing for all function SYSMODs
must be zero, with these exceptions:

– Warning message GIM39701W, SYSMOD sysmod-id HAS NO ELE-
MENTS.

| – Warning message GIM50050W, concerning the DESCRIPTION
| operand.

– A warning message issued only in certain environments (for example, a
product tries to delete an element or load module that is not on the
system).

5.2 Evaluating SYSMOD Relationships
At various stages in the life of a product you must consider the SYSMOD relation-
ships you may have to define:

� Packaging the initial release of a function

The first time you package a product as a function, you must consider whether
that function has any dependencies on other SYSMODs that might be installed
on the same system.

Some SYSMODs have no relationships to any other SYSMODs. For example,
you may have a simple function SYSMOD that stands on its own and has no
requirements for any other functions to be installed. On the other hand, you
may have a function that uses code provided by another function.

If a SYSMOD stands on its own, you do not have to define any relationships.
However, if there are requirements for other SYSMODs, you must define these
relationships.

Refer to 4.2, “Defining SYSMOD Relationships” on page 24 for more informa-
tion.

� Replacing a function

After a function has been available for a while, you may develop enough
changes to distribute a new release of that function. You must define the
relationship of that new release to the previous release, as well as decide
whether to carry over relationships defined in the previous release.

See 4.2.3.4, “Deleting and Superseding SYSMODs” on page 27 for more infor-
mation.

� Enhancing a function

 Chapter 5. Fundamental Packaging Considerations 35

 Fundamental Packaging

When you have changes for a function, you may want to update the function
instead of replacing it.

For example, you may want to provide some optional capability for a particular
environment. These enhancements could be packaged as a dependent func-
tion, which adds to the base function without replacing it. You must define the
relationship between the base function and its dependent functions. If you
develop several dependent functions, you must also define any relationships
there may be among them.

Refer to 4.2.2, “Hierarchy of SYSMOD Types” on page 25 and 4.2, “Defining
SYSMOD Relationships” on page 24 for more information.

� Supporting language-sensitive elements

When a product provides language-sensitive elements (such as messages and
dialog elements), those language-sensitive elements should be packaged in a
separate dependent function for each language, including U.S. English (even if
U.S. English is the only language supported). The remaining elements remain
in the base function. You must define the relationship between the base func-
tion and its dependent functions for language-sensitive elements.

Refer to Chapter 11, “Packaging for National Language Support (NLS)” on
page 127 for more information.

� Servicing a function

At each of the stages in developing a function you may need to provide service
to fix problems with the function. You must define the relationship between the
service and the function. As you provide more service, you may also have to
define relationships among service fixes.

Refer to 4.1.2, “PTFs” on page 23, 4.1.3, “APAR Fixes” on page 24, and to
Appendix B, “MVS Service Packaging Rules” on page 209.

 5.3 Adding FMIDs
New FMIDs are required for functions in new versions, releases, or modification
levels. You need to be aware of the requirements for adding FMIDs.

Packaging Rules (++FUNCTION SYSMOD ID)

Ø 2900. A new FMID is required for each new version, release, or modifica-
tion level of an existing base or dependent function.

Ø 2950. A new FMID can be added only by a new version, release, or modifi-
cation level.

5.4 Record Length, Record Format, and Block Size Requirements
You should take these requirements into consideration as you develop your
product; this will minimize problems when you build your RELFILE tape. Table 11
on page 38 summarizes the requirements for packaging elements in RELFILEs.

36 MVS Packaging Rules

 Fundamental Packaging

Packaging Recommendations

� A dependent function should contain only those elements needed to provide
the additive function, or that are needed to provide the additional language
support. This reduces the number of element versions and makes servicing
the elements easier.

� Sample job streams and other special data that might be helpful to the cus-
tomer can be stored as a member of a partitioned data set that is unloaded to
a relative file on the RELFILE tape. Examples include:

– A procedure to allocate and catalog libraries
– Installation verification procedures (IVPs)

This data should be packaged as sample code using the ++SAMP MCS state-
ment, and it should be defined to be installed in an appropriate data set for
sample code.

When SMP/E installs the SYSMOD, it copies this member into the libraries
specified by the SYSLIB and DISTLIB operands on the element MCS state-
ment. The sample job stream or other data can then be retrieved from the
appropriate library for further processing.

� Jobs allocating target or distribution libraries must specify BLKSIZE=32760 for
all RECFM=U datasets, and BLKSIZE=0 (utilizing system-determined
blocksizes) for all non-RECFM-U datasets, with the following exceptions:

 – SYS1.UADS
 – Font libraries

End of Packaging Recommendations

Packaging Rules (Macros, Modules, Source)

Ø 3400. Macros, modules, and source elements must be members of a parti-
tioned data set (DSORG=PO).

Ø 3410. Distribution libraries must be partitioned; only target libraries may be
sequential. Use of sequential distribution libraries would tend to increase
the total number of datasets required on the system.

Ø 3500. The record format (RECFM) for load modules must be U. For more
information, see Table 11 on page 38.

Ø 3510. A product should not change any of the following attributes of an
existing dataset:

 – RECFM

– PDS vs. PDS/E

 – PATH attributes

If such a change is required, a new dataset must be created. It must have a
new DDDEF entry as well as a new DDNAME and dataset name.

Ø 3650. The record format (RECFM) for macros and source must be FB, and
the record length (LRECL) must be 80. For more information, see
Table 11 on page 38.

 Chapter 5. Fundamental Packaging Considerations 37

 Fundamental Packaging

Packaging Recommendations

� If a function SYSMOD uses unique target or distribution libraries, you may want
to include a procedure to allocate and catalog the libraries. This procedure
should be in an appropriate data set for sample code, must be a member in
one of the relative files, and must be defined by the appropriate element MCS,
as described above.

� A product may have an Installation Verification Procedure (IVP) that may be
used by customers to verify that the product has been installed. If an IVP is
included in the product package, it should be in an appropriate data set for
sample code, must be a member in one of the relative files, and must be
defined by the appropriate element MCS.

End of Packaging Recommendations

Packaging Rules (Data Elements, Hierarchical File System (HFS) and
++PROGRAM Elements)

| Ø 3700. Data elements, hierarchical file system (HFS) elements, and
| ++PROGRAM elements must be packaged as members of a partitioned
| data set (DSORG=PO).

Ø 3800. The record format (RECFM) must be F, FA, FM, FB, FBA, FBM, V,
| VA, VM, VB, VBA, or VBM. The record format (RECFM) of ++PROGRAM
| elements must be U.

Notes:

1. Elements with fixed-length records are not restricted to a logical record
length (LRECL) of 80.

2. A VSAM data set may be a data element if it is in AMS REPRO format.
However, after the data is installed by SMP/E, the customer will also
have to run an AMS REPRO job to create the original form of the
VSAM data. (SMP/E does not support native VSAM data sets as ele-
ments.)

Ø 3810. The maximum LRECL for a data element is 32,654.

Ø 3900. Elements with variable-length records may not contain spanned
records.

Ø 3910. CLISTs must not have sequence numbers.

Ø 4000. When packaging data elements, use the MCS statements shown in
Table 12 on page 45. When packaging hierarchical file system (HFS) ele-
ments, use the ++hfs_element MCS statement.

Table 11 (Page 1 of 2). Summary of Requirements for Packaging Elements in RELFILEs

Element Type MCS RECFM LRECL
Recommended
BLKSIZE

Macro ++MAC FB 80 8800

(See note 1.)

38 MVS Packaging Rules

 Fundamental Packaging

Table 11 (Page 2 of 2). Summary of Requirements for Packaging Elements in RELFILEs

Element Type MCS RECFM LRECL
Recommended
BLKSIZE

Module

(Each object module must be link-
edited into a single-module load
module.)

++MOD U No specific
required value

6144

(See note 1.)

Source ++SRC FB 80 8800

(See note 1.)

Data element

(See note 2.)

++element No specific
required value

No specific
required value

For FB80, use
BLKSIZE 8800.

For other
formats,
BLKSIZE
depends on
DASD.

(See note 1.)

HFS element

(See note 2.)

++hfs_element No specific
required value

No specific
required value

For FB80, use
BLKSIZE 8800.

For other
formats,
BLKSIZE
depends on
DASD.

(See note 1.)

Notes:

1. Use the most efficient block size for the DASD you support. The block size must not exceed that of the
smallest DASD supported by your product, as indicated in the product's documentation. If the smallest DASD
supported is the 3350, the block size must not exceed 19069.

2. Data elements and hierarchical file system (HFS) elements (unlike macros, modules, and source) have no
required record format or logical record length.

 5.5 Shared Libraries
This section discusses shared libraries. For information about library names, refer
to 10.4, “Library Names” on page 124.

Packaging Rules (Shared Libraries)

Ø 4200. A library cannot contain two or more elements with the same name
or alias name, even if they are different types. Therefore, if your product is
to be installed in libraries shared with another product, you must ensure
that none of your product's elements have the same name or alias name as
those for elements of the other product that are installed in the same
library.

 Chapter 5. Fundamental Packaging Considerations 39

 Fundamental Packaging

If different products contain like-named elements (or aliases), data can be overlaid;
this can produce unpredictable results.

If products share a library but specify different data set attributes, installation errors
can occur.

If products share a library, the products must make sure that there will be sufficient
space left in the library after installation. The library must be able to fit on all DASD
types supported by all the products. Also, there must be sufficient space remaining
so that the products can be serviced.

Packaging Recommendations

To avoid problems with like-named elements or aliases, do not install your product
in shared libraries.

End of Packaging Recommendations

Packaging Rules (Shared Libraries)

Ø 4300. If products share a library, each product must use the same data set
attributes for that library. This means that if a product adds elements to an
existing product-specific library, the new product must specify the same
DCB attributes as the existing library.

 5.6 Avoiding UCLIN
UCLIN can cause many complications and must be avoided. Some potential prob-
lems resulting from UCLIN are:

� Increased chances for introducing errors
� Difficulty in debugging errors
� Performance impact for customized offerings

Packaging Recommendations

Do not use UCLIN. Use MCS statements instead.

Note: UCLIN is acceptable, and recommended, to create or modify DDDEF
entries.

End of Packaging Recommendations

MCS statements can:

� Add modules to existing load modules
� Change ownership of an element
� Move macros, modules, source, and load modules
� Rename load modules
� Delete load modules

 � Delete elements

40 MVS Packaging Rules

 Fundamental Packaging

Table 15 on page 73 describes some things you can do through MCS statements
to avoid using UCLIN.

Refer to Chapter 8, “Using MCS Statements to Manipulate Elements and Load
Modules” on page 73 for more information.

 Chapter 5. Fundamental Packaging Considerations 41

 Fundamental Packaging

42 MVS Packaging Rules

 Elements and Load Modules

Chapter 6. Elements and Load Modules

The term “element” is used as a collective name for such things as:

 � Source
 � Macros
 � Modules
 � CLISTs
 � Panels
 � Procedures
� Sample programs that make up a product

Each element is distributed under a unique name (starting with the 3-character
prefix for the product and referred to as the element name) and performs some
particular function for the product that owns the element.

The element statements describe elements contained in a function. All elements of
a product on the product tape must be described in its MCS. SMP/E provides a
variety of MCS statements to accommodate a broad spectrum of element types,
including language-sensitive versions of many element types.

� ++MAC describes a new or replacement macro.

� ++MOD describes a new or replacement module (a single-CSECT load
module).

� ++SRC describes a new or replacement source module.

� Data element MCS statements describe new or replacement elements that are
not macros, modules, or source. See 6.4, “Data Element Types” on page 45
for a list of the element data types.

� ++hfs_element MCS describes a new or replacement element that is installed in
a hierarchical file system (HFS).

This chapter describes various considerations for packaging the elements that
make up a product. These topics are discussed:

 � Element ownership
 � Element aliases
� Data element types

 � Load modules
� Packaging sample JCL and data
� Language sensitive elements

 Copyright IBM Corp. 1986, 1999 43

 Elements and Load Modules

6.1 General Packaging Rules, Restrictions, and Recommendations for
Elements

This section describes general rules for packaging elements.

IBM Software Delivery Restrictions

� The TXLIB and LKLIB operands are not supported by the IBM Software
Delivery Solutions process.

� The IBM Software Delivery Solutions process does not support SYSMODs
requiring assemblies at ACCEPT time. Therefore, the following restrictions
apply to the ++MAC and ++SRC statements:

– A ++MAC statement must not specify the ASSEM, DISTMOD, DISTOBJ, or
PREFIX operands unless the macro is accompanied by the assembled
object modules and ++MOD statements.

– A ++SRC statement must not specify the DISTMOD or DISTOBJ operand
In addition, the source can be accompanied by the assembled object
module and ++MOD statement.

� A ++SRC statement must not specify the DISTMOD or DISTOBJ operand. In
addition, the source can be accompanied by the assembled object module and
++MOD statement, unless the DISTLIB for the associated object module is
SYSPUNCH. (To set up a DISTLIB or SYSPUNCH for the object module,
JCLIN data must contain an assembly step for the source that assembles it into
SYSPUNCH, and a link-edit step that includes the object module from
SYSPUNCH.)

End of IBM Software Delivery Restrictions

Packaging Recommendations

Single-CSECT modules are recommended where possible. This makes it easier for
the module to be serviced. A single CSECT can be distributed rather than shipping
the entire module. SMP/E can perform a CSECT replacement.

End of Packaging Recommendations

For more details, see Chapter 8, “Using MCS Statements to Manipulate Elements
and Load Modules” on page 73.

Packaging Rules (Elements)

Ø 4910. An element can be owned by only one function. Ownership is
defined by the FMID and VERSION operands on the ++VER and element
statements.

44 MVS Packaging Rules

 Elements and Load Modules

 6.2 Element Ownership
An element must be exclusively owned by one product. For guidelines on moving
an element from one product to another, see 13.8, “Changing the Contents of
Products” on page 161.

You may have an element that is owned by one particular product and is being
shared between your product, the owning product, and other products that have
already been designed and delivered. In that case, for any new release of the
owning product, your product (and each other sharing product) may need to provide
either a PTF or a new release to ensure that all these products can still be
installed.

6.3 Using Aliases for Elements
An alias is an alternative name assigned to an element or load module. It is impor-
tant to maintain the uniqueness of these names to:

� Ensure that pieces are not unintentionally overlayed
� Make each entity identifiable to its owning product
� Allow each piece of a product to be serviced

For MVS products, an element is defined in the SMPMCS file using the
++element(ccccxxxx) statement, where ccccxxxx is the name assigned to that par-
ticular element. Each piece that is shipped on a product tape must be defined in
the SMPMCS file as either an element or an alias of an element. If an alias name
is assigned to an element, the RELFILE tape must contain both the element and
the alias in a RELFILE.

Refer to 10.3.3, “Alias Names” on page 123 for information about alias names.

6.4 Data Element Types
Table 12 lists the MCS statements that can be used to define data elements. It
may not reflect the most currently supported values. For the latest information, see
the SMP/E Reference manual.

Table 12 (Page 1 of 2). MCS Statements for Data Elements. If an element is pro-
vided in only one language, the x's can be left off the MCS. If an element is provided in
more than one language, replace the x's with the appropriate value from Table 18 on
page 129.

MCS Description

++BOOKxxx Online book member

++BSINDxxx Index for an online publications library (bookshelf)

++CGMxxx Graphics source for an online book

++CLIST CLIST

++DATA Data not covered by other types

++DATA1–++DATA5 IBM generic data types 1–5

These are for IBM use only, to define elements that are not
covered by any existing data types.

 Chapter 6. Elements and Load Modules 45

 Elements and Load Modules

Some types of elements, such as panels, messages, or text, may have to be trans-
lated into several languages. In these cases, the corresponding MCSs contain xxx
to indicate which language is supported by a given element. Refer to 11.1,
“Element Types for Translated Elements” on page 128 for a description of national
language identifiers. Figure 6 on page 47 shows an example where product XX1
(with a component code of ZZZ) must provide both English and French support for
a message module, a panel, a panel message, and a sample element.

Table 12 (Page 2 of 2). MCS Statements for Data Elements. If an element is pro-
vided in only one language, the x's can be left off the MCS. If an element is provided in
more than one language, replace the x's with the appropriate value from Table 18 on
page 129.

MCS Description

++DATA6xxx IBM generic data type 6

This is for IBM use only to define an element not covered by
any existing data types.

++EXEC EXEC

++FONTxxx Printer Font Object Contents Architecture (FOCA) font

++GDFxxx GDF graphics panel

++HELPxxx Help information (for example, a member in SYS1.HELP or a
dialog help panel)

++IMGxxx Graphics image for an online book

++MSGxxx Message member (such as for a dialog or for a message data
set)

++PARM PARMLIB member

++PNLxxx Panel for a dialog

++PROBJxxx Printer object element

++PROC Procedure in PROCLIB

++PRSRCxxx Printer source element

++PSEGxxx Graphics page segment for an online book

++PUBLBxxx Online publications library (bookshelf)

++SAMPxxx Sample data, program, or JCL in a data set for sample code

++SKLxxx File skeleton for a dialog

++TBLxxx Table for a dialog

++TEXTxxx PDS member containing text plus SCRIPT tags

++USER1–++USER5 User-defined data types 1–5

These are for user-defined elements that are not covered by
any existing data types.

++UTINxxx General utility input

++UTOUTxxx General utility output

46 MVS Packaging Rules

 Elements and Load Modules

++FUNCTION(LXX11ð1). ++FUNCTION(LXX11ð2).

++VER(Zð38) FMID(KXX11ðð). ++VER(Zð38) FMID(KXX11ðð).

++MOD(ZZZMODðE)... message ++MOD(ZZZMODðF)...
DISTLIB(AZZZMOD1). modules DISTLIB(AZZZMOD1).

++PNLENU(ZZZPNLð1)... panels ++PNLFRA(ZZZPNLð1)...
 DISTLIB(AZZZPNLE) DISTLIB(AZZZPNLF)
 SYSLIB(SZZZPNLE). SYSLIB(SZZZPNLF).

++MSGENU(ZZZMSGð1)... dialog ++MSGFRA(ZZZMSGð1)...
 DISTLIB(AZZZMSGE) messages DISTLIB(AZZZMSGF)
 SYSLIB(SZZZMSGE). SYSLIB(SZZZMSGF).

++SAMPENU(ZZZSMPð1)... samples ++SAMPFRA(ZZZSMPð1)...
 DISTLIB(AZZZSAME) DISTLIB(AZZZSAMF)
 SYSLIB(SZZZSAME). SYSLIB(SZZZSAMF).

Figure 6. Example of Using Data Element MCSs

Notes:

1. The message modules can be in the same distribution library, because the
element names are different.

2. For the panels, dialog messages, and samples, there is a different element
type for each language version of an element. Therefore, the element :
GIM99XMP for all the languages in which the element is supported. However,
elements with the same name must be installed in different libraries. (SMP/E
does not check whether different types of data elements have the same name.
Likewise, SMP/E does not prevent elements with the same name from being
installed in the same libraries.)

6.5 Hierarchical File System (HFS) Element Types
Table 13 lists the MCS statements that can be used to define hierarchical file
system (HFS) elements. It may not reflect the most currently supported values.
For the latest information, see the SMP/E Reference manual.

Table 13 (Page 1 of 2). MCS Statements for Hierarchical File System Elements. If an
element is provided in only one language, the x's can be left off the MCS. If an element
is provided in more than one language, replace the x's with the appropriate value from
Table 18 on page 129.

MCS Description

++AIX1 through ++AIX5 Elements to be used by an AIX client.

++CLIENT1 through ++CLIENT5 Elements to be used by any client (intended for
clients not described by other elements types.

++HFSxxx Generic hierarchical file system element (data
not covered by other types)

++SHELLSCR UNIX shell script elements.

 Chapter 6. Elements and Load Modules 47

 Elements and Load Modules

Some types of hierarchical file system elements may have to be translated into
several languages. In these cases, the corresponding MCSs contain xxx to indi-
cate which language is supported by a given element. Refer to 11.1, “Element
Types for Translated Elements” on page 128 for a description of national language
identifiers.

Table 13 (Page 2 of 2). MCS Statements for Hierarchical File System Elements. If an
element is provided in only one language, the x's can be left off the MCS. If an element
is provided in more than one language, replace the x's with the appropriate value from
Table 18 on page 129.

MCS Description

++OS21 through ++OS25 Elements to be used by an OS/2 client.

++UNIX1 through ++UNIX5 Elements to be used by a UNIX client.

++WIN1 through ++WIN5 Elements to be used by a Windows client.

6.6 Shared Load Modules
Table 13 on page 47 lists the MCS that can be used to define data elements.

Sometimes, products need to share load modules.

� A load module can contain multiple modules, some of which are owned by dif-
ferent FMIDs. This is called a shared load module. Examples of shared load
modules are load modules that contain:

– Compiler or high-level language (HLL) modules

– Callable system services

– Subsystem or product interfaces (for example, CICS, DB2, ISPF)

– Modules from base and dependent functions or multiple dependent func-
tions.

– Modules from different products

� A module that can be link-edited into more than one load module or be dynam-
ically accessed by more than one load module. This is called a shared
module. Examples of shared modules are:

– Compiler or high-level language (HLL) modules
– Callable system services
– Subsystem or product interfaces (such as CICS, DB2, and ISPF)
– Modules being reused by more than one load module

Note: Refer to 10.3, “Element, Alias, and Load Module Names” on page 122 for
more information about load module names and to 8.5, “Enabling Load
Module Changes at the CSECT Level (++MOD CSECT)” on page 84 for
information about using the ORDER statement for load modules.

48 MVS Packaging Rules

 Elements and Load Modules

Packaging Recommendations

� If a shared module is loadable and is used by more than one product, then
products that share modules should dynamically load the shared modules
during initialization and then link (or branch) to it as needed (there are perform-
ance considerations). This way, the latest level of the module is used without
having to link-edit the module every time it is serviced.

� If a module is link-edited into a known existing load module and does not
require link edit control statements (such as ENTRY, ALIAS, and ORDER), the
++MOD LMOD operand should be used.

End of Packaging Recommendations

For more information about sharing load modules, see 9.6.4, “Cross-Product Load
Modules for Products Installed in the Same Zone” on page 107 and 9.6.5, “Cross-
Product Load Modules for Products Installed in Different Zones” on page 109.

Packaging Rules (Shared Load Modules)

Ø 5100. This rule has been deleted.

Ø 5200. One product must not use JCLIN to redefine the content of another
product's load module (even for shared load modules). For more informa-
tion, see 6.1, “General Packaging Rules, Restrictions, and Recommenda-
tions for Elements” on page 44.

Ø 5300. This rule has been deleted.

Ø 5400. Ensure that the product owner of a module that is shared across
products does not use ++MOD DELETE and that it does not change the
SYSLIB or DISTLIB of the shared module. For more information about
deleting load modules, see 8.3, “Deleting Load Modules (++DELETE)” on
page 81.

Ø 5500. If a module in Product A requires elements from Product B and the
products are installed in different zones, the program directory for Product A
must define Product B as a prerequisite.

6.7 Sample JCL and Data
Sample JCL and data for a product may be stored as a member of a partitioned
data set (PDS), then packaged in a relative file on a RELFILE tape for a function
SYSMOD.

� To package sample JCL, use the ++SAMP statement.

� To package sample data, use either the ++SAMP statement or the ++DATAn
statement.

For both sample JCL and sample data, make sure to specify an appropriate data
set for sample code.

When SMP/E installs the function SYSMOD, it copies the elements into the libraries
specified by the SYSLIB and DISTLIB operands on the MCS statement. The

 Chapter 6. Elements and Load Modules 49

 Elements and Load Modules

sample JCL or data can then be retrieved from one of these libraries for further
processing.

Packaging Recommendations

� Products should supply sample jobs to perform the SMP/E APPLY and
ACCEPT functions.

| � Products should ship a sample job to allocate any target or distribution libraries
| that are created by the product, and should require the installer to run it. If any

of these libraries are shared libraries that may have been allocated by other
products, such libraries should be allocated in a separate job or job step, with
instructions to the user explaining when the job or job step should be run.

� Products should ship a sample job to create DDDEF entries for new target and
distribution libraries, as well as any existing libraries that may not have entries
in this product's target or distribution zone. Entries for all distribution libraries
should be created in the distribution zone, and entries for all target libraries
should be created in the target zone. In addition, entries for all distribution
libraries should be created in the target zone to support RESTORE processing.

� The installation instructions should identify the names of the sample jobs and in
which RELFILE they reside, so that customers can download the jobs directly
from the tape, if desired. The installation instructions should also state that the
customer can perform an SMP/E RECEIVE to load the jobs into temporary
libraries, copy them into private data sets, and then modify and run the jobs
from these data sets.

� If Function A requires Function B with the FMID, PRE, or REQ operands, and
Function A uses Function B's libraries, then Function A is not required to ship
allocation or DDDEF jobs for any libraries allocated by Function A.

� Sample jobs should include clear and detailed comments. Information neces-
sary to update the job prior to submission should be in the job, not in the instal-
lation instructions for the product.

Packaging Rules (Samples)

Ø 5750. Sample installation JCL is optional, but if shipped, it must be pack-
aged in a relative file.

Ø 5810. Products should not ship catalogued or instream procedures to
invoke SMP/E during installation. Sample installation jobs should invoke
SMP/E directly, and should require the installer to create DDDEF entries for
all libraries.

Ø 5820. If a product installs into the hierarchical file system (HFS), its
DDDEF job must include DDDEFs for the /usr/lpp/product_id/vendor_name/
directories it creates or uses. The DDDEF job must create the pathname in
the DDDEF, and then provide a separate step to edit the DDDEF and
change the path to the user-defined prefix. This is necessary to accommo-
date long pathnames that are not easily edited by hand.

Ø 5890. Products must not create DDDEF entries with /etc as a directory in
the pathname.

50 MVS Packaging Rules

 Elements and Load Modules

� If a sample job is provided on the tape, the text of the job should not appear in
the installation instructions. This will reduce the size of the installation
instructions, as well as avoid situations where the tape and the installation
instructions do not match.

� DDDEF jobs should adhere to the following:

1. Use ADD DDDEF, not REP DDDEF.

2. Use the WAITFORDSN operand.

3. Use separate job steps to divide datasets into logical groups. For example,
a product could use one step for new datasets, and other steps for data-
sets introduced in previous releases.

� Middle-level qualifiers of VxRxMx should not be specified in sample allocation
jobs.

� Symbolic links for hierarchical file system (HFS) files should be created in the
MKDIR EXEC, and should be relative, not absolute. To ensure that the MKDIR
EXEC can run multiple times without damage, products creating symbolic links
in the MKDIR EXEC should also provide UNLINK statements for every symbolic
link ever created in this or previous levels, including those that have become
obsolete.

� The MKDIR EXEC should be called zzzMKDIR, and the jobname of the JCL
invoking it should be called zzzISMKD, where zzz is the three-character prefix
of the product shipping the elements.

� A PTF should not add or delete DDDEF entries, or change dataset or
pathnames in a DDDEF entry. If this is unavoidable, the following is recom-
mended:

1. A ++HOLD ACTION should be placed on the PTF.

2. The changes should be shipped in a separate DDDEF or MKDIR EXEC
shipped in the PTF, not by updating and reshipping the existing DDDEF or
MKDIR EXEC.

3. The new DDDEF or MKDIR EXEC should appear in the HOLDDATA of the
PTF

� Sample allocation jobs should specify UNIT=SYSALLDA for all target and distri-
bution libraries.

� Sample DDDEF creation jobs should specify UNIT(SYSALLDA) for all target
and distribution libraries.

� All products installing into the hierarchical file system (HFS) should statically
create their directories in a MKDIR EXEC. The installation documentation
should document how to run the EXEC during the installation of the product,
similar to the documentation on running dataset allocation jobs.

� The MKDIR EXEC should meet the following requirements:

1. It accepts a parameter for the highest-level directory, rather than hard-
coding it.

2. Output is sent to the SYSOUT held queue. It contains a report of what was
created, what was not created, and what directories already existed. It also
includes the return code received and the date and time it was run.

3. The directory names all appear together.

 Chapter 6. Elements and Load Modules 51

 Elements and Load Modules

4. It can be executed multiple times successfully.

5. If a product provides EXECs run during installation, such as MKDIR
EXECs, a batch job invoking the EXEC should be provided for the custom-
er's use. This does not apply to EXECs run after installation, such as IVPs
or customization.

| � Products should not use the SMP/E dynamic allocation function to allocate
| target and distribution libraries as new data sets; the usage of DDDEFs is
| recommended only after the datasets have been allocated outside of SMP/E.

End of Packaging Recommendations

For more information about packaging a RELFILE tape, see 3.1, “Relative File
Tapes” on page 11.

 6.8 Language-Sensitive Elements
A product may have elements that require translation for national language support
(NLS). In this case, you must use a base function or additive dependent function
for the elements that do not have to be translated, and a separate language-
support dependent function for each language into which elements are translated.

For more information, refer to Chapter 11, “Packaging for National Language
Support (NLS)” on page 127.

52 MVS Packaging Rules

Chapter 7. Using MCS Statements to Define Products

SMP/E MCS statements are used to define products as function SYSMODs. This
is the order of MCS statements for a function SYSMOD:

This chapter discusses the rules and MCS considerations you must follow when
specifying the following statements:

 � ++FUNCTION
 � ++VER
 � ++IF
 � ++HOLD
 � ++element

For more information about the ++MOVE, ++RENAME, and ++DELETE statements,
see Chapter 8, “Using MCS Statements to Manipulate Elements and Load
Modules” on page 73. For more information about the ++JCLIN statement, see
Chapter 9, “Using JCLIN” on page 87. For details on all MCS statements, see the
SMP/E Reference manual.

Notes:

1. Not every statement is fully documented here. The emphasis here is on those
statements and operands used for packaging.

2. All input to SMP/E must be in uppercase (except comments, the LINK value on
the ++hfs_element MCS, the ALIAS value on the ++DELETE statement, and
alias values in link-edit JCLIN). For details on SMP/E's syntax rules, see the
SMP/E Reference manual.

3. All references to releases or modification levels of a function also apply to
versions—each version consists of at least one release.

IBM Software Delivery Restrictions

The ++ ASSIGN statement is not described in this section and must not be used.

End of IBM Software Delivery Restrictions

MCS Type How Many
++FUNCTION (one)
++VER (one or more)
++IF (none, one, or more)
++HOLD (none, one, or more)
++MOVE (none, one, or more)
++RENAME (none, one, or more)
++DELETE (none, one, or more)
++JCLIN (none or one)
++element (one or more to replace or update elements)

 Copyright IBM Corp. 1986, 1999 53

 ++FUNCTION Statement

 7.1 ++FUNCTION Statement
The ++FUNCTION statement identifies the SYSMOD as a base function or
dependent function. A function SYSMOD may include only one ++FUNCTION
statement.

Operands on the ++FUNCTION statement are used to:

� Specify the SYSMOD ID
� Identify the REWORK date
� Specify the prefix used for relative file data set names
� Specify the copyright information

7.1.1 Specifying the SYSMOD ID (sysmod_id)
The sysmod_id operand is the name, or SYSMOD ID, of the function. The
SYSMOD ID is required, and only one value can be specified. It is also called the
function modification identifier (FMID). See 10.2, “SYSMOD IDs for Functions” on
page 121 for more information about the naming convention for FMIDs.

7.1.2 Identifying the REWORK Date (REWORK)
The REWORK operand indicates the date that a function was first released or last
updated. The REWORK operand is important, because it can be used to distin-
guish every time a given function is updated and reissued with the same FMID.
The date the work was done is specified as yyyyddd, which is the year followed by
the Julian date (for example, 1993110).

Note: If a SYSMOD appears more than once in the SMPPTFIN data set, the first
occurrence may be received. However, none of the subsequent versions of
the SYSMOD are received, even if their REWORK level is higher than the
one for the first version of the SYSMOD. (Message GIM40001E is issued
for each of the subsequent versions of the SYSMOD.)

Packaging Rules (++FUNCTION REWORK)

Ø 5900. REWORK is required on all ++FUNCTION statements, including the
initial release.

Specify the REWORK date as yyyyddd, which is the year followed by the
Julian date (for example, 1995110).

You must change the date every time the function is updated and reissued
with the same FMID.

7.1.3 Specifying the Prefix for RELFILE Data Sets (RFDSNPFX)
The RFDSNPFX operand identifies to SMP/E the prefix that was used in the rela-
tive file data set names for this SYSMOD. SMP/E uses this prefix when allocating
data set names for the SYSMOD's relative files during RECEIVE processing.
When you specify a value on the RFDSNPFX operand, remember to use that value
in the names of your RELFILE data sets. For more information, see 3.1.1, “Format
and Contents of the RELFILE Tape” on page 12.

54 MVS Packaging Rules

 ++FUNCTION Statement

Packaging Rules (Prefix for RELFILE Data Sets)

Ø 5910. If you specify a value for RFDSNPFX, do not specify RFDSNPFX(IBM).
Use a different prefix.

7.1.4 Specifying Copyright Information
A copyright comment should be used for all products. Make sure to check on the
legal requirements for your company.

Packaging Recommendations

The copyright statement should be within the first 15000 bytes of object code on
the distribution media.

End of Packaging Recommendations

Here is an example of the placement of the copyright statement for a licensed
program:

++FUNCTION(sysmod_id) FILES(nn) REWORK(yyyyddd)
 /\\\/
 /\ --- copyright statement goes here --- \/
 /\\\/.

Additional comments may be included as separate records after the copyright state-
ment and before the final delimiter (*/).

Notes:

1. The comment statement begins in column 2.

2. If an FMID is included in more than one product, the copyright statement can
refer to all the products in which that FMID is included.

 Chapter 7. Using MCS Statements to Define Products 55

 ++VER Statement

 7.2 ++VER Statement
The ++VER statement describes the environment required for this SYSMOD. A
SYSMOD must contain a separate ++VER statement for each environment to which
it applies.

The ++VER statement is required for all SYSMODs.

The operands on the ++VER statement are used to:

� Identify the SREL
 � Delete SYSMODs
� Identify the base function to which a dependent function applies
� Specify mutually exclusive relationships
� Specify prerequisite relationships
� Specify requisite relationships
� Specify SYSMODs that are superseded by another SYSMOD
� Define ownership of SYSMODs

7.2.1 General Packaging Rules (++VER)
Packaging Rules (++VER)

Ø 6200. Every SYSMOD referenced on a single ++VER statement must
reside in the same zone.

Ø 6205. When two or more SYSMODs affect the same element, you must
specify the relationship among those SYSMODs. Specifically, you must
define the order in which they should be processed (indicated by the PRE,
SUP, or FMID operand) and the correct version of the element to be
installed (indicated by the FMID or VERSION operand).

Packaging Rules (Multiple SYSMODs Affecting an Element)

Ø 6210. When two or more SYSMODs affect the same element, you must
specify the relationship among those SYSMODs.

– If both SYSMOD A and SYSMOD B ship the element (or updates to it),
the MCS statements in both SYSMODs must define the order in which
the SYSMODs should be processed (indicated by the PRE, SUP, or
FMID operand) and the correct version of the element to be installed
(indicated by the FMID or VERSION operand).

– If Product A includes an element from Product B via an INCLUDE state-
ment in a JCLIN link-edit step without changing the element, and
Product A requires a particular level of Product B, then Product A's
MCS statements must specify an unconditional requisite for the appro-
priate level of Product B.

– If Product A includes an element from Product B via an INCLUDE state-
ment in a JCLIN link-edit step without changing the element, and mul-
tiple levels of Product B would fill the needs of Product A, then Product
A's program directory must identify Product B as an installation require-
ment, specifying the lowest acceptable level of Product B.

56 MVS Packaging Rules

 ++VER Statement

7.2.2 Identifying the SREL
Packaging Rules (++VER SREL)

Ø 6300. On a single ++VER statement, all SYSMODs specified on the NPRE,
PRE, REQ, SUP, and VERSION operands must be applicable to the same
SREL as the SYSMOD containing this ++VER statement.

Ø 6400. You must use one of the following SRELs: Z038 for MVS, C150 for
CICS, P004 for NCP, or P115 for IMS and DB2.

7.2.3 Identifying a SYSMOD's Base Function (FMID)
The FMID operand identifies the base function to which this SYSMOD applies.

Packaging Rules (++VER FMID)

Ø 6500. The FMID operand can be used only in a dependent function, not in
a base function. The FMID specified in the operand must be the FMID of a
base function. Both functions must be applicable to the same SREL. FMID
is required for dependent functions.

Ø 6600. A SYSMOD cannot be both a base function and a dependent func-
tion. The FMID operand identifies a SYSMOD as a dependent function;
therefore, if you specify the FMID operand, you must include it on all the
++VER statements for the SYSMOD.

7.2.4 Deleting SYSMODs (DELETE)
The DELETE operand indicates which function SYSMODs should be deleted when
this function is installed. Using the DELETE operand for deleting SYSMODs is
shown in Chapter 13, “SYSMOD Packaging Examples,” on pages 141, 144, and
152.

DELETE is a multiple entry operand that specifies the functions to be deleted, such
as a previous release of a base or dependent function.

Note: Generally, any function specified must be part of the same product.
However, a new release of a product may need to delete older, equivalent
releases of a different product that is applicable to the same SREL. For
example, a new release of Product B might include function that was previ-
ously in Product A. In this case, Product B would need to delete all pre-
vious releases of itself and Product A. In such cases, the owner of Product
B would have to negotiate with the owner of Product A for ownership
approval.

The deleted function may have had requisites, JCLIN data, or other SYSMOD
relationships information that must be considered when you package the deleting
function. These considerations are the same as those for superseding SYSMODs,
as shown in Table 14 on page 63. Table 10 on page 28 also provides more infor-
mation about deleting and superseding SYSMODs.

If the specified SYSMODs are installed, SMP/E deletes them from the target and
distribution libraries and from the SMP/E data sets. These SYSMODs are explicitly

 Chapter 7. Using MCS Statements to Define Products 57

 ++VER Statement

deleted. (SMP/E does not delete ++IF REQ data for SYSMODs that are explicitly
deleted.

SMP/E also deletes any SYSMODs (such as PTFs) that depend on the specified
SYSMODs (that is, any SYSMODs that name the specified SYSMODs on the FMID
operand of their ++VER statements). These SYSMODs are implicitly deleted.
(SMP/E does not delete ++IF REQ data for SYSMODs that are implicitly deleted.

Notes:

1. If a function requires any service that was previously installed on a deleted
function, the user may have to reinstall that service. (This may be the case
when a PTF applies to more than one release of a function.) When SMP/E
installs the deleting SYSMOD, it will identify which SYSMODs are being
deleted.

2. SMP/E tracks when a module is deleted from a load module composed of
modules to be deleted and modules not to be deleted. For each deleted
module, SMP/E keeps a record of the connection between the deleted module
and the load module. If any of these deleted modules are ever reintroduced,
SMP/E looks for load modules having a record of a connection to those
modules, and automatically rebuilds the load modules to include these modules
again.

If you are replacing a product that contained cross-product modules or load
modules, and the new release of the product eliminates the previous cross-
product connections without deleting the modules or load modules that were
involved, you need to ensure through packaging of the new release that SMP/E
does not try to perpetuate the previous cross-product connections. For exam-
ples, see 9.6.4.1, “Linking a Module from Another Function” on page 107 and
9.6.4.2, “Linking Modules into a Load Module for Another Function” on
page 108.

For more information about deleting SYSMODs, refer to 4.2.3.4, “Deleting and
Superseding SYSMODs” on page 27.

Packaging Recommendations

Packaging Rules (++VER DELETE)

Ø 6700. If the DELETE operand is used in a base function, it can specify the
FMID of a base function or a dependent function. If the DELETE operand
is used in a dependent function, it can only specify the FMID of a
dependent function.

Ø 6800. Base functions (other than the initial release) must use ++VER
DELETE to delete all previous releases and versions of the product.

Note: Optionally, dependent functions can delete previous releases and
versions of the product.

Ø 6900. A language-support dependent function must not delete an additive
dependent function, and vice versa.

Ø 7000. A function cannot delete itself.

58 MVS Packaging Rules

 ++VER Statement

� You should specify additive dependent functions that are applicable to a
deleted base function. This allows customers to determine what is deleted by a
function by reading the associated MCS. (Specifying these functions is for doc-
umentation purposes only. Dependent functions are automatically deleted
when the associated base functions are deleted.)

� It is not necessary to specify language-support dependent functions that are
applicable to a deleted base function. These functions are automatically
deleted when the associated base functions are deleted.

� To improve SMP/E performance during installation, very large products should
consider providing users with an example of how to package the ++VER
DELETE information separately in a dummy function SYSMOD.

This dummy function SYSMOD is received, applied, and accepted to delete the
previous releases of your product from the existing target and distribution
libraries, and UCLIN is run to delete the SYSMOD entries for the deleted func-
tion and for the dummy function. The new release of the product is then
installed.

For example, assume the previous release of your product is MYFUNC1, and
you want to explain to users how to delete it with dummy function DELFUNC.
MYFUNC1 is applicable to SREL Z038 and is installed in target zone TGT1 and
distribution zone DLIB1. Here is an example of the dummy function, along with
the instructions you should provide to your users:

++FUNCTION(DELFUNC) /\ Any valid unique SYSMOD ID. \/.
++VER(Zð38) /\ For SREL Zð38 (MVS products). \/

DELETE(MYFUNC1) /\ Deletes MYFUNC1. \/.

These are the commands you use to receive and install the dummy function,
and to delete the SYSMOD entries for the dummy function and the deleted
function:

SET BDY(GLOBAL) /\ Set to global zone. \/.
RECEIVE S(DELFUNC) /\ Receive the function. \/.
SET BDY(TGT1) /\ Set to applicable target. \/.
APPLY S(DELFUNC) /\ Apply to delete old \/
 /\ function. \/.
SET BDY(DLIB1) /\ Set to applicable DLIB. \/.
ACCEPT S(DELFUNC) /\ Accept to delete old \/
 /\ function. \/.
SET BDY(TGT1) /\ Set to applicable target. \/.
UCLIN.
DEL SYSMOD(DELFUNC) /\ Delete SYSMOD entries for \/.
DEL SYSMOD(MYFUNC1) /\ dummy and old function. \/.
ENDUCL.
SET BDY(DLIB1) /\ Set to applicable DLIB. \/.
UCLIN.
DEL SYSMOD(DELFUNC) /\ Delete SYSMOD entries for \/.
DEL SYSMOD(MYFUNC1) /\ dummy and old function. \/.
ENDUCL /\ \/.

When you accept the dummy function, SMP/E automatically deletes the associ-
ated SYSMOD entry from the global zone and the MCS entry from the
SMPPTS.

To complete the cleanup, you should also use the REJECT command to delete
any SYSMODs and HOLDDATA applicable to the dummy function and the old

 Chapter 7. Using MCS Statements to Define Products 59

 ++VER Statement

function. In addition, you should delete the FMIDs from the GLOBALZONE
entry to prevent SMP/E from receiving any SYSMODs or HOLDDATA appli-
cable to either of those functions. Here are examples of the commands you
can use to do this.

SET BDY(GLOBAL) /\ Set to global zone. \/.
REJECT HOLDDATA NOFMID /\ Reject SYSMODs, HOLDDATA \/

(DELFUNC MYFUNC1) /\ Delete the FMIDs from the \/
/\ GLOBALZONE entry. \/.

End of Packaging Recommendations

7.2.5 Specifying Mutually Exclusive SYSMODs (NPRE)
The NPRE operand is an optional, multiple-entry operand. It indicates which func-
tion SYSMODs are mutually exclusive and cannot exist in the same zone as the
specifying function. The SYSMOD ID specified on the NPRE operand cannot be
already installed and must not be superseded by a SYSMOD being installed con-
currently. These are called negative prerequisite SYSMODs. Using the NPRE
operand for mutually exclusive functions is shown under Chapter 13, “SYSMOD
Packaging Examples” on page 156. Also see 4.2.3.3, “Negative Prerequisite
SYSMODs” on page 27 for more information.

Packaging Rules (Mutually Exclusive Versions)

Ø 7200. If the NPRE operand is used in a base function, it can only specify
the FMID of a base function. If the NPRE operand is used in a dependent
function, it can specify the FMID of a base function, the FMID of a
dependent function, or both. In either case, all functions involved must be
applicable to the same SREL.

7.2.6 Specifying Prerequisite Relationships (PRE)
The PRE operand is an optional, multiple-entry operand for dependent functions. It
indicates which SYSMODs are prerequisites for the specifying SYSMOD. A prereq-
uisite must either be already installed, or must be installed concurrently with the
specifying SYSMOD. Using the PRE operand for prerequisite SYSMODs is shown
under Chapter 13, “SYSMOD Packaging Examples” on pages 139, 152, and 153.
See 4.2.3.1, “Prerequisite SYSMODs” on page 26 for more explanation.

Note: You cannot use PRE to assume ownership of an element from another
function. A dependent function must use the FMID operand, and a base
function must use the VERSION operand on the ++element statement.

60 MVS Packaging Rules

 ++VER Statement

Packaging Rules (++VER PRE)

Ø 7400. The PRE operand can be used only in a dependent function. It can
specify the FMID of a base function (other than its own base) or a
dependent function, or it can specify a PTF number. In any case, all func-
tions involved must be applicable to the same SREL.

Note: Do not use the PRE operand in a dependent function to indicate its
own base function. You must use the FMID operand for this
purpose.

Ø 7500. The specified prerequisite (or a valid replacement) must be available
as long as the specifying SYSMOD is available. When neither the prerequi-
site function nor the replacement SYSMOD is available, all the functions
specifying the prerequisite must be repackaged.

Ø 7600. If a dependent function specifies a PTF as a prerequisite, the
dependent function and the PTF must be applicable to the same base func-
tion.

7.2.7 Superseding SYSMODS (SUP)
The SUP operand is an optional, multiple-entry operand. It indicates which
SYSMODs are contained in and replaced by this SYSMOD. For example, it could
be used for a new release of a dependent function or for a service update. When a
SYSMOD specifies SUP on its ++VER statement, this indicates to SMP/E that the
superseded SYSMODs do not need to be installed once the superseding SYSMOD
has been installed. Using the SUP operand for superseding SYSMODs is shown
under Chapter 13, “SYSMOD Packaging Examples” on pages 138, and 144.
Table 10 on page 28 also provides a comparison of deleting and superseding
SYSMODs.

Note: You cannot use SUP to assume ownership of an element from another
function. A dependent function must use the FMID operand, and a base
function must use the VERSION operand on the ++element statement.

 Chapter 7. Using MCS Statements to Define Products 61

 ++VER Statement

Packaging Recommendations

Packaging Rules (++VER SUP)

Ø 7700. If the SUP operand is used in a base function, it can specify the
FMID of a base function, the FMID of a dependent function, a PTF number,
or an APAR number. If the SUP operand is used in a dependent function,
it can specify the FMID of a dependent function, a PTF number, or an
APAR number. In either case, all functions involved must be applicable to
the same SREL.

Ø 7800. A function must provide all the supported function contained in all
the SYSMODs it supersedes.

Ø 7900. All the superseded SYSMODs must be in the same product as the
superseding SYSMOD.

Ø 8000. For each environment (++VER FMID and SREL), all the elements in
the superseded SYSMODs must be contained either in the superseding
SYSMOD or in the combination of the superseding SYSMOD and its requi-
sites (other SYSMODs specified on the ++VER REQ operand), unless the
element is deleted by the superseding SYSMOD.

Ø 8100. The environment of a superseded SYSMOD must not be at a higher
functional level than the level of the superseding function.

– If the superseded SYSMOD is a base function, it must apply to the
same SREL as the superseding SYSMOD.

– If the superseded SYSMOD is a dependent function, it must apply to
the same SREL as the superseding SYSMOD. In addition, the super-
seded dependent function must do one of the following:

- Be applicable to the same base function as the superseding
dependent function

- Be applicable to a lower-level function than the superseding func-
tion

Ø 8200. A new release of a base function can supersede a previous release
of that base function only if it also deletes that previous release. Likewise,
a new release of a base function can supersede a dependent function
applicable to a previous release of that base function only if the new
release also deletes that dependent function.

Ø 8300. A new dependent function can supersede previous releases of that
dependent function only if it also deletes those releases.

Ø 8500. A superseding function (or its requisites) must carry on the SYSMOD
relationships defined in the superseded function SYSMODs. Table 14 on
page 63 shows the relationships and processing information that the super-
seding SYSMOD or its requisites may need to include from the superseded
SYSMODs.

Note: Table 14 on page 63 also applies to deleting SYSMODs and the
information that they or their requisites may need to include from the
deleted SYSMODs.

62 MVS Packaging Rules

 ++VER Statement

� A new release of a function should both delete and supersede the previous
release if all of the following are true:

– The new release contains at least all the function that was in the previous
release.

– If other products specified the deleted function as a requisite, all the
internal and external interfaces used by those other products are
unchanged in the new release.

– Other products that specified the previous release as a requisite can run
with the new release.

� Evaluate a replacement function using Table 10 on page 28 as a guide. If the
replacement function matches that description, then the preferred and recom-
mended way to replace the previous function is to both delete and supersede it.

End of Packaging Recommendations

Table 14 (Page 1 of 2). Considerations for Superseding (and Deleting) SYSMODs

If the superseded (and deleted)
SYSMOD(1) specified this:

Evaluate whether the statement is still valid and do the following as
appropriate:

++VER PRE(sysmod,...) Specify ++VER PRE or SUP for the same SYSMODs (or)

Specify ++VER PRE or REQ for another SYSMOD(3) that is either supe-
rior to or that specifies ++VER PRE or SUP for the same SYSMODs

++VER REQ(sysmod,...) Specify ++VER SUP, PRE, or REQ for the same SYSMODs (or)

Specify ++VER PRE or REQ for another SYSMOD(3) that is either supe-
rior to or that specifies ++VER SUP, PRE, or REQ for the same
SYSMODs

++VER SUP(sysmod,...) Specify ++VER SUP for the same SYSMODs

++VER VERSION(sysmod,...) or
++element VERSION(sysmod,...)

Specify ++VER VERSION or ++element VERSION for the same
SYSMODs

Note: The ++VER VERSION value affects all new or replacement ele-
ments that do not specify an overriding ++element VERSION
value.

++IF FMID(fmid) REQ(sysmod,...) Specify ++IF REQ for the same SYSMODs (or)

Specify ++IF REQ for another SYSMOD(3) that is either superior to or
that specifies ++VER SUP, PRE, or REQ for the same SYSMODs (or)

Specify ++VER PRE or REQ for another SYSMOD(3) that is either supe-
rior to or that specifies ++IF REQ for the same SYSMODs

Note: All of the ++IF statements must specify the same FMID value as
the original ++IF statement.

++HOLD statement Evaluate to see whether the ++HOLD statement is required, or can be
deleted by updating the installation documentation

++MOVE statement Include the ++MOVE statement, unless:

� An element statement deletes the element
� A ++DELETE statement deletes the load module.

Note: When moving an element, make sure to specify the new libraries
on the DISTLIB and SYSLIB operands in the appropriate
++element statements.

 Chapter 7. Using MCS Statements to Define Products 63

 ++VER Statement

Table 14 (Page 2 of 2). Considerations for Superseding (and Deleting) SYSMODs

If the superseded (and deleted)
SYSMOD(1) specified this:

Evaluate whether the statement is still valid and do the following as
appropriate:

++RENAME statement Include the ++RENAME statement, unless a ++DELETE statement
deletes the load module.

++DELETE statement Include the ++DELETE statement.

++JCLIN statement and JCLIN data Include the ++JCLIN statement and JCLIN data, merging the ++JCLIN
operands and JCLIN data from SYSMOD(1).

Note: If several SYSMODs are superseded (or deleted), merge the
JCLIN data so that the most recent data is properly reflected in
SYSMOD(2).

++MOD CSECT(name) Include the CSECT data.

++MOD LMOD(name) Evaluate to see whether the LMOD operand is still required on the
++MOD statement.

Note: The new JCLIN data may eliminate the need for the LMOD
operand.

Element updates Merge all of the updates contained in the superseded (or deleted)
SYSMODs into the new elements

UCLIN data Evaluate to see whether the UCLIN data is required, or whether an alter-
native to UCLIN may be used

UCLIN to move an element or load
module

Use a ++MOVE statement to move the element or load module, unless:

� An element statement deletes the element
� A ++DELETE statement deletes the load module.

UCLIN to rename a load module Use a ++RENAME statement to rename the load module, unless a
++DELETE statement deletes the load module.

UCLIN to delete a load module Use a ++DELETE statement to delete the load module.

Packaging Rules (Moving and Replacing Elements)

Ø 8600. The ++VER statement for each SYSMOD that contains an element
that is replaced or moved to a new library must use the PRE or SUP
operand to specify the previous SYSMOD, if any, that also replaced or
moved that element.

7.2.8 Defining Ownership (VERSION)
The VERSION operand specifies one or more dependent function SYSMODs
whose elements should be considered functionally lower than the version of those
elements in the specifying function SYSMOD. The VERSION operand is also used
to add a version of an element to a dependent function when that element exists
only in lower-level dependent functions.

When a dependent function SYSMOD that specifies the VERSION operand on the
++VER or element statement is installed, the dependent function will assume own-
ership of the elements from the functions specified on the VERSION operand.
Subsequent processing of service SYSMODs or USERMODs applicable to the
functions that previously owned the elements will not update or replace the affected
elements.

64 MVS Packaging Rules

 ++VER Statement

Note: For the VERSION operand to take effect, the specified functions must be
installed in the same zone as the specifying SYSMOD.

Packaging Recommendations

If use of the VERSION operand between two products is unavoidable, it is the
responsibility of the development owner of Product B to ensure that the develop-
ment owner of Product A understands and agrees to what has been done.

VERSION can also be specified on an element statement to establish the functional
level of elements and override the VERSION values specified on the ++VER state-
ment. However, the VERSION operand on the element statement is not additive; it
does not automatically take over ownership from the functions specified on the
++VER VERSION operand. To take over ownership from any of the functions
specified on the ++VER VERSION operand, you must repeat those values on the
VERSION operand for the element statement.

Packaging Rules (++VER VERSION)

Ø 8700. You must specify the lower-level function SYSMODs on the
VERSION operand of each ++VER statement in the higher-level function
SYSMOD.

VERSION is required to establish which elements are functionally higher
when SYSMODs for different dependent functions have elements with the
same name and type in common. Also, specifying the lower-level function
SYSMODs on the VERSION operand on the ++VER statement in the
higher-level function SYSMODs ensure that ownership of the elements is
given to the highest level SYSMOD.

Ø 8800. If a dependent function uses the VERSION operand, any subse-
quent function replacing this dependent function must contain all the ele-
ments whose ownership was assumed by the dependent function.

Ø 9000. A new release of a dependent function can have elements in
common with a lower-level dependent function for the same base function.
If so, the new release must incorporate those elements and, if the lower-
level dependent function is not deleted, must establish the superiority of its
version of those elements, as well as its installation relationship with the
lower-level function. The superiority of the elements is established by the
VERSION operand on either the ++VER or element statement. The instal-
lation relationship is established by either the PRE or SUP operand on the
++VER statement. For more information, see the descriptions of these
operands elsewhere in this chapter.

Ø 9100. VERSION must specify all the dependent functions that are func-
tionally lower than the specifying function and that include the elements to
be versioned.

Ø 9200. The VERSION operand must be specified on the ++VER statement if
all elements affected by this SYSMOD are to be versioned the same way.
The VERSION operand must be specified on the element statement if indi-
vidual elements can be versioned differently.

 Chapter 7. Using MCS Statements to Define Products 65

 ++VER Statement

End of Packaging Recommendations

66 MVS Packaging Rules

 ++IF Statement

 7.3 ++IF Statement
The ++IF statement defines conditional requisites. This is an optional statement
associated with the ++VER statement that precedes it. Several ++IF statements
may be associated with a single ++VER statement. If a SYSMOD contains several
++VER statements, there may be ++IF statements associated with each one.
Using the ++IF statement is shown under Chapter 13, “SYSMOD Packaging
Examples” on pages 140, 143, 147, 149, 153, 154, and 155.

The operands of the ++IF statement are used to:

� Specify the function to which the condition applies
� Specify the SYSMODs that must be installed if the condition exists

7.3.1 Specifying the Function to which the Condition Applies (FMID)
The FMID operand is a required, single-entry operand. It indicates the function to
which the conditional requisite applies.

Packaging Recommendations

� The ++IF MCS should include a comment to identify the product required by the
FMID operand.

End of Packaging Recommendations

Packaging Rules (++IF FMID)

Ø 9210. The ++IF statement can be used in a base function or a dependent
function. In both cases, the FMID operand can specify either a base func-
tion or a dependent function.

Ø 9300. The function cannot specify its own FMID.

Note: This Rule does not apply to products that require installation using
the OS/390 Release 3 (or later) level of SMP/E.

Ø 9400. This rule has been deleted.

Ø 9500. If the FMID operand is used in a base function, the specified
SYSMOD must be in a previous version of the product.

For example, Version 2 Release 2 of a product cannot specify ++IF FMID
for Version 2 Release 1; however, it can specify Version 1 Release 3.

Note: A dependent function can specify any function SYSMOD, regardless of
whether two functions are part of the same product or product version.

7.3.2 Specifying Requisite Conditions (REQ)
The REQ operand is a required, multiple-entry operand. It specifies one or more
SYSMODs that must be installed if the function SYSMOD specified on the FMID
operand of the ++IF statement is installed.

� If the specified function is already installed (or is currently being installed) in the
same zone where the specifying SYSMOD is being installed, the requisite must

 Chapter 7. Using MCS Statements to Define Products 67

 ++IF Statement

also be installed in that zone; otherwise, the specifying SYSMOD will not be
installed.

� If the specified function is not yet installed in the zone, SMP/E saves the infor-
mation from the ++IF statement in case the specified function is installed later.

In both cases, SMP/E saves requisite data from the ++IF statement, even if the
function specified on the ++IF FMID operand is restored or deleted.

Note: The specified SYSMOD may be in the same or a different product or
product version as the specifying SYSMOD.

Packaging Recommendations

Packaging Rules (++IF REQ)

Ø 9600. The REQ operand can be used in a base function or a dependent
function. In both cases, the REQ operand can specify either a dependent
function or a PTF number.

Ø 9700. Any dependent function specified on the REQ operand (or a valid
replacement) must be announced and must be available as long as the
specifying SYSMOD is available.

Ø 9800. If the specified conditional requisite is a function and it is deleted by
a new release of that function, one of the following must be done:

– The new release can also supersede the specified requisite function.
This way, the function specifying the requisite does not need to be
repackaged.

– If the specified requisite function is to be deleted by a new release
without also being superseded, the specifying function must be repack-
aged and redesigned to refer to the new release as the requisite.

Ø 9900. If the specified conditional requisite is a PTF, any subsequent
replacement must supersede the specified PTF. This eliminates the need
to repackage the specifying function to redefine the conditional requisite.

Ø 10000. A SYSMOD cannot specify both a conditional and unconditional
relationship for the same SYSMOD ID.

For example, the following statements cannot appear in the same
SYSMOD:

++VER REQ(ABC1234).
++IF FMID(Z) REQ(ABC1234).

Note: This Rule does not apply to products that require installation using
the OS/390 Release 3 (or later) level of SMP/E.

Ø 10010. If the specified SYSMOD is a dependent function, the FMID to
which it applies must either:

– Match the FMID specified on the associated ++IF statement contained
in the specifying SYSMOD

– Unconditionally coexist with the FMID specified on the associated ++IF
statement contained in the specifying SYSMOD

68 MVS Packaging Rules

 ++IF Statement

Provide ++IF REQs for all functionally required service, with comments explaining
the reason for the REQ.

End of Packaging Recommendations

 Chapter 7. Using MCS Statements to Define Products 69

 ++HOLD Statement

 7.4 ++HOLD Statement
The ++HOLD statement alerts the user that special SMP/E handling is required
before the SYSMOD can be applied or accepted.

IBM Software Delivery Restrictions

The CLASS operand must not be used.

++HOLD statements are not permitted in function SYSMODs. This is a restriction
of the IBM Software Delivery Solutions process.

End of IBM Software Delivery Restrictions

70 MVS Packaging Rules

 ++element Statement

 7.5 ++element Statement
Element statements describe the elements contained in a SYSMOD and are used
by SMP/E to select which elements should be installed in the target and distribution
libraries. If an element statement is not provided for an element, the element is not
installed, even if it was defined in the JCLIN data. The following statements can be
used to add or replace elements:

� ++MAC describes a new or replacement macro.

� ++MOD describes a new or replacement module.

� ++SRC describes new or replacement source code.

� ++hfs_element describes new or replacement elements that are installed in a
hierarchical file system (HFS).

� Data element MCSs describe new or replacement elements that are not
macros, modules, or source code. Types of data elements are shown in
Table 12 on page 45 under 6.4, “Data Element Types.”

A single SYSMOD can contain any one of the following statements or combinations
of statements for a given macro, module, or source element name.

� ++MAC statement: Macros may be used during source (++SRC) assemblies
and can be used to assemble source that is not defined by ++SRC statements.
The resulting object modules are written to a work data set that is used as
SYSPUNCH input to link-edit the modules into the target libraries. If you
package code that is to be processed this way, you must provide for the JCLIN
data that defines the assembly and link-edit steps to SMP/E. (This JCLIN data
may be packaged with the code or created during a generation procedure.)

� ++MOD statement: A module can be link-edited into a load module in a target
library, or, for a single-module load module, can be copied into a target library.
If you package code that is to be processed this way, you must provide for the
JCLIN data that defines the link-edit or copy steps to SMP/E. (This JCLIN data
may be packaged with the code or created during a generation procedure.)

� ++SRC statement: Source can be supplied without the corresponding modules
to cause the source to be assembled. The resulting object modules are written
to a work data set that is used as SYSPUNCH input to link-edit the modules
into the target libraries. If you package code that is to be processed this way,
you must provide for the JCLIN data that defines the assembly and link-edit
steps to SMP/E. (This JCLIN data may be packaged with the code or created
during a generation procedure.)

� ++SRC and ++MOD statements: A module may be provided in both source
and executable forms. (Each form represents a different element type, and
both must be in the same FMID.) In this case, the source will not be assem-
bled. Users who do not need to change the source code will have an execut-
able module they can install. Users who do need to change the source code
can make those changes to the source so that it will be assembled to create an
object module. The object module is installed as described above for the
++MOD statement.

If you package a module that is to be processed this way, you must provide for
the JCLIN data that defines the link-edit or copy steps to SMP/E. (This JCLIN

 Chapter 7. Using MCS Statements to Define Products 71

 ++element Statement

data may be packaged with the code or created during a generation proce-
dure.)

Packaging Recommendations

If you package an element with a ++SRC statement, you should also include the
associated ++MOD statement.

End of Packaging Recommendations

Packaging Recommendations

Do not use ++MAC, ++MOD, or ++SRC statements to package elements that are
not macros, modules, or source, respectively. Use data element statements or
HFS element statements (as appropriate) to package such elements.

End of Packaging Recommendations

For details on specifying these operands, see the OS/390 SMP/E Reference or
SMP/E R8.1 Reference, SC28-1107

Packaging Rules (DISTLIB for Elements)

Ø 10100. Do not use SYSPUNCH as the DISTLIB. It is used by SMP/E and
other products to process assembled modules.

Ø 10110. Do not specify a pathname in a hierarchical file system (HFS) as
the DISTLIB.

Ø 10111. Do not specify SMP/E temporary data sets (SMPLTS, SMPMTS,
SMPPTS, SMPSTS, etc.) as DISTLIB or SYSLIB values on MCS.

Ø 10112. If you must use a new library, it must have a unique ddname and a
unique data set name to avoid conflicts with other products. For more infor-
mation on naming distribution libraries, see 10.4, “Library Names” on
page 124.

72 MVS Packaging Rules

Chapter 8. Using MCS Statements to Manipulate Elements
and Load Modules

MCS statements can help you address packaging goals that at one time could be
done only through UCLIN. This chapter describes how you can use MCS state-
ments to:

� Move macros, modules, source, and load modules (++MOVE statement)
� Rename load modules (++RENAME statement)
� Delete load modules (++DELETE)
� Delete elements (++element DELETE)
� Enable load module changes at the CSECT level (++MOD CSECT)
� Change ownership of elements

Note: Regardless of the order in which ++MOVE, ++RENAME, and ++DELETE
statements are coded in a SYSMOD, they are always processed in this
order:

 � ++MOVE
 � ++RENAME
 � ++DELETE

Afterwards, ++JCLIN statements are processed, followed by element state-
ments.

Table 15 summarizes how you can use MCS statements to manipulate elements
and load modules.

Table 15 (Page 1 of 2). Performing Actions on Elements and Load Modules

Goal Packaging Solution
Where to Find More Informa-
tion

Add a module to a
load module.

To add a module to an existing load module, use the
LMOD operand on the ++MOD statement.

To add a module and create a new load module, use
JCLIN data.

See 9.2, “When Do You Need
JCLIN?” on page 88.

Change the owner
of an element.

If a new function deletes an old function, the DELETE
operand on the ++VER statement indicates that the
owner has changed.

See 7.2.4, “Deleting
SYSMODs (DELETE)” on
page 57.

If a new dependent function introduces a higher-level
version of the element, you can use the VERSION
operand on the ++VER or element statement to indi-
cate that the owner has changed.

See 7.2.8, “Defining Ownership
(VERSION)” on page 64.

If an element is being migrated from one base function
to another, you can use the VERSION operand on the
element statement to indicate that the owner has
changed.

For more information on
migration to a new function,
see 13.8.3, “Migrating Ele-
ments by Updating Both
Functions” on page 163.

For more information on
migration using a PTF, see
13.8.4, “Migrating Elements by
Using a PTF” on page 164.

 Copyright IBM Corp. 1986, 1999 73

 UCLIN

Table 15 (Page 2 of 2). Performing Actions on Elements and Load Modules

Goal Packaging Solution
Where to Find More Informa-
tion

Move a macro,
module, source, or
load module.

Use the ++MOVE statement. See 8.1, “Moving Elements
and Load Modules (++MOVE)”
on page 75.

Rename a load
module.

Use the ++RENAME statement. See 8.2, “Renaming Load
Modules (++RENAME)” on
page 78.

Delete a load
module.

Use the ++DELETE statement. See 8.3, “Deleting Load
Modules (++DELETE)” on
page 81.

Delete a module
(CSECT) from a
load module.

Use the ++MOD CSECT operand See 8.5, “Enabling Load
Module Changes at the
CSECT Level (++MOD
CSECT)” on page 84.

There may be times when you cannot avoid UCLIN changes. In these cases,
follow these rules:

Packaging Rules (UCLIN)

Ø 10115. Make sure the UCLIN data can be processed using SMP/E.
Provide instructions for SMP/E customers to insert the appropriate SET
BOUNDARY command before the UCLIN data. SMP/E needs the SET
command to update the correct zone with the UCLIN data.

Ø 10117. Package the UCLIN data as an element that is installed in an
appropriate data set for sample code. This allows customers, as well as
product installation procedures, to have access to the UCLIN. You can
package the data as sample code using the ++SAMP MCS statement. Use
standard names for the element, the target library, and the distribution
library.

Ø 10119. Describe any UCLIN data requirements and procedures in the
installation instructions. This documentation must provide enough informa-
tion so that the customer can either invoke SMP/E or use the SMP/E
dialogs to process the UCLIN data.

You must use a ++HOLD statement, even if your documentation clearly and
fully explains how to handle the UCLIN.

74 MVS Packaging Rules

 ++MOVE Statement

8.1 Moving Elements and Load Modules (++MOVE)
The ++MOVE statement moves a macro, module, source, or load module from its
current library to another library.

IBM Software Delivery Restrictions

| The ++MOVE statement is not allowed for data elements, HFS elements, or
| ++PROGRAM elements. This is an SMP/E restriction.

End of IBM Software Delivery Restrictions

This is an optional statement. If you include it, it must immediately follow the last
++HOLD statement, or if there are none, it must follow the last ++VER statement or
the last ++IF statement associated with that ++VER statement. It must precede all
other MCS statements (++RENAME, ++DELETE, ++JCLIN, and element state-
ments).

 Chapter 8. Using MCS Statements to Manipulate Elements and Load Modules 75

 ++MOVE Statement

Packaging Recommendations

� If an element needs to be moved, a ++MOVE statement must be used instead
of UCLIN.

� A base function should not contain a ++MOVE statement, unless a PTF con-
taining the statement was integrated into a service update of that function.

� New releases of a base function do not own elements that would need to be
moved from one library to another. However, there may be shared load
modules that should be moved. In this instance, a base function may contain a
++MOVE for the shared load module.

End of Packaging Recommendations

Two ++MOVE statements are allowed for a load module because load modules can
exist in two target libraries.

Packaging Rules (++MOVE)

Ø 10200. A dependent function can contain a ++MOVE statement for an
element or load module it does not contain only if the element or load
module is owned by the base function to which the dependent function
applies, or by another dependent function for the same base function. In
either case, the moving dependent function must specify the owning func-
tion as a prerequisite.

If a previous dependent function has performed a ++MOVE on the element
or load module, then the new dependent function must specify that
dependent function as a prerequisite.

Ø 10300. A function can contain only one ++MOVE statement for a given
element.

Ø 10400. A function can contain no more than two ++MOVE statements for a
given load module, one for each SYSLIB defined for the load module.

Ø 10500. All MCS statements following the ++MOVE statements and refer-
ring to the elements or load modules that were moved must reflect the new
libraries for those elements or load modules. All SYSMODs applied subse-
quent to the move must reflect the new libraries for those elements or load
modules.

Ø 10600. All changes caused by a ++MOVE MCS must also be specified in
any JCLIN and SYSGEN macros that refer to the moved member.

Ø 10700. If SYSMOD(1) defines or moves an element, subsequent
SYSMODs containing that element must specify SYSMOD(1) as a prerequi-
site.

Ø 10800. If SYSMOD(1) moves a given load module using a ++MOVE state-
ment, any SYSMOD that supersedes SYSMOD1 must also contain the
++MOVE statement.

Ø 10900. If an element or load module to be moved to a new SYSLIB is a
member of a totally copied library, the moving function must also move the
same element or corresponding module to a new distribution library.

76 MVS Packaging Rules

 ++MOVE Statement

SMP/E processes the ++MOVE statements in a SYSMOD first; therefore, any MCS
statements after the ++MOVE need to reflect the element's new library.

You must ensure that a totally copied library structure (a DISTLIB that was totally
copied to a target library) is defined to SMP/E. If a load module was moved from
the defined target library, its corresponding module must be moved to a new distri-
bution library. This ensures that the totally copied structure is defined to SMP/E.

 Chapter 8. Using MCS Statements to Manipulate Elements and Load Modules 77

 ++RENAME Statement

8.2 Renaming Load Modules (++RENAME)
The ++RENAME statement changes the name of a load module.

This is an optional statement. If you include it, it must immediately follow the last
++HOLD or ++MOVE statement, or if there are none, it must follow the last ++VER
statement or the last ++IF statement associated with that ++VER statement. It
must precede all other MCS statements (++DELETE, ++JCLIN, and element state-
ments).

All MCS statements that follow the ++RENAME statements that refer to the load
modules that were renamed must reflect the new name for those load modules.

SMP/E will not rename any aliases associated with the specified load module.

78 MVS Packaging Rules

 ++RENAME Statement

Packaging Recommendations

� A base function should not contain a ++RENAME statement, unless a PTF con-
taining the statement was integrated into a service update of that function.

New releases of a base function do not own elements that would need to be
renamed. However, there may be shared load modules that should be
renamed. In this instance, a base function may contain a ++RENAME for the
shared load module.

� If you want to rename a load module and use inline JCLIN to create a new load
module with the original name of the renamed load module, you must package

Packaging Rules (++RENAME)

Ø 11000. A dependent function can contain a ++RENAME statement for a
load module associated with either the base function to which it applies, or
with another dependent function that is applicable to that same base func-
tion and that is required by the function containing the ++RENAME state-
ment.

Ø 11100. All changes caused by a ++RENAME MCS must also be specified
in any JCLIN and SYSGEN macros that refer to the old name of the load
module.

Ø 11200. A function can contain only one ++RENAME statement for a given
load module.

Ø 11300. If SYSMOD(1) renames a given load module using a ++RENAME
statement and SYSMOD(2) defines that load module under its new name
with JCLIN data, SYSMOD(2) must specify its relationship to SYSMOD(1)
using the PRE, DELETE, or SUP and DELETE operands on its ++VER
statement.

Ø 11400. If SYSMOD(1) defines a given load module and SYSMOD(2)
renames that load module using a ++RENAME statement, SYSMOD(2)
must specify its relationship to SYSMOD(1) using the PRE operand on its
++VER statement.

Ø 11500. If a load module being renamed was totally copied from a distribu-
tion library into a target library (defined by JCLIN data as a totally copied
load module), this function must also use a ++MOVE statement to move the
identically named element (++MOD) to a new distribution library.

Ø 11600. If a dependent function is renaming a load module, that function
must refer to the last previous lower-level dependent function (if any) that
(1) moved the load module being renamed or (2) renamed a load module to
the name of the load module being renamed again.

– If that previous dependent function moved the load module being
renamed, this dependent function can either delete or supersede and
delete that dependent function, or specify it as a prerequisite.

– If the previous dependent function renamed a load module to the name
of the load module being renamed again, this dependent function must
specify that previous dependent function as a prerequisite.

 Chapter 8. Using MCS Statements to Manipulate Elements and Load Modules 79

 ++RENAME Statement

your changes in two SYSMODs: one to rename the existing load module, and
one to create the new load module.

The two SYSMODs must not state any relationship to each other and must be
applied separately: first the SYSMOD that renames the existing load module,
then the one that creates the new load module.

If the SYSMODs need to be restored, they must also be restored separately, in
the reverse order of the installation: first the SYSMOD that created the new
load module, then the one that renamed the existing load module.

End of Packaging Recommendations

80 MVS Packaging Rules

 ++DELETE Statement

8.3 Deleting Load Modules (++DELETE)
The ++DELETE statement deletes a load module and any of its aliases from its
current target library. It can also delete the aliases without deleting the load
module.

This is an optional statement. If you include it, it must immediately follow the last
++HOLD, ++MOVE, or ++RENAME statement, or if there are none, it must be asso-
ciated with that ++VER statement or the last ++IF statement associated with that
++VER statement. It must precede all other MCS statements (++JCLIN and
element statements).

Using the ALIAS operand deletes the alias of a load module without deleting the
load module itself. If the ALIAS operand is not specified, the load module and all of
its aliases are deleted.

 Chapter 8. Using MCS Statements to Manipulate Elements and Load Modules 81

 ++DELETE Statement

Packaging Recommendations

A base function should not contain a ++DELETE statement.

Although a program object residing in a PDSE can have an alias name greater than
8 characters, the ++DELETE statement cannot be used to delete such an alias
value without deleting the program object. Instead, you need to resupply JCLIN to
define the program object without providing an ALIAS statement for the alias value
to be deleted. Make sure to also include a ++MOD statement for a module in the
load module to force SMP/E to relink the load module.

Packaging Rules (++DELETE)

Ø 11700. A dependent function can contain a ++DELETE statement for a
load module associated with either the base function to which it applies, or
with another dependent function that is applicable to that same base func-
tion and that is required by the function containing the ++DELETE state-
ment.

Ø 11800. A function can contain only one ++DELETE statement for a given
load module.

Ø 11900. A function containing a ++DELETE statement must also include the
appropriate changes for its JCLIN or SYSGEN macros (if any) to reflect the
change.

Ø 12000. If SYSMOD(1) deletes a given load module using a ++DELETE
statement and SYSMOD(2) defines that load module with JCLIN data,
SYSMOD(2) must specify its relationship to SYSMOD(1) using the PRE,
DELETE, or SUP and DELETE operands on its ++VER statement.

Ø 12100. If SYSMOD(1) defines a given load module with JCLIN data and
SYSMOD(2) deletes that load module using a ++DELETE statement,
SYSMOD(2) must specify its relationship to SYSMOD(1) using the PRE or
FMID operand on its ++VER statement.

Ø 12200. A dependent function that is deleting a load module must refer to
the last previous lower-level dependent function (if any) that (1) moved the
load module being deleted or (2) renamed a load module to the name of
the load module being deleted.

– If that previous dependent function moved the load module being
deleted, this dependent function can either delete or supersede and
delete that dependent function or specify it as a prerequisite.

– If that previous dependent function renamed a load module to the name
of the load module being deleted, this dependent function can either
delete or supersede and delete that dependent function or specify it as
a prerequisite.

Ø 12210. If a SYSMOD is deleting an alias for a load module but not the load
module itself (ALIAS is specified on the ++DELETE statement), you must
reflect this change using JCLIN. To do this, include a ++JCLIN statement
with JCLIN data that contains a link-edit step for the load module, with the
alias deleted from the list of aliases on the link-edit ALIAS statement. This
causes SMP/E to replace the alias list in the CSI.

82 MVS Packaging Rules

 Deleting Elements

End of Packaging Recommendations

If a load module resides in two or more system libraries, you need only one
++DELETE statement. Refer to the SMP/E Reference manual for information about
the ++DELETE statement.

8.4 Deleting Elements from Libraries and SMP/E Data Sets
The DELETE operand on an element MCS indicates that the element is to be
removed from the target libraries, distribution libraries, and SMP/E data sets. This
operand can be used for all element types. This is an optional operand and is
used only in dependent functions.

Packaging Rules (DELETE for Elements)

Ø 12300. A dependent function must not delete a macro or source element
from a lower-level function (its parent base function or a lower-level
dependent function for the same parent base function), because a PTF that
is applicable to the lower-level function may need to update the element
(such as by using ++MACUPD or ++SRCUPD). If that element were
deleted, there would be nothing to update, and the PTF needed for the
lower-level function could not be installed.

Ø 12310. This rule has been deleted.

 Chapter 8. Using MCS Statements to Manipulate Elements and Load Modules 83

 Load Module CSECTs

8.5 Enabling Load Module Changes at the CSECT Level (++MOD
CSECT)

The CSECT operand lists all the CSECTs that are contained in a module. Defining
the contents of a load module by CSECT name allows SMP/E to change a load
module at the CSECT level when a function or module is being deleted.

Packaging Recommendations

If CSECT is specified, it must include all the CSECTs contained in the module,
even if one of them has the same name as the module. If this is done, SMP/E can
change the affected load module at the CSECT level when a function or module is
being deleted.

End of Packaging Recommendations

Note: Simply ordering the INCLUDE statements is not sufficient to define the
order of CSECTS, because SMP/E replaces CSECTs when relinking the
load module and could change the order of the CSECTs.

Refer to 9.2, “When Do You Need JCLIN?” on page 88 for information about using
JCLIN to define load modules.

Packaging Rules (++MOD CSECT)

Ø 12400. If a SYSMOD changes the CSECTs contained in an existing
module, CSECT must be specified and must list all the CSECTs in that
module. This is true even if the module now contains only one CSECT
whose name matches the module name on the ++MOD statement.

Ø 12500. This rule has been deleted. It has been replaced by rule 131.3 in
9.6, “Link-Edit Steps” on page 94.

8.6 Defining Ownership of Elements (++element VERSION)
The VERSION operand is required to establish which elements are functionally
higher when different SYSMODs ship elements with identical element names and
element types. For example, it could be used to add elements to a dependent
function when those elements already belong to a lower-level dependent function.
Or, it could be used when two language-support dependent functions contain a
common element that was not translated (such as a CLIST).

Note: Although SMP/E uses the VERSION operand to determine the correct
version of the elements to be installed, it does not use VERSION to deter-
mine the relationships of SYSMODs being installed. You must specify that
information on the PRE or SUP operand of the ++VER statement.

This operand is optional for dependent functions. It is not allowed in base func-
tions.

You may need to create a new version of an element that already exists in a
product. For example, you may need to add a user function to or provide service

84 MVS Packaging Rules

 Element Ownership

for an existing element. There are two ways of providing a new version of an
element:

1. Dependent function. A new dependent function, or a new release of an
existing dependent function, can provide a new version of an element.

2. PTF. A PTF can be used to create a new version of an element in a base
function or a dependent function.

Packaging Recommendations

++element VERSION should be used only by different functions of the same
product. If the VERSION operand is used by a function that is not part of the same
product as the element it wants to assume ownership of, unpredictable results may
occur. For example, if Product A owns an element and Product B uses VERSION
to assume ownership of that element, it may not be clear which product should ship
a given PTF for that element.

If use of the VERSION operand between two products is unavoidable, it is the
responsibility of the development owner of Product B to ensure that the develop-
ment owner of Product A understands and agrees to what has been done.

End of Packaging Recommendations

Packaging Rules (VERSION for Elements)

Ø 12510. VERSION is required to establish which elements are functionally
higher when SYSMODs for different functions have elements with the same
type and name in common. You must specify the lower-level function in the
VERSION operand of the element statement in the SYSMOD associated
with the higher-level function.

Ø 12600. The specified functions must be able to coexist with the specifying
SYSMOD.

Ø 12700. The specified functions must contain the element described by the
element statement.

Ø 12800. For dependent functions, VERSION must specify all the dependent
functions that are functionally lower than the specifying function and include
the element being versioned.

Ø 12900. If VERSION is also specified on a ++VER statement for this
SYSMOD, the VERSION operand on the element statement overrides the
VERSION values specified on the ++VER statement. However, the
VERSION operand on the element statement is not additive; it does not
automatically take over ownership from the functions specified on the
++VER VERSION operand. To take over ownership from any of the func-
tions specified on the ++VER VERSION operand, you must repeat those
values on the VERSION operand for the element statement.

Ø 13000. The VERSION operand must be specified on the element state-
ment if individual elements may be versioned differently. The VERSION
operand must be specified on the ++VER statement used if all elements
affected by this SYSMOD are to be versioned the same way.

 Chapter 8. Using MCS Statements to Manipulate Elements and Load Modules 85

 Element Ownership

86 MVS Packaging Rules

 Chapter 9. Using JCLIN

JCLIN provides information to SMP/E about how to install a SYSMOD in the target
and distribution libraries. JCLIN can be provided in several formats, such as
assemble, copy, and link-edit steps. SMP/E processes these steps to determine
the structure of the SYSMOD's elements. SMP/E builds and updates entries based
on JCLIN data; however, it does not actually execute the JCLIN input.

To help you understand how to use JCLIN, this chapter describes:

� Providing JCLIN data for function SYSMODs
� When you need to use JCLIN
� General packaging rules for JCLIN data

 � Assembler steps
 � Copy steps
 � Link-edit steps
� Examples of JCLIN data

For more information about JCLIN processing, see the OS/390 SMP/E Commands
manual or the SMP/E Release 8.1 Reference manual.

9.1 Providing JCLIN Data for Function SYSMODs
There are several sources of JCLIN data:

� Data associated with a ++JCLIN statement
� Output from the SMP/E GENERATE command
� Stage 1 output JCL from a system, subsystem, or product generation

The output JCL from a generation procedure can be processed by the JCLIN
command to update the CSI target zone with information about the products
installed by that JCL. However, once the JCLIN command has processed that
JCLIN data, the product information cannot be removed from the target zone unless
the product is deleted or restored.

To avoid any potential problems this might cause your customers, package JCLIN
data using a ++JCLIN statement. When customers apply a SYSMOD containing a
++JCLIN statement, SMP/E saves unchanged copies of target zone entries that will
be updated by the JCLIN. This way, if customers need to restore the SYSMOD,
they can do it because SMP/E saved the previous version of the entries.

For more information about JCLIN processing, see the OS/390 SMP/E Commands
manual or the SMP/E Release 8.1 Reference manual.

Notes:

1. JCLIN data is processed only for macros, modules, and source. It is not proc-
essed for data elements, except to define totally copied libraries. It is not proc-
essed, and should not be specified, for elements installed in a hierarchical file
system (HFS). Such elements are defined by the ++hfs_element
 statement

2. SMP/E has no column limitations for operands beyond the normal JCL rules.

 Copyright IBM Corp. 1986, 1999 87

 Providing JCLIN Data

3. The ++JCLIN statement does not cause SMP/E to update the target or distribu-
tion libraries; only the entries in the target and distribution zones are updated.
These libraries are updated when SMP/E processes the elements in the
SYSMOD. The element statements in the SYSMOD determine which elements
should be installed.

IBM Software Delivery Restrictions

The IBM Software Delivery Solutions process does not support the TXLIB
operand. Therefore, it is not included in the list of ++JCLIN operands, nor is it
described in the sections that follow.

End of IBM Software Delivery Restrictions

9.2 When Do You Need JCLIN?
You need JCLIN for a base function so that SMP/E has information about the struc-
ture of the product and target libraries:

� The library in which an element resides
� How modules are link-edited together for load modules
� Where the load modules exist and their characteristics

You also need JCLIN for changes introduced by a dependent function. You do not
need to use JCLIN for structures and attributes that were not altered by the
dependent function. This means you do not need JCLIN for every element; JCLIN
is required only for those load modules with changed structure or attributes.
Repeating JCLIN for unchanged elements increases the risk of errors.

Following are some situations that do not require JCLIN to be used:

� All elements (other than ++MOD elements that are totally copied modules) of a
product are installed using a copy utility.

� A dependent function does not introduce new elements.

� A dependent function does not change the link-edit attributes for a load module.

Note: You never need JCLIN for data elements. SMP/E uses the SYSLIB and
DISTLIB operands on the data element MCS statements to determine
where the elements should be installed. The same is true for hierarchical
file system (HFS) elements. SMP/E uses the SYSLIB and DISTLIB oper-
ands on the ++hfs_element statements to determine where the elements
should be installed.

You need JCLIN when a dependent function does any of the following:

� Changes the link-edit attributes of a load module

The attributes of a load module include such things as RENT, REUS, and
REFR.

� Changes the structure of a load module

Structure means the ENTRY, ORDER, and ALIAS statements that apply to a
load module.

88 MVS Packaging Rules

 Providing JCLIN Data

� Introduces a new load module

Refer to Table 15 on page 73 for information about using MCS statements to
perform operations on elements and load modules. For example, you do not need
JCLIN when a dependent function or PTF is adding a module to an existing load
module. Instead, you should use the LMOD operand on the ++MOD statement.

9.3 General Packaging Rules for JCLIN Data
The following general rules define how JCLIN data must be coded.

In addition to the above rules, the following recommendations apply to JCLIN data:

Packaging Recommendations

� Use the simplest possible JCL statements.

� Specify all information in uppercase (verbs as well as values).

This is necessary to avoid syntax errors or incorrect results during SMP/E proc-
essing.

Note: This convention does not apply to values on the ALIAS statement.
These values must be specified in the desired case (uppercase or
mixed-case), because they are used as is.

� Do not use update steps in JCLIN data; SMP/E ignores them.

� In the JCLIN of the dependent function, describe only new or changed struc-
ture.

The JCLIN for a dependent function should not repeat data already provided in
the JCLIN of the base function.

� Do not use abbreviations.

SMP/E may not recognize all abbreviations.

Packaging Rules (JCLIN Data)

Ø 13100. The combination of JCLIN data and element statements must com-
pletely describe all the elements in the function and their target and distribu-
tion libraries.

Ø 13110. A product's installation must not require the editing of the JCLIN.

Ø 13200. If the low-level qualifier of a data set name is in the format
xccczzzz, as described in rule 140 in 10.4, “Library Names” on page 124,
the low-level qualifier and the ddname must be identical.

NOTE: Since a DDNAME may refer to a subdirectory in the hierarchical file
system (HFS), several DDNAMEs may point into one HFS. In these cases,
the low-level qualifier and the ddname need not be identical.

Ø 13300. Input data sets in link-edit steps must not be concatenated.

An exception to this rule is using the support for the automatic library call
facility. For more information, see the description of the SYSLIB DD state-
ment in 9.6.2, “Link-Edit Control Statements” on page 97.

 Chapter 9. Using JCLIN 89

 JCLIN Assembler Steps

� For copied members (except for ++MOD), use the SYSLIB and DISTLIB oper-
ands on the element statements instead of JCLIN to define copies.

� If possible, do not use continued utility control statements. Although SMP/E
tries to support all existing formats of the utility control statements, it cannot
completely duplicate the syntax checking of the utility. The safe method is to
use the simplest format of the utility control statement without continuations.

� Test the JCLIN data as follows:

– Perform RECEIVE, APPLY, and ACCEPT of the product on one system.

– Perform RECEIVE, ACCEPT BYPASS(APPLYCHECK), GENERATE of the
product on a second system.

– Compare the SMP/E reports from the two products, checking for discrepan-
cies.

– Compare every library, member by member, between the two products,
checking for discrepancies.

– Run the JCLIN data outside of SMP/E and compare the resulting load
modules with those built during the SMP/E installs. There should be no
differences.

End of Packaging Recommendations

IBM Software Delivery Restrictions

� If a PTF introduces a new ++MOD requiring link-edit parameters other than the
default, these parameters must be specified in the LEPARM operand of the
++MOD statement. Parameters specified in JCLIN data are not sufficient. This
is a restriction of the IBM Software Delivery Solutions process.

� Products that require assemblies during APPLY processing may not require
macro libraries provided by products in another SREL. This is a restriction of
the IBM Software Delivery Solutions ServerPac process; the macro libraries
will not be available during order build processing.

End of IBM Software Delivery Restrictions

 9.4 Assembler Steps

Packaging Rules (JCLIN Assembler Steps)

Ø 13400. Assembler steps must be identified by one of the following:

 – EXEC PGM=IFOX00
 – EXEC PGM=IEV90
 – EXEC PGM=ASMA90
 – EXEC PGM=ASMBLR
 – EXEC ASMS

90 MVS Packaging Rules

 JCLIN Copy Steps

 9.5 Copy Steps

Packaging Rules (JCLIN Copy Steps)

Ø 13500. Copy steps must be identified by the following:

 – EXEC PGM=IEBCOPY

Ø 13600. The RENAME function must not be used in JCLIN.

Ø 13700. If the SELECT MEMBER= statement is used to selectively copy
elements, the COPY INDD=xxx,OUTDD=xxx control statements for selec-
tively copied elements must include the comment TYPE=xxxx. The format
of the TYPE comment on the COPY statement is:

COPY INDD=ddname,OUTDD=ddname TYPE=xxxx

where xxxx is MOD, MAC, SRC, or DATA.

Notes:

1. If the TYPE=xxxx parameter is not specified, the default used by
SMP/E is TYPE=MOD.

2. TYPE=DATA is used for data elements.

Without this additional comment, the GENERATE command cannot deter-
mine what type of element is being copied. If the comment is not included,
SMP/E assumes the element is a module and may create unnecessary
module entries in the target or distribution zone.

For data elements and hierarchical file system (HFS) elements, you must
use the SYSLIB and DISTLIB operands on the element statement to specify
information used to install the element. During JCLIN processing, SMP/E
bypasses any COPY SELECT statements that specify TYPE=DATA.

Ø 13800. The SELECT statement can specify either the name of the member
to be copied or an alias name for the member. The SELECT statement for
an alias must specify the comment “ALIAS OF member”, where member is
the member name for which alias is an alias.

Ø 13900. A SELECT statement that identifies an alias can specify only one
name on the MEMBER operand.

 Chapter 9. Using JCLIN 91

 JCLIN Copy Steps

Packaging Recommendations

Although JCLIN can be used to identify copied elements, the preferred way of
copying elements other than ++MODs is to specify the DISTLIB and SYSLIB oper-
ands on the element MCS.

End of Packaging Recommendations

Notes:

1. Copy input must be inline , not pointing to another data set.

2. The only copy utility control statements allowed are COPY (or C) and SELECT
(or S).

Packaging Rules (JCLIN Copy Steps)

Ø 13910. If a ++MOD on a product tape defines either (1) a complete load
module containing single or multiple CSECTs or (2) a partial load module
containing multiple CSECTs, any ++MOD by the same name shipped in a
subsequent PTF must also be the same type of load module (complete load
module or multi-CSECT partial load module). If a CSECT shipped in the
original ++MOD is not shipped in the replacement ++MOD, it will no longer
exist.

To replace part of a copied ++MOD, the PTF must convert the ++MOD into
a link-edited load module by splitting it into smaller serviceable parts, as
follows:

1. Delete the original ++MOD with a ++MOD DELETE.

2. Ship a new ++MOD for each of the parts into which the original ++MOD
has been split.

3. Provide link-edit JCLIN to define the link edit structure of the resulting
load modules.

All future maintenance that affects the load module or any of its parts must
explicitly or implicitly specify this PTF as a prerequisite.

9.5.1 Considerations for the SELECT Statement for Copy Operations
When deciding whether to specify a SELECT statement in your copy steps, you
need to consider how SMP/E processes copy steps:

� A COPY without SELECT MEMBER creates SMP/E DLIB entries.

� A COPY with SELECT MEMBER does not create the DLIB entries, but it either
updates the SYSLIB subentry for MAC and SRC entries or builds MOD or
LMOD entries (with the COPY indicator turned on) for modules.

Following are recommendations for IEBCOPY steps in product JCLIN:

� Do not use SELECT MEMBER statements for elements that are fully defined in
the SMPMCS.

92 MVS Packaging Rules

 JCLIN Copy Steps

Data elements and hierarchical file system (HFS) elements must be fully
defined in the SMPMCS.

� Use COPY statements with SELECT MEMBER statements for single-CSECT
load modules that can be copied.

� Use COPY statements (without SELECT MEMBER statements) for each totally
copied library.

 9.5.1.1 Fully-Defined Elements
Copy steps are not required for fully-defined elements. Instead, the element state-
ment should specify both DISTLIB and SYSLIB for all elements except ++MOD.
Here are some examples:

++MAC(xxxxxxxx) DISTLIB(AMACLIB) SYSLIB(MACLIB) .
++SRC(xxxxxxxx) DISTLIB(AJES3SRC) SYSLIB(JES3SRC) .
++PROC(xxxxxxxx) DISTLIB(APROCLIB) SYSLIB(PROCLIB) .
++HFS(xxxxxxxx) DISTLIB(ABPXLIB) SYSLIB(BPXLIB) .

9.5.1.2 Single-CSECT Load Modules
Copy steps should be used for single-CSECT load modules that can be copied.
Here is an example:

COPY INDD=ALINKLIB,OUTDD=LINKLIB TYPE=MOD
 SELECT MEMBER=xxxxxxxx
 SELECT MEMBER=yyyyyyyy

This statement indicates that SMP/E should build an LMOD entry with the same
name as the module. In this LMOD entry, the COPY indicator should be turned on
and the SYSLIB subentry should be LINKLIB.

9.5.1.3 Totally Copied Libraries
When no SELECT statement is specified for a copy step, SMP/E creates DLIB
entries, which it uses to determine the appropriate target library (if none was speci-
fied on the element MCS and one didn't already exist). The DLIB entry indicates
that the library specified in the INDD= parameter is totally copied to the library
specified in the OUTDD= parameter. Here is an example:

COPY INDD=AMACLIB,OUTDD=MACLIB TYPE=MAC

This statement indicates to SMP/E that if an element being processed has a distri-
bution library of AMACLIB but does not specify a SYSLIB of MACLIB—for example,
++MAC(xxxxxxxx) DISTLIB(AMACLIB)—SMP/E should install the macro in MACLIB
and add the SYSLIB subentry of MACLIB to the macro entry.

Similar processing occurs for modules—except that the SYSLIB subentries are in
LMOD entries (not MOD entries). Here is an example:

COPY INDD=ALINKLIB,OUTDD=LINKLIB

This statement indicates to SMP/E that if a module being processed has a distribu-
tion library of ALINKLIB but is not yet associated with a load module, SMP/E should
build an LMOD entry with the same name as the module. In this LMOD entry the
COPY indicator should be turned on and the SYSLIB subentry should be LINKLIB.

Packaging Recommendations

 Chapter 9. Using JCLIN 93

 JCLIN Link-Edit Steps

If you develop a new release of a function that uses totally copied libraries, and the
new release copies the distribution library into a different target library from the pre-
vious release, you should instruct the users to delete the DLIB entry from the CSI
before they apply or accept the new release. This ensures that when SMP/E
installs the new release, it builds new DLIB entries pointing to only the new target
library.

End of Packaging Recommendations

 9.6 Link-Edit Steps

94 MVS Packaging Rules

 JCLIN Link-Edit Steps

Packaging Rules (JCLIN Link-Edit Steps)

Ø 14000. Link-edit steps must be identified by one of the following:

 – EXEC PGM=IEWL
 – EXEC PGM=HEWL
 – EXEC PGM=IEWBLINK
 – EXEC LINKS

Ø 14100. Link-edit steps must not be sensitive to the order of execution of
other link-edit steps, either in the same FMID or in another FMID. Link-edit
steps must also not be sensitive to the order of execution of the individual
load module builds within the step.

Ø 14200. No elements to be included in a JCLIN link-edit step can be derived
from the output of another JCLIN link-edit step, or from the output of a load
module build within the same JCLIN link-edit step.

Ø 14210. Never specify a JCLIN link-edit step to indicate that a load module
resides in the SMPLTS library.

SMP/E automatically link-edits a base version of any load module with a
CALLLIBS subentry into the SMPLTS library.

Ø 14220. Do not specify a pathname in a hierarchical file system (HFS) as
the distribution library.

Ø 14230. All INCLUDE statements in link-edit JCLIN data should specify the
included module's distribution library, or SYSPUNCH if it is an assembled
module. Do not use data sets such as SYSLIB or SYSLMOD.

Ø 14240. If a load module consists of more than one distribution library
module, use an ENTRY statement; otherwise, the entry point of the load
module might change each time the load module is relinked by SMP/E.

Ø 14250. If a specific order of CSECTs within a load module is required, use
ORDER statements to define the load module structure.

Ø 14260. If Product A uses CALLLIBS to indicate libraries created by Product
B:

1. The SYSLIB DD statement in Product A's JCLIN must use the real
DDNAME of the library.

2. If Product A does not require Product B to exist in the same zone,
Product A's DDDEF job must create a DDDEF entry for the library with
its real DDNAME, using the ADD DDDEF command to avoid possible
contamination of an existing DDDEF entry.

3. If it is possible that the library does not exist on the system, the DDDEF
job must instruct the customer to point either to the actual dataset (if it
exists) or to an empty dataset. The job must not give the customer a
choice of two or more legitimate datasets for one DDDEF. NOTE: The
product may not allocate an empty dataset for this purpose.

Ø 14270. If a product documents in its installation documentation that a
return code of 8 is acceptable from APPLY, then RC=8 must be coded on
the NAME statement in the JCLIN for the appropriate load modules. This
may be the case if the product uses a CALLLIBS library to obtain load
modules created by an optional function.

 Chapter 9. Using JCLIN 95

 JCLIN Link-Edit Steps

SMP/E does not order the link-edit steps based on the order specified in the JCLIN.
Instead, if multiple load modules and target libraries are involved, SMP/E organizes
the link-edit steps for the most efficient invocations of the link-edit utility (which
might not be the same order as the JCLIN data). For example, assume that a
product consists of a base function and a dependent function.

� The dependent function conditionally coexists with the base function; it can be
installed with the base function but is not a prerequisite for the base function.

� The base function must have its own JCLIN data that completely describes the
elements it contains, because a user may choose to install the functions
together or separately.

If the base function is separately installed, its JCLIN data cannot contain a link-
edit step including elements from the dependent function, because those ele-
ments are not yet available.

Packaging Recommendations

� Product A should not INCLUDE modules created by Product B unless all of the
following are true:

1. Product B is guaranteed to always be present in the same target zone as
Product A

2. The module always exists in the same library, no matter which release of
any product is present

3. The library containing the module is always guaranteed to exist

If any of these conditions are not true, the product should use CALLLIBS
instead of explicit INCLUDEs.

� The LMOD RC parameter should be specified on every JCLIN NAME state-
ment. The value for each load module should match the expected return code
from link-editing that load module, and the highest value within the JCLIN for
an FMID should match the expected APPLY return code documented in the
installation instructions for the product.

� If a product's JCLIN specifies INCLUDE AABCMODS(element), the product
should REQ the product that installed the element into the library.

End of Packaging Recommendations

9.6.1 JCLIN Processing of DD Statements in Link-Edit Steps
Target libraries should be identified in link-edit steps by the SYSLMOD DD state-
ment. All other DD statements for target libraries are ignored. JCLIN processing
extracts the lowest-level qualifier from the data set name on the SYSLMOD DD
statement, uses that qualifier as a ddname, and passes the link-edit utility a DD
statement allocated to the data set with that ddname. For example, when JCLIN
processing encounters this DD statement:

//SYSLMOD DD DSN=PROD1.SABCMOD1

it searches the target zone for a DDDEF entry with the name SABCMOD1. The
data set name identified in that DDDEF entry is passed to the link-edit utility as the
output (SYSLMOD) data set.

96 MVS Packaging Rules

 JCLIN Link-Edit Steps

DD statements for distribution libraries are ignored by JCLIN processing. The
ddnames specified on INCLUDE statements in the JCLIN are used as the DISTLIB
value in the MOD entries that are created. For example, when JCLIN processing
encounters this statement:

INCLUDE AABCLOAD(ABCMODð1)

it builds a MOD entry for ABCMOD01 and indicates a DISTLIB value of
AABCLOAD. For more information about link-edit control statements, see 9.6.2,
“Link-Edit Control Statements.” For details about JCLIN processing, see the OS/390
SMP/E Commands manual or the SMP/E Release 8.1 Reference manual.

9.6.2 Link-Edit Control Statements
All required link-edit control statements must be specified. This section describes
considerations for specific link-edit statements. Here are some special consider-
ations to keep in mind:

� If a load module consists of more than one distribution library module, use an
ENTRY statement; otherwise, the entry point of the load module might change
each time the load module is relinked by SMP/E.

� If a specific order of CSECTs within a load module is required, use ORDER
statements to define the load module structure. See 8.5, “Enabling Load
Module Changes at the CSECT Level (++MOD CSECT)” on page 84 for more
information.

� If PLISTART is listed first in a PL/I load module, ORDER cards do not work;
any requirement for ORDER should be changed to ENTRY.

ALIAS statement
To ensure that SMP/E can process your link-edit ALIAS control statements, you
must address the following considerations:

 � General considerations

– An ALIAS control statement can span any number of 80-byte records.

Note: If you assign a load module residing in a PDSE an alias value
greater than eight characters, you cannot later use the
++DELETE statement to delete that alias value (and not the
associated load module). To delete such an alias value without
deleting the load module, you need to resupply JCLIN to define
the load module without providing an ALIAS statement for the
alias value to be deleted. Make sure to also include a ++MOD
statement for a module in the load module to force SMP/E to
relink the load module.

– Column 1 of all 80-byte records composing an ALIAS control statement
must contain a blank (X'40').

– The data for the first 80-byte record of an ALIAS control statement
must start in column 2 or later and end anywhere up to and including
column 71.

– The control statement type (ALIAS) must be followed by at least 1
blank (X'40').

– The control statement type (ALIAS) must be in uppercase.

– Columns 73 through 80 of an 80-byte record are ignored.

 Chapter 9. Using JCLIN 97

 JCLIN Link-Edit Steps

– An alias value can be from one to 64 characters.

– An alias value can be composed of characters in the range X'41'
through X'FE'.

Note: Although the binder also accepts characters X'0E' (shift-out
character) and X'0F' (shift-in character), SMP/E does not
accept them.

– An alias value can be enclosed in single apostrophes. It must be
enclosed in single apostrophes in the following cases:

- It contains a character other than uppercase alphabetic, numeric,
national ($, #, or @), slash, plus, hyphen, period, and ampersand.
Here is an example:
 1 2 3 4 5 6 7 8
----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð
 ALIAS 'This_alias_contains_special_characters!!!!'

- It is continued to another 80-byte record of the control statement.
Here is an example:
 1 2 3 4 5 6 7 8
----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð
 ALIAS 'This_is_a_very_long_value_that_is_continued_to_the_next\
 _card!'

– If an apostrophe is part of the alias value (not a delimiter), two apostro-
phes need to be specified in the appropriate location in the alias value.
These two apostrophes count as two characters in the 64-character
limit for an alias value. Here is an example:

 1 2 3 4 5 6 7 8
----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð
 ALIAS 'It''s_the_quote_that_makes_apostrophes_necessary.'

– The single apostrophes used to enclose an alias value do not count as
part of the 64-character limit for an alias value. For example, the alias
value in the following example contains 10 characters:

 1 2 3 4 5 6 7 8
----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð
 ALIAS 'Only_ten!!'

– SMP/E uses the alias value exactly as is. SMP/E does not try to
enforce any rules the binder may be using as a result of the CASE
execution parameter.

Warning to Packagers

Be extremely careful when creating the JCL and link-edit ALIAS control
statements to be processed by SMP/E as JCLIN. When parsing the
ALIAS control statements to derive alias values, SMP/E does not try to
replicate binder processing that would result from a particular specifica-
tion of the CASE execution parameter. Therefore, you must ensure
that the values on the ALIAS control statement are exactly as desired
and that the proper CASE value is used so that the link-edit utility
produces the desired results.

End of Warning to Packagers

 � Continuation records

98 MVS Packaging Rules

 JCLIN Link-Edit Steps

– Column 72 of a given 80-byte record must be a nonblank character if
the control statement is continued onto the next 80-byte record. The
character in column 72 denotes only continuation and is never part of
an alias value.

– The data for continuation records (80-byte records 2 through n of an
ALIAS control statement) can start in column 2 or later and end any-
where up to and including column 71 (for example, if multiple aliases
are being specified).

The data for a continuation record must start in column 2 if it is part of
an alias value that is being continued from the previous 80-byte record.
An alias value that is continued from one 80-byte record to another
80-byte record must do all of the following:

- Be enclosed in single apostrophes
- Extend through column 71 of the first 80-byte record
- Start in column 2 of the next 80-byte record
- Have a nonblank continuation character in column 72

Here is an example:

 1 2 3 4 5 6 7 8
----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð
 ALIAS 'This_is_a_very_long_value_that_is_continued_to_the_next\
 _card!'

 � Entry points

A new format of the ALIAS statement supported for the binder allows an
alternative entry point to be specified into a load module. If this new format
is used, each alias name with an associated entry point must be specified
on its own 80-byte record, with a separate ALIAS statement; no other
aliases should be specified on that statement. If multiple alias values of
this format are specified on a single ALIAS control statement, only the first
is recognized; the rest are ignored.

Note: When this form of the ALIAS control statement is used, the alias
value cannot be 64 characters long, because SMP/E requires the
statement to be complete on one 80-byte record. When this form of
the ALIAS control statement is used, the maximum length for an
alias value is 61 characters.

Suppose that a load module has the following aliases: ALA1, ALA2, ALA3,
and ALA4. ALA1 and ALA2 are associated with entry point names
ENTRYPT1 and ENTRYPT2, respectively.

– Here are examples of how the aliases should be specified:

 1 2 3 4 5 6 7 8
----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð
 ALIAS ALA1(ENTRYPT1)
 ALIAS ALA2(ENTRYPT2)
 ALIAS ALA3
 ALIAS ALA4
or
 ALIAS ALA3,ALA4

– Here are examples of how the aliases should not be specified:

 Chapter 9. Using JCLIN 99

 JCLIN Link-Edit Steps

 1 2 3 4 5 6 7 8
----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð
 ALIAS ALA1(ENTRYPT1),ALA2(ENTRYPT2),ALA3,ALA4
or
 ALIAS ALA1(ENTRYPT1),ALA3
 ALIAS ALA2(ENTRYPT2),ALA4

 � Multiple aliases

– Multiple alias values can be specified on a single ALIAS control state-
ment as long as they are not in the form alias(entrypoint). Multiple
alias values must be separated by commas (“,”). Here is an example:

 1 2 3 4 5 6 7 8
----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð
 ALIAS ALIAS1,ALIAS2,ALIAS3,ALIAS4

– Multiple alias values can span multiple 80-byte records. When this
occurs, there must be a nonblank character in column 72, and one of
the following must be true:

- The last alias value on the 80-byte record that is being continued
must be followed by a comma and one or more blanks (“, ...”).
Here is an example:
 1 2 3 4 5 6 7 8
----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð
 ALIAS ALIAS1,ALIAS2, \
 ALIAS3,ALIAS4

- The last alias value on the 80-byte record that is being continued
must be followed by a comma (“,”) in column 71. Here is an
example:
 1 2 3 4 5 6 7 8
----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð
 ALIAS ALIAS1,ALIAS2,'A_relatively_long_ALIAS_but_not_quite_64_chars.',\
 ALIAS4,ALIAS5

- The last alias value on the 80-byte record that is being continued
can be enclosed in single apostrophes such that part of the alias
value appears on the current 80-byte record and part appears on
the next 80-byte record (see the rules for continuation records).
Here is an example:
 1 2 3 4 5 6 7 8
----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð----+----ð
 ALIAS ALIAS1,ALIAS2,'A_relatively_long_ALIAS.',ALIAS4,'Not_too_long_bu\
 t_wraps.',ALIAS5,ALIAS6

– If a blank (X'40') follows an alias value, SMP/E assumes there are no
more alias values for the current ALIAS control statement.

100 MVS Packaging Rules

 JCLIN Link-Edit Steps

CHANGE statement

IBM Software Delivery Restrictions

For the IBM Software Delivery Solutions process to operate correctly, a
product must not contain a CHANGE statement in a link-edit step.

End of IBM Software Delivery Restrictions

ENTRY statement
Each load module consisting of more than one distribution library module must
have an ENTRY statement; otherwise, the entry point of the load module
changes each time the load module is relinked by SMP/E.

EXPAND statement

Packaging Recommendations

EXPAND statements should not be used in JCLIN data, because they would be
saved in the LMOD entry and would cause the load module to be expanded
each time it is link-edited. This is not always desirable.

End of Packaging Recommendations

IDENTIFY statement

Packaging Recommendations

IDENTIFY statements should not be used in JCLIN data. They are produced
as part of servicing a module. If found in the JCLIN, they are stored in the
LMOD entry and can result in incorrect data being stored during the application
of service.

End of Packaging Recommendations

INCLUDE ddname(member,member...) statement
INCLUDE statements are used to identify the modules in the load module.
They are also used to identify utility input to be included when the load module
is link-edited. This is denoted by the TYPE comment on the INCLUDE state-
ment. The format of the TYPE comment on the INCLUDE statement is:

INCLUDE ddname(member,member...) TYPE=UTIN

There must be at least one blank between the closing parenthesis of the
INCLUDE statement and the TYPE comment. If the TYPE comment is not
specified, SMP/E assumes the INCLUDE statement identifies modules.

 Chapter 9. Using JCLIN 101

 JCLIN Link-Edit Steps

Processing Modules:

Each module in the load module must be specified as a member name on an
INCLUDE statement.

The member names are assumed to be modules existing in distribution library
ddname. SMP/E builds MOD entries for each member name specified and sets
the DISTLIB value in each MOD entry to ddname. (An exception to this is
when the ddname is SYSLMOD. In that case, no MOD entry is built for the
INCLUDE statement.) SMP/E does not refer to the ddname DD statement to
determine the actual library referred to. Therefore, all ddnames specified on
INCLUDE statements must be the actual ddnames assigned to the products.

The INCLUDE statements are not saved in the LMOD entry, because they are
not necessary when the load module is link-edited. All link-edits requested by
SMP/E are CSECT-replaces; the load module is built from the new version of
the updated CSECT and the existing load module from the target library.

The ddnames SYSPUNCH and SMPOBJ are reserved for inclusions of object
decks produced by assembly steps that are not to be link-edited to a distribu-
tion library during ACCEPT processing. In both cases, the name stored in the
MOD entry's DISTLIB subentry is SYSPUNCH.

Processing Utility Input:

Each utility input file must be specified as a member on an INCLUDE statement
with the TYPE=UTIN comment.

The member names are assumed to be members of the library ddname.
SMP/E builds a utility input subentry for each member name specified and
stores it into the LMOD entry. Each utility input subentry contains the member
name and the ddname. The utility input files will be included when link-editing
the load module. These files may identify definition side decks containing link-
edit control statements, or any other file to be included during a link-edit opera-
tion.

Note: For a product including modules not provided by that product, the
INCLUDE statements must specify either a distribution library ddname
or SYSPUNCH. (SYSPUNCH is used only for processing assembled
modules.) If your product will be installed in the same target and distri-
bution zones as the other product, see 9.6.4, “Cross-Product Load
Modules for Products Installed in the Same Zone” on page 107 for
more information. If you cannot be sure, or if you know that your
product will be installed in different target and distribution zones from
the other product, see 9.6.5, “Cross-Product Load Modules for Products
Installed in Different Zones” on page 109 for more information.

INSERT and OVERLAY statements
If a load module is to be linked in overlay structure, you must supply an
INSERT control statement for each CSECT in the load module, including
INSERT statements for those CSECTs within the root segment. It is not suffi-
cient to properly place the INCLUDE and OVERLAY control statements.

LIBRARY statement
Normally, LIBRARY statements should not be used in JCLIN data. An excep-
tion is when the CALLLIBS operand is specified on the JCLIN command or
++JCLIN MCS, or when //*CALLLIBS=YES is encountered after a job card pre-
ceding a link-edit step. JCLIN processing then allows for the LIBRARY state-

102 MVS Packaging Rules

 JCLIN Link-Edit Steps

ment to be used to specify those modules (external references) that are to be
excluded from the automatic library search during the following:

� The current linkage editor job step (restricted no-call function)
� Any subsequent linkage editor job step (never-call function)

A LIBRARY statement should be used only if a SYSLIB DD statement is also
used. It should not be used to specify additional automatic call libraries; the
SYSLIB DD statement should be used instead.

NAME lmodname(R) statement
When SMP/E encounters either the NAME control statement or the end of input
with no NAME statement, SMP/E builds an LMOD entry. How SMP/E deter-
mines the name of the LMOD depends on the JCL being scanned:

� If the NAME statement is found, SMP/E gets the LMOD name from the
lmodname field of the NAME statement.

� If no NAME statement is found and a SYSLMOD DD statement is present,
SMP/E gets the LMOD name from the member name of the data set speci-
fied. If no member name is specified, SMP/E issues an error message
identifying the JOBNAME and STEPNAME and the reason for the error.

� If no NAME and SYSLMOD DD statements are found, SMP/E searches for
the MOD=name operand in the JCL and uses that name as the LMOD
name. If no MOD=name operand is found, SMP/E issues an error
message.

IBM Software Delivery Restrictions

A product that uses CALLLIBS must not use the RC= parameter on a NAME
statement in its JCLIN unless one of the following is true:

1. The product using CALLLIBS identifies the product providing the CALLLIBS
libraries as a requisite (REQ) in its SMPMCS.

2. The product using CALLLIBS ships stubs for the elements linked with
CALLLIBS.

This is a restriction of the IBM Software Delivery Solutions process; the
CALLLIBS libraries may not be available during order build processing unless
one of the above criteria is met.

End of IBM Software Delivery Restrictions

ORDER statement
If a specific order of CSECTs within a load module is necessary, ORDER state-
ments are required to define the load module structure. Simply ordering the
INCLUDE statements is not sufficient, because SMP/E does CSECT replace-
ments when relinking the load module and, therefore, changes the order of the
CSECTs.

REPLACE statement
REPLACE statements are saved in the LMOD entry and are associated with
the DLIB module name found on the next INCLUDE statement in the JCL. If
the same INCLUDE statement is processed later by JCLIN, REPLACE state-

 Chapter 9. Using JCLIN 103

 JCLIN Link-Edit Steps

ments already in the LMOD entry associated with this INCLUDE statement are
deleted and replaced by any associated REPLACE statements in the latest job.
REPLACE statements are passed to the linkage editor only when the associ-
ated DLIB module is to be replaced in the load module.

SYSDEFSD DD statement
SMP/E uses the SYSDEFSD DD statement to determine the side deck library
for the load module. SMP/E determines the ddname by using the lowest-level
qualifier of the data set name specified in the SYSDEFSD DD statement. This
ddname is saved as the side deck library subentry in the LMOD entry.

The side deck library will contain the definition side deck for the load module
created by the link-edit utility. The definition side deck contains link-edit control
statements describing the load module.

SYSLIB DD statement
Normally, SYSLIB DD statements should not be used in JCLIN data. However,
they can be used for load modules needing to implicitly include modules from
other products. Such load modules are commonly used by products that:

� Are written in a high-level language and, as a result, include modules from
libraries (such as compiler libraries) that are owned by a different product

� Make use of a callable-services interface provided by another product

� Need to include stub routines or interface modules from different products
that may reside in other zones

For such load modules, the SYSLIB DD statement should specify all the auto-
matic call libraries SMP/E is to use when linking the load module. (These
libraries should be target libraries.) The low-level qualifier of each data set
specified in the SYSLIB concatenation is saved as a CALLLIBS subentry for
the associated load module. For SMP/E to link implicitly-included modules from
these libraries, the user must provide DDDEF entries for the libraries in the
zone containing the LMOD entry.

SYSLIB DD statements are processed only if the CALLLIBS operand is speci-
fied on the JCLIN command or ++JCLIN MCS, or if //*CALLLIBS=YES is
encountered after a job card preceding a link-edit step. If the CALLLIBS
operand or the CALLLIBS comment is not specified, SMP/E ignores any
SYSLIB DD statements it encounters.

Implementation Notes:

� It is best to use this SYSLIB support when introducing a new version or
release of your product, or when introducing a new load module for an
existing version or release of your product.

Using this SYSLIB support for an existing load module in a current product
is not recommended. However, if you need to make such a change, make
sure to do the following in the SYSMOD introducing the change:

1. Supply a JCLIN link-edit step to redefine the load module. This step
must specify the SYSLIB allocation needed for the load module.

2. Specify the CALLLIBS operand on the ++JCLIN statement to ensure
that the SYSLIB DD statement is processed.

3. Supply all the modules that are explicitly included in the JCLIN link-edit
step and that are owned either by this SYSMOD or by its FMID.

104 MVS Packaging Rules

 JCLIN Link-Edit Steps

Modules that are explicitly included in the JCLIN link-edit step and that
are not owned by this SYSMOD or its FMID are included by SMP/E
through normal load module build processing.

If the existing load module had included cross-zone modules through the
use of the LINK command, those modules are no longer included in the
load module after the installation of the SYSMOD that redefined the load
module. In this case, SMP/E issues warning messages. After the installa-
tion of the SYSMOD, the user must rerun the LINK command to include
those cross-zone modules back into the load module. For more information
about the LINK command, see the OS/390 SMP/E Commands manual or
the SMP/E Release 8.1 Reference manual.

� When a load module is built using SYSLIB DD statements, SMP/E cannot
completely service the load module because it does not know the content
of the load module. Specifically, the load module is not automatically
rebuilt when an implicitly-included module is serviced. However, users can
run the REPORT CALLLIBS command to identify and relink such load
modules. For more information about the REPORT CALLLIBS command,
the OS/390 SMP/E Commands manual or the SMP/E Release 8.1 Refer-
ence manual.

Including Pathnames in a SYSLIB Concatenation: A DD statement in a
SYSLIB concatenation can include the PATH operand to specify a pathname
as an automatic call library. A LIBRARYDD comment statement must imme-
diately follow this DD statement and specify the ddname to be associated with
that pathname. SMP/E saves the ddname specified on the LIBRARYDD
comment as part of the CALLLIBS list in the LMOD entry being updated or
created. For an example, see 9.7.5, “JCLIN Data for Load Modules Residing in
a Hierarchical File System” on page 119.

Notes:

1. If a DD statement in the concatenation comes between the DD statement
specifying the PATH operand and the LIBRARYDD comment, the mis-
placed DD statement is ignored.

2. If the DD statement specifying the PATH operand is followed by a JCL
statement other than a LIBRARYDD comment or a continuation DD state-
ment for the SYSLIB concatenation, the LMOD entry is not updated or
created. In addition, if the JCLIN was specified in a SYSMOD (instead of
being processed by the JCLIN command), processing for that SYSMOD
fails.

SYSLMOD DD statement
SMP/E uses either the SYSLMOD DD statement or the NAME statement to
determine the target library for the load module, as follows:

� If a SYSLMOD DD statement is present, SMP/E determines the target
library ddname by using the lowest-level qualifier of the data set name
specified in the SYSLMOD DD statement.

� If no SYSLMOD DD statement is present, SMP/E determines the name by
looking at the NAME=dsname option on the procedure statement. The
ddname used is the lowest-level qualifier of the data set name specified in
the NAME option.

 Chapter 9. Using JCLIN 105

 JCLIN Link-Edit Steps

� If no SYSLMOD DD statement or NAME=dsname value is found, SMP/E
issues an error message.

The ddname of the target library is saved as the SYSLIB value in the LMOD
entry for the load module.

A SYSLMOD DD statement can include the PATH operand to specify a
pathname for installing a load module in a hierarchical file system. A
LIBRARYDD comment statement must immediately follow this DD statement
and specify the ddname to be associated with that pathname. SMP/E saves
the ddname specified on the LIBRARYDD comment as a SYSLIB subentry in
the LMOD entry being updated or created. For an example, see 9.7.5, “JCLIN
Data for Load Modules Residing in a Hierarchical File System” on page 119.

Notes:

1. If the DD statement specifying the PATH operand is followed by a JCL
statement other than a LIBRARYDD comment, the LMOD entry is not
updated or created. In addition, if the JCLIN was specified in a SYSMOD
(instead of being processed by the JCLIN command), processing for that
SYSMOD fails.

2. An LMOD entry can have at most two SYSLIB subentries. If the LMOD
entry already contains two SYSLIB subentries, SMP/E replaces the second
SYSLIB ddname with the ddname found on the SYSLMOD DD statement,
the NAME=dsname option, or the LIBRARYDD comment statement.

All other statements found in link-edit input
All other link-edit control statements found are saved in the LMOD entry in the
order they are encountered, and are passed to the linkage editor whenever
SMP/E needs to relink this load module.

9.6.3 Link-Edit Attribute Parameters
These are the link-edit attributes SMP/E recognizes in the PARM field and saves
for future processing:

106 MVS Packaging Rules

 JCLIN Link-Edit Steps

├──AC=1──ALIASES(ALL)──ALIGN2─ ──┬ ┬──┬ ┬─AMODE=24─ ─ ─CALL─ ──┬ ┬─CASE(MIXED)─ ────5
 │ │└ ┘─AMOD=24── └ ┘─CASE(UPPER)─
 ├ ┤──┬ ┬─AMODE=31─ ─
 │ │└ ┘─AMOD=31──
 ├ ┤──┬ ┬─AMODE=ANY─
 │ │└ ┘─AMOD=ANY──
 └ ┘──┬ ┬─AMODE=MIN─
 └ ┘─AMOD=MIN──

5─ ──┬ ┬─COMPAT=LKED─ ─DC──DYNAM(DLL)─ ──FETCHOPT(──┬ ┬─PACK─── , ──┬ ┬─PRIME───) ───5
 ├ ┤─COMPAT=PM1── └ ┘─NOPACK─ └ ┘─NOPRIME─
 └ ┘─COMPAT=PM2──

5─ ──FILL(nn) ─HOBSET─ ──MAXBLK(nnnnn) ─NE─ ──┬ ┬─NOCALL─ ─OL─ ──OPTIONS(ddname) ────5
 └ ┘─NCAL───

5──OVLY─ ──┬ ┬ ──┬ ┬─REFR─────── ──┬ ┬─RENT─────── ──┬ ┬─REUS───────── ──────────────5
 │ │└ ┘─REUS(REFR)─ └ ┘─REUS(RENT)─ └ ┘─REUS(SERIAL)─
 └ ┘─REUS(NONE)───────────────────────────────────────

5─ ──┬ ┬──┬ ┬─RMODE=24─ ─── ─SCTR─ ──┬ ┬─UPCASE(YES)─ ──────────────────────────────┤
 │ │└ ┘─RMOD=24── └ ┘─UPCASE(NO)──
 ├ ┤──┬ ┬─RMODE=ANY─ ──
 │ │└ ┘─RMOD=ANY──
 └ ┘──┬ ┬─RMODE=SPLIT─
 └ ┘─RMOD=SPLIT──

When none of the above attributes are found, the STD indicator is set in the LMOD
entry to indicate that the load module should be link-edited without any particular
attributes.

Notes:

1. The OPTIONS attribute is recognized and processed, but it is not saved as part
of the LMOD entry or the MOD entry being processed. It is used as a pointer
to an imbedded file containing additional option specifications, allowing the
PARM string to exceed the 100-character limit.

2. For more information on which attributes you can use with a specific link-edit
utility, see the reference manual for that utility.

9.6.4 Cross-Product Load Modules for Products Installed in the Same
Zone

There are two basic reasons for products to require cross-product load modules:

� A load module for one function SYSMOD needs to include a module from
another function SYSMOD.

� A function SYSMOD needs to include some of its own modules in a load
module of another function SYSMOD.

9.6.4.1 Linking a Module from Another Function
If a load module for Product A needs to include a module from Product B, a link-
edit step in the JCLIN data for Product A must do one of the following:

� Explicitly define the modules: To explicitly define Product B modules to be
included, the INCLUDE statement must be used.

� Implicitly define the modules: To implicitly define Product B modules to be
included, the SYSLIB statement must be used. (The LIBRARY statement can
also be used, if any specific modules should not be included.)

 Chapter 9. Using JCLIN 107

 JCLIN Link-Edit Steps

For more information on this method, see 9.6.5.2, “Implicitly Defining the
Modules” on page 110.

Table 16 briefly compares the two methods.

The function SYSMOD for Product A will not contain a ++MOD statement for the
Product B module. If the Product B module is installed and the Product A load
module does not already exist, the module is automatically included in the Product
A load module.

If a load module for your product (Product A) requires a module from another
product, you should describe this in the installation documentation for Product A
and mention any additional jobs the user should run.

If the module from Product B is deleted (such as if a new replacement release of
Product B is installed), SMP/E keeps a record of the fact that the module had been
a part of a load module in Product A. As a result, if the module is reintroduced by
Product B (such as in the replacement release of the product), SMP/E automatically
relinks the load module from Product A to include the module from Product B. If
the module is not reintroduced but is still required in Product A, and a copy of the
module is still available on the system, the user must use the JCLIN command to
reprocess the JCLIN data for Product A and then rerun the postinstallation link-edit
job.

On the other hand, a new release of Product A might delete the previous release of
Product A and redefine the load module without including any of the borrowed
modules. As part of installing the new release of Product A, SMP/E will first delete
the old Product A modules from the load module, leaving a copy of the load module
consisting solely of modules borrowed from other products. SMP/E will then use
this copy of the load module (with the borrowed modules) as input when rebuilding
the load module for the new release of Product A. To ensure that the new version
of the load module does not include the borrowed modules, the new release of
Product A must contain a ++DELETE MCS for the load module (to delete the pre-
vious version) in addition to the JCLIN needed to rebuild the new version of the
load module.

Table 16. Comparison of Explicit versus Implicit Definition of Modules

Consideration Explicit Definition Implicit Definition

Modules are automatically
serviced.

X

Modules do not need to be
specified individually.

X

9.6.4.2 Linking Modules into a Load Module for Another
Function
If a function SYSMOD(1) needs to include any of its own modules in a load module
of another function SYSMOD(2), you have two packaging options:

� If the load module already exists, and no link-edit control statements must be
added or changed to add the modules to the load module, the ++MOD MCS for
each module can specify the load module on the LMOD operand.

108 MVS Packaging Rules

 JCLIN Link-Edit Steps

� If the load module does not exist, or if any link-edit control statements must be
added or changed to add the module to the load module, the JCLIN data for
function SYSMOD(1) must specify an INCLUDE statement for each of those
modules followed by an INCLUDE SYSLMOD statement for the load module of
function SYSMOD(2).

You can use these techniques to include a module for a dependent function in a
load module for its parent base function, or to include a module for Product A in a
load module for Product B. However, Product B must be installed before Product
A.

A new release of Product A might no longer need to include its modules in a load
module for Product B. However, because the new release of Product A deletes the
previous release, SMP/E updates the LMOD entry for the Product B load module to
track the modules that were deleted. As a result, if no action is taken, SMP/E
relinks the Product A modules into the Product B load module when the new
release of Product A is installed. You must make sure the installation documenta-
tion for your product tells the user how to avoid this problem. Here are the steps
you need to describe:

1. Build a dummy function to delete Product A. (For an example, see the recom-
mendations under 7.2.4, “Deleting SYSMODs (DELETE)” on page 57.)

2. Use UCLIN to remove the MODDEL subentries for the Product A modules from
the Product B LMOD entry.

3. Install the new release of Product B.

9.6.5 Cross-Product Load Modules for Products Installed in Different
Zones

Cross-product, cross-zone load modules can be created through one of the fol-
lowing methods:

� SMP/E LINK command (done after installation)
� Implicitly defining the modules (done in the JCLIN link-edit step)

Table 17 briefly compares the two methods. It is followed by more information
about each method.

Table 17. Comparison of the LINK Command versus Implicit Definition of Modules

Consideration SMP/E LINK Command Implicit Definition

Good for products written
in high-level languages or
that use callable services.

X

Load modules can be
automatically serviced.

X

Modules do not need to be
specified individually.

X

SMP/E tracks the cross-
zone relationship.

X

 Chapter 9. Using JCLIN 109

 JCLIN Link-Edit Steps

9.6.5.1 SMP/E LINK Command
This method is best when a load module needs to include a few specific modules
from another product. To define the cross-zone relationship and create the cross-
zone load modules, the LINK command and UCL statements are run by the user.
No JCL statements are needed to add the modules to the cross-zone load
modules.

If a load module for your product requires a module from another product that is
likely to be installed in a different zone, you should describe this in the installation
documentation for your product and describe the SMP/E LINK commands the user
should run.

When this method is used, SMP/E tracks the cross-zone relationship between the
load modules and modules. As a result, cross-zone processing for subsequent
APPLY and RESTORE commands can automatically maintain the affected load
modules.

The LINK command requires the modules it processes to be stand-alone modules.
No assemblies are done by either the LINK command or by cross-zone processing
for APPLY and RESTORE commands. Therefore, when packaging a module that
you intend to be used as input to the LINK command, make sure it is installed in its
target library as either a single-CSECT load module or as part of a totally copied
library.

Note: There are times when the LINK command is not appropriate to
use—generally, for products that are written in a high-level language and,
as a result, include modules from libraries (such as compiler libraries)
owned by a different product. In these cases, you should use SYSLIB DD
statements to implicitly include the modules. For more information on when
to use a SYSLIB DD statement, see 9.6.5.2, “Implicitly Defining the
Modules” and the description of the SYSLIB DD statement under 9.6.2,
“Link-Edit Control Statements” on page 97.

For an example of using the LINK command, see the SMP/E User's Guide. For
details on the LINK and UCL commands, see the OS/390 SMP/E Commands
manual or the SMP/E Release 8.1 Reference manual.

9.6.5.2 Implicitly Defining the Modules
This method is best used when a load module must include many modules from
other products, and it is difficult and error-prone (and perhaps impossible) to define
all the modules to be included.

To implicitly define modules to be included from another product, the SYSLIB state-
ment must be used. (The LIBRARY statement can also be used, if any specific
modules should not be included.) Inform the user that the libraries containing the
modules must be defined by DDDEF entries in the zone for the product that is
including the modules.

Unlike the LINK command, when this method is used, SMP/E does not track the
cross-zone relationship between the load modules and modules. However, after a
library specified in the SYSLIB DD statement has been updated, the REPORT
CALLLIBS command can be used to identify and relink load modules that define a
SYSLIB statement. For more information about the REPORT CALLLIBS command,

110 MVS Packaging Rules

 JCLIN Link-Edit Steps

see the OS/390 SMP/E Commands manual or the SMP/E Release 8.1 Reference
manual.

For more information on using the SYSLIB DD statement, see the description of
that statement under 9.6.2, “Link-Edit Control Statements” on page 97.

9.6.6 Adding or Changing Load Modules in a PTF
If a PTF needs to add a new load module or change the structure of an existing
load module, use the techniques listed below.

� Adding a new module to an existing load module. The PTF must ship all of
the following:

– Inline JCLIN describing the new load module structure
– A ++MOD statement for the new module being added

When SMP/E installs the PTF, it updates the entries, then performs the link.
As a result, the new module is included in the link, and the old load module is
replaced.

� Creating a new load module. The PTF must ship all of the following:

– Inline JCLIN describing the new load module structure
– All of the modules (other than those from other products) that are part of

the load module
– A ++MOD statement for each of those modules (except those from other

products)

When SMP/E installs the PTF, it updates the entries, then performs the link.
As a result, the new load module is added to the target library.

� Deleting a module from a load module (and from a product). The PTF
must ship all of the following:

– Inline JCLIN describing the new load module structure
– A ++MOD DELETE statement for the module being deleted

When SMP/E installs the PTF, it delinks the module from the load module, then
removes all references to the deleted module.

� Deleting a module from a load module (but leaving the module in the
product). The PTF must ship all of the following:

– Inline JCLIN describing the new load module structure
– A ++DELETE statement for the load module
– All the modules (other than those from other products) that are still part of

the load module
– A ++MOD statement for each of those modules (except those from other

products)

When SMP/E installs the PTF, it deletes the load module from the target library,
updates the appropriate entries with the new load module definition, and relinks
the load module using the modules from the PTF.

Note: In each of these cases, the PTF must contain a ++MOD statement for each
module being added or deleted. If the PTF does not contain the ++MOD
statement, SMP/E updates the entries but does not invoke the link-edit
utility.

 Chapter 9. Using JCLIN 111

 JCLIN Examples

9.7 Examples of JCLIN Data
This section shows examples of JCLIN data to define the following:

� Copy, assembler, and link-edit steps for modules
� Copy steps for macros or source
� Assembler steps to create modules from source
� Link-edit steps that use the automatic library call function
� Link-edit steps for load modules residing in a hierarchical file system

9.7.1 JCLIN Data for Modules
The following are some sample job steps for providing SMP/E with the information
it needs to copy, assemble, and link-edit modules.

/\\/
/\ \/
/\ Step C1 informs SMP/E that an entire distribution library \/
/\ is copied to a target library. From the INDD operand SMP/E \/
/\ determines the ddname of the distribution library (AMACLIB), and \/
/\ from the OUTDD operand SMP/E determines the ddname of the target \/
/\ library (MACLIB). SMP/E will use this information to determine \/
/\ the target library for subsequent changes that specify an \/
/\ element's distribution library as AMACLIB. \/
/\ \/
/\ Although the copy step can be performed using JCLIN, the \/
/\ preferred method is to specify the copy in the MCS. \/
/\ \/
/\\/
//C1 EXEC PGM=IEBCOPY
//AMACLIB DD DSN=SYS1.AMACLIB,DISP=SHR
//MACLIB DD DSN=SYS1.MACLIB,DISP=SHR
//SYSIN DD \
 COPY INDD=AMACLIB,OUTDD=MACLIB TYPE=MAC

/\\/
/\ \/
/\ Step C2 shows elements that are selectively copied from a \/
/\ distribution library to a target library. The module name, \/
/\ JZZLMODC, is defined by the SELECT MEMBER statement. The load \/
/\ module name, JZZLMODC, is simply the module name. The INDD \/
/\ statement defines the distribution library as AOS14, and the OUTDD \/
/\ statement defines the target library as LINKLIB. When the JCLIN \/
/\ data is processed, SMP/E sets an indicator (COPY)--the COPY \/
/\ indicator means that when the module is link-edited, the link-edit \/
/\ attributes must be obtained by examining the target library. \/
/\ \/
/\\/
//C2 EXEC PGM=IEBCOPY
//AOS14 DD DSN=SYS1.AOS14,DISP=SHR
//LINKLIB DD DSN=SYS1.LINKLIB,DISP=SHR
//SYSIN DD \
 COPY INDD=AOS14,OUTDD=LINKLIB TYPE=MOD
 SELECT MEMBER=((JZZLMODC,,R))
/\

112 MVS Packaging Rules

 JCLIN Examples

/\\/
/\ \/
/\ Step A1 defines an assembled module named JZZAMOD1. The module \/
/\ name is specified as the member name on the SYSPUNCH DD statement. \/
/\ \/
/\ It also defines a macro named JZZAMAC1. SMP/E will detect the \/
/\ invocation of the macro in the assembler SYSIN data. \/
/\ \/
/\ NOTE: This method is used to introduce a new element, not to \/
/\ service an existing element. \/
/\ \/
/\ This example should be used ONLY for supplying inline \/
/\ assembler source, and should NOT be used for elements \/
/\ shipped with ++SRC or ++MOD statements. The MOD entry \/
/\ resulting from this technique will contain a DISTLIB of \/
/\ SYSPUNCH, which might not be desirable if a ++MOD statement \/
/\ is shipped and the element is installed in a real \/
/\ distribution library. \/
/\\/
//A1 EXEC PGM=ASMA9ð
//SYSLIB DD DSN=SYS1.AMACLIB,DISP=SHR
//SYSPUNCH DD DSN=&&PUNCH(JZZAMOD1),
// SPACE=(TRK,(1,1,1)),DISP=(,PASS)
//SYSIN DD \
JZZAMOD1 CSECT

JZZAMAC1 --- INVOKE MACRO
 END JZZAMOD1
/\

 Chapter 9. Using JCLIN 113

 JCLIN Examples

/\\/
/\ \/
/\ Step L1 shows how to link-edit the previous assembly. The \/
/\ link-edit INCLUDE statement defines module JZZAMOD1. The module \/
/\ name is determined from the member name operand on the INCLUDE \/
/\ statement, and the distribution library, SYSPUNCH, is determined \/
/\ from the INCLUDE statement's ddname. \/
/\ \/
/\ Step L1 also defines a load module and its target library. \/
/\ Load modules JZZLMOD1 is defined by the link-edit NAME \/
/\ statement. The ddname of the target library, LPALIB, is defined \/
/\ by SYSLMOD DD statement. The load module attribute RENT is saved \/
/\ for use in subsequent link-edits of this load module; the \/
/\ parameters LET and LIST are not saved. \/
/\ \/
/\ NOTE: This method is used to introduce a new element, not to \/
/\ service an existing element. \/
/\ \/
/\ This example should be used ONLY for supplying inline \/
/\ assembler source, and should NOT be used for elements \/
/\ shipped with ++SRC or ++MOD statements. The MOD entry \/
/\ resulting from this technique will contain a DISTLIB of \/
/\ SYSPUNCH, which might not be desirable if a ++MOD statement \/
/\ is shipped and the element is installed in a real \/
/\ distribution library. \/
/\ \/
/\\/
//L1 EXEC PGM=IEWL,PARM='LET,LIST,NCAL,RENT'
//SYSLMOD DD DSN=SYS1.LPALIB,DISP=SHR
//SYSPUNCH DD \.A1.SYSPUNCH,DISP=(SHR,PASS)
//SYSLIN DD \
 INCLUDE SYSPUNCH(JZZAMOD1)
 NAME JZZLMOD1(R)
/\

/\\/
/\ \/
/\ Step L2 defines two modules and one load module \/
/\ to SMP/E. Modules JZZAMOD2 and JZZAMOD3 are defined by the \/
/\ link-edit INCLUDE statements; the distribution library for each of \/
/\ these is defined as AOS12. The load module is defined as \/
/\ JZZLMOD2, with LINKLIB as the target library. The parameters LET \/
/\ and LIST are not saved. \/
/\ \/
/\\/
//L2 EXEC PGM=IEWL,PARM='LET,LIST,NCAL'
//SYSLMOD DD DSN=SYS1.LINKLIB,DISP=SHR
//AOS12 DD DSN=SYS1.AOS12,DISP=(SHR,PASS)
//SYSLIN DD \
 INCLUDE AOS12(JZZAMOD2)
 INCLUDE AOS12(JZZAMOD3)
 ENTRY JZZAMOD2
 NAME JZZLMOD2(R)
/\

114 MVS Packaging Rules

 JCLIN Examples

/\\/
/\ \/
/\ Step L3 shows an example of using the OPTIONS option. \/
/\ The OPTNAME DD statement allows SMP/E to process the PARM string \/
/\ even though the options exceed the 1ðð-character limit. \/
/\ \/
/\\/
//L3 EXEC PGM=IEWBLINK,PARM='OL,AMODE=31,...,OPTIONS(OPTNAME)'
//SYSLMOD DD DSN=SYS1.LINKLIB,DISP=SHR
//AOS12 DD DSN=SYS1.AOS12,DISP=SHR
//OPTNAME DD \
 FETCHOPT(PACK,PRIME),RMODE=24
 MAXBLK(256)
/\
//SYSLIN DD \
 INCLUDE AOS12(GIMMPDRV,GIMMPDR1,....)
 ENTRY GIMMPDRV
 SETCODE AC(1)
 NAME GIMMPP(R)
/\

/\\/
/\ \/
/\ Step L4 shows an example of using a SYSLIB concatenation in a \/
/\ link-edit step to implicitly include modules from libraries for \/
/\ other products. \/
/\ \/
/\ Modules MODðððð4 and MODðððð5 are defined by a link-edit INCLUDE \/
/\ statement; the distribution library for each of these modules is \/
/\ defined as AOS12. The load module is defined as LMODð4, with \/
/\ APPLOAD as the target library. If the CALLLIBS operand is \/
/\ specified on the JCLIN command or ++JCLIN MCS, the low-level \/
/\ qualifiers of the data sets specified in the SYSLIB concatenation \/
/\ (PLIBASE and APPBASE) are saved as CALLLIBS subentries in the \/
/\ LMOD entry for LMODð4. \/
/\ \/
/\\/
//L4 EXEC PGM=IEWBLINK,PARM='CALL,RENT,REUS'
//SYSLMOD DD DSN=SYS1.APPLOAD,DISP=SHR
//AOS12 DD DSN=SYS1.AOS12,DISP=SHR
//SYSLIB DD DSN=SYS1.PLIBASE,DISP=SHR
// DD DSN=SYS1.APPBASE,DISP=SHR
//SYSLIN DD \
 INCLUDE AOS12(MODðððð4,MODðððð5)
 ENTRY MODðððð4
 SETCODE AC(1)
 NAME LMODð4(R)
/\

 Chapter 9. Using JCLIN 115

 JCLIN Examples

9.7.2 JCLIN Data for Macros and Source
Here is a sample job step for providing SMP/E with the information it needs to copy
macros and source:

//STEP1 EXEC PGM=IEBCOPY
//AMACLIB DD DSN=SYS1.AMACLIB,DISP=SHR
//MACLIB DD DSN=SYS1.MACLIB,DISP=SHR
//AJZZSRC DD DSN=SYS1.AJZZSRC,DISP=SHR
//JZZSRC DD DSN=SYS1.JZZSRC,DISP=SHR
//SYSIN DD \
 COPY INDD=AMACLIB,OUTDD=MACLIB TYPE=MAC
 S M=(MACð1,MACð2,MACð3)
 S M=(MAC11) ALIAS OF MACð1
 COPY INDD=AJZZSRC,OUTDD=JZZSRC TYPE=SRC
 S M=(SRCð4,SRCð5)
/\

This JCLIN data defines the following to SMP/E:

Remember, if the element is fully defined (both the DISTLIB and the SYSLIB are
specified on the element MCS), this JCLIN data is not needed.

Element Type Element Name
Distribution
Library Target Library

Macro MAC01 AMACLIB MACLIB

Macro MAC02 AMACLIB MACLIB

Macro MAC03 AMACLIB MACLIB

Macro MAC11 (alias) AMACLIB MACLIB

Source SRC04 AJZZSRC JZZSRC

Source SRC05 AJZZSRC JZZSRC

9.7.3 JCLIN Data for an Assembler Step to Create a Module from
Source

Here is a sample job step for providing SMP/E with the information it needs to
create a module by assembling source:

//STEP1 EXEC PGM=ASMA9ð
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
//SYSPUNCH DD DSN=&&PUNCH(SRCA),DISP=SHR
//SYSIN DD DSN=SYS1.AJZZSRC(SRCA),DISP=SHR

This defines a source module named SRCA, which resides in distribution library
AJZZSRC.

116 MVS Packaging Rules

 JCLIN Examples

9.7.4 JCLIN for Using the Link-Edit Automatic Library Call Function
SMP/E provides support for load modules that need to use the link-edit automatic
library call function, which enables the load modules to contain modules from mul-
tiple products without explicitly specifying those modules on INCLUDE statements
in link-edit steps. SMP/E's support for load modules that use the link-edit automatic
library call function is called CALLLIBS support.

9.7.4.1 Overview of CALLLIBS Support
SMP/E's CALLLIBS support uses the link-edit CALL parameter and a SYSLIB allo-
cation when invoking the link-edit utility to resolve external references in load
modules. CALLLIBS support can be useful for a variety of products, including
those that:

� Are written in a high-level language and, as a result, include modules from
libraries (such as compiler libraries) that are owned by a different product

� Make use of a callable-services interface provided by another product

� Need to include stub routines or interface modules from different products that
may reside in other zones

To package a load module that needs to use the automatic library call function,
follow these steps:

1. Specify the CALLLIBS operand on the ++JCLIN MCS. CALLLIBS tells SMP/E
to:

� Save the SYSLIB allocation defined by the JCLIN link-edit step in the
LMOD entry for the load module. This information is recorded in the new
CALLLIBS subentry list.

� Pass the SYSLIB allocation and the CALL parameter to the link-edit utility
for linking the load module.

Here is an example of the ++JCLIN MCS:

++JCLIN ... CALLLIBS.

Note: If CALLLIBS is not specified, the SYSLIB allocation in the link-edit step
is ignored and the NCAL parameter is used when invoking the link-edit
utility.

2. Provide link-edit JCLIN that defines the SYSLIB allocation for the libraries con-
taining the modules to be implicitly included by the link-edit automatic library
call function.

SMP/E will save the low-level qualifiers of the data sets in the SYSLIB allo-
cation as a CALLLIBS subentry list in the LMOD entry for the load module.

Here is an example of link-edit JCLIN that defines a SYSLIB allocation for a
load module that needs to use the link-edit automatic library call function.

 Chapter 9. Using JCLIN 117

 JCLIN Examples

//STEP1 EXEC PGM=IEWBLINK,PARM='RENT,REUS'
//SYSLMOD DD DSN=SYS1.APPLOAD,DISP=OLD

 //AOS12 DD DSN=SYS1.AOS12,DISP=SHR
 //SYSLIB DD DSN=SYS1.PLIBASE,DISP=SHR
 // DD DSN=SYS1.APPBASE,DISP=SHR
 //SYSLIN DD \
 INCLUDE AOS12(MODðððð1,MODðððð2)
 ENTRY MODðððð1
 SETCODE AC(1)
 NAME LMODð1(R)
 /\

3. Inform your users of special requirements for installing the SYSMOD.

� Before installing the SYSMOD, users must define DDDEF entries in the
target zone that will be used to apply the SYSMOD. DDDEF entries are
required for:

– Each of the data sets in the load module's SYSLIB allocation
– The SMPLTS data set, which is used to link the implicitly-included

modules into the load module

9.7.4.2 Example of a SYSMOD That Implements CALLLIBS
Support
The following is a part of a sample function SYSMOD with a load module that
needs to use the link-edit automatic library call function. The numbers associate
items in the SYSMOD with the steps listed in 9.7.4.1, “Overview of CALLLIBS
Support” on page 117.

 ++FUNCTION(HXY11ðð) FILES(3).
 ++VER(Zð38).

.1/ ++JCLIN CALLLIBS.
 ...

//STEP1 EXEC PGM=IEWBLINK,PARM='RENT,REUS'
//SYSLMOD DD DSN=SYS1.APPLOAD,DISP=OLD

 //AOS12 DD DSN=SYS1.AOS12,DISP=SHR
 .2/ //SYSLIB DD DSN=SYS1.PLIBASE,DISP=SHR
 // DD DSN=SYS1.APPBASE,DISP=SHR
 //SYSLIN DD \
 INCLUDE AOS12(MODðððð1,MODðððð2)
 ENTRY MODðððð1
 SETCODE AC(1)
 NAME LMODð1(R)
 /\
 ...

++MOD(MODðððð1) RELFILE(2) DISTLIB(AOS12).
++MOD(MODðððð2) RELFILE(2) DISTLIB(AOS12).

 ...

The user needs to define DDDEF entries for the data sets specified in the SYSLIB
allocation (PLIBASE and APPBASE), as well as for the SMPLTS data set, which
SMP/E will use to link-edit the load module. (For details on the SMPLTS data set,
see the SMP/E Reference and (for OS/390) OS/390 SMP/E Commands manuals.)
Here are examples of defining the DDDEF entries, assuming that the function will
be applied to target zone TGT1.

118 MVS Packaging Rules

 JCLIN Examples

.3/ SET BDY(TGT1). /\ Set to target zone. \/
 UCLIN. /\ \/

ADD DDDEF(PLIBASE) /\ Define PLIBASE. \/
DA(SYS1.V2R2Mð.PLIBASE) /\ Data set is cataloged. \/
SHR. /\ SHR for read. \/

ADD DDDEF(APPBASE) /\ Define APPBASE. \/
DA(SYS1.V2R2Mð.APPBASE) /\ Data set is cataloged. \/
SHR. /\ SHR for read. \/

ADD DDDEF(SMPLTS) /\ Define SMPLTS. \/
DA(SYS1.SMPLTS) /\ Data set is cataloged. \/
SHR. /\ SHR for read. \/

 ENDUCL.

9.7.4.3 Restrictions in CALLLIBS Support
CALLLIBS support puts restrictions on the following:

� Use of the CALL and NCAL parameters. Processing of the CALL and NCAL
parameters in SMP/E Release 8 is different from processing of those parame-
ters in previous SMP/E releases.

Before, NCAL was a default parameter passed to the link-edit utility. However,
you could use the link-edit UTILITY entry to pass the CALL parameter instead.

With CALLLIBS support, there is no longer any way to directly tell SMP/E to
pass the NCAL or CALL parameter. SMP/E ignores any specification of NCAL
or CALL, and instead checks for the CALLLIBS subentry in the load module's
LMOD entry to determine which parameter to pass to the link-edit utility when
linking the load module.

� Sharing zones between different releases of SMP/E. Users cannot share
zones between SMP/E Release 8 (or later) and previous releases of SMP/E.
This is because in SMP/E Release 8, the structure of the LMOD entries has
changed to support the new CALLLIBS subentry list. (LMOD entries are typi-
cally updated when JCLIN that defined the load module is processed.)

9.7.5 JCLIN Data for Load Modules Residing in a Hierarchical File
System

A load module can reside in a hierarchical file system (HFS). To determine where
the load module resides, SMP/E uses the following information, in addition to the
usual JCL statements needed for load modules:

� The PATH operand on the SYSLIB or SYSLMOD statement associated with the
load module. The PATH operand alerts SMP/E to the fact that the load module
resides in a hierarchical file system (HFS); however, the PATH value specified
is ignored.

� The LIBRARYDD comment statement immediately following the statement with
the PATH operand. This comment statement specifies the ddname to be asso-
ciated with the PATH value on the previous DD statement.

� The user-provided DDDEF entry whose name matches the ddname on the
LIBRARYDD comment statement. The DDDEF entry specifies the directory
portion of the pathname identified by the ddname. SMP/E uses the PATH
value specified in the DDDEF entry to allocate the pathname, and does not
check whether this value matches the PATH value specified on the SYSLIB or
SYSLMOD DD statement associated with the LIBRARYDD comment.

 Chapter 9. Using JCLIN 119

 JCLIN Examples

Following are examples of job steps containing SYSLMOD and SYSLIB DD state-
ments that use the PATH operand.

//STEP1 EXEC PGM=IEWBLINK,PARM='RENT,REUS'
.1///SYSLMOD DD PATH='/path_name1/'
.2///\LIBRARYDD=BPXLOAD1
 //AOS12 DD DSN=SYS1.AOS12,DISP=SHR
 //SYSLIN DD \
 INCLUDE AOS12(MODðððð1)
 INCLUDE AOS12(MODðððð2)
 ENTRY MODðððð1
 NAME LMODð1(R)
 /\

//STEP2 EXEC PGM=IEWBLINK,PARM='CALL,RENT,REUS'
//SYSLMOD DD PATH=SYS1.LINKLIB,DISP=OLD

 //AOS12 DD DSN=SYS1.AOS12,DISP=SHR
.3///SYSLIB DD PATH='/path_calllib3/'
.4///\LIBRARYDD=BPXCALL3
.4/// DD DSN=SYS1.PLIBASE,DISP=SHR
.3/// DD PATH='/path_calllib4/'
.4///\LIBRARYDD=BPXCALL4
 //SYSLIN DD \
 INCLUDE AOS12(MODðððð5)
 INCLUDE AOS12(MODðððð6)
 ENTRY MODðððð5
 NAME LMODð3(R)
 /\

.1/ Because the SYSLMOD statement specifies a PATH operand, SMP/E expects
the next statement to be a LIBRARYDD comment statement.

.2/ Using the ddname on the LIBRARYDD comment, SMP/E updates the LMOD
entry for LMOD01 to specify a SYSLIB value of BPXLOAD1. The user needs
to provide a DDDEF entry for BPXLOAD1, specifying the appropriate
pathname.

.3/ The SYSLIB DD statement is a concatenation of three DD statements. Two of
the DD statements specify the PATH operand.

.4/ Using the ddnames on the LIBRARYDD comments and the low-level qualifier of
the data set specified on the DSN operand, SMP/E updates the LMOD entry for
LMOD03 to specify a CALLLIBS subentry list with the values BPXCALL3,
PLIBASE, and BPXCALL4. The user needs to provide DDDEF entries for
BPXCALL3 and BPXCALL4, specifying the appropriate pathnames. Likewise,
the user needs to define PLIBASE with a DDDEF entry.

120 MVS Packaging Rules

 SYSMOD IDs

 Chapter 10. Naming Conventions

This section explains the naming conventions used for the following:

� Component codes (prefix for element and load module names)
� SYSMOD IDs for functions
� Element and load module names

 � Library names

 10.1 Component Codes
In the SMP/E environment, code for one product must be uniquely distinguishable
from code for other products. The best way to keep your code unique is to start
the names of all the elements and load modules for that product with a single,
unique 3-character identifier. This identifier is called the component code. (For
more information about component codes, see 10.3, “Element, Alias, and Load
Module Names” on page 122.) IBM is offering to register the component codes for
your products. This registration ensures that your component code is not used by
any other MVS-based, SMP/E-installable products distributed by IBM. To register
your component code, do one of the following:

� If you have access to the IBM Information Network (IIN), send a note to
user ID USIB34FD at IBMMAIL.

| � If you have access to the internet, send a note to bobraz@us.ibm.com.

| � Ask your IBM representative to contact IBM Poughkeepsie, Department 31RA
| (user ID ELEMENT at node KGNVMC).

10.2 SYSMOD IDs for Functions
The SYSMOD ID of a function is called the function modification identifier (FMID).
The FMID is a 7-character identifier that needs to be unique to distinguish one
product from another. One way to help ensure this uniqueness is to follow the
naming convention tcccrrr, as described below:

t
| is an alphabetic character used to indicate the type of function. Avoid the
| values used by IBM (A, B, C, D, E, F, G, H, I, J, and K).

ccc
is the product version code. In order to avoid conflicts with IBM service identi-
fiers, the first two characters must be alphabetic. The third character can be
alphanumeric. You can help guarantee the uniqueness of the product version
code by using the three-character component code you registered with IBM.
For details, see 10.1, “Component Codes.”

rrr
is the release value. These three characters identify a specific release of a
product function and must all be alphanumeric. The rrr value must be unique
for all function SYSMODs within a given product version code. This rrr value is
used in IBM's service system (RETAIN) to track each product uniquely.

 Copyright IBM Corp. 1986, 1999 121

 Element and Load Module Names

10.3 Element, Alias, and Load Module Names
Element names are assigned to each discrete piece of a product, such as macros,
modules, source codes, and panels.

It is important to maintain the uniqueness of element and load module names to
ensure that:

� Each element can be identified by its owning product
� Elements are not unintentionally overlayed
� Each element can be serviced correctly

Packaging Recommendations

Packaging Rules (Element and Load Module Names)

Ø 14300. All products must use the assigned, unique three-character compo-
nent code as the first three characters of the element names. The first
character of the component code follows the conventions shown below to
avoid naming conflicts with elements provided by IBM or by other user-
written software.

Value Meaning

A–I When used by IBM, all three characters of the prefix are generally
alphabetic (with some exceptions).

Can be used by non-IBM products only if the prefix includes at
least one numeric or national character.

J–Z Available only for non-IBM products. The prefix can be all alpha-
betic or can include numeric or national characters.

Ø 14400. Two elements with the same element type cannot have the same
name—element names must be unique. This is true regardless of whether
the elements are in the same product or in different products. For more
information, see 6.1, “General Packaging Rules, Restrictions, and Recom-
mendations for Elements” on page 44.

Ø 14500. Load modules should have unique names, which should begin with
the product's assigned three-character prefix. However, the same load
modules having the same attributes can be defined to two load libraries.

Ø 14600. Like-named elements, including aliases, must be in separate target
and distribution libraries. These libraries must be in separate RELFILEs.
This prevents unintentional overlaying of elements.

– See 6.1, “General Packaging Rules, Restrictions, and Recommenda-
tions for Elements” on page 44 for information about restrictions on
like-named elements.

– See 3.1.1, “Format and Contents of the RELFILE Tape” on page 12 for
additional rules and requirements concerning RELFILEs.

Ø 14700. If more than one version of a product is intended to coexist in the
same zone, the element and load module names must be unique for each
version.

122 MVS Packaging Rules

 Naming Conventions

The recommended approach is to use a unique, 3-character component code as
the first three characters of the element names, as mentioned above.

End of Packaging Recommendations

When two different elements have the same name and type, the installation
process becomes more complicated because each of these elements must be
installed in a different zone. You can avoid this predicament by giving each
element a unique name, a unique element type, or both.

10.3.1 NLS Considerations for Element Types
Translated elements should use the appropriate data element type, followed by a
3-character national language identifier as a suffix for the element type (for
example, ++PNLENU, and ++PNLFRA). Elements that are not translated should
not use the national language suffix (for example, ++SKL).

See Table 18 on page 129 for a list of the national language abbreviations, and
6.4, “Data Element Types” on page 45 for a list of the element types.

10.3.2 Elements with the Same Name
Element names must be unique; two elements with the same type cannot have the
same name. However, elements that have different types can have the same
name provided that they are contained in different FMIDs. For example,
++PNLENU(ABCPANEL) and ++PNLFRA(ABCPANEL) would be valid.

If you need to define elements with the same name (such as HELP) for program-
ming access, you should use HELP as the alias and assign a unique name, in
accordance with the corporate naming standard, as the actual element name. For
more information, see 10.3.3, “Alias Names” and Chapter 11, “Packaging for
National Language Support (NLS)” on page 127.

 10.3.3 Alias Names
Alias names can be assigned to elements or load modules. Alias names are
defined on the ALIAS, TALIAS, or MALIAS operand of a ++element statement, or
during load module creation. Alias names do not need to begin with the 3- or
4-character component codes. Alias names do not need to be unique within an
FMID, but they must be unique within a RELFILE or target or distribution library
partitioned data set (PDS). For information about rules for aliases, refer to 10.3,
“Element, Alias, and Load Module Names” on page 122.

Note: Macros that are externally invoked can have meaningful alias names;
however, the actual name of the macro must conform to the corporate
naming standard.

If an alias name is assigned to an element, the RELFILE tape must contain both
the element and the alias in a RELFILE. (Alias members must be created using an
appropriate utility, such as IEBGENER.)

 Chapter 10. Naming Conventions 123

 Library Names

 10.4 Library Names
Whenever possible, elements must be assigned to existing distribution libraries and
target libraries (which are specified on the DISTLIB and SYSLIB operands of the
element MCS statements). Otherwise, libraries must follow packaging rules for
library names.

Packaging Rules (Library Names)

Ø 14900. The low-level qualifier of the name of a new distribution or target
library must be unique. You must use your registered component code
(ccc) in your library name. You should also distinguish between your distri-
bution libraries and your target libraries to make it easier for customers to
identify your libraries. One way to do this is to use the format xccczzzz,
where:

– x is the letter for a distribution library or a target library.

– ccc is the component code (the first three characters assigned to the
elements).

– zzzz is whatever the product developer chooses to use, to keep the
name unique.

Exception: A data set name need not conform to this format if all of the
following are true:

1. The data set name is required to have a non-conforming low-
level qualifier for unavoidable technical reasons. (For example,
C language header file data sets are required by the C compiler
to use the low-level qualifier of “H.”)

2. The data set is not specified as a target library in any JCLIN
data, either on a SYSLMOD DD statement or on an EXEC
statement.

3. The data set name is not specified in a SYSLIB concatenation
in any JCLIN data.

Data sets that qualify under this exception must still use ddnames
with the format xccczzzz or xcccczzz as defined above, to comply
with rule14910.

Ø 14910. Every target and distribution library must have a unique ddname.

Ø 15000. See rule 119 in 9.3, “General Packaging Rules for JCLIN Data” on
page 89.

124 MVS Packaging Rules

 Library Names

A process that depends on a specific data set name may restrict customer proc-
esses or naming conventions. You should design your product to rely only on spe-
cific ddnames.

Using the low-level qualifier as the ddname for a data set ensures that the ddname
will be unique in the SMP/E zone. An advantage of a unique ddname is that the
SMP/E DDDEF for that data set is also guaranteed to be unique. If either the
ddname or the DDDEF is not unique, products might unnecessarily prevent other
products from being installed in the same zone.

Packaging Recommendations

The variable portion of the library name should be used to describe the library. For
example, the type of elements found in the library could be indicated by MOD,
MAC, or PNL, or the national language of the library could be indicated by identi-
fiers such as ENU, FRA, or ESP. Table 18 on page 129 lists the national lan-
guage identifiers.

End of Packaging Recommendations

Packaging Rules (Library Names)

Ø 15010. If a data set whose name does not use the xccczzzz format is
renamed for any reason, the low-level qualifier of the new data set name
must use the xccczzzz format, and the data set's new ddname must match
the new low-level qualifier.

Exception: A data set name need not conform to this format if all of the
following are true:

1. The data set name is required to have a non-conforming low-
level qualifier for unavoidable technical reasons. (For example,
C language header file data sets are required by the C compiler
to use the low-level qualifier of “H.”)

2. The data set is not specified as a target library in any JCLIN
data, either on a SYSLMOD DD statement or on an EXEC
statement.

3. The data set name is not specified in a SYSLIB concatenation
in any JCLIN data.

Data sets that qualify under this exception must still use ddnames
with the format xccczzzz or xcccczzz as defined above, to comply
with rule 14910.

Ø 15100. A product's execution must not depend on the high-level qualifier of
any data set names. Product code should refer only to ddnames.

 Chapter 10. Naming Conventions 125

 Library Names

126 MVS Packaging Rules

Chapter 11. Packaging for National Language Support (NLS)

There are packaging rules and considerations for products that have elements that
require translation for national language support (NLS). This section shows several
variations of base and additive dependent function SYSMODs and how they are
packaged with their language-support dependent function SYSMODs.

Notes:

1. For more information on NLS, see the National Language Information and
Design Guide, SBOF-3101 (series of books).

2. Refer to 7.2.4, “Deleting SYSMODs (DELETE)” on page 57 for information
about language-support dependent functions not deleting additive dependent
functions.

Packaging Recommendations

Each language-support dependent function should have its own unique FMID.

Each supported language should be individually orderable. Each package should
ship everything needed to install the function and the language, including all
required functions and installation publications.

Languages can be packaged in a number of ways, including:

� Each language has a separate FMID

� One language is included in the base function and the rest have separate
FMIDs

� All languages are packaged in the base FMID

The decision should be based on such factors as:

� If the language functions are large, separate FMIDs permit customers to save
space by only installing the languages they wish to use

� If most customers will want most or all of the languages, using a single FMID
makes installation easier without wasting space

� How many tapes will be required to ship the various combinations of functions?

End of Packaging Recommendations

Packaging Rules (Language-Sensitive Elements)

Ø 15200. This rule has been changed to a recommendation (see below).

Ø 15350. Language variants of an element may have the same name for
programming access. In this case, package each language variant as a
different element type using the same name for each variant. However,
because the names are the same, you must assign the elements to dif-
ferent libraries. See Figure 6 on page 47 for an example.

Ø 15410. This rule has been deleted.

 Copyright IBM Corp. 1986, 1999 127

 National Language Support (NLS)

Following is an overview of how to package NLS support for a single base function.

┌──────────────────────────┐
│ Registration │
└──┬────────┬──┬────────┬──┘

│ Base │ │ Base │
 │Function│ │Function│

│ SYSMOD │ │ SYSMOD │
 │Elements│ │Elements│
 ├────────┤ ├────────┤

│ Lang. │ │ Lang. │
 │ Support│ │ Support│

│ Dep. │ │ Dep. │
 │Function│ │Function│

│ SYSMOD │ │ SYSMOD │
 │Elements│ │Elements│

│ for │ │ for │
│Lang. 1 │ │Lang. 2 │

 └────────┘ └────────┘

In this example, the elements that do not have to be translated are in a single base
function SYSMOD, and the translated elements for each language are in a sepa-
rate language-support dependent function SYSMOD, one for each language. For
each supported language, the base function SYSMOD is packaged with the appro-
priate language-support dependent function SYSMOD.

For more detailed examples of packaging language-sensitive elements, see
Chapter 13, “SYSMOD Packaging Examples” on page 137 and 13.4, “Example 3:
Dependent Functions” on page 145.

11.1 Element Types for Translated Elements

You should not use a national language identifier for a data element that was not
translated.

Packaging Rules (Language Abbreviations)

Ø 15500. When the data element or hierarchical file system (HFS) element
MCS indicates the language being supported, use one of the national lan-
guage identifiers shown in Table 18 on page 129 as the three-character
suffix for the element type.

Ø 15600. Each language variant of an element type constitutes a distinct
element type, and rules applying to element types apply to every such
variant. For example, ++PNLENU and ++PNLDEU are two different
element types.

128 MVS Packaging Rules

 National Language Support (NLS)

Table 18 might not reflect the most currently supported values. For the latest infor-
mation on national language identifiers, see the SMP/E Reference manual.

Table 18. National Language Identifiers Used for Language-Unique Elements. See 6.4,
“Data Element Types” on page 45 and 6.5, “Hierarchical File System (HFS) Element
Types” on page 47 for a list of element MCS you can use these identifiers with.

Value Language Value Language

ARA Arabic HEB Hebrew

CHS Simplified Chinese ISL Icelandic

CHT Traditional Chinese ITA Italian (Italy)

DAN Danish ITS Italian (Switzerland)

DES German (Switzerland) JPN Japanese

DEU German (Germany) KOR Korean

ELL Greek NLB Dutch (Belgium)

ENG English (United Kingdom) NLD Dutch (Netherlands)

ENP Uppercase English NOR Norwegian

ENU English (United States) PTB Portuguese (Brazil)

ESP Spanish PTG Portuguese (Portugal)

FIN Finnish RMS Rhaeto-Romanic

FRA French (France) RUS Russian

FRB French (Belgium) SVE Swedish

FRC French (Canada) THA Thai

FRS French (Switzerland) TRK Turkish

 Chapter 11. Packaging for National Language Support (NLS) 129

 National Language Support (NLS)

130 MVS Packaging Rules

Chapter 12. Packaging for Special Situations

This chapter offers packaging suggestions to accommodate the following:

� High-level languages (HLL)
� C language prelinker

 � Workstation code
� hierarchical file system (HFS)

 12.1 High-Level Languages
Because SMP/E supports the automatic library call facility through the use of
SYSLIB DD statements, products now have an alternative to postinstallation link-
edit jobs or explicitly defining all the modules to be included in load modules. This
section contains two parts: one for packagers who can take advantage of the
support in SMP/E Release 8 and later, and one for those who cannot.

12.1.1 Support in SMP/E Release 8 and Later for the Automatic Library
Call Facility

If you require SMP/E Release 8 or later as the minimum level of SMP/E for
installing your product, you can use SYSLIB DD statements and the automatic
library call facility to implicitly include modules. For more information about using
the SYSLIB DD statement for such products, see the description of that DD state-
ment in 9.6.2, “Link-Edit Control Statements” on page 97.

Packaging Rules (Libraries)

Ø 15700. This rule has been deleted.

Ø 15800. This rule has been deleted.

Ø 15810. If a ++PROGRAM element is prebound with parts from another
product, it must use the lowest supported level of the borrowed parts, and
must require that level or higher as a functional (noninstallation) requisite.
This will avoid problems in customer environments with varying levels of the
product.

12.1.2 If You Cannot Use the Automatic Library Call Facility
SMP/E does not exploit the automatic library call option when the link-edit utility is
invoked; however, this automatic library call option is used by most high-level lan-
guages to include the resident library routines in the load module.

There are two ways to address this problem:

� Use a postinstallation link-edit job. This is the most flexible method.
� Use JCLIN to explicitly identify all the library routines to SMP/E.

Each of these options requires extra packaging and installation steps. There is no
complete or easy solution.

 Copyright IBM Corp. 1986, 1999 131

 High-Level Languages

12.1.2.1 Using a Postinstallation Link-Edit Job
For this approach, you do not identify the resident libraries to SMP/E. The typical
SMP/E link-edit options are NCAL and LET. The link-edit utility issues messages
indicating unresolved external references, but these can be ignored. You can
provide the user with a link-edit automatic library call option job to be run after
installation in order to include the required library routines.

 Considerations

1. This requires an additional, manual step to complete the installation. In such
cases, errors are likely.

2. SMP/E will not know about this extra link-edit and the resident libraries routines
that now are in the load module. This may not be a problem, because SMP/E
always includes the old load module when creating a new one. In this case, as
long as no changes are required to the resident library routines, those routines
continue to exist in the new load module as before.

3. SMP/E does not relink the load module to incorporate maintenance or product-
level changes processed for the resident libraries.

4. It is difficult to install code changes affecting the resident libraries. One
approach is to rerun the postinstallation job. This is a manual process, and
PTFs requiring it need to be held for an ACTION reason ID. Another disadvan-
tage is that the input load module already contains all the resident library rou-
tines previously added (from the prior invocations of the job). The automatic
library call option works only for unresolved references left after the inclusion of
the existing load module; only net additions can be processed. Changes or
deletions are not done unless you can return to the original point of including
only your pieces in the link-edit. Similarly, you cannot use the postinstallation
link-edit to bring maintenance to current levels for the resident libraries,
because the existing versions are always included first.

There are some alternatives to deal with the problems described in items 3 and 4.
You can do a postinstallation link-edit with only the modules that the product owns.
The automatic library call option would then include the resident library routines.
Do one of the following:

� Code the postinstallation link-edit job to include from the distribution libraries
rather than the target load module. This forces complete processing of the
automatic library call option, because the distribution library data sets have only
your product's code in them.

These are some of the problems with this method:

– The JCL is more complex. You may have to include multiple parts instead
of just including the target load module.

– The user must accept the product into the distribution libraries before
running the link-edit job.

– Because the user must accept all required maintenance before rerunning
postinstallation link-edit, the SMP/E RESTORE command cannot be used
for recovery.

� Provide two copies of each affected load module: one to be the target of the
postinstallation link-edit, and one to be the source.

132 MVS Packaging Rules

 High-Level Languages

The load modules would be the same from an SMP/E standpoint and would
have the same contents. They could be defined to SMP/E as either two load
modules in the same library with different names or as the same load module in
two different target libraries. SMP/E can handle either case. A consideration is
the amount of space already used in the target library. If the number of load
modules is small, you may opt to have two copies in the same target library:
one executable, and one not. The alternative creates additional complexity by
using a new target library.

In either case, the postinstallation link-edit must be set up to include the second
load module to relink the first (executable) load module. In this way, whenever
PTFs for your product are installed, SMP/E automatically includes the changes in
both load modules. If a PTF does not change the resident libraries, nothing needs
to be done. However, if a PTF does change the resident libraries, a hold reason ID
of ACTION can be specified for the PTF to indicate that a postinstallation link-edit
job needs to be rerun; the automatic library call option includes the correct set of
resident libraries. Because all of this is done against target libraries, the RESTORE
command can be used to remove bad maintenance and can be followed by the
link-edit job again, if necessary.

12.1.2.2 Using JCLIN to Identify Library Routines
You can define to SMP/E all the library routines used by the link-edit utility. You
must use JCLIN to identify all the INCLUDE statements for the library routines
needed.

If all the following conditions are true, SMP/E can correctly construct the load
module without using the automatic library call option.

� The target load module is new (not preexisting).

� The required resident library routine is installed in the same target/DLIB set of
SMP/E zones as that used for the new product.

� You have supplied correct JCLIN describing the routines needed. In this case,
SMP/E uses its load module build function to generate the correct INCLUDEs
in the link-edit input to build the load module.

Subsequent PTF maintenance to either your product or to the resident library rou-
tines causes the load module to be relinked with the updated parts, because
SMP/E knows where to find all the load modules that must include the part. This
link-edit process includes the old load module when the new load module is
created; SMP/E ensures that no parts are lost.

 Considerations

1. The JCLIN must be accurate so that no required resident routines are missed.

2. The load module must be new. If the load module is already known to SMP/E,
SMP/E just includes the old copy without invoking load module build.

3. Changes in the required resident routines are difficult. For example, what if
you change the source code such that a different library routine is required? If
nothing else is done, SMP/E uses the JCLIN as you supply it; however, the
load module build function is not called, because the load module already
exists. Additional routines are not included as required.

 Chapter 12. Packaging for Special Situations 133

 C Prelinker

4. Installation of new releases also have complications for similar reasons. Typi-
cally, the new release uses SMP/E ++VER DELETE processing to remove the
old level. SMP/E tries to delete the load modules owned by the old FMID
before applying the new release. However, because SMP/E knows that the
load modules contain pieces belonging to other FMIDs (the resident library rou-
tines), it does not do a total delete. SMP/E deletes the old pieces but leaves
the load module in place with the associated resident library routines still there.

When the new product is installed, SMP/E knows that the load module still
exists, so load module build is not used, and SMP/E includes the old load
module. This might not cause a problem if the exact same set of resident rou-
tines is required. If there are any changes to the resident routines, however,
the load module will not be correct.

5. There can be drawbacks to automatically relinking a product's load modules
whenever there is a maintenance or product-level change to the resident
libraries:

� There may be a problem in the new level of subroutine because of code
problems and interface changes. This can cause problems, even though
you did not change anything.

� If there is a product change, the situation is worse if the new level of the
resident library deletes the old level.

In this case, SMP/E does the following:

a. Deletes the old pieces of the resident library wherever they occur. This
means it removes them from the load modules.

b. Deletes the SMP/E information about the old pieces from the SMP/E
zone. This includes deleting the links to your load modules.

c. Installs the new pieces of the resident library. The load modules are
not updated with the equivalent new parts.

However, SMP/E maintains a record of any modules from a deleted product
that were included in a load module of another product. If the deleted
modules are reintroduced, SMP/E automatically link-edits the load module
to include the borrowed modules. This can be helpful but, depending on
the products involved, SMP/E may try to include modules that no longer
exist, and it might not include all the modules you need.

12.2 Using the C Language Prelinker
SMP/E does not invoke the C Prelinker. The C Prelinker is needed for:

 � Reentrancy

Some products have avoided use of the C Prelinker by writing the code in a
naturally reentrant format.

Note: If your product has already been developed, this option may not work
for you.

� Support of long names

There are instances where using the C Prelinker cannot be avoided. The following
example explains how a product can avoid a packaging problem if the C Prelinker
must be used.

134 MVS Packaging Rules

 C Prelinker

12.2.1 Example of a Product Requiring the C Prelinker
Product A , which is written in C, includes:

� Load module ABCLMOD , which contains these CSECTs used as input to the
Prelinker (shown in Figure 7):

 – CSECT ABCM1
 – CSECT ABCM2
 – CSECT ABCM3

� Text deck ABCT1 , which is the Prelinker output from ABCM1, ABCM2, and
ABCM3. ABCT1 is shipped as a module in product A.

 Load module
 ABCLMOD

 ┌─────────────┐
 │ │
 │ CSECT ABCM1 │ ┌───────────┐ ┌───────────┐ ┌────────┐ ┌──────────┐
 ├─────────────┤ │ │ │ │ │ ++MOD │ │ │
 │ ├──────5│ C ├──────5│ Text Deck ├──────5│ Module ├─────5│ LMOD │
 │ CSECT ABCM2 │ │ Prelinker │ │ ABCT1 │ │ ABCT1 │ │ ABCLMOD │
 ├─────────────┤ │ │ │ │ │ │ │ │
│ │ └───────────┘ └───────────┘ └────────┘ └──────────┘
 │ CSECT ABCM3 │
 │ │
 └─────────────┘

Figure 7. Using the C Prelinker to Create Load Module ABCLMOD

The MCS statement that describes module ABCT1 is:

++MOD(ABCT1) CSECT(ABCM1,ABCM2,ABCM3) DISTLIB(nnnnnnn) RELFILE(n).

The product tape for product A contains module ABCT1, which must be in link-edit
format, as required for modules on RELFILE tapes. You do not need MCS state-
ments for CSECTs ABCM1, ABCM2, or ABCM3. You also need to provide JCLIN
to indicate that load module ABCLMOD contains module ABCT1.

Suppose that an error is later discovered in CSECT ABCM1. The service process
supplies an updated copy of CSECT ABCM1, in addition to CSECTs ABCM2 and
ABCM3, which are at the same level as were shipped on the product tape. All
three CSECTs must be shipped so that an updated text deck ABCT1 can be
created. Module ABCT1 is shipped as an inline module replacement PTF. (It is a
service requirement for PTFs that modules be in inline format.) The MCS state-
ment for this new level of ABCT1 is:

++MOD(ABCT1) CSECT(ABCM1,ABCM2,ABCM3) DISTLIB(nnnnnnn).

When the PTF is installed, SMP/E invokes the link-edit utility to link-edit module
ABCT1 into load module ABCLMOD. Because the structure of load module
ABCLMOD has not changed, no JCLIN is required.

Servicing modules shipped in this manner can have some complications. Large
PTFs may result because both updated CSECTs and unchanged CSECTs for a
module must be shipped when servicing that module. The advantage of this
method is that the product can use the normal service process, and no special cus-
tomer action is required when installing service.

 Chapter 12. Packaging for Special Situations 135

 Workstation Code

12.3 Packaging Workstation Code to Be Installed on the Host
There may be instances where workstation code needs to be installed on the host
and downloaded to workstations. One of the advantages of delivering workstation
code to an MVS host is that it can be maintained under SMP/E control; central
service can be used to supply updates. Because such code is MVS-installable, it
must also comply with the packaging rules.

12.4 Hierarchical File System (HFS)

Packaging Recommendations

� Products should not provide jobs, execs, scripts, or instructions to create files
or directories under the /var, /tmp, or /dev directories. If a product needs one
of these directories for execution, it should be created dynamically by the
product during execution.

� The permission bits for HFS files should be User=7, Group=5, Other=5 for exe-
cutables, and User=6, Group=4, Other=4 for all other files. (NOTE: there may
be some exceptions for daemons, started tasks, and other setuid 0 programs.)

� Products should not require a product-specific HFS. Instead, document the
amount of space needed for the product, and allow the installer decide whether
or not to install in the root HFS.

End of Packaging Recommendations

Packaging Rules (Hierarchical File System)

Ø 18810. Symbolic links must not exist in the /tmp, /dev, /var or /etc directo-
ries.

Ø 18820. Products must not install anything directly into the /etc directory
during APPLY processing; the /etc directory is used only for customization
data. Shell scripts invoked by SMP/E must not install or change files in the
/etc directory.

Ø 18830. Permission bits for every file or directory in the hierarchical file
system (HFS) must be User >=6, Group >= 4, and Other >= 4. Directories
containing SMP/E-installed files must be User=7, Group=5, Other=5.

136 MVS Packaging Rules

Chapter 13. SYSMOD Packaging Examples

This chapter illustrates relationships when developing and servicing the following
sample products:

� Product A: defining a stand-alone base function (with support for only U.S.
English elements)

� Products B and C: defining corequisite base functions (with support for only
U.S. English elements)

� Products B and C: defining dependent functions (with support for only U.S.
English elements)

� Products C, D, and E: defining base functions with prerequisites (with support
for only U.S. English elements)

� Product E: defining mutually exclusive dependent functions (with support for
only U.S. English elements)

� Products X and Y: defining functions that support more than one language

� Products K, L, and M: changing the contents of products

13.1 Conventions Used in This Chapter
 Please Note

This chapter contains “skeleton” SYSMOD packaging examples to highlight
packaging concepts. The syntax used in the examples is not complete. For
example, certain operands such as DISTLIB and SYSLIB are not shown, to
focus on other operands whose use is being demonstrated.

To make the SYSMOD packaging examples easier to read, shortened forms of
product names and SYSMOD IDs are used. For example:

Product A single letter is used, such as Product A or Product B.

Function Each base function FMID starts with “W,” and each dependent function
FMID starts with “X.” This is followed by the product letter and a number
(for example, Function WA0 or Function XB1). (For language-support
dependent functions, an abbreviation indicating the language is also
included—for example, XA0ENU.)

Program temporary fix, or PTF
The letter P, a letter associated with the product, and a single number
are used, such as PTF(PA1) or PTF(PA2).

APAR fix The letter R, a letter associated with the product, and a single number
are used, such as APAR(RA1).

SYSMOD in general
A single number is used, such as SYSMOD(1) or SYSMOD(2).

Element A single letter is used, such as MOD(J) or MOD(K). (For language-
sensitive elements, an abbreviation identifying the product is also
included—for example, AP to identify an element for product A.)

 Copyright IBM Corp. 1986, 1999 137

 SYSMOD Packaging Examples

13.2 Example 1: A Stand-Alone Function
Suppose you have developed a new product (J) that has no dependencies on other
SYSMODs that may be installed on the same system, and that supports only U.S.
English in its dialog panels and messages. These are some of the SYSMODs you
may define in the course of developing and servicing product A:

� The initial release of the product. This release consists of the:
 – Base function

– Language-support dependent function for English
� PTF service for the initial release
� PTF service that depends on previous service
� Replacing the initial release
� Ensuring that a fix for a previous release is not lost
� Integrating PTF service for a service update

 13.2.1 Initial Release
The first release of product A is packaged as FMID WA0 (a base function) and
FMID XA0ENU (its language-support dependent function). Because function WA0
is the base function, it is an unconditional prerequisite for function XA0ENU.
This relationship is defined by the FMID operand on the ++VER statement for
XA0ENU, as shown in Figure 8. However, because these functions have no
relationships with other SYSMODs, no other requisites need to be specified on their
++VER statements.

┌──────────────────────────┐
│ Product A │
├──────────────────────────┤
│ ++FUNCTION(WAð) │
│ REWORK(198926ð). │
│ ++VER(Zð38). │
│ ++JCLIN RELFILE(1). │
│ ++MOD(J). │
│ ++MOD(K). │
├──────────────────────────┤
│ ++FUNCTION(XAðENU) │
│ REWORK(198926ð). │
│ ++VER(Zð38) FMID(WAð). │
│ ++JCLIN RELFILE(1). │
│ ++PNLENU(AP). │
│ ++MSGENU(AM). │
└──────────────────────────┘

Figure 8. Initial Release

13.2.2 PTF Service for the Initial Release
Suppose a user has reported an error in function WA0, and you have packaged the
fix as an APAR (RA1) to correct the problem on that user's system. Now it
appears that the problem may occur on all users' systems. To distribute the fix as
service to all users, you do additional testing on the correction and package it as
PTF(PA1). The fix is applicable to function WA0, so WA0 is an unconditional
prerequisite for PTF(PA1). You define this relationship by coding a ++VER state-
ment that specifies function WA0 as the FMID, as shown in Figure 9 on page 139.
To ensure that the APAR cannot be installed on top of the PTF, and thus regress
the changes, you should also have the PTF supersede the APAR.

138 MVS Packaging Rules

 SYSMOD Packaging Examples

┌──────────────────────────┐
│ Product A │
├──────────────────────────┤
│ ++FUNCTION(WAð) │
│ REWORK(198926ð). │
│ ++VER(Zð38). │
│ ++JCLIN RELFILE(1). │
│ ++MOD(J). │
│ ++MOD(K). │
├──────────────────────────┤
│ ++APAR(RA1). │
│ ++VER(Zð38) FMID(WAð). │
│ ++MOD(J). │
├──────────────────────────┤
│ ++PTF(PA1). │
│ ++VER(Zð38) FMID(WAð) │
│ SUP(RA1). │
│ ++MOD(J). │
└──────────────────────────┘

Figure 9. PTF Service for the Initial Release

13.2.3 PTF Service That Depends on Previous Service
After a while you have some service for function WA0. This fix depends on some
of the changes made by PTF(PA1). You package the fix as a PTF, PA2, for
product A. The fix is applicable to function WA0, so WA0 is an unconditional
prerequisite for PTF(PA2). You define this relationship by coding a ++VER state-
ment that specifies function WA0 as the FMID, as shown in Figure 10. In addition,
because PA2 depends on changes made by PA1, PA1 is also an unconditional
prerequisite for PTF(PA2). You define this relationship by coding a ++VER state-
ment that specifies PTF(PA1) as a prerequisite.

┌──────────────────────────┐
│ Product A │
├──────────────────────────┤
│ ++FUNCTION(WAð) │
│ REWORK(198926ð). │
│ ++VER(Zð38). │
│ ++JCLIN RELFILE(1). │
│ ++MOD(J). │
│ ++MOD(K). │
├──────────────────────────┤
│ ++APAR(RA1). │
│ ++VER(Zð38) FMID(WAð). │
│ ++MOD(J). │
├──────────────────────────┤
│ ++PTF(PA1). │
│ ++VER(Zð38) FMID(WAð) │
│ SUP(RA1). │
│ ++MOD(J). │
├──────────────────────────┤
│ ++PTF(PA2). │
│ ++VER(Zð38) FMID(WAð) │
│ PRE(PA1). │
│ ++MOD(K). │
└──────────────────────────┘

Figure 10. PTF Service That Depends on Previous Service

 Chapter 13. SYSMOD Packaging Examples 139

 SYSMOD Packaging Examples

Note: To make the rest of the examples in this section easier to read, none of
them show APAR fixes being superseded by PTFs. (APAR fixes are
normally superseded by the PTFs that include them.)

13.2.4 Ensuring That a Fix for a Previous Release Is Not Lost
Suppose you are completing base function WA2, the second release of product A,
and have included all the PTFs that were issued for WA1. After doing this,
however, you had to add another PTF(PA8) to fix module B in function WA1. But,
because the development cycle for function WA2 has passed the APAR cutoff
point, the fix cannot be included in WA2. You want to make sure that any users
who install PTF(PA8) do not lose those corrections when they install function WA2.

To do this, you must also code PTF(PA9), which fixes the same problem as PA8,
only for function WA2. You must ensure that users who had installed PA8 will
install PA9 along with function WA2. PTF(PA9) is, therefore, a conditional
corequisite for function WA2. You define this relationship by coding an ++IF state-
ment in PTF(PA8), as shown in Figure 11.

┌───┐
│ Product A │
├──────────────────────────┬──────────────────────────┤
│ Old Release │ New Release │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(WA1) │ ++FUNCTION(WA2) │
│ REWORK(199ðð5ð). │ REWORK(199ð1ðð). │
│ ++VER(Zð38). │ ++VER(Zð38) │
│ ++JCLIN RELFILE(1). │ DELETE(WA1) │
│ ++MOD(J). │ SUP(WA1). │
│ ++MOD(K). │ ++JCLIN RELFILE(1). │
│ │ ++MOD(J). │
│ │ ++MOD(K). │
├──────────────────────────┼──────────────────────────┤
│ ++PTF(PA8). │ ++PTF(PA9). │
│ ++VER(Zð38) FMID(WA1). │ ++VER(Zð38) FMID(WA2). │
│ ++IF FMID(WA2) REQ(PA9). │ ++MOD(K). │
│ ++MOD(K). │ │
└──────────────────────────┴──────────────────────────┘

Figure 11. Ensuring That a Fix for a Previous Release Is Not Lost

When a user tries to install PTF(PA8), SMP/E does one of two things:

� If function WA2 is already installed, SMP/E cannot install PTF(PA8) and does
not know that PA9 is required for WA2. Because PA8 was never installed on
function WA1, the system is not at a lower level when function WA2 is installed
without PA9. PA9 is eventually installed when the user processes service for
WA2, and the problem is fixed.

� If function WA2 is not yet installed, SMP/E notes that PA9 is needed for WA2,
and saves this information. Later, if the user tries to install function WA2,
SMP/E makes sure PTF(PA9) is also installed. This ensures that the cor-
rections from PA8 are not lost.

140 MVS Packaging Rules

 SYSMOD Packaging Examples

13.2.5 Replacing the Initial Release
Suppose there are a number of improvements you want to make in product A, so
you are thinking of packaging a new release. This new release could delete the
initial release, supersede it, or both. (See Table 10 on page 28 if you need to
review the differences.)

In this example, base function WA1 supersedes and deletes base function WA0.
Function WA1 is, therefore, an unconditional replacement for WA0. You define this
relationship by coding the SUP and DELETE operands on the ++VER statement for
function WA1, as shown in Figure 12.

A new release of the language-support dependent function is required for function
WA1. This new release (XA1ENU) must supersede the previous release
(XA0ENU), as shown in Figure 12.

Note: There is no need for WA1 or XA1ENU to delete XA0ENU, because
XA0ENU is automatically deleted when WA0 is deleted. However, an
explicit deletion is recommended for purposes of documentation.

┌───┐
│ Product A │
├──────────────────────────┬──────────────────────────┤
│ Old Release │ New Release │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(WAð) │ ++FUNCTION(WA1) │
│ REWORK(198926ð). │ REWORK(199ðð5ð). │
│ ++VER(Zð38). │ ++VER(Zð38) │
│ ++JCLIN RELFILE(1). │ DELETE(WAð) │
│ ++MOD(J). │ SUP(WAð). │
│ ++MOD(K). │ ++JCLIN RELFILE(1). │
│ │ ++MOD(J). │
│ │ ++MOD(K). │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(XAðENU) │ ++FUNCTION(XA1ENU) │
│ REWORK(198926ð). │ REWORK(199ðð5ð). │
│ ++VER(Zð38) FMID(WAð). │ ++VER(Zð38) FMID(WA1) │
│ ++JCLIN RELFILE(1). │ SUP(XAðENU). │
│ ++PNLENU(AP). │ ++JCLIN RELFILE(1). │
│ ++MSGENU(AM). │ ++PNLENU(AP). │
│ │ ++MSGENU(AM). │
└──────────────────────────┴──────────────────────────┘

Figure 12. Replacing the Initial Release

Suppose the previous example left the ++IF statement out of PTF(PA8). This
creates the possibility of customers regressing their systems by installing WA2
without PTF(P9).

To avoid this problem, the product owner could change the packaging for WA2 and
define PA9 as an unconditional requisite . This is done by specifying the REQ
operand on the ++VER statement, as shown in Figure 13 on page 142.

 Chapter 13. SYSMOD Packaging Examples 141

 SYSMOD Packaging Examples

┌───┐
│ Product A │
├──────────────────────────┬──────────────────────────┤
│ Old Release │ New Release │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(WA1) │ ++FUNCTION(WA2) │
│ REWORK(199ðð5ð). │ REWORK(199ð1ðð). │
│ ++VER(Zð38) │ ++VER(Zð38) │
│ DELETE(WAð) │ DELETE(WAð,WA1) │
│ SUP(WAð). │ SUP(WAð,WA1). │
│ ++JCLIN RELFILE(1). │ REQ(PA9). │
│ ++MOD(J). │ ++JCLIN RELFILE(1). │
│ ++MOD(K). │ ++MOD(J). │
│ │ ++MOD(K). │
├──────────────────────────┼──────────────────────────┤
│ ++PTF(PA8). │ ++PTF(PA9). │
│ ++VER(Zð38) FMID(WA1). │ ++VER(Zð38) FMID(WA2). │
│ ++MOD(K). │ ++MOD(K). │
└──────────────────────────┴──────────────────────────┘

Figure 13. Correcting an Erroneous Post-Cutoff PTF

13.3 Example 2: Corequisite Base Functions
Suppose you have developed a new function that involves elements from two dif-
ferent products, B and C. Each product provides specific aspects of the function,
but the code works properly only if the two products are installed together. Both
products support only U.S. English in their dialog panels and messages. These are
some of the SYSMODs you might have to define in the course of developing and
servicing products B and C:

� The initial releases of the products. These consist of:
– The base functions
– The language-support dependent functions

� PTF service for one of the base functions
� Cross-product service between the base functions
� Deleting and superseding one of the base functions

13.3.1 Initial Releases of Corequisite Functions
B and C are products that, together, provide a new function. These products could
be packaged as base-function SYSMODs that are unconditional corequisites .
This relationship is defined by the REQ operand on the ++VER statement for each
base function, as shown in Figure 14 on page 143.

In addition, a language-support dependent function is provided for each base func-
tion. Each base function is an unconditional prerequisite for its corresponding
language-support dependent function. This relationship is defined by the FMID
operand on the ++VER statement for each dependent function, as shown in
Figure 14 on page 143.

142 MVS Packaging Rules

 SYSMOD Packaging Examples

┌──────────────────────────┬──────────────────────────┐
│ Product B │ Product C │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(WBð) │ ++FUNCTION(WCð) │
│ REWORK(199ðð2ð). │ REWORK(199ðð2ð). │
│ ++VER(Zð38) REQ(WCð). │ ++VER(Zð38) REQ(WBð). │
│ ++JCLIN RELFILE(1). │ ++JCLIN RELFILE(1). │
│ ++MOD(C). │ ++MOD(M). │
│ ++MOD(D). │ ++MOD(N). │
│ ++MOD(E). │ │
│ ++MOD(F). │ │
│ ++MOD(G). │ │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(XBðENU) │ ++FUNCTION(XCðENU) │
│ REWORK(199ðð2ð). │ REWORK(199ðð2ð). │
│ ++VER(Zð38) FMID(WBð). │ ++VER(Zð38) FMID(WCð). │
│ ++JCLIN RELFILE(1). │ ++JCLIN RELFILE(1). │
│ ++PNLENU(BP). │ ++PNLENU(CP). │
│ ++MSGENU(BM). │ ++MSGENU(CM). │
└──────────────────────────┴──────────────────────────┘

Figure 14. Initial Releases of Corequisite Functions

13.3.2 PTF Service for One of the Base Functions
Suppose you need to provide service for module C in function WB0. The fix is
applicable to function WB0, so WB0 is an unconditional prerequisite for
PTF(PB1). You define this relationship by coding a ++VER statement that specifies
function WB0 as the FMID, as shown in Figure 15.

┌──────────────────────────┐
│ Product B │
├──────────────────────────┤
│ ++FUNCTION(WBð) │
│ REWORK(199ðð2ð). │
│ ++VER(Zð38) REQ(WCð). │
│ ++JCLIN RELFILE(1). │
│ ++MOD(C). │
│ ++MOD(D). │
│ ++MOD(E). │
│ ++MOD(F). │
│ ++MOD(G). │
├──────────────────────────┤
│ ++PTF(PB1). │
│ ++VER(Zð38) FMID(WBð). │
│ ++MOD(C). │
└──────────────────────────┘

Figure 15. PTF Service for One of the Base Functions

13.3.3 Cross-Product Service between Corequisite Base Functions
Suppose you need to provide service that affects module D and module M. Module
D is owned by function WB0, and module M is owned by function WC0. To fix the
problem, you need two PTFs, one for each module. PB2 fixes module D, and PC1
fixes module M. These PTFs are conditional corequisites . (This also ensures
that each PTF can still be installed if the requisite product is deleted by a new
release, superseded by a new release, or both.) You define this relationship by

 Chapter 13. SYSMOD Packaging Examples 143

 SYSMOD Packaging Examples

coding the FMID and REQ operands on each PTF's ++IF statement, as shown in
Figure 16 on page 144.

┌──────────────────────────┬──────────────────────────┐
│ Product B │ Product C │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(WBð) │ ++FUNCTION(WCð) │
│ REWORK(199ðð2ð). │ REWORK(199ðð2ð). │
│ ++VER(Zð38) REQ(WCð). │ ++VER(Zð38) REQ(WBð). │
│ ++JCLIN RELFILE(1). │ ++JCLIN RELFILE(1). │
│ ++MOD(C). │ ++MOD(M). │
│ ++MOD(D). │ ++MOD(N). │
│ ++MOD(E). │ │
│ ++MOD(F). │ │
│ ++MOD(G). │ │
├──────────────────────────┼──────────────────────────┤
│ ++PTF(PB2). │ ++PTF(PC1). │
│ ++VER(Zð38) FMID(WBð). │ ++VER(Zð38) FMID(WCð) │
│ ++IF FMID(WCð) REQ(PC1). │ ++IF FMID(WBð) REQ(PB2). │
│ ++MOD(D). │ ++MOD(M). │
└──────────────────────────┴──────────────────────────┘

Figure 16. Cross-Product Service between Corequisite Base Functions

13.3.4 Deleting and Superseding a Base Function
Suppose there are a number of improvements you want to make in product C, so
you are thinking of packaging a new release. The new release could delete the
initial release, supersede it, or both. (See Table 10 on page 28 if you need to
review the differences.)

In this case, you have decided that function WC1 will unconditionally delete and
supersede WC0. This is to ensure that requisites specified by function WB0 are
satisfied by both releases of product C. You define this relationship by coding the
DELETE and SUP operands on the ++VER statement for function WC1, as shown
in the figure below.

You must also provide a new release of the language-support dependent function.
This new release (XC1ENU) must supersede the previous release (XC0ENU), as
shown in Figure 17 on page 145.

Note: There is no need for WC1 or XC1ENU to delete XC0ENU. XC0ENU will
automatically be deleted when WC0 is deleted. However, an explicit
DELETE is recommended for documentation purposes.

144 MVS Packaging Rules

 SYSMOD Packaging Examples

┌───┐
│ Product C │
├──────────────────────────┬──────────────────────────┤
│ Old Release │ New Release │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(WCð) │ ++FUNCTION(WC1) │
│ REWORK(199ðð2ð). │ REWORK(199ð12ð). │
│ ++VER(Zð38) REQ(WBð). │ ++VER(Zð38) REQ(WBð) │
│ ++JCLIN RELFILE(1). │ DELETE(WCð,XCðENU) │
│ ++MOD(M). │ SUP(WCð). │
│ ++MOD(N). │ ++JCLIN RELFILE(1). │
│ │ ++MOD(M). │
│ │ ++MOD(N). │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(XCðENU) │ ++FUNCTION(XC1ENU) │
│ REWORK(199ðð2ð). │ REWORK(199ð12ð). │
│ ++VER(Zð38) FMID(WCð). │ ++VER(Zð38) FMID(WC1) │
│ ++JCLIN RELFILE(1). │ SUP(XCðENU). │
│ ++PNLENU(CP). │ ++JCLIN RELFILE(1). │
│ ++MSGENU(CM). │ ++PNLENU(CP). │
│ │ ++MSGENU(CM). │
└──────────────────────────┴──────────────────────────┘

Figure 17. Deleting and Superseding a Base Function

If WC1 had only deleted WC0, instead of deleting and superseding it, any function
or service that needed WC0 could not be installed without special processing. For
example, users would need to have SMP/E bypass requisite checking to install the
function or service. Because you know that WB0 has dependencies on WC0, you
want to avoid this problem by having WC1 both delete and supersede WC0.

 13.4 Example 3: Dependent Functions
In the course of developing products B and C you may decide to provide some
optional enhancements that add to, but do not replace, the initial base functions.
These enhancements would be packaged as dependent functions for the parent
base functions, and would have their own language-support dependent functions.
These are some of the SYSMODs you might have to define in the course of devel-
oping and servicing dependent functions for products B and C:

� The initial release of a dependent function. This release consists of:
– The additive dependent function itself
– The associated language-support dependent function

� PTF service for a dependent function
� Corequisite PTFs with an element common to the base and dependent func-

tions
� Corequisite PTFs with no elements common to the base and dependent func-

tions
� Repackaging a dependent function for a new release of the parent base func-

tion
� Deleting a dependent function
� Establishing the order of additional dependent functions
� Corequisite dependent functions

 Chapter 13. SYSMOD Packaging Examples 145

 SYSMOD Packaging Examples

13.4.1 Initial Release of a Dependent Function
Suppose you have decided to provide an optional enhancement for product B. You
package it as XB1, a dependent function for the parent base function WB0.
Because function WB0 is the base function, it is an unconditional prerequisite for
function XB1. You define this relationship by coding the FMID operand on the
dependent function's ++VER statement, as shown in Figure 18.

┌───┐
│ Product B │
├──────────────────────────┬──────────────────────────┤
│ Base Function and │ Dependent Function and │
│ Language Support │ Language Support │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(WBð) │ ++FUNCTION(XB1) │
│ REWORK(199ðð2ð). │ REWORK(199ðð7ð). │
│ ++VER(Zð38) REQ(WCð). │ ++VER(Zð38) FMID(WBð). │
│ ++JCLIN RELFILE(1). │ ++JCLIN RELFILE(1). │
│ ++MOD(C). │ ++MOD(F). │
│ ++MOD(D). │ ++MOD(H). │
│ ++MOD(E). │ ++MOD(J). │
│ ++MOD(F). │ │
│ ++MOD(G). │ │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(XBðENU) │ ++FUNCTION(XB1ENU) │
│ REWORK(199ðð2ð). │ REWORK(199ðð7ð). │
│ ++VER(Zð38) FMID(WBð). │ ++VER(Zð38) FMID(WBð) │
│ ++JCLIN RELFILE(1). │ PRE(XB1,XBðENU) │
│ ++PNLENU(BP). │ VERSION(XBðENU). │
│ ++MSGENU(BM). │ ++JCLIN RELFILE(1). │
│ ++CLISTENU(BC). │ ++PNLENU(BP). │
│ │ ++MSGENU(BM). │
└──────────────────────────┴──────────────────────────┘

Figure 18. Initial Release of a Dependent Function

13.4.2 PTF Service for a Dependent Function
Suppose you need to provide service for module H in function XB1. The fix is
applicable to function XB1, so XB1 is an unconditional prerequisite for PTF(PB3).
You define this relationship by coding a ++VER statement that specifies function
XB1 as the FMID, as shown in Figure 19.

┌──────────────────────────┐
│ Product B │
├──────────────────────────┤
│ ++FUNCTION(XB1) │
│ REWORK(199ðð7ð). │
│ ++VER(Zð38) FMID(WBð). │
│ ++JCLIN RELFILE(1). │
│ ++MOD(F). │
│ ++MOD(H). │
│ ++MOD(J). │
├──────────────────────────┤
│ ++PTF(PB3). │
│ ++VER(Zð38) FMID(XB1). │
│ ++MOD(H). │
└──────────────────────────┘

Figure 19. PTF Service for a Dependent Function

146 MVS Packaging Rules

 SYSMOD Packaging Examples

13.4.3 Corequisite PTFs with an Element Common to the Base and
Dependent Functions

Suppose you need to provide service that affects module F and module G. Module
G is owned by base function WB0, and module F exists in WB0 and in its
dependent function XB1. To fix the problem, you need two PTFs, one for each
function. Because the dependent function may be installed with the base function,
the PTF for the dependent function is a conditional requisite in the PTF for the base
function. However, because the base function must be installed if the dependent
function is installed, the PTF for the base function is an unconditional requisite in
the PTF for the dependent function. You define these relationships by coding the
FMID and REQ operands on the ++IF statement for the base function PTF, and by
coding the REQ operand on the ++VER statement for the dependent function PTF,
as shown in Figure 20.

┌───┐
│ Product B │
├──────────────────────────┬──────────────────────────┤
│ Base Function and │ Dependent Function and │
│ Language Support │ Language Support │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(WBð) │ ++FUNCTION(XB1) │
│ REWORK(199ðð2ð). │ REWORK(199ðð7ð). │
│ ++VER(Zð38) REQ(WCð). │ ++VER(Zð38) FMID(WBð). │
│ ++JCLIN RELFILE(1). │ ++JCLIN RELFILE(1). │
│ ++MOD(C). │ ++MOD(F). │
│ ++MOD(D). │ ++MOD(H). │
│ ++MOD(E). │ ++MOD(J). │
│ ++MOD(F). │ │
│ ++MOD(G). │ │
├──────────────────────────┼──────────────────────────┤
│ ++PTF(PB4). │ ++PTF(PB5). │
│ ++VER(Zð38) FMID(WBð). │ ++VER(Zð38) FMID(XB1) │
│ ++IF FMID(XB1) REQ(PB5). │ REQ(PB4). ?
│ ++MOD(F). │ ++MOD(F). │
│ ++MOD(G). │ │
└──────────────────────────┴──────────────────────────┘

Figure 20. Corequisite PTFs with an Element Common to the Base and Dependent Func-
tions

Suppose functions WB0 and XB1 were released and a new dependent function
XB2 is being packaged that deletes XB1. Figure 21 on page 148 shows how func-
tion XB2 and its related language-support dependent function (XB2ENU) are then
packaged.

 Chapter 13. SYSMOD Packaging Examples 147

 SYSMOD Packaging Examples

┌───┐
│ Product B │
├──────────────────────────┬──────────────────────────┤
│ Base Function and │ Dependent Function and │
│ Language Support │ Language Support │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(WBð) │ ++FUNCTION(XB1) │
│ REWORK(199ðð2ð). │ REWORK(199ðð7ð). │
│ ++VER(Zð38) REQ(WCð). │ ++VER(Zð38) FMID(WBð). │
│ ++JCLIN RELFILE(1). │ ++JCLIN RELFILE(1). │
│ ++MOD(C). │ ++MOD(F). │
│ ++MOD(D). │ ++MOD(H). │
│ ++MOD(E). │ ++MOD(J). │
│ ++MOD(F). │ │
│ ++MOD(G). │ │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(XBðENU) │ ++FUNCTION(XB1ENU) │
│ REWORK(199ðð2ð). │ REWORK(199ðð7ð). │
│ ++VER(Zð38) FMID(WBð). │ ++VER(Zð38) FMID(WBð) │
│ ++JCLIN RELFILE(1). │ PRE(XB1,XBðENU) │
│ ++PNLENU(BP). │ VERSION(XBðENU). │
│ ++MSGENU(BM). │ ++JCLIN RELFILE(1). │
│ ++CLISTENU(BC). │ ++PNLENU(BP). │
│ │ ++MSGENU(BM). │
├──────────────────────────┼──────────────────────────┤
│ ++PTF(PB4). │ ++PTF(PB5). │
│ ++VER(Zð38) FMID(WBð). │ ++VER(Zð38) FMID(XB1) │
│ ++IF FMID(XB1) REQ(PB5). │ REQ(PB4). │
│ ++MOD(F). │ ++MOD(F). │
│ ++MOD(G). │ │
└──────────────────────────┼──────────────────────────┤
 │ ++FUNCTION(XB2) │
 │ REWORK(199ð11ð). │

│ ++VER(Zð38) FMID(WBð) │
 │ DELETE(XB1,XB1ENU) │
 │ SUP(XB1,PB4,PB5). │

│ ++JCLIN RELFILE(1). │
 │ ++MOD(F). │
 │ ++MOD(G). │
 │ ++MOD(H). │
 ├──────────────────────────┤
 │ ++FUNCTION(XB2ENU) │
 │ REWORK(199ð11ð). │

│ ++VER(Zð38) FMID(WBð) │
 │ PRE(XB2,XBðENU) │
 │ VERSION(XBðENU) │
 │ SUP(XB1ENU). │

│ ++JCLIN RELFILE(1). │
 │ ++PNLENU(BP). │
 │ ++MSGENU(BM). │
 └──────────────────────────┘

Figure 21. New Releases of the Base and Dependent Functions

148 MVS Packaging Rules

 SYSMOD Packaging Examples

Notes:

1. Function XB2 deletes and supersedes the previous release of the dependent
function (XB1). It also deletes the language-support dependent function
(XB1ENU) associated with that previous release.

2. Function XB2 does not have to refer to PTF(PB5) because function XB1 is
deleted. However, XB2 does have to supersede PTF(PB4) to make sure that
PB4 is not reprocessed by SMP/E.

3. Function XB2ENU supersedes the previous release of the language-support
dependent function (XB1ENU).

4. If PTF(PB4) and PTF(PB5) affect two different elements, and the corequisite
relationship is still required, the logic is the same.

13.4.4 Corequisite PTFs with All Elements Common to Base and
Dependent Functions

Suppose you need to provide service that affects module F, which is present in
both base function WB0 and dependent function XB1. To fix the problem, you
need two PTFs, one for each function. Because the dependent function can be
installed with the base function, the PTF for the dependent function is a
conditional corequisite of the PTF for the base function.

If the user has the dependent function installed, the PTF for the base function really
is not necessary, because the PTF for the dependent function provides a higher
level of the element. However, it is important to prevent the user from accidentally
installing the PTF for the base function and later downleveling the dependent func-
tion's version of the element. Therefore, the PTF for the base function is an
unconditional corequisite of the PTF for the dependent function.

You define these relationships by coding the FMID and REQ operands on the ++IF
statement for the base function PTF, and by coding either the REQ operand or the
SUP operand on the ++VER statement for the dependent function PTF, as shown
in Figure 22 on page 150.

 Chapter 13. SYSMOD Packaging Examples 149

 SYSMOD Packaging Examples

┌───┐
│ Product B │
├──────────────────────────┬──────────────────────────┤
│ Base Function and │ Dependent Function and │
│ Language Support │ Language Support │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(WBð) │ ++FUNCTION(XB1) │
│ REWORK(199ðð2ð). │ REWORK(199ðð7ð). │
│ ++VER(Zð38) REQ(WCð). │ ++VER(Zð38) FMID(WBð). │
│ ++JCLIN RELFILE(1). │ ++JCLIN RELFILE(1). │
│ ++MOD(C). │ ++MOD(F). │
│ ++MOD(D). │ ++MOD(H). │
│ ++MOD(E). │ ++MOD(J). │
│ ++MOD(F). │ │
│ ++MOD(G). │ │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(XBðENU) │ ++FUNCTION(XB1ENU) │
│ REWORK(199ðð2ð). │ REWORK(199ðð7ð). │
│ ++VER(Zð38) FMID(WBð). │ ++VER(Zð38) FMID(WBð) │
│ ++JCLIN RELFILE(1). │ PRE(XB1,XBðENU) │
│ ++PNLENU(BP). │ VERSION(XBðENU). │
│ ++MSGENU(BM). │ ++JCLIN RELFILE(1). │
│ │ ++PNLENU(BP). │
│ │ ++MSGENU(BM). │
├──────────────────────────┼──────────────────────────┤
│ ++PTF(PB6). │ ++PTF(PB7). │
│ ++VER(Zð38) FMID(WBð). │ ++VER(Zð38) FMID(XB1) │
│ ++IF FMID(XB1) REQ(PB7). │ REQ(PB6). │
│ ++MOD(F). │ ++MOD(F). │
│ │ │
└──────────────────────────┴──────────────────────────┘

Figure 22. Corequisite PTFs with All Elements Common to Base and Dependent Functions

Suppose functions WB0 and XB1 were released and a new dependent function
XB2 is being packaged that deletes XB1, as shown in Figure 23 on page 151.

150 MVS Packaging Rules

 SYSMOD Packaging Examples

┌───┐
│ Product B │
├──────────────────────────┬──────────────────────────┤
│ Base Function and │ Dependent Function and │
│ Language Support │ Language Support │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(WBð) │ ++FUNCTION(XB1) │
│ REWORK(199ðð2ð). │ REWORK(199ðð7ð). │
│ ++VER(Zð38) REQ(WCð). │ ++VER(Zð38) FMID(WBð). │
│ ++JCLIN RELFILE(1). │ ++JCLIN RELFILE(1). │
│ ++MOD(C). │ ++MOD(F). │
│ ++MOD(D). │ ++MOD(H). │
│ ++MOD(E). │ ++MOD(J). │
│ ++MOD(F). │ │
│ ++MOD(G). │ │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(XBðENU) │ ++FUNCTION(XB1ENU) │
│ REWORK(199ðð2ð). │ REWORK(199ðð7ð). │
│ ++VER(Zð38) FMID(WBð). │ ++VER(Zð38) FMID(WBð) │
│ ++JCLIN RELFILE(1). │ PRE(XB1,XBðENU) │
│ ++PNLENU(BP). │ VERSION(XBðENU). │
│ ++MSGENU(BM). │ ++JCLIN RELFILE(1). │
│ │ ++PNLENU(BP). │
│ │ ++MSGENU(BM). │
├──────────────────────────┼──────────────────────────┤
│ ++PTF(PB6). │ ++PTF(PB7). │
│ ++VER(Zð38) FMID(WBð). │ ++VER(Zð38) FMID(XB1) │
│ ++IF FMID(XB1) REQ(PB7). │ REQ(PB6). │
│ ++MOD(F). │ ++MOD(F). │
└──────────────────────────┼──────────────────────────┤
 │ ++FUNCTION(XB2) │
 │ REWORK(199ð11ð). │

│ ++VER(Zð38) FMID(WBð) │
 │ DELETE(XB1,XB1ENU) │
 │ SUP(XB1) │
 │ SUP(PB6). │

│ ++JCLIN RELFILE(1). │
 │ ++MOD(F). │
 │ ++MOD(H). │
 │ ++MOD(J). │
 │ ++MOD(K). │
 ├──────────────────────────┤
 │ ++FUNCTION(XB2ENU) │
 │ REWORK(199ð11ð). │

│ ++VER(Zð38) FMID(WBð) │
 │ PRE(XB2,XBðENU) │
 │ VERSION(XBðENU) │
 │ SUP(XB1ENU). │

│ ++JCLIN RELFILE(1). │
 │ ++PNLENU(BP). │
 │ ++MSGENU(BM). │
 └──────────────────────────┘

Figure 23. New Releases of the Base and Dependent Functions

Note: Function XB2 does not have to refer to PTF(PB7), because function XB1 is
deleted. However, XB2 does have to supersede PTF(PB6) to prevent PB6
from being reprocessed.

 Chapter 13. SYSMOD Packaging Examples 151

 SYSMOD Packaging Examples

13.4.5 Deleting a Dependent Function Without Superseding It
Suppose function WB7 is a new release of dependent function WB6. WB7
changes the external interface of the dependent function so it is no longer compat-
ible with prior releases. WB7 would, therefore, unconditionally delete WB6 but
must not supersede WB6. You define this relationship by coding the DELETE
operand on the ++VER statement for function WB7, as shown in Figure 24.

┌───┐
│ Product B │
├──────────────────────────┬──────────────────────────┤
│ Old Release │ New Release │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(WB6) │ ++FUNCTION(WB7) │
│ REWORK(199ð21ð). │ REWORK(199ð24ð). │
│ ++VER(Zð38). │ ++VER(Zð38) │
│ ++JCLIN RELFILE(1). │ DELETE(WB6). │
│ ++MOD(F). │ ++JCLIN RELFILE(1). │
│ ++MOD(H). │ ++MOD(F). │
│ ++MOD(J). │ ++MOD(H). │
│ ++MOD(K). │ ++MOD(J). │
│ │ ++MOD(K). │
└──────────────────────────┴──────────────────────────┘

Figure 24. Deleting a Dependent Function

13.4.6 Establishing the Order of Additional Dependent Functions
Suppose you have added an optional enhancement for product B. It is packaged
as function XB8, a dependent function. XB8 does not delete or supersede any
other dependent functions. However, because it has a requirement for modules in
XB7, another dependent function, you must establish which of the dependent func-
tions depends on the other. For example, if function XB8 is functionally higher than
function XB7, function XB7 is an unconditional prerequisite for function XB8.
You define this relationship by coding the PRE operand on function XB8's ++VER
statement, as shown in Figure 25.

┌───┐
│ Product B │
├──────────────────────────┬──────────────────────────┤
│ Lower Level │ Higher Level │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(XB7) │ ++FUNCTION(XB8) │
│ REWORK(199ð24ð). │ REWORK(199ð26ð). │
│ ++VER(Zð38) FMID(WB5). │ ++VER(Zð38) FMID(WB5) │
│ ++JCLIN RELFILE(1). │ PRE(XB7) │
│ ++MOD(F). │ VERSION(XB7).│
│ ++MOD(H). │ ++MOD(F). │
│ ++MOD(J). │ │
│ ++MOD(K). │ │
└──────────────────────────┴──────────────────────────┘

Figure 25. Establishing the Order of Additional Dependent Functions

Note: The VERSION operand is required in functions XB8 and XB8ENU to
change ownership of the common elements MOD(F) and PNLENU(BP).
See 7.2, “++VER Statement” on page 56 for more information.

152 MVS Packaging Rules

 SYSMOD Packaging Examples

13.4.7 Conditional Corequisite Dependent Functions
Suppose you have developed a new user function that involves elements from
dependent functions XB9 and XC2. XB9 is a dependent function for base function
WB5, and XC2 is a dependent function for base function WC1. The code works
properly only if the two dependent functions are installed together. These
dependent functions are conditional corequisites . (This also ensures that either
dependent function can still be installed if the other dependent function's parent
base function is deleted by a new release, superseded by a new release, or both.)
You define this relationship by coding the FMID and REQ operands on each
dependent function's ++IF statements, as shown in Figure 26.

┌──────────────────────────┬──────────────────────────┐
│ Product B │ Product C │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(XB9) │ ++FUNCTION(XC2) │
│ REWORK(199ð3ðð). │ REWORK(199ð3ðð). │
│ ++VER(Zð38) FMID(WB5). │ ++VER(Zð38) FMID(WC1). │
│ ++IF FMID(WC1) REQ(XC2). │ ++IF FMID(WB5) REQ(XB9). │
│ ++MOD(L). │ ++MOD(N). │
│ │ │
└──────────────────────────┴──────────────────────────┘

Figure 26. Corequisite Dependent Functions

13.5 Example 4: Base Functions with Prerequisites
Functions may depend on other functions as prerequisites, or they may depend on
service provided for another function. Products C, D, and E are examples of these.
Product D depends on product C; product E depends on service for product D.
These are some of the relationships you may define in the course of developing
and servicing these products:

� The initial release of a base function with a functional prerequisite. This
release consists of:

– The base function itself
– The associated language-support dependent function

� Dependency on an SPE or service for another base function

� Cross-product service for a base function with a prerequisite

13.5.1 Initial Release of a Base Function with a Functional
Prerequisite

Suppose your base function WC0 for product C provides the minimum level of
support for base function WD0, the first release of product D. Function WC0 is,
therefore, an unconditional prerequisite for function WD0. The owner of function
WD0 defines this relationship by specifying the REQ operand on the ++VER state-
ment for WD0, as shown in Figure 27 on page 154.

 Chapter 13. SYSMOD Packaging Examples 153

 SYSMOD Packaging Examples

┌──────────────────────────┬──────────────────────────┐
│ Product C │ Product D │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(WCð) │ ++FUNCTION(WDð) │
│ REWORK(199ðð2ð). │ REWORK(199ðð6ð). │
│ ++VER(Zð38). │ ++VER(Zð38) REQ(WCð). │
│ ++JCLIN RELFILE(1). │ ++JCLIN RELFILE(1). │
│ ++MOD(M). │ ++MOD(P). │
│ ++MOD(N). │ ++MOD(Q). │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(XCðENU) │ ++FUNCTION(XDðENU) │
│ REWORK(199ðð2ð). │ REWORK(199ðð6ð). │
│ ++VER(Zð38) FMID(WCð). │ ++VER(Zð38) FMID(WDð). │
│ ++JCLIN RELFILE(1). │ ++JCLIN RELFILE(1). │
│ ++PNLENU(CP). │ ++PNLENU(DP). │
│ ++MSGENU(CM). │ ++MSGENU(DM). │
└──────────────────────────┴──────────────────────────┘

Figure 27. Initial Release of a Base Function with a Functional Prerequisite

Suppose you come out with a new release of the base function, WC1. If WC0 is
both deleted and superseded by WC1, as shown in Figure 28, WD0 does not need
to be repackaged to work with both releases of product C.

┌───┐
│ Product C │
├────────────────────────┬────────────────────────┼────────────────────────┐
│ Old Release │ New Release │ Product D │
├────────────────────────┼────────────────────────┼────────────────────────┤
│ ++FUNCTION(WCð) │ ++FUNCTION(WC1) │ ++FUNCTION(WDð) │
│ REWORK(199ðð2ð). │ REWORK(199ð12ð). │ REWORK(199ðð6ð). │
│ ++VER(Zð38) REQ(WBð). │ ++VER(Zð38) REQ(WBð) │ ++VER(Zð38) REQ(WCð). │
│ ++JCLIN RELFILE(1). │ DELETE(WCð) │ ++JCLIN RELFILE(1). │
│ ++MOD(M). │ SUP(WCð). │ ++MOD(P). │
│ ++MOD(N). │ ++JCLIN RELFILE(1). │ ++MOD(Q). │
│ │ ++MOD(M). │ │
│ │ ++MOD(N). │ │
└────────────────────────┴────────────────────────┴────────────────────────┘

Figure 28. New Release of a Base Function with a Functional Prerequisite

Note: The owner of product D must consider that future releases of product C
may not be compatible with WD0. For example, they may not provide the
required support the same way WC0 or WC1 did. This may not be a
problem if they have a part in the development or packaging of your product
C. However, if this is not the case, they may have to change or service
product D to keep up with the support provided by your new releases of C.

13.5.2 Dependency on an SPE or Service for Another Base Function
Suppose you have provided a small programming enhancement (SPE) or service
for function WD0. This service is packaged as PTF(PD1). You have also devel-
oped a new product, which will be packaged as base function WE0. When function
WE0 interacts with function WD0, it requires PD1. PD1 is, therefore, a conditional
prerequisite for function WE0. You define this relationship by coding an ++IF
statement for PD1 in function WE0, as shown in Figure 29 on page 155.

154 MVS Packaging Rules

 SYSMOD Packaging Examples

┌──────────────────────────┬──────────────────────────┐
│ Product D │ Product E │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(WDð) │ ++FUNCTION(WEð) │
│ REWORK(199ðð6ð). │ REWORK(199ðð9ð). │
│ ++VER(Zð38). │ ++VER(Zð38). │
│ ++JCLIN RELFILE(1). │ ++IF FMID(WDð) REQ(PD1). │
│ ++MOD(P). │ ++JCLIN RELFILE(1). │
│ ++MOD(Q). │ ++MOD(R). │
│ │ ++MOD(S). │
├──────────────────────────┼──────────────────────────┘
│ ++PTF(PD1). │
│ ++VER(Zð38) FMID(WDð). │
│ ++MOD(P). │
└──────────────────────────┘

Figure 29. Dependency on an SPE or Service for Another Base Function

Note: Any replacement for PTF(PD1) must supersede PD1 to ensure that this req-
uisite for function WE0 is still satisfied.

13.5.3 Cross-Product Service for a Base Function with a Prerequisite
Suppose you need to provide service that affects module Q and module R. Module
Q is owned by function WD0, and module R is owned by function WE0. To fix the
problem, you need two PTFs, one for each module. PD2 fixes module Q, and PE1
fixes module R. Because the functions may be installed with or without each other,
the PTFs for those functions are conditional corequisites . You define this
relationship by coding an ++IF statement in each PTF, as shown in Figure 30.

┌──────────────────────────┬──────────────────────────┐
│ Product D │ Product E │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(WDð) │ ++FUNCTION(WEð) │
│ REWORK(199ðð6ð). │ REWORK(199ðð9ð). │
│ ++VER(Zð38). │ ++VER(Zð38). │
│ ++JCLIN RELFILE(1). │ ++IF FMID(WDð) REQ(PD1). │
│ ++MOD(P). │ ++JCLIN RELFILE(1). │
│ ++MOD(Q). │ ++MOD(R). │
│ │ ++MOD(S). │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(XDðENU) │ ++FUNCTION(XEðENU) │
│ REWORK(199ðð6ð). │ REWORK(199ðð9ð). │
│ ++VER(Zð38) FMID(WDð). │ ++VER(Zð38) FMID(WEð). │
│ ++JCLIN RELFILE(1). │ ++JCLIN RELFILE(1). │
│ ++PNLENU(DP). │ ++PNLENU(EP). │
│ ++MSGENU(DM). │ ++MSGENU(EM). │
├──────────────────────────┼──────────────────────────┘
│ ++PTF(PD1). │
│ ++VER(Zð38) FMID(WDð). │
│ ++MOD(P). │
├──────────────────────────┼──────────────────────────┐
│ ++PTF(PD2). │ ++PTF(PE1). │
│ ++VER(Zð38) FMID(WDð) │ ++VER(Zð38) FMID(WEð). │
│ PRE(PD1). │ ++IF FMID(WDð) REQ(PD2). │
│ ++IF FMID(WEð) REQ(PE1). │ ++MOD(R). │
│ ++MOD(Q). │ │
└──────────────────────────┴──────────────────────────┘

Figure 30. Cross-Product Service for a Base Function with a Prerequisite

 Chapter 13. SYSMOD Packaging Examples 155

 SYSMOD Packaging Examples

13.6 Example 5: Mutually Exclusive Dependent Functions
Suppose function XE1 and function XE2 are dependent functions for the same
base function, WE0. Function XE1 tailors the base to one specific environment,
and function XE2 tailors it to another specific environment. Because these
SYSMODs provide mutually exclusive functions, they are unconditional negative
prerequisites of each other. You define this relationship by coding the NPRE
operand on each function's ++VER statement, as shown in Figure 31.

┌───┐
│ Product E │
├──────────────────────────┬──────────────────────────┤
│ Base Function and │ Dependent Functions and │
│ Language Support │ Language Support │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(WEð) │ ++FUNCTION(XE1) │
│ REWORK(199ðð9ð). │ REWORK(199ð13ð). │
│ ++VER(Zð38). │ ++VER(Zð38) FMID(WEð) │
│ ++IF FMID(WDð) REQ(PD1). │ NPRE(XE2). │
│ ++JCLIN RELFILE(1). │ ++MOD(R). │
│ ++MOD(R). │ ++MOD(S). │
│ ++MOD(S). │ │
├──────────────────────────┼────────── and ───────────┤
│ ++FUNCTION(XEðENU) │ ++FUNCTION(XE1ENU) │
│ REWORK(199ðð9ð). │ REWORK(199ð13ð). │
│ ++VER(Zð38) FMID(WEð). │ ++VER(Zð38) FMID(WEð) │
│ │ NPRE(XE2ENU) │
│ │ PRE(XE1,XEðENU) │
│ │ VERSION(XEðENU). │
│ ++JCLIN RELFILE(1). │ ++JCLIN RELFILE(1). │
│ ++PNLENU(EP). │ ++PNLENU(EP). │
│ ++MSGENU(EM). │ ++MSGENU(EM). │
└──────────────────────────┼───────────(or)───────────┤
 │ ++FUNCTION(XE2) │
 │ REWORK(199ð13ð). │

│ ++VER(Zð38) FMID(WEð) │
 │ NPRE(XE1). │
 │ ++MOD(R). │
 │ ++MOD(S). │

├────────── and ───────────┤
 │ ++FUNCTION(XE2ENU) │
 │ REWORK(199ð13ð). │

│ ++VER(Zð38) FMID(WEð) │
 │ NPRE(XE1ENU) │
 │ PRE(XE2,XEðENU) │
 │ VERSION(XEðENU). │

│ ++JCLIN RELFILE(1). │
 │ ++PNLENU(EP). │
 │ ++MSGENU(EM). │
 └──────────────────────────┘

Figure 31. Mutually Exclusive Dependent Functions

156 MVS Packaging Rules

 SYSMOD Packaging Examples

13.7 Example 6: Functions Supporting More Than One Language
As shown in the previous sections, any language support you provide for a function
should be packaged in a language-support dependent function.

In the course of developing a product, you may decide to provide support for addi-
tional languages. For each additional language, the language-sensitive elements
should also be packaged in a separate language-support dependent function.

These are some of the situations with relationships you might have to define in the
course of developing and servicing dependent functions to support more than one
language:

� Supporting two languages for a base function

� Providing PTF service for language-sensitive elements

� Supporting two languages for a base function and its related dependent func-
tion

� Providing PTF service for common language-sensitive elements

� Providing PTF service for language-sensitive elements unique to the dependent
function

13.7.1 A Base Function Supporting Two Languages
Suppose you have a product that must provide information (such as messages and
dialog elements) in both U.S. English and French. The language-sensitive ele-
ments for each language must be packaged in a separate dependent function for
each language. The remaining elements are packaged in the base function (WX0).
Because function WX0 is the base function, it is an unconditional prerequisite for
the language-support dependent functions (XX0ENU and XX0FRA). You define
this relationship by coding the FMID operand on the ++VER statements in each
dependent function, as shown in Figure 32 on page 158.

 Chapter 13. SYSMOD Packaging Examples 157

 SYSMOD Packaging Examples

┌───┐
│ Product X │
├──────────────────────────┬──────────────────────────┤
│ Base Function │ Language Support │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(WXð) │ ++FUNCTION(XXðENU) │
│ REWORK(199ð14ð). │ REWORK(199ð14ð). │
│ ++VER(Zð38). │ ++VER(Zð38) FMID(WXð). │
│ ++JCLIN RELFILE(1). │ ++JCLIN RELFILE(1). │
│ ++MOD(U). │ ++PNLENU(XP) │
│ ++MOD(V). │ DISTLIB(AXXXPENU) │
│ │ SYSLIB(SXXXPENU). │
└──────────────────────────┼──────────────────────────┤
 │ ++FUNCTION(XXðFRA) │
 │ REWORK(199ð14ð). │

│ ++VER(Zð38) FMID(WXð). │
│ ++JCLIN RELFILE(1). │

 │ ++PNLFRA(XP) │
 │ DISTLIB(AXXXPFRA) │
 │ SYSLIB(SXXXPFRA). │
 └──────────────────────────┘

Note: In this example, DISTLIB and SYSLIB values were specified
for panel XP
to emphasize that language-sensitive elements should be packaged
in unique distribution and target libraries.
JCLIN was not necessary.

Figure 32. A Base Function Supporting Two Languages

13.7.2 PTF Service for Language-Sensitive Elements
Suppose you need to correct a mistake that exists in panel XP for both dependent
functions (XX0ENU and XX0FRA). You need to provide a separate PTF for each
dependent function. Because the dependent functions are independent of each
other, no relationship needs to be defined between these PTFs. Because the
change only affects language-sensitive elements, no PTF is required for the base
function. Each dependent function is an unconditional prerequisite for its associ-
ated PTF. You define this relationship by coding the appropriate FMID on the
++VER statement for each PTF, as shown in Figure 33.

┌───┐
│ Product X │
├──────────────────────────┬──────────────────────────┤
│ English Support │ French Support │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(XXðENU) │ ++FUNCTION(XXðFRA) │
│ REWORK(199ð14ð). │ REWORK(199ð14ð). │
│ ++VER(Zð38) FMID(WXð). │ ++VER(Zð38) FMID(WXð). │
│ ++JCLIN RELFILE(1). │ ++JCLIN RELFILE(1). │
│ ++PNLENU(XP). │ ++PNLFRA(XP). │
├──────────────────────────┼──────────────────────────┤
│ ++PTF(PX1). │ ++PTF(PX2). │
│ ++VER(Zð38) FMID(XXðENU).│ ++VER(Zð38) FMID(XXðFRA).│
│ ++JCLIN RELFILE(1). │ ++JCLIN RELFILE(1). │
│ ++PNLENU(XP). │ ++PNLFRA(XP). │
└──────────────────────────┴──────────────────────────┘

Figure 33. PTF Service for Language-Sensitive Elements

158 MVS Packaging Rules

 SYSMOD Packaging Examples

13.7.3 Supporting Two Languages for a Base Function and Its Related
Dependent Function

Suppose you have a product consisting of a base function plus a dependent func-
tion for an optional enhancement. You want to provide support for messages and
dialogs in both English and French for the base function and the dependent func-
tion.

The language-sensitive elements for each language should be packaged in a sepa-
rate dependent function for each language. As shown in Figure 34 on page 160,
you need two dependent functions to support the language-sensitive elements for
the base function, and two more to support the optional dependent function.

� The base function (WY0) is an unconditional prerequisite for its language
support functions XY0ENU and XY0FRA. It is also an unconditional
prerequisite for XY1, its dependent function for the optional enhancement.

You define these relationships by coding the FMID operand on the ++VER
statements in XY0ENU, XY0FRA, and XY1.

� XY1 is an unconditional prerequisite for its language support functions
XY1ENU and XY1FRA.

You define this relationship by coding the PRE operand on the ++VER state-
ments in XY1ENU and XY1FRA.

� Because language-support dependent functions XY0ENU and XY0FRA are
applicable to base function WY0, they are unconditional prerequisites for
language-support dependent functions XY1ENU and XY1FRA, which are appli-
cable to dependent function XY1.

You define this relationship by coding the PRE operand on the ++VER state-
ments in XY1ENU and XY1FRA.

 Chapter 13. SYSMOD Packaging Examples 159

 SYSMOD Packaging Examples

┌───┐
│ Product Y │
├──────────────────────────┬──────────────────────────┤
│ Base Function and │ Dependent Function and │
│ Language Support │ Language Support │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(WYð) │ ++FUNCTION(XY1) │
│ REWORK(199ð25ð). │ REWORK(199ð25ð). │
│ ++VER(Zð38). │ ++VER(Zð38) FMID(WYð). │
│ ++JCLIN RELFILE(1). │ ++MOD(X). │
│ ++MOD(X). │ ++MOD(Y). │
│ ++MOD(Y). │ │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(XYðENU) │ ++FUNCTION(XY1ENU) │
│ REWORK(199ð25ð). │ REWORK(199ð25ð). │
│ ++VER(Zð38) FMID(WYð). │ ++VER(Zð38) FMID(WYð) │
│ ++JCLIN RELFILE(1). │ PRE(XY1,XYðENU) │
│ ++PNLENU(YðP). │ VERSION(XYðENU). │
│ │ ++JCLIN RELFILE(1). │
│ │ ++PNLENU(YðP). │
│ │ ++PNLENU(Y1P). │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(XYðFRA) │ ++FUNCTION(XY1FRA) │
│ REWORK(199ð25ð). │ REWORK(199ð25ð). │
│ ++VER(Zð38) FMID(WYð). │ ++VER(Zð38) FMID(WYð) │
│ ++JCLIN RELFILE(1). │ PRE(XY1,XYðFRA) │
│ ++PNLFRA(YðP). │ VERSION(XYðFRA). │
│ │ ++JCLIN RELFILE(1). │
│ │ ++PNLFRA(YðP). │
│ │ ++PNLFRA(Y1P). │
└──────────────────────────┴──────────────────────────┘

Figure 34. Supporting Two Languages for a Base Function and Its Related Dependent
Function

Note: The VERSION operand is required to change ownership of the elements.
See 7.2, “++VER Statement” on page 56 and Chapter 6, “Elements and
Load Modules” on page 43 for more information.

13.7.4 PTF Service for Common Language-Sensitive Elements
Suppose you need to provide service that affects panel Y0P. There are four ver-
sions of this panel: an English and a French version for the base function, and an
English and a French version for the dependent function. Each of these versions is
owned by a different dependent function for language-sensitive elements. There-
fore, to fix the problem, you need four PTFs, one for each of the dependent func-
tions for language support, as shown in Figure 35 on page 161. You must provide
++IF REQ statements to define the relationship between related PTFs for the same
language. However, you do not need to define any relationship between PTFs for
different languages.

160 MVS Packaging Rules

 SYSMOD Packaging Examples

┌───┐
│ Product Y │
├──────────────────────────┬──────────────────────────┤
│ English Support for the │ English Support for the │
│ Base Function (WYð) │ Dependent Function (XY1) │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(XYðENU) │ ++FUNCTION(XY1ENU) │
│ REWORK(199ð25ð). │ REWORK(199ð25ð). │
│ ++VER(Zð38) FMID(WYð). │ ++VER(Zð38) FMID(WYð) │
│ ++PNLENU(YðP). │ PRE(XY1,XYðENU) │
│ │ VERSION(XYðENU). │
│ │ ++JCLIN RELFILE(1). │
│ │ ++PNLENU(YðP). │
│ │ ++PNLENU(Y1P). │
├──────────────────────────┼──────────────────────────┤
│ ++PTF(PY2). │ ++PTF(PY4). │
│ ++VER(Zð38) FMID(XYðENU).│ ++VER(Zð38) FMID(XY1ENU).│
│ ++IF FMID(XY1ENU) │ ++PNLENU(YðP). │
│ REQ(PY4). │ │
│ ++PNLENU(YðP). │ │
└──────────────────────────┴──────────────────────────┘
┌───┐
│ Product Y │
├──────────────────────────┬──────────────────────────┤
│ French Support for the │ French Support for the │
│ Base Function (WYð) │ Dependent Function (XY1) │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(XYðFRA) │ ++FUNCTION(XY1FRA) │
│ REWORK(199ð25ð). │ REWORK(199ð25ð). │
│ ++VER(Zð38) FMID(WYð). │ ++VER(Zð38) FMID(WYð) │
│ ++PNLFRA(YðP). │ PRE(XY1,XYðFRA) │
│ │ VERSION(XYðFRA). │
│ │ ++JCLIN RELFILE(1). │
│ │ ++PNLFRA(YðP). │
│ │ ++PNLFRA(Y1P). │
├──────────────────────────┼──────────────────────────┤
│ ++PTF(PY3). │ ++PTF(PY5). │
│ ++VER(Zð38) FMID(XYðFRA).│ ++VER(Zð38) FMID(XY1FRA).│
│ ++IF FMID(XY1FRA) │ ++PNLFRA(YðP). │
│ REQ(PY5). │ │
│ ++PNLFRA(YðP). │ │
└──────────────────────────┴──────────────────────────┘

Figure 35. PTF Service for Common Language-Sensitive Elements

13.8 Changing the Contents of Products
After the elements that make up a product have been defined, changes in the con-
tents of the product may be required. For example, an element may need to be
added, deleted, combined with another element, or moved to another product. The
following sections provide information to help you decide how to make these
changes.

 Chapter 13. SYSMOD Packaging Examples 161

 SYSMOD Packaging Examples

 13.8.1 Adding Elements
You can add elements to a product using a new release of a base or dependent
function, or using a PTF. When a new base or dependent function release adds
elements, previous releases of the function are not affected. The new elements are
serviced as long as the functions that own them are current. In Figure 36,
dependent function XK1 adds module C to product K.

┌───┐
│ Product K │
├──────────────────────────┬──────────────────────────┤
│ Base Function │ Dependent Function │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(WKð) │ ++FUNCTION(XK1) │
│ REWORK(199ð17ð). │ REWORK(199ð2ðð). │
│ ++VER(Zð38). │ ++VER(Zð38) FMID(WKð). │
│ ++JCLIN RELFILE(1). │ ++JCLIN RELFILE(1). │
│ ++MOD(J). │ ++MOD(J). │
│ ++MOD(K). │ ++MOD(K). │
│ ++MOD(T). │ ++MOD(C). │
└──────────────────────────┴──────────────────────────┘

Figure 36. Adding Elements

Notes:

1. The ownership of MOD(J) and MOD(K) is transferred to function XK1. (See
7.2.8, “Defining Ownership (VERSION)” on page 64 for versioning rules.)

2. The ++JCLIN statement and JCLIN data are required to define the revised load
module structure.

When a PTF adds elements, it specifies the function that is to own the new ele-
ments. If the load module structure is changed, the PTF may also include new
JCLIN.

 13.8.2 Combining Elements
You can combine elements in a product using a new release of a base or
dependent function, or using a PTF. For example, instead of using two modules to
provide a given user function, you may combine all the function into one module,
and delete the other one.

A new base or dependent function may combine and delete elements that existed
in a previous release. However, service must continue to be provided for both ver-
sions of the elements during the service currency of the previous release of the
product.

In Figure 37 on page 163, dependent function XK2 combines modules A and B,
deleting module B from prerequisite dependent function XK1.

162 MVS Packaging Rules

 SYSMOD Packaging Examples

┌───┐
│ Product K │
├──────────────────────────┬──────────────────────────┤
│ Base Function │ Dependent Functions │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(WKð) │ ++FUNCTION(XK1) │
│ REWORK(199ð17ð). │ REWORK(199ð2ðð). │
│ ++VER(Zð38). │ ++VER(Zð38) FMID(WKð). │
│ ++JCLIN RELFILE(1). │ ++JCLIN RELFILE(1). │
│ ++MOD(J). │ ++MOD(J). │
│ ++MOD(K). │ ++MOD(K). │
│ ++MOD(T). │ ++MOD(C). │
└──────────────────────────┼──────────────────────────┤
 │ ++FUNCTION(XK2) │
 │ REWORK(199ð23ð). │

│ ++VER(Zð38) FMID(WKð) │
 │ PRE(XK1). │

│ ++JCLIN RELFILE(1). │
│ ++MOD(J) VERSION(XK1). │
│ ++MOD(K) DELETE. │

 └──────────────────────────┘

Figure 37. Combining Elements

13.8.3 Migrating Elements by Updating Both Functions
This method is straightforward and is the recommended way of migrating elements
from one function to another. The element is deleted from one function and added
to another. The new releases of the functions are issued simultaneously and must
be installed concurrently. In Figure 38, the new base function release WL1 no
longer contains module H, which is now included in the new base function release
M1.

┌──────────────────────────┬──────────────────────────┐
│ Product L │ Product M │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(WLð) │ ++FUNCTION(WMð) │
│ REWORK(199ð18ð). │ REWORK(199ð18ð). │
│ ++VER(Zð38) REQ(WMð). │ ++VER(Zð38) REQ(WLð). │
│ ++JCLIN RELFILE(1). │ ++JCLIN RELFILE(1). │
│ ++MOD(F). │ ++MOD(J). │
│ ++MOD(G). │ ++MOD(K). │
│ ++MOD(H). │ │
├──────────────────────────┼──────────────────────────┤
│ ++FUNCTION(WL1) │ ++FUNCTION(WM1) │
│ REWORK(199ð28ð). │ REWORK(199ð28ð). │
│ ++VER(Zð38) DELETE(WLð) │ ++VER(Zð38) DELETE(WMð) │
│ REQ(WM1). │ REQ(WL1). │
│ ++JCLIN RELFILE(1). │ ++JCLIN RELFILE(1). │
│ ++MOD(F). │ ++MOD(H). │
│ ++MOD(G). │ ++MOD(J). │
│ │ ++MOD(K). │
└──────────────────────────┴──────────────────────────┘

Figure 38. Migrating Elements by Updating Both Functions

 Chapter 13. SYSMOD Packaging Examples 163

 SYSMOD Packaging Examples

13.8.4 Migrating Elements by Using a PTF
A PTF can provide new versions of elements for a function, as well as specify
which elements are now owned by that function, and which functions had previ-
ously owned those elements. All subsequent releases of the functions affected by
the migration must reflect the changes made by the PTF.

164 MVS Packaging Rules

 Appendixes

Appendix A. Summary of Rules, Restrictions, and Recommendations . . 167
A.1 Rules . 167
A.2 Restrictions . 191
A.3 Recommendations . 194

Appendix B. MVS Service Packaging Rules 209
B.1 Introduction . 209

B.1.1 Service Terminology . 210
B.2 MVS Service Packaging Rules . 212

B.2.1 PTF Size, Format, and Content . 212
B.2.2 Standard PTF Structure . 213

B.2.2.1 ++PTF . 214
B.2.2.2 ++VER . 215
B.2.2.3 ++IF . 217
B.2.2.4 ++HOLD . 218
B.2.2.5 ++MOVE, ++RENAME, ++DELETE 219
B.2.2.6 ++JCLIN . 220
B.2.2.7 ++element . 220
B.2.2.8 UCLIN . 222
B.2.2.9 Other . 222

B.2.3 PTF Cover Letter . 222
B.2.3.1 PROBLEM DESCRIPTION(S): . 225
B.2.3.2 COMPONENT: or PRODUCT ID: 225
B.2.3.3 APARS FIXED: . 226
B.2.3.4 SPECIAL CONDITIONS: . 226
B.2.3.5 COMMENTS: . 233

B.3 IBM Service Delivery . 234
B.3.1 Service Process Initialization . 234
B.3.2 PTF Submission . 235

B.3.2.1 MVS PTF Control . 235
B.4 Naming Conventions for Service . 236

Appendix C. Mapping of Old Rule Numbers to New Rule Numbers 237

 Copyright IBM Corp. 1986, 1999 165

166 MVS Packaging Rules

 Rules

Appendix A. Summary of Rules, Restrictions, and
Recommendations

This appendix lists all the rules, restrictions, and recommendations mentioned in
this book.

 A.1 Rules

Packaging Rules (RELFILE Tapes)
3.1

Ø 110. A RELFILE tape can contain only files that can be installed by SMP/E
and that meet the requirements for the format and contents of a RELFILE
tape.

Ø 120. All files on an MVS-installable product tape must be SMP/E-install-
able.

Packaging Rules (RELFILE Tape: Format and Contents)
Section 3.1.1

Ø 300. The SMPMCS file must be a sequential data set consisting of
80-byte, fixed-length records.

Ø 400. All the other files on the tape or set of tapes must be relative files for
the functions defined in the SMPMCS file.

Ø 500. All the elements for a function SYSMOD must be on the same logical
tape as the SMPMCS file that defines the function.

Ø 600. There can be only one element with the same name in a given rela-
tive file. This includes element names and element alias names.

Ø 700. Each relative file must contain partitioned data sets that were
unloaded in IEBCOPY format.

Ø 800. Sequential data sets must be packaged as members of a partitioned
data set so that they can be unloaded by IEBCOPY into a relative file. A
postinstallation job can be provided to copy such an element into a sequen-
tial data set. OS/390 Release 7 SMP/E or later can also be used to copy
such an element into a sequential data set.

Ø 900. Modules must be in link-edited format. (This is RECFM=U, undefined
record format.) The input parameters used for the link-edited format must
include NCAL. Providing modules in link-edited format eliminates the need
for the LEPARM operand and other data that is required on the ++MOD
statement when modules are provided inline. Contrast with the restriction in
9.3, “General Packaging Rules for JCLIN Data” on page 89 regarding what
to do for a PTF that introduces a new ++MOD requiring link-edit parameters
other than the default.

Ø 1000. VSAM data set elements must be in AMS REPRO format.

 Copyright IBM Corp. 1986, 1999 167

 Rules

Packaging Rules (RELFILE Tape: Format and Contents)
Section 3.1.1

Ø 1100. The partitioned data sets to be unloaded must have a member for
each element MCS, plus a directory entry for each ALIAS associated with
an element MCS. Likewise, each member in a RELFILE must be defined
by an element MCS.

Ø 1300. If a member in a relative file contains JCLIN data for a SYSMOD,
the member name must match the function's FMID.

Ø 1310. Follow the requirements in Table 11 on page 38 when specifying
the MCS statements and data set attributes for elements being packaged in
RELFILEs.

Packaging Rules (RELFILE Tape: Volume Serial Numbers)
Section 3.1.2

Ø 1320. If two tapes have the same volume serial number (VOLSER), they
must contain the same FMIDs. It is permissible for different SUP levels of
the same FMIDs to use the same VOLSER.

Packaging Rules (RELFILE Tape: Data Set Names)
Section 3.1.2

Ø 1350. The data set name of each relative file must be
rfdsnpfx.sysmod_id.Fnnnn, where:

rfdsnpfx
is the prefix, if any, for the relative file data set names.

If a prefix is used in the data set names, that value must also be
defined by the RFDSNPFX operand on the header MCS for the
SYSMOD. RFDSNPFX tells SMP/E what prefix to use when allocating
the data set names for the relative files being loaded.

If no prefix is used in the data set names, no RFDSNPFX value should
be specified on the header MCS for the SYSMOD.

Note: Do not use “IBM” as the prefix.

sysmod_id
is the FMID of the function to which the file is related.

Fnnnn
is the letter F followed by the number specified on the RELFILE
operand of the corresponding MCS statement in the SYSMOD. Do not
use leading zeroes in the RELFILE number.

Packaging Rules (Functions)
Section 4.1.1.4

Ø 2100. All elements included in an MVS-based product that is installed on
an MVS system must be SMP/E-installable.

168 MVS Packaging Rules

 Rules

Packaging Rules (Functions)
Section 4.1.1.4

Ø 2200. This rule has been changed to a recommendation (see below).

Ø 2300. This rule has been deleted.

Ø 2305. All unique elements for a given language must be packaged in a
unique SYSMOD for that language.

Packaging Rules (Negative Prerequisite SYSMODs)
Section 4.2.3.3

Ø 2330. If two function SYSMODS cannot be installed in the same zone, the
MCS of the function SYSMOD with the later availability date must have an
NPRE for the other function SYSMOD. If both function SYSMODS have
the same availability date, then the MCS for each one must have an NPRE
for the other.

Packaging Rules (Installation)
Section 5.1

Ø 2600. All files on an MVS-installable product tape must be SMP/E-install-
able.

Ø 2700. All products must be packaged so that they can be individually
installed using both the RECEIVE–APPLY–ACCEPT method and the
RECEIVE–ACCEPT BYPASS(APPLYCHECK)–GENERATE method.

Ø 2710. The return code from ACCEPT processing for all function SYSMODs
must be zero, with these exceptions:

– Warning message GIM39701W, SYSMOD sysmod-id HAS NO ELE-
MENTS.

| – Warning message GIM50050W, concerning the DESCRIPTION
| operand.

– A warning message issued only in certain environments (for example, a
product tries to delete an element or load module that is not on the
system).

Packaging Rules (++FUNCTION SYSMOD ID)
Section 5.3

Ø 2900. A new FMID is required for each new version, release, or modifica-
tion level of an existing base or dependent function.

Ø 2950. A new FMID can be added only by a new version, release, or modifi-
cation level.

 Appendix A. Summary of Rules, Restrictions, and Recommendations 169

 Rules

Packaging Rules (Macros, Modules, Source)
Section 5.4

Ø 3400. Macros, modules, and source elements must be members of a parti-
tioned data set (DSORG=PO).

Ø 3410. Distribution libraries must be partitioned; only target libraries may be
sequential. Use of sequential distribution libraries would tend to increase
the total number of datasets required on the system.

Ø 3500. The record format (RECFM) for load modules must be U. For more
information, see Table 11 on page 38.

Ø 3510. A product should not change any of the following attributes of an
existing dataset:

 – RECFM

– PDS vs. PDS/E

 – PATH attributes

If such a change is required, a new dataset must be created. It must have a
new DDDEF entry as well as a new DDNAME and dataset name.

Ø 3650. The record format (RECFM) for macros and source must be FB, and
the record length (LRECL) must be 80. For more information, see
Table 11 on page 38.

Packaging Rules (Data Elements and hierarchical file system (HFS) Ele-
ments)
Section 5.4

| Ø 3700. Data elements, hierarchical file system (HFS) elements and
| ++PROGRAM elements must be packaged as members of a partitioned

data set (DSORG=PO).

Ø 3800. The record format (RECFM) must be F, FA, FM, FB, FBA, FBM, V,
| VA, VM, VB, VBA, or VBM. The record format (RECFM) of ++PROGRAM
| elements must be U.

Notes:

1. Elements with fixed-length records are not restricted to a logical record
length (LRECL) of 80.

2. A VSAM data set may be a data element if it is in AMS REPRO format.
However, after the data is installed by SMP/E, the customer will also
have to run an AMS REPRO job to create the original form of the
VSAM data. (SMP/E does not support native VSAM data sets as ele-
ments.)

Ø 3810. The maximum LRECL for a data element is 32,654.

Ø 3900. Elements with variable-length records may not contain spanned
records.

Ø 3910. CLISTs must not have sequence numbers.

170 MVS Packaging Rules

 Rules

Packaging Rules (Data Elements and hierarchical file system (HFS) Ele-
ments)
Section 5.4

Ø 4000. When packaging data elements, use the MCS statements shown in
Table 12 on page 45. When packaging hierarchical file system (HFS) ele-
ments, use the ++hfs_element MCS statement.

Packaging Rules (Shared Libraries)
Section 5.5

Ø 4200. A library cannot contain two or more elements with the same name
or alias name, even if they are different types. Therefore, if your product is
to be installed in libraries shared with another product, you must ensure
that none of your product's elements have the same name or alias name as
those for elements of the other product that are installed in the same
library.

Ø 4300. If products share a library, each product must use the same data set
attributes for that library. This means that if a product adds elements to an
existing product-specific library, the new product must specify the same
DCB attributes as the existing library.

Packaging Rules (Elements)
Section 6.1

Ø 4910. An element can be owned by only one function. Ownership is
defined by the FMID and VERSION operands on the ++VER and element
statements.

Packaging Rules (Shared Load Modules)
Section 6.6

Ø 5100. This rule has been deleted.

Ø 5200. One product must not use JCLIN to redefine the content of another
product's load module (even for shared load modules). For more informa-
tion, see 6.1, “General Packaging Rules, Restrictions, and Recommenda-
tions for Elements” on page 44.

Ø 5300. This rule has been deleted.

Ø 5400. Ensure that the product owner of a module that is shared across
products does not use ++MOD DELETE and that it does not change the
SYSLIB or DISTLIB of the shared module. For more information about
deleting load modules, see 8.3, “Deleting Load Modules (++DELETE)” on
page 81.

Ø 5500. If a module in Product A requires elements from Product B and the
products are installed in different zones, the program directory for Product A
must define Product B as a prerequisite.

 Appendix A. Summary of Rules, Restrictions, and Recommendations 171

 Rules

Packaging Rules (Samples)
Section 6.7

Ø 5750. Sample installation JCL is optional, but if shipped, it must be pack-
aged in a relative file.

Ø 5810. Products should not ship catalogued or instream procedures to
invoke SMP/E during installation. Sample installation jobs should invoke
SMP/E directly, and should require the installer to create DDDEF entries for
all libraries.

Ø 5820. If a product installs into the hierarchical file system (HFS), its
DDDEF job must include DDDEFs for the /usr/lpp/product_id/vendor_name/
directories it creates or uses. The DDDEF job must create the pathname in
the DDDEF, and then provide a separate step to edit the DDDEF and
change the path to the user-defined prefix. This is necessary to accommo-
date long pathnames that are not easily edited by hand.

Ø 5890. Products must not create DDDEF entries with /etc as a directory in
the pathname.

Packaging Rules (++FUNCTION REWORK)
Section 7.1.2

Ø 5900. REWORK is required on all ++FUNCTION statements, including the
initial release.

Specify the REWORK date as yyyyddd, which is the year followed by the
Julian date (for example, 1995110).

You must change the date every time the function is updated and reissued
with the same FMID.

Packaging Rules (Prefix for RELFILE Data Sets)
Section 7.1.3

Ø 5910. If you specify a value for RFDSNPFX, do not specify RFDSNPFX(IBM).
Use a different prefix.

Packaging Rules (++VER)
Section 7.2.1

Ø 6200. Every SYSMOD referenced on a single ++VER statement must
reside in the same zone.

Ø 6205. When two or more SYSMODs affect the same element, you must
specify the relationship among those SYSMODs. Specifically, you must
define the order in which they should be processed (indicated by the PRE,
SUP, or FMID operand) and the correct version of the element to be
installed (indicated by the FMID or VERSION operand).

172 MVS Packaging Rules

 Rules

Packaging Rules (Multiple SYSMODs Affecting an Element)
Section 7.2.1

Ø 6210. When two or more SYSMODs affect the same element, you must
specify the relationship among those SYSMODs.

– If both SYSMOD A and SYSMOD B ship the element (or updates to it),
the MCS statements in both SYSMODs must define the order in which
the SYSMODs should be processed (indicated by the PRE, SUP, or
FMID operand) and the correct version of the element to be installed
(indicated by the FMID or VERSION operand).

– If Product A includes an element from Product B via an INCLUDE state-
ment in a JCLIN link-edit step without changing the element, and
Product A requires a particular level of Product B, then Product A's
MCS statements must specify an unconditional requisite for the appro-
priate level of Product B.

– If Product A includes an element from Product B via an INCLUDE state-
ment in a JCLIN link-edit step without changing the element, and mul-
tiple levels of Product B would fill the needs of Product A, then Product
A's program directory must identify Product B as an installation require-
ment, specifying the lowest acceptable level of Product B.

Packaging Rules (++VER SREL)
Section 7.2.2

Ø 6300. On a single ++VER statement, all SYSMODs specified on the NPRE,
PRE, REQ, SUP, and VERSION operands must be applicable to the same
SREL as the SYSMOD containing this ++VER statement.

Ø 6400. You must use one of the following SRELs: Z038 for MVS, C150 for
CICS, P004 for NCP, or P115 for IMS and DB2.

Packaging Rules (++VER FMID)
Section 7.2.3

Ø 6500. The FMID operand can be used only in a dependent function, not in
a base function. The FMID specified in the operand must be the FMID of a
base function. Both functions must be applicable to the same SREL. FMID
is required for dependent functions.

Ø 6600. A SYSMOD cannot be both a base function and a dependent func-
tion. The FMID operand identifies a SYSMOD as a dependent function;
therefore, if you specify the FMID operand, you must include it on all the
++VER statements for the SYSMOD.

 Appendix A. Summary of Rules, Restrictions, and Recommendations 173

 Rules

Packaging Rules (++VER DELETE)
Section 7.2.4

Ø 6700. If the DELETE operand is used in a base function, it can specify the
FMID of a base function or a dependent function. If the DELETE operand
is used in a dependent function, it can only specify the FMID of a
dependent function.

Ø 6800. Base functions (other than the initial release) must use ++VER
DELETE to delete all previous releases and versions of the product.

Note: Optionally, dependent functions can delete previous releases and
versions of the product.

Ø 6900. A language-support dependent function must not delete an additive
dependent function, and vice versa.

Ø 7000. A function cannot delete itself.

Packaging Rules (Mutually Exclusive Versions)
Section 7.2.5

Ø 7200. If the NPRE operand is used in a base function, it can only specify
the FMID of a base function. If the NPRE operand is used in a dependent
function, it can specify the FMID of a base function, the FMID of a
dependent function, or both. In either case, all functions involved must be
applicable to the same SREL.

Packaging Rules (++VER PRE)
Section 7.2.6

Ø 7400. The PRE operand can be used only in a dependent function. It can
specify the FMID of a base function (other than its own base) or a
dependent function, or it can specify a PTF number. In any case, all func-
tions involved must be applicable to the same SREL.

Note: Do not use the PRE operand in a dependent function to indicate its
own base function. You must use the FMID operand for this
purpose.

Ø 7500. The specified prerequisite (or a valid replacement) must be available
as long as the specifying SYSMOD is available. When neither the prerequi-
site function nor the replacement SYSMOD is available, all the functions
specifying the prerequisite must be repackaged.

Ø 7600. If a dependent function specifies a PTF as a prerequisite, the
dependent function and the PTF must be applicable to the same base func-
tion.

174 MVS Packaging Rules

 Rules

Packaging Rules (++VER SUP)
Section 7.2.7

Ø 7700. If the SUP operand is used in a base function, it can specify the
FMID of a base function, the FMID of a dependent function, a PTF number,
or an APAR number. If the SUP operand is used in a dependent function,
it can specify the FMID of a dependent function, a PTF number, or an
APAR number. In either case, all functions involved must be applicable to
the same SREL.

Ø 7800. A function must provide all the supported function contained in all
the SYSMODs it supersedes.

Ø 7900. All the superseded SYSMODs must be in the same product as the
superseding SYSMOD.

Ø 8000. For each environment (++VER FMID and SREL), all the elements in
the superseded SYSMODs must be contained either in the superseding
SYSMOD or in the combination of the superseding SYSMOD and its requi-
sites (other SYSMODs specified on the ++VER REQ operand), unless the
element is deleted by the superseding SYSMOD.

Ø 8100. The environment of a superseded SYSMOD must not be at a higher
functional level than the level of the superseding function.

– If the superseded SYSMOD is a base function, it must apply to the
same SREL as the superseding SYSMOD.

– If the superseded SYSMOD is a dependent function, it must apply to
the same SREL as the superseding SYSMOD. In addition, the super-
seded dependent function must do one of the following:

- Be applicable to the same base function as the superseding
dependent function

- Be applicable to a lower-level function than the superseding func-
tion

Ø 8200. A new release of a base function can supersede a previous release
of that base function only if it also deletes that previous release. Likewise,
a new release of a base function can supersede a dependent function
applicable to a previous release of that base function only if the new
release also deletes that dependent function.

Ø 8300. A new dependent function can supersede previous releases of that
dependent function only if it also deletes those releases.

Ø 8500. A superseding function (or its requisites) must carry on the SYSMOD
relationships defined in the superseded function SYSMODs. Table 14 on
page 63 shows the relationships and processing information that the super-
seding SYSMOD or its requisites may need to include from the superseded
SYSMODs.

Note: Table 14 on page 63 also applies to deleting SYSMODs and the
information that they or their requisites may need to include from the
deleted SYSMODs.

 Appendix A. Summary of Rules, Restrictions, and Recommendations 175

 Rules

Packaging Rules (Moving and Replacing Elements)
Section 7.2.7

Ø 8600. The ++VER statement for each SYSMOD that contains an element
that is replaced or moved to a new library must use the PRE or SUP
operand to specify the previous SYSMOD, if any, that also replaced or
moved that element.

Packaging Rules (++VER VERSION)
Section 7.2.8

Ø 8700. You must specify the lower-level function SYSMODs on the
VERSION operand of each ++VER statement in the higher-level function
SYSMOD.

VERSION is required to establish which elements are functionally higher
when SYSMODs for different dependent functions have elements with the
same name and type in common. Also, specifying the lower-level function
SYSMODs on the VERSION operand on the ++VER statement in the
higher-level function SYSMODs ensure that ownership of the elements is
given to the highest level SYSMOD.

Ø 8800. If a dependent function uses the VERSION operand, any subse-
quent function replacing this dependent function must contain all the ele-
ments whose ownership was assumed by the dependent function.

Ø 9000. A new release of a dependent function can have elements in
common with a lower-level dependent function for the same base function.
If so, the new release must incorporate those elements and, if the lower-
level dependent function is not deleted, must establish the superiority of its
version of those elements, as well as its installation relationship with the
lower-level function. The superiority of the elements is established by the
VERSION operand on either the ++VER or element statement. The instal-
lation relationship is established by either the PRE or SUP operand on the
++VER statement. For more information, see the descriptions of these
operands elsewhere in this chapter.

Ø 9100. VERSION must specify all the dependent functions that are func-
tionally lower than the specifying function and that include the elements to
be versioned.

Ø 9200. The VERSION operand must be specified on the ++VER statement if
all elements affected by this SYSMOD are to be versioned the same way.
The VERSION operand must be specified on the element statement if indi-
vidual elements can be versioned differently.

176 MVS Packaging Rules

 Rules

Packaging Rules (++IF FMID)
Section 7.3.1

Ø 9210. The ++IF statement can be used in a base function or a dependent
function. In both cases, the FMID operand can specify either a base func-
tion or a dependent function.

Ø 9300. The function cannot specify its own FMID.

Note: This Rule does not apply to products that require installation using
the OS/390 Release 3 (or later) level of SMP/E.

Ø 9400. This rule has been deleted.

Ø 9500. If the FMID operand is used in a base function, the specified
SYSMOD must be in a previous version of the product.

For example, Version 2 Release 2 of a product cannot specify ++IF FMID
for Version 2 Release 1; however, it can specify Version 1 Release 3.

Note: A dependent function can specify any function SYSMOD, regardless of
whether two functions are part of the same product or product version.

 Appendix A. Summary of Rules, Restrictions, and Recommendations 177

 Rules

Packaging Rules (++IF REQ)
Section 7.3.2

Ø 9600. The REQ operand can be used in a base function or a dependent
function. In both cases, the REQ operand can specify either a dependent
function or a PTF number.

Ø 9700. Any dependent function specified on the REQ operand (or a valid
replacement) must be announced and must be available as long as the
specifying SYSMOD is available.

Ø 9800. If the specified conditional requisite is a function and it is deleted by
a new release of that function, one of the following must be done:

– The new release can also supersede the specified requisite function.
This way, the function specifying the requisite does not need to be
repackaged.

– If the specified requisite function is to be deleted by a new release
without also being superseded, the specifying function must be repack-
aged and redesigned to refer to the new release as the requisite.

Ø 9900. If the specified conditional requisite is a PTF, any subsequent
replacement must supersede the specified PTF. This eliminates the need
to repackage the specifying function to redefine the conditional requisite.

Ø 10000. A SYSMOD cannot specify both a conditional and unconditional
relationship for the same SYSMOD ID.

For example, the following statements cannot appear in the same
SYSMOD:

++VER REQ(ABC1234).
++IF FMID(Z) REQ(ABC1234).

Note: This Rule does not apply to products that require installation using
the OS/390 Release 3 (or later) level of SMP/E.

Ø 10010. If the specified SYSMOD is a dependent function, the FMID to
which it applies must either:

– Match the FMID specified on the associated ++IF statement contained
in the specifying SYSMOD

– Unconditionally coexist with the FMID specified on the associated ++IF
statement contained in the specifying SYSMOD

178 MVS Packaging Rules

 Rules

Packaging Rules (DISTLIB for Elements)
Section 7.5

Ø 10100. Do not use SYSPUNCH as the DISTLIB. It is used by SMP/E and
other products to process assembled modules.

Ø 10110. Do not specify a pathname in a hierarchical file system (HFS) as
the DISTLIB.

Ø 10111. Do not specify SMP/E temporary data sets (SMPLTS, SMPMTS,
SMPPTS, SMPSTS, etc.) as DISTLIB or SYSLIB values on MCS.

Ø 10112. If you must use a new library, it must have a unique ddname and a
unique data set name to avoid conflicts with other products. For more infor-
mation on naming distribution libraries, see 10.4, “Library Names” on
page 124.

Packaging Rules (UCLIN)
 Chapter 8

Ø 10115. Make sure the UCLIN data can be processed using SMP/E.
Provide instructions for SMP/E customers to insert the appropriate SET
BOUNDARY command before the UCLIN data. SMP/E needs the SET
command to update the correct zone with the UCLIN data.

Ø 10117. Package the UCLIN data as an element that is installed in an
appropriate data set for sample code. This allows customers, as well as
product installation procedures, to have access to the UCLIN. You can
package the data as sample code using the ++SAMP MCS statement. Use
standard names for the element, the target library, and the distribution
library.

Ø 10119. Describe any UCLIN data requirements and procedures in the
installation instructions. This documentation must provide enough informa-
tion so that the customer can either invoke SMP/E or use the SMP/E
dialogs to process the UCLIN data.

You must use a ++HOLD statement, even if your documentation clearly and
fully explains how to handle the UCLIN.

 Appendix A. Summary of Rules, Restrictions, and Recommendations 179

 Rules

Packaging Rules (++MOVE)
Section 8.1

Ø 10200. A dependent function can contain a ++MOVE statement for an
element or load module it does not contain only if the element or load
module is owned by the base function to which the dependent function
applies, or by another dependent function for the same base function. In
either case, the moving dependent function must specify the owning func-
tion as a prerequisite.

If a previous dependent function has performed a ++MOVE on the element
or load module, then the new dependent function must specify that
dependent function as a prerequisite.

Ø 10300. A function can contain only one ++MOVE statement for a given
element.

Ø 10400. A function can contain no more than two ++MOVE statements for a
given load module, one for each SYSLIB defined for the load module.

Ø 10500. All MCS statements following the ++MOVE statements and refer-
ring to the elements or load modules that were moved must reflect the new
libraries for those elements or load modules. All SYSMODs applied subse-
quent to the move must reflect the new libraries for those elements or load
modules.

Ø 10600. All changes caused by a ++MOVE MCS must also be specified in
any JCLIN and SYSGEN macros that refer to the moved member.

Ø 10700. If SYSMOD(1) defines or moves an element, subsequent
SYSMODs containing that element must specify SYSMOD(1) as a prerequi-
site.

Ø 10800. If SYSMOD(1) moves a given load module using a ++MOVE state-
ment, any SYSMOD that supersedes SYSMOD1 must also contain the
++MOVE statement.

Ø 10900. If an element or load module to be moved to a new SYSLIB is a
member of a totally copied library, the moving function must also move the
same element or corresponding module to a new distribution library.

180 MVS Packaging Rules

 Rules

Packaging Rules (++RENAME)
Section 8.2

Ø 11000. A dependent function can contain a ++RENAME statement for a
load module associated with either the base function to which it applies, or
with another dependent function that is applicable to that same base func-
tion and that is required by the function containing the ++RENAME state-
ment.

Ø 11100. All changes caused by a ++RENAME MCS must also be specified
in any JCLIN and SYSGEN macros that refer to the old name of the load
module.

Ø 11200. A function can contain only one ++RENAME statement for a given
load module.

Ø 11300. If SYSMOD(1) renames a given load module using a ++RENAME
statement and SYSMOD(2) defines that load module under its new name
with JCLIN data, SYSMOD(2) must specify its relationship to SYSMOD(1)
using the PRE, DELETE, or SUP and DELETE operands on its ++VER
statement.

Ø 11400. If SYSMOD(1) defines a given load module and SYSMOD(2)
renames that load module using a ++RENAME statement, SYSMOD(2)
must specify its relationship to SYSMOD(1) using the PRE operand on its
++VER statement.

Ø 11500. If a load module being renamed was totally copied from a distribu-
tion library into a target library (defined by JCLIN data as a totally copied
load module), this function must also use a ++MOVE statement to move the
identically named element (++MOD) to a new distribution library.

Ø 11600. If a dependent function is renaming a load module, that function
must refer to the last previous lower-level dependent function (if any) that
(1) moved the load module being renamed or (2) renamed a load module to
the name of the load module being renamed again.

– If that previous dependent function moved the load module being
renamed, this dependent function can either delete or supersede and
delete that dependent function, or specify it as a prerequisite.

– If the previous dependent function renamed a load module to the name
of the load module being renamed again, this dependent function must
specify that previous dependent function as a prerequisite.

 Appendix A. Summary of Rules, Restrictions, and Recommendations 181

 Rules

Packaging Rules (++DELETE)
Section 8.3

Ø 11700. A dependent function can contain a ++DELETE statement for a
load module associated with either the base function to which it applies, or
with another dependent function that is applicable to that same base func-
tion and that is required by the function containing the ++DELETE state-
ment.

Ø 11800. A function can contain only one ++DELETE statement for a given
load module.

Ø 11900. A function containing a ++DELETE statement must also include the
appropriate changes for its JCLIN or SYSGEN macros (if any) to reflect the
change.

Ø 12000. If SYSMOD(1) deletes a given load module using a ++DELETE
statement and SYSMOD(2) defines that load module with JCLIN data,
SYSMOD(2) must specify its relationship to SYSMOD(1) using the PRE,
DELETE, or SUP and DELETE operands on its ++VER statement.

Ø 12100. If SYSMOD(1) defines a given load module with JCLIN data and
SYSMOD(2) deletes that load module using a ++DELETE statement,
SYSMOD(2) must specify its relationship to SYSMOD(1) using the PRE or
FMID operand on its ++VER statement.

Ø 12200. A dependent function that is deleting a load module must refer to
the last previous lower-level dependent function (if any) that (1) moved the
load module being deleted or (2) renamed a load module to the name of
the load module being deleted.

– If that previous dependent function moved the load module being
deleted, this dependent function can either delete or supersede and
delete that dependent function or specify it as a prerequisite.

– If that previous dependent function renamed a load module to the name
of the load module being deleted, this dependent function can either
delete or supersede and delete that dependent function or specify it as
a prerequisite.

Ø 12210. If a SYSMOD is deleting an alias for a load module but not the load
module itself (ALIAS is specified on the ++DELETE statement), you must
reflect this change using JCLIN. To do this, include a ++JCLIN statement
with JCLIN data that contains a link-edit step for the load module, with the
alias deleted from the list of aliases on the link-edit ALIAS statement. This
causes SMP/E to replace the alias list in the CSI.

182 MVS Packaging Rules

 Rules

Packaging Rules (DELETE for Elements)
Section 8.4

Ø 12300. A dependent function must not delete a macro or source element
from a lower-level function (its parent base function or a lower-level
dependent function for the same parent base function), because a PTF that
is applicable to the lower-level function may need to update the element
(such as by using ++MACUPD or ++SRCUPD). If that element were
deleted, there would be nothing to update, and the PTF needed for the
lower-level function could not be installed.

Ø 12310. This rule has been deleted.

Packaging Rules (++MOD CSECT)
Section 8.5

Ø 12400. If a SYSMOD changes the CSECTs contained in an existing
module, CSECT must be specified and must list all the CSECTs in that
module. This is true even if the module now contains only one CSECT
whose name matches the module name on the ++MOD statement.

Ø 12500. This rule has been deleted. It has been replaced by rule 131.3 in
9.6, “Link-Edit Steps” on page 94.

 Appendix A. Summary of Rules, Restrictions, and Recommendations 183

 Rules

Packaging Rules (VERSION for Elements)
8.6

Ø 12510. VERSION is required to establish which elements are functionally
higher when SYSMODs for different functions have elements with the same
type and name in common. You must specify the lower-level function in the
VERSION operand of the element statement in the SYSMOD associated
with the higher-level function.

Ø 12600. The specified functions must be able to coexist with the specifying
SYSMOD.

Ø 12700. The specified functions must contain the element described by the
element statement.

Ø 12800. For dependent functions, VERSION must specify all the dependent
functions that are functionally lower than the specifying function and include
the element being versioned.

Ø 12900. If VERSION is also specified on a ++VER statement for this
SYSMOD, the VERSION operand on the element statement overrides the
VERSION values specified on the ++VER statement. However, the
VERSION operand on the element statement is not additive; it does not
automatically take over ownership from the functions specified on the
++VER VERSION operand. To take over ownership from any of the func-
tions specified on the ++VER VERSION operand, you must repeat those
values on the VERSION operand for the element statement.

Ø 13000. The VERSION operand must be specified on the element state-
ment if individual elements may be versioned differently. The VERSION
operand must be specified on the ++VER statement used if all elements
affected by this SYSMOD are to be versioned the same way.

Packaging Rules (JCLIN Data)
Section 9.3

Ø 13100. The combination of JCLIN data and element statements must com-
pletely describe all the elements in the function and their target and distribu-
tion libraries.

Ø 13110. A product's installation must not require the editing of the JCLIN.

Ø 13200. If the low-level qualifier of a data set name is in the format
xccczzzz, as described in rule 140 in 10.4, “Library Names” on page 124,
the low-level qualifier and the ddname must be identical.

NOTE: Since a DDNAME may refer to a subdirectory in the hierarchical file
system (HFS), several DDNAMEs may point into one HFS. In these cases,
the low-level qualifier and the ddname need not be identical.

Ø 13300. Input data sets in link-edit steps must not be concatenated.

An exception to this rule is using the support for the automatic library call
facility. For more information, see the description of the SYSLIB DD state-
ment in 9.6.2, “Link-Edit Control Statements” on page 97.

184 MVS Packaging Rules

 Rules

Packaging Rules (JCLIN Assembler Steps)
Section 9.4

Ø 13400. Assembler steps must be identified by one of the following:

 – EXEC PGM=IFOX00
 – EXEC PGM=IEV90
 – EXEC PGM=ASMA90
 – EXEC PGM=ASMBLR
 – EXEC ASMS

Packaging Rules (JCLIN Copy Steps)
Section 9.5

Ø 13500. Copy steps must be identified by the following:

 – EXEC PGM=IEBCOPY

Ø 13600. The RENAME function must not be used in JCLIN.

Ø 13700. If the SELECT MEMBER= statement is used to selectively copy
elements, the COPY INDD=xxx,OUTDD=xxx control statements for selec-
tively copied elements must include the comment TYPE=xxxx. The format
of the TYPE comment on the COPY statement is:

COPY INDD=ddname,OUTDD=ddname TYPE=xxxx

where xxxx is MOD, MAC, SRC, or DATA.

Notes:

1. If the TYPE=xxxx parameter is not specified, the default used by
SMP/E is TYPE=MOD.

2. TYPE=DATA is used for data elements.

Without this additional comment, the GENERATE command cannot deter-
mine what type of element is being copied. If the comment is not included,
SMP/E assumes the element is a module and may create unnecessary
module entries in the target or distribution zone.

For data elements and hierarchical file system (HFS) elements, you must
use the SYSLIB and DISTLIB operands on the element statement to specify
information used to install the element. During JCLIN processing, SMP/E
bypasses any COPY SELECT statements that specify TYPE=DATA.

Ø 13800. The SELECT statement can specify either the name of the member
to be copied or an alias name for the member. The SELECT statement for
an alias must specify the comment “ALIAS OF member”, where member is
the member name for which alias is an alias.

Ø 13900. A SELECT statement that identifies an alias can specify only one
name on the MEMBER operand.

 Appendix A. Summary of Rules, Restrictions, and Recommendations 185

 Rules

Packaging Rules (JCLIN Copy Steps)
Section 9.5

Ø 13910. If a ++MOD on a product tape defines either (1) a complete load
module containing single or multiple CSECTs or (2) a partial load module
containing multiple CSECTs, any ++MOD by the same name shipped in a
subsequent PTF must also be the same type of load module (complete load
module or multi-CSECT partial load module). If a CSECT shipped in the
original ++MOD is not shipped in the replacement ++MOD, it will no longer
exist.

To replace part of a copied ++MOD, the PTF must convert the ++MOD into
a link-edited load module by splitting it into smaller serviceable parts, as
follows:

1. Delete the original ++MOD with a ++MOD DELETE.

2. Ship a new ++MOD for each of the parts into which the original ++MOD
has been split.

3. Provide link-edit JCLIN to define the link edit structure of the resulting
load modules.

All future maintenance that affects the load module or any of its parts must
explicitly or implicitly specify this PTF as a prerequisite.

Packaging Rules (JCLIN Link-Edit Steps)
Section 9.6

Ø 14000. Link-edit steps must be identified by one of the following:

 – EXEC PGM=IEWL
 – EXEC PGM=HEWL
 – EXEC PGM=IEWBLINK
 – EXEC LINKS

Ø 14100. Link-edit steps must not be sensitive to the order of execution of
other link-edit steps, either in the same FMID or in another FMID. Link-edit
steps must also not be sensitive to the order of execution of the individual
load module builds within the step.

Ø 14200. No elements to be included in a JCLIN link-edit step can be derived
from the output of another JCLIN link-edit step, or from the output of a load
module build within the same JCLIN link-edit step.

Ø 14210. Never specify a JCLIN link-edit step to indicate that a load module
resides in the SMPLTS library.

SMP/E automatically link-edits a base version of any load module with a
CALLLIBS subentry into the SMPLTS library.

Ø 14220. Do not specify a pathname in a hierarchical file system (HFS) as
the distribution library.

Ø 14230. All INCLUDE statements in link-edit JCLIN data should specify the
included module's distribution library, or SYSPUNCH if it is an assembled
module. Do not use data sets such as SYSLIB or SYSLMOD.

186 MVS Packaging Rules

 Rules

Packaging Rules (JCLIN Link-Edit Steps)
Section 9.6

Ø 14240. If a load module consists of more than one distribution library
module, use an ENTRY statement; otherwise, the entry point of the load
module might change each time the load module is relinked by SMP/E.

Ø 14250. If a specific order of CSECTs within a load module is required, use
ORDER statements to define the load module structure.

Ø 14260. If Product A uses CALLLIBS to indicate libraries created by Product
B:

1. The SYSLIB DD statement in Product A's JCLIN must use the real
DDNAME of the library.

2. If Product A does not require Product B to exist in the same zone,
Product A's DDDEF job must create a DDDEF entry for the library with
its real DDNAME, using the ADD DDDEF command to avoid possible
contamination of an existing DDDEF entry.

3. If it is possible that the library does not exist on the system, the DDDEF
job must instruct the customer to point either to the actual dataset (if it
exists) or to an empty dataset. The job must not give the customer a
choice of two or more legitimate datasets for one DDDEF. NOTE: The
product may not allocate an empty dataset for this purpose.

Ø 14270. If a product documents in its installation documentation that a
return code of 8 is acceptable from APPLY, then RC=8 must be coded on
the NAME statement in the JCLIN for the appropriate load modules. This
may be the case if the product uses a CALLLIBS library to obtain load
modules created by an optional function.

 Appendix A. Summary of Rules, Restrictions, and Recommendations 187

 Rules

Packaging Rules (Element and Load Module Names)
Section 10.3

Ø 14300. All products must use the assigned, unique three-character compo-
nent code as the first three characters of the element names. The first
character of the component code follows the conventions shown below to
avoid naming conflicts with elements provided by IBM or by other user-
written software.

Value Meaning

A–I When used by IBM, all three characters of the prefix are generally
alphabetic (with some exceptions).

Can be used by non-IBM products only if the prefix includes at
least one numeric or national character.

J–Z Available only for non-IBM products. The prefix can be all alpha-
betic or can include numeric or national characters.

Ø 14400. Two elements with the same element type cannot have the same
name—element names must be unique. This is true regardless of whether
the elements are in the same product or in different products. For more
information, see 6.1, “General Packaging Rules, Restrictions, and Recom-
mendations for Elements” on page 44.

Ø 14500. Load modules should have unique names, which should begin with
the product's assigned three-character prefix. However, the same load
modules having the same attributes can be defined to two load libraries.

Ø 14600. Like-named elements, including aliases, must be in separate target
and distribution libraries. These libraries must be in separate RELFILEs.
This prevents unintentional overlaying of elements.

– See 6.1, “General Packaging Rules, Restrictions, and Recommenda-
tions for Elements” on page 44 for information about restrictions on
like-named elements.

– See 3.1.1, “Format and Contents of the RELFILE Tape” on page 12 for
additional rules and requirements concerning RELFILEs.

Ø 14700. If more than one version of a product is intended to coexist in the
same zone, the element and load module names must be unique for each
version.

188 MVS Packaging Rules

 Rules

Packaging Rules (Library Names)
Section 10.4

Ø 14900. The low-level qualifier of the name of a new distribution or target
library must be unique. You must use your registered component code
(ccc) in your library name. You should also distinguish between your distri-
bution libraries and your target libraries to make it easier for customers to
identify your libraries. One way to do this is to use the format xccczzzz,
where:

– x is the letter for a distribution library or a target library.

– ccc is the component code (the first three characters assigned to the
elements).

– zzzz is whatever the product developer chooses to use, to keep the
name unique.

Exception: A data set name need not conform to this format if all of the
following are true:

1. The data set name is required to have a non-conforming low-
level qualifier for unavoidable technical reasons. (For example,
C language header file data sets are required by the C compiler
to use the low-level qualifier of “H.”)

2. The data set is not specified as a target library in any JCLIN
data, either on a SYSLMOD DD statement or on an EXEC
statement.

3. The data set name is not specified in a SYSLIB concatenation
in any JCLIN data.

Data sets that qualify under this exception must still use ddnames
with the format xccczzzz or xcccczzz as defined above, to comply
with rule14910.

Ø 14910. Every target and distribution library must have a unique ddname.

Ø 15000. See rule 119 in 9.3, “General Packaging Rules for JCLIN Data” on
page 89.

 Appendix A. Summary of Rules, Restrictions, and Recommendations 189

 Rules

Packaging Rules (Library Names)
Section 10.4

Ø 15010. If a data set whose name does not use the xccczzzz format is
renamed for any reason, the low-level qualifier of the new data set name
must use the xccczzzz format, and the data set's new ddname must match
the new low-level qualifier.

Exception: A data set name need not conform to this format if all of the
following are true:

1. The data set name is required to have a non-conforming low-
level qualifier for unavoidable technical reasons. (For example,
C language header file data sets are required by the C compiler
to use the low-level qualifier of “H.”)

2. The data set is not specified as a target library in any JCLIN
data, either on a SYSLMOD DD statement or on an EXEC
statement.

3. The data set name is not specified in a SYSLIB concatenation
in any JCLIN data.

Data sets that qualify under this exception must still use ddnames
with the format xccczzzz or xcccczzz as defined above, to comply
with rule 14910.

Ø 15100. A product's execution must not depend on the high-level qualifier of
any data set names. Product code should refer only to ddnames.

Packaging Rules (Language-Sensitive Elements)
Chapter 11

Ø 15200. This rule has been changed to a recommendation (see below).

Ø 15350. Language variants of an element may have the same name for
programming access. In this case, package each language variant as a
different element type using the same name for each variant. However,
because the names are the same, you must assign the elements to dif-
ferent libraries. See Figure 6 on page 47 for an example.

Ø 15410. This rule has been deleted.

Packaging Rules (Language Abbreviations)
Section 11.1

Ø 15500. When the data element or hierarchical file system (HFS) element
MCS indicates the language being supported, use one of the national lan-
guage identifiers shown in Table 18 on page 129 as the three-character
suffix for the element type.

Ø 15600. Each language variant of an element type constitutes a distinct
element type, and rules applying to element types apply to every such
variant. For example, ++PNLENU and ++PNLDEU are two different
element types.

190 MVS Packaging Rules

 Restrictions

Packaging Rules (Libraries)
Section 12.1.1

Ø 15700. This rule has been deleted.

Ø 15800. This rule has been deleted.

Ø 15810. If a ++PROGRAM element is prebound with parts from another
product, it must use the lowest supported level of the borrowed parts, and
must require that level or higher as a functional (noninstallation) requisite.
This will avoid problems in customer environments with varying levels of the
product.

Packaging Rules (Hierarchical File System)
Section 12.4

Ø 18810. Symbolic links must not exist in the /tmp, /dev, /var or /etc directo-
ries.

Ø 18820. Products must not install anything directly into the /etc directory
during APPLY processing; the /etc directory is used only for customization
data. Shell scripts invoked by SMP/E must not install or change files in the
/etc directory.

Ø 18830. Permission bits for every file or directory in the hierarchical file
system (HFS) must be User >=6, Group >= 4, and Other >= 4. Directories
containing SMP/E-installed files must be User=7, Group=5, Other=5.

 A.2 Restrictions

IBM Software Delivery Restrictions

Chapter 3

The IBM Software Delivery Solutions process supports only functions packaged
in relative files that can be processed with SMP/E. Functions packaged in TXLIB
or LKLIB data sets are not supported.

End of IBM Software Delivery Restrictions

IBM Software Delivery Restrictions

Section 3.1.1

� Sequential data sets may not be used as target libraries. As long as this
restriction exists, post-APPLY jobs may be provided to copy elements into a
sequential data set. This is a restriction of the IBM Software Delivery Sol-
utions process.

� RELFILEs containing a RECFM=U must specify a BLKSIZE of 6144, so that
they can be reblocked upwards at installation.

� ++MOD elements must not contain linkage editor ALIAS statements inline.

 Appendix A. Summary of Rules, Restrictions, and Recommendations 191

 Restrictions

End of IBM Software Delivery Restrictions

IBM Software Delivery Restrictions

Section 3.1.2

� RECFM=U RELFILEs must be blocked at 6144, so that they can be reblocked
upwards at install time.

� ++MOD elements must not contain linkage editor ALIAS statements inline.

End of IBM Software Delivery Restrictions

IBM Software Delivery Restrictions

Section 6.1

� The TXLIB and LKLIB operands are not supported by the IBM Software
Delivery Solutions process.

� The IBM Software Delivery Solutions process does not support SYSMODs
requiring assemblies at ACCEPT time. Therefore, the following restrictions
apply to the ++MAC and ++SRC statements:

– A ++MAC statement must not specify the ASSEM, DISTMOD, DISTOBJ, or
PREFIX operands unless the macro is accompanied by the assembled
object modules and ++MOD statements.

– A ++SRC statement must not specify the DISTMOD or DISTOBJ operand.
In addition, the source can be accompanied by the assembled object
module and ++MOD statement.

End of IBM Software Delivery Restrictions

IBM Software Delivery Restrictions

Section 6.6

The following restrictions apply if you do not require SMP/E Release 7 or later as
the minimum level of SMP/E for installing your product:

� SMP/E can be used to manage shared load modules only if all the modules
that comprise the load module are in the same zone.

� Postinstallation jobs are required if the shared load module is comprised of
modules from more than one zone.

Note: If postinstallation jobs (outside SMP/E) are used, service that is applied
to modules used by the postinstallation job is not applied to the shared
load module unless the postinstallation job is rerun after the mainte-
nance is applied.

End of IBM Software Delivery Restrictions

192 MVS Packaging Rules

 Restrictions

IBM Software Delivery Restrictions

Chapter 7

The ++ ASSIGN statement is not described in this section and must not be used.

End of IBM Software Delivery Restrictions

IBM Software Delivery Restrictions

Section 7.4

The CLASS operand must not be used.

++HOLD statements are not permitted in function SYSMODs. This is a restriction
of the IBM Software Delivery Solutions process.

End of IBM Software Delivery Restrictions

IBM Software Delivery Restrictions

Section 8.1

The ++MOVE statement is not allowed for data elements or hierarchical file system
(HFS) elements. This is an SMP/E restriction.

End of IBM Software Delivery Restrictions

IBM Software Delivery Restrictions

Section 9.1

The IBM Software Delivery Solutions process does not support the TXLIB
operand. Therefore, it is not included in the list of ++JCLIN operands, nor is it
described in the sections that follow.

End of IBM Software Delivery Restrictions

IBM Software Delivery Restrictions

Section 9.3

� If a PTF introduces a new ++MOD requiring link-edit parameters other than the
default, these parameters must be specified in the LEPARM operand of the
++MOD statement. Parameters specified in JCLIN data are not sufficient. This
is a restriction of the IBM Software Delivery Solutions process.

� Products that require assemblies during APPLY processing may not require
macro libraries provided by products in another SREL. This is a restriction of

 Appendix A. Summary of Rules, Restrictions, and Recommendations 193

 Recommendations

the IBM Software Delivery Solutions ServerPac process; the macro libraries
will not be available during order build processing.

End of IBM Software Delivery Restrictions

IBM Software Delivery Restrictions

Section 9.6.2

� For the IBM Software Delivery Solutions process to operate correctly, a
product must not contain a CHANGE statement in a link-edit step.

� A product that uses CALLLIBS must not use the RC= parameter on a NAME
statement in its JCLIN unless one of the following is true:

1. The product using CALLLIBS identifies the product providing the CALLLIBS
libraries as a requisite (REQ) in its SMPMCS.

2. The product using CALLLIBS ships stubs for the elements linked with
CALLLIBS.

This is a restriction of the IBM Software Delivery Solutions process; the
CALLLIBS libraries may not be available during order build processing unless
one of the above criteria is met.

End of IBM Software Delivery Restrictions

 A.3 Recommendations

Packaging Recommendations

Section 3.1.1

Modules should be single-CSECT load modules.

End of Packaging Recommendations

Packaging Recommendations

Section 3.1.2

The data set name of the first file should be SMPMCS.

End of Packaging Recommendations

Packaging Recommendations

Section 4.1.1.4

Common elements should be packaged in a common SYSMOD.

End of Packaging Recommendations

194 MVS Packaging Rules

 Recommendations

Packaging Recommendations

Section 4.2.3.2

When you are building SYSMODs that may be installed as a group, such as pre-
requisite or corequisite SYSMODs, do not construct the SYSMODs in such a way
that their proper installation depends on the internal processing order within SMP/E.
From time to time, the processing order may be changed and SYSMODs that
depend on that order may not be installed correctly. Follow the packaging rules in
this book to define how the SYSMODs should be installed.

End of Packaging Recommendations

Packaging Recommendations

Section 4.2.3.4

� A new release of a function should both delete and supersede the previous
release if all of the following are true:

– The new release contains at least all the function that was in the previous
release.

– If other products specified the deleted function as a requisite, all the
internal and external interfaces used by those other products are
unchanged in the new release.

– Other products that specified the previous release as a requisite can run
with the new release.

� Evaluate a replacement function using Table 10 on page 28 as a guide. If the
replacement function matches that description, then the preferred and recom-
mended way to replace the previous function is to both delete and supersede it.

End of Packaging Recommendations

Packaging Recommendations

Section 4.2.4

Products should not require the customer to install them into their own unique
zones; every product should be installable in the same target and distribution zones
as any other product in the SREL. This gives the customer the ability to decide
which combinations of products will reside together.

The installation information may suggest that the customer use new zones initially
to avoid deleting previous releases of the product, but this should not be required.

Products should not require any function or service to be accepted before another
function can be applied.

End of Packaging Recommendations

 Appendix A. Summary of Rules, Restrictions, and Recommendations 195

 Recommendations

Packaging Recommendations

Section 5.1

A PTF should not increase its product's driving system requirements beyond what
is documented in the installation instructions.

End of Packaging Recommendations

Packaging Recommendations

Section 5.4

� A dependent function should contain only those elements needed to provide
the additive function, or that are needed to provide the additional language
support. This reduces the number of element versions and makes servicing
the elements easier.

� Sample job streams and other special data that might be helpful to the cus-
tomer can be stored as a member of a partitioned data set that is unloaded to
a relative file on the RELFILE tape. Examples include:

– A procedure to allocate and catalog libraries
– Installation verification procedures (IVPs)

This data should be packaged as sample code using the ++SAMP MCS state-
ment, and it should be defined to be installed in an appropriate data set for
sample code.

When SMP/E installs the SYSMOD, it copies this member into the libraries
specified by the SYSLIB and DISTLIB operands on the element MCS state-
ment. The sample job stream or other data can then be retrieved from the
appropriate library for further processing.

� Jobs allocating target or distribution libraries must specify BLKSIZE=32760 for
all RECFM=U datasets, and BLKSIZE=0 (utilizing system-determined
blocksizes) for all non-RECFM-U datasets, with the following exceptions:

 – SYS1.UADS
 – Font libraries

End of Packaging Recommendations

Packaging Recommendations

Section 5.4

� If a function SYSMOD uses unique target or distribution libraries, you may want
to include a procedure to allocate and catalog the libraries. This procedure
should be in an appropriate data set for sample code, must be a member in
one of the relative files, and must be defined by the appropriate element MCS,
as described above.

� A product may have an Installation Verification Procedure (IVP) that may be
used by customers to verify that the product has been installed. If an IVP is

196 MVS Packaging Rules

 Recommendations

included in the product package, it should be in an appropriate data set for
sample code, must be a member in one of the relative files, and must be
defined by the appropriate element MCS.

End of Packaging Recommendations

Packaging Recommendations

Section 5.5

To avoid problems with like-named elements or aliases, do not install your product
in shared libraries.

End of Packaging Recommendations

Packaging Recommendations

Section 5.6

Do not use UCLIN. Use MCS statements instead.

Note: UCLIN is acceptable, and recommended, to create or modify DDDEF
entries.

End of Packaging Recommendations

Packaging Recommendations

Section 6.1

Single-CSECT modules are recommended where possible. This makes it easier for
the module to be serviced. A single CSECT can be distributed rather than shipping
the entire module. SMP/E can perform a CSECT replacement.

End of Packaging Recommendations

Packaging Recommendations

Section 6.6

� If a shared module is loadable and is used by more than one product, then
products that share modules should dynamically load the shared modules
during initialization and then link (or branch) to it as needed (there are perform-
ance considerations). This way, the latest level of the module is used without
having to link-edit the module every time it is serviced.

� If a module is link-edited into a known existing load module and does not
require link edit control statements (such as ENTRY, ALIAS, and ORDER), the
++MOD LMOD operand should be used.

End of Packaging Recommendations

 Appendix A. Summary of Rules, Restrictions, and Recommendations 197

 Recommendations

Packaging Recommendations

Section 6.7

Products should supply sample jobs to perform the SMP/E APPLY and ACCEPT
functions.

| Products should ship a sample job to allocate any target or distribution libraries that
| are created by the product, and should require the installer to run it. If any of these

libraries are shared libraries that may have been allocated by other products, such
libraries should be allocated in a separate job or job step, with instructions to the
user explaining when the job or job step should be run.

Products should ship a sample job to create DDDEF entries for new target and
distribution libraries, as well as any existing libraries that may not have entries in
this product's target or distribution zone. Entries for all distribution libraries should
be created in the distribution zone, and entries for all target libraries should be
created in the target zone. In addition, entries for all distribution libraries should be
created in the target zone to support RESTORE processing.

The installation instructions should identify the names of the sample jobs and in
which RELFILE they reside, so that customers can download the jobs directly from
the tape, if desired. The installation instructions should also state that the customer
can perform an SMP/E RECEIVE to load the jobs into temporary libraries, copy
them into private data sets, and then modify and run the jobs from these data sets.

If Function A requires Function B with the FMID, PRE, or REQ operands, and
Function A uses Function B's libraries, then Function A is not required to ship allo-
cation or DDDEF jobs for any libraries allocated by Function A.

Sample jobs should include clear and detailed comments. Information necessary to
update the job prior to submission should be in the job, not in the installation
instructions for the product.

If a sample job is provided on the tape, the text of the job should not appear in the
installation instructions. This will reduce the size of the installation instructions, as
well as avoid situations where the tape and the installation instructions do not
match.

DDDEF jobs should adhere to the following:

1. Use ADD DDDEF, not REP DDDEF.

2. Use the WAITFORDSN operand.

3. Use separate job steps to divide datasets into logical groups. For example, a
product could use one step for new datasets, and other steps for datasets intro-
duced in previous releases.

Middle-level qualifiers of VxRxMx should not be specified in sample allocation jobs.

Symbolic links for hierachical file system (HFS) files should be created in the
MKDIR EXEC, and should be relative, not absolute. In order to ensure that the
MKDIR EXEC can run multiple times without damage, products creating symbolic

198 MVS Packaging Rules

 Recommendations

links in the MKDIR EXEC should also provide UNLINK statements for every sym-
bolic link ever created in this or previous levels, including those that have become
obsolete.

The MKDIR EXEC should be called zzzMKDIR, and the jobname of the JCL
invoking it should be called zzzISMKD, where zzz is the three-character prefix of
the product shipping the elements.

A PTF should not add or delete DDDEF entries, or change dataset or pathnames in
a DDDEF entry. If this is unavoidable, the following is required:

1. A ++HOLD ACTION should be placed on the PTF.

2. The changes should be shipped in a separate DDDEF or MKDIR EXEC
shipped in the PTF, not by updating and reshipping the existing DDDEF or
MKDIR EXEC.

3. The new DDDEF or MKDIR job should appear in the HOLDDATA of the PTF.

Sample allocation jobs should specify UNIT=SYSALLDA for all target and distribu-
tion libraries.

Sample DDDEF creation jobs should specify UNIT(SYSALLDA) for all target and
distribution libraries.

All products installing into the hierarchical file system (HFS) should statically create
their directories in a MKDIR EXEC. The installation documentation should docu-
ment how to run the exec during the installation of the product, similar to the doc-
umentation on running dataset allocation jobs.

The MKDIR EXEC should meet the following requirements:

1. It accepts a parameter for the highest-level directory, rather than hard-coding it.

2. Output is sent to the SYSOUT held queue. It contains a report of what was
created, what was not created, and what directories already existed. It also
includes the return code received and the date and time it was run.

3. The directory names all appear together.

4. It can be executed multiple times successfully.

5. If a product provides EXECs run during installation, such as MKDIR EXECs, a
batch job invoking the EXEC should be provided for the customer's use. This
does not apply to EXECs run after installation, such as IVPs or customization.

| Products should not use SMP/E's dynamic allocation function to allocate target and
| distribution libraries as new data sets; the usage of DDDEFs is only recommended
| after the datasets have been allocated outside of SMP/E.

End of Packaging Recommendations

Packaging Recommendations

Section 7.1.4

 Appendix A. Summary of Rules, Restrictions, and Recommendations 199

 Recommendations

The copyright statement should be within the first 15000 bytes of object code on
the distribution media.

End of Packaging Recommendations

Packaging Recommendations

Section 7.2.4

� You should specify additive dependent functions that are applicable to a
deleted base function. This allows customers to determine what is deleted by a
function by reading the associated MCS. (Specifying these functions is for doc-
umentation purposes only. Dependent functions are automatically deleted
when the associated base functions are deleted.)

� It is not necessary to specify language-support dependent functions that are
applicable to a deleted base function. These functions are automatically
deleted when the associated base functions are deleted.

� To improve SMP/E performance during installation, very large products should
consider providing users with an example of how to package the ++VER
DELETE information separately in a dummy function SYSMOD.

This dummy function SYSMOD is received, applied, and accepted to delete the
previous releases of your product from the existing target and distribution
libraries, and UCLIN is run to delete the SYSMOD entries for the deleted func-
tion and for the dummy function. The new release of the product is then
installed.

For example, assume the previous release of your product is MYFUNC1, and
you want to explain to users how to delete it with dummy function DELFUNC.
MYFUNC1 is applicable to SREL Z038 and is installed in target zone TGT1 and
distribution zone DLIB1. Here is an example of the dummy function, along with
the instructions you should provide to your users:

++FUNCTION(DELFUNC) /\ Any valid unique SYSMOD ID. \/.
++VER(Zð38) /\ For SREL Zð38 (MVS products). \/

DELETE(MYFUNC1) /\ Deletes MYFUNC1. \/.

These are the commands you use to receive and install the dummy function,
and to delete the SYSMOD entries for the dummy function and the deleted
function:

200 MVS Packaging Rules

 Recommendations

SET BDY(GLOBAL) /\ Set to global zone. \/.
RECEIVE S(DELFUNC) /\ Receive the function. \/.
SET BDY(TGT1) /\ Set to applicable target. \/.
APPLY S(DELFUNC) /\ Apply to delete old \/
 /\ function. \/.
SET BDY(DLIB1) /\ Set to applicable DLIB. \/.
ACCEPT S(DELFUNC) /\ Accept to delete old \/
 /\ function. \/.
SET BDY(TGT1) /\ Set to applicable target. \/.
UCLIN.
DEL SYSMOD(DELFUNC) /\ Delete SYSMOD entries for \/.
DEL SYSMOD(MYFUNC1) /\ dummy and old function. \/.
ENDUCL.
SET BDY(DLIB1) /\ Set to applicable DLIB. \/.
UCLIN.
DEL SYSMOD(DELFUNC) /\ Delete SYSMOD entries for \/.
DEL SYSMOD(MYFUNC1) /\ dummy and old function. \/.
ENDUCL /\ \/.

When you accept the dummy function, SMP/E automatically deletes the associ-
ated SYSMOD entry from the global zone and the MCS entry from the
SMPPTS.

To complete the cleanup, you should also use the REJECT command to delete
any SYSMODs and HOLDDATA applicable to the dummy function and the old
function. In addition, you should delete the FMIDs from the GLOBALZONE
entry to prevent SMP/E from receiving any SYSMODs or HOLDDATA appli-
cable to either of those functions. Here are examples of the commands you
can use to do this.

SET BDY(GLOBAL) /\ Set to global zone. \/.
REJECT HOLDDATA NOFMID /\ Reject SYSMODs, HOLDDATA \/

DELETEFMID /\ for the deleted functions.\/
(DELFUNC MYFUNC1) /\ Delete the FMIDs from the \/

/\ GLOBALZONE entry. \/.

End of Packaging Recommendations

Packaging Recommendations

Section 7.2.8

If use of the VERSION operand between two products is unavoidable, it is the
responsibility of the development owner of Product B to ensure that the develop-
ment owner of Product A understands and agrees to what has been done.

VERSION can also be specified on an element statement to establish the functional
level of elements and override the VERSION values specified on the ++VER state-
ment. However, the VERSION operand on the element statement is not additive; it
does not automatically take over ownership from the functions specified on the
++VER VERSION operand. To take over ownership from any of the functions
specified on the ++VER VERSION operand, you must repeat those values on the
VERSION operand for the element statement.

End of Packaging Recommendations

 Appendix A. Summary of Rules, Restrictions, and Recommendations 201

 Recommendations

Packaging Recommendations

Section 7.3.1

� The ++IF MCS should include a comment to identify the product required by the
FMID operand.

End of Packaging Recommendations

Packaging Recommendations

Section 7.3.2

Provide ++IF REQs for all functionally required service, with comments explaining
the reason for the REQ.

End of Packaging Recommendations

Packaging Recommendations

Section 7.5

If you package an element with a ++SRC statement, you should also include the
associated ++MOD statement.

End of Packaging Recommendations

Packaging Recommendations

Section 7.5

Do not use ++MAC, ++MOD, or ++SRC statements to package elements that are
not macros, modules, or source, respectively. Use data element statements or
hierarchical file system (HFS) element statements (as appropriate) to package such
elements.

End of Packaging Recommendations

Packaging Recommendations

Section 8.1

� If an element needs to be moved, a ++MOVE statement must be used instead
of UCLIN.

� A base function should not contain a ++MOVE statement, unless a PTF con-
taining the statement was integrated into a service update of that function.

� New releases of a base function do not own elements that would need to be
moved from one library to another. However, there may be shared load

202 MVS Packaging Rules

 Recommendations

modules that should be moved. In this instance, a base function may contain a
++MOVE for the shared load module.

End of Packaging Recommendations

Packaging Recommendations

Section 8.2

� A base function should not contain a ++RENAME statement, unless a PTF con-
taining the statement was integrated into a service update of that function.

New releases of a base function do not own elements that would need to be
renamed. However, there may be shared load modules that should be
renamed. In this instance, a base function may contain a ++RENAME for the
shared load module.

� If you want to rename a load module and use inline JCLIN to create a new load
module with the original name of the renamed load module, you must package
your changes in two SYSMODs: one to rename the existing load module, and
one to create the new load module.

The two SYSMODs must not state any relationship to each other and must be
applied separately: first the SYSMOD that renames the existing load module,
then the one that creates the new load module.

If the SYSMODs need to be restored, they must also be restored separately, in
the reverse order of the installation: first the SYSMOD that created the new
load module, then the one that renamed the existing load module.

End of Packaging Recommendations

Packaging Recommendations

Section 8.3

A base function should not contain a ++DELETE statement.

Although a program object residing in a PDSE can have an alias name greater than
8 characters, the ++DELETE statement cannot be used to delete such an alias
value without deleting the program object. Instead, you need to resupply JCLIN to
define the program object without providing an ALIAS statement for the alias value
to be deleted. Make sure to also include a ++MOD statement for a module in the
load module to force SMP/E to relink the load module.

End of Packaging Recommendations

Packaging Recommendations

Section 8.5

If CSECT is specified, it must include all the CSECTs contained in the module,
even if one of them has the same name as the module. If this is done, SMP/E can

 Appendix A. Summary of Rules, Restrictions, and Recommendations 203

 Recommendations

change the affected load module at the CSECT level when a function or module is
being deleted.

End of Packaging Recommendations

Packaging Recommendations

Section 8.6

++element VERSION should be used only by different functions of the same
product. If the VERSION operand is used by a function that is not part of the same
product as the element it wants to assume ownership of, unpredictable results may
occur. For example, if Product A owns an element and Product B uses VERSION
to assume ownership of that element, it may not be clear which product should ship
a given PTF for that element.

If use of the VERSION operand between two products is unavoidable, it is the
responsibility of the development owner of Product B to ensure that the develop-
ment owner of Product A understands and agrees to what has been done.

End of Packaging Recommendations

Packaging Recommendations

Section 9.3

� Use the simplest possible JCL statements.

� Specify all information in uppercase (verbs as well as values).

This is necessary to avoid syntax errors or incorrect results during SMP/E proc-
essing.

Note: This convention does not apply to values on the ALIAS statement.
These values must be specified in the desired case (uppercase or
mixed-case), because they are used as is.

� Do not use update steps in JCLIN data; SMP/E ignores them.

� In the JCLIN of the dependent function, describe only new or changed struc-
ture.

The JCLIN for a dependent function should not repeat data already provided in
the JCLIN of the base function.

� Do not use abbreviations.

SMP/E may not recognize all abbreviations.

� For copied members (except for ++MOD), use the SYSLIB and DISTLIB oper-
ands on the element statements instead of JCLIN to define copies.

� If possible, do not use continued utility control statements. Although SMP/E
tries to support all existing formats of the utility control statements, it cannot
completely duplicate the syntax checking of the utility. The safe method is to
use the simplest format of the utility control statement without continuations.

� Test the JCLIN data as follows:

204 MVS Packaging Rules

 Recommendations

– Perform RECEIVE, APPLY, and ACCEPT of the product on one system.

– Perform RECEIVE, ACCEPT BYPASS(APPLYCHECK), GENERATE of the
product on a second system.

– Compare the SMP/E reports from the two products, checking for discrepan-
cies.

– Compare every library, member by member, between the two products,
checking for discrepancies.

– Run the JCLIN data outside of SMP/E and compare the resulting load
modules with those built during the SMP/E installs. There should be no
differences.

End of Packaging Recommendations

Packaging Recommendations

Section 9.5

Although JCLIN can be used to identify copied elements, the preferred way of
copying elements other than ++MODs is to specify the DISTLIB and SYSLIB oper-
ands on the element MCS.

End of Packaging Recommendations

Packaging Recommendations

Section 9.5.1.3

If you develop a new release of a function that uses totally copied libraries, and the
new release copies the distribution library into a different target library from the pre-
vious release, you should instruct the users to delete the DLIB entry from the CSI
before they apply or accept the new release. This ensures that when SMP/E
installs the new release, it builds new DLIB entries pointing to only the new target
library.

End of Packaging Recommendations

Packaging Recommendations

Section 9.6

� Product A should not INCLUDE modules created by Product B unless all of the
following are true:

1. Product B is guaranteed to always be present in the same target zone as
Product A

2. The module always exists in the same library, no matter which release of
any product is present

3. The library containing the module is always guaranteed to exist

 Appendix A. Summary of Rules, Restrictions, and Recommendations 205

 Recommendations

If any of these conditions are not true, the product should use CALLLIBS
instead of explicit INCLUDEs.

� The LMOD RC parameter should be specified on every JCLIN NAME state-
ment. The value for each load module should match the expected return code
from link-editing that load module, and the highest value within the JCLIN for
an FMID should match the expected APPLY return code documented in the
installation instructions for the product.

� If a product's JCLIN specifies INCLUDE AABCMODS(element), the product
should REQ the product that installed the element into the library.

End of Packaging Recommendations

Packaging Recommendations

Section 9.6.2

EXPAND statements should not be used in JCLIN data, because they would be
saved in the LMOD entry and would cause the load module to be expanded each
time it is link-edited. This is not always desirable.

End of Packaging Recommendations

Packaging Recommendations

Section 9.6.2

IDENTIFY statements should not be used in JCLIN data. They are produced as
part of servicing a module. If found in the JCLIN, they are stored in the LMOD
entry and can result in incorrect data being stored during the application of service.

End of Packaging Recommendations

Packaging Recommendations

Section 10.3

The recommended approach is to use a unique, 3-character component code as
the first three characters of the element names, as mentioned above.

End of Packaging Recommendations

Packaging Recommendations

Section 10.4

The variable portion of the library name should be used to describe the library. For
example, the type of elements found in the library could be indicated by MOD,
MAC, or PNL, or the national language of the library could be indicated by identi-

206 MVS Packaging Rules

 Recommendations

fiers such as ENU, FRA, or ESP. Table 18 on page 129 lists the national lan-
guage identifiers.

End of Packaging Recommendations

Packaging Recommendations

Chapter 11

Each language-support dependent function should have its own unique FMID.

Each supported language should be individually orderable. Each package should
ship everything needed to install the function and the language, including all
required functions and installation publications.

Languages can be packaged in a number of ways, including:

� Each language has a separate FMID

� One language is included in the base function and the rest have separate
FMIDs

� All languages are packaged in the base FMID

The decision should be based on such factors as:

� If the language functions are large, separate FMIDs permit customers to save
space by only installing the languages they wish to use

� If most customers will want most or all of the languages, using a single FMID
makes installation easier without wasting space

� How many tapes will be required to ship the various combinations of functions?

End of Packaging Recommendations

Packaging Recommendations

Section 12.4

� Products should not provide jobs, execs, scripts, or instructions to create files
or directories under /var, /tmp, or /dev. If a product needs one of these directo-
ries for execution, it should be created dynamically by the product during exe-
cution.

� The permission bits for HFS files should be User=7, Group=5, Other=5 for exe-
cutables, and User=6, Group=4, Other=4 for all other files. (NOTE: there may
be some exceptions for daemons, started tasks, and other setuid 0 programs.)

� Products should not require a product-specific HFS. Instead, document the
amount of space needed for the product, and allow the installer decide whether
or not to install in the root HFS.

End of Packaging Recommendations

 Appendix A. Summary of Rules, Restrictions, and Recommendations 207

 Recommendations

208 MVS Packaging Rules

 MVS Service Packaging Rules

Appendix B. MVS Service Packaging Rules

This appendix specifies the rules and requirements for building all software fixes
that will be installed by SMP/E on MVS systems. It contains the following major
sections:

� B.1, “Introduction” introduces service packaging and the importance of standard
service packaging rules. This section also defines common terms that relate to
service and MVS service packaging.

� B.2, “MVS Service Packaging Rules” on page 212 defines the specifics of the
MVS service packaging rules. This section provides the reader with the detail
necessary to construct and package a PTF.

� B.3, “IBM Service Delivery” on page 234 describes the existing IBM processes
for MVS Service Delivery. These processes are those used by IBM product
owners and are available to all Independent Software Vendors (ISVs).

� B.4, “Naming Conventions for Service” on page 236 describes the naming con-
ventions for APAR or APAR fix and PTF SYSMOD IDs.

 B.1 Introduction
Most product owners provide problem resolutions when errors are discovered in
their software. These problem resolutions generally fall into three categories:

� Immediate, informal fixes (ZAPs)
� Formal, temporary fixes (APAR fixes)
� Formally tested and packaged permanent fixes (PTFs)

Creating the fixes requires the necessary software updates or replacements to be
built and tested. The way these elements are combined with installation
instructions is called service packaging. For MVS environments, the creation and
packaging of a permanent fix produces a PTF SYSMOD. Service packaging for
MVS is critical to successful PTF SYSMOD installation using SMP/E.

Adhering to the SMP/E syntax rules alone meets the basic requirement for service
packaging; however, each PTF SYSMOD can look different and require unique
installation activities. Because of these differences, product users continually
demand that service packaging be taken one step farther. Product users demand
that all MVS service be constructed according to one common format so that
unique installation methods are not required. When all MVS PTFs can be installed
similarly using SMP/E, software product maintenance becomes easier for product
users.

Use of standard MVS service packaging rules satisfies the product users' demand
and also benefits product owners. With these rules, product owners save time and
effort every time they create an MVS PTF.

The purpose of this appendix is to define and identify standard service packaging
rules for MVS. All MVS product owners should use it to package their PTFs
regardless of the service delivery methods that will be used.

 Copyright IBM Corp. 1986, 1999 209

 MVS Service Packaging Rules

 B.1.1 Service Terminology
The purpose of this section is to define common terms that are used throughout
this appendix.

Product owner
The originator of the software product and the supplier of service.
Product owners should adhere to MVS service and product pack-
aging rules.

Product user The customer licensed to use the software product. Product users
install and maintain the software product via FMIDs packaged in
relative-file format and PTFs packaged in either relative-file or
single-file format.

ZAP An informal correction to a software error. Product owners provide
ZAPs to users immediately to correct or bypass a severe problem.
ZAPs usually consist of a series of replacement program
instructions that the product user must install. ZAPs are not
always SMP/E-packaged.

APAR Authorized Program Analysis Report (APAR). The documented
record of a software error. APARs contain problem description
information including problem symptoms and elements affected.

APAR identifiers must have seven alphanumeric characters.
Consult B.4, “Naming Conventions for Service” on page 236 for an
explanation of APAR naming conventions and to avoid conflicts
with values used by IBM.

APAR fix An SMP/E-packaged, temporary correction for a software error.
APAR fixes are often designed for use by a specific product user.
APAR fixes are eventually replaced and superseded by permanent
fixes that are made available to all product users. APAR fixes are
identified to SMP/E by the ++APAR statement.

APAR fix SYSMOD IDs use the APAR identifier; however, an
APAR fix prefix is substituted for the actual APAR prefix (the
APAR fix prefix defaults to “A”). This substitution permits the
product owner to deliver different versions of APAR fixes with
unique APAR-related names. Product owners must supersede all
APAR fixes when packaging the permanent fix.

PTF Program Temporary Fix (PTF). Considered the official, permanent
correction to a software error. PTFs are built and packaged
according to service packaging rules. PTFs are made available to
all product users who consider them permanent fixes for existing
product releases. These fixes are eventually incorporated into the
next product release.

PTFs are identified to SMP/E by the ++PTF statement. PTF
SYSMOD IDs must have seven alphanumeric characters. Consult
B.4, “Naming Conventions for Service” on page 236 for an expla-
nation of PTF naming conventions and to avoid conflicts with
values used by IBM.

COMPID Component ID (COMPID). A nine-character alphanumeric product
identifier. It is used within APAR problem descriptions and PTFs
to identify the product affected by the problem and changes.

210 MVS Packaging Rules

 MVS Service Packaging Rules

COMPID is not the same as the unique three-character component
code or prefix for element and load module names described in
10.1, “Component Codes” on page 121.

Element An SMP/E-packaged module, macro, panel, book, message, and
so on, shipped as part of a product. Elements are maintained by
updates or replacements shipped via PTFs.

See 10.3, “Element, Alias, and Load Module Names” on page
122 for an explanation of element naming conventions and to
avoid conflicts with values used by IBM.

FMID Function Modification Identifier (FMID). Identifies the product that
owns the elements. You must specify one FMID on each SMP/E
++VER statement.

FMIDs are represented by seven alphanumeric characters. See
10.2, “SYSMOD IDs for Functions” on page 121 for an explanation
of FMID naming conventions and to avoid conflicts with values
used by IBM.

Cover letter A comment within a PTF containing its associated informal doc-
umentation. One cover letter is required within each MVS PTF.
Product owners are encouraged to specify more than the minimum
required information to assist the product users with planning and
PTF installation.

PTF cover letters can be identified by their placement before the
first ++HOLD, ++MOVE/RENAME/DELETE, or ++element state-
ment.

Single Fix Strategy
The basis of the MVS service packaging rules. It calls for product
owners to fix one or as few software errors as possible in a single
PTF packaged in single-file, inline format.

Corrective Service
Small packages of PTFs that are distributed to product users at
their request. These packages contain a requested PTF plus any
requisites and are intended to provide immediate resolution to
users experiencing a specific software problem.

Preventive Service or Expanded Service Options (ESO)
An accumulation of PTFs that have been incorporated into a single
package for ease of installation by product users to avoid software
problems. These packages are customized to different degrees
according to the product user's requirements.

Standard Service Delivery
The content of the delivered package regardless of corrective or
preventive delivery method. MVS service packages delivered must
contain the following information organized into separate files:

 � PTFs
� Package handling instructions, helpful hints, and so on
� Softcopy packaging list
� ERROR ++HOLD statements for PTFs-in-error
� UCLIN, if applicable

 Appendix B. MVS Service Packaging Rules 211

 MVS Service Packaging Rules

Standardization of file numbering and placement is not required.

B.2 MVS Service Packaging Rules
It is assumed that when constructing and packaging their MVS software products,
product owners understand and adhere to the rules, standards, and naming con-
ventions set forth in this manual and in the following books:

� SMP/E User's Guide
 � SMP/E Reference
� OS/390 SMP/E Commands (for OS/390)

This ensures that the appropriate relationships between products and functions
have been defined. These relationships specified via the ++FUNCTION, ++VER,
++IF, and ++element statements must be consistently represented and carried
forward within the PTFs for each product and function.

This section provides the rules to construct and package standard MVS PTFs that
will be installable by SMP/E. Specific IBM service restrictions have also been iden-
tified in this section. Planned process changes will eliminate these restrictions over
time, but for now, product owners who intend to have their service analyzed and
validated by IBM Software Delivery MVS PTF Control before distribution must pay
attention to these restrictions.

B.2.1 PTF Size, Format, and Content
Each product owner must balance the number of problems fixed and the number of
elements packaged in a single PTF with the effectiveness and impact of that PTF
for the product user. Although no rule has been established to limit the number of
problems (APARs) that can be fixed by a single PTF, the more elements packaged
in one PTF, the more testing required by the product user to apply the service.

As a guideline, a single PTF SYSMOD should not contain more than 70% of the
elements for the function to which it applies. When required to update or replace
more than 70% of the elements, the product owner should refresh the function
(integrate all available, existing service with the product) for redistribution to all
users. Product owners should also attempt to make it impossible to obtain an
entire product via PTF collections or combinations.

Packaging Rules

S151. Single PTF SYSMODs should not exceed 30 megabytes (Mb) in size.

IBM Service Restriction

Electronic delivery of Corrective Service packages is currently limited to 2 Mb
(compacted).

S152. PTFs must use the SMP/E inline packaging technique whenever possible.
This is a single file containing all elements of the PTF. Indirect library and relative
file packaging techniques should be avoided.

212 MVS Packaging Rules

 MVS Service Packaging Rules

IBM Service Restriction

Electronic delivery of MVS Corrective Service packages is currently limited to
single PTF files; therefore, the FILES operand is not supported on any SMP/E
modification control statement (MCS) within a PTF.

S153. File attributes for inline PTF SYSMODs must be fixed-block, 80-byte records
(RECFM=FB, LRECL=80). Single PTF files should not exceed a block size
(BLKSIZE) of 12960.

Note: SMP/E provides the GIMDTS service routine to assist inline packaging of
elements with other than fixed-block/80-byte data formats.

S154. Standard MVS PTFs must contain three distinct types of data:

� Instructions to SMP/E that identify what elements are in the PTF SYSMOD and
how to install them. These are modification control statements.

� Element update or replacement data.

� Documentation to the PTF user detailing its contents and special handling
instructions. This documentation must be located within the PTF (inline) and is
to be called the cover letter.

Note: Additionally, standard MVS PTFs can contain JCLIN.

S155. The SMP/E modification control statements within a PTF must use correct
syntax. SMP/E syntax rules are defined in the SMP/E Reference manual.

Appropriate MCS operands and parameters along with standard cover letter con-
struction are the basis of the following packaging rules.

B.2.2 Standard PTF Structure
The order and format of the standard MVS PTF is presented in the following
example. Pay attention to the inclusion of the modification control statements,
cover letter, and update and replacement elements. Required format and place-
ment of the modification control statements, cover letter, and update and replace-
ment elements are presented where applicable.

Note: Along with the cover letter, required modification control statements and
operands are highlighted .

 Appendix B. MVS Service Packaging Rules 213

 MVS Service Packaging Rules

Example

++ PTF(tsnnnn5) /\ 5752-SC123-tvvvrrr \/.
++ VER(srel)
 FMID(tvvvrrr)
 PRE(tsnnnn4)
 REQ(tsnnnn2)

 SUP(asnnnnn,tsnnnn3)
 VERSION(tvvvrrr).
++ IF FMID(tvvvrrr) REQ(tsnnnnn)
 /\

(See B.2.3, “PTF Cover Letter” on page 222 for required information.)
 \/.
++ HOLD...
++ MOVE...
++ RENAME...
++ DELETE...
++ JCLIN...
++ element...
++ element...
++ element...
++ element...

 B.2.2.1 ++PTF
Packaging Rules

S156. An MVS PTF SYSMOD must begin with the SMP/E ++PTF statement. The
++PTF statement must include the PTF number, or PTF SYSMOD ID, and a
comment containing the applicable nine-character alphanumeric component ID or
COMPID (product identifier).

IBM Service Restriction

The ++PTF statement must also include the function modification identifier
(FMID). The COMPID/FMID specified within the comment on the ++PTF state-
ment must be identical to the first, if more than one, COMPID/FMID specified in
the COMPONENT section of the PTF cover letter, and the FMID must match
the FMID coded on the first ++VER statement of the PTF. The hyphens within
and between the component and function modification identifiers, as illustrated
in the example, are required.

S157. The PTF SYSMOD ID, tsnnnn5 in the example, must have seven alphanu-
meric characters (A–Z and 0–9).

� Consult B.4, “Naming Conventions for Service” on page 236 for values used by
IBM to avoid conflicts with the PTF prefix values (that is, ts).

Note: “PX” has been set aside as the Business Partner PTF prefix value for
vendor service that will be recorded in RETAIN.

� It is recommended that the five-digit PTF numbers 90000–90999 be used only
for those PTFs that are considered to ship Small Programming Enhancements
(SPEs).

214 MVS Packaging Rules

 MVS Service Packaging Rules

S158. Do not use the REWORK operand on the ++PTF statement. When a PTF
is discovered to be in error, build a new PTF that supersedes the erroneous PTF.

IBM Service Restriction

The REWORK operand is not supported on the ++PTF statement. It is
reserved for use by IBM Software Delivery processes.

S159. You must code the ++PTF statement and required comment on the same
line.

S160. The COMPID, 5752-SC123 in the example, must be nine alphanumeric
characters. The COMPID used should identify the orderable product to which the
PTF applies.

Note: PTFs created by product owners using RETAIN must list the COMPID value
that is registered in RETAIN.

 B.2.2.2 ++VER
The ++VER statement and its operands describe the environment required for
SMP/E to install the PTF SYSMOD.

Packaging Rules

S161. You must code at least one ++VER statement in each MVS PTF.

S162. The ++VER statement must immediately follow the ++PTF statement.

S163. Each PTF ++VER statement must specify only one system release (SREL).
See 7.2.2, “Identifying the SREL” on page 57 for valid SREL values.

S164. The DELETE operand must not be specified on a PTF ++VER statement.

S165. The NPRE operand must not be specified on a PTF ++VER statement.

S166. Each PTF ++VER statement must specify a single FMID.

S167. FMIDs must have seven alphanumeric characters. See 10.2, “SYSMOD IDs
for Functions” on page 121 for naming conventions and values used by IBM.

S168. ++VER statements within the same PTF must not specify functions that can
coexist.

S169. A single PTF can be used to fix common code between multiple FMIDs of a
product only if the FMIDs cannot coexist within the same SREL and neither
++JCLIN nor UCLIN is required.

S170. The VERSION operand list of a PTF ++VER statement must specify only
FMIDs that are within the same product domain and can coexist with the FMID
coded on the PTF ++VER statement.

S171. When updating a current function by adding elements that exist in func-
tionally lower functions, you must use the VERSION operand on either the ++VER
or the individual ++element statements associated with the elements being added.

 Appendix B. MVS Service Packaging Rules 215

 MVS Service Packaging Rules

The VERSION operand list must specify all functionally lower FMIDs that had this
element.

S172. Only SMP/E product PTFs can reference an SMP/E PTF. Any dependency
on SMP/E service levels must not be specified via SMP/E ++VER statements. You
must specify these dependencies via SYSTEM ++HOLD statements with
REASON(DEPENDENCY).

S173. Within a single ++VER statement, all SYSMODs specified in the PRE, REQ,
or VERSION operand lists must be applicable to the same SREL specified on that
++VER statement.

S174. PTF ++VER statements can specify only PTF SYSMODs as PREs and
REQs.

S175. All ++VER SREL/FMID combinations and all SYSMODs referenced by PRE,
REQ, or VERSION operands must be applicable to a previously announced func-
tion, product, and SREL.

S176. When a PTF PREs another PTF that has requisites (PRE, REQ, or IF),
those requisites should not be specified for the current, PTF that specifies them as
prerequisites.

S177. Element intersections must not exist between a PTF and its corequisite
(REQ) PTFs when both specify the same SREL/FMID.

S178. Defining corequisites (++VER REQ) between PTFs must occur in both
directions either explicitly (by REQ or ++IF) or by superseding another PTF that
satisfies the reference.

S179. Any PTF that is part of a set fixing the same APAR should PRE, REQ, or
++IF any PTFs for the same SREL that contain an element that is not common to
the current PTF. (This rule does not apply to PTF sets that contain only language-
sensitive elements.)

S180. The SUP operand is always required on the PTF ++VER statements. The
SUP operand must list at least one (and all, when multiple exist) APAR SYSMOD
being fixed for the first time by that PTF and all APARs fixed by PTFs being super-
seded.

Note: When superseding the APAR SYSMOD, you must specify the APAR fix
prefix rather than the true APAR prefix (that is, use AL, AR, AW, AX or AY;
not, PL, IR, OW, BX, or OY). When multiple versions of a corrective APAR
SYSMOD have been distributed, you should supersede each version of the
APAR fix prefix.

Consult B.4, “Naming Conventions for Service” on page 236 for valid APAR fix
prefix values.

S181. Superseding PTFs must reference all of the PREs, REQs, ++IFs, and SUPs
of the superseded PTF. These references can be explicit or via PTFs that are
specified as a prerequisite (PRE) or corequisite (REQ) by the current, superseding,
PTF.

216 MVS Packaging Rules

 MVS Service Packaging Rules

S182. PTF ++VER statements can only SUP PTF SYSMODs that are applicable to
the same SREL/FMID combination.

S183. When one PTF SUPs another, the following items from the PTF being
superseded must be wholly contained (with the same data, format, and same
operand lists) in the current PTF or in the combination of the current PTF and its
corequisite (REQ) PTFs (of same SREL/FMID):

 � VERSION operands
 � ++HOLD statements
 � ++MOVE statements
 � ++RENAME statements
 � ++DELETE statements
 � ++JCLIN statements
 � Update elements
 � Replacement elements
 � UCLIN data

 B.2.2.3 ++IF
Packaging Rules

S184. ++IF statements should follow the ++VER statement to which they apply.

S185. The FMID specified in any PTF ++IF statement must be different from the
FMID specified on the ++VER statement to which it is associated.

S186. The REQ operand on the ++IF statement must only specify PTF SYSMODs.

S187. PTF ++IF statements can describe dependencies between two products,
even if those products have different SRELs. If the products have different SRELs,
the PTF must contain a SYSTEM ++HOLD MCS specifying REASON(DEP).

S188. PTFs must not specify ++IFs to functions that unconditionally coexist with
the FMID specified on the ++VER statement to which it applies. Specify these ref-
erences via PRE or REQ.

S189. Any PTFs that are part of a set fixing the same APAR and that apply to the
same SREL should contain a ++IF statement to the PTFs at the functionally higher
level.

S190. Any PTFs that are part of a set fixing the same APAR and that apply to the
same SREL should contain a ++IF statement to all of the PTFs at a functionally
higher level when those PTFs contain at least one common element as the current
PTF. (This rule does not apply to PTF sets that contain only language-sensitive
elements.)

S191. Any PTF that is part of a set fixing the same APAR should PRE, REQ, or
++IF any PTFs for the same SREL that contain an element that is not common to
the current PTF. (This rule does not apply to PTF sets that contain only language-
sensitive elements.)

 Appendix B. MVS Service Packaging Rules 217

 MVS Service Packaging Rules

 B.2.2.4 ++HOLD
Example

++HOLD (ptf_sysmodid) SYSTEM FMID (fmid) REASON (reason_id)
DATE (yyddd) COMMENT (describe special processing or required
installation activities here).

Packaging Rules

S192. SYSTEM is the only HOLD type allowed within a PTF.

S193. The ptf_sysmodid must match the PTF SYSMOD value specified on the
++PTF statement.

Note: If the PTF is to be installed by an OS/390 system at Release 3 or later,
then the ptf_sysmodid must match one of the following:

� the PTF SYSMOD value specified on the ++PTF statement.

– or –

� a PTF SYSMOD value superseded on all ++VER statements.

S194. Consult the SMP/E Reference manual for currently supported, valid
SYSTEM REASONs (reason_ids).

S195. When used, there must be a ++HOLD statement for each different FMID
specified on the ++VER statements that is affected by the reason for the HOLD.

S196. Only one ++HOLD statement for a reason_id per FMID is allowed within a
PTF.

S197. The DATE operand is required, and the value specified for yyddd should
reflect the date on which the ++HOLD statement was generated.

S198. The COMMENT field is required and must contain the description of the
reason for the HOLD status and any special activities that must be performed.

S199. Whenever a ++HOLD statement is used within a PTF, it is recommended
that the SPECIAL CONDITIONS section of the PTF cover letter also contain the
COMMENT information. Refer to B.2.3, “PTF Cover Letter” on page 222 for more
details.

IBM Service Restriction

Whenever a ++HOLD statement is used within a PTF, the SPECIAL CONDI-
TIONS section of the PTF cover letter must contain the COMMENT information.
Refer to B.2.3, “PTF Cover Letter” on page 222 for more details.

S200. You must place ++HOLD statements after all ++VER and ++IF statements
but immediately before any ++MOVE, ++RENAME, ++DELETE, or ++element state-
ments.

S201. You must not use the CLASS operand on PTF ++HOLD statements. It is
reserved for use by IBM.

218 MVS Packaging Rules

 MVS Service Packaging Rules

B.2.2.5 ++MOVE, ++RENAME, ++DELETE
Because SMP/E will not restore a PTF containing a ++DELETE statement, it is
recommended that ++DELETE be used in smaller PTFs to reduce the risk of users
needing to restore these PTFs.

Packaging Rules

S202. A PTF can only ++MOVE, ++RENAME, or ++DELETE an LMOD that is
within the domain of the functions specified in the PTF ++VER statements.

S203. A PTF can contain only one ++MOVE statement for a given LMOD “TO” the
same data set.

S204. A maximum of two ++MOVE statements are allowed for an LMOD within
PTFs, one ++MOVE for each library.

S205. A PTF that supersedes another PTF containing a ++MOVE statement must
identically carry that statement forward, unless the current PTF is deleting the
LMOD via ++DELETE.

S206. If a PTF must ++MOVE the element or LMOD to a different data set, that
PTF must PRE any previous PTFs that renamed the LMOD or contained a
++MOVE for the same element.

S207. A PTF can contain no more than one ++RENAME or ++DELETE statement
for a given LMOD.

S208. For each PTF containing a ++MOVE statement for a MOD, MAC, or SRC,
its ++VER statement must:

� PRE or SUP the last previous PTF for the same SREL/FMID combination (if
one exists) that moved that element

� PRE or SUP the last previous PTF for the same SREL/FMID combination that
replaced that element

� PRE or SUP all PTFs for the same SREL/FMID combination that updated the
element since it was last replaced or moved

� PRE the last previous PTF that renamed the element

S209. PTFs containing a ++RENAME statement must PRE, not SUP, the last pre-
vious PTF (if one exists) that contained a ++RENAME or ++MOVE statement for
the same element.

S210. When superseding a PTF that used UCLIN to perform a MOVE, RENAME,
or DELETE, the current PTF must include a ++MOVE, ++RENAME, or ++DELETE
statement to perform the same action.

S211. ++MOVE, ++RENAME, and ++DELETE must follow all ++VER, ++IF, and
++HOLD statements.

S212. All modification control statements following ++MOVE, ++RENAME, or
++DELETE statements must properly reference the new element information desig-
nated by these statements.

 Appendix B. MVS Service Packaging Rules 219

 MVS Service Packaging Rules

S213. When superseding a PTF that contained a ++DELETE, the current PTF
must identically carry the ++DELETE forward.

S214. When a PTF contains a ++DELETE statement, it must PRE or SUP any
previous PTFs that contained ++MOVE or ++RENAME for the same LMOD.

S215. PTFs that contain ++DELETE statements must contain a SYSTEM ++HOLD
with REASON(DELETE).

 B.2.2.6 ++JCLIN
Packaging Rules

S216. You can include only one ++JCLIN statement in a PTF.

S217. You must carry forward ++JCLIN and associated data from superseded
PTFs.

S218. You must place the ++JCLIN statement after any and all ++VER, ++IF,
++MOVE, ++RENAME, or ++DELETE statements but before the first ++element
statement.

 B.2.2.7 ++element
Packaging Rules

S219. See 10.3, “Element, Alias, and Load Module Names” on page 122 for infor-
mation and restrictions regarding element naming conventions.

S220. Each element packaged within an MVS PTF must be in either update or
replacement format. You must provide data immediately following the ++element
statement unless you are using the DELETE operand.

S221. A single PTF can contain both update and replacement forms of elements;
however, a single PTF cannot contain the same type update and replacement (that
is, MACUPD and MAC) for the same element.

S222. When adding an element to an FMID, the PTF must contain the replace-
ment form of the element.

S223. When specifying an update PTF as a prerequisite, the current PTF must not
include the previous updates.

S224. When superseding an update PTF, the current PTF must include all pre-
vious updates.

S225. For each update element within a PTF, each ++VER statement must:

� PRE the last previous PTF for the same SREL/FMID combination (if one exists)
that replaced the element

� PRE or SUP all previous PTFs for the same SREL/FMID combination that
updated the element since it was last moved or replaced

� PRE or SUP the last previous PTF for the same SREL/FMID combination that
moved the element

220 MVS Packaging Rules

 MVS Service Packaging Rules

Notes:

1. If the last previous PTF moved the element and contained a replacement
for the element, then you must specify that PTF as a prerequisite and not
supersede it.

2. An update PTF that has been superseded by another update PTF is men-
tioned as a PRE for the current PTF can be omitted from the PRE list.

S226. For each replacement element within a PTF, each ++VER statement must:

� PRE or SUP the last previous PTF for the same SREL/FMID combination (if
one exists) that replaced the element

� PRE or SUP all PTFs for the same SREL/FMID combination that updated the
element since it was last moved or replaced

� PRE or SUP the last previous PTF for the same SREL/FMID combination that
moved the element

S227. When updating a function by adding elements that exist in functionally lower
functions, you must use the VERSION operand on either the ++VER or the indi-
vidual ++element statements associated with the elements being added. The
VERSION operand list should specify all functionally lower FMIDs that had this
element.

S228. The PTF must identify any element to be deleted by using the replacement
format of the ++element statement.

S229. When deleting an element that has multiple forms, you must individually
delete each form.

S230. Do not provide data for an element being deleted. Only the ++element
statement with the DELETE operand is required.

S231. When one PTF supersedes another PTF that contained a ++element
DELETE, the current PTF must carry the ++element DELETE forward.

S232. ++element statements for the same part with different element types must
specify different libraries.

S233. The RMID operand must not be used on any ++element statement.

S234. Data types for existing elements can be changed only by deleting the
existing element and adding a new element.

IBM Service Restriction

Currently, to delete an existing element and add a new element with the same
name, you must use two PTFs whenever the new element is being added to the
same DISTLIB as the original element.

S235. PTFs must not require a newer version or release of SMP/E than the
product itself did.

 Appendix B. MVS Service Packaging Rules 221

 MVS Service Packaging Rules

 B.2.2.8 UCLIN
Packaging Rules

S236. Avoid using UCLIN data within a PTF. (For assistance with UCLIN avoid-
ance, contact the owner of this manual.)

S237. If UCLIN is required, you must deliver it as PTF documentation within the
SPECIAL CONDITIONS section of the cover letter.

S238. Each PTF containing UCLIN must include a SYSTEM ++HOLD with
REASON(ACTION) to alert the product user of the UCLIN steps.

S239. “SET BDY” must be the first statement of the UCLIN data.

S240. “ENDUCL” must be the last statement of the UCLIN data.

 B.2.2.9 Other
S241. The ++FUNCTION statement is not allowed within PTFs.

IBM Service Restriction

The ++ASSIGN statement must not be used within PTFs. It is reserved for use
by IBM Software Delivery Solutions processes.

IBM Service Restriction

A PTF is not allowed to change the attributes of a distribution library. The build
process for CBIPO orders uses the library information from the original product,
and does not recognize any subsequent changes.

B.2.3 PTF Cover Letter
The cover letter is that portion of the PTF containing informal documentation. The
cover letter is constructed as a large comment. PTF summary information along
with special handling instructions are provided within this comment.

Many IBM service restrictions exist today regarding the MVS PTF cover letter
content, format, and placement. Remember that these restrictions apply only to
those PTFs that will be analyzed and validated by IBM Software Delivery Solutions
MVS PTF Control before distribution.

All product owners must adhere to the minimum data requirements for the standard
MVS PTF Cover Letter identified by the Packaging Rules . It is suggested that
product owners consult the expanded descriptions contained within the IBM Soft-
ware Delivery Solutions Restrictions to obtain information and guidelines about
additional cover letter content.

Packaging Rules

S242. Product owners must include one, and only one, cover letter in each MVS
PTF.

Note: There are no restrictions limiting the size of PTF cover letters. When con-
structing cover letters, product owners should consider the guideline docu-

222 MVS Packaging Rules

 MVS Service Packaging Rules

mented earlier concerning single PTF SYSMOD size. Product owners using
RETAIN should also remember that RETAIN allows a maximum of 590
64-byte records of problem summary information to be entered on the
Responder Page of the APAR record (use of the PIN command can reduce
this maximum).

The standard MVS PTF Cover Letter is presented in the example that follows.

Note: All required headings are highlighted . Keywords within the SPECIAL
CONDITIONS section are entered dependent on the PTF content.

Example

 /\
 PROBLEM DESCRIPTION(S):

COMPONENT: or PRODUCT ID:

APARS FIXED:

 SPECIAL CONDITIONS:

 COPYRIGHT:
 INTEGRITY:
 ACTION:
 AO:
 DELETE:
 DEPENDENCY:
 DOCUMENTATION:
 EC:
 ENHANCEMENT:
 EXRF:
 FULLGEN:
 IOGEN:
 MSGSKEL:
 MVSCP:
 UCLIN:
 NONE:

 COMMENTS:
 \/.

Packaging Rules

The cover letter is handled as one single comment by SMP/E. This is accom-
plished by use of the SMP/E start-of-comment delimiter (/*) and the end-of-
comment delimiter (*/).

Specific columns will be outlined for the placement of all headings and keywords
within the cover letter. Except for the cover letter delimiters (/* and */), the specific
columns are intended for appearance purposes only. No PTF is considered to
have violated the MVS service packaging rules for violation of these cosmetic
column requirements unless the violation causes the PTF to be either unacceptable
to or incorrectly installed by SMP/E.

S243. The cover letter must follow the SMP/E ++PTF statement and precede the
first ++HOLD, ++MOVE/RENAME/DELETE, or ++element statement. The cover
letter becomes part of an SMP/E statement.

 Appendix B. MVS Service Packaging Rules 223

 MVS Service Packaging Rules

IBM Service Restriction

The cover letter must immediately follow the last SMP/E ++VER or ++IF state-
ment and immediately precede the first ++HOLD, ++MOVE/RENAME/DELETE,
or ++element statement. Therefore, the cover letter becomes part of the last
SMP/E ++VER statement (or the last ++IF statement, if one is present) of the
PTF.

S244. To start the cover letter, remove the period ending the SMP/E statement
preceding the cover letter and place the /* after column one on the next line. The
cover letter text must start on the following line.

IBM Service Restriction

To start the cover letter, remove the period ending the last ++VER statement (or
the last ++IF, if one exists) and place the /* after column one on the next line.
The cover letter text must start on the following line.

S245. To end the cover letter, use the */ followed by a period after column one on
a separate line.

S246. */ must not be used within the PTF cover letter text except to end the cover
letter. /* and //* can be used within the PTF cover letter text.

S247. You must enter cover letter text into four sections, which are identified by
headings. These are highlighted in the example. All four cover letter sections are
mandatory.

IBM Service Restriction

You must enter cover letter text into five sections, which are identified by
headings. APARS FIXED: is the heading identifying the additional section
required. All five cover letter sections are mandatory.

S248. Section headings must not be used more than once within the cover letter.

IBM Service Restriction

Cover letter sections and headings must appear in the same order as presented
in the example.

S249. Each section's heading should start in column 3, must be capitalized, and
must include a colon as illustrated in the example. Enter data for each heading two
columns past the colon and must not exceed column 72. You can continue data on
the following line after column 6.

224 MVS Packaging Rules

 MVS Service Packaging Rules

S250. SPECIAL CONDITIONS keywords should begin after column 4, must be
capitalized, and must include a colon. Data for each SPECIAL CONDITIONS
keyword should begin two columns past the colon and must not exceed column 72.
Data can be continued on the following line after column 6.

At this point, each heading and SPECIAL CONDITIONS keyword will be identified
and discussed individually.

 B.2.3.1 PROBLEM DESCRIPTION(S):
Example

 PROBLEM DESCRIPTION(S):
BX11131 - PROGRAM CHECK IN xxxx WHEN EOF RECORD FOUND ON THE LAST

TRACK OF A CYLINDER.
BX12347 - INVALID ERROR MESSAGE WHEN I/O ERROR OCCURS DURING EXPORT.
BX13579 - INTEGRITY PROBLEM

Packaging Rules

S251. Specify all new APARs (or software error identifiers) fixed by the current
PTF. Additionally, the PTF owner can opt to include APAR numbers and problem
descriptions for APARs fixed previously by PTFs that are being referenced (speci-
fied as a prerequisite or corequisite, or as superseded) by the current PTF.

IBM Service Restriction

Specify the original APAR prefix; not, the APAR fix prefix (that is, use PL, IR,
OW, BX, or OY; not, AL, AR, AW, AX, or AY).

S252. Enter a brief summary of the problem documented by each APAR listed.

S253. If the APAR describes an integrity or security problem, then only the words
“INTEGRITY PROBLEM” are to be listed as the problem description text.

B.2.3.2 COMPONENT: or PRODUCT ID:
Example

 COMPONENT: 5752-SC123-tvvvrr1
 5752-SC124-tvvvrr2

Packaging Rules

S254. You must specify the full nine-character alphanumeric component ID or
product identifier applicable to the PTF in this section.

S255. For a multi-component or multi-product PTF, you must list all the compo-
nents or products affected on a separate line.

S256. The first COMPID or product identifier specified in this section must be iden-
tical to that specified within the comment on the ++PTF statement.

 Appendix B. MVS Service Packaging Rules 225

 MVS Service Packaging Rules

IBM Service Restrictions

� You must use the COMPONENT: heading, not the PRODUCT ID: heading.

� You must specify the full nine-character alphanumeric component ID and
function identifier (separated by hyphens) applicable to the PTF in this
section.

� For a multi-component PTF, you must list all the components affected with
each COMPID/FMID on a separate line.

� The first COMPID/FMID specified in the COMPONENT: section must be iden-
tical to that specified within the comment on the ++PTF statement.

 B.2.3.3 APARS FIXED:
This heading and section are optional for product owners who choose not to have
their PTFs analyzed and validated by IBM Software Delivery MVS PTF Control
before distribution.

Example

APARS FIXED: BXð4442,BXð4497,BX1415ð,BX17654,BX22ððð,BX32ð5ð,
 BX3515ð

IBM Service Restrictions

� Specify those APAR numbers that are being fixed for the first time in all of
the environments stated in the ++VER statements. Additionally, the PTF
owner can opt to enter any APARs fixed by PTFs that are being super-
seded by the current PTF.

� Use the complete APAR number including the original APAR prefix, not the
APAR fix prefix (that is, use PL, IR, OW, BX, or OY; not, AL, AR, AW, AX,
or AY).

� Do not list an APAR number more than once, even if the APAR is fixed in
multiple environments by the PTF.

� Include a comma or space (or both) between each APAR number specified.

 B.2.3.4 SPECIAL CONDITIONS:
Use the SPECIAL CONDITIONS keywords based on the PTF content (individual
keyword descriptions follow).

Packaging Rules

S257. When a PTF has special information that cannot be represented in the
SMP/E modification control statements or if the PTF requires the use of the
++HOLD facility, you must include descriptive information in this section of the
cover letter.

S258. List the keywords that are applicable to the PTF.

S259. Do not use the SPECIAL CONDITIONS: heading or any of its keywords more
than once, unless otherwise indicated.

226 MVS Packaging Rules

 MVS Service Packaging Rules

S260. If none of the keywords are applicable, you must list the NONE: keyword.

COPYRIGHT: Check with your company regarding legal requirements and guide-
lines for copyright statements.

Note: All IBM licensed code must contain a copyright statement and property
legend.

Example

This example shows an original copyright date of 1976 for an IBM domestic
licensed product. The XXXX could show the date of a later modification.

 SPECIAL CONDITIONS:
COPYRIGHT: 574ð-xx2 (C) COPYRIGHT IBM CORP. 1976 XXXX

LICENSED MATERIAL - PROGRAM PROPERTY OF IBM

Packaging Rules

S261. If applicable, enter one, and only one, copyright statement.

Note: Typically, a copyright statement contains the program number, the copyright
symbol or “(C),” the word “COPYRIGHT,” the owner's name, and the date of
copyright. In case of modifications derived from the original code, multiple
dates can be shown. However, if only one date is shown, it must be the
original date rather than the modification date.

 INTEGRITY: Example

 SPECIAL CONDITIONS:
 INTEGRITY: PX3ð181,PX3ð182,PX3ð192,PX3ð194,
 PX3ð196,PX3ð197

 (or)

 SPECIAL CONDITIONS:
 INTEGRITY:

INTEGRITY SET: PX3ð181,PX3ð182,PX3ð192,PX3ð194,
 PX3ð196,PX3ð197

Packaging Rules

S262. Specify the INTEGRITY: keyword when the PTF corrects a system exposure
that allowed unauthorized access to protected resources.

S263. All PTFs within a set fixing the same integrity problem must be listed fol-
lowing the INTEGRITY: keyword. Separate the PTF numbers with commas or
blanks.

S264. For a set containing only one PTF, list only that PTF after the INTEGRITY:
keyword.

 Appendix B. MVS Service Packaging Rules 227

 MVS Service Packaging Rules

IBM Service Restrictions

� Specify the INTEGRITY: and INTEGRITY SET: keywords when the PTF cor-
rects a system exposure that allowed unauthorized access to protected
resources.

� You must use the INTEGRITY: and INTEGRITY SET: keywords.
together.

� All PTFs within a set that fix the same integrity problem must be listed fol-
lowing the INTEGRITY SET: keyword. Separate the PTF numbers with
commas or blanks.

� For a set containing only one PTF, list only that PTF after the INTEGRITY
SET: keyword.

 ACTION: Example

 SPECIAL CONDITIONS:
ACTION: A “CLPA” MUST BE PERFORMED AT IPL TIME FOR THIS
PTF TO BECOME ACTIVE.

ACTION: RUN AN ACCEPT, NOAPPLY OF THIS PTF. AFTER IT IS
ACCEPTED, RUN A LINK EDIT JOB TO ALLOW THE “RENT”
ATTRIBUTE TO BE TURNED ON.

Packaging Rules

S265. Use the ACTION: keyword whenever the PTF requires an action by the
product user that is not covered by any of the other SPECIAL CONDITIONS
keywords.

S266. Use ACTION: as many times as there are unique actions required. If multiple
ACTIONS are specified, you must enter them as new paragraphs.

S267. With this keyword, the PTF must be held from installation until the condition
has been taken care of by the user. The PTF must contain an inline SYSTEM
++HOLD statement with REASON(ACTION).

 AO: Example

 SPECIAL CONDITIONS:
AO: NEW OPERATOR MESSAGE IEA278I

Packaging Rules

S268. Use the AO: keyword whenever the PTF requires action to change auto-
mated operations procedures, associated data sets, and user exits in products or in
customer applications.

S269. Use AO: as many times as there are unique actions required. If multiple AO:
actions are specified, you must enter them as new paragraphs.

S270. With this keyword, the PTF must be held from installation until the condition
has been taken care of by the user. The PTF must contain an inline SYSTEM
++HOLD statement with REASON(AO).

228 MVS Packaging Rules

 MVS Service Packaging Rules

 DELETE: Example

 SPECIAL CONDITIONS:
DELETE: THIS PTF CONTAINS A ++DELETE MCS FOR THE FOLLOWING LMODS:

 LMOD1 SYSLIB1
 LMOD2 SYSLIB5
 LMOD3 SYSLIB1, SYSLIB5

SMP/E WILL NOT RESTORE THIS PTF.

APPLY AND ACCEPT THIS PTF BY INCLUDING A
BYPASS(HOLDSYS(DELETE)) ON THE APPLY AND ACCEPT CMDS.

Packaging Rules

S271. Specify the DELETE: keyword any time the PTF contains a ++DELETE state-
ment.

S272. With this keyword, the PTF must be held from installation until the condition
has been taken care of by the user. The PTF must contain an inline SYSTEM
++HOLD statement with REASON(DELETE).

 DEPENDENCY: Example

 SPECIAL CONDITIONS:
DEPENDENCY: XXXXX LEVEL 6.27 REQUIRED PRIOR TO INSTALLING

 THIS SYSMOD.

Packaging Rules

S273. Specify the DEPENDENCY: keyword any time the PTF has a software depend-
ency that cannot be specified on a ++VER or ++IF statement.

Note: Only SMP/E product PTFs can reference an SMP/E PTF. You must specify
any dependency on SMP/E service levels via the DEPENDENCY: keyword.

S274. Insert a brief description that provides specific instructions to be followed
before, during, or after the installation of the PTF to satisfy the dependency.

S275. Use DEPENDENCY: as many times as there are unique dependencies related
to this PTF.

S276. With this keyword, the PTF must be held from installation until the condition
has been taken care of by the user. The PTF must contain an inline SYSTEM
++HOLD statement with REASON(DEP).

 DOCUMENTATION: Example

 SPECIAL CONDITIONS:
DOCUMENTATION: NEW MESSAGE IDC116I ADDED.

 MESSAGE (text)
 EXPLANATION (text)

SYSTEM ACTION (text)
PROGRAMMER OR OPERATOR RESPONSE (text)

 Appendix B. MVS Service Packaging Rules 229

 MVS Service Packaging Rules

Packaging Rules

S277. Specify the DOCUMENTATION: keyword any time the PTF adds a message,
code, or command; expands on them; or changes their meaning, text or definition.

S278. Enter important information that should be read or recorded before PTF
installation.

S279. Use DOCUMENTATION: as many times as there are unique messages or codes
added or changed by this PTF.

S280. With this keyword, the PTF must be held from installation until the condition
has been taken care of by the user. The PTF must contain an inline SYSTEM
++HOLD statement with REASON(DOC).

 EC: Example

 SPECIAL CONDITIONS:
EC: EC123456 REQUIRED ON xxxx PRIOR TO INSTALLING THIS PTF.

Packaging Rules

S281. Specify the EC: keyword any time the PTF has a hardware dependency.

S282. Following the keyword, enter all information necessary for the product user
to satisfy the dependency.

S283. Use EC: as many times as there are unique hardware dependencies related
to this PTF.

S284. With this keyword, the PTF must be held from installation until the condition
has been taken care of by the user. The PTF must contain an inline SYSTEM
++HOLD statement PTF with REASON(EC).

 ENHANCEMENT: Example

 SPECIAL CONDITIONS:
ENHANCEMENT: PTF IMPLEMENTS DEVICE SUPPORT FOR D/T XXXX

Packaging Rules

S285. You must use the ENHANCEMENT: keyword for PTFs that add program
options or new functions, or those that contain Small Programming Enhancements
(SPEs). SPE PTFs are denoted by the five-digit PTF number of 90000-90999.

S286. You must enter text to describe the new or enhanced function.

S287. Use ENHANCEMENT: as many times as there are unique enhancements to
identify.

230 MVS Packaging Rules

 MVS Service Packaging Rules

 EXRF: Example

 SPECIAL CONDITIONS:
EXRF: IF THIS IS AN XRF ENVIRONMENT, THIS MAINTENANCE
MUST BE APPLIED TO ALL SYSTEMS IN THIS ENVIRONMENT AT
THE SAME TIME. USERS NOT USING XRF SHOULD USE THE
BYPASS FOR THIS REASON CODE.

Packaging Rules

S288. Specify the EXRF: keyword when the PTF applies to an Extended Recovery
Facility Environment (MVS/XA, CICS/MVS, IMS, DFP, VTAM or NCP), and the PTF
must be applied to all XRF systems at the same time to maintain system compat-
ibility.

S289. Use EXRF: as many times as there are unique installation instructions
required. You must specify multiple entries of EXRF: as new paragraphs.

S290. With this keyword, the PTF must be held from installation until the condition
has been taken care of by the user. The PTF must include an inline SYSTEM
++HOLD statement with REASON(EXRF).

 FULLGEN: Example

 SPECIAL CONDITIONS:
FULLGEN: SYSGEN REQUIRED FOR COMPLETE IMPLEMENTATION OF
THE FIX SUPPLIED BY THIS PTF - GENTYPE = ALL

Packaging Rules

S291. Specify the FULLGEN: keyword any time the PTF requires a SYSGEN to be
effective.

S292. Enter specific instructions to be followed before, during, or after the applica-
tion of the PTF.

S293. With this keyword, the PTF must be held from installation until the condition
has been taken care of by the user. The PTF must include an inline SYSTEM
++HOLD statement with REASON(FULLGEN).

 IOGEN: Example

 SPECIAL CONDITIONS:
IOGEN: YOU MUST PERFORM AN I/O GENERATION FOR COMPLETE
IMPLEMENTATION OF THE FIX SUPPLIED BY THIS PTF.
GENTYPE = IO

Packaging Rules

S294. Specify the IOGEN: keyword any time the PTF requires an I/O generation or
other partial generation to become effective.

S295. Enter specific instructions to be followed before, during, or after the applica-
tion of the PTF.

 Appendix B. MVS Service Packaging Rules 231

 MVS Service Packaging Rules

S296. With this keyword, the PTF must be held from installation until the condition
has been taken care of by the user. The PTF must include an inline SYSTEM
++HOLD statement with REASON(IOGEN).

 MSGSKEL: Example

 SPECIAL CONDITIONS:
MSGSKEL: IF USING THE MVS MESSAGE SERVICE (MMS), USE THE
MVS MESSAGE COMPILER AS A POST INSTALL STEP TO UPDATE THE
RUN TIME LIBRARY(S). FAILURE TO UPDATE THE RUN TIME
LIBRARY(S), MAY RESULT IN DISPLAY OF ENGLISH MESSAGE TEXT ONLY.

Packaging Rules

S297. Enter the MSGSKEL: keyword any time the PTF contains message changes
that must be compiled in order for translated versions of the message changes to
become operational on extended TSO consoles.

S298. Use MSGSKEL: as many times as there are unique actions that are required
to make the PTF changes operational.

S299. With this keyword, the PTF must be held from installation until the condition
has been taken care of by the user. The PTF must contain an inline SYSTEM
++HOLD statement with REASON(MSGSKEL).

 MVSCP: Example

 SPECIAL CONDITIONS:
MVSCP: YOU MUST EXECUTE THE MVS CONFIGURATION PROGRAM FOR
COMPLETE IMPLEMENTATION OF THE FIX SUPPLIED BY THIS PTF.

Packaging Rules

S300. Specify the MVSCP: keyword any time that the designated PTF requires the
MVSCP (MVS Configuration Program) to be run to incorporate the configuration
changes.

S301. With this keyword, the PTF must be held from installation until the condition
has been taken care of by the user. The PTF must contain an inline SYSTEM
++HOLD statement with REASON(MVSCP).

 UCLIN: Example

 SPECIAL CONDITIONS:
UCLIN: THIS UCLIN WILL ADD A NEW MODULE TO THE
TARGETZONE AND HAS TO BE RUN BEFORE APPLYING THE SYSMOD.

 SET BDY(TGT1).
 UCLIN.

ADD MOD (IGGðCLAð) LMOD (IGGðCLA1)
 FMID (JBB1123).
 ENDUCL.

232 MVS Packaging Rules

 MVS Service Packaging Rules

Packaging Rules

S302. Specify the UCLIN: keyword any time the PTF requires a UCLIN job be run
to become effective.

S303. When specified, the product owner must state whether the UCLIN is perti-
nent to APPLY processing, ACCEPT processing, or both.

S304. Use UCLIN: as many times as there are unique UCLIN steps required by
this PTF.

S305. The cover letter must contain the full UCLIN statement package, following
the UCLIN: keyword and explanation.

S306. With this keyword, the PTF must be held from installation until the condition
has been taken care of by the user. The PTF must contain an inline SYSTEM
++HOLD statement with REASON(ACTION). Use of this ++HOLD also requires
that the keyword ACTION: be specified to alert the product user of the UCLIN steps.

 NONE: Example

 SPECIAL CONDITIONS:
 NONE:

Packaging Rules

S307. If none of the other SPECIAL CONDITIONS keywords are applicable, you
must list the NONE: keyword. You must never use this keyword if any other
keyword is used.

 B.2.3.5 COMMENTS:
Example

COMMENTS: THIS PTF IS BEING DISTRIBUTED AS A LEVEL-SET BECAUSE
THE PREREQUISITE CHAINS OF xxxx HAVE BECOME EXCEEDINGLY COMPLEX.
THIS PTF CONTAINS ALL IMPACTED MOD/MAC(S) AT THE CURRENT SERVICE
LEVEL, LEVEL-SETTING xxxx TO THE CURRENT LEVEL AND SUPERSEDING
THE FORMER PRE CHAINS.

THIS PTF FIXED PE APAR OZ12345, WHICH REPORTED AN ERROR WITHIN
 PTF UZðð123.

 (or)

 COMMENTS: NONE

Packaging Rules

S308. Comments are to be entered to pass on additional notes to the product
user. However, if no comments are to be passed on, you must specify the word
“NONE.”

S309. If multiple comments are given, you must enter them as new paragraphs.
You should not use the COMMENTS: heading more than once.

 Appendix B. MVS Service Packaging Rules 233

 MVS Service Packaging Rules

B.3 IBM Service Delivery
This section outlines the MVS Service Delivery processes used by IBM product
owners. Adherence to the rules and IBM Service Restrictions1 set forth in this
appendix positions product owners to take advantage of all IBM MVS Service
Delivery mechanisms.

Contact Information: To obtain additional information regarding IBM Software
Delivery Solutions MVS Service Delivery mechanisms and services, Inde-
pendent Software Vendors should call 1-800-926-0364. IBM product
owners should send inquiries to MVSAUTH at MAHVM1.

Through the different IBM Software Delivery Solutions processes, product owners
can provide the following service deliverables worldwide:

 � Corrective service
� Preventive service or Expanded Service Options (ESO)
� Online program listings
� PTF-in-error (PE) information

IBM product owners primarily interface with PTF Control within Software Delivery
for MVS Service Delivery.

MVS PTF Control collects and error-checks all PTFs. This single point of control
enforces the standardization of PTF format and construction. PTF Control distrib-
utes the PTFs to manufacturing centers worldwide for corrective and preventive
service delivery, administers the View Program Listings (VPL) facility, and performs
daily PE management for corrective and preventive packages.

B.3.1 Service Process Initialization
The PTF Control processes and database must be prepared for the receipt and
handling of PTFs for new products, releases, and modifications.

Product owners must notify PTF Control of new products, releases, and modifica-
tions by completing an MVS Service Planning Information Form. With the informa-
tion provided on this form PTF Control initializes their database to recognize new
functions (FMIDs).

For each new FMID, the Service Planning Information Form must contain:

� Nine-character component ID, assigned during Program Information Form (PIF)
processing

 � Component names

� Three-character release number, assigned during PIF processing

� Applicable system releases (SRELs)

 � PTF prefix

� APAR fix prefix

1 Product owners can choose IBM Software Delivery Solutions for service distribution without PTF validation in order to avoid these
process restrictions.

234 MVS Packaging Rules

 MVS Service Packaging Rules

� Program listing authorization and control information, if applicable

PTF Control also requires the SMP/E modification control statements (SMPMCS
file), or install logic, for each new FMID. PTF Control uses the product definition
information during PTF validation.

 B.3.2 PTF Submission
Product owners submit PTFs, associated PTF information files, and program
listings, if applicable, either electronically or via courier to MVS PTF Control.

IBM Service Restriction

PTF information and files submitted to IBM Software Delivery Solutions MVS
PTF Control must be submitted according to the specifications outlined in the
Process Documentation References (PDRs).

PTF files that do not satisfy the submission requirements and the rules in this
appendix will be returned to the product owner for rework.

B.3.2.1 MVS PTF Control
MVS PTF Control is responsible to:

� Receive PTFs and program listings from product owners worldwide

� Examine and acknowledge receipt of PTF and program listings

� Syntax check, via SMP/E RECEIVE and this appendix, modification control
statements and PTF construction

� Validate PTF documentation (cover letter)

� Analyze and validate PTF relationships and installability (++VER, ++IF,
++element information)

� Distribute PTF to worldwide Common Corrective Service System (CCSS) sites
for Corrective delivery

� Distribute PTF to worldwide manufacturing centers for preventive delivery

� Activate and administer online PTF program listing availability

� Perform daily PE management for corrective and preventive service packages:

– Interpret daily RETAIN Automatic Software Alert Process (ASAP) Report

– Transform PE, PE Delete transactions into ERROR ++HOLD/++RELEASE
statements

– Update RETAIN Preventive Service Planning (PSP) PE buckets and
upgrades

All PTFs processed by MVS PTF Control are automatically eligible for distribution
via CCSS, PUTs, CUMs, and Service-only CBPDOs.

 Appendix B. MVS Service Packaging Rules 235

 MVS Service Packaging Rules

B.4 Naming Conventions for Service
This section describes the naming conventions to follow when using SMP/E. Spe-
cifically, it discusses the naming conventions for APAR (or APAR fix) and PTF
SYSMOD IDs.

Consult Chapter 10, “Naming Conventions” on page 121 for naming convention
information about element names and function SYSMOD IDs (FMIDs).

The general naming convention rule is that all SYSMOD IDs must have seven
alphanumeric or national characters (A–Z and 0–9, or @, #, $) and must start with
a letter. Beyond this, the specific naming conventions depend on the type of
SYSMOD: APAR or APAR fix, PTF, or USERMOD.

To avoid conflicts between the names of Independent Software Vendor (ISV) and
IBM-written SYSMODs, the ID for an ISV SYSMOD should not start with a letter
used by IBM. IBM uses the following letters to start the names of its SYSMODs:

� A–K and V–Z are used for APARs or APAR fixes.
� U is used for PTFs.

The easiest way to avoid a conflict is to start the ID of an ISV SYSMOD with a
letter from L to T.

Below is a description of the conventions used by IBM for the remaining six charac-
ters of SYSMOD IDs. This information is provided to help you develop a naming
scheme for your own SYSMODs and to avoid conflicts with IBM-written SYSMODs.

The IBM convention for the SYSMOD ID of a service SYSMOD (APAR, APAR fix,
PTF) or USERMOD is tsnnnnn, where:

t identifies the type of SYSMOD. It is a single alphanumeric character.
These are the values used by IBM:

A–K Used by IBM for various levels of an APAR fix
L–T Available for ISVs
U Used by IBM for PTFs
V–Z Used by IBM for various levels of an APAR fix

s is the system to which the SYSMOD and its associated product apply.
These are the values used by IBM for PTFs and APAR fixes:

L, N, P Licensed products for MVS
R Unlicensed products for MVS
W, Y, Z MVS products only

Any valid character can be used for user SYSMODs.

nnnnn is an additional identifier for the SYSMOD. For PTFs and APAR fixes sup-
plied by IBM, it is a number from 00001 to 99999.

236 MVS Packaging Rules

 MVS Service Packaging Rules

Appendix C. Mapping of Old Rule Numbers to New Rule
Numbers

This appendix lists all the old rule numbers and the equivalent new rule numbers.

Table 19 (Page 1 of 5). Table for Mapping old rule number to new rule numbers. This
table maps the rule numbers used in previous versions of the document to the new rule
number used in this version.

Old Rule Number New Rule Number

1 110

2 120

3 300

4 400

5 500

6 600

7 700

8 800

9 900

10 1000

11 1100

12 1200

13 1310

14 1320

15 1350

16 2100

17 2200

18 2300

19 2305

19.1 2330

20 2600

21 2700

21.1 2710

22 2900

23 2950

24 3400

24.1 3410

25 3500

25.1 3510

26 3650

27 3700

 Copyright IBM Corp. 1986, 1999 237

 MVS Service Packaging Rules

Table 19 (Page 2 of 5). Table for Mapping old rule number to new rule numbers. This
table maps the rule numbers used in previous versions of the document to the new rule
number used in this version.

Old Rule Number New Rule Number

28 3800

28.1 3810

29 3900

29.1 3910

30 4000

31 4200

32 4300

33 4910

34 5100

35 5200

36 5300

37 5400

38 5500

39 5750

39.1 5810

39.2 5820

39.3 5830

40 5900

41 5910

42 6200

43 6205

44 6210

45 6300

46 6400

47 6500

48 6600

49 6700

50 6800

51 6900

52 7000

53 7200

54 7400

55 7500

56 7600

57 7700

58 7800

238 MVS Packaging Rules

 MVS Service Packaging Rules

Table 19 (Page 3 of 5). Table for Mapping old rule number to new rule numbers. This
table maps the rule numbers used in previous versions of the document to the new rule
number used in this version.

Old Rule Number New Rule Number

59 7900

60 8000

61 8100

62 8200

63 8300

64 8500

65 8600

66 8700

67 8800

68 9000

69 9100

70 9200

71 9210

72 9300

73 9400

74 9500

75 9600

76 9700

77 9800

78 9900

79 10000

80 10010

81 10100

82 10110

82.1 10111

83 10112

84 10115

85 10117

86 10119

87 10200

88 10300

89 10400

90 10500

91 10600

92 10700

93 10800

 Appendix C. Mapping of Old Rule Numbers to New Rule Numbers 239

 MVS Service Packaging Rules

Table 19 (Page 4 of 5). Table for Mapping old rule number to new rule numbers. This
table maps the rule numbers used in previous versions of the document to the new rule
number used in this version.

Old Rule Number New Rule Number

94 10900

95 11000

96 11100

97 11200

98 11300

99 11400

100 11500

101 11600

102 11700

103 11800

104 11900

105 12000

106 12100

107 12200

107.1 12210

108 12300

108.1 12310

109 12400

110 12500

111 12510

112 12600

113 12700

114 12800

115 12900

116 13000

117 13100

118 13110

119 13200

120 13300

121 13400

122 13500

123 13600

124 13700

125 13800

126 13900

126.1 13910

240 MVS Packaging Rules

 MVS Service Packaging Rules

Table 19 (Page 5 of 5). Table for Mapping old rule number to new rule numbers. This
table maps the rule numbers used in previous versions of the document to the new rule
number used in this version.

Old Rule Number New Rule Number

127 14000

128 14100

129 14200

130 14210

131 14220

131.1 14230

131.2 14240

131.3 14250

131.4 14260

131.5 14270

132 14300

133 14400

134 14500

135 14600

136 14700

137 14900

138 14910

139 15000

140 15010

141 15100

142 15200

145 15350

146 15410

147 15500

148 15600

149 15700

150 15800

150.1 15810

150.2 18810

150.3 18820

150.4 18830

 Appendix C. Mapping of Old Rule Numbers to New Rule Numbers 241

 MVS Service Packaging Rules

242 MVS Packaging Rules

 ACCEPT � BYPASS

 Glossary

This glossary defines terms and abbreviations used in
this publication. If you do not find the term you are
looking for, refer to the index portion of this book or to
the IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

Sequence of Entries: For clarity and consistency of
style, this glossary arranges the entries alphabetically
on a letter-by-letter basis. In other words, only the
letters of the alphabet are used to determine sequence;
special characters and spaces between words are
ignored.

Organization of Entries: Each entry consists of a
single-word or multiple-word term or the abbreviation or
acronym for a term, followed by a commentary. A com-
mentary includes one or more items (definitions or refer-
ences) and is organized as follows:

1. An item number, if the commentary contains two or
more items.

2. A usage label, indicating the area of application of
the term, for example, “In programming,” or “In
SMP/E.” Absence of a usage label implies that the
term is generally applicable to SMP/E, to IBM, or to
data processing.

3. A descriptive phrase, stating the basic meaning of
the term. The descriptive phrase is assumed to be
preceded by “the term is defined as ...” The part of
speech being defined is indicated by the opening
words of the descriptive phrase: “To ...” indicates a
verb, and “Pertaining to ...” indicates a modifier.
Any other wording indicates a noun or noun phrase.

4. Annotative sentences, providing additional or
explanatory information.

5. References, directing the reader to other entries or
items in the dictionary.

References: The following cross-references are used
in this glossary:

Contrast with. This refers to a term that has an
opposed or substantively different meaning.

Synonym for. This indicates that the term has the
same meaning as a preferred term, which is defined
in its proper place in the glossary.

Synonymous with. This is a backward reference
from a defined term to all other terms that have the
same meaning.

See. This refers you to multiple-word terms that
have the same last word.

See also. This refers the reader to related terms
that have a related, but not synonymous, meaning.

Deprecated term for or Deprecated abbreviation
for. This indicates that the term or abbreviation
should not be used. It refers to a preferred term,
which is defined in its proper place in the glossary.

Selection of Terms: A term is a word or group of
words to be defined. In this glossary, the singular form
of the noun and the infinitive form of the verb are the
terms most often selected to be defined. If the term
may be abbreviated, the abbreviation is given in paren-
theses immediately following the term. The abbrevi-
ation is also defined in its proper place in the glossary.

A
ACCEPT. In SMP/E, the process initiated by the
ACCEPT command that places SYSMODs into the dis-
tribution libraries or permanent user libraries.

APPLY . In SMP/E, the process, initiated by the APPLY
command, that places SYSMODs into the target
libraries.

B
base function . A SYSMOD that defines elements of
the base system or other products that were not previ-
ously present in the target libraries. Base functions are
identified to SMP/E by the ++FUNCTION statement.

binder . A program that processes the output of lan-
guage translators and compilers into an executable
program (load module or program object). Part of
DFSMS/MVS, it replaces the linkage editor and batch
loader.

BYPASS . In SMP/E, an ACCEPT command operand
that bypasses certain conditions to allow SMP/E proc-
essing of a SYSMOD to continue, regardless of the
existence of that condition. For example, BYPASS
(APPLYCHECK) indicates that all SYSMODs found in
the PTS and not yet accepted are eligible for ACCEPT
processing even if they have not been applied.

 Copyright IBM Corp. 1986, 1999 243

 coexisting functions � functionally higher SYSMOD

C
coexisting functions . Functions that can reside on
the same system and be described by the same target
zone.

common element . An element that is part of two dif-
ferent functions. It has the same name and type in
each function. See also element intersection.

conditionally coexisting functions . Functions that
coexist but do not have to be in the same zone.

consolidated software inventory (CSI) . The primary
SMP/E data set, which is divided into multiple partitions
called zones. The three types of zones are the global
zone, target zone, and distribution zone. A zone may
be associated with one or more SRELs. Each zone
contains information necessary for defining a system or
subsystem and processing data for installing product
function and service SYSMODs onto that system or
subsystem.

CSI. Consolidated software inventory.

CSI distribution zone . See distribution zone.

CSI target zone . See target zone.

customization . Jobs or procedures required after
“installation” before a product's function can be used, or
before a product's service is effective.

D
data element . An element that is not a macro,
module, or source code; for example, a dialog panel or
sample code.

dependent function . A function that introduces new
elements or redefines elements of the base-level
system or other products. A dependent function cannot
exist without a base function. Dependent functions are
identified to SMP/E by the ++FUNCTION statement.

DFSMS environment . An environment that helps
automate and centralize the management of storage.
This is achieved through a combination of hardware,
software, and policies. In the DFSMS environment for
MVS, this function is provided by MVS/ESA SP and
DFSMS/MVS, DFSORT, and RACF.

distribution library . Data sets supplied by the product
packager containing one or more products that the user
restores to disk for subsequent inclusion in a new
system.

Distribution libraries are used as input to the SMP/E
GENERATE command or the system generation

process to build target libraries for a new system. They
are also used by SMP/E for backup when a running
system has to be replaced or updated. In SMP/E,
these data sets are updated by ACCEPT processing,
and are identified with the DISTLIB operand.

distribution zone . In SMP/E, a group of VSAM
records that describe the SYSMODs and elements in
the distribution libraries.

DLIB . Distribution library.

E
element . In SMP/E, a macro, module, source module,
data element, or element installed in a hierarchical file
system (HFS).

element intersection . The existence of more than one
element version in a given system or subsystem. See
also common element.

element MCS . An MCS used to define a new or
replacement element, or to update an existing element.

element names . An element naming structure for
MVS that ensures there will be unique names within the
system. This structure further ensures that no two ele-
ments have the same name unless they are equivalent
or are different element types.

element selection . The process of choosing the
appropriate modifications to an element from the
SYSMODs selected by SMP/E for APPLY or ACCEPT
processing from those that have elements in common.

element version . A specific module, macro, source
module, or data element that represents one stage in
the evolution of that element. The element version is
identified by the FMID of the SYSMOD that contains the
particular element version. Also see versioned element.

environment . The functions (FMIDs) that are installed
on a particular system or subsystem (SREL).

F
FMID. Function modification identifier.

function . In SMP/E, a product (such as a system com-
ponent or licensed program) that can be optionally
installed in a user's system. Functions are identified to
SMP/E by the ++FUNCTION statement. Each function
must have a unique FMID.

functionally higher SYSMOD . A SYSMOD that uses
the function contained in an earlier SYSMOD (called the

244 MVS Packaging Rules

 functionally lower SYSMOD � modification control statement (MCS)

functionally lower SYSMOD) and contains additional
functions as well.

functionally lower SYSMOD . A SYSMOD whose
function is also contained in a later SYSMOD (called
the functionally higher SYSMOD).

function modification identifier (FMID) . The FMID is
the SYSMOD ID of a function SYSMOD and identifies
the function that currently owns an element.

function SYSMOD . Any SYSMOD identified by the
++FUNCTION statement. The function SYSMOD is the
SMP/E SYSMOD used for product base and dependent
functions.

G
GENERATE. An SMP/E command used to create a
job stream to build a set of target libraries from a set of
distribution libraries.

global zone . A collection of records within the SMP/E
CSI that contains information defining a common area
that SMP/E uses to represent information not specific to
a target zone or distribution zone. For example, the
global zone is used to describe SYSMODs residing on
the PTS. A CSI can contain only one global zone.

H
higher functional level . An element version that con-
tains all of the functions of all other relevant versions of
that element. See functionally higher SYSMOD.

I
indirect library . A partitioned data set used to
package elements or JCLIN data instead of packaging
them inline or in RELFILEs. Indirect libraries can be
used if both of these conditions are met:

� The data set contains element replacements or
JCLIN data (not element updates).

� Users who will be installing the SYSMOD have
access to the data set.

See also link library and text library.

J
JCLIN . May be defined as any of the following:

� The SMP/E process of creating or updating the
target zone using JCLIN input data.

� The data set that contains the Stage 1 output from
a system, subsystem or product generation, used
by SMP/E to update or create the target zone.

� The SMP/E JCLIN command used to read in the
JCLIN data.

� The ++JCLIN Statement in a SYSMOD that enables
SMP/E to perform the target zone updates during
APPLY processing.

JCLIN data . The JCL statements associated with the
++JCLIN statement or saved in the SMPJCLIN data set.
They are used by SMP/E to update the target zone
when the SYSMOD is applied. Optionally, JCLIN data
can be used by SMP/E to update the distribution zone
when the SYSMOD is accepted.

L
licensed program (LP) . Generally, a software
package that can be ordered from an IBM Software Dis-
tribution Center. A licensed program may contain one
or more function SYSMODs (FMIDs).

link library (LKLIB) . A data set that contains link-
edited object modules. It is used as an “indirect library”
when the object modules are provided in partitioned
data sets rather than inline or in relative files.

LKLIB . Link library.

load module . A computer program in a form suitable
for loading into main storage for execution. It is usually
the output of a linkage editor.

lower functional level . An element version that is
contained in a later element version. See functionally
lower SYSMOD.

LP. Licensed program.

M
macro . An instruction in a source language that is to
be replaced by a defined sequence of instructions in the
same source language.

MCS. Modification control statement.

modification control statement (MCS) . An SMP/E
control statement used to package a SYSMOD. These

 Glossary 245

 module � regression

statements describe the elements of a program and the
relationships that program has with other programs that
may be installed on the same system.

module . An element that is discrete and identifiable
with respect to compiling, combining with other units,
and loading (for example, the output from a compiler or
assembler). Synonym for object module or single-
module load module.

N
national language support (NLS) . Product support
may be required for multiple languages. This support
will affect the design, packaging, and service of the
product.

negative prerequisite . In SMP/E, a SYSMOD that
must not be present in the system in order for another
SYSMOD to be successfully installed.

NLS. National language support.

O
object deck . Object module input to the linkage editor
that is placed in the input stream, in card format.

object module . A module that is the output from a
language translator (such as a compiler or assembler).
An object module is in relocatable format with machine
code that is not executable. Before an object module
can be executed, it must be processed by the linkage
editor.

When an object module is link-edited, a load module is
created. Several modules can be link-edited together to
create one load module (for example, as part of SMP/E
APPLY processing), or an object module can be link-
edited by itself to create a single-module load module
(for example, to prepare the module for shipment in
RELFILE format or in an LKLIB data set or as part of
SMP/E ACCEPT processing). This is also known as an
object deck.

P
packaging . Adding the appropriate SMP/E modifica-
tion control statements to elements to create a
SYSMOD, then putting the SYSMOD in the proper
format on the distribution medium.

partitioned data set extended (PDSE) . A system-
managed data set that contains an indexed directory
and members that are similar to the directory and
members of partitioned data sets. A PDSE can be
used instead of a partitioned data set.

PDR. Process Documentation Reference.

PDSE. Partitioned data set extended.

PE-PTF. Program error PTF.

prerequisite . In SMP/E, a SYSMOD that must either
be already installed or be installed along with another
SYSMOD for that other SYSMOD to be successfully
installed.

preventive service . The mass installation of PTFs to
avoid rediscoveries of the APAR fixes included in those
PTFs.

product . Generally, a software package, such as a
licensed program or user application. A product may
contain one or more functions and may consist of one
or more versions and releases.

product function . See function and function
SYSMOD.

program error PTF (PE-PTF) . A PE-PTF is a PTF
that was found to contain an error and is identified on a
++HOLD ERROR statement, along with the APAR that
first reported the error.

program object . An executable program stored in a
PDSE program library. A program object is similar to a
load module, but has fewer restrictions.

program packaging . See packaging.

program product . Deprecated term for licensed
program.

product service . See service SYSMOD.

program temporary fix (PTF) . A temporary solution or
bypass of a problem that may affect all users and that
was diagnosed as the result of a defect in a current
unaltered release of the program. PTFs are identified
to SMP/E by the ++PTF statement.

PTF. Program temporary fix.

PTF in error . See program error PTF.

R
RECEIVE. In SMP/E, the process initiated by the
RECEIVE command that reads SYSMODs and stores
them on the PTS and CSI global zone for subsequent
SMP/E processing.

regression . The condition that occurs when a modifi-
cation is made to an element by a SYSMOD that is not

246 MVS Packaging Rules

 REJECT � SYSMOD relationships

related to SYSMODs that previously modified the
element.

REJECT. In SMP/E, the process initiated by the
REJECT command that removes SYSMODs from the
PTS and CSI global zone.

relative file (RELFILE) format . A SYSMOD packaging
method in which elements and JCLIN data are in sepa-
rate relative files from the MCSs. When SYSMODs are
packaged in relative file format, there is a file of MCSs
for one or more SYSMODs, and one or more relative
files containing unloaded source-code data sets and
unloaded link-edited data sets containing executable
modules. Relative file format is the typical method used
for packaging function SYSMODs.

relative files (RELFILEs) . Unloaded files containing
modification text and JCL input data associated with a
SYSMOD. These files are used to package a SYSMOD
in relative file format.

release . A distribution of a new product or new func-
tion and APAR fixes for an existing product. Contrast
with version.

RELFILE tape . The RELFILE tape contains one or
more product functions in a format that can be installed
on an MVS system or subsystem by SMP/E. It is a
multifile, standard label tape containing the SMP/E
control statements for the functions and the data
libraries for the functions.

replacement modification identifier (RMID) . The
modification identifier of the last SYSMOD to completely
replace a given element.

requisite . A SYSMOD that must be installed before or
at the same time as the SYSMOD being processed.

RESTORE. In SMP/E, the process initiated by the
RESTORE command that removes applied SYSMODs
from the target libraries, target zone and, optionally, the
global zone.

RMID. Replacement modification identifier.

S
service level . The owner of the element (FMID), the
last SYSMOD to replace the element (RMID), and all
the SYSMODs that have updated the element since it
was last replaced (UMIDs).

service order relationship . A relationship among
service SYSMODs that is determined by the PRE and
SUP operands, and the type of SYSMOD.

service SYSMOD . Any SYSMOD identified by an
++APAR or ++PTF statement.

shared load module . A load module containing mul-
tiple modules, some of which are owned by multiple
FMIDs.

shared module . A module that is link-edited into more
than one load module or dynamically accessed by more
than one load module.

single-CSECT load module . See single-module load
module.

single-module load module . A load module created
by link-editing a single object module by itself (for
example, to prepare the module for shipment in
RELFILE format or in an LKLIB data set or as part of
SMP/E ACCEPT processing).

SMP/E. System Modification Program Extended.

SMS. Storage Management Subsystem.

source module . An element containing the source
statements that constitute the input to a language trans-
lator (such as a compiler or assembler) for a particular
translation.

SREL. System release.

Storage Management Subsystem (SMS) . A
DFSMS/MVS or MVS/DFP facility used to automate and
centralize the management of storage. Using SMS, a
storage administrator describes data allocation charac-
teristics, performance and availability goals, backup and
retention requirements, and storage requirements to the
system through data class, storage class, management
class, storage group, and ACS routine definitions.

SYSMOD. System modification.

SYSMOD ID. System modification identifier.

SYSMOD packaging . See packaging.

SYSMOD relationships . Although individual
SYSMODs can be installed independently, certain
inter-SYSMOD relations must be observed if the results
are to be meaningful. The following SYSMOD relation-
ships are addressed in this publication:

 � Unconditional
 � Conditional
 � Hierarchical
 � Prerequisite
 � Corequisite
 � Negative prerequisite
 � Delete
 � Supersede

 Glossary 247

 SYSMOD selection � zone

� Delete and supersede
 � Coexistence

SYSMOD selection . The process of determining which
SYSMODs are eligible to be processed by SMP/E.

system modification identifier (SYSMOD ID) . The
name that SMP/E associates with a system modifica-
tion. It is specified on the ++APAR, ++FUNCTION,
++PTF, or ++USERMOD statement.

system modification (SYSMOD) . A collection of soft-
ware elements that can be individually distributed and
installed. The SYSMOD is the input data to SMP/E that
defines the introduction, replacement, or update of
product function elements for SMP/E processing into
target libraries and associated distribution libraries.

System Modification Program Extended (SMP/E) .
SMP/E is the IBM product designed to install new func-
tion and subsequent service into target libraries and dis-
tribution libraries.

system release (SREL) . A 4-byte value representing a
system or subsystem and its release level (for example,
Z038 specifies MVS and C150 specifies CICS).

T
target library . A collection of data sets in which the
various parts of an operating system are stored. This is
sometimes called a system library. Target libraries
contain the executable code that constitutes the running
system. In SMP/E, these data sets are updated by
APPLY processing, and are identified with the SYSLIB
operand.

target zone . In SMP/E, a collection of VSAM records
in the SMP/E CSI describing the SYSMODs, elements,
and load modules in a target library.

text library (TXLIB) . A data set containing JCLIN input
or replacements for macros, source, or object modules
that have not been link-edited. It is used as an “indirect
library” when the JCLIN or elements are provided in
partitioned data sets rather than inline or in relative files.

transformed data . Data that has been processed by
the GIMDTS service routine so that it can be packaged
inline in fixed-block 80 records.

TXLIB . Text library.

U
UCLIN. In SMP/E, the command used to initiate
changes, through subsequent UCL statements, to the
SMP/E database.

UMID. Update modification identifier.

unconditionally coexisting functions . Functions that
coexist and must be in the same zone.

update modification identifier (UMID) . The modifica-
tion identifier of the SYSMOD that updated the last
replacement of a given module, macro, or source
module.

USERMOD. User modification.

user modification (USERMOD) . A change con-
structed by a user to either modify an existing function,
add to an existing function, or add a user-defined func-
tion. USERMODs are identified to SMP/E by the
++USERMOD statement.

V
version . A separate licensed program that is based on
an existing licensed program and that usually has signif-
icant new code or new functions. Contrast with release.

versioned element . An element that is part of more
than one function (for example, one that is part of a
base function and a dependent function). See also
element version.

Z
zone . A partition within an SMPCSI data set.

248 MVS Packaging Rules

 Bibliography

Bibliography and Classes

This section tells you more about the SMP/E publications and education on SMP/E that you
might find helpful.

SMP/E Books in the OS/390 Library
Table 20 summarizes the books in the OS/390 library that apply to SMP/E.

Table 20. Publications for OS/390 Version 2 Release 8 SMP/E

Title Description

OS/390 Release 7 Planning for Installation,
GC28-1726

Provides a plan for installing OS/390, including
SMP/E

OS/390 SMP/E Diagnosis Guide, SC28-1737 Explains how to handle suspected SMP/E
problems

OS/390 SMP/E Messages and Codes,
SC28-1738

Explains SMP/E messages and return codes
and the actions to take for each

OS/390 SMP/E User's Guide, SC28-1740 Describes how to use SMP/E to install pro-
grams and service. Also contains information
formerly found in SMP/E Primer, which intro-
duces the basic principles needed for using
SMP/E, without the expert-level details found in
other SMP/E publications.

OS/390 SMP/E Commands, SC28-1805 Explains SMP/E commands and processing in
detail

OS/390 SMP/E Reference, SC28-1806 Provides additional SMP/E reference material

OS/390 SMP/E Reference Summary,
SX22-0037

Reviews the SMP/E commands in a convenient
form

Standard Packaging Rules for MVS-Based Pro-
ducts, SC23-3695

Explains how to package programs for installa-
tion by SMP/E

The SMP/E Release 8.1 Library
Table 21 summarizes the books in the SMP/E Release 8.1 library.

Table 21 (Page 1 of 2). Publications for SMP/E Release 8.1

Title Description

SMP/E R8.1 Primer, GC23-3771 Introduces the basic principles needed for
using SMP/E, without the expert-level details
found in other SMP/E publications

SMP/E R8.1 Master Index, GC23-3812 Helps users quickly determine which book in
the SMP/E library contains the information they
are looking for

SMP/E R8.1 Program Directory (English
Feature), GC23-0130

SMP/E R8.1 Program Directory (Japanese
Feature), GC23-0469

Explains how to plan for installing SMP/E
Release 8.1

SMP/E R8.1 User's Guide, SC28-1302 Describes how to use SMP/E to install pro-
grams and service

SMP/E R8.1 Messages and Codes, SC28-1108 Explains SMP/E messages and return codes
and the actions to take for each

 Copyright IBM Corp. 1986, 1999 249

 Bibliography

Table 21 (Page 2 of 2). Publications for SMP/E Release 8.1

Title Description

SMP/E R8.1 Reference, SC28-1107 Explains SMP/E commands and processing in
detail

SMP/E R8.1 Reference Summary, SX22-0006 Reviews the SMP/E commands in a convenient
form

SMP/E R8.1 CBIPO Dialogs User's Guide,
SC23-0538

Explains how to use the CBIPO dialogs to
install, reinstall, and redistribute CBIPO orders

Migrating to the CBIPO Dialogs, GC23-3810 Compares functions provided in the batch
CBIPO installation method with functions pro-
vided in the CBIPO dialogs contained in SMP/E

SMP/E R8.1 Diagnosis Guide, SC23-3130 Explains how to handle suspected SMP/E
problems

Standard Packaging Rules for MVS-Based Pro-
ducts, SC23-3695

Explains how to package programs for installa-
tion by SMP/E

Classes and Self-Study Courses for SMP/E
Table 22 shows the recommended education on CBIPOs, CBPDOs, and SMP/E that is
offered through the various IBM locations.

Table 22 (Page 1 of 2). Classes and Self-Study Courses

Location Recommended Education Catalog of Courses Phone Number for
More Information

Australia � “SMP/E: A Guide for the New SMP/E User” (Self-Study
Course 32186)

� “SMP/E Fundamentals” (Course H3765)

� “Integrated System Maintenance Using SMP/E” (Course
H3763)

� “MVS Installation and Tailoring” (Course H3903)

� All prerequisites for the above classes, or equivalent
experience

Contact your local
branch office.

Contact your local
branch office.

Canada � “SMP/E: A Guide for the New SMP/E User” (Self-Study
Course 32186)

� “New SMP Users” (Course S4716)

� “MVS Installation and Tailoring” (Course S6375)

� All prerequisites for the above classes, or equivalent
experience

Education Course
Catalogue,
G209-0073 (bilingual
version) or
G209-0062 (English
version)

IBM Direct-Education
at 1-800-465-1234

EMEA � “SMP/E: A Guide for the New SMP/E User” (Self-Study
Course 32186)

� “System Installation and Maintenance with SMP/E”

� “MVS/XA Installation Practice and Procedure” or
“MVS/ESA Installation and Implementation”

 � “MVS/ESA Customization”

� All prerequisites for the above classes, or equivalent
experience

See your country's
education course
catalog.

See your country's
education course
catalog for enrollment
procedures.

250 MVS Packaging Rules

 Bibliography

Table 22 (Page 2 of 2). Classes and Self-Study Courses

Location Recommended Education Catalog of Courses Phone Number for
More Information

Japan � “How to Use SMP/E” (Self-Study Course 25024)

� “MVS Installation and Tailoring” (Course H3903)

� “MVS/ESA Installation” (Course 24226)

� “MVS/ESA Customization” (Course 24228)

� All prerequisites for the above classes, or equivalent
experience

Catalog of IBM Edu-
cation, GR18-5200

IBM DIRECT at
03-865-5748

United
States

� “SMP/E: A Guide for the New SMP/E User” (Self-Study
Course 32186)

� “SMP/E Fundamentals” (Course H3765)

� “Integrated System Maintenance Using SMP/E” (Course
H3763)

� “MVS Installation and Tailoring” (Course H3903)

� All prerequisites for the above classes, or equivalent
experience

Catalog of IBM Edu-
cation, G320-1244

IBM DIRECT at
1-800-IBM-TEACh

 Bibliography and Classes 251

 Bibliography

252 MVS Packaging Rules

 Index

 Index

Special Characters
++DELETE MCS

overview 81
packaging rules 81
superseding SYSMODs 64

++element MCS
See also ++hfs_element MCS
See also ++MAC MCS
See also ++MOD MCS
See also ++SRC MCS
See also data element MCS
operands

DELETE 83
VERSION 84

overview 43, 73
restrictions

software delivery process 44
superseding SYSMODs

VERSION operand rules 63
use in this book xiii

++FUNCTION MCS
copyright comment rules 55
operands

REWORK 54
RFDSNPFX 54
SYSMOD ID 54

overview 54
++hfs_element MCS

description 71
++HOLD MCS

superseding SYSMODs 63
++IF MCS

examples
avoiding loss of PTF for previous release 140
corequisite dependent functions 153
cross-product prerequisite for service 154
cross-product service 155

operands
FMID 67
REQ 67

overview 67
saving data from 68
superseding SYSMODs 63

++JCLIN MCS
operands

RELFILE 85
packaging rules 89
superseding SYSMODs 64

++MAC MCS
description 71

++MAC MCS (continued)
overview 43, 73
packaging rules 44
restrictions

software delivery process 44
++MOD MCS

description 71
operands

CSECT 84
overview 43, 73
packaging rules 44
superseding SYSMODs

CSECT operand rules 64
LMOD operand 64

++MOVE MCS
overview 75
packaging rules 75
superseding SYSMODs 63

++RENAME MCS
overview 78
packaging rules 78
superseding SYSMODs 64

++SRC MCS
description 71
overview 43, 73
packaging rules 44
restrictions

software delivery process 44
++VER MCS

examples
cross-product service 143
defining base and dependent functions 146
defining mutually exclusive functions 156
deleting a function 144, 152
establishing the order of dependent

functions 152
fixing an erroneous post-cutoff PTF 141
replacing a function 141
superseding an APAR 138

operands
DELETE 57
FMID 57
NPRE 60
PRE 60
SUP 61
VERSION 64

overview 56
superseding SYSMODs

PRE operand rules 63
REQ operand rules 63
SUP operand rules 63
VERSION operand rules 63

 Copyright IBM Corp. 1986, 1999 253

 Index

A
adding elements 162
alias names

elements 48, 123
load modules 48, 123
naming conventions 122
restrictions 123

ALIAS statement
link-edit step

JCLIN processing 97
APAR fixes

avoiding regression of 138
corrective service 24
overview 24
superseding with a PTF 138

APPLY processing
processing non-zero return code 95, 187
products requiring assemblies during 90
using the etc/ directory during 136, 191

ASMA90 utility
See assembler utility

assembler utility
rules for JCLIN data 90

autocall
See automatic library call function

automatic library call function
JCLIN for 117
LIBRARY statement to exclude modules from auto-

matic library search 102
packaging support for high-level languages 131
SYSLIB DD statement in link-edit steps 104

B
base functions

compared with dependent functions 22
defining 146
deleting 141
deleting and superseding 144, 154
naming conventions 121
overview 21

BLKSIZE
See block size

block size
data elements 36
distribution libraries 37
hierarchical file system (HFS) elements 36
macros 36, 37
modules 36
RELFILEs 14
source 36
target libraries 37

book titles xi

build process 3

C
callable services

including modules from another product 104
CALLLIBS

cross-product referencing
JCLIN 95, 187

resolving external references 117
using with optional functions 95, 187

CBIPOs
introduction 2

CBPDOs
introduction 2

ccc (product version code) 121
CHANGE statement

JCLIN processing 101
coexisting functions 29
coexisting SYSMODs 29, 30
combining elements 162
common elements among SYSMODs

defining SYSMOD relationships 152
component code 121

element names, first 3 characters of 122, 188
conditional relationships 25, 67
copy utility

rules for JCLIN data 91, 92
copyright requirements

++FUNCTION MCS 55
comment 55

corequisite SYSMODs
defining with the REQ operand 67
description 27
examples

corequisite dependent functions 153
cross-product service for a base function with a

prerequisite 155
cross-product service for corequisite base func-

tions 143
defining a chain of requisite PTFs 149
erroneous post-cutoff PTF 141
saving fixes for previous releases 140

corrective service
APAR fixes 24
PTFs 23

cross-product relationships
corequisite dependent functions 153
prerequisites for functions 153
prerequisites for service 154
service for a base product with a prerequisite 155
service for corequisite base functions 143

CSECT
++MOD MCS operand 64, 84
module that contains 44

254 MVS Packaging Rules

 Index

CSECT (continued)
specifying for a load module 84
specifying order through ORDER statement 97
superseding SYSMODs 64

customizing functions via USERMODs 24

D
data element MCS

description 71
data elements

formatting for inline packaging 16
LRECL values allowed 38, 170
RECFM values allowed 38, 170
translated 128
types 45

data set names
distribution libraries 124
RELFILE tape 15
target libraries 124

DDDEF entries
jobs creating 51
PTFs modifying 51
sample jobs, creating 51

DDDEFs
ddnames

distribution libraries 102, 124
SYSPUNCH usage 102
target libraries 124

DELETE
++element MCS operand 83
++VER MCS operand 57
example 144

deleted modules, reintroducing 58
deleting elements 83
deleting functions

See also deleting SYSMODs
defining with the DELETE operand 57
dummy function SYSMOD 59
explicit deletion 23

deleting load modules 81
deleting SYSMODs

See also deleting functions
description 27
examples

base function 141
comparison of deleting and superseding 27
dependent function 152
dummy function SYSMOD to delete another func-

tion 59
function with a corequisite 144

dependent functions
common elements

defining the lower level 65, 84, 85, 176, 184
lower-level dependent function for same parent

base function 65, 176

dependent functions (continued)
compared with base functions 22
defining 146
deleting 152
establishing the order of 152
naming conventions 121
overview 22
packaging example 35
restrictions

elements 37
distribution libraries

considerations 72, 179
creating 37, 170
data set name for new library 124
ddname

JCLIN requirements 89, 184
new library 124

naming conventions 124
dummy function SYSMOD to delete another

function 59
Dynamic Allocation

E
editing MCS statements 89, 184
element statements

packaging rules 44
element updates

superseding SYSMODs 64
elements

adding 162
aliases for 48, 123
combining 162

from different base functions 143, 155
from different dependent functions 153

common
corequisite PTFs for 147
defining higher levels of using SYSMOD

types 25
defining lower levels of (++element

VERSION) 84, 85, 184
defining lower levels of (++VER VERSION) 65,

176
dependent functions for the same base

function 65, 176
definition of 1
deleting 83
fully-defined 93
MCS statements 43, 71, 73
migrating

updating both functions 163
using a PTF 164

moving 75
naming conventions 122, 188
ownership 45

 Index 255

 Index

elements (continued)
restrictions

dependent functions 37
same names 123

restrictions for RELFILEs 13, 167
supporting different languages 127, 190

translated 128
types 45, 47
versions 84

creating with dependent functions, overview 85
creating with PTFs, overview 85

enhancing a function, packaging example 35
ENTRY statement

defining a load module entry 97
for PL/I load modules 97
JCLIN processing 101

excluding modules from automatic library search 102
EXPAND statement

JCLIN processing 101
explicitly deleting functions

packaging options 23, 58
external references

resolving through SYSLIB allocation and
CALLLIBS 117

F
files, relative (RELFILEs)

See RELFILE tape
FMID

++IF MCS operand 67
++VER MCS operand 57
adding new 36
description of 21
naming conventions 121
product version code 121
release value 121

fully-defined elements 93
function

See function SYSMODs
function SYSMODs

base functions 21
choosing between base and dependent

functions 22
copyright statement for 55
dependent functions 22
installation hierarchy 25
installation overview 2
JCLIN data 87
naming conventions 121
RELFILE requirements 11
repackaging

indicated by REWORK operand 54
new release of a conditional requisite 68, 178

UCLIN
avoiding 41

functions
packaged as function SYSMODs 21

G
GIMDTS, used to format elements for inline

packaging 16

H
HFS elements

LRECL values allowed 38, 170
RECFM values allowed 38, 170

hierarchical file system (HFS)
creating symbolic links in MKDIR jobs 51
ddname 89, 184
elements residing in 71
load modules residing in

JCLIN for 119
LIBRARYDD comment 105, 106
SYSLIB DD statement in link-edit steps 105
SYSLMOD DD statement in link-edit steps 106

not allowed as distribution library 72, 95, 179, 186
packaging rules 136, 191
permission bits 136, 191
products installing into 50, 51, 172

hierarchical file system (HFS) elements
formatting for inline packaging 16
MCS statement 71
translated 128
types 47

hierarchical file systm (HFS) elements
hierarchy of SYSMOD types 25
high-level languages

including modules from another product 104

I
IDENTIFY statement

JCLIN processing 101
IEBCOPY utility

See copy utility
IEWBLINK utility

See link-edit utility
IEWL utility

See link-edit utility
implicitly deleting SYSMODs

packaging options 58
implicitly including modules from another product 104
implicitly-included modules

including through SYSLIB allocation and
CALLLIBS 117

INCLUDE statement
JCLIN processing 101
utility input 101

256 MVS Packaging Rules

 Index

indirect libraries 17
initial release of a function, packaging example 35
inline packaging 15
INSERT statement

JCLIN processing 102
installation

customizing a function 24
hierarchy 25
JCL, RELFILE member for 50, 172
methods 33
overview

functions 2
service 2

integration process 3
IVP (installation verification procedure)

RELFILE member for 37, 38

J
JCL for installation

RELFILE member for 50, 172
JCLIN command

processing link-edit steps
creating LMOD entry 103
creating MOD entry 101

JCLIN data
assembler rules 90
copy rules 91, 92
examples

assembling source to create a module 116
load modules residing in a hierarchical file system

(HFS) 119
load modules using the link-edit automatic library

call function 117
macros 116
modules 112
source 116

fully-defined elements 93
functions, providing for 87
link-edit rules 95, 96
not required 88
packaging recommendations 96
packaging rules 89
RELFILE requirements 13, 168
superseding SYSMODs 64

L
language abbreviations 128

See also NLS (national language support)
language-sensitive elements

See also NLS (national language support)
packaging examples 157

libraries
See also distribution libraries

libraries (continued)
See also target libraries
naming conventions 124
sharing 39
totally copied 93

LIBRARY statement
JCLIN processing 102

LIBRARYDD comment for pathname in link-edit
steps 105, 106

link-edit autocall
See automatic library call function

link-edit automatic library call function, JCLIN for
See automatic library call function

link-edit utility
automatic library call function 131
parameters recognized by SMP/E 106
rules for JCLIN data 95, 96

linkage editor
See link-edit utility

LMOD
superseding SYSMODs

++MOD MCS operand rules 64
LMOD entry

See also load modules
created by JCLIN 103

load modules
aliases for 48, 123
defining the ENTRY point 97
deleting 81
description 48
external references

JCLIN for 117
hierarchical file system (HFS)

JCLIN for 119
LIBRARYDD comment in link-edit steps 105,

106
SYSLIB DD statement in link-edit steps 105
SYSLMOD DD statement in link-edit steps 106

including modules from other distribution
libraries 97

moving 75
moving shared load modules 76
naming conventions 122
packaging

automatic library call function, JCLIN for 117
RECFM=U required 37
renaming 78
renaming shared load modules 79
sharing 48
single-CSECT 93

logical record length
data elements 36, 38, 170
HFS elements 38, 170
hierarchical file system (HFS) elements 36
macros 36, 37

 Index 257

 Index

logical record length (continued)
modules 36
source 36, 37

LRECL value
See logical record length

M
macros

deleting 83
LRECL=80 required 37
MCS statement 43, 71, 73
moving 75

MCS statements
++DELETE 81
++FUNCTION MCS 54
++hfs_element 71
++IF 67
++MAC 43, 71, 73
++MOD 43, 71, 73
++MOVE 75
++RENAME 78
++SRC 43, 71, 73
++VER 56
data element 71
order of 53
packaging rules 53

middle-level qualifiers
specifying on sample allocation jobs 51

migrating elements
updating both functions 163
using a PTF 164

MKDIR
EXECs

naming 51, 52
jobs, creating symbolic links in 51

MOD entry
created by JCLIN 101

modules
See also load modules
adding to a new load module 73
adding to an existing load module 73
block size 36
CSECTs in 44, 84
deleting 83
including from another product's load module 107
including into another product's load module 108
logical record length 36
MCS statement 43, 71, 73
moving 75
record format 36
sharing 48

moving elements and load modules 75
moving shared load modules 76

multiple languages
See NLS (national language support)

multiple physical tapes 14
mutually exclusive functions 156

N
NAME statement

JCLIN processing 103
naming conventions 121

alias names 122
elements 122
libraries 124
load modules 122
SYSMOD IDs 121

functions (FMIDs) 121
national language identifiers 128

See also NLS (national language support)
national language support

See NLS (national language support)
negative prerequisite SYSMODs

defining with the NPRE operand 60
description 27
examples 156
using to specify mutually exclusive SYSMODs 27,

169
NLS (national language support)

language abbreviations 128
naming of element types 123
packaging options 127

single base function 128
restrictions

DELETE operand on ++VER MCS 58, 174
element considerations 52

NPRE
++VER MCS operand 60
using to specify mutually exclusive SYSMODs 27,

60, 169

O
object modules

See modules
order of SYSMOD types 25
ORDER statement

JCLIN processing 103
using to specify CSECT order 97

OVERLAY statement
JCLIN processing 102

ownership
++VER MCS 64
for function SYSMODs 64
of elements 45

packaging considerations 45

258 MVS Packaging Rules

 Index

P
packaging

evolution of 1
examples 35
language-sensitive elements 127

packaging rules 53
++DELETE MCS 81
++FUNCTION REWORK 54
++FUNCTION sysmod_id 36
++IF MCS

FMID 67
REQ 68

++MAC MCS 44
++MOD MCS 44

CSECT 84
++MOVE MCS 75
++RENAME MCS 78
++SRC MCS 44
++VER MCS 56, 57, 172

DELETE 58
FMID 57
NPRE 60
PRE 61
REQ 64
SREL 57
SUP 62
VERSION 65

data element statements 45
editing MCS statements 89, 184
element names 122
element statements 44

DELETE 83
DISTLIB 72
VERSION 85

functions 53
JCLIN data

assembler steps 90
copy steps 91
introduction 89
link-edit steps 95

language-sensitive elements 52
library names 124
UCLIN changes 74
versions, mutually exclusive 60

packaging SYSMODs
See also SYSMOD packaging
inline JCLIN 15

PATH
changing for an existing dataset 37
operand for HFS pathname 105, 106

pathname
not allowed as distribution library 72, 95, 179, 186

PDS vs. PDS/E
changing for an existing dataset 37

physical tapes, multiple 14
PL/I, using ENTRY statements 97
planning considerations

component code 121
prefix for names of product elements and load

modules 121
product identifiers 121
SYSMOD IDs 121

PRE
++VER MCS operand 60

superseding SYSMODs 63
prefix for names of product elements and load

modules 121
prefix for relative file data sets

See RFDSNPFX
prerequisite SYSMODs

defining with the PRE operand 60
defining with the REQ operand 67
description 26
examples

defining base and dependent functions 146
defining cross-product prerequisites for

functions 153
defining cross-product prerequisites for

service 154
defining service for a function 138
defining service that depends on previous

service 139
establishing the order of dependent

functions 152
overview 26

preventive service (PTFs) 23
product identifiers 121
product processes

introduction to 1
product version code (ccc) 121
PTF

common elements 147
corrective service 23
cross-product requisites 143, 155
cutoff dates

fixing an erroneous post-cutoff PTF 141
missing ++IF MCS 141
overview 23
preventive service 23
requisite chain 147, 149
saving fixes for previous releases 140
superseding an APAR 138

PTFs
load modules, adding or changing 111

R
RECFM value

See record format

 Index 259

 Index

record format
changing for an existing dataset 37
data elements 38, 170
distribution libraries 37
HFS elements 38, 170
hierarchical file system (HFS) elements 36
load modules 37
source 37
target libraries 37

regression, avoiding
for mispackaged requisites 141
superseding the lower-level SYSMOD 138

relationships between SYSMODs 24
relative files (RELFILEs)

See also RELFILE tape
defining

prefix for data set names 54
prefix for data sets 54

release number
FMID 121

RELFILE
++JCLIN MCS operand 85

RELFILE tape
construction rules 11, 13
contents 12
creating 15
data set names 15
defining JCLIN data 85
defining relative file number 85
examples 12
format 12
packaging requirements 11
restrictions

software delivery process 11, 191
volume serial numbers 15

renaming load modules 78
renaming shared load modules 79
REPLACE statement

JCLIN processing 103
replacing a function, packaging example 35
replacing elements by superseding them 63
replacing SYSMODs via ++VER DELETE 57
REQ

++IF MCS operand 67
++VER MCS operand

superseding SYSMODs 63
requisite SYSMODs

See also ++IF MCS
See also corequisite SYSMODs
See also negative prerequisite SYSMODs
See also prerequisite SYSMODs
conditional 25
unconditional 25

REWORK
++FUNCTION MCS operand 54

RFDSNPFX
++FUNCTION MCS operand 54

IBM not allowed 55, 172
relationship to RELFILE data set name 15, 168

rrr (release value)
FMID 121

rule numbers
changes to xv
mapping of old to new 237

S
sample code, packaging

installation JCL 50, 172
recommendations 37

sample jobs
considerations 51

SELECT statement
when to use for copy operations 92

servicing a function, packaging example 36
shared

libraries 39
load modules 48

moving 76
renaming 79

single-CSECT modules 44, 93
sizes

block sizes 36
logical record length 36
record formats 36

SMPLTS
not allowed as DISTLIB or SYSLIB on MCS 72,

179
SMPMCS

specifying as the dataset name of the first file 15
SMPMTS

not allowed as DISTLIB or SYSLIB on MCS 72,
179

SMPOBJ
JCLIN processing 102

SMPPTS
not allowed as DISTLIB or SYSLIB on MCS 72,

179
SMPSTS

not allowed as DISTLIB or SYSLIB on MCS 72,
179

software delivery process
restrictions

++element MCS 44
++MAC MCS 44
++SRC MCS 44

source
LRECL=80 required 37
MCS statement 43, 71, 73
moving 75

260 MVS Packaging Rules

 Index

source (continued)
RECFM=FB required 37

SREL 57
packaging rules 57

SUP
++VER MCS operand 61

superseding SYSMODs 63
superseding SYSMODs 27

++DELETE MCS 64
++element MCS

VERSION operand rules 63
++HOLD MCS 63
++IF MCS 63
++JCLIN MCS 64
++MOD MCS

CSECT operand rules 64
LMOD operand 64

++MOVE MCS 63
++RENAME MCS 64
++VER MCS

PRE operand rules 63
REQ operand rules 63
SUP operand rules 63
VERSION operand rules 63

APARs, examples 138
description 27
element updates 64
functions

defining with the SUP operand 61
JCLIN data 64
SUP operand on the ++VER MCS 61
UCLIN data 64

SYSDEFSD DD statement
JCLIN processing 104

SYSLIB DD statement
JCLIN processing 104
link-edit steps 105
PATH operand for HFS pathname 105
resolving external references 117

SYSLMOD DD statement
JCLIN processing 106
link-edit steps 106
PATH operand for HFS pathname 106

SYSMOD IDs 121
SYSMOD packaging

See also packaging rules
examples 137
indirect libraries

LKLIB 17
TXLIB 17

LKLIB 17
methods of 11

indirect libraries 17
inline data 15
relative files (RELFILEs) 11

SYSMOD packaging (continued)
relative files (RELFILEs) 11
TXLIB 17

SYSMOD relationships
coexisting SYSMODs 29
corequisite SYSMODs 27
deleting 27
negative prerequisite SYSMODs 27, 169
prerequisite SYSMODs 26
superseding 27

sysmod_id
++FUNCTION MCS operand 54

SYSMODs
adding new FMIDs 36
APAR fixes 24
definition of 1
deleting 27
evaluating relationships 35
functions 21
hierarchy 25
naming conventions 121
overview 21
packaging

definition of 1
PTFs 23
relationships 24

conditional 25
deleting SYSMODs 27
requisite 25
unconditional 25

rules for packaging 53
superseding 27
USERMODs 24

SYSPUNCH
considerations 72, 179
JCLIN processing 102

T
target libraries

data set name for new library 124
ddname

JCLIN requirements 89, 184
new library 124

totally copied library 93
translation

See NLS (national language support)

U
UCLIN changes

avoiding use of 40
packaging rules 74
superseding SYSMODs 64

 Index 261

 Index

unconditional relationships 25
USERMOD

customizing a function 24
overview 24

V
VERSION

++element MCS operand 84
superseding SYSMODs 63

++VER MCS operand 64
superseding SYSMODs 63

data element MCS operand 84
versions of elements 84
versions of functions

mutually exclusive, packaging rules for 60
volume serial numbers

RELFILE tape 15

W
WAITFORDSN operand

specifying on DDDEF jobs 51

Z
zones

++VER rules 56, 172
coexisting SYSMODs 29
mutually exclusive functions in a zone 60
negative prerequisite 60
updated by JCLIN data 87

262 MVS Packaging Rules

Communicating Your Comments to IBM

Software Delivery
Standard Packaging Rules for
MVS-Based Products

Publication No. SC23-3695-09

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a reader's comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

� If you prefer to send comments by mail, use the RCF at the back of this book.

� If you prefer to send comments by FAX, use this number:

– FAX: (International Access Code)+1+914+432-9405

� If you prefer to send comments electronically, use one of these network IDs:

– IBM Mail Exchange: USIB6TC9 at IBMMAIL
– Internet e-mail: mhvrcfs@us.ibm.com
– World Wide Web: http://www.ibm.com/s390/os390/

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies

Optionally, if you include your telephone number, we will be able to respond to your com-
ments by phone.

Reader's Comments — We'd Like to Hear from You

Software Delivery
Standard Packaging Rules for
MVS-Based Products

Publication No. SC23-3695-09

You may use this form to communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you. Your comments will be sent to the author's
department for whatever review and action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Today's date:

What is your occupation?

Newsletter number of latest Technical Newsletter (if any) concerning this publication:

How did you use this publication?

Is there anything you especially like or dislike about the organization, presentation, or writing in this
manual? Helpful comments include general usefulness of the book; possible additions, deletions, and
clarifications; specific errors and omissions.

Page Number: Comment:

Name Address

Company or Organization

Phone No.

[] As an introduction [] As a text (student)

[] As a reference manual [] As a text (instructor)

[] For another purpose (explain)

Cut or Fold
Along Line

Cut or Fold
Along Line

Reader's Comments — We'd Like to Hear from You
SC23-3695-09 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
522 South Road
Poughkeepsie NY 12601-5400

Fold and Tape Please do not staple Fold and Tape

SC23-3695-09

IBM

Program Number: 5645-001

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC23-3695-ð9

	Contents
	Notices
	Trademarks

	About This Book
	How this Book Is Organized
	Conventions for Rules, Restrictions, and Recommendations

	Summary of Changes
	Revision SC23-3695-09 (September 1999)
	Revision SC23-3695-08 (March 1999)
	Revision SC23-3695-07 (March 1998)
	Revision SC23-3695-06 (September 1997)
	Revision SC23-3695-05 (March 1997)

	Chapter 1. Introduction to MVS Product Processes
	1.1 What Is Product Packaging?
	1.2 Evolution of Product Packaging
	1.3 Getting Products and Service from Development Libraries onto Users' Systems
	1.3.1 Packaging and Distributing the SYSMODs
	1.3.2 Writing the Installation Documentation
	1.3.3 Installing the SYSMODs

	1.4 A Simple Packaging Example

	Chapter 2. Assessing Your Product's Packaging Requirements and Considerations
	Chapter 3. Rules for Packaging Methods
	3.1 Relative File Tapes
	3.1.1 Format and Contents of the RELFILE Tape
	3.1.2 Creating the RELFILE Tape

	3.2 Inline Data
	3.2.1 Example of Inline Element Updates
	3.2.2 Example of Inline JCLIN Data

	3.3 Indirect Libraries
	3.3.1 Example of a RELFILE Tape with JCLIN Data in an Indirect Library
	3.3.2 Example of Using Indirect Libraries Instead of a RELFILE Tape

	Chapter 4. SYSMOD Types and Relationships
	4.1 Types of SYSMODs
	4.1.1 Functions
	4.1.1.1 Base Functions
	4.1.1.2 Dependent Functions
	4.1.1.3 Choosing between Base and Dependent Functions
	4.1.1.4 General Packaging Rules for Functions

	4.1.2 PTFs
	4.1.3 APAR Fixes
	4.1.4 USERMODs

	4.2 Defining SYSMOD Relationships
	4.2.1 Conditional and Unconditional Relationships
	4.2.2 Hierarchy of SYSMOD Types
	4.2.3 Specific SYSMOD Relationships
	4.2.3.1 Prerequisite SYSMODs
	4.2.3.2 Corequisite SYSMODs
	4.2.3.3 Negative Prerequisite SYSMODs
	4.2.3.4 Deleting and Superseding SYSMODs

	4.2.4 Coexisting SYSMODs
	4.2.4.1 SYSMODs that Unconditionally Coexist
	4.2.4.2 SYSMODs that Conditionally Coexist
	4.2.4.3 Example: Conditional and Unconditional Coexistence

	Chapter 5. Fundamental Packaging Considerations
	5.1 Installation Methods
	5.2 Evaluating SYSMOD Relationships
	5.3 Adding FMIDs
	5.4 Record Length, Record Format, and Block Size Requirements
	5.5 Shared Libraries
	5.6 Avoiding UCLIN

	Chapter 6. Elements and Load Modules
	6.1 General Packaging Rules, Restrictions, and Recommendations for Elements
	6.2 Element Ownership
	6.3 Using Aliases for Elements
	6.4 Data Element Types
	6.5 Hierarchical File System (HFS) Element Types
	6.6 Shared Load Modules
	6.7 Sample JCL and Data
	6.8 Language-Sensitive Elements

	Chapter 7. Using MCS Statements to Define Products
	7.1 <<FUNCTION Statement
	7.1.1 Specifying the SYSMOD ID (sysmod_id)
	7.1.2 Identifying the REWORK Date (REWORK)
	7.1.3 Specifying the Prefix for RELFILE Data Sets (RFDSNPFX)
	7.1.4 Specifying Copyright Information

	7.2 <<VER Statement
	7.2.1 General Packaging Rules (<<VER)
	7.2.2 Identifying the SREL
	7.2.3 Identifying a SYSMOD's Base Function (FMID)
	7.2.4 Deleting SYSMODs (DELETE)
	7.2.5 Specifying Mutually Exclusive SYSMODs (NPRE)
	7.2.6 Specifying Prerequisite Relationships (PRE)
	7.2.7 Superseding SYSMODS (SUP)
	7.2.8 Defining Ownership (VERSION)

	7.3 <<IF Statement
	7.3.1 Specifying the Function to which the Condition Applies (FMID)
	7.3.2 Specifying Requisite Conditions (REQ)

	7.4 <<HOLD Statement
	7.5 <<element Statement

	Chapter 8. Using MCS Statements to Manipulate Elements and Load Modules
	8.1 Moving Elements and Load Modules (<<MOVE)
	8.2 Renaming Load Modules (<<RENAME)
	8.3 Deleting Load Modules (<<DELETE)
	8.4 Deleting Elements from Libraries and SMP/E Data Sets
	8.5 Enabling Load Module Changes at the CSECT Level (<<MOD CSECT)
	8.6 Defining Ownership of Elements (<<element VERSION)

	Chapter 9. Using JCLIN
	9.1 Providing JCLIN Data for Function SYSMODs
	9.2 When Do You Need JCLIN?
	9.3 General Packaging Rules for JCLIN Data
	9.4 Assembler Steps
	9.5 Copy Steps
	9.5.1 Considerations for the SELECT Statement for Copy Operations
	9.5.1.1 Fully-Defined Elements
	9.5.1.2 Single-CSECT Load Modules
	9.5.1.3 Totally Copied Libraries

	9.6 Link-Edit Steps
	9.6.1 JCLIN Processing of DD Statements in Link-Edit Steps
	9.6.2 Link-Edit Control Statements
	9.6.3 Link-Edit Attribute Parameters
	9.6.4 Cross-Product Load Modules for Products Installed in the Same Zone
	9.6.4.1 Linking a Module from Another Function
	9.6.4.2 Linking Modules into a Load Module for Another Function

	9.6.5 Cross-Product Load Modules for Products Installed in Different Zones
	9.6.5.1 SMP/E LINK Command
	9.6.5.2 Implicitly Defining the Modules

	9.6.6 Adding or Changing Load Modules in a PTF

	9.7 Examples of JCLIN Data
	9.7.1 JCLIN Data for Modules
	9.7.2 JCLIN Data for Macros and Source
	9.7.3 JCLIN Data for an Assembler Step to Create a Module from Source
	9.7.4 JCLIN for Using the Link-Edit Automatic Library Call Function
	9.7.4.1 Overview of CALLLIBS Support
	9.7.4.2 Example of a SYSMOD That Implements CALLLIBS Support
	9.7.4.3 Restrictions in CALLLIBS Support

	9.7.5 JCLIN Data for Load Modules Residing in a Hierarchical File System

	Chapter 10. Naming Conventions
	10.1 Component Codes
	10.2 SYSMOD IDs for Functions
	10.3 Element, Alias, and Load Module Names
	10.3.1 NLS Considerations for Element Types
	10.3.2 Elements with the Same Name
	10.3.3 Alias Names

	10.4 Library Names

	Chapter 11. Packaging for National Language Support (NLS)
	11.1 Element Types for Translated Elements

	Chapter 12. Packaging for Special Situations
	12.1 High-Level Languages
	12.1.1 Support in SMP/E Release 8 and Later for the Automatic Library Call Facility
	12.1.2 If You Cannot Use the Automatic Library Call Facility
	12.1.2.1 Using a Postinstallation Link-Edit Job
	12.1.2.2 Using JCLIN to Identify Library Routines

	12.2 Using the C Language Prelinker
	12.2.1 Example of a Product Requiring the C Prelinker

	12.3 Packaging Workstation Code to Be Installed on the Host
	12.4 Hierarchical File System (HFS)

	Chapter 13. SYSMOD Packaging Examples
	13.1 Conventions Used in This Chapter
	13.2 Example 1: A Stand-Alone Function
	13.2.1 Initial Release
	13.2.2 PTF Service for the Initial Release
	13.2.3 PTF Service That Depends on Previous Service
	13.2.4 Ensuring That a Fix for a Previous Release Is Not Lost
	13.2.5 Replacing the Initial Release

	13.3 Example 2: Corequisite Base Functions
	13.3.1 Initial Releases of Corequisite Functions
	13.3.2 PTF Service for One of the Base Functions
	13.3.3 Cross-Product Service between Corequisite Base Functions
	13.3.4 Deleting and Superseding a Base Function

	13.4 Example 3: Dependent Functions
	13.4.1 Initial Release of a Dependent Function
	13.4.2 PTF Service for a Dependent Function
	13.4.3 Corequisite PTFs with an Element Common to the Base and Dependent Functions
	13.4.4 Corequisite PTFs with All Elements Common to Base and Dependent Functions
	13.4.5 Deleting a Dependent Function Without Superseding It
	13.4.6 Establishing the Order of Additional Dependent Functions
	13.4.7 Conditional Corequisite Dependent Functions

	13.5 Example 4: Base Functions with Prerequisites
	13.5.1 Initial Release of a Base Function with a Functional Prerequisite
	13.5.2 Dependency on an SPE or Service for Another Base Function
	13.5.3 Cross-Product Service for a Base Function with a Prerequisite

	13.6 Example 5: Mutually Exclusive Dependent Functions
	13.7 Example 6: Functions Supporting More Than One Language
	13.7.1 A Base Function Supporting Two Languages
	13.7.2 PTF Service for Language-Sensitive Elements
	13.7.3 Supporting Two Languages for a Base Function and Its Related Dependent Function
	13.7.4 PTF Service for Common Language-Sensitive Elements

	13.8 Changing the Contents of Products
	13.8.1 Adding Elements
	13.8.2 Combining Elements
	13.8.3 Migrating Elements by Updating Both Functions
	13.8.4 Migrating Elements by Using a PTF

	Appendixes
	Appendix A. Summary of Rules, Restrictions, and Recommendations
	A.1 Rules
	A.2 Restrictions
	A.3 Recommendations

	Appendix B. MVS Service Packaging Rules
	B.1 Introduction
	B.1.1 Service Terminology

	B.2 MVS Service Packaging Rules
	B.2.1 PTF Size, Format, and Content
	B.2.2 Standard PTF Structure
	B.2.2.1 <<PTF
	B.2.2.2 <<VER
	B.2.2.3 <<IF
	B.2.2.4 <<HOLD
	B.2.2.5 <<MOVE, <<RENAME, <<DELETE
	B.2.2.6 <<JCLIN
	B.2.2.7 <<element
	B.2.2.8 UCLIN
	B.2.2.9 Other

	B.2.3 PTF Cover Letter
	B.2.3.1 PROBLEM DESCRIPTION(S):
	B.2.3.2 COMPONENT: or PRODUCT ID:
	B.2.3.3 APARS FIXED:
	B.2.3.4 SPECIAL CONDITIONS:
	B.2.3.5 COMMENTS:

	B.3 IBM Service Delivery
	B.3.1 Service Process Initialization
	B.3.2 PTF Submission
	B.3.2.1 MVS PTF Control

	B.4 Naming Conventions for Service

	Appendix C. Mapping of Old Rule Numbers to New Rule Numbers
	Glossary
	Bibliography and Classes
	SMP/E Books in the OS/390 Library
	The SMP/E Release 8.1 Library
	Classes and Self-Study Courses for SMP/E

	Index

