<|lI!

7/08S

System Secure Sockets Layer
Programming

SC24-5901-02

<|lI!

7/08S

System Secure Sockets Layer
Programming

SC24-5901-02

Note
Before using this information and the product it supports, be sure to read the general information under Appendix B,
“Notices”.

Third Edition (September 2002)
This document is a complete revision of SC24-5901-01.

This edition applies to Version 1 Release 4 of z/OS (program number 5694-A01), Version 1 Release 4 of z/OS.e
(program number 5655-G52), and to all subsequent releases and modifications until otherwise indicated in new
editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. You may address your comments to the following address:

International Business Machines Corporation
Department 55JA Mail Station P384

2455 South Road

Poughkeepsie, NY, 12601-5400

United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries): Your International Code +1+845+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zosqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number. Make sure to
include the following in your comment or note:

» Title and order number of this book

* Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1999, 2002. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
Figures

Preface

Who Should Use ThIS Book

How This Book is Organized.
Conventions Used in This Book
Where to Find More Information .

Summary of Changes

New Information for z/OS Release 4
Changed Information for z/OS Release 4.
Deleted Information for z/OS Release 4 .
z/OS Release 2 Summary of Changes

Chapter 1. Introduction
Software Dependencies
Installation Information .

Chapter 2. How System SSL Works for Secure Socket Communication
Using System SSL on z/OS .
System SSL Application Overview .

Chapter 3. Using Hardware Cryptographic Features with System SSL

Chapter 4. Writing and Building a z/OS System SSL AppI|cat|on
Writing a System SSL Source Program .o .o
Building a z/0OS System SSL Application .

Running a z/OS System SSL Appllcatlon

Additional Topics. .

Chapter 5. Migrating to the New SSL Interfaces

Chapter 6. Building and Running a Java System SSL Application
Writing a Java Source Program . e
Building a z/OS Java System SSL Appllca'uon

Running a z/OS Java System SSL Application .

Chapter 7. API Reference
gsk_attribute _get_buffer()
gsk_attribute_get_cert_info()
gsk_attribute_get_data() .
gsk_attribute_get_enum()
gsk_attribute_get_numeric value()
gsk_attribute_set_buffer()
gsk_attribute_set_callback().
gsk_attribute_set_enum() .
gsk_attribute_set _numeric_value() .
gsk_environment_close().
gsk_environment_init()
gsk_environment_open() .
gsk_free_cert_data()
gsk_get_cert_by label() .
gsk_get_cipher_suites() .

© Copyright IBM Corp. 1999, 2002

. Xi
(
(
. Xii
. Xiii

. XV

. XV
. Xvi
. Xvi
. Xvi

=

o 01

L1
.11
. 16
. 16
. 16

. 23

. 25
. 25
. 26
. 26

.27
. 29
.31
. 34
. 36
. 38
. 40
. 43
.47
. 49
. 51
. 52
. 54
. 58
. 59
. 62

gsk_get_update()
gsk_list_free(). .
gsk_secure_socket close()
gsk_secure_socket_init() .
gsk_secure_socket_misc() .
gsk_secure_socket_open() .
gsk_secure_socket _read() .
gsk_secure_socket_shutdown()
gsk_secure_socket_write() .
gsk_strerror() .

Chapter 8. Certificate Management Services (CMS) API Reference
gsk_add_record()
gsk_change_database password()
gsk_change_database_record_length()
gsk_close_database() .
gsk_close_directory() .
gsk_copy_buffer()
gsk_copy_certificate() . .o
gsk_copy_certificate_extension() .
gsk_copy_certification_request() .
gsk_copy_content_info() .
gsk_copy_crl()

gsk_copy_name()
gsk_copy_private_key |nfo()
gsk_copy_public_key info().
gsk_copy_record() . -
gsk_create_certification_request()
gsk_create_database() .
gsk_create_self_signed_ certlflcate()
gsk_create_signed_certificate() .
gsk_create_signed_crl().
gsk_decode_base64()
gsk_decode_certificate() .
gsk_decode_certificate_extension()
gsk_decode_certification_request().
gsk_decode_crl() .
gsk_decode_name() .
gsk_delete_record() .
gsk_dn_to_name().
gsk_encode_base64() .
gsk_encode_certificate extenS|on()
gsk_encode_name() .
gsk_encode_signature()
gsk_export_certificate() .
gsk_export_certification request()
gsk_export_key() .

gsk_free_buffer() .
gsk_free_certificate() .
gsk_free_certificates() .
gsk_free_certificate_extension().
gsk_free_certification_request() .
gsk_free_content_info() .
gsk_free_crl()

gsk_free crls() .

gsk_free_decoded exten5|on()

iV System SSL Programming V1R4.0

. 63
. 64
. 65
. 66
. 69
.71
.72
.74
. 76
. 78

.79
. 82
. 84
. 86
. 87
. 88
. 89
. 90
.91
.92
. 93
. 94
. 95
. 96
. 97
. 98
.99
. 101
. 103
. 106
. 108
. 110
111
. 112
. 114
. 115
. 116
. 117
. 118
. 120
. 121
. 123
. 124
. 125
. 127
. 129
. 131
. 132
. 133
. 134
. 135
. 136
. 137
. 138
. 139

gsk_free_name() .
gsk_free_private_key | mfo()
gsk_free_public_key_info()
gsk_free_record() .
gsk_free_records()
gsk_free_string() .
gsk_free_strings() . .
gsk_generate_random bytes() .
gsk_get_cms_vector()
gsk_get_default_key()

gsk_get default_label() . .
gsk_get_directory_certificates() .
gsk_get_directory_crls().
gsk_get_record_by_id() .
gsk_get_record_by_index()
gsk_get_record_by label().
gsk_get_record_by_subject() .
gsk_get _record_labels()

gsk _get _update_code() .
gsk_import_certificate() .
gsk_import_key() .
gsk_make_content_msg() .
gsk_make_data_content() .
gsk_make_data_msg() .
gsk_make_encrypted_data content()
gsk_make_encrypted_data_msg() .
gsk_make_enveloped_data_content()
gsk_make_enveloped_data _msg() .
gsk_make_signed_data_content() .
gsk_make_signed_data_msg() .
gsk_make_wrapped_content()
gsk_mktime()
gsk_name_compare()
gsk_name_to_dn()
gsk_open_database()

gsk_open_database_using_ stash flle() :

gsk_open_directory().
gsk_open_keyring() .
gsk_query_crypto_level() .
gsk_query_database_label() .
gsk_query_database_record_length().
gsk_rdtime() . Coe
gsk_read_content msg()
gsk_read_data_content()
gsk_read_data_msg()
gsk_read_encrypted_data content()
gsk_read_encrypted_data_msg()
gsk_read_enveloped_data_content() .
gsk _read_enveloped_data _msg() .
gsk_read_signed_data_content()
gsk_read_signed_data_msg()
gsk_read_wrapped_content().
gsk_receive_certificate()
gsk_replace_record().
gsk_set_default_key()
gsk_sign_certificate().

. 140
. 141
. 142
. 143
. 144
. 145
. 146
. 147
. 148
. 149
. 150
. 151
. 152
. 154
. 155
. 156
. 157
. 158
. 159
. 160
. 162
. 164
. 165
. 166
. 167
. 169
. 171
. 173
. 175
. 177
. 179
. 180
. 181
. 182
. 183
. 185
. 187
. 188
. 189
. 190
. 191
. 192
. 193
. 194
. 195
. 196
. 198
. 200
. 202
. 204
. 206
. 208
. 209
. 210
. 212
. 213

Contents

\Y

gsk_sign_crl()

gsk_sign_data()
gsk_validate_certificate()
gsk_verify_certificate_signature()
gsk_verify_crl_signature() .
gsk_verify_data_signature()

Chapter 9. Deprecated Secure Sockets Layer APIs
gsk_free_memory()
gsk_get_cipher_info()
gsk_get dn_by label() .
gsk_initialize() .
gsk_secure_soc_close .
gsk_secure_soc_init()
gsk_secure_soc_read() .
gsk_secure_soc_reset().
gsk_secure_soc_write() .
gsk_srb_initialize().
GSKSRBRD .
GSKSRBWT.
gsk_uninitialize()
gsk_user_set() .

Chapter 10. Certificate/Key Management
Introduction . Ce e

The gskkyman Command

Setting Up the Environment to Run gskkyman
Key Database Files . Ce e
How gskkyman Works .

Interactive Mode

Example Tasks Performed by the gskkyman Command in Interacnve Mode

Example Tasks Performed by the gskkyman Command in Command Mode

Chapter 11. SSL Started Task
GSKSRVR Environment Variables .
Configuring the SSL Started Task .
Server Operator Commands .
Sysplex Session Cache Support
Component Trace Support.

Chapter 12. Obtaining Diagnostic Information
Obtaining System SSL Trace Information
Component Trace Support.

Capturing Component Trace Data .
Displaying the Trace Data .

Chapter 13. Messages and Codes

SSL Function Return Codes .
Deprecated SSL Function Return Codes
ASN.1 Status Codes (014CExxx) .

CMS Status Codes (03353xxXx) .

SSL Started Task Messages (GSKOlnnn)
Utility Messages (GSK00nnn) .

Appendix A. Environment Variables

Vi System SSL Programming V1R4.0

. 214
. 215
. 217
. 220
. 221
. 222

. 225
. 226
. 227
. 228
. 229
. 232
. 233
. 238
. 240
. 241
. 243
. 244
. 245
. 246
. 247

. 249
. 249
. 249
. 250
. 250
. 250
. 253
. 259
. 281

. 283
. 283
. 283
. 284
. 285
. 285

. 287
. 287
. 288
. 288
. 289

. 291
. 291
. 296
. 302
. 305
. 311
. 316

. 317

Appendix B. Sample C++ SSL Files
Appendix C. Sample Java SSL Files

Appendix D. Accessibility
Using assistive technologies .

Keyboard navigation of the user mterface .

Appendix E. Notices
Programming Interface Informat|on
Trademarks .

Bibliography
z/OS Security Server Publlcanons

z/OS Cryptographic Services Publications .

IBM C/C++ Language Publication .
Other IBM z/OS Publications .

Index

Contents

. 325

. 327

. 329
. 329
. 329

. 331
. 332
. 333

. 335
. 335
. 335
. 335
. 335

. 337

Vii

viii System SSL Programming V1R4.0

Figures

©CoNO WD

Sockets Programming Model Usmg System SSL
Database Menu. G e

Key Management Menu .

Key and Certificate Menu .

Certificate Menu

Request Menu . .

Starting Menu for gskkyman .

Creating a New Key Database

Key Management Menu for gskkyman

Opening an Existing Key Database File .

Key Management Menu.

Deleting an Existing Key Database

Changing a Key Database Password . .

Storing a Database Password in a Stash File .

Select 6 to Create a Self-Signed Certificate

Creating a Self-Signed Certificate .

Select 4 to Create a New Certificate Request

Creating a Certificate Request .
Contents of certreq.arm after Certificate Request Generat|on)
Receiving a Certificate Issued for your Request .

Key and Certificate List .

Key and Certificate Menu .

Certificate Information

Certificate Extensions List .

Key Usage Information .

Key Information menu

Marking a Certificate (and Prlvate Key) as the Default Certlflcate
Copying a Certificate Without its Private Key . .
Copying a Certificate and Private key to a Different Key Database .

Copying a Certificate with its Private Key to a Key Database on the Same System .

Delete Certificate and Key .

Changing a Certificate Label .

Certificate List (part 1)

Certificate List (part 2) .

Importing a Certificate from a File .

Importing a Certificate and Private Key from a F|Ie
Being Your Own CA in a Web Network .

© Copyright IBM Corp. 1999, 2002

. 253
. 255
. 255
. 256
. 257
. 260
. 260
. 261
. 262
. 262
. 262
. 263
. 264
. 265
. 266
. 267
. 267
. 268
. 269
. 270
. 270
. 271
. 271
. 271
. 272
. 272
. 273
. 274
. 275
. 276
. 277
. 277
. 278
. 278
. 279
. 280

X System SSL Programming V1R4.0

Preface

This books contains information about the System SSL product. This information consists of primarily two
sets of APIs and a Certificate Management utility. The first set of APIs support the Secure Sockets Layer
protocols (SSL V2.0, SSL 3.0 and TLS V1.0) which can be utilized by C/C++ applications to communicate
securely across an open communications network. The other set of APIs (Certificate Management) provide
the ability to exploit function other than the SSL protocols. These functions include the ability to
create/manage key database files in a similar function to the SSL Certificate Management utility, use
certificates stored in the key database file or key ring for purposes other than SSL and basic PKCS #7
message support to provide application writers a mechanism to communicate with another application
through the PKCS #7 standard.

This books also provides guidance on how to write a client and server secure sockets layer application.
The client and server may both reside on z/OS systems or reside on different systems.

Who Should Use This Book

This document is intended to assist system administrators in setting up the system to use System SSL
support and application programmers in writing System SSL applications.

How This Book is Organized

The following briefly describes the format and organization of this book:

[Chapter 1, “Introduction” on page 1| describes Secure Sockets Layer (SSL) and lists the software
dependencies and installation information you need to use the System SSL support.

[Chapter 2, “How System SSL Works for Secure Socket Communication” on page 5| provides a general
overview of System SSL and the basic structure of a z/OS application using System SSL.

[Chapter 3, “Using Hardware Cryptographic Features with System SSL” on page 9| describes the Hardware
Cryptographic features.

[Chapter 4, “Writing and Building a z/OS System SSL Application” on page 11| describes how to write a
System SSL source program and build the System SSL application.

[Chapter 5, “Migrating to the New SSL Interfaces” on page 23| describes how to migrate your existing
application programs from the deprecated SSL interfaces to the new SSL interfaces.

[Chapter 6, “Building and Running a Java System SSL Application” on page 25| describes how to write a
Java System SSL source program and build the application.

[Chapter 7, “AP| Reference” on page 27| describes the System SSL program interfaces.

[Chapter 8, “Certificate Management Services (CMS) API Reference” on page 79| describes the Certificate
Management Services (CMS) program interfaces.

[Chapter 9, “Deprecated Secure Sockets Layer APIs” on page 225|describes the deprecated System SSL
program interfaces.

|Chapter 10, “Certificate/Key Management” on page 249| describes how to use the gskkyman utility to
create a key database file, a public/private key pair, a certificate request, and other tasks.

© Copyright IBM Corp. 1999, 2002 Xi

[Chapter 11, “SSL Started Task” on page 283|provides sysplex session cache support and dynamic trace
support.

[Chapter 12, “Obtaining Diagnostic Information” on page 287 provides debugging information.

|Chapter 13, “Messages and Codes” on page 29]1 contains variosu messages and codes you may
encounter using System SSL.

IAppendix A, “Environment Variables” on page 317|Iists the environment variables used by System SSL.

|Appendix B, “Sample C++ SSL Files” on page 325|describes the sample set of files shipped to provide an
example of what is needed to build a C++ System SSL application.

|Appendix C, “Sample Java SSL Files” on page 327| describes the sample set of files shipped which provide
an example of what is needed to build a z/OS System SSL Java application.

lAppendix D, “Accessibility” on page 329 describes accessibility features provided with this product to help
a user who has a physical disability.

lAppendix E, “Notices” on page 331]lists various trademark and licensing notices.

Conventions Used in This Book

This book uses the following typographic conventions:
Bold Bold words or characters

Highlightingl
Words or characters highlighted in this manner represent system elements that you must enter
into the system literally, such as commands, options, or path names.

Italic Italic words or characters

Highlighting2
Words or characters highlighted in this manner represent values for variables that you must
supply.

Example font
Examples and information displayed by the system appear in constant width type style.

[1] Brackets enclose optional items in format and syntax descriptions.
{} Braces enclose a list from which you must choose an item in format and syntax descriptions.
[A vertical bar separates items in a list of choices.
<> Angle brackets enclose the name of a key on the keyboard.
Horizontal ellipsis points indicate that you can repeat the preceding item one or more times.

\ A backslash is used as a continuation character when entering commands from the shell that
exceed one line (255 characters). If the command exceeds one line, use the backslash character \
as the last nonblank character on the line to be continued, and continue the command on the next
line.

This book uses the following keying conventions:

<ALT-c>
The notation <Alt->c followed by the name of a key indicates a control character sequence.

Xii System SSL Programming V1R4.0

<Return>
The notation <Return> refers to the key on your keyboard that is labeled with the word Return or
Enter, or with a left arrow.

Entering commands
When instructed to enter a command, type the command name and then press <Return >.

Where to Find More Information

Where necessary, this book references information in other books, using shortened versions of the book
title. For complete titles and order numbers of the books for all products that are part of z/OS, see the

z/OS: Information Roadmap, SA22-7500} For a list of titles and order numbers of the books that are useful
for the SSL Services, see |'‘Bibliography” on page 335

Softcopy Publications

The z/OS Cryptographic Services library is available on a CD-ROM, z/OS Collection, SK3T-4269. The
CD-ROM online library collection is a set of unlicensed books for z/OS and related products that includes
the IBM Library Reader. This is a program that enables you to view the BookManager files. This CD-ROM
also contains the Portable Document Format (PDF) files. You can view or print these files with the Adobe
Acrobat reader.

Internet Sources

The softcopy z/OS publications are also available for web-browsing and for viewing or printing PDFs using
the following URL:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

You can also provide comments about this book and any other z/OS documentation by visiting that URL.
Your feedback is important in helping to provide the most accurate and high-quality information.

Accessing Licensed Books on the Web
z/OS licensed documentation in PDF format is available on the Internet at the IBM Resource Link site:

http://www.ibm.com/servers/resourcelink

Licensed books are available only to customers with a z/OS license. Access to these books requires an
IBM Resource Link user ID, password, and z/OS licensed book key code. The z/OS order that you
received provides a memo that includes your key code.

To obtain your IBM Resource Link user ID and password, logon to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed books:

1. Logon to Resource Link using your Resource Link user ID and password.
Select User Profiles located on the left-hand navigation bar.

Select Access Profile .

Select Request Access to Licensed books

Supply your key code where requested and select the Submit button.

a s DN

If you supplied the correct key code you will receive confirmation that your request is being processed.
After your request is processed you will receive an e-mail confirmation.

Note: You cannot access the z/OS licensed books unless you have registered for access to them and
received an e-mail confirmation informing you that your request has been processed.

Preface Xiii

To access the licensed books:

Logon to Resource Link using your Resource Link user ID and password.
Select Library .

Select zSeries.

Select Software .

Select z/OS.

Access the licensed book by selecting the appropriate element.

o 0k whPE

Using LookAt to Look Up Message Explanations

LookAt is an online facility that allows you to look up explanations for z/OS messages, system abends,
and some codes. Using LookAt to find information is faster than a conventional search because in most
cases LookAt goes directly to the message explanation.

You can access LookAt from the Internet at:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/Tookat/Tookat.html

or from anywhere in z/OS where you can access a TSO command line (for example, TSO prompt, ISPF,
z/0OS UNIX Systems Services running OMVS).

To find a message explanation on the Internet, go to the LookAt Web site and simply enter the message
identifier (for example, IAT1836 or IAT*). You can select a specific release to narrow your search. You can
also download code from the z/OS Collection, SK3T-4269, and the LookAt Web site so you can access
LookAt from a PalmPilot (Palm VIIx suggested).

To use LookAt as a TSO command, you must have LookAt installed on your host system. You can obtain
the LookAt code for TSO from a disk on your z/OS Collection, SK3T-4569, or from the LookAt Web site.
To obtain the code from the LookAt Web site, do the following:

1. Goto http://www.ibm.com/servers/eserver/zseries/zos/bkserv/Tookat/lookat.html.
2. Click the News button.

3. Scroll to Download LookAt Code for TSO and VM

4

Click the ftp link, which takes you to a list of operating systems. Select the appropriate operating
system. Then select the appropriate release.

5. Find the lookat.me file and follow its detailed instructions.

To find a message explanation from a TSO command line, simply enter: lookat message-id. LookAt
displays the message explanation for the message requested.

Note: Some messages have information in more than one book. For example, IEC192I has routing and
descriptor codes listed in [z/0S: Routing and Descriptor Codes, SA22-7624} For such messages,
LookAt prompts you to choose which book to open.

How to Send Your Comments

Your feedback is important in helping to provide the most accurate and high-quality information. If you
have any comments about this book, send your comments by using Resource Link at

http://www.ibm.com/servers/resourcelink
Select Feedback on the Navigation bar on the left. Be sure to include the name of the book, the form

number of the book, the version of the book, if applicable, and the specific location of the text you are
commenting on (for example, a page number or table number.)

XiV System SSL Programming V1R4.0

Summary of Changes

Summary of Changes
for SC24-5901-02
z/OS Version 1 Release 4

This book contains information previously presented in z/OS System Secure Sockets Layer Programming,
SC24-5901-01, which supports z/OS Version 1 Release 2.

This book includes terminology, maintenance, and editorial changes. Technical changes or additions to the
text and illustrations are indicated by a vertical line to the left of the change.

Starting with z/OS V1R2, you may notice changes in the style and structure of some content in this book--
for example, procedures that have a different look and format. These changes are ongoing improvements
to the consistency and retrievability of information in our books.

The following summarizes the technical changes to the book:

New Information for z/OS Release 4

gskkyman utility has been restructured to allow for clearer presentation of certificate information as well
as enhanced to support exporting/importing certificates in PKCS #12 Version 3 and PKCS #7 format,
modification of certificate labels and creation of Digital Signature Standard certificates (FIPS 186-1).

New Certificate Management APIs

In addition to the APIs being provided so that applications can securely communicate over an open
communication network using the SSL or TLS protocols, a new suite of APIs has been introduced to
allow application writers the ability to exploit function other than the typical SSL functions. These
functions include

— The ability to create/manage key database files in a similar function to the SSL gskkyman utility.
— Use certificates stored in the key database file or key ring for purposes other than SSL.

— Basic PKCS #7 message support has been added to provide application writers a mechanism to
communicate with another application through the PKCS #7 standard. These APIs build and process
the PKCS #7 messages.

External Security Manager (i.e. RACF) key ring support has been enhanced to allow private keys to be
stored in ICSF and applications to use key rings owned by other userids.

Added AES cipher support to its SSL V3.0 and TLS V1.0 implementations. In order to exploit the AES
ciphers, Security Level 3 Feature of System SSL is required.

Support for IPv6 network addresses has been added.
Performance enhancements

An in storage caching mechanism has been added where retrieved Certificate Revocation Lists (CRLS)
will be cached for a period of time. This will optimize the fetching done to retrieve CRL information from
the LDAP server during certificate validation.

A Sysplex session cache has been added to make SSL server session information available across the
sysplex. An SSL session established with a server on one system in the sysplex can be resumed using
a server on another system in the sysplex as long as the SSL client presents the session identifier
obtained for the first session when initiating the second session. The sysplex session cache can be
used to store SSL V3.0 and TLS V1.0 server session information.

Serviceability

Component trace and enhanced debug granularity of trace information has been added.

Messages and Codes

Explanations and actions have been added for the System SSL API return codes and utility messages.

© Copyright IBM Corp. 1999, 2002 XV

Changed Information for z/OS Release 4

* When creating certificates, the Key Usage extension identifies how the certificate can be used. In prior
releases, this extension was never created. In V1R4, new certificates will take advantage of this
extension. When creating a certificate to be used by a client or server application, the certificate must
be created as an enduser certificate. This will allow it to do key encipherment and digital signature.
When the certificate is to act as a signing certificate authority, it must be created as a CA certificate.
This will update the Key Usage with CRL and signing capabilities.

» gsk_attribute_get cert_info() has been enhanced to return additional fields from the certificate (i.e..
subject alternate name values)

» gsk_environment_close() will allow you to close an environment with active connections. The
connections will be allowed to continue to completion.

» gsk secure_soc_init() will fail if the specified DN is not unique within the key database.

* gsk_get update() has been enhanced to let an application query whether the key database file has
been modified since the SSL environment was established.

» Deprecated APIs updated to support the TLS V1.0 protocol.

Deleted Information for z/OS Release 4

» Certificate creation through gskkyman will support certificates with key sizes of 1024 and 2028. Existing
certificates with key sizes of 512 will continue to be supported as well as the importation of certificates
with key sizes of 512.

» Certificate creation through gskkyman will support X.509 Version 3 certificates only. Existing Version 1
and Version 2 certificates will continue to be supported as well as the importation of certificates based
on version 1 and 2.

» gskkyman will no longer support the migration of mkkf certificate files to key database files.

z/OS Release 2 Summary of Changes

Summary of Changes
for SC24-5901-01
z/OS Version 1 Release 2

This book contains information previously presented in z/OS System Secure Sockets Layer Programming,
SC24-5901-00, which supports z/OS Version 1 Release 1.

This book includes terminology, maintenance, and editorial changes. Technical changes or additions to the
text and illustrations are indicated by a vertical line to the left of the change.

This book contains terminology, maintenance, and editorial changes, including changes to improve
consistency and retrievability.

The following summarizes the technical changes to the book:
* An appendix with z/OS product accessibility information has been added.

New Information for z/OS Release 2

» Added support for Transport Layer Security (TLS) V1.0 protocol (RFC 2246)

* New set of APIs (APIs created prior to this release of System SSL are deprecated, but are still
supported for use by existing application programs). The new APIs allow for:

— Greater flexibility in defining the SSL environment and sessions, and

— The capability of defining multiple concurrent SSL environments, to allow SSL environment attributes
to be modified without disrupting any SSL sessions already in progress.

XVi System SSL Programming V1R4.0

» Addition of support to allow the LDAP server containing information about Certificate Revocations Lists
to be recycled after the SSL environment has been defined.

» Addition of support for Certificate Revocation Lists created through the Tivoli PKI Trust Authority.
» Addition of information on usage of hardware cryptographic features by System SSL.

» Addition of enhanced diagnostic information. This includes how to enable internal tracing and use of the
gsktrace trace formatting tool.

Deleted Information for z/OS Release 2

* The sample C++ SSL files were removed from|Appendix B, “Sample C++ SSL Files” on page 325
These files are shipped in /usr/1pp/gskss1/examples.

* The sample Java SSL files were removed from|Appendix C, “Sample Java SSL Files” on page 327|.
These files are shipped in /usr/1pp/gskss1/examples/java.

Summary of Changes XVii

XVili System SSL Programming V1R4.0

Chapter 1. Introduction

Secure Sockets Layer (SSL) is a communications protocol that provides secure communications over an
open communications network (for example, the Internet). The SSL protocol is a layered protocol that is
intended to be used on top of a reliable transport, such as Transmission Control Protocol (TCP/IP). SSL
provides data privacy and integrity as well as server and client authentication based on public key
certificates. Once an SSL connection is established between a client and server, data communications
between client and server are transparent to the encryption and integrity added by the SSL protocol.
System SSL supports the SSL V2.0, SSL V3.0 and TLS (Transport Layer Security) V1.0 protocols. TLS
V1.0 is the latest version of the secure sockets layer protocol.

Note: Throughout this book, the phrase SSL is used to describe both the SSL and TLS protocols.

z/OS provides a set of SSL C/C++ callable application programming interfaces that, when used with the
z/OS Sockets APls, provide the functions required for applications to establish this secure sockets
communications.

In addition to providing the API interfaces to exploit the Secure Sockets Layer and Transport Layer
Security protocols, System SSL is also providing a suite of Certificate Management APIs. These APIs give
the capability to create/manage your own certificate databases, utilize certificates stored in key database
and key rings for purpose other than SSL and to build/process PKCS #7 standard messages.

Software Dependencies

» Cryptographic Services System SSL (Function Modification Identifier (FMID) HCPT340)

System SSL Version 1 Release 4 is part of System SSL Cryptographic Services Base element of z/OS.
(The System SSL Cryptographic Services Base members are installed in the pdsname.SGSKLOAD
Partitioned Data Set, or PDS and pdsname.SGSKSAMP PDS.)

* Cryptographic Services Security Level 3 (FMID JCPT341)

When you order the Cryptographic Services Security Level 3 support, GSKSUS31 is installed as a
member of the pdsname.SGSKLOAD PDS. pdsname.SGSKLOAD is the PDS in which the System SSL
Cryptographic Services Base members are installed.

» Japanese (FMID JCPT34J)

Contains Japanese message text files for gskkyman utility. The gskmsgs.cat file is installed in the
lusr/lpp/gskssl/lib/nls/msg/Ja_JP.IBM-939 directory.

The following table lists the encryption capabilities for each FMID:

Table 1. FMID Encryption Capabilities

Encryption Types/Key Sizes Base Security Level Security Level 3
FMID HCPT340 FMID JCPT341

512 bit keys X X

1024 bit keys X X

2048 bit keys X X

1-SSL V2.0 RC4 US X

2 - SSL V2.0 RC4 Export X X

3-SSL V2.0 RC2 US X

4 - SSL V2.0 RC2 Export X X

6 - SSL V2.0 DES 56-Bit X X

7 - SSL V2.0 Triple DES US X

© Copyright IBM Corp. 1999, 2002 1

Table 1. FMID Encryption Capabilities (continued)

Encryption Types/Key Sizes Base Security Level Security Level 3
FMID HCPT340 FMID JCPT341
01 - SSL V3.0 NULL MD5 X X
02 - SSL V3.0 NULL SHA-1 X
03 - SSL V3.0 RC4 MD5 Export X X
04 - SSL V3.0 RC4 MD5 US X
05 - SSL V3.0 RC4 SHA-1 US X
06 - SSL V3.0 RC2 MD5 Export X X
09 - SSL V3.0 DES SHA-1 Export X X
OA - SSL V3.0 Triple DES SHA-1 US X
2F - SSL V3.0 AES 128 Bit SHA-1 X
35 - SSL V3.0 AES 256-Bit SHA-1 X

Installation Information

System SSL is part of the System SSL Cryptographic Services Base element of z/OS. If you choose to
install the z/OS Release 4 Server Pack, you will not need to install the System SSL Cryptographic
Services Base element separately. If you choose the z/OS PDO, you can install the System SSL
Cryptographic Services Base element using SMP/E. The|z/OS: Program Directory, GI10-0669| contains the
directions for installing the System SSL Cryptographic Services Base element using SMP/E.

System SSL Parts Shipped in HFS

* [usr/lpp/gskssl/include

Contains the header files, gskssl.h , gsktypes.h and gskcms.h , which declare structures and constants
that are used by the System SSL and Certificate Management interfaces .

» Jusr/lpp/gskssl/examples
Contains sample client/server files as well as a display_certificate sample program.
* Jusr/lpp/gskssl/lib

Contains GSKSSL.x file, which provides access to the APIs that are exported by the GSKSSL DLL and
GSKCMS31.x which provides access to the APIs that are exported by the GSKCMS31 DLL. You use
GSKSSL.x and GSKCMS31.x when you linkedit your source program that uses System SSL. This
directory also contains the libSSLSocketLib.so file that provides System SSL functionality to the Java
class files.

 Jusr/lpp/gskssl/lib/nls/msg/En_US.IBM-1047
Contains the gskmsgs.cat message catalog file.
* Jusr/lpp/gskssl/bin
Contains the gskkyman and gsktrace utilities.
* Jusr/lpp/gskssl/examples/java
Contains the example Java client and server.
» Jusr/lpp/gskssl/java
Contains the GSKSSL jar file that allows users to access System SSL functionality through Java.
» Jusr/lpp/gskssl/java/docs
Contains the javadoc api information for the Java System SSL functionality.

2 System SSL Programming V1R4.0

System SSL Parts Shipped in PDS

pdsname.SGSKLOAD PDS contains members GSKSSL, GSKCMS31, GSKSCTFT, GSKSCTSS,
GSKSRBRD, GSKSRBWT and GSKSRVR when the base FMID HCPT340 is installed. When JCPT341 is
installed, member GSKSUS31 is also in the PDS.

pdsname.SGSKSAMP PDS contains members GSKMSGXT, GSKSRVR and GSKWTR.
pdsname is the name determined during installation. You will need to know the name of this PDS when

you identify the STEPLIB in the runtime steps. Refer to the|z/OS: Program Directory, GI10—0669| for
information about installing the System SSL.

Note: The DLLs are shipped in PDS form so the DLLs can be called from HFS-based as well as
PDS-based programs.

Note: The DLLs are not placed in LPALIB or LINKLIB by default during installation. The system
administrator can place the DLLs in LPALIB or LINKLIB after installation, if desired.

Chapter 1. Introduction 3

4 system SSL Programming V1R4.0

Chapter 2. How System SSL Works for Secure Socket
Communication

System SSL supports both the TLS (Transport Layer Security) and SSL (Secure Sockets Layer) protocols.
Before you start writing your application, let's look at how System SSL works.

Note: Throughout this book, the phrase SSL is used to describe both the SSL and TLS protocols.

The SSL protocol begins with a "handshake”. During the handshake, the client authenticates the server,
the server optionally authenticates the client and the client and server agree on how to encrypt and
decrypt information. In addition to the "handshake”, SSL also defines the format used to transmit
encrypted data.

X.509 certificates are used by both the client and server when securing communications using System
SSL. The client must verify the server’s certificate based on the certificate of the Certificate Authority (CA)
that signed the certificate or based on a self-signed certificate from the server. The server must verify the
client’s certificate (if requested) using the certificate of the CA that signed the client’s certificate. The client
and the server then use the negotiated session keys and begin encrypted communications.

The SSL protocol runs above the TCP/IP and below higher-level protocols such as HTTP. It uses TCP/IP
on behalf of the higher-level protocols.

The capabilities of SSL address several fundamental concerns about communication over the Internet and
other TCP/IP networks:

SSL server authentication allows a client application to confirm the identity of the server application. The
client application through SSL uses standard public-key cryptography to verify that the server’s certificate
and public key are valid and has been signed by a trusted certificate authority (CA) that is known to the
client application.

SSL client authentication allows a server application to confirm the identity of the client application. The
server application through SSL uses standard public-key cryptography to verify the the client’s certificate
and public key are valid and has been signed by a trusted certificate authority (CA) that is known to the
server application.

An encrypted SSL connection requires all information being sent between the client and server
application to be encrypted. The sending application is responsible for encrypting the data and the
receiving application is responsible for decrypting the data. In addition to encrypting the data, SSL
provides message integrity. Message integrity provides a means to determine if the data has been
tampered with since it was sent by the partner application.

Using System SSL on z/OS

System SSL provides programming interfaces to write both client and server applications. These
programming interfaces provide functionality associated with either the SSL environment layer or secure
socket connection layer. The SSL environment layer defines the general attributes of the environment,
such as the key database file name, stash file name and session timeout. The secure socket connection
layer defines the attributes associated with each secure connection being established, such as the file
descriptor and certificate label. The SSL application program must first create the SSL environment layer.
Once the environment is created, one or more instances of the secure socket connection layer can be
associated with the SSL environment. Each of these secure socket connections can be established and
closed independently of each other.

Each layer has four general function calls:

© Copyright IBM Corp. 1999, 2002 5

How System SSL Works

* open
* attribute_set
* initialize

* close

In addition, the secure socket connection layer has read and write function calls for reading and writing
secure data between the two SSL enabled applications.

The open function calls return a handle (an environment handle or a secure socket connection handle)
that must be passed back as a parameter on subsequent function calls. An instance of a secure socket
connection handle is associated with an environment by passing the environment handle as a parameter
on the gsk_secure_socket _open() call. The gsk secure_socket _open() function is completely thread
safe. Invocations to the gsk_secure_socket open() function can be issued from different threads within
an environment. Read and write functions are full-duplex, so asynchronous read and write function calls
can be performed from different threads for a given secure socket connection. However, there can only be
one read and one write call in progress at one time for any secure socket connection handle.

For every open, there must be a corresponding close.

In addition to the above functions, various gsk_attribute_set ...() and gsk_attribute_get...() functions
exist to define and retrieve attributes values associated with either the environment or secure socket
connection layers. The syntax of these function calls is the same for both the environment and the secure
socket connection layers. The target for the set/get function is determined by the handle specified on the
function call.

System SSL Application Overview

[Figure 1 on page 8| describes the basic structure of the elements needed in your System SSL source
program.

Whether writing a server or client applications, the initial steps are the same. First, an SSL environment
must be established with the following function calls:

gsk_environment_open()
This is the first function call. It returns an environment handle that is used in all subsequent
function calls. It also obtains storage and sets default values for all internal variables and picks up
the values specified in system environment variables that override the built-in defaults.

gsk_attribute_set ...()
One or more of these function calls are issued to set attribute values for the environment.

gsk_environment_init()
After you have set all variables, issue this function call to complete the initialization of the SSL
environment. Once you have done this, you can open and close SSL connections.

At this point the client and server sides diverge. The server side sets up a listen environment. The listen
environment is established by obtaining a socket descriptor through the socket() call and the activation of
a connection through the bind() , listen() and accept() socket calls. Once the listen environment is
established, the server waits for notification that a secure socket connection is requested and issues the
following System SSL API function calls:

gsk_secure_socket_open()
This function call reserves a handle in which to store information for initializing each secure
socket. Default values for each SSL connection are set from the environment.

gsk_attribute_set...()
These function calls set attribute values for this particular SSL connection. These values could
include the socket file descriptor, ciphers, protocol, and application-supplied callback routines.

6 System SSL Programming V1R4.0

How System SSL Works

gsk_secure_socket _init()
For each connection to be started, the application must issue this function call to complete the
initialization of the SSL connection and to run the SSL handshake protocol. The SSL handshake is
a function of the system SSL support.

gsk_secure_socket_read()
One or more read function calls is issued until the inbound data flow is complete. The number of
calls is purely application-dependent.

gsk_secure_socket_write()
One or more write function calls is issued until all appropriate data is sent to the partner. Reads
and writes may be alternated as defined by the application protocol until the data flow is complete.

gsk_secure_socket_close()
This function call frees all the resources used for the SSL connection.

All of the SSL API function calls are thread-safe. This is particularly useful on the server side, since each
connection can be run on its own thread, simplifying application design. See the sample client/server
program shipped with z/OS System SSL, for an illustration of multi-threaded application.

The client application then opens a connection to the server through the socket() and connect() calls and
issues the following System SSL API function calls:

gsk_secure_socket_open()
This function call reserves a handle in which to store information for initializing each secure
socket.

gsk_attribute_set...()
These function calls set values for this particular SSL connection. These values could include the
socket file descriptor, ciphers, protocol, and application-supplied callback routines.

gsk_secure_socket_init()
For each connection to be started, the application must issue this function call to complete the
initialization of the SSL connection and to run the SSL handshake protocol. The SSL handshake is
a function of the System SSL support.

gsk_secure_socket_write()
One or more write function calls are issued until the outbound data flow is complete. The number
of calls is purely application-dependent.

gsk_secure_socket _read()
One or more read function calls are issued until all appropriate data is received from the partner.
Writes and reads may be alternated as defined by the application protocol until the data flow is
complete.

gsk_secure_socket_close()
This function call frees all the resources used for the SSL connection.

For both client and server applications, when the application is ready to end and all

gsk_secure_socket close() functions have completed, destroy the sockets through the close() call and
issue the gsk_environment_close() function call to close the SSL environment and return resources to
the operating system.

Note: skread and skwrite are the routines responsible for sending and receiving data from the socket.
They are invoked by the gsk_secure_socket_init() , gsk_secure_socket_read() and
gsk_secure_socket_write() functions.

In addition to using the previous SSL programming interfaces in an application, an application is not

complete until a key database is available for use by the SSL application. The key database contains
certificate information and can be an HFS file built and managed using the gskkyman utility or a RACF

Chapter 2. How System SSL Works for Secure Socket Communication 7

How System SSL Works

key ring. For more information about key databases, refer to [Chapter 10, “Certificate/Key Management” on

lpage 249

Client Server
——>» gsk_environment_open() gsk_env_ironment_open() «—
—>» gsk_attribute_set...() gsk_attrlpute_set..:()_ «
——» gsk_environment_init() gsk_environment_init() -«
socket() <
» socket() bind() <
» connect() listen() <
accept() <«
———>» gsk_secure_socket_open() gsk_sec_ure_socket_open() <«
—>» gsk_attribute_set_...() h gsk_attrlbute_set_...() _ <«
———» gsk_secure_socket_init() - gsk_secure_socket_init() «*———
skwrite() | n | skread()
d
skread() = s | skwrite()
h
a
k
e
——» gsk_secure_socket_write() skwrite() skread() gsk_secure_socket_read() «——
——» gsk secure_socket read() skread() skwrite() gsk_secure_socket_write() «——
——» gsk_secure_socket_close() gsk_secure_socket_close() «——
_ close() <
» close() close() <
—» gsk_environment_close() gsk_environment_close() <€«—

Figure 1. Sockets Programming Model Using System SSL

8 System SSL Programming V1R4.0

Chapter 3. Using Hardware Cryptographic Features with
System SSL

System SSL uses the Integrated Cryptographic Service Facility (ICSF) if it is available. ICSF provides
hardware cryptographic support which will be used instead of the System SSL software algorithms.
System SSL checks for the hardware support during its runtime initialization processing and will use the
hardware support if it is available. If a severe ICSF error occurs during a cryptographic operation, System
SSL will stop using the hardware support and will revert to using the software algorithms.

In order for System SSL to use the hardware support, the ICSF started task must be running and the
application userid must be authorized to the following resources in the RACF CSFSERYV class, either
explicitly or through a generic resource profile:

* CSFCKI - Clear key import

* CSFCKM - Multiple clear key import
* CSFDEC - Symmetric key decrypt

* CSFDSG - Digital signature generate
* CSFDSV - Digital signature verify

* CSFENC - Symmetric key encrypt

* CSFPKB - PKA key build

* CSFPKD - PKA decrypt

* CSFPKE - PKA encrypt

* CSFPKI - PKA key import

Note that access to ICSF cryptographic services can be controlled by the z/OS Security Server (RACF).
For further information, refer to the section about controlling who can use cryptographic keys and services
in the [z/0S: ICSF Administrator’s Guide, SA22-7521|

For information on the types of hardware cryptographic features supported by ICSF, refer to the
ICSF Overview, SA22-7519, For information on configuring and using ICSF, refer to the[z/OS: ICSH

Administrator’s Guide and |z/0OS: ICSF System Programmer’s Guide, SA22-7520|

Several IBM products use System SSL. Please check the specific product publications to see if there is
information on System SSL and ICSF considerations.

© Copyright IBM Corp. 1999, 2002 9

10 system SSL Programming V1R4.0

Chapter 4. Writing and Building a z/OS System SSL
Application

This chapter describes how to write, build, and run a secure socket layer (SSL) application that uses the
System SSL programming interfaces. You can write both client and server applications using the System
SSL programming interfaces.

In Release 2 of z/OS, a new set of APIs was introduced, which enhanced the functionality of System SSL.
IBM recommends that only the new APIs be used for writing new application programs. Existing
application programs should be recoded if possible to use the new APIs. It is also important to note that
the new APIs and the deprecated ones are not to be mixed in the same application program. For a

complete list and descriptions of the new APIs, see|Chapter 7, “AP| Reference” on page 27. Information
about the deprecated ones can be found in |Chapter 9, “Deprecated Secure Sockets Layer APIS” o
-page 225

In addition to writing the SSL applications, you must build a key database for the System SSL source

program for a System SSL application to be complete. Refer to|Chapter 10, “Certificate/Key Management”l
on page 249|for details about creating and managing a key database.

Sample programs using the new APls are shipped in /usr/1pp/gskss1/examples.

Writing a System SSL Source Program

The first step in creating a System SSL application is to write the source program using the new System
SSL programming interfaces. Refer to|Chapter 7, “AP| Reference” on page 27|for a description of the
format of the System SSL programming interfaces.

Create an SSL Environment
For both the client and server System SSL programs, you must initialize the System SSL environment
using the programming interfaces associated with the SSL environment layer.

gsk_environment_open()
Will define and obtain storage for the SSL environment and return an environment handle to be
used on subsequent API invocations.

gsk_attribute_set...()
Sets environment attributes such as:
* The SSL protocol version to be used: SSL Version 2.0, SSL Version 3.0 and/or TLS Version 1.0.
* The key database to be used. (HFS key database file or RACF key ring)

* The password for the key database. This can be specified directly by the application or through
the use of a stashed password file. See [Chapter 10, “Certificate/Key Management” on page 249
for details about creating a stashed password file.

Note: When using RACF key rings, the password and stash file must not be specified.

* The amount of time the SSL session identifier information is valid. By using already negotiated
and agreed to SSL session identifier information, System SSL can reduce the amount of data
exchanged during the SSL handshake that occurs during the gsk _secure_socket_init() call.

gsk_environment_init()
Initializes the SSL environment.

The following example code illustrates how to call the environment layer programming interface from a
client or server System SSL program. In this example, SSL Version 3.0 support is requested,

© Copyright IBM Corp. 1999, 2002 11

Writing and Building a z/OS System SSL Application

/keyring/key.kdb is the key database that is used, the password for the key database is "password”, and
default values are taken for the remaining SSL environment variable attributes.

gsk_handle env_handle;
int rc;

/* create the SSL environment */
rc = gsk_environment_open(&env_handle);

/* set environment attributes x/
rc = gsk_attribute_set_enum(env_handle, GSK_PROTOCOL_SSLV2, GSK_PROTOCOL_SSLV2_OFF);
/* By default, SSL V2 protocol is set on =/

rc = gsk_attribute_set_enum(env_handle, GSK_PROTOCOL_SSLV3, GSK_PROTOCOL_SSLV3_ON);

rc = gsk_attribute_set_enum(env_handle, GSK_PROTOCOL_TLSV1, GSK_PROTOCOL TLSV1 OFF);
/* By Default, TLS V1.0 protocol is set on */

rc = gsk_attribute_set buffer(env_handle, GSK _KEYRING FILE, "/keyring/key.kdb",0);

rc = gsk_attribute_set_buffer(env_handle, GSK_KEYRING_PW, "password",0);

/* initialize environment */

rc = gsk_environment_init(env_handle);

The following example code illustrates how to call create an SSL environment for a server System SSL
program supporting both SSL Version 2.0, SSL Version 3.0 and TLS Version 1.0.

gsk_handle env_handle;

int rcs

/* create the SSL environment */
rc = gsk_environment_open(&env_handle);

/* set environment attributes x/
rc = gsk_attribute_set_enum(env_handle, GSK_PROTOCOL_SSLV2, GSK_PROTOCOL_SSLV2_ON);

rc = gsk_attribute_set_enum(env_handle, GSK_PROTOCOL_SSLV3, GSK_PROTOCOL_SSLV3_ON);
rc = gsk_attribute_set_enum(env_handle, GSK_PROTOCOL_TLSV1, GSK_PROTOCOL_TLSV1_ON);
rc = gsk_attribute_set buffer(env_handle, GSK _KEYRING FILE, "/keyring/key.kdb",0);
rc = gsk_attribute_set_buffer(env_handle, GSK_KEYRING_PW, "password",0);

/* initialize environment */

rc = gsk_environment_init(env_handle);

Note: Once the environment is initialized, the environment attributes cannot be changed unless they are
also attributes of the secure socket connection. In this case, they can be changed only for that
connection. If changes are necessary to the environment, a new SSL environment can be created
within the same process.

Once the System SSL program has successfully created the SSL environment, it must now perform the
steps needed to allow the program to communicate with a peer program. The exact sockets and System
SSL calls required to allow the program to communicate differ depending on whether the program is a
client or a server.

System SSL Server Program

You can use the following sockets and System SSL calls to enable a server program to communicate with
a client program.

To create a stream socket to which client programs can connect, use the following function call:
int server_sock;

server_sock = socket(AF_INET, SOCK_STREAM, 0);

Now that the server program socket has been created, bind the socket to a port (for example, 1234) that is
known to the client program using the following function call:

12 system SSL Programming V1R4.0

Writing and Building a z/OS System SSL Application

int rc;
int namelength;
struct sockaddr_in name;

nameLength = sizeof(name);

memset (&name, '\0', namelength);
name.sin_family = AF_INET;
name.sin_port = 1234;
name.sin_addr.s_addr = INADDR_ANY;

rc = bind(server_sock, (struct sockaddr *)&name, namelLength);

To make the server program socket ready to listen for incoming connection request, use the following
function call:

int rc;
rc = listen(server_sock, 5); /* allow max of 5 connections */

The server program is now ready to begin accepting connections from client programs. To accept
connections, use the following function calls:

int client_sock;
int incomingNamelLength;
struct sockaddr_in incomingName;

client_sock = accept(server_sock, (struct sockaddr *)incomingName, &incomingNamelLength);

After successfully accepting a connection from a client program, the server program must establish the
secure socket connection which will result in the SSL handshake being performed. Once the handshake is
completed, secure transfer of application data can be done. The secure socket connection will be
established with the following attribute values:

* The socket descriptor over which the communication is to occur.
» Certificate with label "ServerCertLabel”
* The type of handshake (for example, server) to be performed.

* The set of SSL protocol cipher specs to be allowed for the secure session. The cipher is selected by the
System SSL Server program according to the System SSL Server’s order of usage preference.

* The address of a routine to be called by System SSL to read data from the socket for the secure
session.

* The address of a routine to be called by System SSL to write data on the socket for the secure session.

gsk_handle soc_handle;
int rc;
gsk_iocallback local io = {secureSocRecv, secureSocSend, NULL, NULL, NULL, NULL};

rc = gsk_secure_socket_open(env_handle, &soc_handle);

rc = gsk_attribute_set_numeric_value(soc_handle, GSK_FD, client_sock);

rc = gsk_attribute_set buffer(soc_handle, GSK _KEYRING LABEL, "ServerCertLabel",0);
rc = gsk_attribute_set_enum(soc_handle, GSK_SESSION_TYPE, GSK_SERVER_SESSION);

rc = gsk_attribute_set buffer(soc_handle, GSK V2 CIPHER SPECS, "6321",0);

rc = gsk_attribute_set_buffer(soc_handle, GSK_V3_CIPHER_SPECS, "0906030201",0);

rc = gsk_attribute_set _callback(soc_handle, GSK IO CALLBACK, &local _io);

rc = gsk_secure_socket_init(soc_handle);

The System SSL program should provide the function to send and receive data over the application
socket. For more information, see |‘l/O Routine Replacement” on page 19l Use the following function calls,
send and recv, to send and receive the application data.

int secureSocRecv(int fd, void *data, int Ten, char *user_data) {
return(recv(fd, data, len,0));
}

Chapter 4. Writing and Building a z/OS System SSL Application 13

Writing and Building a z/OS System SSL Application

int secureSocSend(int fd, void *data, int len, char *user_data) {
return(send(fd, data, len,0));
1

After the server program has successfully called gsk _secure_socket_init() , it can now read and write
data securely over the application socket. To read application data from the application socket, use the
following code:

int rc;

int buffer_length;

int length_read;

char xdata_buffer;

rc = gsk_secure_socket_read(soc_handle, data_buffer, buffer length, &length read);

To write application data over the application socket, use the following code:

int rc;

int buffer_length;
int Tength_written;
char xdata_buffer;

rc = gsk_secure_socket write(soc_handle, data buffer, buffer length, &length written);

Once the server program is finished using the application socket to securely send and receive data, it
must free all of the System SSL resources for the SSL session and close the socket. To free the System
SSL resource for the SSL session, use the following gsk_secure_socket close() call:

gsk_secure_socket _close(&soc_handle);

To free the resources used by the SSL environment, use the following gsk_environment_close() call:
gsk_environment_close(&env_handle);

Finally, to close the application socket, use the following function call:

int rc;
rc = close(client_sock);

System SSL Client Program

The sockets and System SSL calls a client program uses are very similar to the calls the server program
uses. Rather than accepting connections like a server program, a client program connects to the server
program.

To create a stream socket that the client program can use to connect to the server, use the following
function call:

int sock;

sock = socket(AF_INET, SOCK_STREAM,0);

Now that the client program socket has been created, connect the socket to the server program port using
the following function call:

int rc;

int namelength;

struct sockaddr_in name;
char *ServeHostName;

nameLength = sizeof(name);

memset (&name, '\0', namelength);

name.sin_family = AF_INET;

name.sin_port = 1234;

name.sin_addr.s_addr = ServerHostName;

rc = connect(sock, (struct sockaddr *)&name, namelength);

14 system SSL Programming V1R4.0

Writing and Building a z/OS System SSL Application

After successfully connecting to the server program, the client program must establish the secure socket
connection. This connection will cause the SSL handshake to be performed. Once the handshake is
complete, secure communication of the application data can be done. The following example code
establishes the connection using the following attribute values:

* The socket descriptor over which the communication is to occur.

» Certificate with label "THELABEL"

* The type of handshake (client) to be performed.

* The set of SSL protocol cipher specs to be allowed for the secure session in client-preferred order.

Note: Although the client is allowed to specify a preference order, an SSL server may or may not honor
the preference.
* The address of a routine to be called by System SSL to read data from the socket for the secure
session.
* The address of a routine to be called by System SSL to write data on the socket for the secure session.
int rc;
gsk_handle soc_handle;
gsk_iocallback local_io = {secureSocRecv, secureSocSend, NULL, NULL, NULL, NULL};

rc = gsk_secure_socket_open(env_handle, &soc_handle);

rc = gsk_attribute_set_numeric_value(soc_handle, GSK_FD, client_sock);

rc = gsk_attribute_set buffer(soc_handle, GSK_KEYRING LABEL, "THELABEL",0);

rc = gsk_attribute_set_enum(soc_handle, GSK_SESSION_TYPE, GSK_CLIENT_SESSION);
rc = gsk_attribute_set_buffer(soc_handle, GSK_V2_CIPHER SPECS, "6321",0);

rc = gsk_attribute_set_buffer(soc_handle, GSK_V3_CIPHER SPECS, "0906030201",0);
rc = gsk_attribute_set_callback(soc_handle, GSK_IO_CALLBACK, &local_io);

rc = gsk_secure_socket_init(soc_handle);

The System SSL program should provide the function to send and receive data over the application
socket. For more information, see ['I/O Routine Replacement” on page 19| Use the following function calls,
send and recv, to send and receive the application data.

int secureSocRecv(int fd, void *data, int Ten, char *user_data) {
return(recv(fd, data, len,0));
1

int secureSocSend(int fd, void *data, int len, char *xuser_data) {
return(send(fd, data, len,0));
1

After the client program has successfully called gsk_secure_socket_init() , it can now read and write data
securely over the application socket. To read application data from the application socket, use the following
code:

int rc;

int buffer_length;

int Tength_read;

char *data_buffer;

rc = gsk_secure_socket_read(soc_handle, data_buffer, buffer_length, &length_read);

To write application data over the application socket, use the following code:

int rc;

int buffer_length;
int Tength_written;
char xdata_buffer;

rc = gsk_secure_socket write(soc_handle, data buffer, buffer length, &length written);

Once the client program is finished using the application socket to securely send and receive data, it must
free all of the System SSL resources for the SSL session and close the socket.

Chapter 4. Writing and Building a z/OS System SSL Application 15

Writing and Building a z/OS System SSL Application

To free the System SSL resource for the SSL session, use the following gsk secure_socket_close() call:

gsk_secure_socket _close(&soc_handle);

To free the resources used by the SSL environment, use the following gsk_environment_close() call:

gsk_environment_close(&env_handle);

Finally, to close the application socket, use the following function call:

int rc;
rc=close(sock);

Building a z/OS System SSL Application

1. Write the System SSL source program (see |“Writing a System SSL Source Program” on page 11[).

2. Compile your System SSL source program.

3. Specify /usr/1ib/GSKSSL.x in link-edit step.

4. Build a key database file using the gskkyman utility or create a RACF key ring using the RACDCERT
command. The name of the key database file or RACF key ring must match the name you specified as
the GSK_KEYRING_FILE on the gsk_attribute_set buffer() API. You need the name of the key
database file or RACF key ring and for key database files either the password associated with the key
file or the stash file name. The password must match the password specified on GSK_KEYRING_PW
on the gsk_atribute_set _buffer() API or must be set to NULL if using a RACF key ring. Refer to
[Chapter 10, “Certificate/Key Management” on page 249|for information on how to create a key
database file or RACF key ring.

Running a z/OS System SSL Application

After successfully writing and building the System SSL application and creating the key database, you can
run the System SSL application. To run the application follow these steps:

1. If not in the linklist or LPA, ensure that the STEPLIB identifies the PDS name (pdsname.SGSKLOAD)
that contains the System DLLs. For example, in the OS/390 shell, issue the following command:

export STEPLIB=$STEPLIB:pdsname.SGSKLOAD
2. Ensure that the key database file or RACF key ring is accessible to the System SSL application.
3. Run the System SSL application.

Additional Topics
Non-Blocking I/O

Applications wishing to communicate securely to one another may establish a secure connection. Each
application opens a socket and attempts to establish an SSL connection. After an SSL connection has
been established, the applications may now use the socket to exchange data securely. The default
(blocking) mode of a socket requires an application attempting to read or write to the socket to block until
all expected data has been received. This blocking may not be desirable since no other processing may
occur while the application is waiting for a read or write to complete. One solution to this problem is the
use of non-blocking sockets.

When a socket is setup as non-blocking, reads and writes to the socket do not cause the application to
block and wait. Instead the read or write function will read/write only the data currently available (if any). If
the entire read/write is not completed, a status indicator is returned.The application may retry the
read/write later.

16 system SSL Programming V1R4.0

Writing and Building a z/OS System SSL Application

Non-Blocking Socket Primer
When a server wishes to communicate with clients via a socket, the following routines are used:

Table 2. Server Communicating with Clients Via a Socket

Routine Purpose

1) socket() Create a socket

2) bind() Register the socket

3) listen() Indicate willingness to accept connections
4) accept() Accept a connection request

5) Read request

6) Write response

7) Return to step 4

Once the accept() routine is called, the server will block until data is available for the socket. Problems
arise when the server wishes to monitor multiple sockets simultaneously or if the server wishes to perform
other tasks until data is available on the socket. However, by configuring the socket as non-blocking, these
problems may be avoided. For more information, see [‘Enable/Disable Non-Blocking Mode” on page 18|
When using non-blocking sockets, the select() routine is used to instruct the system to notify the server
application when data is available on a particular socket.

Table 3. Using the select() Routine

Routine Purpose

1) socket() Create a socket

2) bind() Register the socket

3) listen() Indicate willingness to accept connections

4) Set socket as non-blocking See[*Enable/Disable Non-Blocking Mode” on page 18|
5) select() Monitor a number of sockets

6) accept() Accept a connection request

7) Read request If unable to read all data, return to step 5

8) Write response If unable to write all data, return to step 5

9) Return to step 4

Affected SSL Functions
The following functions are affected by the use of non-blocking sockets with SSL.

| gsk _secure_socket _init()

[During the SSL handshake, the io_setsocketoptions() routine is called by the

[gsk_secure_socket _init() routine before initiating the SSL handshake

[(GSK_SET_SOCKET_STATE_FOR_HANDSHAKE) and again upon completion of the SSL

[handshake (GSK_SET_SOCKET_STATE_FOR_READ_WRITE). The default

[io_setsocketoptions() routine puts the socket into blocking mode for

[GSK_SET_SOCKET_STATE_FOR_HANDSHAKE and restores the original mode for

[GSK_SET _SOCKET_STATE_FOR_READ_WRITE. In order to perform a non-blocking SSL

[handshake, an application supplied io_setsocketoptions() callback must be provided to control
[the state of the socket. When the socket is in non-blocking mode, gsk_secure_socket_init() may
| return GSK_WOULD_BLOCK_READ or GSK_WOULD_BLOCK_WRITE. This error indicates that
[System SSL was unable to read or write the entire message. When this occurs, the application

[should call select() and then call gsk_secure_socket_init() again.

Chapter 4. Writing and Building a z/OS System SSL Application 17

Writing and Building a z/OS System SSL Application

gsk_secure_socket_read()
Once the socket has been configured as non-blocking, any calls to gsk_secure_socket _read()
can potentially return GSK_WOULD_BLOCK. When this occurs, the application should call
select() and then call gsk_secure_socket read() again.

gsk_secure_socket_write()
Once the socket has been configured as non-blocking, any calls to gsk_secure_socket_write()
can potentially return GSK_WOULD_BLOCK. When this occurs, the application should call
select() and then call gsk_secure_socket_write() again.

Enable/Disable Non-Blocking Mode: Once a socket has been created using the socket() call, it may be
set to non-blocking as follows:

#include "sys/ioctl.h"

int on =1;

int off =0;

//Enable non-blocking

joctl (mySocket, FIONBIO, &(on));

//Disable non-blocking

ioctl (mySocket, FIONBIO, (char *) &(off));

Differences in SSL and Unsecured Non-Blocking Mode:

Partial Data
An unsecured socket in non-blocking mode will return the partial data received or written. Since
System SSL processes encrypted data, it is not possible to decrypt a message until the entire
message has been received, making it impossible to return partial data.

Error Indicator
When non-blocking mode is used on a non-secure socket, the status indicator is generally found
by checking the errno variable, which is normally EWOULDBLOCK. System SSL does not set the
errno variable. Instead the value returned from gsk_secure_socket read() or
gsk_secure_socket write() is set to GSK_WOULD_BLOCK. gsk_secure_socket_init() will
return either GSK_WOULD_BLOCK_READ or GSK_WOULD_BLOCK_WRITE.

Client Authentication Certificate Selection

SSL enables the application to prompt the client user to select a certificate from a list during the client
authentication process in the SSL handshake.

This is accomplished with a registered callback routine that is invoked from inside the
gsk_secure_socket _init() function call. This section provides an overview of that code.

The client application code must provide the following functions:
* Register a standard C linkage callback routine using the gsk_attribute_set callback() function call.
* Implement the callback routine that performs these functions:

— Get the list of available certificates using the gsk_attribute_get data() function call with the
GSK_DATA ID_SUPPORTED_KEYS option. This returns a list of labels from the key data base file
or RACF key ring.

— Display the list of labels to the user.
— Prompt the user to select the label from the list

— Set the label to be used with a gsk_attribute_set_buffer() function call with the
GSK_KEYRING_LABEL option.

— Return to SSL with the return value set to indicate use client authentication.

— If the user elects to not use any of the certificates in the list, return with the value set to skip client
authentication. A certificate will not be sent to the partner, but the SSL handshake will complete. The
server will decide whether to continue or close the connection.

18 system SSL Programming V1R4.0

Writing and Building a z/OS System SSL Application

— Optionally, the application can display certificate information using the gsk_get cert_by label()
function call.

— Optionally, the application can use the gsk_attribute_get data() function call with the
GSK_DATA ID_SERVER_ISSUERS option to display a list of server signer certificates.

I/O Routine Replacement

Callback Routine for 10

SSL allows applications to specify how /O is to take place. This is done by specifying callback routines for
receiving and sending data. The contents of this routine can be very unique per application. SSL has an
internally defined default routine which is used if gsk_attribute_set_callback() is not used to override 1/O
routines. The default assumes that TCP/IP is being used. For reading it will execute a recv() and for write
a send() . If not using TCP/IP, applications should also consider the specification of the getpeername and
setsocketoptions callback routine. It also depends on TCP/IP as being the transport layer protocol.

Note: Application provided I/O routines must use standard C linkage conventions.

Use of User Data

Some complex applications require application-specific data to be available in the SSL callbacks. SSL
enables this with the gsk_attribute_set_buffer() and gsk_attribute_get_buffer() function calls. In
addition, the 1/O callbacks pass a pointer to the user data.

The following are the steps that need to be taken to effectively use the user data functions:

* Issue the gsk secure_socket_open() function. This will return a soc_handle.

* To set the user data for a connection issue:
— gsk_attribute_set_buffer(soc_handle, GSK_USER_DATA, user_data, sizeof(user_data));
— This function call copies the user_data into an area of storage owned by SSL.

* The address of the SSL copy of the user data is passed as a parameter to the user-specified read,
write , getpeername , and set_socket_options callbacks.

» Other callbacks pass the soc_handle as a parameter to the callback. To find the address of the copy of
user data associated with a particular connection, issue:

— gsk_attribute_get_buffer(soc_handle,GSK_USER_DATA, &user _data ptr,&user_data_size);

— You can modify the contents of the SSL copy of the user data, but you may not free or re-allocate
the SSL user data. The SSL user data will be freed when the connection is closed with the
gsk_secure_socket_close() function call.

You can point to other application data from the SSL user data area. However, it is up to the application to
free this other application data before the connection is closed.

Session ID (SID) Cache Replacement

The SSL protocol has a mechanism built in to allow for faster secure connections between a client/server
pair. There is a concept of a SSL Session that allows this to happen. The first time a client and server
connect, cryptographic characteristics of that connection are saved into a Session Cache buffer. A Session
is identified by a Session ID (SID). The cached cryptographic components (SID cache entry) allows for
new bulk encryption keys to be generated with subsequent SSL handshakes between the same
client/server pair. The subsequent handshakes would be abbreviated since much of the data used to
generate keys is in the SID cache entry. This abbreviated handshake does not require public key
encryption to take place.

Public key encryption is very time consumming thus avoiding it is a great performance boost for servers
using SSL. A SID Cache entry exists for a limited time. Care should be used when specifying how long a
SSL session is allowed to live. Setting the SID cache timeout or number of SID cache buffer entries to
ZERO will turn off SID caching causing a full handshake to be completed for every connection.

Chapter 4. Writing and Building a z/OS System SSL Application 19

Writing and Building a z/OS System SSL Application

Applications need to be sensitive to both security and performance issues. Security conscious applications
should keep the session timeout values very low to ensure keys are generated frequently to avoid security
breaches. Applications that are more performance conscious than security conscious should have longer
session timeouts and a larger cache size.

Session ID (SID)

Modifying SSL session caching parameters can be used to help tune the security performance
characteristics of SSL enabled servers. SSL internally does session caching and is controlled only by
setting the length of a SSL session and the number of entries in the buffer. The internal SSL SID cache is
fixed to a configurable number of entries. There is no way to remove or to re-use entries for other
connections except for repeated connections between the same client/server pair. The list of options for
extending SID caching functionality can become quite long so an external SID cache buffer APl was
created for those who are more discriminating about managing SID cache data. There are several
callbacks used for external SID cache buffer access.

It should be noted that there are probably few applications where using an external SID cache makes
sense. Some recommended environments where it might be considered is in a server configuration where
multiple instances of a server exist for work load balancing purposes. It might be desirable to have a
single SID cache buffer to be used by all of the processes which each server is running in. Usually this
can be avoided by writing applications which are multi threaded. All threads would use the single internal

SID cache buffer.

Format:

typedef gsk data_buffer =
const unsigned char *
unsigned int
int

typedef gsk data_buffer =
gsk_data_buffer =
const unsigned char =*
unsigned int
int

typedef void
const unsigned char =*
unsigned int
int

typedef void
gsk_data_buffer *

typedef struct _gsk sidcache callback {
ptgsk_getcache
ptgsk_putcache
ptgsk_deletecache
ptgsk_freecache

} gsk_sidcache_callback;

Callbacks:
Get

(*ptgsk_getcache) (
session_id,
session_id_length,
ss1_version);

(*ptgsk_putcache) (
ss1_session_data,
session_id,
session_id_length,
ss1_version);

(*ptgsk_deletecache) (
session_id,
session_id_length,
ss1_version);

(*ptgsk_freecache) (
ss1_session_data);

Get;

Put;

Delete;
FreeDataBuffer;

Specifies the routine System SSL calls to search the session ID cache for the entry that matches the
passed values in sessionID , sessionIDLen , and SSLVersion . The value returned by this routine is a
pointer to a malloc’ed gsk_data_buffer structure for the sslSessionData that contains the session id

cache entry.
Put

Specifies the routine System SSL calls to add an entry to the session ID cache. The passed in values
sessionlD , sessionIDLen , SSLVersion and ssISessionData are used to define the entry. This

20 System SSL Programming V1R4.0

Writing and Building a z/OS System SSL Application

routine is responsible for getting storage to hold the entry. The value returned by this routine is either
NULL if unable to allocate storage or a pointer to a gsk_data_buffer structure containing the
sslSessionData that was passed into the routine.

Delete
Specifies the routine System SSL calls to delete an entry from the session ID cache. sessionID ,
sessionIDLen and SSLVersion are used to determine which entry is deleted.

FreeDataBuffer
Specifies the routine that System SSL calls to free memory that was returned by the Get session id

cache callback routine.
Parameters:

sessionID
The buffer containing the Session data

sessionlDLen
The length of the entry for the SID cache buffer entry.

SSLVersion
The version of the SSL Protocol.

data
This is the buffer that is created by the external SID cache process to transfer the SID cache entry to

SSL.

Chapter 4. Writing and Building a z/OS System SSL Application 21

Writing and Building a z/OS System SSL Application

22 System SSL Programming V1R4.0

Chapter 5. Migrating to the New SSL Interfaces

In Release 2 of z/OS, a new set of APIs were added to provide enhanced function and flexibility, and
supersede those APIs introduced in previous System SSL releases. IBM recommends that only the new
APIs be used for writing new application programs. Existing application programs should be recoded if
possible to use the new APIs. This chapter describes how to migrate your existing application programs to
use the new SSL interfaces.

Note: When migrating to use any of the new APIs, the entire System SSL application must be migrated to
use only the new APIs. The application must not contain a mixture of deprecated and new APIs.

If you are migrating from z/OS System SSL V1R1 or earlier, the sample program shipped with this release
is the same program that was shipped with the previous release, with all APl usage migrated to the new
APIs.

* Replace manually initializing the gsk init_data structure with gsk_environment_open() , plus a number
of gsk_attribute_set_buffer() , gsk_attribute_set enum() and gsk_attribute_set _numeric_value()
functions (as needed) to set attributes.

* Replace gsk_get cipher_info() with a call to gsk_attribute_get_buffer() to get the list of available
ciphers. This call must be done after a succesful gsk_environment_open() call. The ciphers returned
always represent the high security ciphers.

* Replace gsk_initialize() with gsk_environment_init()
* Replace manually initializing the gsk soc _init_data structure with gsk_secure_socket open() , plus a

number of gsk_attribute_set buffer() , gsk_attribute_set enum() and
gsk_attribute_set numeric_value() functions (as needed) to set attributes.

* Replace manually initializing the gsk soc init_data structure with the addresses of your I/O callback
routines with gsk_attribute_set_callback() . You specify the address of a gsk iocallback structure that
contains the addresses of the callback routines. The gsk iocallback structure is defined in gskssl.h .
Note that an additional parameter must be added to the function declarator for your existing callback
routines.

* Replace gsk_user_set() with gsk_ attribute_set_callback() for defining the address of your get peer ID
callback routine. You specify the address of an gsk iocallback structure that contains the address of the
callback routine. The gsk iocallback structure is defined in gskssl.h . Note that an additional parameter
must be added to the function declarator for your existing callback routine.

* Replace gsk_user_set() with gsk_attribute_set_callback() for defining the address of your session ID
cache callback routines. You specify the address of a gsk sidcache _callback structure that contains the
address of the callback routines. The gsk sidcache_callback structure is defined in gskssl.h .

* Replace gsk_get dn_by label() with gsk _get _cert by label() .

* Replace gsk_secure_soc_init() with gsk_secure_socket_init()

* Replace gsk_secure_soc_read() with gsk secure_socket read() . Note that
gsk_secure_socket read() has an extra parameter to return the length of the data read.

* Replace gsk_secure_soc_write() with gsk_secure_socket write() . Note that
gsk_secure_socket_write() has an extra parameter to return the length of the data written.

* Replace gsk_secure_soc_close() with gsk_secure_socket_close()

* Be sure that every gsk _secure_socket _open() is matched with a gsk_secure_socket close() even if
there is an error on gsk_environment_init() . Normal sequence is open, init, close . So, if init gets an
error return code, you still must do the close .

* Be sure that every gsk_environment_open() is matched with a gsk_environment_close() even if
there is an error on gsk_secure_socket _init() . Normal sequence is open, init, close. So, if init gets
an error return code, you still must do the close .

* A method is provided to display certificates after gsk_secure_socket_init() has been issued. You may
use gsk_attribute_get cert_info() if desired.

© Copyright IBM Corp. 1999, 2002 23

* Be aware that all of the error return values have been renamed and renumbered. Program logic will
have to be changed accordingly.

* There is a new gsk_strerror() debug routine that returns a text string (in English only) when an error
number is passed to it.

24 system SSL Programming V1R4.0

Chapter 6. Building and Running a Java System SSL
Application

This chapter describes how to write, build, and run a Java application that uses Java Socket calls and the
Java System SSL classes.

Important Note
FFor z/OS V1R4, Java support is being deprecated. For Java SSL support, please use IBM JSSE.

Writing a Java Source Program

Java applications that wish to take advantage of System SSL need to use the shipped GSKSSL jar file
contained in /usr/lpp/gskssl/java. This file provides the front end to all the System SSL functionality. These
applications need to be written and executed using Java 1.3.1 or higher. Online documentation is available
in HTML format in directory /usr/lpp/gskssl/java/docs. This documentation will aid in finding information
about the various methods and properties of the classes contained in the GSKSSL.jar file.

Following are the steps for creating a Java program that uses System SSL:
1. Create a new SSLSession object:
SSLSession session = new SSLSession();
2. Create a normal Java Socket:
Socket soc = new Socket(host,port);
3. Manipulate the various session properties, for example:

session.setSecType("SSLV3");
session.setKeyring("keyl.kdb");
session.setKeyringPw("password");
4. Perform the equivalent to gsk_initialize(), which uses all the properties that are set in the SSLSession
class:

session.initialize();

5. Perform the equivalent to gsk_secure_soc_init(), which uses all the properties that are set in the
SSLSession class:

session.init(soc);
6. Obtain the input and output streams to the SSL session:

SSLInputStream in = new SSLInputStream(session,soc.getInputStream());
SSLOutputStream out = new SSLOutputStream(session):

7. Read and write to the respective SSLOutputStream and SSLInputStream. This is done similarly to how
you would read and write to a normal Java InputStream or OutputStream:

//example of how to write data to the SSLOutputStream
String outString;
outString=new String("running");
byte [] outBuf = outString.getBytes();
out.write(outBuf.length);
out.write(ou8tBuf, 0, outBuf.length);
out.flush();

//example of how to read from the SSLInputStream
int msgLen = in.read();
byte [] inBuf = new byte[msglLen];
in.read(inBuf, 0, msglen);
8. Once the data is transferred, all that is left to do is close the SSLSession object and the Java socket:

session.close();
soc.close();

© Copyright IBM Corp. 1999, 2002 25

Building and Running a Java System SSL Application

Building a z/OS Java System SSL Application

1. Write the Java source program (see ['Writing a Java Source Program” on page 25).
2. Compile your Java source program with the GSKSSL.jar file included in the classpath.

Running a z/OS Java System SSL Application

1. Complete the steps in [‘Building a z/OS Java System SSL Application’}

2. Set the LIBPATH environment variable to contain the path to the libSSLSocketLib.so file, which is in
the /usr/lpp/gskssl/lib directory.

3. Run the Java application with the GSKSSL.jar file in the classpath.

26 System SSL Programming V1R4.0

Chapter 7. API Reference

This chapter describes the set of application programming interfaces (APIs) that z/OS System SSL
supports for performing secure sockets layer (SSL/TLS) communication.

These APIs were introduced in z/OS Version 1 Release 2 and beyond and supersede the APIs from prior
releases. Only the APIs in this chapter should be used for writing new application programs. Existing
application programs should be recoded if possible to use the new APIs. See|Chapter 5, “Migrating to the|
[New SSL Interfaces” on page 23| for more information about updating your application programs.

The deprecated APIs included in [Chapter 9, “Deprecated Secure Sockets Layer APIs” on page 225|are for
reference only . When creating new application programs, you must not include any of the deprecated
APIs; you should use only the APIs in this chapter.

The following documents provide more information on X.509 certificates and the Secure Sockets Layer
protocol:

* FIPS 186 - Digital Signature Standard

* PKCS #1 - RSA Encryption Standard

* PKCS #5 - Password-based Encryption

* PKCS #7 - Cryptographic Message Syntax

* PKCS #8 - Private Key Information Syntax

* PKCS #10 - Certification Request

* PKCS #12 - Personal Information Exchange

* RFC 2246 - Transport Layer Security (TLS) Version 1

* RFC 2253 - String Representation of Distinguished Names
* RFC 2279 - UTF-8 (UCS Tranformation Format 8)

* RFC 2459 - X.509 certificate, certificate revocation list, and certificate extensions
* RFC 2587 - PKIX LDAP Version 2 Schema

Following is a list of APIs. Use these APIs when creating new application programs. If possible, recode
your existing application programs to use these APIs as well:

» gsk_attribute_get buffer() (see page @)

» gsk_attribute_get _cert_info() (see page

» gsk attribute_get data() (see page

» gsk_attribute_get_enum() (see page

» gsk_attribute_get numeric_value() (see page
» gsk attribute_set buffer() (see page

» gsk_attribute_set_callback() (see page)

» gsk attribute_set enum() (see page

» gsk attribute_set_numeric_value() (see page@b
» gsk_environment_close() (see page

« gsk_environment_init() (see page

» gsk_environment_open() (see page

» gsk free cert_data() (see page

* gsk get cert by label() (see page @b

* gsk_get_cipher_suites() (see page@

* gsk _get_update() (see page

© Copyright IBM Corp. 1999, 2002 27

28

gsk_list_free() (see page
gsk_secure_socket_close() (see page
gsk_secure_socket_init() (see page @)
gsk_secure_socket_misc() (see page
gsk_secure_socket_open() (see page
gsk_secure_socket read() (see page
gsk_secure_socket_shutdown() (see page
gsk_secure_socket write() (see page @

gsk_strerror() (see page)

System SSL Programming V1R4.0

gsk_attribute_get_buffer()

gsk_attribute get buffer()
Gets the value of an attribute buffer.

Format

#include <gskss1.h>

gsk_status gsk_attribute_get_buffer (

gsk_handle ssl_handle,
GSK_BUF_ID buffer_id,
const char ** buffer_value,
int * buffer length)
Parameters
ssl_handle

Specifies an SSL environment handle returned by gsk_environment_open() or an SSL
connection handle returned by gsk_secure_socket_open()

buffer_id
Specifies the buffer identifier.

buffer_value
The buffer is in storage owned by the SSL runtime and must not be modified or released by the
application. The buffer returned for the GSK_USER_DATA identifier may be modified by the
application but must not be released.

buffer_length
Returns the length of the buffer value.

Results
The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskssl.h include file. The following are some common errors:

[GSK_ATTRIBUTE_INVALID_ID]
The buffer identifier is not valid or cannot be used with the specified handle.

[GSK_INVALID _HANDLE]
The handle is not valid.

[GSK_INVALID_STATE]
The handle is closed.

Usage

The gsk_attribute_get buffer() routine will return a buffer value for an SSL environment or an SSL
connection. The buffer is in storage owned by the SSL runtime and must not be released by the
application. The address will remain valid until the SSL environment or connection is closed or until the
application calls the gsk_attribute_set buffer() routine to set a new buffer value.

The following buffer identifiers are supported:

GSK_CONNECT_CIPHER_SPEC
Returns the cipher specification selected for an initialized connection. Refer to the description of
the gsk_environment_open() routine for a list of valid cipher specifications.
GSK_CONNECT_CIPHER_SPEC may be specified only for an SSL connection.

GSK_CONNECT_SEC _TYPE
Returns the security protocol for an initialized connection. The value will be "SSLV2", "SSLV3", or

Chapter 7. API Reference 29

gsk_attribute_get_buffer()

"TLSV1" depending upon the protocol selected during the SSL handshake.
GSK_CONNECT_SEC_TYPE may be specified only for an SSL connection.

GSK_KEYRING_FILE
Returns the name of the key database HFS file or the SAF key ring. A key database is used if a
database password or stash file is defined using either an environment variable or the
gsk_attribute_set buffer() routine.

GSK_KEYRING_LABEL
Returns the label associated with the certificate being used by the SSL environment or connection.
This will be the value set by the application if the environment or connection is not initialized.
GSK_KEYRING_LABEL may be specified for an SSL environment or an SSL connection.

GSK_KEYRING_PW
Returns the password for the key database. A NULL address will be returned after the
environment is initialized. GSK_KEYRING_PW may be specified only for an SSL environment.

GSK_KEYRING_STASH_FILE
Returns the name of the key database password stash file. GSK_KEYRING_STASH_FILE may be
specified only for an SSL environment.

GSK_LDAP_SERVER
Returns the DNS name or IP address of the LDAP server. GSK_LDAP_SERVER may be specified
only for an SSL environment.

GSK_LDAP_USER
Returns the distinguished name to use when connecting to the LDAP server. GSK_LDAP_USER
may be specified only for an SSL environment.

GSK_LDAP_USER_PW
Returns the password to use when connecting to the LDAP server. GSK_LDAP_USER_PW may
be specified only for an SSL environment.

GSK_SID_VALUE
Returns the session identifier for an initialized connection. This is the Base64-encoded version of
the session identifier and consists of displayable characters. GSK_SID_VALUE may be specified
only for an SSL connection.

GSK_USER_DATA
Returns the address of the user data to be passed to SSL exit routines. The application may alter
the user data but may not free it. GSK_USER_DATA may be specified only for an SSL connection.

GSK_V2_CIPHER_SPECS
Returns the SSL V2 cipher specifications as a string consisting of 1-character values.
GSK_V2_CIPHER_SPECS may be specified for an SSL environment or an SSL connection. Refer
to the description of gsk_environment_open() for a list of valid cipher specifications.

GSK_V3_CIPHER_SPECS
Returns the SSL V3 cipher specifications as a string consisting of 2-character values.
GSK_V3 CIPHER_SPECS may be specified for an SSL environment or an SSL connection. Refer
to the description of gsk_environment_open() for a list of valid cipher specifications. The SSL V3
cipher specifications are used for the SSL V3 and TLS V1 protocols.

Related Topics
gsk_attribute_set buffer()

gsk_environment_open()

gsk_secure_socket_open()

30 System SSL Programming V1R4.0

gsk_attribute_get_cert_info()

gsk_attribute _get cert_info()
Returns certificate information following an SSL handshake.

Format

#include <gskss1.h>

gsk_status gsk_attribute_get_cert_info (

gsk_handle soc_handle,
GSK_CERT_ID cert_id,
gsk_cert_data_elem ** cert_data,
int elem_count)
Parameters
soc_handle

Specifies the connection handle returned by the gsk _secure_socket _open() routine.

cert id
Specifies the certificate identifier.

cert _data
Returns the certificate data array. The gsk _free cert_data() routine should be called to release
the array when the certificate information is no longer needed. A NULL address will be returned if
no certificate information is available.

elem_count
Returns the number of elements in the array of gsk_cert_data_elem structures.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskssl.h include file. The following are some common errors:

[GSK_ATTRIBUTE_INVALID_ID]
The certificate identifier is not valid.

[GSK_ERR_ASN]
Unable to decode certificate.

[GSK_INSUFFICIENT_STORAGE]
Insufficient storage is available.

[GSK_INVALID_HANDLE]
The connection handle is not valid.

[GSK_INVALID_STATE]
The connection is not initialized.

Usage

The gsk_attribute_get_cert_info() routine returns information about certificates used in an SSL
handshake. The connection must be in the initialized state. The certificate data address will be NULL if
there is no certificate information available.

The following certificate identifiers are supported:

GSK_LOCAL_CERT_INFO
Returns information about the local certificate.

GSK_PARTNER_CERT_INFO
Returns information about the partner certificate.

Chapter 7. API Reference 31

gsk_attribute_get_cert_info()

Each element of the certificate data array has an element identifier. The element identifiers used for a
particular certificate will depend upon the contents of the certificate. The following element identifiers are
currently provided:

CERT_BODY_BASE®64
Certificate body in Base64-encoded format

CERT_BODY_DER
Certificate body in binary ASN.1 DER-encoded format

CERT_COMMON_NAME
Subject common name (CN)

CERT_COUNTRY
Subject country (C)

CERT_DN_DER
Subject distinguished name in binary ASN.1 DER-encoded format

CERT_DN_PRINTABLE
Subject distinguished name as a printable character string

CERT_DOMAIN_COMPONENT
Subject domain component (DC)

CERT_EMAIL
Subject e-mail address (EMAIL)

CERT_ISSUER_COMMON_NAME
Issuer common name (CN)

CERT_ISSUER_COUNTRY
Issuer country (C)

CERT_ISSUER_DN_DER
Issuer distinguished name in binary ASN.1 DER-encoded format

CERT_ISSUER_DN_PRINTABLE
Issuer distinguished name as a printable character string

CERT_ISSUER_DOMAIN_COMPONENT
Issuer domain component (DC)

CERT_ISSUER_EMAIL
Issuer e-mail address (EMAIL)

CERT_ISSUER_LOCALITY
Issuer locality (L)

CERT_ISSUER_ORG
Issuer organization (O)

CERT_ISSUER_ORG_UNIT
Issuer organizational unit (OU)

CERT_ISSUER_POSTAL_CODE
Issuer postal code (PC)

CERT_ISSUER_STATE_OR_PROVINCE
Issuer state or province (SP)

CERT_ISSUER_STREET
Issuer street (STREET)

CERT_ISSUER_SURNAME
Issuer surname (SN)

32 System SSL Programming V1R4.0

CERT_ISSUER_TITLE
Issuer title (TITLE)

CERT_LOCALITY
Subject locality (L)

CERT_ORG
Subject organization (O)

CERT_ORG_UNIT
Subject organizational unit (OU)

CERT_POSTAL_CODE
Subject postal code (PC)

CERT_SERIAL_NUMBER
Certificate serial number

CERT_STATE_OR_PROVINCE
Subject state or province (SP)

CERT_STREET
Subject street (STREET)

CERT_SURNAME
Subject surname (SN)

CERT_TITLE
Subject title (TITLE)

gsk_attribute_get_cert_info()

The CERT_BODY_DER, CERT_BODY_BASE64, CERT_DN_DER, and CERT_ISSUER_DN_DER
elements are not null-terminated and the 'cert_data I’ field must be used to get the element length. All of
the other elements are null-terminated character strings and the 'cert_data_I’ field is the length of the string

excluding the end-of-string delimitor.

Related Topics

gsk_secure_socket _init()

gsk_free_cert_data()

Chapter 7. AP| Reference

33

gsk_attribute_get_data()

gsk_attribute get data()

Returns information related to a certificate request.

Format

#include <gskssl.h>

gsk_status gsk_attribute_get_data (

gsk_handle soc_handle,
GSK_DATA_ID data_id,
void ** data_ptr)
Parameters
soc_handle
Specifies the connection handle returned by the gsk_secure_socket_open() routine.
data_id
Specifies the data identifier.
data_ptr
Returns the address of the requested data. The address will be NULL if the requested data is not
available.
Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskssl.h include file. The following are some common errors:

[GSK_ATTRIBUTE_INVALID_ID]
The data identifier is not valid.

[GSK_ERR_ASN]
Unable to decode certification authority name.

[GSK_INSUFFICIENT_STORAGE]
Insufficient storage is available.

[GSK_INVALID_HANDLE]
The connection handle is not valid.

[GSK_INVALID_STATE]
The connection is not initialized.

Usage

The gsk_attribute_get_data() routine returns information related to a certificate request. The server sends
a certificate request to the client as part of the client authentication portion of the SSL handshake. The
connection must be in the initialized state.

The following data identifiers are supported:

GSK_DATA_ID_SUPPORTED_KEYS
Returns a list of labels in the key database for certificates signed by a certification authority that is
in the list provided by the server. A database entry will be included in the list only if it has both a
certificate and a private key. The gsk_list_free() routine should be called to release the list when
it is no longer needed.

GSK_DATA_ID_SERVER_ISSUERS
Returns a list of distinguished names of certification authorities provided by the server in the
certificate request. The gsk_list_free() routine should be called to release the list when it is no
longer needed.

34 system SSL Programming V1R4.0

gsk_attribute_get data()

| Related Topics
| gsk list_free()

Chapter 7. API Reference 35

gsk_attribute_get_enum()

gsk_attribute _get_enum()

Gets an enumerated value.

Format

#include <gskssl.h>

gsk_status gsk_attribute_get_enum (
gsk_handle ssl_handle,
GSK_ENUM_ID enum_id,
GSK_ENUM_VALUE = enum_value)

Parameters

ssl_handle
Specifies an SSL environment handle returned by gsk_environment_open() or an SSL
connection handle returned by gsk_secure_socket_open()

enum_id
Specifies the enumeration identifier.

enum_value
Returns the enumeration value.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskssl.h include file. The following are some common errors:

[GSK_ATTRIBUTE_INVALID_ID]
The enumeration identifier is not valid or cannot be used with the specified handle.

[GSK_INVALID_HANDLE]
The handle is not valid.

[GSK_INVALID_STATE]
The environment has been closed or the SSL connection has been established.

Usage

The gsk_attribute_get_enum() routine will return an enumerated value for an SSL environment or an
SSL connection.

The following enumeration identifiers are supported:

GSK_CLIENT_AUTH_TYPE
Returns GSK_CLIENT_AUTH_FULL_TYPE if received certificates are validated by the System
SSL runtime and GSK_CLIENT_AUTH_PASSTHRU_TYPE otherwise. GSK_CLIENT_AUTH_TYPE
can be specified only for an SSL environment.

GSK_PROTOCOL_SSLV2
Returns GSK_PROTOCOL_SSLV2_ON if the SSL Version 2 protocol is enabled and
GSK_PROTOCOL_SSLV2_OFF if the SSL Version 2 protocol is not enabled.
GSK_PROTOCOL_SSLV2 can be specified for an SSL environment or an SSL connection.

GSK_PROTOCOL_SSLV3
Returns GSK_PROTOCOL_SSLV3_ON if the SSL Version 3 protocol is enabled and
GSK_PROTOCOL_SSLV3_OFF if the SSL Version 3 protocol is not enabled.
GSK_PROTOCOL_SSLV3 can be specified for an SSL environment or an SSL connection.

GSK_PROTOCOL_TLSV1
Returns GSK_PROTOCOL_TLSV1 ON if the TLS Version 1 protocol is enabled and

36 System SSL Programming V1R4.0

gsk_attribute_get_enum()

GSK_PROTOCOL_TLSV1_OFF if the TLS Version 1 protocol is not enabled.
GSK_PROTOCOL_TLSV1 can be specified for an SSL environment or an SSL connection.

GSK_PROTOCOL_USED
Returns GSK_PROTOCOL_USED_SSLV? if the SSL Version 2 protocol was used to establish the
connection, GSK_PROTOCOL_USED_SSLV3 if the SSL Version 3 protocol was used to establish
the connection, or GSK_PROTOCOL_USED_TLSV1 if the TLS Version 1 protocol was used to
establish the connection. GSK_NULL will be returned if a connection has not been established.
GSK_PROTOCOL_USED can be specified only for an SSL connection.

GSK_SESSION_TYPE
Returns GSK_CLIENT_SESSION if the SSL handshake is to be performed as a client,
GSK_SERVER_SESSION if the SSL handshake is to be performed as a server, or
GSK_SERVER_SESSION_WITH_CL_AUTH if the SSL handshake is to be performed as a server
requiring client authentication. GSK_SESSION_TYPE can be specified for an SSL environment or
an SSL connection.

GSK_SID_FIRST
Returns GSK_SID_IS_FIRST if a full SSL handshake was performed to establish the connection or
GSK_SID_NOT_FIRST if an existing session was used to establish the connection. GSK_NULL
will be returned if a connection has not been established. GSK_SID_FIRST can be specified only
for an SSL connection.

GSK_SYSPLEX_SIDCACHE
Returns GSK_SYSPLEX_SIDCACHE_ON if sysplex session caching is enabled for this application
or GSK_SYSPLEX_SIDCACHE_OFF if sysplex session caching is not enabled.
GSK_SYSPLEX_SIDCACHE can be specified only for an SSL environment.

Related Topics

gsk_attribute_set_enum()
gsk_environment_open()

gsk_secure_socket_open()

Chapter 7. API Reference 37

gsk_attribute_get_numeric_value()

gsk_attribute _get numeric_value()

Gets a numeric value.

Format

#include <gskssl.h>

gsk_status gsk_attribute_get_numeric_value (
gsk_handle ssl_handle,
GSK_NUM_ID num_id,
int * num_value)

Parameters

ssl_handle
Specifies an SSL environment handle returned by gsk_environment_open() or an SSL
connection handle returned by gsk_secure_socket_open()

num_id
Specifies the numeric identifier.

num_value
Returns the numeric value.

Results
The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskssl.h include file. The following are some common errors:

[GSK_ATTRIBUTE_INVALID_ID]
The numeric identifier is not valid or cannot be used with the specified handle.

[GSK_INVALID_HANDLE]
The handle is not valid.

[GSK_INVALID_STATE]
The environment is closed.

Usage

The gsk_attribute_get_numeric_value() routine will return a numeric value for an SSL environment or an
SSL connection.

The following numeric identifiers are supported:

GSK_CRL_CACHE_TIMEOUT
Returns the CRL cache timeout. GSK_CRL_CACHE_TIMEOUT can be specified only for an SSL
environment.

GSK_FD
Returns the socket descriptor used for network operations. GSK_FD can be specified only for an
SSL connection.

GSK_LDAP_SERVER_PORT
Returns the LDAP server port. GSK_LDAP_SERVER_PORT can be specified only for an SSL
environment.

GSK_V2_SESSION_TIMEOUT
Returns the SSL Version 2 session timeout. GSK_V2_SESSION_TIMEOUT can be specified only
for an SSL environment.

38 System SSL Programming V1R4.0

gsk_attribute_get_numeric_value()

GSK_V2_SIDCACHE_SIZE
Returns the size of the SSL Version 2 session identifier cache. GSK_V2_SIDCACHE_SIZE can be
specified only for an SSL environment.

GSK_V3 _SESSION_TIMEOUT
Returns the SSL Version 3 session timeout. GSK_V3_SESSION_TIMEOUT can be specified only
for an SSL environment.

GSK_V3_SIDCACHE_SIZE
Returns the size of the SSL Version 3 session identifier cache. GSK_V3_SIDCACHE_SIZE can be
specified only for an SSL environment.

Related Topics

gsk_attribute_set _numeric_value()
gsk_environment_open()

gsk_secure_socket_open()

Chapter 7. API Reference 39

gsk_attribute_set_buffer()

gsk_attribute set_buffer()
Sets the value of an attribute buffer.

Format

#include <gskssl.h>

gsk_status gsk_attribute_set_buffer (

gsk_handle ssl_handle,
GSK_BUF_ID buffer_id,
const char * buffer_value,
int buffer_length)
Parameters
ssl_handle

Specifies an SSL environment handle returned by gsk_environment_open() or an SSL
connection handle returned by gsk_secure_socket_open()

buffer_id
Specifies the buffer identifier.

buffer_value
Specifies the buffer value.

buffer_length
Specifies the buffer length. Specify 0 for this parameter if the buffer value is a null-delimited
character string.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskssl.h include file. The following are some common errors:

[GSK_ATTRIBUTE_INVALID_ID]
The buffer identifier is not valid or cannot be used with the specified handle.

[GSK_ATTRIBUTE_INVALID_LENGTH]
The buffer length is not valid.

[GSK_INSUFFICIENT_STORAGE]
Insufficient storage is available.

[GSK_INVALID_HANDLE]
The handle is not valid.

[GSK_INVALID_STATE]
The environment or connection is not in the open state.

Usage

The gsk_attribute_set buffer() routine will set a buffer value in an SSL environment or an SSL
connection. The environment or connection must be in the open state and not in the initialized state (that
is, gsk_environment_init() or gsk_secure_socket_init() has not been called).

The following buffer identifiers are supported:

GSK_KEYRING_FILE
Specifies the name of the key database HFS file or the SAF key ring. A key database is used if a

40 system SSL Programming V1R4.0

gsk_attribute_set_buffer()

database password or stash file is defined using either an environment variable or the
gsk_attribute_set_buffer() routine. Otherwise a SAF key ring is used. GSK_KEYRING_FILE may
be specified only for an SSL environment.

The SAF key ring name is specified as "userid/keyring”. The current userid is used if the userid is
omitted. The user must have READ access to the IRR.DIGTCERT.LISTRING resource in the
FACILITY class when using a SAF key ring owned by the user. The user must have UPDATE
access to the IRR.DIGTCERT.LISTRING resource in the FACILITY class when using a SAF key
ring owned by another user. Note: Certificate private keys are not available when using a SAF key
ring owned by another user.

GSK_KEYRING_LABEL
Specifies the label of the key used to authenticate the application. The default key will be used if a
key label is not specified. GSK_KEYRING_LABEL may be specified for an SSL environment or an
SSL connection.

GSK_KEYRING_PW
Specifies the password for the key database. GSK_KEYRING_PW may be specified only for an
SSL environment.

GSK_KEYRING_STASH_FILE
Specifies the name of the key database password stash file. The stash file name always has an
extension of ".sth” and the supplied name will be changed if it does not have the correct
extension. The GSK_KEYRING_PW value will be used instead of the GSK_KEYRING_STASH
value if it is also specified. GSK_KEYRING_STASH_FILE may be specified only for an SSL
environment.

GSK_LDAP_SERVER
Specifies one or more blank-separated LDAP server host names. Each host name can contain an
optional port number separated from the host name by a colon. GSK_LDAP_SERVER may be
specified only for an SSL environment. The LDAP server is used to obtain CA certificates when
validating a certificate and the local database does not contain the required certificate. The local
database must contain the required certificates if no LDAP server is specified. Even when an
LDAP server is used, root CA certificates must be found in the local database since the LDAP
server is not a trusted data source. The LDAP server is also used to obtain certificate revocation
lists.

GSK_LDAP_USER
Specifies the distinguished name to use when connecting to the LDAP server. GSK_LDAP_USER
may be specified only for an SSL environment.

GSK_LDAP_USER_PW
Specifies the password to use when connecting to the LDAP server. GSK_LDAP_USER_PW may
be specified only for an SSL environment.

GSK_USER_DATA
Specifies the user data to be passed to SSL exit routines. The user data is copied to storage
owned by the SSL runtime and the address of this storage is passed to the SSL exit routines. The
application may alter this copy of the user data but may not free it. GSK_USER_DATA may be
specified only for an SSL connection.

GSK_V2_CIPHER_SPECS
Specifies the SSL V2 cipher specifications as a string consisting of 1 or more 1-character values.
GSK_V2_CIPHER_SPECS may be specified for an SSL environment or an SSL connection. Refer
to the description of gsk_environment_open() for a list of valid cipher specifications.

GSK_V3_CIPHER_SPECS
Specifies the SSL V3 cipher specifications as a string consisting of 1 or more 2-character values.
GSK_V3 CIPHER_SPECS may be specified for an SSL environment or an SSL connection. Refer
to the description of gsk_environment_open() for a list of valid cipher specifications. The SSL V3
cipher specifications are used for the SSL V3 and TLS V1 protocols.

Chapter 7. API Reference 41

gsk_attribute_set_buffer()

Related Topics
gsk_attribute_get_buffer()

gsk_environment_open()
gsk_environment_init()
gsk_secure_socket_open()

gsk_secure_socket_init()

42 system SSL Programming V1R4.0

gsk_attribute_set_callback()

gsk_attribute set_callback()
Sets an SSL callback.

Format

#include <gskss1.h>

gsk_status gsk_attribute_set_callback (

gsk_handle ssl_handle,
GSK_CALLBACK_ID callback_id,
void * callback)
Parameters
ssl_handle

Specifies an SSL environment handle returned by gsk_environment_open() or an SSL
connection handle returned by gsk_secure_socket_open().

callback _id
Specifies the callback identifier.

callback
Specifies the address of the callback parameter.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskssl.h include file. The following are some common errors:

[GSK_ATTRIBUTE_INVALID_ID]
The callback identifier is not valid or cannot be used with the specified handle.

[GSK_ATTRIBUTE_INVALID_PARAMETER]
The attribute parameter value is not valid.

[GSK_INVALID_HANDLE]
The handle is not valid.

[GSK_INVALID_STATE]
The environment or connection is not in the open state.

Usage

The gsk_attribute_set callback() routine establishes a callback to an application routine by the SSL
runtime. A callback allows the application to replace the default routine used by the SSL runtime. The SSL
environment or SSL connection must be in the open state and not in the initialized state (that is,
gsk_environment_init() or gsk_secure_socket_init() has not been called). The callback routine must
use standard C linkage and not C++ linkage.

The following callback identifiers are supported:

GSK_CLIENT_CERT_CALLBACK
Indicates the application is providing the routine to prompt a client user to select a certificate from
a list during the client authentication process. The callback parameter is the address of this
routine. The exit routine can obtain the user data address by calling the
gsk_attribute_get_buffer() routine. The gsk_attribute_set_buffer() routine should be called to
set the selected key label before returning from the callback routine. The function return value
should be 0 if a key label has been set or GSK_ERR_NO_CERTIFICATE if no client certificate is
to be used. GSK_CLIENT_CERT_CALLBACK can be specified only for an SSL environment.

Chapter 7. API Reference 43

gsk_attribute_set_callback()

Following is the prototype for the callback routine provided by the application. It shows the
parameters passed to the application callback and the value returned by the callback.

int client_cert callback (
gsk_handle soc_handle)

GSK_IO_CALLBACK

Indicates the application is providing the routines to perform read, write, and control functions. The
callback parameter is the address of a gsk_iocallback structure. Each entry in the structure will
override the corresponding SSL runtime routine. A NULL entry will cause the current callback
routine to be used or the SSL runtime routine will be used if there is no callback routine.
GSK_IO_CALLBACK can be specified for an SSL environment or an SSL connection.

The routine specified by the io_read entry is used to read data from the network. The fd parameter
is the socket descriptor, the buffer parameter is the address of the data buffer, the count
parameter is the buffer size, and the user_data parameter is the user data address. The function
return value should be 0 if the connection has been closed by the remote partner, -1 if an error is
detected, or the number of bytes read from the network. The error code is returned in the errno
runtime variable. The default routine uses the recv() library routine to read data from the network.

int io_read (

int fd,

void * buffer,
int count,
char * user_data)

The routine specified by the io_write entry is used to write data to the network. The fd parameter
is the socket descriptor, the buffer parameter is the address of the data buffer, the count
parameter is the data length, and the user_data parameter is the user data address. The function
return value should be -1 if an error is detected or the number of bytes written to the network. The
error code is returned in the errno runtime variable. The default routine uses the send() library
routine to write data to the network.

int io_write (

int fd,

void * buffer,
int count,
char * user_data)

The routine specified by the jio_getpeerid entry is used to get the 32-bit network identifier for the
remote parner. The fd parameter is the socket descriptor and the user_data parameter is the user
data address. However, the io_getpeerid entry is deprecated and should not be used since it does
not support IPv6 networks which use a 16-byte network identifier. Instead, the io_getpeername
entry should be used for both IPv4 and IPv6 networks. The io_getpeerid entry will not be used if
the io_getpeername entry is not NULL.
unsigned long io_getpeerid (

int fd,

char * user_data)

The routine specified by the io_setsocketoptions entry is used to set socket options. The fd
parameter is the socket descriptor, the cmd parameter is the function to be performed, and the
user_data parameter is the user data address. The return value should be -1 if an error is
detected and 0 otherwise. The error code is returned in the errno runtime variable. The
io_setsocketoptions() routine is called by the gsk_secure_socket_init() routine before initiating
the SSL handshake (GSK_SET_SOCKET_STATE_FOR_HANDSHAKE) and again upon
completion of the SSL handshake (GSK_SET_SOCKET_STATE_FOR_READ_WRITE). The
default io_setsocketoptions() routine puts the socket into blocking mode for

GSK_SET _SOCKET_STATE_FOR_HANDSHAKE and restores the original mode for
GSK_SET_SOCKET_STATE_FOR_READ_WRITE.

44 system SSL Programming V1R4.0

gsk_attribute_set_callback()

int io_setsocketoptions (

int fd,
int cmd,
char * user_data)

The routine specified by the jio_getpeername entry is used to get the network identifier for the
remote partner. The fd parameter is the socket descriptor, the buffer parameter is the address of
the return buffer, the length parameter is the size of the return buffer, and the user_data parameter
is the user data address. Upon return, the length parameter should contain the actual length of the
network identifier. The function return value should be -1 if an error is detected and 0 otherwise.
The error code is returned in the errno runtime variable. The default routine uses the
getpeername() library routine and returns the IP address of the remote partner (4 bytes for IPv4
and 16 bytes for IPv6) followed by the 2-byte port number.

int io_getpeername (

int fd,

void * buffer,
int = length,
char * user_data)

GSK_SID_CACHE_CALLBACK

Indicates the application is providing the routines to maintain the session identifier cache. The
callback parameter is the address of a gsk_sidcache_callback structure.
GSK_SID_CACHE_CALLBACK can be specified only for an SSL environment and will be used
only for SSL servers (the internal cache is always used for SSL clients).

The routine specified by the Get entry is called to retrieve an entry from the session identifier
cache. The session_id parameter is the session identifier, the session id length parameter is the
length of the session identifier, and the ss/_version parameter is the SSL protocol version number
(GSK_SSLVERSION_V2 or GSK_SSLVERSION_V3). The function return value is the address of
the session data buffer or NULL if an error is detected. The FreeDataBuffer routine will be called
to release the session data buffer when it is no longer needed by the SSL runtime.

gsk _data_buffer » Get (

const unsigned char =* session_id,
unsigned int session_id_Tength,
gsk_sslversion ss1_version)

The routine specified by the Put entry is called to store an entry in the session identifier cache.
The ss/_session_data parameter is the session data, the session_id parameter is the session
identifier, the session_id _length parameter is the length of the session identifier, and the
ssl_version parameter is the SSL protocol version number (GSK_SSLVERSION_V2 or
GSK_SSLVERSION_V3). The function return value is ignored and can be a NULL address. The
callback routine must make its own copy of the session data since the SSL structure will be
released when the connection is closed.

gsk _data_buffer * Put (

gsk_data_buffer = ss1_session_data,
const unsigned char =* session_id,
unsigned int session_id_Tength,
gsk_sslversion ss1_version)

The routine specified by the Delete entry is called to remove an entry from the session identifier
cache. The session_id parameter is the session identifier, the session_id_length parameter is the
length of the session identifier, and the ss/_version parameter is the SSL protocol version number
(GSK_SSLVERSION_V2 or GSK_SSLVERSION_V3).

void Delete (

const unsigned char * session_id,
unsigned int session_id_Tength,
gsk_sslversion ss1_version)

Chapter 7. API Reference 45

gsk_attribute_set_callback()

The routine specified by the FreeDataBuffer entry is called to release the data buffer returned by
the Get routine.

void FreeDataBuffer (
gsk_data_buffer * ss1_session_data)

46 system SSL Programming V1R4.0

gsk_attribute_set_enum()

gsk_attribute_set_enum()

Sets an enumerated value.

Format

#include <gskss1.h>

gsk_status gsk_attribute_set_enum (
gsk_handle ssl_handle,
GSK_ENUM_ID enum_id,
GSK_ENUM_VALUE enum_value)

Parameters

ssl_handle
Specifies an SSL environment handle returned by gsk_environment_open() or an SSL
connection handle returned by gsk_secure_socket_open()

enum_id
Specifies the enumeration identifier.

enum_value
Specifies the enumeration value.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskssl.h include file. The following are some common errors:

[GSK_ATTRIBUTE_INVALID_ID]
The enumeration identifier is not valid or cannot be used with the specified handle.

[GSK_INVALID_HANDLE]
The handle is not valid.

[GSK_INVALID_STATE]
The environment or connection is not in the open state.

Usage

The gsk_attribute_set_enum() routine will set an enumerated value for an SSL environment or an SSL
connection. The environment or connection must be in the open state and not in the initialized state (that
is, gsk_environment_init() or gsk_secure_socket init() has not been called).

The following enumeration identifiers are supported:

GSK_CLIENT_AUTH_TYPE
Specifies GSK_CLIENT_AUTH_FULL_TYPE to validate client certificates. If a certificate is not
valid, the connection is not started and an error code is returned by the gsk_secure_socket_init()
routine. If an LDAP server is specified, the LDAP server is queried for CA certificates and
certificate revocation lists. If the LDAP server is not available, only local validation will be
performed. If no client certificate is received, the connection is successful. The application can
check for this case by calling the gsk_attribute_get cert_info() routine and checking for a NULL
return address.

Specify GSK_CLIENT_AUTH_PASSTHRU_TYPE to bypass client certificate validation. The
application can retrieve the certificate by calling the gsk_attribute_get_cert_info() routine.

GSK_CLIENT_AUTH_TYPE can be specified only for an SSL environment.
GSK_PROTOCOL_SSLV2
Specifies GSK_PROTOCOL_SSLV2_ON to enable the SSL Version 2 protocol or

Chapter 7. AP| Reference 47

gsk_attribute_set_enum()

GSK_PROTOCOL_SSLV2_OFF to disable the SSL Version 2 protocol. The SSL V2 protocol
should be disabled whenever possible since the SSL V3 protocol provides significant security
enhancements.

GSK_PROTOCOL_SSLV2 can be specified for an SSL environment or an SSL connection.

GSK_PROTOCOL_SSLV3
Specifies GSK_PROTOCOL_SSLV3_ON to enable the SSL Version 3 protocol or
GSK_PROTOCOL_SSLV3_OFF to disable the SSL Version 3 protocol.

GSK_PROTOCOL_SSLV3 can be specified for an SSL environment or an SSL connection.

GSK_PROTOCOL_TLSV1
Specifies GSK_PROTOCOL_TLSV1_ ON to enable the TLS Version 1 protocol or
GSK_PROTOCOL_TLSV1 OFF to disable the SSL Version 3 protocol.

GSK_PROTOCOL_TLSV1 can be specified for an SSL environment or an SSL connection.

GSK_SESSION_TYPE
Specifies GSK_CLIENT_SESSION to perform the SSL handshake as a client,
GSK_SERVER_SESSION to perform the SSL handshake as a server, or
GSK_SERVER_SESSION_WITH_CL_AUTH to perform the SSL handshake as a server requiring
client authentication.

GSK_SESSION_TYPE can be specified for an SSL environment or an SSL connection.

GSK_SYSPLEX_SIDCACHE
Returns GSK_SYSPLEX_SIDCACHE_ON if sysplex session caching is enabled for this application
or GSK_SYSPLEX_SIDCACHE_OFF if sysplex session caching is not enabled.
GSK_SYSPLEX_SIDCACHE can be specified only for an SSL environment.

Related Topics

gsk_attribute_get_enum()
gsk_environment_open()
gsk_environment_init()
gsk_secure_socket_open()

gsk_secure_socket _init()

48 system SSL Programming V1R4.0

gsk_attribute_set _numeric_value()

gsk_attribute _set_numeric_value()

Sets a numeric value.

Format

#include <gskss1.h>

gsk_status gsk_attribute_set_numeric_value (
gsk_handle ssl_handle,
GSK_NUM_ID num_id,
int num_value)

Parameters

ssl_handle
Specifies an SSL environment handle returned by gsk_environment_open() or an SSL
connection handle returned by gsk_secure_socket_open()

num_id
Specifies the numeric identifier.

num_value
Specifies the numeric value.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskssl.h include file. The following are some common errors:

[GSK_ATTRIBUTE_INVALID_ID]
The numeric identifier is not valid or cannot be used with the specified handle.

[GSK_ATTRIBUTE_INVALID_NUMERIC_VALUE]
The numeric value is not within the valid range.

[GSK_INVALID_HANDLE]
The handle is not valid.

[GSK_INVALID_STATE]
The environment or connection is not in the open state.

Usage
The gsk_attribute_set numeric_value() routine will set a numeric value for an SSL environment or an

SSL connection. The environment or connection must be in the open state and not in the initialized state
(that is, gsk_environment_init() or gsk_secure_socket init() has not been called).

The following numeric identifiers are supported:

GSK_CRL_CACHE_TIMEOUT
Sets the CRL cache timeout. This is the number of hours that a cached CRL will remain valid. The
range is 0-720 and defaults to 24. A value of 0 will disable CRL caching.
GSK_CRL_CACHE_TIMEOUT can be specified only for an SSL environment.

GSK_FD
Sets the socket descriptor for network operations. GSK_FD can be specified only for an SSL
connection. The socket must not be closed until the gsk_secure_socket_close() routine has been
called to terminate the secure connection.

GSK_LDAP_SERVER_PORT
Sets the LDAP server port. The port must be between 1 and 65535. Port 389 will be used if no

Chapter 7. API Reference 49

gsk_attribute_set _numeric_value()

LDAP server port is set. GSK_LDAP_SERVER_PORT can be specified only for an SSL
environment. GSK_LDAP_SERVER_PORT can be specified only for an SSL environment.

GSK_V2_SESSION_TIMEOUT
Sets the SSL Version 2 session timeout. This is the number of seconds until an SSL V2 session
identifier expires. The range is 0-100 and defaults to 100. System SSL will remember SSL V2
session identifiers for this amount of time. This reduces the amount of data exchanged during the
SSL handshake when a complete initial handshake has already been performed. Session
identifiers will not be remembered if a value of 0 is specified. GSK_V2_SESSION_TIMEOUT can
be specified only for an SSL environment.

GSK_V2_SIDCACHE_SIZE
Sets the size of the SSL Version 2 session identifier cache. The oldest entry will be removed when
the cache is full in order to add a new entry. The range is 0-32000 and defaults to 256. Session
identifiers will not be remembered if a value of 0 is specified. GSK_V2_SIDCACHE_SIZE can be
specified only for an SSL environment.

GSK_V3_SESSION_TIMEOUT
Sets the session timeout for the SSL V3 and TLS V1 protocols. This is the number of seconds
until an SSL V3 session identifier expires. The range is 0-86400 and defaults to 86400. System
SSL will remember session identifiers for this amount of time. This reduces the amount of data
exchanged during the SSL handshake when a complete initial handshake has already been
performed. Session identifiers will not be remembered if a value of 0 is specified.
GSK_V3 SESSION_TIMEOUT can be specified only for an SSL environment.

GSK_V3_SIDCACHE_SIZE
Sets the size of the SSL Version 3 session identifier cache. The oldest entry will be removed when
the cache is full in order to add a new entry. The range is 0-64000 and defaults to 512. Session
identifiers will not be remembered if a value of 0 is specified. The SSL V3 session cache is used
for the SSL V3 and TLS V1 protocols. GSK_V3_SIDCACHE_SIZE can be specified only for an
SSL environment.

Related Topics

gsk_attribute_get_numeric_value()
gsk_environment_open()
gsk_environment_init()
gsk_secure_socket _init()

gsk_secure_socket_open()

50 system SSL Programming V1R4.0

gsk_environment_close()

gsk _environment_close()
Closes a SSL environment.

Format

#include <gskss1.h>

gsk_status gsk_environment_close (
gsk_handle * env_handle)

Parameters

env_handle
Specifies the SSL environment handle returned by the gsk_environment_open() routine. The
environment handle will be set to NULL upon completion.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskssl.h include file. The following are some common errors:

[GSK_INVALID_HANDLE]
The environment handle is not valid.

[GSK_INVALID_STATE]
The environment is already closed.

Usage

The gsk_environment_close() routine will close an environment created by the
gsk_environment_open() routine. The storage allocated for the environment will not be released until all
connections created using the environment have been closed. The SSL environment cannot be used to
create new connections upon completion of the close.

Related Topics

gsk_environment_open()
gsk_environment_init()
gsk_secure_socket _init()

gsk_secure_socket_close()

Chapter 7. API Reference 51

gsk_environment_init()

gsk_environment_init()
Initializes a SSL environment.

Format

#include <gskssl.h>

gsk_status gsk_environment_init (
gsk_handle env_handle)

Parameters

env_handle

Specifies the SSL environment handle returned by the gsk_environment_open()

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return

codes listed in the gskssl.h include file. The following are some common errors:

[GSK_CERTIFICATE_NOT_AVAILABLE]
The key database or key ring does not contain any certificates.

[GSK_ERR_BAD_KEYFILE_PASSWORD]
The key database password is not correct.

[GSK_ERR_LDAP]
Unable to initialize the LDAP client.

[GSK_ERR_LDAP_NOT_AVAILABLE]
The LDAP server is not available.

[GSK_ERR_PERMISSION_DENIED]
Not authorized to access key database or key ring.

[GSK_INSUFFICIENT_STORAGE]
Insufficient storage is available.

[GSK_INVALID _HANDLE]
The environment handle is not valid.

[GSK_INVALID_STATE]
The environment is not in the open state.

[GSK_KEYFILE_INVALID_FORMAT]
The database is not a key database.

[GSK_KEYFILE_IO_ERR]
An input/output error occurred while reading the key database or key ring.

[GSK_KEYFILE_PASSWORD_EXPIRED]
The key database password is expired.

[GSK_KEYRING_OPEN_ERROR]
Unable to open the key database or key ring.

[GSK_NO_KEYFILE_PASSWORD]
The key database password is not available.

[GSK_RSA_TEMP_KEY_PAIR]
Unable to generate temporary RSA public/private key pair.

52 System SSL Programming V1R4.0

gsk_environment_init()

Usage

The gsk_environment_init() routine initializes an SSL environment created by the
gsk_environment_open() routine. After the SSL environment has been initialized, it can be used to create
one or more SSL connections by calling the gsk_secure_socket_open() routine. The
gsk_environment_close() routine should be called to close the environment when it is no longer needed.
The gsk_environment_close() routine should also be called if an error is returned by the
gsk_environment_init() routine.

Related Topics

gsk_environment_open()
gsk_environment_close()

gsk_secure_socket_open()

Chapter 7. API Reference 53

gsk_environment_open()

gsk_environment_open()
Creates a SSL environment.

Format
#include <gskssl.h>

gsk_status gsk_environment_open (
gsk_handle * env_handle)

Parameters

env_handle
Returns the handle for the environment. The application should call the gsk_environment_close()
routine to release the environment when it is no longer needed.

Results
The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskssl.h include file. The following are some common errors:

[GSK_ATTRIBUTE_INVALID_ENUMERATION]
The value of an environment variable is not valid.

[GSK_ATTRIBUTE_INVALID_LENGTH]
The length of an environment variable value is not valid.

[GSK_ATTRIBUTE_INVALID _NUMERIC_VALUE]
The value of an environment variable is not valid.

[GSK_INSUFFICIENT_STORAGE]
Insufficient storage is available.

Usage

The gsk_environment_open() routine creates an SSL environment. The environment will be initialized
with default values and then any SSL environment variables will be processed. These values can be
changed by the application using the appropriate gsk_attribute_set *() routines. The
gsk_environment_init() routine should then be called to initialize the SSL environment. This environment
can then be used to establish one or more SSL connections.

The following default values are set:

e SSL V2, SSL V3, and TLS V1 are enabled

* The connection type is set to CLIENT

* The SSL V2 connection timeout is set to 100 seconds

* The SSL V3 connection timeout is set to 86400 seconds
* The SSL V2 cache size is set to 256

* The SSL V3 cache size is set to 512

* The sysplex session cache is disabled.

* The SSL V2 cipher specification is set to "713642" if domestic encryption is enabled and "642"
otherwise

* The SSL V3 cipher specification is set to "0504352F0A090306020100" if domestic encryption is
enabled and "090306020100" otherwise

* The default key will be used
¢ No LDAP server will be used

54 system SSL Programming V1R4.0

gsk_environment_open()

* The default callback routines will be used

The following SSL V2 cipher specifications are supported:

» "1" = 128-bit RC4 encryption with MD5 message authentication (128-hit secret key)

» "2" = 128-bit RC4 export encryption with MD5 message authentication (40-bit secret key)
« "3" = 128-bit RC2 encryption with MD5 message authentication (128-bit secret key)

» "4" = 128-bit RC2 export encryption with MD5 message authentication (40-bit secret key)
» "6" = 56-bit DES encryption with MD5 message authentication (56-bit secret key)

» "7" = 168-bit Triple DES encryption with MD5 message authentication (168-bit secret key)

The following SSL V3 cipher specifications are supported:

* "00” = No encryption or message authentication

* "01" = No encryption with MD5 message authentication

* "02" = No encryption with SHA-1 message authentication

* "03" = 40-bit RC4 encryption with MD5 message authentication and RSA key exchange

* "04" = 128-bit RC4 encryption with MD5 message authentication and RSA key exchange

* "05" = 128-bit RC4 encryption with SHA-1 message authentication and RSA key exchange
* "06" = 40-bit RC2 encryption with MD5 message authentication and RSA key exchange

* "09" = 56-bit DES encryption with SHA-1 message authentication and RSA key exchange
» "0A" = 168-bit Triple DES encryption with SHA-1 message authentication and RSA key exchange
« "2F" = 128-bit AES encryption with SHA-1 message authentication and RSA key exchange
» "35" = 256-bit AES encryption with SHA-1 message authentication and RSA key exchange

The following environment variables are processed:

GSK_KEY_LABEL
Specifies the label of the key used to authenticate the application. The default key will be used if a
key label is not specified.

GSK_KEYRING_FILE
Specifies the name of the key database HFS file or the SAF key ring. A key database is used if
the GSK_KEYRING_PW or GSK_KEYRING_STASH environment variable is also specified.
Otherwise a SAF key ring is used.

The SAF key ring name is specified as "userid/keyring”. The current userid is used if the userid is
omitted. The user must have READ access to the IRR.DIGTCERT.LISTRING resource in the
FACILITY class when using a SAF key ring owned by the user. The user must have UPDATE
access to the IRR.DIGTCERT.LISTRING resource in the FACILITY class when using a SAF key
ring owned by another user. Note: Certificate private keys are not available when using a SAF key
ring owned by another user.

GSK_KEYRING_PW
Specifies the password for the key database.

GSK_KEYRING_STASH
Specifies the name of the key database password stash file. The stash file name always has an
extension of ".sth” and the supplied name will be changed if it does not have the correct
extension. The GSK_KEYRING_PW environment variable will be used instead of the
GSK_KEYRING_STASH environment variable if it is also specified.

GSK_LDAP_SERVER
Specifies one or more blank-separated LDAP server host names. Each host name can contain an
optional port number separated from the host name by a colon. The LDAP server is used to obtain
CA certificates when validating a certificate and the local database does not contain the required
certificate. The local database must contain the required certificates if no LDAP server is specified.

Chapter 7. API Reference 55

gsk_environment_open()

Even when an LDAP server is used, root CA certificates must be found in the local database since
the LDAP server is not a trusted data source. The LDAP server is also used to obtain certificate
revocation lists.

[GSK_LDAP_PASSWORD]
Specifies the password to use when connecting to the LDAP server.

[GSK_LDAP_PORT]
Specifies the LDAP server port. Port 389 will be used if no LDAP server port is specified.

GSK_LDAP_USER
Specifies the distinguished name to use when connecting to the LDAP server.

GSK_PROTOCOL_SSLV2
Specifies whether the SSL V2 protocol is supported. A value of "0”, "OFF” or "DISABLED" will
disable the SSL V2 protocol while a value of "1”, "ON" or "ENABLED" will enable the SSL V2
protocol. The SSL V2 protocol should be disabled whenever possible since the SSL V3 protocol
provides significant security enhancements.

GSK_PROTOCOL_SSLV3
Specifies whether the SSL V3 protocol is supported. A value of "0”, "OFF” or "DISABLED" will
disable the SSL V3 protocol while a value of "1”, "ON" or "ENABLED” will enable the SSL V3
protocol.

GSK_PROTOCOL_TLSV1
Specifies whether the TLS V1 protocol is supported. A value of "0”, "OFF" or "DISABLED" will
disable the TLS V1 protocol while a value of "1”, "ON" or "ENABLED" will enable the TLS V1
protocol. The TLS V1 protocol uses the same session cache and cipher specifications as the SSL
V3 protocol.

GSK_SYSPLEX_SIDCACHE
Specifies whether sysplex session caching is supported for this application. A value of "0”, "OFF"
or "DISABLED" will disable sysplex session caching while a value of "1", "ON" or "ENABLED" will
enable sysplex session caching.

GSK_V2_CIPHER_SPECS
Specifies the SSL V2 cipher specifications in order of preference as a null-terminated string
consisting of 1 or more 1-character values. Valid cipher specifications that are not supported due
to the installed cryptographic level will be skipped when the connection is initialized.

GSK_V2_SESSION_TIMEOUT
Specifies the session timeout value in seconds for the SSL V2 protocol. The valid timeout values
are 0 through 100 and defaults to 100.

GSK_V2_SIDCACHE_SIZE
Specifies the number of session identifiers that can be contained in the SSL V2 cache. The valid
cache sizes are 0 through 32000 and defaults to 256. The SSL V2 cache will be disabled if O is
specified.

GSK_V3_CIPHER_SPECS
Specifies the SSL V3 cipher specifications in order of preference as a null-terminated string
consisting of 1 or more 2-character values. The SSL V3 cipher specifications are used for both the
SSL V3 and the TLS V1 protocols. Valid cipher specifications that are not supported due to the
installed cryptographic level will be skipped when the connection is initialized.

GSK_V3_SESSION_TIMEOUT
Specifies the session timeout value in seconds for the SSL V3 and TLS V1 protocols. The valid
timeout values are 0 through 86400 and defaults to 86400.

GSK_V3_SIDCACHE_SIZE
Specifies the number of session identifiers that can be contained in the SSL V3 cache. The valid

56 System SSL Programming V1R4.0

cache sizes are 0 through 64000 and defaults to 512. The SSL V3 cache will be disabled if O is

gsk_environment_open()

specified. The SSL V3 cache is used for the SSL V3 and TLS V1 protocols.

Related Topics

gsk_environment_init()

gsk_environment_close()

Chapter 7. AP| Reference

57

gsk_free_cert_data()

gsk free cert_data()
Releases the storage allocated for a certificate data array.

Format
#include <gskssl.h>
void gsk_free_cert_data (

gsk_cert_data_elem * cert_data,
int elem_count)

Parameters

cert _data
Specifies the certificate data array to be released.

elem_count
Specifies the number of elements in the certificate data array.

Usage

The gsk_free_cert_data() routine will release the storage allocated for an array of certificate data
elements.

Related Topics
gsk_attribute_get_cert_info()

gsk_get_cert_by label()

58 System SSL Programming V1R4.0

gsk_get_cert_by label()

gsk get cert_by label()
Gets certificate information for a record label.

Format

#include <gskss1.h>

gsk_status gsk_get_cert_by label (

gsk_handle ssl_handle,
const char * record label,
gsk_cert_data_elem ** cert_data,
int * elem_count)
Parameters
ssl_handle

Specifies an SSL environment handle returned by gsk_environment_open() or an SSL
connection handle returned by gsk_secure_socket_open()

record_label
Specifies the record label for the certificate.

cert_data
Returns the certificate data array. The gsk_free cert_data() routine should be called to release
the array when the certificate information is no longer needed.

elem_count
Returns the number of elements in the array of gsk_cert_data_elem structures.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskssl.h include file. The following are some common errors:

[GSK_ERR_ASN]
Unable to decode certificate.

[GSK_INSUFFICIENT_STORAGE]
Insufficient storage is available.

[GSK_INVALID_HANDLE]
The handle is not valid.

[GSK_KEY_LABEL_NOT_FOUND]
The key record is not found.

Usage

The gsk_get_cert_by label() routine returns certificate information for a record label. The supplied handle
can be for an SSL environment or an SSL connection.

Each element of the certificate data array has an element identifier. The element identifiers used for a
particular certificate will depend upon the contents of the certificate. The following element identifiers are
currently provided:

CERT_BODY_BASE®64
Certificate body in Base64-encoded format

CERT_BODY_DER
Certificate body in binary ASN.1 DER-encoded format

Chapter 7. API Reference 59

gsk_get_cert_by label()

CERT_COMMON_NAME
Subject common name (CN)

CERT_COUNTRY
Subject country (C)

CERT_DN_DER
Subject distinguished name in binary ASN.1 DER-encoded format

CERT_DN_PRINTABLE
Subject distinguished name as a printable character string

CERT_DOMAIN_COMPONENT
Subject domain component (DC)

CERT_EMAIL
Subject e-mail address (EMAIL)

CERT_ISSUER_COMMON_NAME
Issuer common name (CN)

CERT_ISSUER_COUNTRY
Issuer country (C)

CERT_ISSUER_DN_DER
Issuer distinguished name in binary ASN.1 DER-encoded format

CERT_ISSUER_DN_PRINTABLE
Issuer distinguished name as a printable character string

CERT_ISSUER_DOMAIN_COMPONENT
Issuer domain component (DC)

CERT_ISSUER_EMAIL
Issuer e-mail address (EMAIL)

CERT_ISSUER_LOCALITY
Issuer locality (L)

CERT_ISSUER_ORG
Issuer organization (O)

CERT_ISSUER_ORG_UNIT
Issuer organizational unit (OU)

CERT_ISSUER_POSTAL_CODE
Issuer postal code (PC)

CERT_ISSUER_STATE_OR_PROVINCE
Issuer state or province (SP)

CERT_ISSUER_STREET
Issuer street (STREET)

CERT_ISSUER_SURNAME
Issuer surname (SN)

CERT_ISSUER_TITLE
Issuer title (TITLE)

CERT_LOCALITY
Subject locality (L)

CERT_ORG
Subject organization (O)

60 System SSL Programming V1R4.0

CERT_ORG_UNIT
Subject organizational unit (OU)

CERT_POSTAL_CODE
Subject postal code (PC)

CERT_SERIAL_NUMBER
Certificate serial number

CERT_STATE_OR_PROVINCE
Subject state or province (SP)

CERT_STREET
Subject street (STREET)

CERT_SURNAME
Subject surname (SN)

CERT_TITLE
Subject title (TITLE)

gsk_get_cert_by label()

The CERT_BODY_DER, CERT_BODY_BASE64, CERT_DN_DER, and CERT_ISSUER_DN_DER
elements are not null-terminated and the 'cert_data_|’ field must be used to get the element length. All of
the other elements are null-terminated character strings and the 'cert_data_I’ field is the length of the string

excluding the string delimiter.

Related Topics

gsk_environment_init()

gsk_secure_socket _init()

Chapter 7. AP| Reference

61

gsk_get_cipher_suites()

gsk _get_cipher_suites()
Returns the available SSL cipher suites.

Format

#include <gskssl.h>
void gsk_get_cipher_suites (
gsk_cipher_suites * cipher_suites)
Parameters

cipher_suites
Returns the runtime version, release, security level, and cipher suites.

Usage

The gsk_get_cipher_suites() routine returns the System SSL runtime version, release, security level, and
available cipher suites. The current System SSL runtime is Version 3 Release 14. The cipher suites are
static null-terminated character strings which must not be modified or freed by the application.

62 System SSL Programming V1R4.0

gsk_get_update()

gsk _get_update()
Checks for a key database or key ring update.

Format

#include <gskss1.h>

gsk_status gsk_get_update (
gsk_handle env_handle,
long * update _flag)

Parameters

env_handle
Specifies the SSL environment handle returned by the gsk_environment_open() routine.

update_flag
Returns 1 if the key database or key ring has been updated or O if it has not been updated.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskssl.h include file. The following are some common errors:

[GSK_INVALID _HANDLE]
The environment handle is not valid.

[GSK_INVALID_STATE]
The environment is not in the initialized state.

[GSK_KEYRING_OPEN_ERROR]
The key ring cannot be accessed.

Usage

The gsk_get update() routine tests if the key database or key ring associated with the SSL environment
has been updated since the last time that gsk_get update() was called or since the environment was
initialized if gsk_get_update() has not been called yet. If an update has occurred, the application can
close the current environment and then create a new environment to pick up the updates.

Related Topics

gsk_environment_open()

Chapter 7. API Reference 63

gsk_list_free()

gsk_list_free()
Releases storage allocated for a list.

Format

#include <gskssl.h>

void gsk list_free (
gsk_list * list)

Parameters

list Specifies the list to be released.

Usage

The gsk_list_free() routine releases storage allocated for a list. This includes the gsk_list structure itself
and all gsk_list structures anchored by the structure passed on the function call.

Related Topics
gsk_attribute_get_data()

64 System SSL Programming V1R4.0

gsk_secure_socket_close()

gsk secure_socket_close()
Closes a secure socket connection.

Format

#include <gskss1.h>

gsk_status gsk_secure_socket_close (
gsk_handle * soc_handle)

Parameters

soc_handle
Specifies the connection handle returned by the gsk_secure_socket_open() routine. The
connection handle will be set to NULL upon completion.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskssl.h include file. The following are some common errors:

[GSK_CONNECTION_ACTIVE]
The connection has an active read or write request.

[GSK_INVALID_HANDLE]
The connection handle is not valid.

[GSK_WOULD_BLOCK_WRITE]
An attempt to write pending data failed with EWOULDBLOCK.

Usage

The gsk_secure_socket_close() routine will close a secure socket connection created by the
gsk_secure_socket_open() routine. The socket itself is not closed (the application is responsible for
closing the socket). The connection can no longer be used for secure communications after calling the
gsk_secure_socket close() routine.

The gsk_secure_socket _close() routine can return GSK_WOULD_BLOCK_WRITE if the socket is in
non-blocking mode and there is pending write data. The connection is not closed in this case and the

application should call gsk _secure _socket_close() again when the socket is ready to accept a write
request.

Related Topics

gsk_secure_socket_open()
gsk_secure_socket _init()
gsk_secure_socket_read()

gsk_secure_socket_write()

Chapter 7. API Reference 65

gsk_secure_socket_init()

gsk secure_socket init()
Initializes a secure socket connection.

Format

#include <gskssl.h>

gsk_status gsk_secure_socket_init(
gsk_handle soc_handle)

Parameters

soc_handle
Specifies the connection handle returned by the gsk_secure_socket_open() routine.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskssl.h include file. The following are some common errors:

[GSK_ERR_BAD_CERT]
Certificate is not valid.

[GSK_ERR_BAD_DATE]
Certificate is not valid yet or is expired.

[GSK_ERR_BAD_KEYFILE_LABEL]
The specified key is not found in the key database or the key is not trusted.

[GSK_ERR_BAD_MAC]
Message verification failed.

[GSK_ERR_BAD_MESSAGE]
Incorrectly-formatted message received from peer application.

[GSK_ERR_BAD_PEER]
Peer application has violated the SSL protocol.

[GSK_ERR_CERT_VALIDATION]
Certificate validation error.

[GSK_ERR_CERTIFICATE_REVOKED]
Peer certificate is revoked.

[GSK_ERR_CRYPTO]
Cryptographic error detected.

[GSK_ERR_INCOMPATIABLE_KEY]
Certificate key is not compatible with cipher suite.

[GSK_ERR_I0]
I/O error communicating with peer application.

[GSK_ERR_LDAP]
An LDAP error is detected.

[GSK_ERR_LDAP_NOT_AVAILABLE]
The LDAP server is not available.

[GSK_ERR_NO_CIPHERS]
No cipher specifications.

66 System SSL Programming V1R4.0

gsk_secure_socket_init()

[GSK_ERR_SELF_SIGNED]
A self-signed certificate cannot be validated.

[GSK_ERR_SOCKET_CLOSED]
Socket connection closed by peer application.

[GSK_ERR_UNKNOWN_CA]
A certification authority certificate is missing.

[GSK_ERR_UNSUPPORTED_CERTIFICATE_TYPE]
The certificate type is not supported by System SSL.

[GSK_INSUFFICIENT_STORAGE]
Insufficient storage is available.

[GSK_INVALID_HANDLE]
The connection handle is not valid.

[GSK_INVALID_STATE]
The connection is not in the open state or a previous initialization request has failed.

[GSK_WOULD_BLOCK_READ]
An attempt to read a handshake message failed with EWOULDBLOCK.

[GSK_WOULD_BLOCK_WRITE]
An attempt to write a handshake message failed with EWOULDBLOCK.

Usage

The gsk_secure_socket_init() routine initializes a secure socket connection created by the
gsk_secure_socket _open() routine. After the connection has been initialized, it can be used for secure
data transmission using the gsk secure_socket read() and gsk secure_socket write() routines. The
gsk_secure_socket close() routine should be called to close the connection when it is no longer needed.
The gsk_secure_socket_close() routine should also be called if an error is returned by the
gsk_secure_socket_init() routine.

Before calling the gsk_secure_socket _init() routine, the application must create a connected socket and
store the socket descriptor in the SSL connection by calling the gsk_attribute_set_numeric_value()
routine. For a client, this means calling the socket() and connect() routines. For a server, this means
calling the socket() , listen() , and accept() routines. However, SSL does not require the use of TCP/IP for
the communications layer. The socket descriptor can be any integer value which is meaningful to the
application. The application must provides its own socket routines if it is not using TCP/IP by calling the
gsk_attribute_set callback() routine.

An SSL handshake is performed as part of the processing of the gsk_secure_socket_init() routine. This
establishes the server identity and optionally the client identity. It also negotiates the cryptographic
parameters to be used for the connection. The client and server will attempt to use the highest available
protocol version as determined by the intersection of the enabled protocol versions for the client and the
server. Thus, TLS V1 will be used if it is enabled on both the client and the server, dropping back to SSL
V3 if TLS V1 cannot be used and SSL V3 is enabled, then dropping back to SSL V2 if SSL V3 cannot be
used and SSL V2 is enabled. Note that SSL V2 is not as secure as SSL V3 or TLS V1 This is the
prototype for the callback routine provided by the application. It shows the parameters passed to the
application callback and the value returned by the callback.and should be disabled whenever possible to
avoid attacks which force the client and server to drop back to SSL V2 even though they are capable of
using SSL V3 or TLS V1.

The server certificate must support key encipherment. This means that the public/private key algorithm

must use RSA encryption (the Digital Signature Standard (DSS) does not support data encryption) and the
certificate key usage extension (if any) must allow key encipherment.

Chapter 7. API Reference 67

gsk_secure_socket_init()

The client certificate must support digital signatures. This means the certificate key usage extension (if
any) must allow digital signature. The key algorithm can be either the RSA encryption algorithm or the
Digital Signature Standard algorithm (DSA).

The SSL server always provides its certificate to the SSL client as part of the handshake. Depending upon
the server handshake type, the server may ask the client to provide its certificate. The key label stored in
the connection is used to retrieve the certificate from the key database or key ring. The default key will be
used if no label is set. The key record must contain both an X.509 certificate and a private key. Refer to
the gsk validate_certificate() routine for a description of the steps which are performed during certificate
validation.

The gsk_secure_socket _init() routine can return GSK_WOULD_BLOCK_READ or
GSK_WOULD_BLOCK_WRITE if the socket is in non-blocking mode. The connection is not initialized in
this case and the application must call gsk_secure_socket _init() again when the socket is ready to
accept a read request (GSK_WOULD_BLOCK_READ) or a write request
(GSK_WOULD_BLOCK_WRITE). The application must provides its own callback routine for

io_setsocketoptions() in order to have the SSL handshake processed in non-blocking mode (the default
io_setsocketoptions() routine will place the socket into blocking mode during the handshake processing).

Related Topics

gsk_environment_init()

gsk_secure_socket_write()
gsk_secure_socket_read()
gsk_secure_socket_misc()

gsk_secure_socket_close()

68 System SSL Programming V1R4.0

gsk_secure_socket_misc()

gsk secure _socket _misc()
Performs miscellaneous secure connection functions.

Format

#include <gskss1.h>

gsk_status gsk_secure_socket_misc (
gsk_handle soc_handle,
GSK_MISC_ID misc_id)

Parameters

soc_handle
Specifies the connection handle returned by the gsk_secure_socket open() routine.

misc_id
Miscellaneous function identifier.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskssl.h include file. The following are some common errors:

[GSK_ERR_CONNECTION_CLOSED]
A close notification alert has been sent for the connection.

[GSK_ERR_I0]
I/O error communicating with peer application.

[GSK_ERR_NOT_SSLV3]
The session is not using the SSL V3 or TLS V1 protocol.

[GSK_ERR_SOCKET_CLOSED]
Socket connection closed by peer application.

[GSK_INVALID _HANDLE]
The connection handle is not valid.

GSK_INVALID_STATE
The connection is not in the initialized state.

[GSK_MISC_INVALID_ID]
The miscellaneous identifier is not valid.

Usage

The gsk_secure_socket_misc() routine performs miscellaneous function for an initialized secure
connection.

The following miscellaneous functions are provided:

GSK_RESET_CIPHER
This function generates new session keys for the connection. A full SSL handshake will be
performed if the session has expired or has been reset by the GSK_RESET_SESSION function.
Otherwise a short SSL handshake will be performed. The GSK_RESET_CIPHER function can be
performed only for a session using the SSL V3 or TLS V1 protocol. The GSK_RESET_CIPHER
function initiates the SSL handshake but does not wait for it to complete. Any pending handshake
messages will be processed when the gsk_secure_socket read() routine is called to process
incoming data.

Chapter 7. API Reference 69

gsk_secure_socket_misc()

GSK_RESET_SESSION
This function resets the session associated with the connection. A full SSL handshake will be
performed for the next connection using the session. The current connection is not affected unless
the GSK_RESET_CIPHER function is performed after the GSK_RESET_SESSION function has
completed.

Related Topics

gsk_secure_socket_open()
gsk_secure_socket read()

gsk_secure_socket_write()

70 System SSL Programming V1R4.0

gsk_secure_socket_open()

gsk _secure_socket_open()
Creates a secure socket connection.

Format

#include <gskss1.h>

gsk_status gsk_secure_socket_open (
gsk_handle env_handle,
gsk_handle * soc_handle)

Parameters

env_handle
Specifies the SSL environment handle returned by the gsk_environment_open() routine.

soc_handle
Returns the handle for the secure connection. The application should call the
gsk_secure_socket close() routine to release the connection when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskssl.h include file. The following are some common errors:

[GSK_INSUFFICIENT_STORAGE]
Insufficient storage is available.

[GSK_INVALID_HANDLE]
The environment handle is not valid.

[GSK_INVALID_STATE]
The environment is not in the initialized state.

Usage

The gsk_secure_socket open() routine creates a secure socket connection. The connection will be
initialized with values obtained from the SSL environment. These values can be changed by the
application using the appropriate gsk_attribute_set_*() routines. The gsk_secure_socket _init() routine
should then be called to initialize the connection. This connection can then be used to send and receive
data with the remote partner.

Related Topics

gsk_secure_socket_close()

gsk_secure_socket _init()

Chapter 7. API Reference 71

gsk_secure_socket_read()

gsk secure socket read()
Reads data using a secure socket connection.

Format

#include <gskssl.h>

gsk_status gsk_secure_socket_read (

gsk_handle soc_handle,
char * buffer,
int size,
int * length)
Parameters
soc_handle

Specifies the connection handle returned by the gsk_secure_socket_open() routine.

buffer Specifies the buffer to receive the data read from the secure socket connection. The maximum
amount of data returned by gsk secure_socket read() is 16384 (16K) bytes minus the length of
the SSL protocol headers.

size Specifies the size of the supplied buffer.

length Returns the length of the data read into the supplied buffer.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskssl.h include file. The following are some common errors:

[GSK_CONNECTION_ACTIVE]
A read request is already active for the connection.

[GSK_ERR_BAD_MAC]
Message verification failed.

[GSK_ERR_BAD_MESSAGE]
Incorrectly-formatted message received from peer application.

[GSK_ERR_BAD_PEER]
Peer application has violated the SSL protocol.

[GSK_ERR_CONNECTION_CLOSED]
Close notification received from peer application.

[GSK_ERR_CRYPTO]
Cryptographic error detected.

[GSK_ERR_10]
I/O error communicating with peer application.

[GSK_ERR_SOCKET_CLOSED]
Socket connection closed by peer application.

[GSK_INSUFFICIENT_STORAGE]
Insufficient storage is available.

[GSK_INVALID_BUFFER_SIZE]
The buffer address or buffer size is not valid.

[GSK_INVALID _HANDLE]
The connection handle is not valid.

72 System SSL Programming V1R4.0

gsk_secure_socket_read()

[GSK_INVALID_STATE]
The connection is not in the initialized state.

[GSK_WOULD_BLOCK]
A complete SSL record is not available.

[GSK_WOULD_BLOCK_WRITE]
An SSL handshake is in progress but data cannot be written to the socket.

Usage

The gsk_secure_socket read() routine reads data from a secure socket connection and returns it in the
application buffer. SSL is a record-based protocol and a single call will never return more than a single
SSL record (a maximum of 16384 bytes minus the length of the SSL protocol headers). The application
can read an entire SSL record in a single call by supplying a buffer large enough to contain the record.
Otherwise, multiple calls will be required to retrieve the entire SSL record.

SSL supports multiple threads but only one thread at a time can call the gsk_secure_socket_read()
routine for a given connection handle. Multiple concurrent threads can call gsk_secure_socket read() as
long as each thread has its own connection handle.

SSL supports sockets in blocking mode and in non-blocking mode. When a socket is in non-blocking mode
and a complete SSL record is not available, gsk_secure_socket read() will return with
GSK_WOULD_BLOCK. No data will be returned in the application buffer when GSK_WOULD_BLOCK is
returned. The application should call gsk_secure_socket read() again when there is data available to be
read from the socket.

The peer application can initiate an SSL handshake sequence after the connection is established. If this is
done and the socket is in non-blocking mode, it is possible for gsk_secure_socket read() to return with
GSK_WOULD_BLOCK_WRITE. This indicates that an SSL handshake is in progress and the application
should call gsk_secure_socket read() again when data can be written to the socket. No data will be
returned in the application buffer when GSK_WOULD_BLOCK_WRITE is returned.

The application should not read data directly from the socket since this can cause SSL protocol errors if
the application inadvertently reads part of an SSL record. If the application must read data from the

socket, it is responsible for synchronizing this activity with the peer application so that no SSL records are
sent while the application is performing its own read operations.

Related Topics

gsk_secure_socket_write()

gsk_secure_socket_init()

Chapter 7. API Reference 73

gsk_secure_socket_shutdown()

gsk secure_socket shutdown()
Shuts down a secure socket connection.

Format
#include <gskss1.h>

gsk_status gsk_secure_socket_shutdown (
gsk_handle soc_handle)

Parameters

soc_handle
Specifies the connection handle returned by the gsk_secure_socket_open() routine.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskssl.h include file. The following are some common errors:

[GSK_CONNECTION_ACTIVE]
The connection has an active write request.

[GSK_ERR_CONNECTION_CLOSED]
The close notification alert has already been sent.

[GSK_ERR_10]
I/O error communicating with peer application.

[GSK_ERR_NOT_SSLV3]
The session is not using the SSL V3 or TLS V1 protocol.

[GSK_ERR_SOCKET_CLOSED]
Socket connection closed by peer application.

[GSK_INVALID_HANDLE]
The connection handle is not valid.

[GSK_INVALID_STATE]
The connection is not in the initialized state.

[GSK_WOULD_BLOCK_WRITE]
An attempt to write pending data failed with EWOULDBLOCK.

Usage

The gsk_secure_socket_shutdown() routine will send a close notification alert to the peer application.
Any subsequent calls to the gsk_secure_socket_write() routine will return
GSK_ERR_CONNECTION_CLOSED. The gsk_secure_socket _shutdown() routine cannot be used with
the SSL V2 protocol.

The application should call gsk secure_socket_shutdown() before calling gsk secure_socket close()
in order to comply with the SSL V3 and TLS V1 specifications, which require that a close notification alert
be sent before closing the transport connection.

For a 1-step shutdown, the application should call the gsk_secure_socket_shutdown() routine and then
call the gsk_secure_socket_close() routine. This sends the close notification alert and then closes the
secure socket connection. The application does not wait for acknowledgement from the peer application to
the close notification.

74 System SSL Programming V1R4.0

gsk_secure_socket_shutdown()

For a 2-step shutdown, the application should call the gsk secure_socket shutdown() routine to send
the close notification alert and then call the gsk _secure_socket read() routine to process any pending
data sent by the peer application. The SSL runtime on the peer system will send a close notification alert
when it receives the close notification alert from the local system. The gsk_secure_socket _read() routine
will return GSK_ERR_CONNECTION_CLOSED when it receives this close notification. The application
should then call the gsk_secure_socket_close() routine to close the secure socket connection.

Chapter 7. API Reference 75

gsk_secure_socket_write()

gsk secure _socket write()
Writes data using a secure socket connection.

Format

#include <gskssl.h>

gsk_status gsk_secure_socket_write (
gsk_handle soc_handle,

char * buffer,
int Size,
int * length)
Parameters
soc_handle

Specifies the connection handle returned by the gsk_secure_socket_open() routine.
buffer Specifies the buffer containing the data to write to the secure socket connection.
size Specifies the amount to write.

length Returns the length of the data written.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskssl.h include file. The following are some common errors:

[GSK_CONNECTION_ACTIVE]
A write request is already active for the connection.

[GSK_ERR_CONNECTION_CLOSED]
A close notification alert has been sent for the connection.

[GSK_ERR_CRYPTO]
Cryptographic error detected.

[GSK_ERR_10]
I/O error communicating with peer application.

[GSK_ERR_SOCKET_CLOSED]
Socket connection closed by peer application.

[GSK_INSUFFICIENT_STORAGE]
Insufficient storage is available.

[GSK_INVALID_BUFFER_SIZE]
The buffer address or buffer size is not valid.

[GSK_INVALID _HANDLE]
The connection handle is not valid.

[GSK_INVALID_STATE]
The connection is not in the initialized state.

[GSK_WOULD_BLOCK]
The SSL record cannot be written to the socket due to an EWOULDBLOCK condition.

Usage

The gsk_secure_socket _write() routine writes data to a secure socket connection. SSL is a record-based
protocol with a maximum record length of 16384 bytes minus the length of the SSL protocol headers.

76 System SSL Programming V1R4.0

gsk_secure_socket_write()

Application data larger than the size of an SSL record will be sent using multiple records. Since
gsk_secure_socket read() never returns more than a single SSL record, the receiving application will
need to call gsk_secure_socket read() multiple times in order to receive all of the application data when
multiple records are needed.

SSL supports multiple threads but only one thread at a time can call the gsk_secure_socket_write()
routine for a given connection handle. Multiple concurrent threads can call gsk_secure_socket_write() as
long as each thread has its own connection handle.

SSL supports sockets in blocking mode and in non-blocking mode. When a socket is in non-blocking mode
and the SSL record cannot be written to the socket, gsk_secure_socket_write() will return with
GSK_WOULD_BLOCK. The application must call gsk_secure_socket_write() again when the socket is
ready to accept more data, specifying the same buffer address and buffer size as the original request. A
new write request must not be initiated until the pending write request has been completed as indicated by
a return value of 0.

The application should not write data directly to the socket since this can cause SSL protocol errors if the
application inadvertently intermixes its data with SSL protocol data. If the application must write data to the

socket, it is responsible for synchronizing this activity with the peer application so that application data is
not intermixed with SSL data.

Related Topics

gsk_secure_socket_read()

gsk_secure_socket_init()

Chapter 7. API Reference 77

gsk_strerror()

gsk_strerror()

Return a text string for an SSL error code

Format
#include <gskssl.h>

const char * gsk_strerror (
gsk_status error_code)

Parameters

error_code
Specifies an error code returned by a Secure Sockets layer (SSL) routine or by a Certificate
Management Services (CMS) routine.

Results

The function return value is the address of the text string. The return value will always be a valid text
string address even when the error code is not recognized (the return value will be the string "N/A” in this
case).

Usage

The gsk_strerror() routine returns a text string describing an error code returned by an SSL (Secure
Sockets layer) or CMS (Certificate Management Services) routine. The gsk_strerror() routine cannot be
used to return a text string for an error code returned by one of the deprecated SSL routines. The text
string must not be modified or released by the application program.

78 System SSL Programming V1R4.0

Chapter 8. Certificate Management Services (CMS) API
Reference

This chapter describes the Certificate Management Services (CMS) APIs. These APIs can be used to
create/manage your own key database files in a similar function to the SSL gskkyman utility, use
certificates stored in the key database file or key ring for purposes other than SSL, and basic PKCS #7
message support.

Following is a list of the Certificate Management Services (CMS) APIs:
» gsk add_record() (see page

» gsk change_database password() (see page

» gsk _change_database _record_length() (see page
» gsk close_database() (see page

» gsk close_directory() (see page

» gsk _copy_buffer() (see page

» gsk_copy_certificate() (see page@

» gsk _copy_certificate_extension() (see page

» gsk_copy_certification_request() (see page@

» gsk copy _content _info() (see page

* gsk_copy_crl() (see page@)

* gsk copy_name() (see page@)

» gsk copy_private_key info() (see page

* gsk_copy_public_key info() (see page

» gsk copy record() (see page

» gsk create_certification_request() (see page

+ gsk_create_database() (see page [101)

» gsk create_self signed_certificate() (see page
» gsk create_signed_certificate() (see page

» gsk _create_signed_crl() (see page

» gsk decode_base64() (see page

» gsk_decode_certificate() (see page

» gsk decode_certificate_extension() (see page
» gsk decode_certification_request() (see page
* gsk _decode crl() (see page

* gsk decode _name() (see page

» gsk _delete _record() (see page

* gsk _dn_to _name() (see page

* gsk _encode_base64() (see page

» gsk _encode_certificate_extension() (see page
* gsk _encode_name() (see page

* gsk _encode_signature() (see page

» gsk_export_certificate() (see page

» gsk_export_certification_request() (see page b
* gsk _export_key() (see page

» gsk_free_buffer() (see page

© Copyright IBM Corp. 1999, 2002 79

+ gsk_free_certificate() (see page [132)
« gsk_free_certificates() (see page [133)

- gsk_free_certificate_extension() (see page[134)
« gsk_free_certification_request() (see page [135)
« gsk_free_content_info() (see page [136)

» gsk free crl() (see page
« gsk_free_crls() (see page [138)

» gsk free_decoded_extension() (see page >

* gsk free_name() (see page

+ gsk_free_private_key_info() (see page [141)

» gsk _free public_key info() (see page
» gsk free record() (see page

» gsk_free_records() (see page

» gsk free_string() (see page

» gsk free_strings() (see page

+ gsk_generate_random_bytes() (see page [147)

» gsk get cms_vector() (see page
* gsk get default key() (see page

» gsk_get_default_label() (see page

» gsk get directory certificates() (see page
* gsk_get directory crls() (see page

» gsk get record_by id() (see page

» gsk get record by index() (see page

* gsk_get record_by label() (see page

» gsk _get record_by subject() (see page
» gsk get record labels() (see page

« gsk_get_update_code() (see page [159)

» gsk_import_certificate() (see page

- gsk_import_key() (see page [L62)

+ gsk_make_content_msg() (see page [164)
- gsk_make_data_content() (see page [L65)

+ gsk_make_data_msg() (see page [166)
» gsk_make_encrypted_data_content()

(see page [167)

* gsk _make encrypted _data msg() (see page|169b

» gsk_make_enveloped_data_content()

(see page 171|D

» gsk _make _enveloped_data_msg() (see page@
* gsk _make_signed_data_content() (see page
* gsk_make_signed_data_msg() (see page
» gsk _make wrapped_content() (see page

* gsk _mktime() (see page

* gsk _name_compare() (see page
* gsk name_to_dn() (see page
* gsk open_database() (see page:@
» gsk open_database using_stash_file()
» gsk open_directory() (see page

80 System SSL Programming V1R4.0

(see page [185)

gsk_open_keyring() (see page
gsk_query_crypto_level() (see page
gsk_query_database_label() (see page
gsk_query database record_length() (see page
gsk_rdtime() (see page
gsk_read_content_msg() (see page [193
gsk _read_data_content() (see page [194
gsk_read_data_msg() (see page b
gsk_read_encrypted data content() (see page
gsk read_encrypted_data_msg() (see page
gsk_read_enveloped_data_content() (see page @
gsk_read_enveloped _data_msg() (see page@
gsk_read_signed_data_content() (see page @
gsk_read_signed_data_msg() (see page
gsk_read_wrapped_content() (see page
gsk_receive_certificate() (see page
gsk_replace_record() (see page

gsk_set default_key() (see page
gsk_sign_certificate() (see page

gsk_sign_crl() (see page

gsk_sign_data() (see page

gsk validate_certificate() (see page
gsk_verify_certificate_signature() (see page
gsk_verify_crl_signature() (see page
gsk_verify_data_signature() (see page

Chapter 8. Certificate Management Services (CMS) API Reference

81

gsk_add_record()

gsk add _record()

Adds a record to a key or request database.

Format

#include <gskcms.h>

gsk_status gsk_add_record (
gsk_handle db_handle,
gskdb_record * record)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine or the
gsk _open_database() routine.

record
Specifies the database record.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BACKUP_EXISTS]
The backup file already exists.

[CMSERR_BAD_ HANDLE]
The database handle is not valid.

[CMSERR_BAD_LABEL]
The record label is not valid.

[CMSERR_DUPLICATE_CERTIFICATE]
The database already contains the certificate.

[CMSERR_INCORRECT_DBTYPE]
The record type is not supported for the database type.

[CMSERR_IO_ERROR]
Unable to write record.

[CMSERR_LABEL_NOT_UNIQUE]
The record label is not unique.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]
No private key is provided for a record type that requires a private key.

[CMSERR_RECORD_TOO_BIG]
The record is larger than the database record length.

[CMSERR_RECTYPE_NOT_VALID]
The record type is not valid.

[CMSERR_UPDATE_NOT_ALLOWED]
Database is not open for update.

Usage

The gsk_add_record() routine adds a record to a key or request database. The database must be open
for update in order to add records. Unused and reserved fields in the gskdb_record structure must be

82 System SSL Programming V1R4.0

gsk_add_record()

initialized to zero. An error will be returned when adding a certificate to a key database if the database
already contains the certificate. If the record has a private key, the encrypted private key will be generated
from the private key supplied in the database record.

The recordType field identifies the database record type as follows:

gskdb_rectype_certificate
The record contains a X.509 certificate

gskdb_rectype_certkey
The record contains a X.509 certificate and private key

gskdb_rectype_keyPair
The record contains a PKCS #10 certification request and private key

The recordFlags field is a bit field with the following values:

GSKDB_RECFLAG_TRUSTED
The certificate is trusted

GSKDB_RECFLAG_DEFAULT
This is the default key

A unique record identifier is assigned when the record is added to the database and will be returned to the
application in the recordld field. If the record contains a X.509 certificate, the issuerRecordld field will be
set to the record identifier of the certificate issuer.

The record label is used as a friendly nhame for the database entry and is in the local code page. It can be
set to any value and consists of characters which can be represented using 7-bit ASCII (letters, numbers,
and punctuation). It may not be set to an empty string.

If the record contains a certificate, the certificate will be validated and the record will not be added to the
database if the validation check fails.

With the exception of the record label, all character strings are specified using UTF-8.
The database file is updated as part of the gsk_add_record() processing. A temporary database file is
created using the same name as the database file with ".new” appended to the name. The database file is

then overwritten and the temporary database file is deleted. The temporary database file will not be
deleted if an error occurs while rewriting the database file.

Chapter 8. Certificate Management Services (CMS) API Reference 83

gsk_change_database password()

gsk change_database password()

Changes the database password.

Format

#include <gskcms.h>

gsk_status gsk_change_database_password (

const char * filename,
const char * old_password,
const char * new_password,
gsk_time pwd_expiration)
Parameters
filename

Specifies the database file name in the local code page. The length of the fully-qualified file name
cannot exceed 251.

old_password
Specifies the current database password in the local code page. The user will be prompted to enter
the password if NULL is specified for this parameter.

new_password
Specifies the new database password in the local code page. The user will be prompted to enter the
password if NULL is specified for this parameter.

pwd_expiration
Specifies the new password expiration time as the number of seconds since the POSIX epoch. A
value of 0 indicates the password does not expire.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_ACCESS_DENIED]
The file permissions do not allow access.

[CMSERR_BACKUP_EXISTS]
The backup file already exists.

[CMSERR_BAD_FILENAME]
The database file name is not valid.

[CMSERR_DB_CORRUPTED]
The database file is not valid.

[CMSERR_DB_LOCKED]
The database is open for update by another process.

[CMSERR_FILE_NOT_FOUND]
The database file is not found.

[CMSERR_IO_CANCELED]
The user canceled the password prompt.

[CMSERR_IO_ERROR]
An input/output request failed.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

84 system SSL Programming V1R4.0

gsk_change_database_password()

[CMSERR_OPEN_FAILED]
Unable to open the database.

Usage

The gsk_change_database password() routine will change the password for the database and set a
new password expiration time. gsk_mktime() can be used to convert a year/month/day time value to the
number of seconds since the POSIX epoch.

Chapter 8. Certificate Management Services (CMS) API Reference 85

gsk_change_database_record_length()

gsk change_database record_length()

Changes the database record length.

Format
#include <gskcms.h>
gsk_status gsk_change_database_record_length (

gsk_handle db_handle,
gsk_size record_length)

Parameters

db_handle
Specifies the database handle returned by the gsk create_database() routine or the
gsk_open_database() routine.

record_length
Specifies the new database record length. The default record length will be used if zero is specified for
this parameter. All records in the database will have this length. The minimum record length is 2500.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BACKUP_EXISTS]
The backup file already exists.

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_IO_ERROR]
An input/output request failed.

[CMSERR_LENGTH_TOO_SMALL]
The record length is less than the minimum value.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_TOO_BIG]
A record in the database is larger than the new record length.

[CMSERR_UPDATE_NOT_ALLOWED]
Database is not open for update.

Usage

The gsk_change_database record_length() routine will change the record length for the database. All
records in the database have the same length and a database entry cannot span records. An error will be
returned if the requested record length is smaller than the largest entry in the database.

86 System SSL Programming V1R4.0

gsk_close_database()

gsk close database()

Closes a key or request database.

Format

#include <gskcms.h>

gsk_status gsk_close_database (
gsk_handle * db_handle)

Parameters

db_handle
Specifies the database handle returned by the gsk create_database() routine or the
gsk_open_database() routine. The handle will be set to NULL upon successful completion.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following is a common error:

[CMSERR_BAD_HANDLE]
The database handle is not valid.

Usage

The gsk_close_database() routine will close a key or request database. The db_handle will not be valid
upon return from the gsk_close_database() routine.

Chapter 8. Certificate Management Services (CMS) API Reference 87

gsk_close_directory()

gsk_close_directory()
Closes an LDAP directory.

Format

#include <gskcms.h>

gsk_status gsk_close_directory (
gsk_handle * directory _handle)

Parameters

directory handle
Specifies the directory handle returned by the gsk_open_directory() routine. The handle will be set to
NULL upon successful completion.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following is a common error:

[CMSERR_BAD_HANDLE]
The directory handle is not valid.

Usage

The gsk_close_directory() routine will close an LDAP directory opened by the gsk _open_directory()
routine. The directory _handle will not be valid upon return from the gsk_close_directory() routine.

88 System SSL Programming V1R4.0

gsk_copy_buffer()

gsk_copy_buffer()

Copies a buffer.

Format

#include <gskcms.h>

gsk_status gsk_copy_buffer (
gsk_buffer =* in_buffer,
gsk_buffer * out_buffer)

Parameters

in_buffer
Specifies the source buffer.

out_buffer
Specifies the destination buffer. The application should call the gsk_free_buffer() routine when the
buffer is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following is a common error:

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_copy_buffer() routine will allocate the output buffer and then copy the input buffer to the output
buffer. Storage for the base gsk_buffer structure is provided by the caller.

Chapter 8. Certificate Management Services (CMS) API Reference 89

gsk_copy_certificate()

gsk_copy_certificate()
Copies a X.509 certificate.

Format

#include <gskcms.h>
gsk_status gsk_copy certificate (

x509_certificate *
x509 certificate *

Parameters

in_certificate
Specifies the source certificate.

out certificate

Specifies the destination certificate. The application should call the gsk_free_certificate()

when the certificate is no longer needed.

Results

in_certificate,
out_certificate)

routine

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following is a common error:

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage
The gsk_copy_certificate()

routine will allocate the output certificate and then copy the input certificate to

the output certificate. Storage for the base x509_certificate structure is provided by the caller.

90 System SSL Programming V1R4.0

gsk_copy_certificate_extension()

gsk _copy_certificate_extension()

Copies a X.509 certificate extension.

Format

#include <gskcms.h>

gsk_status gsk_copy certificate_extension (
x509_extension * in_extension,
x509_extension * out_extension)

Parameters

in_extension
Specifies the source certificate extension.

out_extension
Specifies the destination certificate extension. The application should call the
gsk_free_certificate_extension() routine when the extension is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following is a common error:

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_copy_certificate_extension() routine will allocate the output certificate extension and then copy
the input certificate extension to the output certificate extension. Storage for the base x509 extension
structure is provided by the caller.

Chapter 8. Certificate Management Services (CMS) API Reference 91

gsk_copy_certification_request()

gsk_copy_certification_request()
Copies a PKCS #10 certification request.

Format

#include <gskcms.h>

gsk_status gsk_copy certification_request (
pkcs_cert_request * in_request,
pkcs_cert_request * out_request)

Parameters

in_request
Specifies the source certification request.

out_request
Specifies the destination certification request. The application should call the
gsk_free_certification_request() routine when the certification request is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following is a common error:

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_copy_certification_request() routine will allocate the output certification request and then copy
the input certification request to the output certification request. Storage for the base pkcs_cert_request
structure is provided by the application.

92 System SSL Programming V1R4.0

gsk_copy_content_info()

gsk_copy_content_info()

Copies PKCS #7 content information.

Format

#include <gskcms.h>

gsk_status gsk_copy_content_info (
pkcs_content_info * in_info,
pkcs_content_info * out_info)

Parameters

in_info
Specifies the source content information.

out_info
Specifies the destination content information. The application should call the gsk_free_content_info()
routine when the content information is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following is a common error:

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_copy_content_info() routine will allocate the output content information and then copy the input
content information to the output content information. Storage for the base pkcs_content_info structure is
provided by the application.

Chapter 8. Certificate Management Services (CMS) API Reference 93

gsk_copy_crl()

gsk_copy_crl()

Copies a X.509 certificate revocation list.

Format

#include <gskcms.h>

gsk_status gsk_copy_crl (
x509_crl * in_crl,
x509_crl * out_crl)

Parameters
in_crl
Specifies the source certificate revocation list.

out crl
Specifies the destination certificate revocation list. The application should call the gsk_free_crl()
routine when the certificate revocation list is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following is a common error:

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_copy_crl() routine will allocate the output certificate revocation list and then copy the input list to
the output list. Storage for the base x509 crl structure is provided by the caller.

94 system SSL Programming V1R4.0

gsk_copy_name()

gsk _copy_name()

Copies a X.509 name.

Format

#include <gskcms.h>

gsk_status gsk_copy name (
x509_name * in_name,
x509_name * out_name)

Parameters
in_name
Specifies the source name.

out_name
Specifies the destination name. The application should call the gsk_free_name() routine when the
name is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following is a common error:

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_copy_name() routine will allocate the output name and then copy the input name to the output
name. Storage for the base x509 name structure is provided by the caller.

Chapter 8. Certificate Management Services (CMS) API Reference 95

gsk_copy_private_key_info()

gsk _copy_private_key_info()

Copies the private key information.

Format

#include <gskcms.h>

gsk_status gsk_copy private_key_info (
pkcs_private_key_info * in_info,
pkcs_private_key_info * out_info)

Parameters
in_info
Specifies the source private key information.

out_info
Specifies the destination private key information. The application should call the
gsk_free_private_key_info() routine when the private key is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following is a common error:

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_copy_private_key info() routine will allocate the output private key and then copy the input key
to the output key. Storage for the base pkcs_private _key_info structure is provided by the caller.

96 System SSL Programming V1R4.0

gsk_copy_public_key info()

gsk_copy_public_key info()

Copies the public key information.

Format

#include <gskcms.h>

gsk_status gsk_copy public_key info (
x509_public_key_info * in_info,
x509_public_key info * out_info)

Parameters
in_info
Specifies the source public key information.

out_info
Specifies the destination public key information. The application should call the
gsk_free_public_key_info() routine when the public key is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following is a common error:

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_copy_public_key info() routine will allocate the output public key and then copy the input key to
the output key. Storage for the base x509_public_key_info structure is provided by the caller.

Chapter 8. Certificate Management Services (CMS) API Reference 97

gsk_copy_record()

gsk _copy_record()

Copies a database record.

Format

#include <gskcms.h>

gsk_status gsk_copy_record (
gskdb_record * in_record,
gskdb_record ** out_record)

Parameters

in_record
Specifies the source record.

out_record
Returns the copied record. The application should call the gsk _free record() routine when the record
is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following is a common error:

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_copy_record() routine will allocate the output record and then copy the input record to the output
record. The address of the copied record will then be returned to the application.

98 System SSL Programming V1R4.0

gsk_create_certification_request()

gsk_create_certification_request()
Creates a PKCS #10 certification request.
Format

#include <gskcms.h>

gsk_status gsk _create_certification_request (

gsk_handle db_handle,
const char * label,
x509_algorithm_type signature_algorithm,
int key size,
const char * subject_name,
x509_extensions * extensions)
Parameters
db_handle

Specifies the database handle returned by the gsk create_database() routine or the
gsk_open_database() routine. This must be a request database and not a key database.

label
Specifies the label for the new database record. The label is specified in the local code page.

signature_algorithm
Specifies the signature algorithm for the certificate.

key size
Specifies the key size in bits.

subject_name
Specifies the distinguished name for the certificate subject. The distinguished name is specified in the
local code page and consists of one or more relative distinguished name components separated by
commas.

extensions
Specifies certificate extensions to be included in the certification request. Specify NULL for this
parameter if no certificate extensions are provided.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BACKUP_EXISTS]
The backup file already exists.

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_BAD_KEY_SIZE]
The key size is not valid.

[CMSERR_BAD_LABEL]
The record label is not valid.

[CMSERR_INCORRECT_DBTYPE]
The database type does not support certification requests.

[CMSERR_IO_ERROR]
Unable to write record.

Chapter 8. Certificate Management Services (CMS) API Reference 99

gsk_create_certification_request()

[CMSERR_LABEL_NOT_UNIQUE]
The record label is not unique.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_TOO_BIG]
The record is larger than the database record length.

[CMSERR_UPDATE_NOT_ALLOWED]
Database is not open for update.

Usage

The gsk_create_certification_request() routine creates a request for a new certificate as described in
PKCS #10 (Certification Request Syntax Standard). The request is then stored in the request database.
The gsk_export_certification_request() routine can be called to create an export file containing the
request for transmission to the certification authority.

The following signature algorithms are supported:

x509 alg_md2WithRsaEncryption
RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption
RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_shalWithRsaEncryption
RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509 alg_dsaWithShal
Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

An RSA key size must be between 512 and 2048 bits and will be rounded up to a multiple of 16 bits. A
DSA key size must be between 512 and 1024 bits and will be rounded up to a multiple of 64 bits.

The record label is used as a friendly name for the database entry. It can be any value and consists of
characters which can be represented using 7-bit ASCII (letters, numbers, and punctuation). It may not be
an empty string.

The extensions parameter can be used to provide certificate extensions for inclusion in the certification
request. Whether or not a particular certificate extension will be included in the new certificate is
determined by the certification authority.

The database must be open for update in order to add the new request. The database file is updated as
part of the gsk_create_certification_request() processing. A temporary database file is created using the
same name as the database file with ".new” appended to the name. The database file is then overwritten
and the temporary database file is deleted. The temporary database file will not be deleted if an error
occurs while rewriting the database file.

100 system SSL Programming V1R4.0

gsk_create_database()

gsk create database()

Creates a key or request database.

Format

#include <gskcms.h>

gsk_status gsk_create_database (

char * filename,
char * password,
gskdb_database_type db_type,
gsk_size record length,
gsk_time pwd_expiration,
gsk_handle * db_handle)
Parameters
filename

Specifies the database file name in the local code page. The length of the fully-qualified file name
cannot exceed 251.

password
Specifies the database password in the local code page. The password must consist of characters
which can be represented using 7-bit ASCII (letters, numbers, and punctuation). It may not be an
empty string. The user will be prompted to enter the password if NULL is specified for this parameter.
db_type
Specifies the database type and must be gskdb_dbtype key for a key database or
gskdb_dbtype_request for a certification request database.

record_length
Specifies the database record length. The default record length will be used if zero is specified for this
parameter. All records in the database will have this length. The minimum record length is 2500.

pwd_expiration
Specifies the database password expiration time as the number of seconds since the POSIX epoch. A
value of 0 indicates the password does not expire.

db_handle
Returns the database handle. The application should call the gsk_close _database() routine when it
no longer needs access to the database.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BAD_FILENAME]
The database file name is not valid.

[CMSERR_DB_EXISTS]
The database already exists.

[CMSERR_INCORRECT_DBTYPE]
The database type is not valid.

[CMSERR_IO_CANCELED]
The user canceled the password prompt.

[CMSERR_IO_ERROR]
An input/output request failed.

Chapter 8. Certificate Management Services (CMS) API Reference 101

gsk_create_database()

[CMSERR_LENGTH_TOO_SMALL]
The record length is less than the minimum value.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_OPEN_FAILED]
Unable to open the key database.

Usage

The gsk_create_database() routine will create a key or request database. The database must not already
exist. A new key database will contain an initial set of Certificate Authority certificates for use in validating
certificate signatures.

102 system SSL Programming V1R4.0

gsk_create_self_signed_certificate()

gsk create_self signed_certificate()

Creates a self-signed certificate.

Format

#include <gskcms.h>

gsk_status gsk_create_self_signed_certificate (

gsk_handle db_handle,
const char * label,
x509_algorithm_type signature_algorithm,
int key size,
const char * subject_name,
int num_days,
gsk_boolean ca_certificate,
x509_extensions * extensions)
Parameters
db_handle

Specifies the database handle returned by the gsk_create_database() routine or the
gsk _open_database() routine. This must be a key database and not a request database.

label
Specifies the label for the new database record. The label is specified in the local code page.

signature_algorithm
Specifies the certificate signature algorithm.

key_size
Specifies the key size in bits.

subject_name
Specifies the distinguished name for the certificate subject. The distinguished name is specified in the
local code page and consists of one or more relative distinguished name components separated by
commas.

num_days
Specifies the number of days for the certificate validity period as a value between 1 and 9999 (the
maximum of 9999 will be used if a larger value is specified).

ca_certificate
Specify TRUE if this is a certification authority certificate or FALSE if this is an end user certificate.

extensions
Specifies the certificate extensions for the new certificate. Specify NULL for this parameter if no
certificate extensions are supplied.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BACKUP_EXISTS]
The backup file already exists.

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_BAD_KEY_SIZE]
The key size is not valid.

Chapter 8. Certificate Management Services (CMS) API Reference 103

gsk_create_self_signed_certificate()

[CMSERR_BAD LABEL]
The record label is not valid.

[CMSERR_BAD_SUBJECT_NAME]
The subject name is not valid.

[CMSERR_INCORRECT_DBTYPE]
The database type does not support certificates.

[CMSERR_IO_ERROR]
Unable to write record.

[CMSERR_LABEL_NOT_UNIQUE]
The record label is not unique.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_TOO_BIG]
The record is larger than the database record length.

[CMSERR_UPDATE_NOT_ALLOWED]
Database is not open for update.

Usage

The gsk_create_self_signed_certificate() routine will generate a self-signed X.509 certificate as
described in RFC 2459 (X.509 Public Key Infrastructure). A certification authority certificate will have basic
constraints and key usage extensions which allow the certificate to be used to sign other certificates and
certificate revocation lists. An end user certificate will have basic constraints and key usage extensions
which allow the certificate to be used for authentication, digital signatures, and data encryption (except for
a DSA key which cannot be used for data encryption). The new certificate is then stored in the key
database. The gsk_export_certificate() routine can be called to create an export file containing the
certificate for transmission to another system.

The following signature algorithms are supported:

x509_alg_md2WithRsaEncryption
RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509 alg_md5WithRsaEncryption
RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509 alg_shalWithRsaEncryption
RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_dsaWithShal
Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

An RSA key size must be between 512 and 2048 bits and will be rounded up to a multiple of 16 bits. A
DSA key size must be between 512 and 1024 bits and will be rounded up to a multiple of 64 bits.

The record label is used as a friendly nhame for the database entry. It can be any value and consists of
characters which can be represented using 7-bit ASCII (letters, numbers, and punctuation). It may not be
an empty string.

A CA certificate will have SubjectKeyldentifier, KeyUsage and BasicConstraints extensions while an end
user certificate will have SubjectKeyldentifier and KeyUsage extensions. The application can supply
additional extensions through the extensions parameter. A KeyUsage or BasicContraints extension
provided by the application will replace the default extension created for the certificate. A
SubjectKeyldentifier extension provided by the application will be ignored.

104 system SSL Programming V1R4.0

gsk_create_self_signed_certificate()

The database must be open for update in order to add the new certificate. The database file is updated as
part of the gsk create_self signed_certificate() processing. A temporary database file is created using
the same name as the database file with ".new” appended to the name. The database file is then
overwritten and the temporary database file is deleted. The temporary database file will not be deleted if
an error occurs while rewriting the database file.

Chapter 8. Certificate Management Services (CMS) API Reference 105

gsk_create_signed_certificate()

gsk create_signed_certificate()

Creates a signed cetrtificate.

Format

#include <gskcms.h>

gsk_status gsk_create_signed_certificate (

gsk_handle db_handle,
const char * label,
int num_days ,
gsk_boolean ca_certificate,
x509_extensions * extensions,
gsk_buffer =* cert_request,
gsk_buffer * signed_certificate)
Parameters
db_handle

Specifies the database handle returned by the gsk create_database() routine, the
gsk_open_database() routine, or the gsk_open_keyring() routine. This must be a key database and
not a request database.

label
Specifies the label for the certificate to be used to sign the new certificate. The label is specified in the
local code page.

num_days
Specifies the number of days for the certificate validity period as a value between 1 and 9999 (the
maximum of 9999 will be used if a larger value is specified).

ca_certificate
Specify TRUE if this is a certification authority certificate or FALSE if this is an end user certificate.

extensions
Specifies the certificate extensions for the new certificate. Specify NULL for this parameter if no
certificate extensions are supplied.

cert_request
Specifies the PKCS #10 certification request stream in either binary DER-encoded format or in Base64
format. A Base64 stream is in the local code page.

signed_certificate
Returns the signed certificate in Base64 format. The Base64 stream will be in the local code page.
The application should call the gsk_free_buffer() routine to release the certificate stream when it is no
longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BAD_ENCODING]
The certificate request stream is not valid.

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_BAD LABEL]
The record label is not valid.

[CMSERR_BAD_SIGNATURE]
The request signature is not correct.

106 system SSL Programming V1R4.0

gsk_create_signed_certificate()

[CMSERR_EXPIRED]
The signer certificate is expired.

[CMSERR_INCORRECT_DBTYPE]
The database type does not support certificates.

[CMSERR_INCORRECT_KEY_USAGE]
The signer certificate key usage does not allow signing certificates.

[CMSERR_ISSUER_NOT_CA]
The signer certificate is not for a certification authority.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]
The signer certificate does not have a private key.

[CMSERR_RECORD_NOT_FOUND]
The signer certificate is not found in the key database.

[CMSERR_SUBJECT_IS_CA]
The requested subject name is the same as the signer name.

Usage

The gsk_create_signed_certificate() routine will generate a X.509 certificate as described in RFC 2459
(X.509 Public Key Infrastructure). The new certificate will be signed using the certificate specified by the
label parameter. A certification authority certificate will have basic constraints and key usage extensions
which allow the certificate to be used to sign other certificates and certificate revocation lists. An end user
certificate will have basic constraints and key usage extensions which allow the certificate to be used for
authentication, digital signatures, and data encryption (except for a DSA key which cannot be used for
data encryption). The certificate expiration date will be set to the earlier of the requested expiration date
and the expiration date of the signing certificate.

The signing certificate must have an associated private key, the BasicConstraints extension must either be
omitted or must have the CA indicator set, and the KeyUsage extension must either be omitted or must
allow signing certificates. The subject key identifier from the signing certification will be copied to the
signed certificate as the authority key identifier.

A CA certificate will have SubjectKeyldentifier, KeyUsage and BasicConstraints extensions while an end
user certificate will have SubjectKeyldentifier and KeyUsage extensions. An end user certificate will also
have an AuthorityKeyldentifier extension if the signing certificate has a SubjectKeyldentifier extension. The
application can supply additional extensions through the extensions parameter. An AuthorityKeyldentifier,
KeyUsage or BasicContraints extension provided by the application will replace the default extension
created for the certificate. A SubjectKeyldentifier extension provided by the application will be ignored.

Certificate extensions can also be contained within the certification request. A certificate extension supplied
by the application will override a certificate extension of the same type contained in the certification
request. The certificate extensions found in the certification request will be copied unmodified to the new
certificate with the following exceptions:

* The AuthoritylnfoAccess, AuthorityKeyldentifier, BasicConstraints, CrIDistributionPoints, IssuerAltName,
NameConstraints, PolicyConstraints, PolicyMappings, and PrivateKeyUsagePeriod extensions will not
be copied

* The keyCertSign and crISign flags in the KeyUsage extension will be modified based upon the value of
the ca_certificate parameter.

No certification path validation is performed by the gsk create_signed_certificate() routine. An error will
be returned if the requested subject name is the same as the subject name in the signing certificate.

Chapter 8. Certificate Management Services (CMS) API Reference 107

gsk_create_signed_crl()

gsk create_signed_crl()

Creates a signed certificate revocation list.

Format

#include <gskcms.h>

gsk_status gsk_create_signed_crl (

gsk_handle db_handle,
const char * label,
gsk_int32 crl_number,
int num_days,
x509_revoked_certificates * revoked_certificates,
x509_extensions * extensions,
gsk_buffer * signed_crl)
Parameters
db_handle

Specifies the database handle returned by the gsk create_database() routine, the
gsk_open_database() routine, or the gsk_open_keyring() routine. This must be a key database and
not a request database.

label
Specifies the label for the certificate to be used to sign the certificate revocation list. The label is
specified in the local code page.

crl_number
Specifies the CRL number. Each CRL is numbered with each successive revocation list having a larger
CRL number than all previous revocation lists.

num_days
Specifies the number of days until the next CRL will be issued and is specified as a value between 1
and 9999 (the maximum of 9999 will be used if a larger value is specified).

revoked_certificates
Specifies the revoked certificates to be included in the CRL.

extensions
Specifies the CRL extensions for the new CRL. Specify NULL for this parameter if no CRL extensions
are supplied.

signed_crl
Returns the signed certificate revocation list in Base64 format. The Base64 stream will be in the local
code page. The application should call the gsk_free_buffer() routine to release the stream when it is
no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_BAD_LABEL]
The record label is not valid.

[CMSERR_BAD_SIGNATURE]
The request signature is not correct.

[CMSERR_EXPIRED]
The signer certificate is expired.

108 system SSL Programming V1R4.0

gsk_create_signed_crl()

[CMSERR_INCORRECT_DBTYPE]
The database type does not support certificates.

[CMSERR_INCORRECT_KEY_USAGE]
The signer certificate key usage does not allow signing a CRL.

[CMSERR_ISSUER_NOT_CA]
The signer certificate is not for a certification authority.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]
The signer certificate does not have a private key.

[CMSERR_RECORD_NOT_FOUND]
The signer certificate is not found in the key database.

Usage

The gsk_create_signed_crl() routine will generate a X.509 certificate revocation list (CRL) as described in
RFC 2459 (X.509 Public Key Infrastructure). The new CRL will be signed using the certificate specified by
the label parameter. The number of days until the next CRL is issued will be set to the earlier of the
requested date and the expiration of the signing certificate.

The signing certificate must have an associated private key, the BasicConstraints extension must either be
omitted or must have the CA indicator set, and the KeyUsage extension must either be omitted or must
allow signing certificate revocation lists. The subject key identifier from the signing certification will be
copied to the signed CRL as the authority key identifier.

The CRL will have a CRLNumber extension containing the value specified by the crl_number parameter. It
will also have an AuthorityKeyldentifier extension if the signing certificate has a SubjectKeyldentifier
extension. The application can supply additional extensions through the extensions parameter. An
AuthorityKeyldentifier or CRLNumber extension provided by the application will replace the default
extension created for the CRL.

No certification path validation is performed by the gsk_create_signed_crl() routine.

Chapter 8. Certificate Management Services (CMS) API Reference 109

gsk_decode_base64()

gsk_decode_base64()

Decodes a Base64-encoded stream.

Format
#include <gskcms.h>
gsk_status gsk_decode_base64 (

gsk_buffer = encoded_stream,
gsk_buffer * decoded_stream)

Parameters

encoded_stream
Specifies the Base64-encoded stream. The encoded data must be in the local code page.

decoded_stream
Returns the decoded stream. The application should call the gsk_free buffer() routine to release the
decoded stream when it is no longer needed.

Results
The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BAD_BASE64 ENCODING]
Incorrect Base64 encoding.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_decode_base64() routine will decode a Base64-encoded stream created by the
gsk_encode_base64() routine. The encoded stream must be in the local code page and must not include
any header or trailer lines added by the application to identify the stream contents (such as '-----BEGIN
CERTIFICATE-----" or '-----END CERTIFICATE-----"). New line characters and whitespace characters (tabs
and spaces) are ignored.

110 system SSL Programming V1R4.0

gsk_decode_certificate()

gsk decode_certificate()

Decodes a X.509 certificate.

Format

#include <gskcms.h>

gsk_status gsk_decode_certificate (
gsk_buffer =* stream,
x509_certificate * certificate)

Parameters

Stream
Specifies the encoded certificate.

certificate
Returns the decoded certificate information. The application should call the gsk_free_certificate()
routine to release the decoded certificate when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following is a common error:

[ASN_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_decode_certificate() routine decodes a X.509 certificate and returns the decoded information to
the application. The certificate must have been encoded as described in RFC 2459 (Internet X.509 Public
Key Infrastructure). The derCertificate field will contain the undecoded TBSCertificate ASN.1 sequence for
use in verifying the certificate signature, the tbsCertificate field will contain the decoded TBSCertificate
ASN.1 sequence, and the signatureAlgorithm and signatureValue fields will contain the certificate
signature. The gsk_encode_signature() routine can be used to recreate the encoded certificate from the
x509_certificate structure returned by the gsk_decode_certificate() routine.

Character strings contained in the certificate will be returned using UTF-8 encoding. The application can
call iconv() to convert the string to a different encoding as needed.

The certificate extensions will be returned with the extension values in ASN.1 encoded format. The
gsk_decode_certificate_extension() routine can be called to decode a particular certificate extension.
This allows all of the certificate extensions to be returned even when one or more extensions cannot be
processed by the System SSL runtime.

Chapter 8. Certificate Management Services (CMS) API Reference 111

gsk_decode_certificate_extension()

gsk decode_certificate _extension()

Decodes a X.509 certificate extension.

Format

#include <gskcms.h>

gsk_status gsk_decode_certificate_extension (
x509_extension * encoded_extension,
x509_decoded_extension * decoded_extension)

Parameters

encoded_extension
Specifies the encoded X.509 extension as returned by the gsk_decode_certificate() or
gsk_decode_crl() routine.

decoded _extension
Returns the decoded extension data. The application should call the gsk free_decoded_extension()
routine to release the decoded extension when it is no longer needed.

Results
The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[ASN_NO_MEMORY]
Insufficient memory is available.

[CMSERR_EXT_NOT_SUPPORTED]
The certificate extension is not supported.

[CMSERR_NO_MEMORY]
Insufficient memory is available.

Usage

The gsk_decode_certificate() and gsk _decode_crl() routines returns all of the certificate extensions in
the x509_extensions structure with the extension values still in ASN.1 encoded format. The application
then calls the gsk_decode_certificate_extension() routine to decode a specific certificate extension.

The gsk_decode_certificate_extension() routine returns character strings using UTF-8 encoding. If
necessary, the application can call the iconv() routine to convert the strings to a different encoding.

The following certificate extensions are supported:
» AuthorityInfoAccess
* AuthorityKeyldentifier
* BasicConstraints

» Certificatelssuer

» CertificatePolicies

* CrlDistributionPoints
e CrINumber

* CrlReasonCode

* DeltaCrlindicator

* ExtKeyUsage

* HoldInstructionCode

112 system SSL Programming V1R4.0

* InvalidityDate

* IssuerAltName

* IssuingDistributionPoint
» KeyUsage

* NameConstraints

* PolicyConstraints

* PolicyMappings

* PrivateKeyUsagePeriod
* SubjectAltName

* SubjectDirectoryAttributes
* SubjectKeyldentifier

gsk_decode_certificate _extension()

The following general name types are supported:

» DirectoryName

* DnsName

* IpAddress

* Registeredid

* Rfc822Name

» UniformResourceldentifier

Refer to RFC 2459 (Internet X.509 Public Key Infrastructure) for more information about the various

certificate extensions.

Chapter 8. Certificate Management Services (CMS) API Reference

113

gsk_decode_certification_request()

gsk _decode_certification_request()

Decodes a PKCS #10 certification request.

Format

#include <gskcms.h>

gsk_status gsk_decode_certification_request (
gsk_buffer =* stream,
pkcs_cert_request * request)

Parameters

Stream
Specifies the encoded certification request.

request
Returns the decoded certification request. The application should call the
gsk_free_certification_request() routine to release the decoded certification request when it is no
longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following is a common error:

[ASN_NO_MEMORY]
Insufficient memory is available.

Usage

The gsk_decode_certification_request() routine decodes a Public Key Cryptography Standards (PKCS)
certification request and returns the decoded information to the application. The request must have been
encoded as described in PKCS #10 (Certification Request Syntax Standard). The derRequestinfo field will
contain the undecoded CertificationRequestinfo ASN.1 sequence for use in verifying the request signature,
the certificationRequestinfo field will contain the decoded CertificationRequestinfo ASN.1 sequence, and
the signatureAlgorithm and signatureValue fields will contain the request signature. The
gsk_encode_signature() routine can be used to recreate the encoded certification request from the
pkcs_cert_request structure returned by the gsk_decode_certification_request() routine.

Character strings contained in the request will be returned using UTF-8 encoding. If necessary, the
application can call iconv() to convert the string to a different encoding.

114 system SSL Programming V1R4.0

gsk_decode_crl()

gsk decode_crl()

Decodes a X.509 certificate revocation list.

Format

#include <gskcms.h>

gsk_status gsk_decode_crl (
gsk_buffer = stream,
x509_crl * crl)

Parameters

Stream
Specifies the encoded certificate revocation list.

crl Returns the decoded information. The application should call the gsk_free crl() routine to release the
decoded certificate revocation list when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following is a common error:

[ASN_NO_MEMORY]
Insufficient memory is available.

Usage

The gsk_decode_crl() routine decodes a X.509 certificate revocation list (CRL) and returns the decoded
information to the application. The CRL must have been encoded as described in RFC 2459 (Internet
X.509 Public Key Infrastructure). The derCertList field will contain the undecoded TBSCertList ASN.1
sequence for use in verifying the certificate signature, the tbsCertList field will contain the decoded
TBSCertList ASN.1 sequence, and the signatureAlgorithm and signatureValue fields will contain the
certificate signature. The gsk _encode_signature() routine can be used to recreate the encoded CRL from
the x509_crl structure returned by the gsk_decode_crl() routine.

Character strings will be returned using UTF-8 encoding. If necessary, the application can call iconv() to
convert the string to a different encoding.

The certificate extensions will be returned with the extension values in ASN.1 encoded format. The
gsk_decode_certificate_extension() routine can be called to decode a particular certificate extension.
This allows all of the certificate extensions to be returned even when one or more extensions cannot be
processed by the System SSL runtime.

Chapter 8. Certificate Management Services (CMS) API Reference 115

gsk_decode _name()

gsk _decode name()

Decodes a X.509 name.

Format
#include <gskcms.h>
gsk_status gsk_decode_name (

gsk_buffer =* stream,
x509_name * name)

Parameters

Stream
Specifies the ASN.1 stream for the name.

name
Returns the decoded X.509 name. The application should release the name when it is no longer
needed by calling the gsk_free_name() routine.

Results
The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following is a common error:

[ASN_NO_MEMORY]
Insufficient memory is available.

Usage

The gsk_decode_name() routine will decode an ASN.1 DER-encoded X.509 name. The name must have
been encoded as described in RFC 2459 (Internet X.509 Public Key Infrastructure). Character strings will
be stored in UTF-8 format and the stringType field in the x509_rdn_attribute structure will be set to indicate
the ASN.1 encoded string type.

116 system SSL Programming V1R4.0

gsk_delete_record()

gsk delete record()

Deletes a record from a key or request database.

Format

#include <gskcms.h>

gsk_status gsk_delete_record (
gsk_handle db_handle,
gsk_int32 record_id)

Parameters

db_handle
Specifies the database handle return by the gsk create_database() routine or the
gsk_open_database() routine.

record_id
Specifies the database record to be deleted.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BACKUP_EXISTS]
The backup file already exists.

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_IO_ERROR]
Unable to write record.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_NOT_FOUND]
Record is not found.

[CMSERR_SIGNED_CERTS]
The database contains records signed using the certificate.

[CMSERR_UPDATE_NOT_ALLOWED]
Database is not open for update.

Usage

The gsk_delete_record() routine deletes a record from a key or request database. The database must be
open for update in order to delete records. The unique record identifier identifies the record to be deleted.
A certificate record cannot be deleted from a key database if the database contains records that were
signed using the certificate.

The database file is updated as part of the gsk_delete_record() processing. A temporary database file is
created using the same name as the database file with ".new” appended to the name. The database file is
then overwritten and the temporary database file is deleted. The temporary database file will not be
deleted if an error occurs while rewriting the database file.

Chapter 8. Certificate Management Services (CMS) API Reference 117

gsk_dn_to_name()

gsk _dn_to _name()

Converts a DN string to a X.509 name.

Format

#include <gskcms.h>

gsk_status gsk_dn_to_name (
const char = dn,
x509_name * name)

Parameters

dn Specifies the distinguished name in the local code page.

name
Returns the X.509 name. The X.509 strings use UTF-8 encoding. The application should call the
gsk_free_name() routine to release the name when it is no longer needed.

Results
The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[ASN_ATTR_NOT_FOUND]
An attribute type is not recognized.

[ASN_CANT_CONVERT]
An encoded attribute value contains characters from the wrong character set.

[ASN_INVALID_VALUE]
An attribute value is not valid.

[ASN_NO_MEMORY]
Insufficient storage is available.

[ASN_WRONG_TYPE]
An encoded attribute value does not represent a character string.

[ASN_X500_NO_AVA_SEP]
An attribute value separator is missing.

[ASN_X500_NO_VALUE]
An attribute value is missing.

[ASN_X500_OID_SYNTAX_ERROR]
An object identifier is not valid.

[ASN_X500_SYNTAX_ERROR]
The DN string format is not valid.

Usage

The gsk_dn_to_name() routine converts a distinguished name (DN) string to a X.509 name in accordance
with RFC 2253 (UTF-8 String Representation of Distinguished Names). The input string consists of
single-byte characters in the local code page. A double-byte character is represented using the escaped
UTF-8 encoding of the double-byte character in the Unicode character set.

Attribute types may be specified using either attribute names or numeric object identifiers. Attribute values
must represent string values.

118 system SSL Programming V1R4.0

gsk_dn_to_name()

The following DN attribute names are recognized by the System SSL runtime. An error will be returned if
the DN contains an unrecognized attribute name.

C Country

CN Common name

DC Domain component

E E-mail address

EMAIL E-mail address (preferred)
EMAILADDRESS E-mail address

L Locality

(0] Organization name

ou Organizational unit name
PC Postal code

S State or province

SN Surname

SP State or province

ST State or province (preferred)
STREET Street

T Title

The following is an example of a DN using attribute names and string values:

CN=Ronald Hoffman,OU=Endicott,0=IBM,C=US

The following is the same DN using object identifiers and encoded string values. The encoded string
values represent the ASN.1 DER encoding of the string. The System SSL runtime supports these ASN.1
string types: PRINTABLE, VISIBLE, TELETEX, IA5, UTF8, BMP, and UCS.

2.5.4.3=#130E526F6E616C6420486F66666D616E,2.5.4.11=#1308456E6469636F7474,
2.5.4.10=#130349424D,2.5.4.6=13025553

Individual characters can be represented using escape sequences. This is useful when the character
cannot be represented in a single-byte character set. The hexadecimal value for the escape sequence is
the UTF-8 encoding of the character in the Unicode character set.

Unicode Letter Description

LATIN CAPITAL LETTER L

LATIN SMALL LETTER U

LATIN SMALL LETTER C WITH CARON
LATIN SMALL LETTER I

LATIN SMALL LETTER C WITH ACUTE

SN=Lu\C4\8Di\C4\87

10646 code

U0000004C
60000075
U0000010D
00000069
U00000107

UTF-8 Quoted
0x4C L
0x75 u
0xC48D \C4\8D
0x69 i
0xC487 \C4\87

An escape sequence can also be used for special characters which are part of the name and are not to be
interpreted as delimiters. For example:

CN=L. Eagle,OU=Jones\, Dale and Mian,0=IBM,C=US

Chapter 8. Certificate Management Services (CMS) API Reference 119

gsk_encode_base64()

gsk _encode_base64()

Encodes binary data using Base64 encoding.

Format
#include <gskcms.h>
gsk_status gsk_encode_base64 (

gsk_buffer = input_data,
gsk_buffer * encoded data)

Parameters

input_data
Specifies the data to be encoded.
encoded_data

Returns the encoded stream in the local code page. The application should call the gsk_free_buffer()
routine to release the encoded stream when it is no longer needed.

Results
The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following is a common error:

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_encode_base64() routine will encode binary data using Base64 encoding. The encoded stream
will consist of printable characters in the local code page. A new line will be inserted after each group of
64 encoded characters with a final new line at the end of the encoded stream. The gsk _decode_base64()
routine can be used to decode the data.

120 system SSL Programming V1R4.0

gsk_encode_certificate _extension()

gsk _encode_certificate _extension()
Encodes a X.509 certificate extension.
Format

#include <gskcms.h>

gsk_status gsk_encode_certificate_extension (

x509_decoded_extension * decoded_extension,
gsk_boolean critical,
x509_extension * encoded_extension)

Parameters

decoded _extension
Specifies the decoded extension data.

critical
Specify TRUE if this is a critical extension or FALSE if it is not a critical extension.

encoded_extension
Returns the encoded X.509 extension. The application should call the
gsk_free_certificate_extension() routine to release the extension when it is no longer needed.

Results
The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[ASN_NO_MEMORY]
Insufficient memory is available.

[CMSERR_EXT_NOT_SUPPORTED]
The certificate extension is not supported.

[CMSERR_NO_MEMORY]
Insufficient memory is available.

Usage

The gsk_encode_certificate_extension() routine encodes a certificate extension and returns the encoded
extension in a format that can be used as input to the gsk _encode_certificate() routine.

The gsk_encode_certificate_extension() routine assumes character strings use UTF-8 encoding. The
application is responsible for providing character data in this format.

The following certificate extensions are supported:
» AuthorityInfoAccess
» AuthorityKeyldentifier
* BasicConstraints

» Certificatelssuer

» CertificatePolicies

» CrlDistributionPoints
* CrINumber

* CrlReasonCode

* DeltaCrlindicator

* ExtKeyUsage

Chapter 8. Certificate Management Services (CMS) API Reference 121

gsk_encode_certificate_extension()

» HoldInstructionCode

* InvalidityDate

* IssuerAltName

* IssuingDistributionPoint
» KeyUsage

* NameConstraints

* PolicyConstraints

* PolicyMappings

» PrivateKeyUsagePeriod
* SubjectAltName

* SubjectDirectoryAttributes
* SubjectKeyldentifier

The following general name types are supported:
* DirectoryName

* DnsName

* IpAddress

* Registeredld

* Rfc822Name

» UniformResourceldentifier

Refer to RFC 2459 (Internet X.509 Public Key Infrastructure) for more information about the various
certificate extensions.

122 system SSL Programming V1R4.0

gsk_encode_name()

gsk _encode_name()

Encodes a X.509 name.

Format

#include <gskcms.h>

gsk_status gsk_encode_name (
x509_name * name,
gsk_buffer * stream)

Parameters

name
Specifies X.509 name.

Stream
Returns the ASN.1 stream for the name. The application should release the stream when it is no
longer needed by calling the gsk_free_buffer() routine.

Results
The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[ASN_CANT_CONVERT]
A character string contains characters not allowed for the string type.

[ASN_NO_MEMORY]
Insufficient memory is available.

Usage

The gsk_encode_name() routine will encode a X.509 name as an ASN.1 stream. The name will be
encoded as described in RFC 2459 (Internet X.509 Public Key Infrastructure).

The stringType field in the x509_rdn_attribute structure will be used to determine the format for an
encoded directory string. If it is set to x509_string_unknown, the gsk_encode_name() routine will attempt
to encode the string as an ASN.1 printable string. If the string contains characters not included in the
printable string set, the string will be encoded as an ASN.1 UTF-8 string. There are a couple of mandatory
exceptions:

* The countryName attribute is always encoded as a printable string

* The dnQualifier attribute is always encoded as a printable string

* The emailAddress attribute is always encoded as an IA5 string

* The domainComponent attribute is always encoded as an IA5 string

Chapter 8. Certificate Management Services (CMS) API Reference 123

gsk_encode_signature()

gsk _encode_signature()

Encodes an ASN.1 stream and the accompanying signature.

Format

#include <gskcms.h>

gsk_status gsk_encode_signature (

gsk_buffer = unsigned_stream,
x509_algorithm_identifier * algorithm,
gsk_bitstring =* signature,
gsk_buffer * signed_stream)

Parameters

unsigned_stream
Specifies the unsigned ASN.1 stream.

algorithm
Specifies the algorithm used to compute the signature.

signature
Specifies the signature for the ASN.1 stream.

signed_stream
Returns the encoded signature stream. The application should call the gsk_free_buffer() routine to
release the encoded stream when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following is a common error:

[ASN_NO_MEMORY]
Insufficient memory is available.

Usage

The gsk_encode_signature() routine is used to encode an unsigned ASN.1 stream and the digital
signature generated for the stream. The signature is encoded using ASN.1 DER (Distinguished Encoding
Rules). The application is responsible for ensuring the validity of the supplied information.

124 system SSL Programming V1R4.0

gsk_export_certificate()

gsk_export_certificate()

Exports a certificate.

Format

#include <gskcms.h>

gsk_status gsk_export_certificate (

gsk_handle db_handle,
const char * label,
gskdb_export_format format,
gsk_buffer stream)
Parameters
db_handle

Specifies the database handle returned by the gsk create_database() routine, the
gsk_open_database() routine, or the gsk_open_keyring() routine. The database must be a key
database and not a request database.

label
Specifies the label for the database record. The label is specified in the local code page.

format
Specifies the export format. The following values may be specified:

gskdb_export_der_binary
Binary ASN.1 DER-encoded

gskdb_export_der_base64
Base64 ASN.1 DER-encoded

gskdb_export_pkcs7_binary
Binary PKCS #7 Cryptographic Message Syntax

gskdb_export_pkcs7_base64
Base64 PKCS #7 Cryptographic Message Syntax

Stream
Return the byte stream for the encoded certificate. The application should call the gsk _free_buffer()
routine to release the storage when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_BAD_LABEL]
No database record label is supplied.

[CMSERR_FMT_NOT_SUPPORTED]
An unsupported export file format is specified.

[CMSERR_INCORRECT_DBTYPE]
The database type does not support certificates.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_NOT_FOUND]
The requested record is not found.

Chapter 8. Certificate Management Services (CMS) API Reference 125

gsk_export_certificate()

Usage

The gsk_export_certificate() routine exports a X.509 certificate. The certificate can be exported using
either the ASN.1 DER encoding for the certificate or the Cryptographic Message Syntax (PKCS #7)
encoding for the certificate. This can be either the binary value or the Base64 encoding of the binary
value. A Base64 encoded stream will be in the local code page and will include the encoding header and
footer lines.

126 system SSL Programming V1R4.0

gsk_export_certification_request()

gsk_export_certification_request()
Exports a PKCS #10 certification request.
Format

#include <gskcms.h>

gsk_status gsk_export_certification_request (

gsk_handle db_handle,
const char * label,
gskdb_export_format format,
gsk_buffer stream)
Parameters
db_handle

Specifies the database handle returned by the gsk create_database() routine or the
gsk_open_database() routine. The database must be a request database and not a key database.

label
Specifies the label for the database record. The label is specified in the local code page.

format
Specifies the export format. The following values may be specified:

gskdb_export_der_binary
Binary ASN.1 DER-encoded

gskdb_export_der_base64
Base64 ASN.1 DER-encoded

Stream
Return the byte stream for the encoded certificatation request. The application should call the
gsk_free_buffer() routine to release the storage when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return

codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_BAD_LABEL]
No database record label is supplied.

[CMSERR_FMT_NOT_SUPPORTED]
An unsupported export file format is specified.

[CMSERR_INCORRECT_DBTYPE]
The database type does not support certification requests.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_NOT_FOUND]
The requested record is not found.

Usage

The gsk_export_certification_request() routine exports a PKCS #10 certification request. The request
can be exported using either the ASN.1 DER encoding for the request or the Base64 encoding of the
binary value. A Base64 encoded stream will be in the local code page and will include the encoding

Chapter 8. Certificate Management Services (CMS) API Reference 127

gsk_export_certification_request()

| header and footer lines.

128 system SSL Programming V1R4.0

gsk_export_key()

gsk_export_key()

Exports a certificate and the associated private key.

Format

#include <gskcms.h>

gsk_status gsk_export_key (
gsk_handle db_handle,
const char * label,
gskdb_export_format format,
x509_algorithm_type algorithm,
const char * password,
gsk_buffer * stream)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine, the
gsk_open_database() routine, or the gsk_open_keyring() routine. The database must be a key
database and not a request database. For a SAF key ring database, the private key must be stored in
the SAF database and not in ICSF.

label
Specifies the label for the database record. The label is specified in the local code page.

format
Specifies the export format. The following values may be specified:

gskdb_export_pkcs12vl binary
Binary PKCS #12 Version 1

gskdb_export_pkcs12vl base64
Base64 PKCS #12 Version 1

gskdb_export_pkcs12v3_binary
Binary PKCS #12 Version 3

gskdb_export_pkcs12v3_base64
Base64 PKCS #12 Version 3

algorithm
Specifies the encryption algorithm for the export file. The strong encryption algorithms may not be
available depending upon government export regulations.

The following values may be specified for the PKCS #12 Version 1 format:

x509_alg_pb1WithShalAnd40BitRc2Cbc
40-bit RC2 with SHA-1 digest

x509 alg_pblWithShalAnd128BitRc2Cbc
128bit RC2 with SHA-1 digest

x509_alg pblWithShalAnd40BitRc4
40-bit RC4 with SHA-1 digest

X509 alg pblWithShalAnd128BitRc4
128-bit RC4 with SHA-1 digest

x509_alg_pblWithShalAnd3DesCbc
Triple DES with SHA-1 digest

The following values may be specified for the PKCS #12 Version 3 format:

Chapter 8. Certificate Management Services (CMS) API Reference 129

gsk_export_key()

x509_alg_pbeWithShalAnd40BitRc2Cbc
40-bit RC2 with SHA-1 digest

x509_alg_pbeWithShalAnd128BitRc2Chbc
128bit RC2 with SHA-1 digest

x509_alg_pbeWithShalAnd40BitRc4
40-bit RC4 with SHA-1 digest

X509 alg_pbeWithShalAnd128BitRc4
128-bhit RC4 with SHA-1 digest

x509_alg_pbeWithShalAnd3DesCbc
Triple DES with SHA-1 digest

password
Specifies the password for the export file. The password is in the local code page and must consist of
characters which can be represented using 7-bit ASCII (letters, numbers, and punctuation). It may not
be an empty string. The user will be prompted to enter the password if NULL is specified for this
parameter.

Stream
Return the byte stream for the encoded certificate. The application should call the gsk_free_buffer()
routine to release the storage when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BAD_ HANDLE]
The database handle is not valid.

[CMSERR_BAD_LABEL]
No database record label is supplied.

[CMSERR_FMT_NOT_SUPPORTED]
An unsupported export file format is specified.

[CMSERR_INCORRECT_DBTYPE]
The database type does not support certificates.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]
The database entry does not contain a private key.

[CMSERR_RECORD_NOT_FOUND]
The requested record is not found.

Usage

The gsk_export_key() routine exports a X.509 certificate and the associated private key. The certificate
can be exported using either the PKCS #12 Version 1 format or the PKCS #12 Version 3 format. This can
be either the binary value or the Base64 encoding of the binary value. A Base64 encoded stream will be in
the local code page and will include the encoding header and footer lines.

The PKCS #12 Version 1 format is obsolete. However, it is the only format supported by some SSL
implementations and must be used when moving a certificate and key to one of those systems. You
should use either x509 alg_pb1WithShalAnd40BitRc2Chc or x509 alg pbl1WithShalAnd3DesChc for
interoperability with these older SSL implementations.

130 system SSL Programming V1R4.0

gsk_free_buffer()

gsk_free_buffer()

Releases storage allocated for a buffer.

Format

#include <gskcms.h>

void gsk_free_buffer (
gsk_buffer =

Parameters
buffer

buffer)

Specifies the buffer to be released. The gsk_buffer structure will be initialized to zero upon completion.

Usage

The gsk_free buffer() routine is used to release storage allocated for a buffer.

Chapter 8. Certificate Management Services (CMS) API Reference

131

gsk_free_certificate()

gsk_free_certificate()
Releases storage allocated for a X.509 certificate.
Format

#include <gskcms.h>

void gsk_free_certificate (

x509_certificate * certificate)
Parameters
certificate
Specifies the certificate to be released. The x509_certificate structure will be initialized to zero upon
completion.
Usage

The gsk_free_certificate() routine is used to release storage allocated for an X.509 certificate.

132 system SSL Programming V1R4.0

gsk_free_certificates()

gsk_free_certificates()
Releases storage allocated for an array of certificates.
Format

#include <gskcms.h>

void gsk_free_certificates (

pkcs_certificates * certificates)
Parameters
certificate
Specifies the certificate to be released. The pkcs_certificates structure will be initialized to zero upon
completion.
Usage

The gsk_free certificates() routine is used to release storage allocated for an array of certificates.

Chapter 8. Certificate Management Services (CMS) API Reference 133

gsk_free_certificate_extension()

gsk free_certificate _extension()

Releases storage allocated for a X.509 certificate extension.

Format

#include <gskcms.h>

void gsk_free_certificate_extension (
x509_extension * extension)

Parameters

extension
Specifies the certificate extension to be released. The x509_extension structure will be initialized to
zero upon completion.

Usage

The gsk_free_certificate_extension() routine is used to release storage allocated for a X.509 certificate
extension.

134 system SSL Programming V1R4.0

gsk_free_certification_request()

gsk_free_certification_request()

Releases storage allocated for a PKCS certification request.

Format

#include <gskcms.h>

void gsk_free_certification_request (
pkcs_cert_request * request)

Parameters

request
Specifies the certification request to be released. The pkcs_cert_request structure will be initialized to
zero upon completion.

Usage

The gsk_free certification_request() routine is used to release storage allocated for a Public Key
Cryptography Standards (PKCS) certification request.

Chapter 8. Certificate Management Services (CMS) API Reference 135

gsk_free_content_info()

gsk free content_info()

Releases storage allocated for PKCS #7 content information.

Format

#include <gskcms.h>

void gsk_free_content_info (
pkcs_content_info * content_info)

Parameters

content _info
Specifies the content information to be released. The pkcs_content_info structure will be initialized to
zero upon completion.

Usage

The gsk_free content_info() routine is used to release storage allocated for a Public Key Cryptography
Standards (PKCS) content information.

136 Ssystem SSL Programming V1R4.0

gsk_free_crl()

gsk free crl()

Releases storage allocated for a X.509 certificate revocation list.
Format
#include <gskcms.h>

void gsk_free_crl (
x509_crl * crl)

Parameters

crl Specifies the certificate revocation list to be released. The x509 crl structure will be initialized to zero
upon completion.

Usage
The gsk_free_crl() routine is used to release storage allocated for a X.509 certificate revocation list.

Chapter 8. Certificate Management Services (CMS) API Reference 137

gsk_free_crls()

gsk free crls()

Releases storage allocated for an array of X.509 certificate revocation lists.

Format

#include <gskcms.h>

void gsk_free_crls (
x509_crls * crls)

Parameters

crls
Specifies the array of certificate revocation lists to be released. The x509 _crls structure will be
initialized to zero upon completion.

Usage

The gsk_free_cris() routine is used to release storage allocated for an array of X.509 certificate
revocation lists.

138 system SSL Programming V1R4.0

gsk_free_decoded_extension()

gsk free_decoded_extension()

Frees a decoded certificate extension.

Format

#include <gskcms.h>

void gsk_free_decoded_extension (

x509_decoded_extension * decoded_extension)

Parameters

decoded _extension
Specifies the certificate extension
initialized to zero upon completion

Usage

The gsk_free_decoded_extension()
certificate extension.

to be released. The x509_decoded_extension structure will be

routine is used to release storage allocated for a decoded X.509

Chapter 8. Certificate Management Services (CMS) API Reference 139

gsk_free_name()

gsk free_name()
Releases storage allocated for a X.509 name.
Format

#include <gskcms.h>

void gsk_free_name (

x509_name * name)
Parameters
name
Specifies the name to be released. The x509_name structure will be initialized to zero upon
completion.
Usage

The gsk_free_name() routine is used to release storage allocated for a X.509 name.

140 system SSL Programming V1R4.0

gsk_free_private_key info()

gsk free_ private_key info()

Releases storage allocated for private key information.

Format

#include <gskcms.h>

void gsk_free_private_key info (

Parameters

info

pkcs_private_key_info * info)

Specifies the private key information to be released. The pkcs_private_key info structure will be
initialized to zero upon completion.

Usage
The gsk_free private_key info()

routine is used to release storage allocated for private key information.

Chapter 8. Certificate Management Services (CMS) API Reference 141

gsk_free_public_key info()

gsk _free_ public_key info()

Releases storage allocated for public key information.

Format

#

include <gskcms.h>

void gsk_free_public_key_info (

Pa

info

x509_public_key_info * info)

rameters

Specifies the public key information to be released. The x509 public_key info structure will be
initialized to zero upon completion.

Usage

The

142

gsk_free_public_key info() routine is used to release storage allocated for public key information.

System SSL Programming V1R4.0

gsk_free_record()

gsk free record()

Releases storage allocated for a database record.

Format

#include <gskcms.h>

void gsk_free_record (
gskdb_record * record)

Parameters

record
Specifies the database record to be released. The gskdb_record structure is released in addition to the
record data.

Usage
The gsk_free_record() routine is used to release storage allocated for a database record.

Chapter 8. Certificate Management Services (CMS) API Reference 143

gsk_free_records()

gsk free records()

Releases storage allocated for an array of database records.

Format

#include <gskcms.h>

void gsk_free_records (
int num_records ,
gskdb_record *x records)

Parameters

num_records
Specifies the number of records in the array.

records
Specifies the database record array to be released. The gskdb_record structures are released in
addition to the record data.

Usage
The gsk_free _records() routine is used to release storage allocated for an array of database records.

144 system SSL Programming V1R4.0

gsk_free_string()

gsk_free_string()

Releases storage allocated for a string.

Format

#include <gskcms.h>

void gsk_free_string

Parameters

string
Specifies the string

Usage
The gsk_free_string()

(

char * string)

to be released.

routine is used to release storage allocated for a string.

Chapter 8. Certificate Management Services (CMS) API Reference

145

gsk_free_strings()

gsk free_strings()

Releases storage allocated for an array of strings.

Format

#include <gskcms.h>
void gsk_free_strings (

int num_strings,
char *x strings)

Parameters

num_strings
Specifies the number of strings in the array.

strings
Specifies the array of strings to be released.

Usage

The gsk_free_strings() routine is used to release storage allocated for an array of strings.

146 system SSL Programming V1R4.0

gsk_generate_random_bytes()

gsk _generate_random_bytes()

Generates a random byte stream.

Format

#include <gskcms.h>

void gsk_generate_random_bytes (
gsk_buffer * buffer)

Parameters

buffer
Specifies the buffer for the random byte stream. The application is responsible for providing the buffer
and setting the length and data fields appropriately.

Usage

The gsk_generate_random_bytes() routine will generate a random byte stream. The application provides
the buffer for the byte stream. The length value determines how many bytes will be generated. The
generated byte stream will not contain any zero bytes.

Chapter 8. Certificate Management Services (CMS) API Reference 147

gsk_get_cms_vector()

gsk _get _cms_vector()

Obtains the address of the Certificate Management Services function vector.

Format
#include <gskcms.h>
void gsk_get_cms_vector (

gsk_uint32 = function_mask,
gsk_cms_vector *x function_vector)

Parameters

function_mask
Returns a bit mask indicating the Certificate Management Services level.

function_vector
Returns the address of the Certificate Management Services function vector.

Usage

Certificate Management Services (CMS) functions can be called using either static binding or runtime
binding. Static binding is performed when the application is compiled while runtime binding is performed
when the application is run.

In order to use static binding, the CMS sidefile is specified as input to the binder. This causes all CMS
functions to be resolved at bind time and will cause the CMS DLL to be implicitly loaded when the
application is run.

In order to use runtime binding, the CMS DLL must be explicitly loaded by the application and the CMS
functions must be called using indirect addresses. The gsk_get cms_vector() routine allows an

application to obtain the address of the CMS function vector containing an entry for each CMS API routine.

This eliminates the need for the application to build the function vector through repeated calls to the
dliqueryfn() routine.

The function mask indicates the capabilities of the version of the CMS DLL. The following values have
been defined:

GSKCMS_API_LVL1
CMS functions provided as part of z/OS Version 1 Release 4 are available.

148 system SSL Programming V1R4.0

gsk_get_default_key()

gsk get default_key()
Gets the default key record.

Format

#include <gskcms.h>

gsk_status gsk_get_default_key (
gsk_handle db_handle,
gskdb_record *x record)

Parameters

db_handle
Specifies the database handle returned by the gsk create_database() routine, the
gsk_open_database() routine, or the gsk_open_keyring() routine.

record
Returns the database record. The application should call the gsk_free_record() routine to release the
record when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_DELETED]
The requested record is deleted.

[CMSERR_RECORD_NOT_FOUND]
There is no default key for the database.

Usage

The gsk_get_default_key() routine retrieves the record for the default key. An error will be returned if
there is no default key.

Chapter 8. Certificate Management Services (CMS) API Reference 149

gsk_get_default_label()

gsk get default_label()
Gets the label of the default key record.

Format

#include <gskcms.h>

gsk_status gsk_get_default_label (
gsk_handle db_handle,
char ** label)

Parameters

db_handle
Specifies the database handle returned by the gsk create_database() routine, the
gsk_open_database() routine, or the gsk_open_keyring() routine.

label
Returns the label of the default key record. The application should call the gsk_free_string() routine to
release the label when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_DELETED]
The requested record is deleted.

[CMSERR_RECORD_NOT_FOUND]
There is no default key for the database.

Usage

The gsk_get_default_label() routine returns the label of the default key record. An error will be returned if
there is no default key.

150 system SSL Programming V1R4.0

gsk_get_directory_certificates()

gsk get directory_certificates()

Gets the certificates stored in the LDAP directory for the subject.

Format

#include <gskcms.h>

gsk_status gsk_get_directory_certificates (

gsk_handle directory_handle,
x509_name * subject_name,
gsk_boolean ca_certificates,
pkcs_certificates * certificates)

Parameters

directory _handle
Specifies the directory handle returned by the gsk _open_directory() routine.

subject_name
Specifies the certificate subject.

ca_certificates
Specify TRUE if the subject is a certification authority or FALSE if the subject is an end entity.

certificates
Returns the certificates for the subject. The application should call the gsk_free_certificates() routine
to release the certificates when they are no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BAD_HANDLE]
The directory handle is not valid.

[CMSERR_LDAP]
An error is detected by the LDAP runtime support.

[CMSERR_LDAP_NOT_AVAILABLE]
The LDAP server is not available.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_NOT_FOUND]
The requested certificate is not found.

Usage

The gsk_get_directory_certificates() routine retrieves the certificates stored in the LDAP directory for the
specified subject name. The directory schema is defined by RFC 2587 (PKIX LDAPV2 Schema). The
certificates are stored as attributes of the subject directory entry. Each certificate is encoded as defined by
RFC 2459 (X.509 Public Key Infrastructure). The userCertificate attribute is used to retrieve end entity
certificates while the caCertificate attribute is used to retrieve certification authority certificates.

Retrieved certificates are cached so that it is not necessary to contact the LDAP server for subsequent

requests for the same certificates. The cached certificates will be released when the
gsk_close_directory() routine is called to close the directory handle.

Chapter 8. Certificate Management Services (CMS) API Reference 151

gsk_get_directory_crls()

gsk get_directory crls()

Gets the certificate revocation lists stored in the LDAP directory for the issuer.

Format

#include <gskcms.h>

gsk_status gsk_get_directory crls (

gsk_handle directory_handle,
x509 _name * dist_point_name,
x509_name * issuer_name,
gsk_boolean ca_lists,
x509_crls * crls)

Parameters

directory _handle
Specifies the directory handle returned by the gsk_open_directory() routine.

dist_point_name
Specifies the CRL distribution point name.

issuer_name
Specifies the CRL issuer name.

ca_lists
Specify TRUE to retrieve the revocation lists for CA certificates or FALSE to retrieve the revocations
lists for end entity certificates.

crls
Returns the certificate revocation lists. The application should call the gsk_free cris() routine to
release the lists when they are no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BAD_HANDLE]
The directory handle is not valid.

[CMSERR_LDAP]
An error is detected by the LDAP runtime support.

[CMSERR_LDAP_NOT_AVAILABLE]
The LDAP server is not available.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_NOT_FOUND]
The requested CRL is not found.

Usage

The gsk_get directory _crls() routine retrieves the certificate revocation lists (CRLS) stored in the LDAP
directory for the specified issuer name. The directory schema is defined by RFC 2587 (PKIX LDAPV2
Schema). The revocation lists are stored as attributes of the issuer directory entry. Each CRL is encoded
as defined by RFC 2459 (X.509 Public Key Infrastructure). The certificateRevocationList attribute is used
to retrieve revocation lists for end entity certificates while the authorityRevocationList attribute is used to
retrieve revocation lists for certification authority certificates.

152 system SSL Programming V1R4.0

gsk_get_directory_crls()

The dist_point_name parameter specifies the CRL distribution point name. This name is used as the
distinguished name for the LDAP directory entry. The issuer_name parameter specifies the CRL issuer
name. This name must match the issuer name stored in the CRL.

Retrieved certificate revocation lists are cached so that it is not necessary to contact the LDAP server for
subsequent requests for the same issuer. The cached revocation lists will be released when the
gsk_close_directory() routine is called to close the directory handle. The cached entries will also be
discarded at the end of the cache timeout specified by the GSK_CRL_CACHE_TIMEOUT environment
variable (the default timeout is 24 hours).

Chapter 8. Certificate Management Services (CMS) API Reference 153

gsk_get _record_by_id()

gsk _get_record_by id()
Gets a database record using the record identifier.
Format

#include <gskcms.h>

gsk_status gsk_get_record_by id (

gsk_handle db_handle,
gsk_int32 record_id,
gskdb_record ** record)
Parameters
db_handle

Specifies the database handle returned by the gsk create_database() routine, the
gsk_open_database() routine, or the gsk_open_keyring() routine.

record _id
Specifies the record identifier.

record
Returns the database record. The application should call the gsk free_record() routine to release the
record when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BAD_ HANDLE]
The database handle is not valid.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_NOT_FOUND]
The requested record is not found.

Usage

The gsk_get record by id() routine retrieves a record from a key or request database based upon the
unique record identifier. The record identifier is assigned when the record is added to the database and
does not change as records are added and deleted.

154 system SSL Programming V1R4.0

gsk_get _record_by_index()

gsk get record by index()

Gets a database record using a sequential index.

Format

#include <gskcms.h>

gsk_status gsk_get_record_by index (

gsk_handle db_handle,
int index,
gskdb_record ** record)
Parameters
db_handle

Specifies the database handle returned by the gsk_ create_database() routine, the
gsk_open_database() routine, or the gsk_open_keyring() routine.

index
Specifies the sequential index of the record. The first record in the database is record 1.

record
Returns the database record. The application should call the gsk free_record() routine to release the
record when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_NOT_FOUND]
The requested record is not found.

Usage

The gsk_get record by _index() routine retrieves a record from a key or request database based upon a
sequential index number. The first record in the database is record 1. The index numbers will change as
records are added and deleted.

Chapter 8. Certificate Management Services (CMS) API Reference 155

gsk_get _record_by_label()

gsk get record by label()

Gets a database record using the record label.

Format

#include <gskcms.h>

gsk_status gsk_get_record_by label (

gsk_handle db_handle,
const char * label,
gskdb_record *=* record)
Parameters
db_handle

Specifies the database handle returned by the gsk create_database() routine, the
gsk_open_database() routine, or the gsk_open_keyring() routine.

label
Specifies the label of the database record. The label is specified in the local code page.

record
Returns the database record. The application should call the gsk free_record() routine to release the
record when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BAD_ HANDLE]
The database handle is not valid.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_NOT_FOUND]
The requested record is not found.

Usage

The gsk_get record by label() routine retrieves a record from a key or request database based upon
the record label. The record label is a character string assigned when the record is added to the database.
The label comparison is case sensitive.

156 system SSL Programming V1R4.0

gsk_get_record_by_subject()

gsk get record by subject()

Gets one or more database records using the certificate subject.

Format

#include <gskcms.h>

gsk_status gsk_get_record_by subject (

gsk_handle db_handle,
x509_name * name ,
int * num_records,
gskdb_record *** records)
Parameters
db_handle

Specifies the database handle returned by the gsk create_database() routine, the
gsk_open_database() routine, or the gsk_open_keyring() routine.

name
Specifies the certificate subject.

num_records
Returns the number of records in the array.

records

Returns the array of database records. The application should call the gsk_free_records()

release the array when it is no longer needed.

Results

routine to

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return

codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_INCORRECT_DBTYPE]
The database does not support this operation.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_NOT_FOUND]
The requested record is not found.

Usage

The gsk_get _record_by_subject() routine retrieves all records from a key database with the specified

subject name.

Chapter 8. Certificate Management Services (CMS) API Reference

157

gsk_get _record_labels()

gsk get record_labels()

Gets the record labels for a key or request database.

Format

#include <gskcms.h>

gsk_status gsk_get_record_labels (

gsk_handle db_handle,
gsk_boolean private_key,
int * num_labels,
char **x labels)
Parameters
db_handle

Specifies the database handle returned by the gsk create_database() routine, the
gsk_open_database() routine, or the gsk_open_keyring() routine.

private_key
Specify TRUE if labels for records containing a private key are to be returned. Specify FALSE if labels
for records without a private key are to be returned.

num_labels
Returns the number of record labels.

labels
Returns an array of string addresses. The labels are returned using the local code page. The
application should call the gsk_free_strings() routine to release the record labels when they are no
longer needed.

Results
The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BAD_ HANDLE]
The database handle is not valid.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_get_record_labels() routine returns all of the record labels for a key or request database. The
gsk _get_record_by label() routine can then be used to retrieve a specific database record. The array
address will be set to NULL and the number of labels will be set to 0 if there are no records in the
database.

158 system SSL Programming V1R4.0

gsk_get_update_code()

gsk get_update_code()

Gets the database update code.

Format

#include <gskcms.h>
gsk_status gsk_get_update_code (

gsk_handle db_handle,
gsk uint32 * update_code)

Parameters

db_handle
Specifies the database handle returned by the gsk create_database() routine, the
gsk_open_database() routine, or the gsk_open_keyring() routine.

update_code
Returns the current update code for the database.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_get update_code() routine returns the current update code for the database. For a file-based
database, this is the modification timestamp. For a SAF key ring, this is the ring sequence number. If an
update has occurred, the application can close and then re-open the database to pick up the updates.

Chapter 8. Certificate Management Services (CMS) API Reference 159

gsk_import_certificate()

gsk_import_certificate()

Imports a certificate.

Format

#include <gskcms.h>
gsk_status gsk_import_certificate (

gsk_handle db_handle,
const char * label,
gsk_buffer * stream)
Parameters
db_handle

Specifies the database handle returned by the gsk create_database() routine or the
gsk_open_database() routine.

label
Specifies the label for the new database record. The label is specified in the local code page.

Stream
Specifies the byte stream of the encoded certificate.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BACKUP_EXISTS]
The backup file already exists.

[CMSERR_BAD_BASE64 ENCODING]
The Base64 encoding of the import file is not correct.

[CMSERR_BAD_ENCODING]
The import file format is not recognized.

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_BAD_LABEL]
The record label is not valid.

[CMSERR_BAD_SIGNATURE]
The certificate signature is not correct.

[CMSERR_DUPLICATE_CERTIFICATE]
The database already contains the certificate.

[CMSERR_EXPIRED]
The certificate is expired.

[CMSERR_INCORRECT_DBTYPE]
The database type does not support certificates.

[CMSERR_INCORRECT_KEY_USAGE]
The issuer certificate does not allow signing certificates.

[CMSERR_ISSUER_NOT_CA]
The certificate issuer is not a certification authority.

[CMSERR_ISSUER_NOT_FOUND]
The issuer certificate is not in the key database.

160 system SSL Programming V1R4.0

gsk_import_certificate()

[CMSERR_IO_ERROR]
Unable to write record.

[CMSERR_LABEL_NOT_UNIQUE]
The record label is not unique.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NOT_YET_VALID]
The certificate is not yet valid.

[CMSERR_RECORD_TOO_BIG]
The record is larger than the database record length.

[CMSERR_UPDATE_NOT_ALLOWED]
Database is not open for update.

Usage

The gsk_import_certificate() routine imports an X.509 certificate and creates a new database record. An
error will be returned if the certificate is already in the database. The database must be a key database
and must be open for update in order to import certificates.

The supplied stream can represent either the ASN.1 DER encoding for the certificate or the Cryptographic
Message Syntax (PKCS #7) encoding for the certificate. This can be either the binary value or the Base64
encoding of the binary value. A Base64 encoded stream must be in the local code page and must include
the encoding header and footer lines.

The gsk_import_certificate() routine imports a single certificate. If the PKCS #7 message contains
multiple certificates, only the first certificate will be imported.

A unique record identifier is assigned when the record is added to the database. The certificate signature
will be verified using the certificate of the issuer. An error will be returned if the issuer certificate is not
already in the key database. The certificate will be marked as a trusted certificate when it is added to the
database.

The record label is used as a friendly name for the database entry. It can be any value and consists of
characters which can be represented using 7-bit ASCII (letters, numbers, and punctuation). It may not be
an empty string.

An existing certificate can be replaced by specifying the label of the existing certificate. The issuer name,
subject name, and subject public key in the new certificate must be the same as the existing certificate. If
the existing certificate has a private key, the private key is not changed when the certificate is replaced.

The database file is updated as part of the gsk_import_certificate() processing. A temporary database file
is created using the same name as the database file with ".new” appended to the name. The database file
is then overwritten and the temporary database file is deleted. The temporary database file will not be
deleted if an error occurs while rewriting the database file.

Chapter 8. Certificate Management Services (CMS) API Reference 161

gsk_import_key()

gsk_import_key()
Imports a certificate and associated private key.
Format

#include <gskcms.h>

gsk_status gsk_import_key (

gsk_handle db_handle,
const char * label,
const char * password,
gsk_buffer * stream)
Parameters
db_handle

Specifies the database handle returned by the gsk create_database() routine or the
gsk_open_database() routine.

label
Specifies the label for the new database record. The label is specified in the local code page.

password
Specifies the password for the import file. The password is in the local code page and must consist of
characters which can be represented using 7-bit ASCII (letters, numbers, and punctuation). It may not
be an empty string. The user will be prompted to enter the password if NULL is specified for this
parameter.

Stream
Specifies the byte stream for the encoded certificate and private key.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BACKUP_EXISTS]
The backup file already exists.

[CMSERR_BAD_BASE64_ENCODING]
The Base64 encoding of the import file is not correct.

[CMSERR_BAD_ENCODING]
The import file format is not recognized.

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_BAD LABEL]
The record label is not valid.

[CMSERR_BAD_SIGNATURE]
The certificate signature is not correct.

[CMSERR_DUPLICATE_CERTIFICATE]
The database already contains the certificate.

[CMSERR_EXPIRED]
The certificate is expired.

[CMSERR_INCORRECT_DBTYPE]
The database type does not support certificates.

162 system SSL Programming V1R4.0

gsk_import_key()

[CMSERR_INCORRECT_KEY_USAGE]
The issuer certificate does not allow signing certificates.

[CMSERR_ISSUER_NOT_CA]
The certificate issuer is not a certification authority.

[CMSERR_ISSUER_NOT_FOUND]
The issuer certificate is not in the key database.

[CMSERR_IO_ERROR]
Unable to write record.

[CMSERR_LABEL_NOT_UNIQUE]
The record label is not unique.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NOT_YET_VALID]
The certificate is not yet valid.

[CMSERR_RECORD_TOO_BIG]
The record is larger than the database record length.

[CMSERR_UPDATE_NOT_ALLOWED]
Database is not open for update.

Usage

The gsk_import_key() routine imports an X.509 certificate and its private key and creates a new database
record. An error will be returned if the database already contains the certificate. The database must be
open for update in order to import certificates.

The certificate and key must have been encoded according to the Personal Information Exchange Syntax
(PKCS #12). The supplied stream can be the binary ASN.1 sequence or the Base64 encoding of the
ASN.1 sequence. A Base64 encoded stream is assumed to be in the local code page and must include
the encoding header and footer lines.

The record label is used as a friendly name for the database entry. It can be any value and consists of
characters which can be represented using 7-bit ASCII (letters, numbers, and punctuation). It may not be
an empty string.

A unique record identifier is assigned when the record is added to the database. The certificate signature
will be verified using the certificate of the issuer. The certificate will be marked as a trusted certificate
when it is added to the database.

Each certificate in the certification chain will be imported if it is present in the import file. The certificate
subject name will be used as the label for certificates added from the certification chain. A chain certificate
will not be added to the database if the label is not unique or if the certificate is already in the database.

The database file is updated as part of the gsk_import_key() processing. A temporary database file is
created using the same name as the database file with ".new” appended to the name. The database file is
then overwritten and the temporary database file is deleted. The temporary database file will not be
deleted if an error occurs while rewriting the database file.

Chapter 8. Certificate Management Services (CMS) API Reference 163

gsk_make_content_msg()

gsk_make content_msg()
Creates a PKCS #7 content information message.

Format
#include <gskcms.h>
gsk_status gsk_make_content_msg (

pkcs_content_info * content_info,
gsk_buffer * stream)

Parameters

content_info
Specifies the content information for the message.

Stream
Returns the ASN.1 DER-encoded stream. The application should call the gsk_free_buffer() routine to
release the stream when it is no longer needed.

Results
The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_CONTENT_NOT_SUPPORTED)]
The content type is not supported

[CMSERR_NO_MEMORY]
Insufficient storage is available

Usage

The gsk_make_content_msg() routine creates a PKCS #7 (Cryptographic Message Syntax) message
using the supplied content information and returns the ASN.1 DER-encoded Contentinfo sequence. The
message content type can be any of the types defined by the PKCS #7 specification. The
gsk_read_content_msg() routine can be used to extract the content information from the stream.

164 system SSL Programming V1R4.0

gsk_make_data_content()

gsk _make data_content()
Creates PKCS #7 Data content information from application data.

Format

#include <gskcms.h>

gsk_status gsk_make_data_content (
gsk_buffer = data,
pkcs_content_info * content_info)

Parameters

data
Specifies the application data.

content_info
Returns the Data content information. The application should call the gsk_free_content_info() routine
to release the content information when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_NO_CONTENT_DATA]
The application data length is zero

[CMSERR_NO_MEMORY]
Insufficient storage is available

Usage

The gsk_make_data_content() routine creates PKCS #7 (Cryptographic Message Syntax) Data content
information. The gsk read_data_content() routine can be used to extract the application data from the
content information.

Chapter 8. Certificate Management Services (CMS) API Reference 165

gsk_make data_msg()

gsk _make data_msg()
Creates a PKCS #7 Data message from application data.

Format

#include <gskcms.h>

gsk_status gsk _make_data_msg (
gsk_buffer = data,
gsk_buffer * stream)

Parameters

data
Specifies the application data.

Stream
Returns the ASN.1 DER-encoded stream. The application should call the gsk_free_buffer() routine to
release the stream when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_NO_CONTENT_DATA]
The application data length is zero

[CMSERR_NO_MEMORY]
Insufficient storage is available

Usage

The gsk_make_data_msg() routine creates a PKCS #7 (Cryptographic Message Syntax) Data message
and returns the ASN.1 DER-encoded Contentinfo sequence. The message content type will be Data. The
gsk_read_data_msg() routine can be used to extract the application data from the stream.

Calling the gsk_make_data_msg() routine is equivalent to calling the gsk_make_data_content() routine
followed by the gsk_make content_msg() routine.

166 System SSL Programming V1R4.0

gsk_make_encrypted_data_content()

gsk_make_encrypted_data_content()
Creates PKCS #7 EncryptedData content information.

Format

#include <gskcms.h>

gsk_status gsk_make_encrypted_data_content (

int version,
x509_algorithm_type pbe algorithm,
const char * password,

int iterations,

pkcs_content_info * content_data,
pkcs_content_info * content_info)

Parameters

version
Specifies the PKCS #7 EncryptedData version number. This must be 0.

pbe_algorithm
Specifies the password-based encryption algorithm.

password
Specifies the encryption password as a null-terminated string in the local code page. The user will be
prompted to enter the password if NULL is specified for this parameter.

iterations
Specifies the number of iterations used to derive the encryption key from the password. It is
recommended that iterations be specified as 1024 or greater.

content_data
Specifies the EncryptedData content. This must be one of the content information types defined in
PKCS #7.

content_info
Returns the EncryptedData content information. The application should call the
gsk_free_content_info() routine to release the content information when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_ALG_NOT_AVAILABLE]
Encryption algorithm is not available

[CMSERR_ALG_NOT_SUPPORTED]
Encryption algorithm is not supported

[CMSERR_CONTENT_NOT_SUPPORTED]
The content type is not supported

[CMSERR_NO_CONTENT_DATA]
The content data length is zero

[CMSERR_NO_MEMORY]
Insufficient storage is available

[CMSERR_VERSION_NOT_SUPPORTED]
The version is not valid

Chapter 8. Certificate Management Services (CMS) API Reference 167

gsk_make_encrypted_data_content()

Usage

The gsk_make_encrypted_data_content() routine creates PKCS #7 (Cryptographic Message Syntax)
EncryptedData content information. The data content type must be one of the types defined by PKCS #7.
The gsk_read_encrypted_data content() routine can be used to extract the content data from the
content information.

The encryption key is derived from the password as described in PKCS #5 (Password-based Encryption)
and PKCS #12 (Personal Information Exchange). The selected algorithm determines how the key is
derived from the password.

The following password-based encryption algorithms are supported. The strong encryption algorithms may
not be available depending upon government export regulations.

* x509_alg pbeWithMd2AndDesCbc - 56-bit DES encryption with MD2 digest - {1.2.840.113549.1.5.1}
* x509_alg_pbeWithMd5AndDesCbc - 56-bit DES encryption with MD5 digest - {1.2.840.113549.1.5.3}
» x509_alg_pbeWithShalAndDesChc - 56-bit DES encryption with SHA-1 digest - {1.2.840.113549.1.5.10}
* x509 alg pbeWithMd2AndRc2Cbc - 64-bit RC2 encryption with MD2 digest - {1.2.840.113549.1.5.4}
* x509_alg_pbeWithMd5AndRc2Cbc - 64-bit RC2 encryption with MD5 digest - {1.2.840.113549.1.5.6}
» x509_alg_pbeWithShalAndRc2Chc - 64-bit RC2 encryption with SHA-1 digest - {1.2.840.113549.1.5.11}

* x509_alg pbeWithShalAnd40BitRc2Chc - 40-bit RC2 encryption with SHA-1 digest -
{1.2.840.113549.1.12.1.6}

* x509_alg_pbeWithShalAnd128BitRc2Cbc - 128-bit RC2 encryption with SHA-1 digest -
{1.2.840.113549.1.12.1.5}

* x509 alg pbeWithShalAnd40BitRc4 - 40-bit RC4 encryption with SHA-1 digest -
{1.2.840.113549.1.12.1.2}

* x509 alg pbeWithShalAnd128BitRc4 - 128-hit RC4 encryption with SHA-1 digest -
{1.2.840.113549.1.12.1.1}

* x509_alg_pbeWithShalAnd3DesCbc - 168-bit 3DES encryption with SHA-1 digest -
{1.2.840.113549.1.12.1.3}

168 system SSL Programming V1R4.0

gsk_make_encrypted_data_msg()

gsk_make_encrypted_data_msg()
Creates a PKCS #7 EncryptedData message from application data.

Format

#include <gskcms.h>

gsk_status gsk_make_encrypted_data_msg (

int version,
x509_algorithm_type pbe_algorithm,
const char * password,
int iterations,
gsk_buffer * data,
gsk_buffer * stream)
Parameters
version

Specifies the PKCS #7 EncryptedData version number. This must be 0.

pbe_algorithm
Specifies the password-based encryption algorithm.
password

Specifies the encryption password as a null-terminated string in the local code page. The user will be
prompted to enter the password if NULL is specified for this parameter.

iterations
Specifies the number of iterations used to derive the encryption key from the password. It is
recommended that iterations be specified as 1024 or greater.

data
Specifies the application data for the EncryptedData message.

Stream
Returns the ASN.1 DER-encoded stream. The application should call the gsk free_buffer() routine to
release the stream when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_ALG_NOT_AVAILABLE]
Encryption algorithm is not available

[CMSERR_ALG_NOT_SUPPORTED]
Encryption algorithm is not supported

[CMSERR_CONTENT_NOT_SUPPORTED)]
The content type is not supported

[CMSERR_NO_CONTENT_DATA]
The content data length is zero

[CMSERR_NO_MEMORY]
Insufficient storage is available

[CMSERR_VERSION_NOT_SUPPORTED]
The version is not valid

Chapter 8. Certificate Management Services (CMS) API Reference 169

gsk_make_encrypted_data_msg()

Usage

The gsk_make_encrypted_data_msg() routine creates a PKCS #7 (Cryptographic Message Syntax)
EncryptedData message and returns the ASN.1 DER-encoded Contentinfo sequence. The encrypted data
content type will be Data. The gsk_read_encrypted_data _msg() routine can be used to extract the
application data from the stream.

Calling the gsk_make_encrypted_data_msg() routine is equivalent to calling the
gsk_make_data_content() routine, the gsk_make_encrypted_data content() routine, and the
gsk_make_content_msg() routine.

The encryption key is derived from the password as described in PKCS #5 (Password-based Encryption)
and PKCS #12 (Personal Information Exchange). The selected algorithm determines how the key is
derived from the password.

The following password-based encryption algorithms are supported. The strong encryption algorithms may
not be available depending upon government export regulations.

» x509_alg_pbeWithMd2AndDesChbc - 56-bit DES encryption with MD2 digest - {1.2.840.113549.1.5.1}
* x509 alg pbeWithMd5AndDesCbc - 56-bit DES encryption with MD5 digest - {1.2.840.113549.1.5.3}
* x509_alg_pbeWithShalAndDesCbc - 56-bit DES encryption with SHA-1 digest - {1.2.840.113549.1.5.10}
* x509_alg_pbeWithMd2AndRc2Chbc - 64-bit RC2 encryption with MD2 digest - {1.2.840.113549.1.5.4}
* x509 _alg pbeWithMd5AndRc2Cbc - 64-bit RC2 encryption with MD5 digest - {1.2.840.113549.1.5.6}
* x509_alg_pbeWithShalAndRc2Cbc - 64-bit RC2 encryption with SHA-1 digest - {1.2.840.113549.1.5.11}

* x509_alg_pbeWithShalAnd40BitRc2Cbc - 40-bit RC2 encryption with SHA-1 digest -
{1.2.840.113549.1.12.1.6}

* x509 alg pbeWithShalAnd128BitRc2Cbc - 128-bit RC2 encryption with SHA-1 digest -
{1.2.840.113549.1.12.1.5}

* x509 alg_pbeWithShalAnd40BitRc4 - 40-bit RC4 encryption with SHA-1 digest -
{1.2.840.113549.1.12.1.2}

» x509_alg_pbeWithShalAnd128BitRc4 - 128-bit RC4 encryption with SHA-1 digest -
{1.2.840.113549.1.12.1.1}

* x509_alg_pbeWithShalAnd3DesCbc - 168-bit 3DES encryption with SHA-1 digest -
{1.2.840.113549.1.12.1.3}

170 system SSL Programming V1R4.0

gsk_make_enveloped_data_content()

gsk_make_enveloped_data_content()
Create PKCS #7 EnvelopedData content information

Format

#include <gskcms.h>

gsk_status gsk_make_enveloped_data_content (
int version,
pkcs_session_key * session_key,
pkcs_certificates * recipient_certificates,
pkcs_content_info * content data,
pkcs_content_info * content_info)

Parameters

version
Specifies the PKCS #7 EnvelopedData version number. Specify 0 to create EnvelopedData content as
described in PKCS #7 Version 1.5. Specify 1 to create EnvelopedData content as described in PKCS
#7 Version 1.6.

session_key
Specifies the session encryption key as follows:
* The encryptionType field specifies the encryption algorithm.
* The encryptionKey.length field specifies the encryption key length in bytes.

* The encryptionKey.data field specifies the address of the encryption key. A new key will be
generated and returned in this parameter if the key address is NULL. If a new key is generated, the
application should call the gsk_free_buffer() routine to release the key when it is no longer needed.
Note that the encryptionType and encryptionKey.length fields must be set by the application even
when a new session key is to be generated.

recipient_certificates
Specifies the certificates for the message recipients. There must be at least one recipient.

content_data
Specifies the EnvelopedData content. This must be one of the content information types defined in
PKCS #7.

content_info
Returns the EnvelopedData content information. The application should call the
gsk_free_content_info() routine to release the content information when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_ALG_NOT_AVAILABLE]
The encryption algorithm is not available

[CMSERR_ALG_NOT_SUPPORTED]
The encryption algorithm is not supported

[CMSERR_BAD_KEY_SIZE]
The encryption key size is not supported

[CMSERR_CONTENT_NOT_SUPPORTED]
The content type is not supported

Chapter 8. Certificate Management Services (CMS) API Reference 171

gsk_make_enveloped_data_content()

[CMSERR_INCORRECT_KEY_USAGE]
A recipient certificate does not allow key encipherment

[CMSERR_KEY_MISMATCH]
A recipient public key does not support data encryption

[CMSERR_NO_CONTENT_DATA]
The content data length is zero

[CMSERR_NO_MEMORY]
Insufficient storage is available

[CMSERR_RECIPIENT_NOT_FOUND]
No recipient certificates provided

[CMSERR_VERSION_NOT_SUPPORTED]
The version is not valid

Usage

The gsk_make_enveloped_data_content() routine creates PKCS #7 (Cryptographic Message Syntax)
EnvelopedData content information. The data content type must be one of the types defined by PKCS #7.
The gsk_read_enveloped_data_content() routine can be used to extract the content data from the
EnvelopedData content information. No validity checking is performed on the recipient certificates. It is
assumed that the application has already validated the recipient certificates.

The session key is used to encrypt the message content. A new session key is generated and returned to
the application if no key is provided. For each recipient, the session key is encrypted with the recipient’s
public key and stored in the EnvelopedData message. This means the public key algorithm must support
data encryption. Currently, only RSA public keys support data encryption. In addition, the certificate key
usage must allow key encipherment.

The following encryption algorithms are supported. Strong encryption may not be available depending
upon government export regulations.

* x509 alg rc2ChcPad - 40-bit and 128-bit RC2 - Key lengths 5 and 16 - {1.2.840.113549.3.2}
» x509 _alg_rc4 - 40-bit and 128-bit RC4 - Key lengths 5 and 16 - {1.2.840.113549.3.4}

» x509_alg_desCbcPad - 56-bit DES - Key length 8 - {1.3.14.3.2.7}

* x509_alg_desEde3ChcPad - 168-bit 3DES - Key length 24 - {1.2.840.113549.3.7}

172 system SSL Programming V1R4.0

gsk_make_enveloped_data_msg()

gsk_make_enveloped_data_msg()
Creates a PKCS #7 EnvelopedData message from application data.

Format

#include <gskcms.h>

gsk_status gsk_make_enveloped_data_msg (

int version,
pkcs_session_key * session_key,
pkcs_certificates * recipient_certificates,
gsk_buffer * data,

gsk_buffer * stream)

Parameters

version
Specifies the PKCS #7 EnvelopedData version number. Specify 0 to create an EnvelopedData
message as described in PKCS #7 Version 1.5. Specify 1 to create an EnvelopedData message as
described in PKCS #7 Version 1.6.

session_key
Specifies the session encryption key as follows:
* The encryptionType field specifies the encryption algorithm.
* The encryptionKey.length field specifies the encryption key length in bytes.

* The encryptionKey.data field specifies the address of the encryption key. A new key will be
generated and returned in this parameter if the key address is NULL. If a new key is generated, the
application should call the gsk_free_buffer() routine to release the key when it is no longer needed.
Note that the encryptionType and encryptionKey.length fields must be set by the application even
when a new session key is to be generated.

recipient_certificates
Specifies the certificates for the message recipients. There must be at least one recipient.

data
Specifies the application data for the EnvelopedData message.

Stream
Returns the ASN.1 DER-encoded stream. The application should call the gsk_free_buffer() routine to
release the stream when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_ALG_NOT_AVAILABLE]
The encryption algorithm is not available.

[CMSERR_ALG_NOT_SUPPORTED]
The encryption algorithm is not supported.

[CMSERR_BAD_KEY_SIZE]
The encryption key size is not supported.

[CMSERR_CONTENT_NOT_SUPPORTED]
The content type is not supported.

[CMSERR_INCORRECT_KEY_USAGE]
A recipient certificate does not allow key encipherment.

Chapter 8. Certificate Management Services (CMS) API Reference 173

gsk_make_enveloped_data_msg()

[CMSERR_KEY_MISMATCH]
A recipient public key does not support data encryption.

[CMSERR_NO_CONTENT_DATA]
The content data length is zero.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECIPIENT_NOT_FOUND]
No recipient certificates provided.

[CMSERR_VERSION_NOT_SUPPORTED]
The version is not valid.

Usage

The gsk_make_enveloped_data_msg() routine creates a PKCS #7 (Cryptographic Message Syntax)
EnvelopedData message and returns the ASN.1 DER-encoded Contentinfo sequence. The enveloped data
content type will be Data. The gsk_read_enveloped_data_msg() routine can be used to extract the
application data from the stream. No validity checking is performed on the recipient certificates. It is
assumed that the application has already validated the recipient certificates.

Calling the gsk_make_enveloped_data_msg() routine is equivalent to calling the
gsk_make_data_content() routine, the gsk_make_enveloped_data_content() routine, and the
gsk_make_content_msg() routine.

The session key is used to encrypt the message content. A new session key is generated and returned to
the application if no key is provided. For each recipient, the session key is encrypted with the recipient’s
public key and stored in the EnvelopedData message. This means the public key algorithm must support
data encryption. Currently, only RSA public keys support data encryption. In addition, the certificate key
usage must allow key encipherment.

The following encryption algorithms are supported. Strong encryption may not be available depending
upon government export regulations.

» x509_alg_rc2ChcPad - 40-bit and 128-bit RC2 - Key lengths 5 and 16 - {1.2.840.113549.3.2}
» x509 alg rc4 - 40-bit and 128-bit RC4 - Key lengths 5 and 16 - {1.2.840.113549.3.4}
x509_alg_desChcPad - 56-bit DES - Key length 8 - {1.3.14.3.2.7}
x509_alg_desEde3ChcPad - 168-bit 3DES - Key length 24 - {1.2.840.113549.3.7}

174 system SSL Programming V1R4.0

gsk_make_signed_data_content()

gsk_make signed _data_content()
Creates PKCS #7 SignedData content information.

Format

#include <gskcms.h>

gsk_status gsk _make_signed_data_content (

int version,
x509_algorithm_type digest_algorithm,
gsk_boolean include_certificates,
pkcs_cert_keys * signer_certificates,

pkcs_certificates * ca_certificates,
pkcs_content_info * content_data,
pkcs_content_info * content_info)

Parameters

version
Specifies the PKCS #7 SignedData version number. Specify 0 to create SignedData content
information as described in PKCS #7 Version 1.4, specify 1 to create SignedData content information
as described in PKCS #7 Version 1.5, or specify 2 to create SignedData content information as
described in PKCS #7 Version 1.6.

digest_algorithm
Specifies the digest algorithm.

include_certificates
Specify TRUE if the signer and certification authority certificates are to be included in the SignedData
content information. Specify FALSE if the certificates are not to be included.

signer_certificates
Specifies the certificates and associated private keys for the message signers. There must be at least
one signetr.

ca_certificates
Specifies the certification authority certificates. Zero or more certification authority certificates can be
included in the SignedData content information. This parameter is ignored if the include_certificates
parameter is set to FALSE. NULL can be specified for this parameter if no CA certificates are to be
included in the message.

content_data
Specifies the SignedData content. This must be one of the content information types defined in PKCS
#7.

content_info
Returns the SignedData content information. The application should call the gsk_free_content_info()
routine to release the content information when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_ALG_NOT_SUPPORTED]
The digest algorithm is not supported.

[CMSERR_CONTENT_NOT_SUPPORTED]
The content type is not supported.

Chapter 8. Certificate Management Services (CMS) API Reference 175

gsk_make_signed_data_content()

[CMSERR_INCORRECT_KEY_USAGE]
A signer certificate does not allow digital signature.

[CMSERR_KEY_MISMATCH]
The digest algorithm is not supported for the private key type.

[CMSERR_NO_CONTENT_DATA]
The content data length is zero.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_SIGNER_NOT_FOUND]
No signer certificate provided or the certificate is not valid.

[CMSERR_VERSION_NOT_SUPPORTED]
The version is not valid

Usage

The gsk_make_signed_data_content() routine creates PKCS #7 (Cryptographic Message Syntax)
SignedData content information. The data content type must be one of the types defined by PKCS #7. The
gsk_read_signed_data_content() routine can be used to extract the content data from the SignedData
content information. The key usage for the signer certificates must allow digital signature. No validity
checking will be performed on the signer certificates. It is assumed that the application has already
validated the signer certificates.

A signature is included for each signer provided by the signer_certificates parameter. The X.509
certificates used to sign the message will be included in the SignedData content information if the
include_certificates parameter is set to TRUE. The message receiver will need to provide the signer
certificates if the include_certificates parameter is set to FALSE.

You can optionally include certification authority certificates in the SignedData content information. These
certificate can then be used by the message receiver to validate the signer certificates.

The following digest algorithms are supported.

* x509 alg_md2Digest - MD2 digest (RSA keys only) - {1.2.840.113549.2.2}
» x509 alg_md5Digest - MD5 digest (RSA keys only) - {1.2.840.113549.2.5}
* x509_alg_shalDigest - SHA-1 digest (RSA and DSA keys) - {1.3.14.3.2.26}

176 system SSL Programming V1R4.0

gsk_make_signed_data_msg()

gsk_make signed data_msg()
Creates a PKCS #7 SignedData message from application data.

Format

#include <gskcms.h>

gsk_status gsk_make_signed_data_msg (

int version,
x509_algorithm_type digest algorithm,
gsk_boolean include_certificates,
pkcs_cert_keys * signer_certificates,
pkcs_certificates * ca_certificates,
gsk_buffer = data,
gsk_buffer * stream)
Parameters
version

Specifies the PKCS #7 SignedData version number. Specify 0 to create a SignedData message as
described in PKCS #7 Version 1.4, specify 1 to create a SignedData message as described in PKCS
#7 Version 1.5, or specify 2 to create a SignedData message as described in PKCS #7 Version 1.6.

digest_algorithm
Specifies the digest algorithm.

include_certificates
Specify TRUE if the signer and certification authority certificates are to be included in the SignedData
message. Specify FALSE if the certificates are not to be included.

signer_certificates
Specifies the certificates and associated private keys for the message signers. There must be at least
one signer.

ca_certificates
Specifies the certification authority certificates. Zero or more certification authority certificates can be
included in the SignedData message. This parameter is ignored if the include_certificates parameter is
set to FALSE. NULL can be specified for this parameter if no CA certificates are to be included in the
message.

data
Specifies the application data for the SignedData message.

Stream
Returns the ASN.1 DER-encoded stream. The application should call the gsk_free_buffer() routine to
release the stream when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_ALG_NOT_SUPPORTED]
The digest algorithm is not supported.

[CMSERR_CONTENT_NOT_SUPPORTED]
The content type is not supported.

[CMSERR_INCORRECT_KEY_USAGE]
A signer certificate does not allow digital signature.

Chapter 8. Certificate Management Services (CMS) API Reference 177

gsk_make_signed_data_msg()

[CMSERR_KEY_MISMATCH]
The digest algorithm is not supported for the private key type.

[CMSERR_NO_CONTENT_DATA]
The content data length is zero.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_SIGNER_NOT_FOUND]
No signer certificate provided or the certificate is not valid.

[CMSERR_VERSION_NOT_SUPPORTED]
The version is not valid.

Usage

The gsk_make_signed_data_msg() routine creates a PKCS #7 (Cryptographic Message Syntax)
SignedData message and returns the ASN.1 DER-encoded Contentinfo sequence. The signed data
content type will be Data. The gsk_read_signed_data_msg() routine can be used to extract the
application data from the stream. The key usage for the signer certificates must allow digital signature. No
validity checking will be performed on the signer certificates. It is assumed that the application has already
validated the signer certificates.

Calling the gsk_make_signed_data_msg() routine is equivalent to calling the gsk_make_data_content()
routine, the gsk_make_signed_data_content() routine, and the gsk_make_content_msg() routine.

A signature is included for each signer provided by the signer_certificates parameter. The X.509
certificates used to sign the message will be included in the SignedData message if the
include_certificates parameter is set to TRUE. The message receiver will need to provide the signer
certificates if the include_certificates parameter is set to FALSE.

You can optionally include certification authority certificates in the SignedData message. These certificate
can then be used by the message receiver to validate the signer certificates.

The following digest algorithms are supported.

* x509 alg_md2Digest - MD2 digest (RSA keys only) - {1.2.840.113549.2.2}
» x509 alg_md5Digest - MD5 digest (RSA keys only) - {1.2.840.113549.2.5}
* x509_alg_shalDigest - SHA-1 digest (RSA and DSA keys) - {1.3.14.3.2.26}

178 system SSL Programming V1R4.0

gsk_make_wrapped_content()

gsk_make_wrapped_content()

Format
#include <gskcms.h>
gsk_status gsk _make_wrapped_content (

pkcs_content_info * content_info,
pkcs_content_info * wrapped_content)

Parameters

content_info
Specifies the content information to be wrapped.

wrapped_content
Returns the wrapped content information. The application should call the gsk free_content_info()
routine to release the content information when it is no longer needed.

Results
The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_CONTENT_NOT_SUPPORTED]
The content type is not supported.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_make_wrapped_content() routine wraps the supplied content information in an ASN.1 sequence
and returns a new content information containing the wrapped data. The type of the wrapped content
information is the same as the type of the original content information. The gsk_read_wrapped_content()
routine can be used to extract the original content information.

Chapter 8. Certificate Management Services (CMS) API Reference 179

gsk_mktime()

gsk _mktime()
Converts year/month/day time value to number of seconds since the POSIX epoch

Format

#include <gskcms.h>

gsk_time gsk_mktime (
gsk_timeval =* ts)

Parameters

ts Specifies the time to be converted. The tm_year, tm_mon, tm_mday, tm_hour, tm_min, and tm_sec
fields are used to generate the converted time.

Results

The return value is the number of seconds since January 1, 1970. Leap seconds are not included in the
computation.

Usage

The gsk_mktime() routine converts the time specified in year/month/day format to the number of seconds
since the POSIX epoch (January 1, 1970). The gsk_mktime() routine differs from the mktime() routine in
that the time is UTC and is not adjusted for the local timezone or for daylight savings time.

The year value must be between 1970 and 2106 and is the actual year minus 1900, so tm_year must be

between 70 and 206, tm_mon must be between 0 and 11, tm_mday must be between 1 and 31, tm_hour
must be between 0 and 23, tm_min must be between 0 and 59, and tm_sec must be between 0 and 59.

180 system SSL Programming V1R4.0

gsk_name_compare()

gsk_name_compare()
Compares two X.509 names.

Format

#include <gskcms.h>
gsk_boolean gsk_name_compare (

x509_name * namel ,
x509_name * name?2)

Parameters

namel
Specifies the first name to be compared.

nameZ2
Specifies the second name to be compare.

Results

Usage

The gsk_name_compare() routine compares two X.509 names and return TRUE if the names are the

same and FALSE if they are not the same.

Two names are considered equal if they contain the same sequence of attribute types and attribute values.
Attribute values are considered equal if they represent the same character string. If a relative distinguished
name (RDN) contains multiple attributes, the attributes must be specified in ascending order based upon

their ASN.1 DER encoding. Strings are always stored using UTF-8 encoding.

Printable strings (gsk_string_printable) are a special case. Multiple spaces are treated as a single space
and the comparison is not case sensitive. Case-sensitive comparisons are used for all other string types.

Chapter 8. Certificate Management Services (CMS) API Reference 181

gsk_name_to_dn()

gsk_name_to_dn()
Converts an X.509 name to a DN string.

Format

#include <gskcms.h>

gsk_status gsk_name_to_dn (
x509_name * name,
char ** dn)

Parameters

name
Specifies the X.509 name to be converted to a distinguished name string. The X.509 strings use
UTF-8 encoding.

dn Returns the distinguished name in the local code page. The application should call the
gsk_free_string() routine to release the string when it is no longer needed.

Results
The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[ASN_CANT_CONVERT]
The X.509 name is not a distinguished name.

[ASN_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_name_to_dn() routine converts an X.509 name to a distinguished name (DN) string in
accordance with RFC 2253 (UTF-8 String Representation of Distinguished Names). The DN string will
consist of single-byte characters in the local code page. A double-byte character will be represented using
the escaped UTF-8 encoding of the double-byte character in the UCS-2 or UCS-4 character set.

The following DN attribute names are generated by the System SSL runtime. Unrecognized attribute types
will be encoded using the numeric object identifier followed by the DER-encoded representation of the
attribute value.

* C - Country

* CN - Common name

* DC - Domain component
* EMAIL - E-mail address
e L - Locality

* O - Organization name

* QU - Organizational unit name
* PC - Postal code

* SN - Surname

* ST - State or province

e STREET - Street

e T-Title

182 system SSL Programming V1R4.0

gsk_open_database()

gsk _open_database()
Opens a key or request database.

Format

#include <gskcms.h>

gsk_status gsk_open_database (

const char * filename,
const char * password,
gsk_boolean update_mode,
gsk_handle * db_handle,
gskdb_database_type * db_type,
int * num_records)
Parameters
filename

Specifies the database file name in the local code page. The length of the fully-qualified filename
cannot exceed 251.

password
Specifies the database password in the local code page. The user will be prompted to enter the
password if NULL is specified for this parameter.

update_mode
Specifies the file access mode. Specify TRUE if the database will be updated and FALSE if the
database will not be updated. The application must have write access to the file if TRUE is specified.

db_handle
Returns the database handle. The application should call the gsk close_database() routine when it
no longer needs access to the database.

db_type
Returns the database type.

num_records
Returns the number of records in the database.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_ACCESS_DENIED]
The file permissions do not allow access.

[CMSERR_BAD_FILENAME]
The database file name is not valid.

[CMSERR_DB_CORRUPTED]
The database file is not valid.

[CMSERR_DB_LOCKED]
The database is open for update by another process.

[CMSERR_FILE_NOT_FOUND]
The database file is not found.

[CMSERR_IO_CANCELED]
The user canceled the password prompt.

Chapter 8. Certificate Management Services (CMS) API Reference 183

gsk_open_database()

[CMSERR_IO_ERROR]
An input/output request failed.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_OPEN_FAILED]
Unable to open the database.

Usage

The gsk_open_database() routine will open a key or request database file for either read-only or
read/write access. The database must already exist. The database integrity will be verified and the open
will fail if the database has been incorrectly modified. Only one process at a time may open a database in
update mode. The database may be accessed by multiple concurrent threads in the same process as long
as the same database handle is used by all of the threads.

184 system SSL Programming V1R4.0

gsk_open_database_using_stash_file()

gsk _open_database_using_stash_file()
Opens a key or request database using a stash file for the database password.

Format

#include <gskcms.h>

gsk_status gsk_open_database_using_stash_file (

const char * database_filename,
const char * stash_filename,
gsk_boolean update_mode,
gsk_handle * db_handle,
gskdb_database_type * db_type,

int * num_records)

Parameters

database _filename
Specifies the database file name in the local code page. The length of the fully-qualified filename
cannot exceed 251.

stash_filename
Specifies the stash file name in the local code page. The length of the fully-qualified filename cannot
exceed 251. The stash file name always has an extension of ".sth” and the supplied name will be
changed if it does not have the correct extension.

update_mode
Specifies the file access mode. Specify TRUE if the database will be updated and FALSE if the
database will not be updated. The application must have write access to the file if TRUE is specified.

db_handle
Returns the database handle. The application should call the gsk close_database() routine when it
no longer needs access to the database.

db_type
Returns the database type.

num_records
Returns the number of records in the database.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_ACCESS_DENIED]
The file permissions do not allow access.

[CMSERR_BAD_FILENAME]
The database file name is not valid.

[CMSERR_DB_CORRUPTED]
The database file is not valid.

[CMSERR_DB_LOCKED]
The database is open for update by another process.

[CMSERR_FILE_NOT_FOUND]
The database file is not found.

[CMSERR_IO_ERROR]
An input/output request failed.

Chapter 8. Certificate Management Services (CMS) API Reference 185

gsk_open_database using_stash_file()

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_OPEN_FAILED]
Unable to open the database.

Usage

The gsk_open_database using_stash_file() routine is the same as the gsk_open_database() routine
except the database password is obtained from the password stash file instead of being specified as a call
parameter. The key or request database can be opened for read-only access or for read/write access. The
database must already exist. The database integrity will be verified and the open will fail if the database
has been incorrectly modified. Only one process at a time may open a database in update mode. The
database may be accessed by multiple concurrent threads in the same process as long as the same
database handle is used by all of the threads.

186 system SSL Programming V1R4.0

gsk_open_directory()

gsk _open_directory()
Opens an LDAP directory.

Format

#include <gskcms.h>

gsk_status gsk_open_directory (

const char * server_name,

int server_port,
const char * user_name,

const char * user_password,

int crl_cache_timeout,
gsk_handle * db_handie)

Parameters

server_name
Specifies one or more blank-separated LDAP server host names. Each host name can contain an
optional port number separated from the host name by a colon.

server_port
Specifies the port assigned to the LDAP server. The default port will be used if zero is specified.

user_name
Specifies the distinguished name to be used when binding to the LDAP server. An unauthenticated
bind will be done if NULL is specified for this parameter.

user_password
Specifies the password to be used when binding to the LDAP server. NULL may be specified for this
parameter when NULL is also specified for the user_name parameter.

crl_cache_timeout
Specifies the CRL cache timeout interval in hours. Specify 0 to disable CRL caching.

db_handle
Returns the directory handle. The application should call the gsk _close_directory() routine when it no
longer needs access to the LDAP directory.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_LDAP]
Error reported by the LDAP client

[CMSERR_LDAP_NOT_AVAILABLE]
LDAP server is not available.

[CMSERR_NO_MEMORY]
Insufficient storage is available

Usage
The gsk_open_directory() routine will open an LDAP directory and return a directory handle.

Chapter 8. Certificate Management Services (CMS) API Reference 187

gsk_open_keyring()

gsk _open_keyring()
Opens a SAF digitial certificate key ring.

Format

#include <gskcms.h>

gsk_status gsk_open_keyring (

const char * ring_name,
gsk_handle * db_handle,
int * num_records)
Parameters
ring_name

Specifies the ring name in the local code page. When using a key ring owned by the current user,
specify the ring name as "name”. When using a key ring owned by another user, specify the ring
name as "userid/name”. The maximum userid length is 8 and the maximum name length is 237.

db_handle
Returns the database handle. The application should call the gsk close_database() routine when it
no longer needs access to the keyring.

num_records
Returns the number of records in the key ring.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_ACCESS_DENIED]
The access permissions do not allow access.

[CMSERR_BAD_FILENAME]
The key ring name is not valid.

[CMSERR_FILE_NOT_FOUND]
The key ring does not exist

[CMSERR_IO_ERROR]
An error occurred while listing the key ring.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_open_keyring() routine will open a key ring maintained by the System Authorization Facility
(SAF) and construct a read-only key database. Only trusted certificates connected to the specified key ring
are included in the key database. The GSKDB_RECFLAG_DEFAULT flag will be set if the certificate is the
default certificate for the key ring.

The user must have READ access to the IRR.DIGTCERT.LISTRING resource in the FACILITY class when
using a SAF key ring owned by the user. The user must have UPDATE access to the
IRR.DIGTCERT.LISTRING resource in the FACILITY class when using a SAF key ring owned by another
user. Note that certificate private keys are not available when using a SAF key ring owned by another
user.

188 system SSL Programming V1R4.0

gsk_query_crypto_level()

gsk_query_crypto_level()
Returns the available cryptographic levels.

Format

#include <gskcms.h>

void gsk_query_crypto_level (
int * cms_version,
int * cms_release,
gsk_uint32 = crypto_level)

Parameters

cms_version
Returns the runtime version number.

cms_release
Returns the runtime release number.

crypto_level
Returns the available cryptographic levels.

Results

The gsk_query_crypto_level() routine returns the System SSL runtime version, release, and available
cryptographic levels. The current System SSL runtime is Version 3 Release 14. The cryptographic level is

a bit mask as follows:

[GSK_CRYPTO_64]
Set if 64-bit encryption keys are supported.

[GSK_CRYPTO_128]
Set if 128-bit encryption keys are supported.

[GSK_CRYPTO_168]
Set if 168-bit encryption keys are supported.

Chapter 8. Certificate Management Services (CMS) API Reference 189

gsk_query_database_label()

gsk query database_label()
Determines if a database label exists

Format

#include <gskcms.h>

gsk_status gsk_query_database_label (
gsk_handle db_handle,
const char * label)

Parameters

db_handle
Specifies the database handle returned by the gsk create_database() routine, the
gsk_open_database() routine, or the gsk_open_keyring() routine.

label
Specifies the database label. The label is specified in the local code page.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BAD_ HANDLE]
The database handle is not valid.

[CMSERR_BAD_LABEL]
No label specified.

[CMSERR_RECORD_NOT_FOUND]
The label does not exist in the database.

Usage
The gsk_query_database_label() routine will check the database for the requested label.

190 system SSL Programming V1R4.0

gsk_query_database_record_length()

gsk _query_database_record_length()
Queries the database record length.

Format

#include <gskcms.h>

gsk_status gsk_query database_record_length (
gsk_handle db_handle,
gsk_size * record_length)

Parameters

db_handle
Specifies the database handle returned by the gsk create_database() routine or the
gsk_open_database() routine.

record_length
Returns the current database record length. All records in the database have this length.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BAD_HANDLE]
The database handle is not valid.

Usage

The gsk_query_database_record_length() routine will return the record length for the database. All
records in the database have the same length and a database entry cannot span records. The
gsk _change_database_record_length() routine can be called to change the database record length.

Chapter 8. Certificate Management Services (CMS) API Reference 191

gsk_rdtime()

gsk_rdtime()
Converts the number of seconds since the POSIX epoch to year/month/day.

Format

#include <gskcms.h>

gsk_timeval * gsk_rdtime (
gsk_time secs,
gsk_timeval * ts)

Parameters

secs
Specifies the time value to be converted.

ts Returns the converted time in the tm_year, tm_mon, tm_mday, tm_hour, tm_min, and tm_sec fields.

Usage

The gsk_rdtime() routine converts the number of seconds since the POSIX epoch (January 1, 1970) to
year/month/day format. The year value is the actual year minus 1900 and the month value is the actual
month minus 1 (that is, January is 0 and December is 11). The return value is the same as the second

parameter (the address of the struct tm).

192 system SSL Programming V1R4.0

gsk_read_content_msg()

gsk read_content_msg()
Processes a PKCS #7 message.

Format

#include <gskcms.h>

gsk_status gsk_read_content_msg (
gsk_buffer = stream,
pkcs_content_info * content_info)

Parameters

Stream
Specifies the ASN.1 DER-encoded stream to be processed.

content_info
Returns the content information for the message. The application should call the
gsk_free_content_info() routine to release the content information when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_NO_MEMORY]
Insufficient storage is available

Usage

The gsk_read_content_msg() routine processes a PKCS #7 (Cryptographic Message Syntax) content
information message and returns the content information. The message content type can be any of the
types defined by the PKCS #7 specification.

Chapter 8. Certificate Management Services (CMS) API Reference 193

gsk_read_data_content()

gsk read_data content()
Processes PKCS #7 Data content information.

Format

#include <gskcms.h>

gsk_status gsk_read_data_content (
pkcs_content_info * content_info,
gsk_buffer * data)

Parameters

content_info
Specifies the content information to be processed.

data
Returns the application data. The application should call the gsk _free buffer() routine to release the
data when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_CONTENT_NOT_SUPPORTED)]
The content type is not Data.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_read_data_content() routine processes PKCS #7 (Cryptographic Message Syntax) Data content
information created by the gsk_make_data_content() routine and returns the application data.

194 system SSL Programming V1R4.0

gsk_read_data_msg()

gsk read data _msg()
Processes a PKCS #7 Data message.

Format

#include <gskcms.h>

gsk_status gsk_read_data_msg (
gsk_buffer = stream,
gsk_buffer * data)

Parameters

Stream
Specifies the ASN.1 DER-encoded stream to be processed.

data
Returns the application data. The application should call the gsk _free buffer() routine to release the
data when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_CONTENT_NOT_SUPPORTED]
The message content type is not Data.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_read_data_msg() routine processes a PKCS #7 (Cryptographic Message Syntax) Data message
created by the gsk_make_data_msg() routine and returns the application data. The message content type
must be Data.

Calling the gsk _read_data_msg() routine is equivalent to calling the gsk read_content_msg() routine
followed by the gsk read_data_content() routine.

Chapter 8. Certificate Management Services (CMS) API Reference 195

gsk_read_encrypted_data_content()

gsk read_encrypted_data_content()
Processes PKCS #7 EncryptedData content information.

Format

#include <gskcms.h>

gsk_status gsk_read_encrypted_data_content (
const char * password,
pkcs_content_info * content_info,
pkcs_content_info * content_data)

Parameters

password
Specifies the encryption password as a null-terminated string in the local code page. The user will be
prompted to enter the password if NULL is specified for this parameter.

content_info
Specifies the content information to be processed

content_data
Returns the decrypted content data. The application should call the gsk free_content_info() routine
to release the content information when it is no longer needed.

Results
The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_ALG_NOT_AVAILABLE]
Encryption algorithm is not available.

[CMSERR_ALG_NOT_SUPPORTED]
Encryption algorithm is not supported.

[CMSERR_CONTENT_NOT_SUPPORTED]
The message content type is not EncryptedData or the content of the EncryptedData message is
not supported.

[CMSERR_NO_CONTENT_DATA]
The encrypted data length is zero.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_read_encrypted_data_content() routine processes PKCS #7 (Cryptographic Message Syntax)
EncryptedData content information created by the gsk_make_encrypted_data_content() routine and
returns the decrypted content data.

The decryption key is derived from the password as described in PKCS #5 (Password-based Encryption)
and PKCS #12 (Personal Information Exchange). The selected algorithm determines how the key is
derived from the password.

The following password-based encryption algorithms are supported. The strong encryption algorithms may
not be available depending upon government export regulations.

» x509_alg_pbeWithMd2AndDesCbc - 56-bit DES encryption with MD2 digest - {1.2.840.113549.1.5.1}
* x509_alg_pbeWithMd5AndDesCbc - 56-bit DES encryption with MD5 digest - {1.2.840.113549.1.5.3}

196 system SSL Programming V1R4.0

gsk_read_encrypted_data_content()

x509_alg_pbeWithShalAndDesCbc - 56-bit DES encryption with SHA-1 digest - {1.2.840.113549.1.5.10}
x509_alg_pbeWithMd2AndRc2Cbc - 64-bit RC2 encryption with MD2 digest - {1.2.840.113549.1.5.4}
x509_alg_pbeWithMd5AndRc2Chc - 64-bit RC2 encryption with MD5 digest - {1.2.840.113549.1.5.6}
x509_alg_pbeWithShalAndRc2Chbc - 64-bit RC2 encryption with SHA-1 digest - {1.2.840.113549.1.5.11}

x509_alg_pbeWithShalAnd40BitRc2Cbc - 40-bit RC2 encryption with SHA-1 digest -
{1.2.840.113549.1.12.1.6}

x509_alg_pbeWithShalAnd128BitRc2Cbc - 128-bit RC2 encryption with SHA-1 digest -
{1.2.840.113549.1.12.1.5}

x509_alg_pbeWithShalAnd40BitRc4 - 40-bit RC4 encryption with SHA-1 digest -
{1.2.840.113549.1.12.1.2}

x509_alg_pbeWithShalAnd128BitRc4 - 128-bit RC4 encryption with SHA-1 digest -
{1.2.840.113549.1.12.1.1}

x509_alg_pbeWithShalAnd3DesCbc - 168-bit 3DES encryption with SHA-1 digest -
{1.2.840.113549.1.12.1.3}

Chapter 8. Certificate Management Services (CMS) API Reference 197

gsk_read_encrypted_data_msg()

gsk read_encrypted_data_msg()
Processes a PKCS #7 EncryptedData message.

Format

#include <gskcms.h>

gsk_status gsk_read_encrypted_data_msg (

const char * password,
gsk_buffer * stream,
gsk_buffer = data)
Parameters
password

Specifies the encryption password as a null-terminated string in the local code page. The user will be
prompted to enter the password if NULL is specified for this parameter.

Stream
Specifies the ASN.1 DER-encoded stream to be processed.

data
Returns the decrypted content of the EncryptedData message. The application should call the
gsk_free_buffer() routine to release the data when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_ALG_NOT_AVAILABLE]
Encryption algorithm is not available.

[CMSERR_ALG_NOT_SUPPORTED]
Encryption algorithm is not supported.

[CMSERR_CONTENT_NOT_SUPPORTED]
The message content type is not EncryptedData or the content of the EncryptedData message is
not Data.

[CMSERR_NO_CONTENT_DATA]
The encrypted data length is zero.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_read_encrypted_data _msg() routine processes a PKCS #7 (Cryptographic Message Syntax)
EncryptedData message created by the gsk_make_encrypted_data_msg() routine and returns the
decrypted message content. The encrypted data content type must be Data.

Calling the gsk_read_encrypted_data _msg() routine is equivalent to calling the
gsk_read_content_msg() routine, the gsk read_encrypted data_content() routine, and the
gsk_read_data_content() routine.

The decryption key is derived from the password as described in PKCS #5 (Password-based Encryption)

and PKCS #12 (Personal Information Exchange). The selected algorithm determines how the key is
derived from the password.

198 system SSL Programming V1R4.0

gsk_read_encrypted_data_msg()

The following password-based encryption algorithms are supported. The strong encryption algorithms may
not be available depending upon government export regulations.

x509_alg_pbeWithMd2AndDesChbc - 56-bit DES encryption with MD2 digest - {1.2.840.113549.1.5.1}
x509_alg_pbeWithMd5AndDesChbc - 56-bit DES encryption with MD5 digest - {1.2.840.113549.1.5.3}
x509_alg_pbeWithShalAndDesCbc - 56-bit DES encryption with SHA-1 digest - {1.2.840.113549.1.5.10}
x509_alg_pbeWithMd2AndRc2Cbc - 64-bit RC2 encryption with MD2 digest - {1.2.840.113549.1.5.4}
x509_alg_pbeWithMd5AndRc2Chc - 64-bit RC2 encryption with MD5 digest - {1.2.840.113549.1.5.6}
x509_alg_pbeWithShalAndRc2Chbc - 64-bit RC2 encryption with SHA-1 digest - {1.2.840.113549.1.5.11}

x509_alg_pbeWithShalAnd40BitRc2Cbc - 40-bit RC2 encryption with SHA-1 digest -
{1.2.840.113549.1.12.1.6}

x509_alg_pbeWithShalAnd128BitRc2Cbc - 128-bit RC2 encryption with SHA-1 digest -
{1.2.840.113549.1.12.1.5}

x509_alg_pbeWithShalAnd40BitRc4 - 40-bit RC4 encryption with SHA-1 digest -
{1.2.840.113549.1.12.1.2}

x509_alg_pbeWithShalAnd128BitRc4 - 128-bit RC4 encryption with SHA-1 digest -
{1.2.840.113549.1.12.1.1}

x509_alg_pbeWithShalAnd3DesCbc - 168-bit 3DES encryption with SHA-1 digest -
{1.2.840.113549.1.12.1.3}

Chapter 8. Certificate Management Services (CMS) API Reference 199

gsk_read_enveloped_data content()

gsk read_enveloped_data_content()
Processes PKCS #7 EnvelopedData content information.

Format

#include <gskcms.h>

gsk_status gsk_read_enveloped_data_content (
pkcs_cert_keys * recipient_keys,
pkcs_content_info * content_info,
x509_algorithm_type * encryption_algorithm,
gsk_size * key size,
pkcs_content_info * content_data)

Parameters

recipient_keys
Specifies one or more certificates and associated private keys.

content_info
Specifies the content information to be processed.

encryption_algorithm
Returns the encryption algorithm used to encrypt the message content.

key size
Returns the encryption key size in bytes.

content_data
Returns the EnvelopedData content data. The application should call the gsk_free_content_info()
routine to release the content information when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_ALG_NOT_AVAILABLE]
The encryption algorithm is not available.

[CMSERR_ALG_NOT_SUPPORTED]
The encryption algorithm is not supported.

[CMSERR_BAD_KEY_SIZE]
The encryption key size is not supported.

[CMSERR_CONTENT_NOT_SUPPORTED]
The message content type is not EnvelopedData or the content of the EnvelopedData message is
not supported.

[CMSERR_INCORRECT_KEY_USAGE]
The recipient certificate does not allow key encipherment.

[CMSERR_KEY_MISMATCH]
A recipient private key does not support data decryption.

[CMSERR_NO_CONTENT_DATA]
The content data length is zero.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

200 System SSL Programming V1R4.0

gsk_read_enveloped_data_content()

[CMSERR_RECIPIENT_NOT_FOUND]
No matching recipient certificate provided.

Usage

The gsk_read_enveloped_data_content() routine processes PKCS #7 (Cryptographic Message Syntax)
EnvelopedData content information created by the gsk_make_enveloped_data_content() routine.

The recipient_keys parameter supplies one or more recipient certificates and associated private keys. The
gsk_read_enveloped_data_content() routine will search for a certificate matching one of the message
recipients. The private key will be used to decrypt the session key and the session key will then be used
to decrypt the enveloped data. The certificate key usage must allow key encipherment.

No certificate validation is performed by the gsk _read_enveloped_data_content() routine. It is assumed
that the application has already validated the recipient certificates.

The following encryption algorithms are supported. Strong encryption may not be available depending
upon government export regulations.

* x509 alg_rc2CbcPad - 40-bit and 128-bit RC2 - {1.2.840.113549.3.2}
» x509_alg_rc4 - 40-bit and 128-bit RC4 - {1.2.840.113549.3.4}

+ x509_alg_desChcPad - 56-bit DES - {1.3.14.3.2.7}

* x509_alg_desEde3ChcPad - 168-bit 3DES - {1.2.840.113549.3.7}

Chapter 8. Certificate Management Services (CMS) API Reference 201

gsk _read_enveloped_data_msg()

gsk read_enveloped_data_msg()
Processes a PKCS #7 EnvelopedData message.

Format

#include <gskcms.h>

gsk_status gsk_read_enveloped_data_msg (

pkcs_cert_keys * recipient_keys,
gsk_buffer * stream,
x509_algorithm_type * encryption_algorithm,
gsk_size * key size,

gsk_buffer x data)

Parameters

recipient_keys
Specifies one or more certificates and associated private keys.

Stream
Specifies the ASN.1 DER-encoded stream to be processed.

encryption_algorithm
Returns the encryption algorithm used to encrypt the message content.

key size
Returns the encryption key size in bytes.

data
Returns the content of the EnvelopedData message. The application should call the gsk_free_buffer()
routine to release the data when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BAD_ENCODING]
The message content type is not EnvelopedData or the message content is not Data.

[CMSERR_BAD_KEY_SIZE]
The encryption key size is not supported.

[CMSERR_CONTENT_NOT_SUPPORTED]
The message content type is not EnvelopedData or the content of the EnvelopedData message is
not Data.

[CMSERR_INCORRECT_KEY_USAGE]
The recipient certificate does not allow key encipherment.

[CMSERR_KEY_MISMATCH]
A recipient private key does not support data decryption.

[CMSERR_NO_CONTENT_DATA]
The content data length is zero.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECIPIENT_NOT_FOUND]
No matching recipient certificate provided.

202 System SSL Programming V1R4.0

gsk_read_enveloped_data_msg()

Usage

The gsk_read_enveloped_data_msg() routine processes a PKCS #7 (Cryptographic Message Syntax)
EnvelopedData message created by the gsk_make_enveloped_data_msg() routine and returns the
message content. The enveloped data content type must be Data.

Calling the gsk_read_enveloped_data_msg() routine is equivalent to calling the
gsk read_content_msg() routine, the gsk _read_enveloped_data_content() routine, and the
gsk_read_data_content() routine.

The recipient_keys parameter supplies one or more recipient certificates and associated private keys. The
gsk_read_enveloped_data_msg() routine will search for a certificate matching one of the message
recipients. The private key will be used to decrypt the session key and the session key will then be used
to decrypt the enveloped data. The certificate key usage must allow key encipherment.

No certificate validation is performed by the gsk_read_enveloped_data_msg() routine. It is assumed that
the application has already validated the recipient certificates.

The following encryption algorithms are supported. Strong encryption may not be available depending
upon government export regulations.

* x509 _alg_rc2CbcPad - 40-bit and 128-bit RC2 - {1.2.840.113549.3.2}
» x509 _alg_rc4 - 40-bit and 128-bit RC4 - {1.2.840.113549.3.4}

* x509 alg desChcPad - 56-bit DES - {1.3.14.3.2.7}

* x509_alg_desEde3ChbcPad - 168-bit 3DES - {1.2.840.113549.3.7}

Chapter 8. Certificate Management Services (CMS) API Reference 203

gsk_read_signed_data_content()

gsk read_signed_data_content()
Processes PKCS #7 SignedData content information.

Format

#include <gskcms.h>

gsk_status gsk_read_signed_data_content (

pkcs_certificates * local_certificates,
pkcs_content_info * content_info,
gsk_boolean * used local,
pkcs_certificates * msg_certificates,
pkcs_certificates * signer_certificates,
pkcs_content_info * content_data)

Parameters

local_certificates
Specifies zero or more X.509 certificates to use when verifying the message signatures. NULL can be
specified for this parameter if no local certificates are provided.

content_info
Specifies the content information to be processed.

used local
This parameter will be set to TRUE if the signatures were verified using just the certificates supplied
by the local_certificates parameter. This parameter will be set to FALSE if any of the signatures were
verified using certificates contained within the message.

msg_certificates
Returns the X.509 certificates contained within the message. The application should call the
gsk_free_certificates() routine to release the certificates when they are no longer needed. Specify
NULL for this parameter if the message certificates are not needed.

signer_certificates
Returns the certificates used to sign the message. The application should call the
gsk_free_certificates() routine to release the certificates when they are no longer needed. Specify
NULL for this parameter if the signer certificates are not needed.

content_data
Returns the SignedData content data. The application should call the gsk_free_content_info() routine
to release the data when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_ALG_NOT_SUPPORTED]
The digest algorithm is not supported.

[CMSERR_BAD_SIGNATURE]
Signature is not correct.

[CMSERR_CONTENT_NOT_SUPPORTED]
The content type is not SignedData.

[CMSERR_INCORRECT_KEY_USAGE]
A signer certificate does not allow digital signature.

[CMSERR_KEY_MISMATCH]
The digest algorithm is not supported for the private key type.

204 system SSL Programming V1R4.0

gsk_read_signed_data_content()

[CMSERR_NO_CONTENT_DATA]
The content data length is zero.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_SIGNER_NOT_FOUND]
Signer certificate not found.

Usage

The gsk_read_signed_data_content() routine processes PKCS #7 (Cryptographic Message Syntax)
SignedData message created by the gsk_make_signed_data_content() routine and returns the content
data.

The local_certificates parameter can supply the signer certificates used to verify the message signatures. If
a certificate is not found for a message signer, the gsk_read_signed_data_content() routine will attempt
to locate the signer certificate in the SignedData message. An error will be returned if the signer certificate
cannot be found or if the certificate key usage does not allow digital signature.

No certificate validation is performed by the gsk _read_signed data_content() routine. It is assumed that
the application has already validated the local certificates. The certificates contained in the SignedData
message will be returned in the msg_certificates parameter and the used_local parameter will be set to
FALSE if any of these certificates were used to verify the message signatures. It is the responsibility of the
application to validate the message certificates (for example, by calling the gsk_validate_certificate()
routine for each of the signer certificates).

The following digest algorithms are supported.

» x509_alg_md2Digest - MD2 digest (RSA keys only) - {1.2.840.113549.2.2}
» x509 alg _md5Digest - MD5 digest (RSA keys only) - {1.2.840.113549.2.5}
* x509_alg_shalDigest - SHA-1 digest (RSA and DSA keys) - {1.3.14.3.2.26}

Chapter 8. Certificate Management Services (CMS) API Reference 205

gsk_read_signed_data_msg()

gsk read_signed data_msg()
Processes a PKCS #7 SignedData message.

Format

#include <gskcms.h>

gsk_status gsk_read_signed_data_msg (

pkcs_certificates * local_certificates,
gsk_buffer * stream,

gsk_boolean * used local,
pkcs_certificates * msg_certificates,
pkcs_certificates * signer_certificates,
gsk_buffer * data)

Parameters

local_certificates
Specifies zero or more X.509 certificates to use when verifying the message signatures. NULL can be
specified for this parameter if no local certificates are provided.

Stream
Specifies the ASN.1 DER-encoded stream to be processed.

used_local
This parameter will be set to TRUE if the signatures were verified using just the certificates supplied
by the local_certificates parameter. This parameter will be set to FALSE if any of the signatures were
verified using certificates contained within the message.

msg_certificates
Returns the X.509 certificates contained within the message. The application should call the
gsk_free certificates() routine to release the certificates when they are no longer needed. Specify
NULL for this parameter if the message certificates are not needed.

signer_certificates
Returns the certificates used to sign the message. The application should call the
gsk_free_certificates() routine to release the certificates when they are no longer needed. Specify
NULL for this parameter if the signer certificates are not needed.

data
Returns the content of the SignedData message. The application should call the gsk free_buffer()
routine to release the data when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[ASN_NO_MEMORY]
Insufficient storage is available.

[ASN_SELECTION_OUT_OF_RANGE]
Certificate type or version number is not valid.

[CMSERR_ALG_NOT_SUPPORTED]
The digest algorithm is not supported.

[CMSERR_CONTENT_NOT_SUPPORTED]
The message content type is not SignedData or the content of the SignedData message is not
Data.

206 System SSL Programming V1R4.0

gsk_read_signed_data_msg()

[CMSERR_BAD_SIGNATURE]
Signature is not correct.

[CMSERR_INCORRECT_KEY_USAGE]
A signer certificate does not allow digital signature.

[CMSERR_KEY_MISMATCH]
The digest algorithm is not supported for the private key type.

[CMSERR_NO_CONTENT_DATA]
The content data length is zero.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_SIGNER_NOT_FOUND]
Signer certificate not found.

Usage

The gsk_read_signed_data_msg() routine processes a PKCS #7 (Cryptographic Message Syntax)
SignedData message created by the gsk_make_signed_data_msg() routine and returns the message
content. The signed data content type must be Data.

Calling the gsk _read_signed_data_msg() routine is equivalent to calling the gsk_read_content_msg()
routine, the gsk_read_signed_data_content() routine, and the gsk read_data content() routine.

The local_certificates parameter can supply the signer certificates used to verify the message signatures. If
a certificate is not found for a message signer, the gsk_read_signed_data_msg() routine will attempt to
locate the signer certificate in the SignedData message. An error will be returned if the signer certificate
cannot be found or if the certificate key usage does not allow digital signature.

No certificate validation is performed by the gsk _read_signed_data_msg() routine. It is assumed that the
application has already validated the local certificates. The certificates contained in the SignedData
message will be returned in the msg_certificates parameter and the used_local parameter will be set to
FALSE if any of these certificates were used to verify the message signatures. It is the responsibility of the
application to validate the message certificates (for example, by calling the gsk_validate_certificate()
routine for each of the signer certificates).

The following digest algorithms are supported.

» x509_alg_md2Digest - MD2 digest (RSA keys only) - {1.2.840.113549.2.2}
» x509 alg_md5Digest - MD5 digest (RSA keys only) - {1.2.840.113549.2.5}
* x509 alg _shalDigest - SHA-1 digest (RSA and DSA keys) - {1.3.14.3.2.26}

Chapter 8. Certificate Management Services (CMS) API Reference 207

gsk_read_wrapped_content()

gsk read_wrapped_content()

Processes wrapped content information.

Format

#include <gskcms.h>

gsk_status gsk_read_wrapped_content (
pkcs_content_info * wrapped_content,
pkcs_content_info * content_info)

Parameters

wrapped_content
Specifies the wrapped content information.

content_info
Returns the content information. The application should call the gsk _free_content_info() routine to
release the content information when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_CONTENT_NOT_SUPPORTED]
The content type is not supported.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_read_wrapped_content() routine processes an ASN.1 sequence containing encoded content
information and returns the unwrapped content information.

208 System SSL Programming V1R4.0

gsk_receive_certificate()

gsk_receive_certificate()

Receives one or more certificates.

Format

#include <gskcms.h>

gsk_status gsk_receive_certificate (
gsk_buffer = stream,
pkcs_certificates * certificates)

Parameters

Stream
Specifies the byte stream of the encoded certificate.

certificate
Returns the decoded certificates. The application should call the gsk_free_certificates() routine to
release the certificates when they are no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BAD_BASE64_ENCODING]
The Base64 encoding of the import file is not correct.

[CMSERR_BAD_ENCODING]
The import file format is not recognized.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_receive_certificate() routine receives one or more X.509 certificates and returns the decoded
certificates to the caller.

The supplied stream can represent either the ASN.1 DER encoding for the certificate or the Cryptographic
Message Syntax (PKCS #7) encoding for the certificate. This can be either the binary value or the Base64
encoding of the binary value. A Base64 encoded stream must be in the local code page and must include
the encoding header and footer lines.

A Base64 DER-encoded sequence must start with the encoding header '-----BEGIN CERTIFICATE-----'
and end with the encoding footer '----END CERTIFICATE-----". A Base 64 PKCS #7 signed data message
must start with the encoding header ’-----BEGIN CERTIFICATE-----" and end with the encoding footer
'----END CERTIFICATE-----" or must start with the encoding header '----BEGIN PKCS #7 SIGNED
DATA-----" and end with the encoding footer ’-----END PKCS #7 SIGNED DATA-----".

A DER-encoded certificate stream contains a single X.509 certificate while a PKCS #7 message stream

contains one or more certificates. All of the certificates in a PKCS #7 message will be returned to the
application for processing.

Chapter 8. Certificate Management Services (CMS) API Reference 209

gsk_replace_record()

gsk_replace_record()

Replaces a record in a key or request database.

Format

#include <gskcms.h>

gsk_status gsk_replace_record (
gsk_handled db_handle,
gskdb_record * record)

Parameters

db_handle
Specifies the database handle returned by the gsk create_database() routine or the
gsk_open_database() routine.

record
Specifies the database record.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BACKUP_EXISTS]
The backup file already exists.

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_BAD_LABEL]
The record label is not valid.

[CMSERR_DEFAULT_KEY_CHANGED]
The default key cannot be changed.

[CMSERR_INCORRECT_DBTYPE]
The record type is not supported for the database type.

[CMSERR_IO_ERROR]
Unable to write record.

[CMSERR_LABEL_NOT_UNIQUE]
The record label is not unique.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]
No private key is provided for a record type that requires a private key.

[CMSERR_PUBLIC_KEY_CHANGED]
The subject public key cannot be changed.

[CMSERR_RECORD_NOT_FOUND]
Record is not found.

[CMSERR_RECORD_TOO_BIG]
The record is larger than the database record length.

[CMSERR_RECTYPE_NOT_VALID]
The record type is not valid.

210 system SSL Programming V1R4.0

gsk_replace_record()

[CMSERR_SUBJECT_CHANGED]
The subject name cannot be changed.

[CMSERR_UPDATE_NOT_ALLOWED]
Database is not open for update.

Usage

The gsk_replace_record() routine replaces a record in a key or request database. The database must be
open for update in order to replace records. The unique record identifier identifies the record to be
replaced. Unused and reserved fields in the gskdb_record structure must be initialized to zero. If the
record has a private key, the encrypted private key will be generated from the private key supplied in the
database record.

The recordType field identifies the database record type as follows:

gskdb_rectype_certificate
The record contains an X.509 certificate.

gskdb_rectype_certkey
The record contains an X.509 certificate and private key.

gskdb_rectype keyPairTerm
The record contains a PKCS #10 certification request and private key.

The recordFlags field is a bit field with the following values:

GSKDB_RECFLAG_TRUSTED
The certificate is trusted.

GSKDB_RECFLAG_DEFAULT
This is the default key

The record label is used as a friendly name for the database entry and is in the local code page. It can be
set to any value and consists of characters which can be represented using 7-bit ASCII (letters, numbers,
and punctuation). It may not be set to an empty string.

If the record contains a certificate, the certificate will be validated and the record will not be replaced in the
database if the validation check fails.

With the exception of the record label, all character strings are specified using UTF-8.

The record type, subject name, and subject public key cannot be changed when replacing a record. In
addition, the GSKDB_RECFLAG_DEFAULT flag cannot be changed when replacing a record (call the
gsk_set_default_key() routine to change the default record for the database).

The database file is updated as part of the gsk_replace_record() processing. A temporary database file is
created using the same name as the database file with ".new” appended to the name. The database file is
then overwritten and the temporary database file is deleted. The temporary database file will not be
deleted if an error occurs while rewriting the database file.

Chapter 8. Certificate Management Services (CMS) API Reference 211

gsk_set_default_key()

gsk_set_default_key()
Sets the default key.

Format

#include <gskcms.h>

gsk_status gsk_set_default_key (
gsk_handle db_handle,
gsk_int32 record_id)

Parameters

db_handle
Specifies the database handle returned by the gsk create_database() routine or the
gsk_open_database() routine.

record _id
Specifies the unique record identifier of the new default key.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BACKUP_EXISTS]
The backup file already exists.

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_INCORRECT_DBTYPE]
The database type does not support a default key.

[CMSERR_IO_ERROR]
Unable to write record.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]
The database record does not contain a private key.

[CMSERR_RECORD_NOT_FOUND]
Record is not found.

[CMSERR_UPDATE_NOT_ALLOWED]
Database is not open for update.

Usage

The gsk_set_default_key() routine sets the default key for a key database. If the key database already
has a default key, the record for the old default key is updated to remove the
GSKDB_RECFLAG_DEFAULT flag. The record for the new default key is then updated to add the
GSKDB_RECFLAG_DEFAULT flag. The database must be open for update in order to set the default key.
An error will be returned if the specified database record does not contain a private key.

The database file is updated as part of the gsk_replace_record() processing. A temporary database file is
created using the same name as the database file with ".new” appended to the name. The database file is
then overwritten and the temporary database file is deleted. The temporary database file will not be
deleted if an error occurs while rewriting the database file.

212 system SSL Programming V1R4.0

gsk_sign_certificate()

gsk_sign_certificate()
Signs an X.509 certificate.

Format

#include <gskcms.h>

gsk_status gsk_sign_certificate (
x509_certificate * certificate,
pkcs_private_key_info * private_key)

Parameters

certificate
Specifies the X.509 certificate.

private_key
Specifies the private key.

Results
The return status will be zero if the signature is successfully generated. Otherwise, it will be one of the
return codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_ALG_NOT_SUPPORTED]
The signature algorithm is not supported.

[CMSERR_KEY_MISMATCH]
The supplied key does not match the signature algorithm.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_sign_certificate() routine will sign an X.509 certificate using the supplied private key. The private
key can be an RSA key or a DSA key. The private key can be an ASN.1-encoded value contained in the
privateKey field or an ICSF key label contained in the keyToken field. In either case, the key type must be
specified by the privateKeyAlgorithm field.

The signature algorithm is obtained from the signature field of the x509_tbs_certificate structure contained
within the x509_certificate structure. The generated signature will be placed in the signatureAlgorithm and
signatureValue fields of the x509_certificate structure.

The following signature algorithms are supported:

* x509_alg_md2WithRsaEncryption - RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

» x509_alg_md5WithRsaEncryption - RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

* x509_alg_shalWithRsaEncryption - RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}
» x509_alg_dsaWithShal - Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

Chapter 8. Certificate Management Services (CMS) API Reference 213

gsk_sign_crl()

gsk_sign_crl()

Signs an X.509 certificate revocation list.

Format
#include <gskcms.h>
gsk_status gsk_sign_crl (

x509_crl * crl,
pkcs_private_key_info * private_key)

Parameters

crl Specifies the X.509 certificate revocation list.

private_key
Specifies the private key.

Results
The return status will be zero if the signature is successfully generated. Otherwise, it will be one of the
return codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_ALG_NOT_SUPPORTED]
The signature algorithm is not supported.

[CMSERR_KEY_MISMATCH]
The supplied key does not match the signature algorithm.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_sign_crl() routine will sign an X.509 certificate revocation list using the supplied private key. The
private key can be an RSA key or a DSA key. The private key can be an ASN.1-encoded value contained
in the privateKey field or an ICSF key label contained in the keyToken field. In either case, the key type
must be specified by the privateKeyAlgorithm field.

The signature algorithm is obtained from the signature field of the x509_tbs_crl structure contained within
the x509_crl structure. The generated signature will be placed in the signatureAlgorithm and
signatureValue fields of the x509_crl structure.

The following signature algorithms are supported:

* x509_alg_md2WithRsaEncryption - RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

» x509_alg_md5WithRsaEncryption - RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

* x509 alg_shalWithRsaEncryption - RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}
» x509_alg_dsaWithShal - Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

214 system SSL Programming V1R4.0

gsk_sign_data()

gsk _sign_data()
Signs a data stream.
Format

#include <gskcms.h>

gsk_status gsk_sign_data (

x509_algorithm_type sign_algorithm,
pkcs_private_key_info * private_key,
gsk_boolean is_digest,
gsk_buffer * data,
gsk_buffer = signature)

Parameters

sign_algorithm
Specifies the signature algorithm.
private_key
Specifies the private key.
is_digest
Specify TRUE if the data stream digest has been computed or FALSE if the data stream digest needs
to be computed.

data
Specifies either the data stream digest (is_digest is TRUE) or the data stream (is_digest is FALSE).

signature
Returns the generated signature. The caller should release the signature buffer when it is no longer
needed by calling the gsk_free_buffer() routine.

Results
The return status will be zero if the signature is successfully generated. Otherwise, it will be one of the
return codes listed in the gskcms.h include file. The following are some common errors:

[CMSERR_ALG_NOT_SUPPORTED]
The signature algorithm is not supported.

[CMSERR_BAD_DIGEST_SIZE]
The digest size is not correct.

[CMSERR_KEY_MISMATCH]
The supplied key does not match the signature algorithm.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_sign_data() routine will generate the signature for a data stream using the supplied private key.
The private key can be an RSA key or a DSA key. The private key can be an ASN.1-encoded value
contained in the privateKey field or an ICSF key label contained in the keyToken field. In either case, the
key type must be specified by the privateKeyAlgorithm field.

The application can either provide the message digest or have the gsk_sign_data() routine compute the
message digest.

When the application provides the message digest, the digest length must be correct for the specified
signature algorithm. MD2 and MD5 digests are 16 bytes while a SHA-1 digest is 20 bytes. The supplied

Chapter 8. Certificate Management Services (CMS) API Reference 215

gsk_sign_data()

digest will be used as-is without any further processing (specifically, for an RSA encryption key, the digest

will not be encoded as an ASN.1 Digestinfo sequence before generating the signature)

The following signature algorithms are supported:

x509_alg_md2WithRsaEncryption - RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}
x509_alg_md5WithRsaEncryption - RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}
x509_alg_shalWithRsaEncryption - RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}
x509_alg_dsaWithShal - Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}
x509_alg_md5ShalWithRsaEncryption - RSA encryption with combined MD5 and SHA-1 digests

216 sSystem SSL Programming V1R4.0

gsk_validate_certificate()

gsk validate certificate()
Validates an X.509 certificate.
Format

#include <gskcms.h>

gsk_status gsk_validate_certificate (

gskdb_data_sources = data_sources,

x509 certificate * subject_certificate,
gsk_boolean accept_root,
gsk_int32 = issuer_record_id)

Parameters

data_sources
Specifies the data sources for CA certificates and revocation lists. The data sources are searched in
the order they occur in the data source array, so trusted sources should be included before untrusted
sources and local sources should be included before remote sources.

subject _certificate
Specifies the certificate to be validated.

accept_root
Specify TRUE if a self-signed root certificate is to be accepted without checking the data sources.
Specify FALSE if a self-signed root certificate must be found in one of the trusted data sources in
order to be accepted.

issuer_record_id
Returns the record identifier for the issuer certificate used to validate the certificate. The record
identifier will be 0 if the issuer certificate is found in a non-database source. Specify NULL for this
parameter if the issuer record identifier is not needed.

Results

The return status will be zero if the validation is successful. Otherwise, it will be one of the return codes
listed in the gskcms.h include file. The following are some common errors:

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_BAD_ISSUER_NAME]
The certificate issuer name is not valid.

[CMSERR_BAD_SIGNATURE]
The signature is not correct.

[CMSERR_CERT_CHAIN_NOT_TRUST]
The certification chain is not trusted

[CMSERR_CERTIFICATE_REVOKED]
The certificate is revoked.

[CMSERR_EXPIRED]
The certificate is expired.

[CMSERR_INCORRECT_DBTYPE]
The database type does not support certificates.

[CMSERR_INCORRECT_KEY_USAGE]
The issuer certificate does not allow signing certificates

Chapter 8. Certificate Management Services (CMS) API Reference 217

gsk_validate_certificate()

[CMSERR_ISSUER_NOT_CA]
The certificate issuer is not a certification authority.

[CMSERR_ISSUER_NOT_FOUND]
The issuer certificate is not found in one of the data sources.

[CMSERR_NAME_CONSTRAINTS_VIOLATED]
The certificate name is not consistent with the name constraints.

[CMSERR_NAME_NOT_SUPPORTED]
The AuthorityKeyldentifier extension name is not a directory name.

[CMSERR_NOT_YET_VALID]
The certificate is not yet valid.

[CMSERR_PATH_TOO_LONG]
The certification chain exceeds the maximum allowed by the CA.

[CMSERR_SELF_SIGNED_NOT_FOUND]
A self-signed certificate is not found in a trusted data source

Usage

The gsk_validate_certificate() routine validates an X.509 certificate by performing the following checks on
the subject certificate:

* The certificate subject name must be either a non-empty distinguished name or an empty distinguished
name with a SubjectAltName certificate extension

* An empty subject name is not allowed for a CA certificate

* The certificate issuer name must not be an empty distinguished name

* The CertificatePolicy extension, if present, must not be a critical extension

* The current time must not be earlier than the start of the certificate validity period

* The current time must not be later than the end of the certificate validity period

* The issuer certificate must be a valid CA certificate

* The certificate signature must be correct

* The certificate must not be revoked

* The certification chain must lead to a certificate obtained from a trusted data source
* No certificate in the certification chain can be revoked or expired.

The gsk_validate_certificate() routine will obtain any necessary CA certificates from the supplied data
sources. The CA certificate will be validated as described above if it is obtained from an untrusted data
source. In addition, the following checks will be performed on CA certificates when validating the
certification chain:

* The BasicConstraints extension, if present, must have the CA indicator set and the path length
constraint must not be violated by subordinate certificates in the certification chain

* The NameConstraints extension, if present, must not be violated by the subject certificate

A root certificate is a self-signed certificate and its signature is verified using the public key in the
certificate. If accept_root is FALSE, the root certificate must be found in a trusted data source in order to
be accepted. If accept_root is TRUE, the self-signed certificate is accepted as long as the signature is
correct.

An intermediate certificate or an end-entity certificate is a certificate signed by another entity. Its signature
is verified using the public key in the issuer’s certificate. The issuer certificate must be found in one of the
supplied data sources. When intermediate CA certificates are used, the certificate chain is validated until
an issuer is reached whose certificate is in one of the trusted data sources.

218 system SSL Programming V1R4.0

gsk_validate_certificate()

The data sources must contain at least one LDAP directory source or CRL source in order to check for
revoked certificates. The CRL distribution point name (or the certificate issuer name if the certificate does
not have a CriDistributionPoints extension) is used as the distinguished name of the LDAP directory entry
containing the certificate revocation list (CRL). The CRL distribution point name and CRL issuer name
must be X.500 directory names. The BasicConstraints certificate extension determines whether the CA
revocation list or the user revocation list is used. An error will be returned if a CRL obtained from an
untrusted source cannot be validated.

The following data sources are supported:

» gskdb_source_key database - The source is a key database. The handle must be a database handle
returned by the gsk_ create_database() routine, the gsk_open_database() routine, or the
gsk_open_keyring() routine. This is a trusted data source.

» gskdb_source_directory - The source is an LDAP directory. The handle must be the directory handle
returned by the gsk_open_directory() routine. This is an untrusted data source. Any certificate or
revocation list obtained from this source will be validated before being accepted. Refer to the
gsk_get_directory_certificates() and gsk_get_directory_cris() routines for more information
concerning the use of LDAP directory entries.

» gskdb_source_trusted_certs - The source is an array of certificates. This is a trusted data source.

» gskdb_source_untrusted_certs - The source is an array of certificates. This is an untrusted data source.
Any certificate used from this list will be validated before being accepted.

» gskdb_source_trusted_crls - The source is an array of certificate revocation lists. This is a trusted data
source.

» gskdb_source_untrusted_crls - The source is an array of certificate revocation lists. This is an untrusted
data source. Any CRL used from this list will be validated before being accepted.

» gskdb_source_cert_callback - The source is the address of a callback routine which will receive control
when an issuer certificate is needed. This is a trusted data source. The subject name is passed as an
input parameter and the certCallback routine returns an array of one or more certificates with that
subject name. The gsk_validate_certificate() routine will call the freeCallback routine to release the
certificates. The return status should be 0 if no errors are detected. Otherwise it should be one of the
error code listed in the gskcms.h include file. The return status should be 0 and the certificate count
should be 0 if there are no certificates matching the supplied subject name.

» gskdb_source_crl_callback - The source is the address of a callback routine which will receive control
when a certificate needs to be checked to see if it has been revoked. The return value should be O if
the certificate is not revoked. Otherwise it should be one of the error codes defined in the gskcms.h
include file.

Chapter 8. Certificate Management Services (CMS) API Reference 219

gsk_verify_certificate_signature()

gsk verify certificate _signature()

Verifies the signature for an X.509 certificate.

Format

#include <gskcms.h>

gsk_status gsk verify certificate_signature (

x509_certificate * certificate,
x509_public_key_info * key)

Parameters

certificate

Specifies the decoded certificate returned by the gsk_decode_certificate() routine.

key

Specifies the public key for the Certification Authority that signed the certificate.

Results

The return status will be zero if the signature is correct. Otherwise, it will be one of the return codes listed
in the gskcms.h include file. The following are some common errors:

[CMSERR_ALG_NOT_SUPPORTED]

The signature algorithm is not supported.

[CMSERR_BAD_SIGNATURE]

The signature is not correct.

[CMSERR_KEY_MISMATCH]

The supplied key does not match the signature algorithm.

Usage

The gsk_verify_certificate_signature() routine validates an X.509 certificate by computing its signature
and then comparing the result to the signature contained in the certificate.

The following signature algorithms are supported:

x509_alg_md2WithRsaEncryption - RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}
x509_alg_md5WithRsaEncryption - RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}
x509_alg_shalWithRsaEncryption - RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}
x509_alg_dsaWithShal - Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

220 System SSL Programming V1R4.0

gsk_verify_crl_signature()

gsk_verify crl_signature()

Verifies the signature for an X.509 certificate revocation list.

Format

#include <gskcms.h>

gsk_status gsk _verify _crl_signature (
x509_crl * crl,
x509_public_key_info * key)

Parameters
crl Specifies the decoded certificate revocation list returned by the gsk_decode_crl() routine.

key
Specifies the public key for the Certification Authority that signed the certificate revocation list.

Results
The return status will be zero if the signature is correct. Otherwise, it will be one of the return codes listed
in the gskcms.h include file. The following are some common errors:

[CMSERR_ALG_NOT_SUPPORTED]
The signature algorithm is not supported.

[CMSERR_BAD_SIGNATURE]
The signature is not correct.

[CMSERR_KEY_MISMATCH]
The supplied key does not match the signature algorithm.

Usage

The gsk_verify_crl_signature() routine validates an X.509 certificate revocation list (CRL) by computing
its signature and then comparing the result to the signature contained in the CRL.

The following signature algorithms are supported:

* x509 alg_md2WithRsaEncryption - RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

* x509_alg_md5WithRsaEncryption - RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

» x509_alg_shalWithRsaEncryption - RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}
* x509 alg dsaWithShal - Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

Chapter 8. Certificate Management Services (CMS) API Reference 221

gsk_verify_data_signature()

gsk verify data_signature()

Verifies the signature for a data stream.

Format

#include <gskcms.h>

gsk_status gsk _verify data_signature (

x509_algorithm_type sign_algorithm,
x509 public_key_info * key,
gsk_boolean is_digest,
gsk_buffer * data,
gsk_buffer = signature)

Parameters

sign_algorithm
Specifies the signature algorithm.
key
Specifies the public key.
is_digest
Specify TRUE if the data stream digest has been computed or FALSE if the data stream digest needs
to be computed.

data
Specifies either the data stream digest (is_digest is TRUE) or the data stream (is_digest is FALSE).

signature
Specifies the data stream signature.

Results
The return status will be zero if the signature is correct. Otherwise, it will be one of the return codes listed
in the gskcms.h include file. The following are some common errors:

[CMSERR_ALG_NOT_SUPPORTED]
The signature algorithm is not supported.

[CMSERR_BAD_DIGEST_SIZE]
The digest size is not correct.

[CMSERR_BAD_SIGNATURE]
The signature is not correct.

[CMSERR_KEY_MISMATCH]
The supplied key does not match the signature algorithm.

Usage

The gsk_verify_data_signature() routine validates the signature for a data stream. The public key can be
an RSA key or a DSA key.

The application can either provide the message digest or have the gsk_verify_signed_data() routine
compute the message digest.

When the application provides the message digest, the digest length must be correct for the specified
signature algorithm. MD2 and MD5 digests are 16 bytes while a SHA-1 digest is 20 bytes. The supplied
digest will be used as-is without any further processing (specifically, for an RSA encryption key, the digest
will not be encoded as an ASN.1 Digestinfo sequence before comparing it with the digest in the signature)

222 System SSL Programming V1R4.0

gsk_verify _data_signature()

The following signature algorithms are supported:

* x509_alg_md2WithRsaEncryption - RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

» x509_alg_md5WithRsaEncryption - RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

* x509 alg_shalWithRsaEncryption - RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}
» x509_alg_dsaWithShal - Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

» x509_alg_md5ShalWithRsaEncryption - RSA encryption with combined MD5 and SHA-1 digests

The x509_alg_md5ShalWithRsaEncryption algorithm is a special algorithm used by the SSL protocol. The

data signature consists of the MD5 digest over the data followed by the SHA-1 digest over the data for a
total digest length of 36 bytes. The digest is encrypted as-is without any further processing.

Chapter 8. Certificate Management Services (CMS) API Reference 223

gsk_verify_data_signature()

224 system SSL Programming V1R4.0

Chapter 9. Deprecated Secure Sockets Layer APIs

The following set of application program interfaces, or APIs, have been superseded by the APIs defined in
[Chapter 7, “API Reference” on page 27}

* gsk_free_memory() (see page

» gsk_get_cipher_info() (see page

* gsk_get _dn_by label() (see page)
- gsk_initialize() (see page [229)

» gsk secure_soc _close() (see page
+ gsk_secure_soc_init() (see page [233)

* gsk secure_soc _read() (see page@
* gsk_secure_soc_reset() (see page 240
» gsk _secure_soc_write() (see page.24_1
» gsk_srb_initialize() (see page

« GSKSRBRD() (see page p44)

+ GSKSRBWT() (see page [245)

* gsk _uninitialize() (see page @

* gsk_user_set() (see page@

Although use of the deprecated set of APIs in this chapter is still supported in z/OS Version 1 Release 4, it
is strongly recommended that new applications be developed using the set of APIs defined in|Chapter 7,
[‘API Reference’]

In addition, it is strongly recommended that existing applications be modified to make use of the set of
APIs defined in|Chapter 7, “AP| Reference’]l Those modified applications should only use the new APIs,
and not a mix of the new APIs and these deprecated APIs. Information about modifying your existing
application programs to use the new API set can be found in [Chapter 5, “Migrating to the New SSL|
[Interfaces” on page 23

IBM may remove support of APIs contained within this chapter in a future release

© Copyright IBM Corp. 1999, 2002 225

gsk_free_memory()

gsk free_memory()
Releases storage allocated by the SSL runtime.

Format
#include <gskssl.h>
void gsk_free_memory (

void * address,
void * reserved)

Parameters

address
Specifies the address of the storage to be released.

reserved
Reserved for future use. Specify NULL for this parameter.

Usage
The gsk_free_memory() routine releases storage allocated by the SSL runtime.

Related Topics
gsk_get dn_by label()

226 System SSL Programming V1R4.0

gsk_get_cipher_info()

gsk _get_cipher_info()
Returns the supported cipher specifications.

Format

#include <gskss1.h>

gsk_status gsk_get_cipher_info(

int level
gsk_sec_level * sec_level,
void * rsvd)
Parameters
level

Specifies GSK_LOW_SECURITY to return just the export cipher specifications or
GSK_HIGH_SECURITY to return the domestic cipher specifications as well as the export cipher
specifications.

sec_level
Returns the cipher specifications.

rsvd
Reserved for future use. Specify NULL for this parameter.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskssl.h include file. The following is a common error:

[GSK_BAD_PARAMETER]
The level value is not valid or a NULL address is specified for sec_level.

Usage

The gsk_get_cipher_info() routine returns the available cipher specifications. Both domestic and export
ciphers will be included if GSK_HIGH_SECURITY is specified while only export ciphers will be included if
GSK_LOW_SECURITY is specified. The gsk_get _cipher_info() routine can be called at any time and
does not require the gsk_initialize() routine to be called first.

The SSL V2 cipher specifications returned for GSK_HIGH_SECURITY are "713642" while the SSL V3
cipher specifications are "0504352F0A090306020100". If the Security Level 3 FMID is not installed, the
SSL V2 cipher specifications are "642" while the SSL V3 cipher specifications are "090306020100".

The SSL V2 cipher specifications returned for GSK_LOW_SECURITY are "642" while the SSL V3 cipher
specifications are "090306020100".

Related Topics

gsk_secure_soc_init()

gsk_initialize()

Chapter 9. Deprecated Secure Sockets Layer APIs 227

gsk_get_dn_by label()

gsk get _dn_by label()
Gets the distinguished name for a certificate.

Format

#include <gskssl.h>
char * gsk_get_dn_by label(
const char = label)

Parameters

label
Specifies the key label.

Usage

The gsk_get dn_by label() routine returns the distinguished name for the certificate associated with the
key label. The gsk_initialize() routine must be called before the gsk_get dn_by label() routine can be
called. The application should release the returned name when it is no longer needed by calling the
gsk_free_memory() routine. The return value will be NULL if an error occurred while accessing the key
database.

Related Topics

gsk_initialize()
gsk_secure_soc _init()

gsk_free_memory()

228 System SSL Programming V1R4.0

gsk_initialize()

gsk_initialize()
Initializes the System SSL runtime environment.

Format

#include <gskss1.h>

gsk_status gsk_initialize(
gsk_init_data = init_data)

Parameters

init_data
Specifies the data used to initialize the SSL runtime environment.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskssl.h include file. The following are some common errors:

[GSK_ERR_INIT_PARM_NOT_VALID]
An initialization parameter is not valid.

[GSK_ERROR_BAD_MALLOC]
Insufficient storage is available.

[GSK_ERROR_CRYPTO]
Cryptographic error detected.

[GSK_ERROR_LDAP]
Unable to initialize the LDAP client.

[GSK_ERROR_PERMISSION_DENIED]
Not authorized to access the key database or key ring.

[GSK_INIT_SEC_TYPE_NOT_VALID]
The security type is not valid.

[GSK_INIT_V2_TIMEOUT_NOT_VALID]
The SSL V2 timeout is not valid.

[GSK_INIT_V3_TIMEOUT_NOT_VALID]
The SSL V3 timeout is not valid.

[GSK_KEYFILE_BAD_FORMAT]
Key database or key ring format is not valid.

[GSK_KEYFILE_BAD_PASSWORD]
Key database password is not correct.

[GSK_KEYFILE_IO_ERROR]
Unable to read the key database or key ring.

[GSK_KEYFILE_NO_CERTIFICATES]
The key database or key ring does not contain any certificates.

[GSK_KEYFILE_OPEN_FAILED]
Unable to open the key database or key ring.

[GSK_KEYFILE_PW_EXPIRED]
Key database password is expired.

Chapter 9. Deprecated Secure Sockets Layer APIs 229

gsk_initialize()

Usage

The gsk_initialize() routine initializes the System SSL runtime environment for the current process. The
gsk_initialize() routine is not needed if the application does not use any of the deprecated SSL API
routines. The gsk_uninitialize() routine should be called to release the SSL environment when it is no
longer needed. Multiple calls to gsk_initialize() will cause the existing environment to be released before
creating the new environment.

Environment variables are processed and the key database or key ring is read as part of the environment
initialization. Upon successful completion of gsk_initialize() , the application is ready to begin creating and
using secure socket connections.

The gsk_init_data structure contains the following fields:

sec_types
Specifies one of the following null-terminated character strings: "SSLV2" or "SSL20" to use the
SSL V2 protocol, "SSLV3" or "SSL30" to use the SSL V3 protocol, "TLSV1” or "TLS10” to use the
TLS V1 protocol, or "ALL" to use any supported protocol.

When "ALL" is specified for an SSL client, the client will attempt to use the TLS V1 protocol and
will fall-back to the SSL V3 protocol if the SSL server does not support the TLS V1 protocol. No
attempt will be made to use the SSL V2 protocol (the client must explicitly request the SSL V2
protocol if it wants to use this protocol).

When "ALL" is specified for an SSL server, the server will accept any of the supported protocols.

keyring
Specifies the name of the key database or SAF key ring as a null-terminated character string. A
SAF key ring is used if both the password and stash file name are NULL.

The SAF key ring name is specified as "userid/keyring”. The current userid is used if the userid is
omitted. The user must have READ access to the IRR.DIGTCERT.LISTRING resource in the
FACILITY class when using a SAF key ring owned by the user. The user must have UPDATE
access to the IRR.DIGTCERT.LISTRING resource in the FACILITY class when using a SAF key
ring owned by another user. Note that certificate private keys are not available when using a SAF
key ring owned by another user.

keyring_pw
Specifies the password for the key database as a null-terminated character string. Specify NULL to
indicate no password is provided.

keyring_stash
Specifies the name of the password stash file as a null-terminated character string. Specify NULL
to indicate no stash file is provided. The password stash file is used if the keyring_pw value is
NULL.

V2 _session_timeout
Specifies the SSL V2 session cache timeout value in seconds. The valid range is 0 to 100. A short
SSL handshake is performed when a cached session exists since the session parameters have
already been negotiated between the client and the server.

V3_session_timeout
Specifies the SSL V3 session cache timeout value in seconds. The valid range is 0 to 86400. A
short SSL handshake is performed when a cached session exists since the session parameters
have already been negotiated between the client and the server.

LDAP_server
Specifies one or more blank-separated LDAP server host names as a null-terminated character
string. Each host name can contain an optional port number separated from the host name by a
colon. The LDAP server is used for certificate validation . The LDAP server is used only when

230 System SSL Programming V1R4.0

gsk_initialize()

LDAP_CA roots is set to GSK_CA_ROOTS_LOCAL_AND_X500 and auth_type is not set to
GSK_CLIENT_AUTH_LOCAL or GSK_CLIENT_AUTH_PASSTHRU.

LDAP_port
Specifies the LDAP server port. The default LDAP port will be used if O is specified.

LDAP_user
Specifies the distinguished name to use when connecting to the LDAP server and is a
null-terminated character string. An anonymous bind will be done if NULL is specified for this field.

LDAP_password
Specifies the password to use when connecting to the LDAP server and is a null-terminated
character string. This field is ignored if NULL is specified for LDAP_user.

LDAP_CA_roots
Specifies the location of CA certificates and certificate revocation lists used to validate certificates.
When GSK_CA_ROOTS_LOCAL_ONLY is specified, the CA certificates and certificate revocation
lists are obtained from the local database. When GSK_CA_ROOTS_LOCAL_AND_X500 is
specified, the CA certificates and certificate revocation lists are obtained from the LDAP server if
they are not found in the local database. Even when an LDAP server is used, root CA certificates
must be found in the local database since the LDAP server is not a trusted data source.

auth_type
Specifies the client authentication type. This field is ignored unless LDAP_CA_roots is set to
GSK_CA ROOTS_LOCAL_AND_X500. The client certificate is not validated when
GSK_CLIENT_AUTH_PASSTHRU is specified. The client certificate is validated using just the
local database when GSK_CLIENT_AUTH_LOCAL is specified. CA certificates and certificate
revocation lists not found in the local database will be obtained from the LDAP server when
GSK_CLIENT_AUTH_STRONG or GSK_CLIENT_AUTH_STRONG_OVER_SSL is specified (the
local database must still contain the root CA certificates). There is no difference between
GSK_CLIENT_AUTH_STRONG and GSK_CLIENT_AUTH_STRONG_OVER_SSL.

The gsk_initialize() routine supports the following environment variables:

GSKV2CACHESIZE
Specifies the number of entries in the SSL V2 session cache with a range of 0 to 32000. The
value specified by the GSK_V2_SIDCACHE_SIZE environment variable will be used if the
GSKV2CACHESIZE variable is not defined. The default value is 256 if neither environment
variable is defined.

GSKV3CACHESIZE
Specifies the number of entries in the SSL V3 session cache with a range of 0 to 64000. The
value specified by the GSK_V3_SIDCACHE_SIZE environment variable will be used if the
GSKV3CACHESIZE variable is not defined. The default value is 512 if neither environment
variable is defined. The SSL V3 session cache is used for both the SSL V3 and TLS V1 protocols.

Related Topics

gsk_secure_soc _init()
gsk_secure_soc_read()
gsk_secure_soc_write()
gsk_secure_soc_close()

gsk_uninitialize()

Chapter 9. Deprecated Secure Sockets Layer APIs 231

gsk_secure_soc_close

gsk secure_soc_close
Closes a secure socket connection.

Format

#include <gskssl.h>

void gsk_secure_soc_close(
gsk_soc_data * handle)

Parameters

handle
Specifies the connection handle returned by the gsk_secure_soc_init() routine.

Usage

The gsk_secure_soc_close() routine closes a secure connection created by the gsk _secure_soc_init()
routine. The socket itself is not closed (the application is responsible for closing the socket). The
connection can no longer be used for secure communications after calling the gsk_secure_soc_close()
routine.

Related Topics

gsk_initialize()
gsk_secure_soc _init()
gsk_secure_soc_read()

gsk_secure_soc_write()

232 System SSL Programming V1R4.0

gsk_secure_soc_init()

gsk secure_soc _init()
Initializes a secure socket connection.

Format

#include <gskss1.h>

gsk_soc_data * gsk_secure_soc_init(
gsk_soc_init_data * init_data)

Parameters

init_data
Specifies the socket connection initialization data.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskssl.h include file. The following are some common errors:

[GSK_ERR_INIT_PARM_NOT_VALID]
A connection initialization parameter is not valid.

[GSK_ERROR_BAD_CERT]
A certificate is not valid.

[GSK_ERROR_BAD_DATE]
A certificate is not valid yet or is expired.

[GSK_ERROR_BAD_MAC]
Message verification failed.

[GSK_ERROR_BAD_MALLOC]
Insufficient storage is available.

[GSK_ERROR_BAD_MESSAGE]
Incorrectly-formatted message received from peer application.

[GSK_ERROR_BAD_PEER]
Peer application has violated the SSL protocol.

[GSK_ERROR_BAD_STATE]
The SSL environment has not been initialized.

[GSK_ERROR_CRYPTO]
Cryptographic error detected.

[GSK_ERROR_GSK_INITIALIZATION_FAILED]
SSL connection initialization failed.

[GSK_ERROR_IO]
I/O error communicating with peer application.

[GSK_ERROR_LDAP]
An LDAP error is detected.

[GSK_ERROR_LDAP_NOT_AVAILABLE]
The LDAP server is not available.

[GSK_ERROR_NO_CIPHERS]
No cipher specifications.

Chapter 9. Deprecated Secure Sockets Layer APIs 233

gsk_secure_soc_init()

[GSK_ERROR_SELF_SIGNED]
A self-signed certificate cannot be validated.

[GSK_ERROR_SOCKET_CLOSED]
Socket connection closed by peer application.

[GSK_ERROR_UNKNOWN_CA]
A certification authority certificate is missing.

[GSK_ERROR_UNSUPPORTED_CERTIFICATE_TYPE]
The certificate type is not supported by System SSL.

[GSK_ERROR_VALIDATION]
Certificate validation error.

[GSK_KEYFILE_BAD_DNAME]
The specified key is not found in the key database or the key is not trusted.

[GSK_KEYFILE_DUPLICATE_NAME]
The key database contains multiple certificates with the same subject name as the distinguished
name specified in the connection initialization data.

[GSK_SOC_NO_READ_FUNCTION]
No read function is specified in the connection initialization data.

[GSK_SOC_NO_WRITE_FUNCTION]
No write function is specified in the connection initialization data.

Usage

The gsk_secure_soc_init() routine initializes a secure socket connection. The gsk_initialize() routine
must be called before any secure socket connections can be initialized. After the connection has been
initialized, it can be used for secure data transmission using the gsk_secure_soc_read() and
gsk_secure_soc_write() routines. The gsk_secure_soc_close() routine should be called to close the
connection when it is no longer needed. The gsk secure_soc_close() routine should not be called if an
error is returned by the gsk_secure_soc_init() routine.

Before calling the gsk_secure_soc_init() routine, the application must create a connected socket. For a
client, this means calling the socket() and connect() routines. For a server, this means calling the
socket() , listen() , and accept() routines. However, SSL does not require the use of TCP/IP for the
communications layer. The socket descriptor can be any integer value that is meaningful to the application.
The application must provide its own socket routines if it is not using TCP/IP.

An SSL handshake is performed as part of the processing of the gsk_secure_soc_init() routine. This
establishes the server identity and optionally the client identity. It also negotiates the cryptographic
parameters to be used for the connection.

The server certificate must support key encipherment. This means that the public/private key algorithm
must use RSA encryption since the DSS (Digital Signature Standard) algorithm does not support data
encryption and the certificate key usage extension (if any) must allow key encipherment.

The client certificate must support digital signatures. This means the certificate key usage extension (if
any) must allow digital signature. The key algorithm can be either the RSA encryption algorithm or the
Digital Signature Standard algorithm (DSA).

The SSL server always provides its certificate to the SSL client as part of the handshake. Depending upon
the server handshake type, the server may ask the client to provide its certificate. The key label stored in
the connection is used to retrieve the certificate from the key database or key ring. The default key will be
used if no label is set. The key record must contain both an X.509 certificate and a private key.

234 system SSL Programming V1R4.0

gsk_secure_soc_init()

The following SSL V2 cipher specifications are supported:

» "1" = 128-bit RC4 encryption with MD5 message authentication (128-bit secret key)

« 2" = 128-bit RC4 export encryption with MD5 message authentication (40-bit secret key)
» "3" = 128-bit RC2 encryption with MD5 message authentication (128-bit secret key)

» "4" = 128-bit RC2 export encryption with MD5 message authentication (40-bit secret key)
» "6" = 56-bit DES encryption with MD5 message authentication (56-bit secret key)

» "7" = 168-bit Triple DES encryption with MD5 message authentication (168-bit secret key)

The following SSL V3 cipher specifications are supported:

* "00" = No encryption or message authentication

* "01" = No encryption with MD5 message authentication

* "02" = No encryption with SHA-1 message authentication

* "03" = 40-bit RC4 encryption with MD5 message authentication and RSA key exchange

* "04" = 128-bit RC4 encryption with MD5 message authentication and RSA key exchange

* "05" = 128-bit RC4 encryption with SHA-1 message authentication and RSA key exchange
* "06" = 40-bit RC2 encryption with MD5 message authentication and RSA key exchange

* "09" = 56-bit DES encryption with SHA-1 message authentication and RSA key exchange
* "0A" = 168-bit Triple DES encryption with SHA-1 message authentication and RSA key exchange
« "2F" = 128-bit AES encryption with SHA-1 message authentication and RSA key exchange
» "35" = 256-bit AES encryption with SHA-1 message authentication and RSA key exchange

The gsk_soc_init_data structure contains the following fields:

fd Specifies the socket descriptor for the secure connection. The socket must remain open until after
the gsk_secure_soc_close() routine has been called to close the secure connection.

hs_type
Specifies the desired handshake type as follows:

GSK_AS_CLIENT
Performs a client SSL handshake

GSK_AS_CLIENT_NO_AUTH
Performs a client SSL handshake but do not provide a client certificate to the SSL server

GSK_AS_SERVER
Performs a server SSL handshake

GSK_AS_SERVER_WITH_CLIENT_AUTH
Performs a server SSL handshake with client authentication

DName
Specifies either the distinguished name or the key label of the local certificate. Specify NULL to
use the default key for the key database or key ring.

sec_type
Returns the selected security protocol as "SSLV2", "SSLV3", or "TLSV1". This is a static string
and must not be modified or freed by the application.

cipher_specs
Specifies the SSL V2 cipher specifications as a null-terminated string consisting of 1 or more
1-character values. Specify NULL to use the default cipher specifications ("713642" if domestic
encryption is enabled and "642" otherwise). Valid cipher specifications that are not supported due
to the installed cryptographic level will be skipped when the connection is initialized.

v3cipher_specs
Specifies the SSL V3 cipher specifications as a null-terminated string consisting of 1 or more

Chapter 9. Deprecated Secure Sockets Layer APIs 235

gsk_secure_soc_init()

2-character values. Specify NULL to use the default cipher specifications
("0504352F0A090306020100" if domestic encryption is enabled and "090306020100" otherwise).
The SSL V3 cipher specifications are used for both the SSL V3 and TLS V1 protocols. Valid cipher
specifications that are not supported due to the installed cryptographic level will be skipped when
the connection is initialized.

skread Specifies the address of the read routine used during the SSL handshake.

Skwrite
Specifies the address of the write routine used during the SSL handshake.

cipherSelected
Returns the selected cipher for the SSL V2 protocol as a 3-byte binary value:
* 0x010080 - 128-hit RC4 encryption with MD5 message authentication
* 0x020080 = 128-bit RC4 export encryption with MD5 message authentication
* 0x030080 = 128-bit RC2 encryption with MD5 message authentication
* 0x040080 = 128-bit RC2 export encryption with MD5 message authentication
* 0x060040 = 56-bit DES encryption with MD5 message authentication
* 0x0700c0 = 168-hit Triple DES encryption with MD5 message authentication
v3cipherSelected

Returns the selected cipher for the SSL V3 or TLS V1 protocol as a 2-byte character value with no
string delimiter:

* "00” = No encryption or message authentication

* "01" = No encryption with MD5 message authentication

* "02" = No encryption with SHA-1 message authentication

* "03" = 40-bit RC4 encryption with MD5 message authentication and RSA key exchange

* "04" = 128-bit RC4 encryption with MD5 message authentication and RSA key exchange

* "05" = 128-bit RC4 encryption with SHA-1 message authentication and RSA key exchange
* "06" = 40-bit RC2 encryption with MD5 message authentication and RSA key exchange

* "09" = 56-bit DES encryption with SHA-1 message authentication and RSA key exchange

» "0A" = 168-bit Triple DES encryption with SHA-1 message authentication and RSA key
exchange

« "2F" = 128-hit AES encryption with SHA-1 message authentication and RSA key exchange
» "35" = 256-bit AES encryption with SHA-1 message authentication and RSA key exchange

failureReasonCode
Returns the gsk_secure_soc_init() error code.

cert_info
Returns peer certificate information. The application must not modify or free this information.

gsk data
This field is ignored. The key database information is set when gsk_initialize() is called.

Related Topics

gsk_initialize()
gsk_secure_soc_write()
gsk_secure_soc_read()
gsk_secure_soc_close()
gsk_get_dn_by label()

236 System SSL Programming V1R4.0

gsk_secure_soc_init()

| gsk_get cipher_info()

| gsk _secure_soc reset()

Chapter 9. Deprecated Secure Sockets Layer APIs 237

gsk_secure_soc_read()

gsk secure _soc_read()
Reads data using a secure socket connection.

Format

#include <gskssl.h>

int gsk_secure_soc_read(

gsk_soc_data * soc_handle,
void * buffer,
int size)
Parameters
soc_handle
Specifies the connection handle returned by the gsk_secure_soc_init() routine.
buffer

Specifies the buffer to receive the data read from the secure socket connection. The maximum amount
of data returned by gsk_secure_soc_read() is 16384 (16K) bytes minus the length of the SSL
protocol headers.

size
Specifies the size of the supplied buffer.

Results

The function return value will be the number of bytes read if no error is detected. Otherwise, it will be a
negative value representing one of the return codes listed in the gskssl.h include file. The following are
some common errors:

[GSK_ERROR_BAD_BUFFER_SIZE]
The buffer address or buffer size is not valid.

[GSK_ERROR_BAD_MAC]
Message verification failed.

[GSK_ERROR_BAD_MALLOC]
Insufficient storage is available.

[GSK_ERROR_BAD_MESSAGE]
Incorrectly-formatted message received from peer application.

[GSK_ERROR_BAD_PEER]
Peer application has violated the SSL protocol.

[GSK_ERROR_BAD_SSL HANDLE]
The connection handle is not valid.

[GSK_ERROR_CONNECTION_ACTIVE]
A read request is already active for the connection.

[GSK_ERROR_CRYPTO]
Cryptographic error detected.

[GSK_ERROR_IO]
I/O error communicating with peer application.

[GSK_ERROR_SOCKET_CLOSED]
Socket connection closed by peer application.

[GSK_ERROR_WOULD_BLOCK]
A complete SSL record is not available.

238 System SSL Programming V1R4.0

gsk_secure_soc_read()

[GSK_ERROR_WOULD_BLOCK_WRITE]
An SSL handshake is in progress but data cannot be written to the socket.

Usage

The gsk_secure_soc_read() routine reads data from a secure socket connection and returns it in the
application buffer. SSL is a record-based protocol and a single call will never return more than a single
SSL record (a maximum of 16384 bytes minus the length of the SSL protocol headers). The application
can read an entire SSL record in a single call by supplying a buffer large enough to contain the record.
Otherwise, multiple calls will be required to retrieve the entire SSL record.

SSL supports multiple threads but only one thread at a time can call the gsk_secure_soc_read() routine
for a given connection handle. Multiple concurrent threads can call gsk_secure_soc_read() as long as
each thread has its own connection handle.

SSL supports sockets in blocking mode and in non-blocking mode. When a socket is in non-blocking mode
and a complete SSL record is not available, gsk_secure_soc_read() will return with
GSK_ERROR_WOULD_BLOCK. No data will be returned in the application buffer when
GSK_ERROR_WOULD_BLOCK is returned. The application should call gsk_secure_soc_read() again
when there is data available to be read from the socket.

The peer application can initiate an SSL handshake sequence after the connection is established. If this is
done and the socket is in non-blocking mode, it is possible for gsk_secure_soc_read() to return with
GSK_ERROR_WOULD_BLOCK_WRITE. This indicates that an SSL handshake is in progress and the
application should call gsk_secure_soc_read() again when data can be written to the socket. No data will
be returned in the application buffer when GSK_ERROR_WOULD_BLOCK_WRITE is returned.

The application should not read data directly from the socket since this can cause SSL protocol errors if
the application inadvertently reads part of an SSL record. If the application must read data from the

socket, it is responsible for synchronizing this activity with the peer application so that no SSL records are
sent while the application is performing its own read operations.

Related Topics

gsk_initialize()
gsk_secure_soc _init()
gsk_secure_soc_write()

gsk_secure_soc_close()

Chapter 9. Deprecated Secure Sockets Layer APIs 239

gsk_secure_soc_reset()

gsk secure_soc_reset()
Resets the session keys for a secure connection.

Format

#include <gskssl.h>

gsk_status gsk_secure_soc_reset(
gsk_soc_data * soc_handle)

Parameters

soc_handle
Specifies the connection handle returned by the gsk_secure_soc_init() routine.

Results
The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskssl.h include file. The following are some common errors:

[GSK_ERROR_BAD_MALLOC]
Insufficient storage is available.

[GSK_ERROR_BAD_SSL_HANDLE]
The connection handle is not valid.

[GSK_ERROR_IO]
I/O error communicating with peer application.

[GSK_ERROR_NOT_SSLV3]
The session is not using the SSL V3 or TLS V1 protocol.

[GSK_ERROR_SOCKET_CLOSED]
Socket connection closed by peer application.

Usage

The gsk_secure_soc_reset() routine generates new session keys for the connection. A full SSL
handshake will be performed if the session has expired. Otherwise a short SSL handshake will be
performed. The gsk _secure_soc_reset() routine can be called only for a session using the SSL V3 or
TLS V1 protocol. The gsk_secure_soc_reset() routine initiates the SSL handshake but does not wait for it
to complete. Any pending handshake messages will be processed when the gsk_secure_soc_read()
routine is called to process incoming data.

Related Topics

gsk_secure_soc _init()

240 system SSL Programming V1R4.0

gsk_secure_soc_write()

gsk secure_soc_write()
Writes data using a secure socket connection.

Format

#include <gskss1.h>

int gsk_secure_soc_write(

gsk_soc_data * soc_handle,
void * buffer,
int length)
Parameters
soc_handle
Specifies the connection handle returned by the gsk_secure_soc_init() routine.
buffer

Specifies the buffer containing the data to write to the secure socket connection.

length
Specifies the amount to write.

Results

The function return value will be the number of bytes written if no error is detected. Otherwise, it will be a
negative value representing one of the return codes listed in the gskssl.h include file. The following are
some common errors:

[GSK_ERROR_BAD_BUFFER_SIZE]
The buffer address or buffer size is not valid.

[GSK_ERROR_BAD_MALLOC]
Insufficient storage is available.

[GSK_ERROR_BAD_SSL HANDLE]
The connection handle is not valid.

[GSK_ERROR_CONNECTION_ACTIVE]
A write request is already active for the connection.

[GSK_ERROR_CRYPTO]
Cryptographic error detected.

[GSK_ERROR_IO]
I/O error communicating with peer application.

[GSK_ERROR_SOCKET_CLOSED]
Socket connection closed by peer application.

[GSK_ERROR_WOULD_BLOCK]
The SSL record cannot be written to the socket due to an EWOULDBLOCK condition.

Usage

The gsk_secure_soc_write() routine writes data to a secure socket connection. SSL is a record-based
protocol with a maximum record length of 16384 bytes minus the length of the SSL protocol headers.
Application data larger than the size of an SSL record will be sent using multiple records. Since
gsk_secure_soc_read() never returns more than a single SSL record, the receiving application will need
to call gsk_secure_soc_read() multiple times in order to receive all of the application data when multiple
records are needed.

Chapter 9. Deprecated Secure Sockets Layer APIs 241

gsk_secure_soc_write()

SSL supports multiple threads but only one thread at a time can call the gsk_secure_soc_write() routine
for a given connection handle. Multiple concurrent threads can call gsk_secure_soc_write() as long as
each thread has its own connection handle.

SSL supports sockets in blocking mode and in non-blocking mode. When a socket is in non-blocking mode
and the SSL record cannot be written to the socket, gsk_secure_soc_write() will return with
GSK_ERROR_WOULD_BLOCK. The application must call gsk_secure_soc_write() again when the
socket is ready to accept more data, specifying the same buffer address and buffer size as the original
request. A new write request must not be initiated until the pending write request has been completed as
indicated by a return value of 0.

The application should not write data directly to the socket since this can cause SSL protocol errors if the
application inadvertently intermixes its data with SSL protocol data. If the application must write data to the

socket, it is responsible for synchronizing this activity with the peer application so that application data is
not intermixed with SSL data.

Related Topics

gsk_initialize()
gsk_secure_soc _init()
gsk_secure_soc_read()

gsk_secure_soc_close()

242 system SSL Programming V1R4.0

gsk_srb_initialize()

gsk_srb_initialize()
Initializes SRB support.

Format
#include <gskss1.h>

gsk_status gsk_srb_initialize (
int num_tasks)

Parameters

num_tasks
Specifies the maximum number of service tasks and must be greater than 0.

Results
The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskssl.h include file. The following are some common errors:

[GSK_ERR_INIT_PARM_NOT_VALID]
The number of tasks parameter is not valid.

[GSK_ERROR_BAD_STATE]
The SSL environment is not initialized.

[GSK_SRB_INIT_ESTAEX]
Unable to establish ESTAE exit.

[GSK_SRB_INIT_NOT_APF]
The application is not APF authorized.

[GSK_SRB_INIT_THREAD_CREATE]
Unable to create a thread.

Usage

The gsk_srb_initialize() routine will initialize the SRB (Service Request Block) support. The application
must be APF-authorized in order to use SRB mode. The gsk_srb_initialize() routine must be called after
the gsk_initialize() routine and before any calls to the GSKSRBRD and GSKSRBWT routines.

The SRB support provided by System SSL is a mode converter which allows an SSL read or write
operation to be initiated in SRB mode but processed in TASK mode. This is necessary because SRB
mode is not supported by many of the functions invoked by System SSL while processing a read or write
request.

The gsk_srb_initialize() routine creates a monitor thread and the first service thread. Additional threads
are created as needed up to the maximum number of threads specified by the num_tasks parameter.
These threads will be destroyed and SRB mode support will be terminated when the gsk_uninitialize()
routine is called.

Refer to the z/OS Authorized Assembler Services Guide for more information about service request blocks.

Related Topics
GSKSRBRD

GSKSRBWT

Chapter 9. Deprecated Secure Sockets Layer APIs 243

GSKSRBRD

GSKSRBRD

Reads from a secure connection in SRB mode.

Format
LOAD EP=GSKSRBRD
LR 15,0

CALL (15), (SOCHNDLE, BUFPTR, BUFSIZE, RSNCODE)

Parameters

sochndle
Specifies a 4-byte word containing the gsk_soc_data address returned by the gsk_secure_soc_init()
routine.

bufptr
Specifies a 4-byte word containing the address of the data buffer.

bufsize
Specifies a 4-byte word containing the length of the data buffer.

rsncode
Specifies a 4-byte word which will contain the reason code if an error is detected. In most cases, this
will be the errno value at the completion of the read request.

Results

The return value will be the number of bytes read if no error is detected. Otherwise, it will be a negative
value representing one of the return codes listed in the gskssl.h include file. Refer to the description of
the gsk_secure_soc_read() routine for more information.

Usage

The GSKSRBRD routine is called to read from a secure connection in SRB mode. The
gsk_srb_initialize() routine must have been called previously to initialize the SRB support. All of the
parameters must be in the application storage key and must reside in the primary address space. The
GSKSRBRD routine will pass the read request to one of the SRB service tasks. The service task will then
call the gsk_secure_soc_read() routine. The GSKSRBRD routine will not return until the
gsk_secure_soc_read() routine has completed.

Related Topics
GSKSRBWT

gsk_initialize()
gsk_srb_initialize()
gsk_secure_soc _init()
gsk_secure_soc_write()

gsk_secure_soc_close()

244 system SSL Programming V1R4.0

GSKSRBWT

GSKSRBWT

Writes to a secure connection in SRB mode.

Format
LOAD EP=GSKSRBRD
LR 15,0

CALL (15), (SOCHNDLE, BUFPTR, BUFSIZE, RSNCODE)

Parameters

sochndle
Specifies a 4-byte word containing the gsk_soc_data address returned by the gsk_secure_soc_init()
routine.

bufptr
Specifies a 4-byte word containing the address of the data buffer.

bufsize
Specifies a 4-byte word containing the length of the data to be written.

rsncode
Specifies a 4-byte word which will contain the reason code if an error is detected. In most cases, this
will be the errno value at the completion of the read request.

Results

The return value will be the number of bytes written if no error is detected. Otherwise, it will be a negative
value representing one of the return codes listed in the gskssl.h include file. Refer to the description of
the gsk_secure_soc_write() routine for more information.

Usage

The GSKSRBWT routine is called to write to a secure connection in SRB mode. The gsk_srb_initialize()
routine must have been called previously to initialize the SRB support. All of the parameters must be in the
application storage key and must reside in the primary address space. The GSKSRBWT routine will pass
the write request to one of the SRB service tasks. The service task will then call the
gsk_secure_soc_write() routine. The GSKSRBWT routine will not return until the

gsk_secure_soc_write() routine has completed.

Related Topics
GSKSRBRD

gsk_initialize()
gsk_srb_initialize()
gsk_secure_soc _init()
gsk_secure_soc_write()

gsk_secure_soc_close()

Chapter 9. Deprecated Secure Sockets Layer APIs 245

gsk_uninitialize()

gsk_uninitialize()
Terminates the SSL environment.

Format

#include <gskssl.h>

gsk_status gsk_uninitialize (void)

Parameters
There are no parameters.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskssl.h include file. The following is a common error:

[GSK_ERROR_CLOSE_FAILED]
An error occurred while closing the environment.

Usage

The gsk_uninitialize() routine will close the SSL environment created by the gsk_initialize() routine. New
SSL connections cannot be initiated after calling the gsk_uninitialize() routine until the gsk_initialize()
routine is called to initialize a new SSL environment. All resources allocated for the environment will be
released unless there are active SSL connections still using the environment. If there are active
connections, the environment will not be actually closed until the last connection has been closed.

Related Topics

gsk_initialize()

gsk_secure_soc _init()

246 system SSL Programming V1R4.0

gsk_user_set()

gsk user_set()
Sets an application callback.

Format

#include <gskss1.h>

gsk_status gsk_user_set(

gsk_user_set_fid set_id,
void * set_data,
void * reserved)
Parameters
set_id

Specifies the set function identifier.

set_data
Specifies the address of the set data.

reserved
Specify NULL for this parameter.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it will be one of the return
codes listed in the gskssl.h include file. The following are some common errors:

[GSK_BAD_PARAMETER]
A parameter is not valid.

[GSK_ERROR_BAD_STATE]
The SSL environment has not been initialized.

Usage

The gsk_user_set() routine will set or reset an application callback. The gsk_initialize() routine must be
called before the gsk_user_set() routine can be called.

The following set function identifiers are supported:

[GSK_SET_SIDCACHE_CALLBACK]
This function sets the session identifier cache callback. The set data is the address of the
gsk_sidcache_callback structure. The application session identifier cache will be used only for SSL
servers (the internal cache is always used for SSL clients). This sets the session identifier cache
for existing connections as well as new connections created by the gsk_secure_soc _init()
routine.

The routine specified by the Get entry is called to retrieve an entry from the session identifier
cache. The session_id parameter is the session identifier, the session_id length parameter is the
length of the session identifier, and the ss/_version parameter is the SSL protocol version number
(GSK_SSLVERSION_V2 or GSK_SSLVERSION_V3). The function return value is the address of
the session data buffer or NULL if an error is detected. The FreeDataBuffer routine will be called
to release the session data buffer when it is no longer needed by the SSL runtime.

gsk_data_buffer * Get (

const unsigned char =* session_id,
unsigned int session_id_length,
gsk_sslversion ss1_version)

Chapter 9. Deprecated Secure Sockets Layer APIs 247

gsk_user_set()

The routine specified by the Put entry is called to store an entry in the session identifier cache.
The ss/_session_data parameter is the session data, the session id parameter is the session
identifier, the session_id_length parameter is the length of the session identifier, and the
ssl_version parameter is the SSL protocol version number (GSK_SSLVERSION_V2 or
GSK_SSLVERSION_V3). The function return value is ignored and can be a NULL address. The
callback routine must make its own copy of the session data since the SSL structure will be
released when the connection is closed.

gsk_data_buffer » Put (

gsk_data_buffer = ss1_session_data,
const unsigned char =* session_id,
unsigned int session_id_Tength,
gsk_sslversion ss1_version)

The routine specified by the Delete entry is called to remove an entry from the session identifier
cache. The session_id parameter is the session identifier, the session_id length parameter is the
length of the session identifier, and the ss/_version parameter is the SSL protocol version number
(GSK_SSLVERSION_V2 or GSK_SSLVERSION_V3).

void Delete (

const unsigned char =* session_id,
unsigned int session_id_Tength,
gsk_sslversion ss1_version)

The routine specified by the FreeDataBuffer entry is called to release the data buffer returned by
the Get routine.

void FreeDataBuffer (
gsk_data_buffer * ss1_session_data)

[GSK_RESET_SIDCACHE_CALLBACK]
This function resets the session identifier cache callback. The internal session identifier cache will
be used instead of an application session identifier cache. This resets the session identifier cache
for existing connections as well as new connections created by the gsk_secure_soc _init()
routine.

[GSK_SET_GETPEER_CALLBACK]
This function sets the peer identification callback. The peer identification callback returns the 32-bit
network identifier for the remote partner. The fd parameter is the socket descriptor specified when
the connection was initialized. The peer identification routine will be called for new connections
created by gsk_secure_soc_init() but will not be called for existing connections.

unsigned long io_getpeerid (
int fd)

[GSK_RESET_GETPEER_CALLBACK]
This function resets the peer identification callback. The internal peer identification routine will be
used instead of the application routine. This applies to new connections created by
gsk_secure_soc_init() and does not affect existing connections.

248 system SSL Programming V1R4.0

Chapter 10. Certificate/Key Management

This chapter discusses the use of the z/OS shell-based gskkyman command to manage private keys and
certificates. In addition, detailed examples using the gskkyman command are shown in this chapter (see
['Example Tasks Performed by the gskkyman Command in Interactive Mode” on page 259).

Introduction

SSL connections make use of public/private key mechanisms for authenticating each side of the SSL
session and agreeing on bulk encryption keys to be used for the SSL session. To use public/private key
mechanisms (termed PKIl), public/private key pairs must be generated. In addition, X.509 certificates
(which contain public keys) may need to be created, or certificates must be requested, received, and
managed.

System SSL supports the following two methods for managing PKI private keys and certificates:

* A z/OS shell-based program called gskkyman . gskkyman creates, fills in, and manages a z/OS HFS
file that contains PKI private keys, certificate requests, and certificates. This z/OS HFS file is called a
key database and, by convention, has a file extension of .kdb.

* The z/OS Security Server (RACF) RACDCERT command. RACDCERT installs and maintains PKI
private keys and certificates in RACF. Refer to the|z/OS.' Security Server RACF Command Language|
|Reference, SA22-7687| for details on the RACDCERT command. RACF supports multiple PKI private
keys and certificates to be managed as a group. These groups are called key rings . RACF key rings
are the preferred method for managing PKI private keys and certificates for System SSL.

The System SSL application uses the GSK_KEYRING_FILE parameter of the gsk_attribute set buffer()
API or the GSK_KEYRING_FILE environment variable to specify the locations of the PKI private keys and
certificates to System SSL. If you are using a z/OS HFS key database, the key database file name is
passed in this parameter. If you are using a RACF key ring, the name of the key ring is passed in this
parameter.

The gskkyman Command

gskkyman is a z/OS shell-based program that creates, fills in, and manages a z/OS HFS file that contains
PKI private keys, certificate requests, and certificates. This z/OS HFS file is called a key database and, by
convention, has a file extension of .kdb.

The interface to gskkyman , while command-line based, is an interactive dialog between you (the user)
and the program. At each step, the gskkyman program prompts you with one or more lines of output and
expects a numeric choice to be supplied as input at the prompt. Once a choice has been made, the
gskkyman program prompts you for the individual pieces of information needed to fulfill the request. You
are prompted for each piece of information. Many times there is a default choice that is listed between
parentheses at the end of the command prompt. If the default choice is acceptable, press Enter to select
the default. If a choice other than the default is desired, enter the value at the prompt and press Enter. If a
value is entered that is outside of the acceptable range of inputs, you will be re-prompted for the
information.

© Copyright IBM Corp. 1999, 2002 249

Setting Up the Environment to Run gskkyman

gskkyman uses the DLLs that are installed with System SSL and must have access to these at run-time.
gskkyman must also have access to the message catalogs. The /bin directory includes a symbolic link to
gskkyman , therefore, if your PATH environment variable contains this directory, you will find gskkyman . If
your PATH environment variable does not contain this directory, add /usr/1pp/gskss1/bin to your PATH
using the following:

PATH=$PATH: /usr/1pp/gskss1/bin

/usr/1ib/n1s/msg/En_US.IBM-1047 (as well as /usr/1ib/n1s/msg/Ja_JP.IBM-939 for JCPT34J installations)
include symbolic links to the message catalogs for gskkyman . If they do not include these links, add
/usr/1pp/gskss1/1ib/n1s/msg to your NLSPATH using the following command:

export NLSPATH=$NLSPATH:/usr/1pp/gskss1/1ib/n1s/msg/%L/%N

This setting assumes that your environment has the LANG environment variable set to En_US.IBM-1047 (or
Ja_JP.IBM-939 for JCPT34J installations that expect Japanese messages and prompts). If LANG is not set
properly, set the NLSPATH environment variable using the following command:

export NLSPATH=/usr/1pp/gskss1/1ib/n1s/msg/En_US.IBM-1047/%N:$NLSPATH

or for JCPT34J installations that expect Japanese messages and prompts:
export NLSPATH=/usr/1pp/gskss1/1ib/n1s/msg/Ja_JP.IBM-939/%N: $NLSPATH

The DLLs for System SSL are installed into a partitioned dataset (PDS). These DLLs are not installed into
the LINKLIB or LPALIB by default. To access these DLLs, if they have not been placed in LINKLIB or
LPALIB, you must set the STEPLIB environment variable to find the DLLs. Consult your system programmer
for the high-level qualifier of the System SSL PDS. In this example, the high-level qualifier for the System
SSL PDS is <GSKHLQ>. In the following command, replace <GSKHLQ> with the value for your installation:

export STEPLIB=$STEPLIB:<GSKHLQ>.SGSKLOAD

Key Database Files

Key database files are password protected because they contain the private keys that are associated with
some of the certificates that are contained in the key database. Private keys, as their name implies, should
be protected because their value is used in verifying the authenticity of requests made during PKI
operations.

It is recommended that key database files be set with the following string z/OS HFS file permissions:
-rW----——- (600) (read-write for only the owner of the key database)

The owner of the key database should be the user who will be managing the key database. The program
using System SSL (and the key database) must have at least read permission to the key database file at
run-time. If the program is a server program that runs under a different user ID than the administrator of
the key database file, it is recommended that a group be setup to control access to the key database file.
In this case, it is recommended that you set the z/OS HFS permissions on the key database file to the
following:

-rw-r---- (640) (read-write for owner and read-only for group)

The owner of the z/OS HFS key database file is set to the administrator user ID and the group owner of
the key database file is set to the group that contains the server that will be using the key database file.

How gskkyman Works

This section describes gskkyman, and how to use it.

250 system SSL Programming V1R4.0

gskkyman

The gskkyman command is used for key database management.

Format

gskkyman

gskkyman -e -k filename -1 label -p filename

gskkyman -g -x days -cr filename -ct filename -k filename -1 label -ca
gskkyman -h

gskkyman -i -k filename -1 label -p filename

gskkyman -s -k filename

Functions

-e Export a certificate and its associated private key
-g Sign a certificate for a certificate request

-h Display the command syntax

-i Import a certificate and its associated private key

-s Store the database password in the stash file

Options

-ca
A certification authority certificate will be generated if -ca is specified. An end user certificate will be
generated if -ca is not specified.

-cr
Specifies the name of the certificate request file. You will be prompted for the file name if this option is
not specified.

-ct Specifies the name of the signed certificate file. You will be prompted for the file name if this option is
not specified.

-k Specifies the name of the key database. You will be prompted for the file hame if this option is not
specified. The length of the fully-qualified file name cannot exceed 251 characters. If the file name
does not end with an extension of 1-3 characters, the length of the fully-qualified file name cannot
exceed 247 characters. Finally, the key database name cannot end with .rdb or .sth.

-l Specifies the record label. The label must be enclosed in double quotes if it contains one or more
spaces. The label for the default key will be used if this option is not specified (export or sign function)
or you will be prompted for the label (import function).

-p Specifies the name of the PKCS #12 file. You will be prompted for the file name if this option is not
specified.

-x Specifies the number of days until the signed certificate expires and must be between 1 and 9999
days. The certificate will expire in 365 days if this option is not specified.

Usage

The gskkyman command is used to manage a key database and its associated request database.
Interactive menus will be displayed if no command options are specified. Otherwise, the requested
database function will be performed and the gskkyman command will exit.

The key database contains certificates and private keys and normally has a filename extension of ".kdb’.
The request database contains requests for new certificates and always has a filename extension of ".rdb’.
The database stash file contains the masked database password and always has a filename extension of
".sth’. Access to these files should be restricted to the database owner.

Chapter 10. Certificate/Key Management 251

A certificate or request database consists of fixed-length records. The record length is specified when the
database is created and must be large enough to contain the largest certificate entry. A record length of
2500 should be sufficient for most applications. The record length can be increased if necessary after the
database has been created.

A temporary database file is created when a database is updated during gskkyman processing. The
temporary database file is created using the same name as the database file with ".new” appended to the
name. The database file is then rewritten and the temporary database file is deleted upon successful
completion of the rewrite operation. The temporary database file will not be deleted if an error occurs while
rewriting the database file. If this happens, you can replace the database file with the temporary database
file in order to recover from the error. If an error does occur and you do not rename or delete the
temporary file, you will get an error on the next database update operation indicating the backup file
already exists.

252 system SSL Programming V1R4.0

Interactive Mode

Interactive mode is entered when the gskkyman command is entered without any parameters. A series of
menus will be presented to allow you to select the database functions to be performed. Leading and
trailing blanks will be removed from data entries but imbedded blanks will be retained. Blanks will not be
removed from passwords.

Database Menu
This is the top-level menu and is displayed when the gskkyman command starts:

e

oW =
[N B B |

0 -

===>

-

Enter option number:

Database Menu

Create new database

Open database

Change database password
Change database record length
Delete database

Exit program

Figure 2. Database Menu

Create

new database

This option will create a new key database and the associated request database. You will be
prompted to enter the key database name, the database password, the password expiration
interval, and the database record length.

The fully-qualified key database name must be between 2 and 251 characters and should either
have no extension or an extension of ".kdb’ (the maximum database name is 247 characters if the
name does not end with an extension of 1-3 characters to allow for the addition of an extension
when creating the request database or the password stash file). The key database name may not
end with ".rdb’ or ".sth’ as these extensions are reserved for the request database and the
password stash file.

The database password must be between 1 and 128 characters. A password exceeding 128
characters will be truncated to 128 characters.

The password expiration interval must be between 0 and 9999 days (a value of 0 indicates the
password does not expire).

The record length must be large enough to contain the largest certificate to be stored in the
database and must be between 2500 and 65536.

Two files will be created: the key database and the request database with an extension of ".rdb’.
The file access permissions will be set so only the owner has access to the files.

Open database

This option will open an existing database. You will be prompted to enter the key database name
and the database password.

The fully-qualified key database name must be between 2 and 251 characters and should either
have no extension or an extension of ".kdb’ (the maximum database name is 247 characters if the
name does not end with an extension of 1-3 characters to allow for the addition of an extension
when accessing the request database or the password stash file). The key database name may
not end with ".rdb’ or ".sth’ as these extensions are reserved for the request database and the
password stash file.

Chapter 10. Certificate/Key Management 253

Change database password

This option will change the database password. You can change the password at any time but you
must change it once it has expired in order to access the database once more. You will be
prompted to enter the key database name, the current database password, the new database
password, and the new password expiration interval.

The fully-qualified key database name must be between 2 and 251 characters and should either
have no extension or an extension of ".kdb’ (the maximum database name is 247 characters if the
name does not end with an extension of 1-3 characters to allow for the addition of an extension
when accessing the request database or the password stash file). The key database name may
not end with ".rdb’ or ".sth’ as these extensions are reserved for the request database and the
password stash file.

The new database password must be between 1 and 128 characters.

The password expiration interval must be between 0 and 9999 days (a value of 0 indicates the
password does not expire).

Change database record length

This option will change the database record length. All database records have the same length
and database entries cannot span records. You can increase the record length if you find it is too
small to store a new certificate. You can decrease the record length to reduce the database size if
the original record length is too large. You cannot reduce the record length to a value smaller than
the largest certificate currently in the database. You will be prompted to enter the key database
name, the database password, and the new record length.

The fully-qualified key database name must be between 2 and 251 characters and should either
have no extension or an extension of ".kdb’ (the maximum database name is 247 characters if the
name does not end with an extension of 1-3 characters to allow for the addition of an extension
when accessing the request database or the password stash file). The key database name may
not end with ".rdb’ or ".sth’ as these extensions are reserved for the request database and the
password stash file.

Delete database

This option will delete the key database, the associated request database, and the database
password stash file. You will be prompted to enter the key database name.

The fully-qualified key database name must be between 2 and 251 characters and should either
have no extension or an extension of ".kdb’ (the maximum database name is 247 characters if the
name does not end with an extension of 1-3 characters to allow for the addition of an extension
when accessing the request database or the password stash file). The key database name may
not end with ".rdb’ or ".sth’ as these extensions are reserved for the request database and the
password stash file.

Key Management Menu

The key management menu is displayed once the key database has been created or opened. The key
database and the associated request database are opened for update and remain open until you return to
the main menu.

254 system SSL Programming V1R4.0

Key Management Menu
Database: Database_name

- Manage keys and certificates

- Manage certificates

- Manage certificate requests

- Create new certificate request

- Receive certificate issued for your request
Create a self-signed certificate

- Import a certificate

- Import a certificate and a private key
- Show the default key

- Store database password

- Show database record length

H O WO NOOTBWN -
1

[REFN

0 - Exit program

Enter option number (press ENTER to return to previous menu):
===>

- J

Figure 3. Key Management Menu

Manage Keys and Certificates

This option manages certificates with private keys. A list of key labels is displayed. Pressing the ENTER
key without making a selection will display the next set of labels. Selecting one of the label numbers will
display the following menu:

4 N

Key and Certificate Menu

Label: Certificate_label_name

- Show certificate information

- Show key information

- Set key as default

- Set certificate trust status

Copy certificate and key to another database
- Export certificate to a file

- Export certificate and key to a file

- Delete certificate and key

- Change label

O ONOO P WN =
1

0 - Exit program

Enter option number (press ENTER to return to previous menu):
===>

- /

Figure 4. Key and Certificate Menu

Show certificate information
This option displays information about the X.509 certificate associated with the private key.

Show key information
This option displays information about the private key.

Set key as default
This option makes the current key the default key for the database.

Chapter 10. Certificate/Key Management 255

Set certificate trust status
This option sets or resets the trusted status for the X.509 certificate. A certificate cannot be used
for authentication unless it is trusted.

Copy certificate and key to another database
This option copies the certificate and key to another database. An error will be returned if the
certificate is already in the database or if the label is not unique.

Export certificate to a file
This option exports just the X.509 certificate to a file. The supported export formats are ASN.1
Distinguished Encoding Rules (DER) and PKCS #7 (Cryptographic Message Syntax)

Export certificate and key to a file
This option exports the X.509 certificate and its private key to a file. The private key is encrypted
when it is written to the file. The password you select will be needed when you import the file. The
supported export formats are PKCS #12 Version 1 and PKCS #12 Version 3. The PKCS #12
Version 1 format is obsolete but is the only format supported by some SSL implementations (For
example, z/OS System SSL Version 1 Release 2 and earlier). The strong encryption option uses
Triple DES to encrypt the private key while the export encryption option uses 40-bit RC2. The
export file will contain the requested certificate and its certification chain.

Delete certificate and key
The certificate and its associated private key are deleted.

Change label
This option will change the label for the database record.

Manage Certificates

This option manages certificates without private keys. A list of key labels is displayed. Pressing the ENTER
key without making a selection will display the next set of labels. Selecting one of the label numbers will
display the following menu:

~

Certificate Menu
Label: Certificate_label_name

Show certificate information

Set certificate trust status

Copy certificate to another database
Export certificate to a file

Delete certificate

Change label

OB WN -

0 - Exit program

\Fnter option number (press ENTER to return to previous menu):

Figure 5. Certificate Menu

Show certificate information
This option displays information about the X.509 certificate.

Set certificate trust status
This option sets or resets the trusted status for the X.509 certificate. A certificate cannot be used
for authentication unless it is trusted.

Copy certificate to another database
This option copies the certificate to another database. An error will be returned if the certificate is
already in the database or if the label is not unique.

256 system SSL Programming V1R4.0

Export certificate to a file
This option exports the X.509 certificate to a file. The supported export formats are ASN.1
Distinguished Encoding Rules (DER) and PKCS #7 (Cryptographic Message Syntax)

Delete certificate
The certificate is deleted.

Change label
This option will change the label for the database record.

Manage Certificate Requests

This option manages certificate requests. A list of request labels is displayed. Pressing the ENTER key
without making a selection will display the next set of labels. Selecting one of the label numbers will
display the following menu:

/ N\

Request Menu

Label: Tabel_name

Show key information

Export certificate request to a file
Delete certificate request and key
Change label

= 0N =

0 - Exit program

\Fnter option number (press ENTER to return to previous menu):

Figure 6. Request Menu

Show key information
This option displays information about the private key associated with the certificate request.

Export certificate request to a file
This option exports the certificate request to a file in Base64 format. This file can then be sent to a
certification authority for processing.

Delete certificate request and key
The certificate request and its associated private key are deleted.

Change label
This option will change the label for the database record.

Create New Certificate Request

This option will create a certificate request using either RSA encryption or DSA for the public and private
keys. The certificate request will be exported to a file in Base64 format. This file can then be sent to a
certification authority for processing.

The label has a maximum length of 127 characters and is used to reference the certificate in the request
database. The label will also be used when the certificate is received, so it must be unique in both the
request and key databases. It must consist of characters which can be represented as 7-bit ASCII
characters (letters, numbers, and punctuation) in the ISO8859-1 code page.

Receive Certificate Issued for your Request
This option will receive the signed certificate returned by the certification authority. This certificate can be

either a new certificate issued in response to a certificate request or a renewal of an existing certificate. If
this is a new certificate, the certificate request must still be in the request database. If this is a renewal
certificate, the old certificate must still be in the key database and must have the same issuer name,
subject name, and public key.

Chapter 10. Certificate/Key Management 257

The certificate file must contain either an ASN.1 DER-encoded sequence as defined in RFC 2459 (X.509
Public Key Infrastructure) or a signed data message as defined in PKCS #7 (Cryptographic Message
Syntax). The data can either be the binary value or the Base64 encoding of the binary value. If the import
file is in PKCS #7 format, only the first certificate will be imported. If the first certificate is not the request
certificate, the import will fail with 'unable to locate matching request’.

Base64 data is in the local code page. A DER-encoded sequence must start with the encoding header
'-----BEGIN CERTIFICATE-----" and end with the encoding footer '-----END CERTIFICATE-----". A PKCS #7
signed data message must start with the encoding header '-----BEGIN CERTIFICATE-----" and end with the

The request database entry will be deleted once the certificate has been received.

Create a Self-Signed Certificate

This option will create a self-signed certificate using either RSA encryption or DSA for the public and
private keys. The certificate can be created for use by a certification authority or an end user. A CA
certificate can be used to sign other certificates and certificate revocation lists while an end user certificate
can be used for authentication, digital signatures, and data encryption.

The label has a maximum length of 127 characters and is used to reference the certificate in the key
database. It must consist of characters which can be represented as 7-bit ASCII characters (letters,
numbers, and punctuation) in the 1ISO8859-1 code page.

The number of days until the certificate expires must be between 1 and 9999.

Import a Certificate
This option imports a certificate and adds it to the key database. The import file contains a certificate
without a private key. The certificate will be marked as trusted when it is added to the database.

The import file must contain either an ASN.1 DER-encoded sequence as defined in RFC 2459 (X.509
Public Key Infrastructure) or a signed data message as defined in PKCS #7 (Cryptographic Message
Syntax). The data can either be the binary value or the Base64 encoding of the binary value. If the import
file is in PKCS #7 format, only the first certificate will be imported.

Base64 data is in the local code page. A DER-encoded sequence must start with the encoding header
"-----BEGIN CERTIFICATE-----" and end with the encoding footer '-----END CERTIFICATE-----. A PKCS #7
signed data message must start with the encoding header '-----BEGIN CERTIFICATE-----" and end with the

A root certificate is a self-signed certificate and will be imported as long as the certificate is not already in
the key database.

An intermediate certificate is a certificate signed by another entity. The key database must already contain
a certificate for the issuer. The certificate will not be imported if the certificate authenticity cannot be
validated or if the database already contains the certificate.

An existing certificate can be replaced by specifying the label of the existing certificate. The issuer name,
subject name, and subject public key in the new certificate must be the same as the existing certificate. If
the existing certificate has a private key, the private key is not changed when the certificate is replaced.

Import a Certificate and a Private Key

This option imports a certificate and the associated private key and adds it to the key database. The
certificate will be marked as trusted when it is added to the database.

258 system SSL Programming V1R4.0

The import file must contain an ASN.1 DER-encoded sequence as defined in PKCS #12 (Personal
Information Exchange Syntax). The data can be either the binary value or the Base64 encoding of the
binary value. Base64 data is in the local code page and must start with the encoding header '-----BEGIN
CERTIFICATE-----" and end with the encoding footer ’-----END CERTIFICATE-----".

A root certificate is a self-signed certificate and will be imported as long as the certificate is not already in
the key database.

An intermediate CA or end entity certificate is a certificate signed by another entity. The key database
must already contain a certificate for the issuer. The certificate will not be imported if the certificate
authenticity cannot be validated or if the database already contains the certificate.

Each certificate in the certification chain will be imported if it is present in the import file. The certificate
subject name will be used as the label for certificates added from the certification chain. A certification
chain certificate will not be added to the database if the label is not unique or if the certificate is already in
the database.

Show the Default Key
The private key information for the default key is displayed.

Store Database Password
The database password is masked and written to the key stash file. The file name is the same as the key
database file name but has an extension of '.sth’.

Show Database Record Length
The database record length is displayed. All records in the database have the same length and a database

entry cannot span a database record.

Example Tasks Performed by the gskkyman Command in Interactive
Mode

gskkyman can be run from either an rlogin z/OS shell environment or from the OMVS shell command-line
environment. The examples that follow were performed from the rlogin environment. If you use the OMVS

shell commmand-line environment, the only difference is that all input will be done at the command prompt
at the bottom of the screen.

The following tasks will be performed in this section:
» Creating, opening and deleting a key database file
* Changing a key database password
» Storing an encrypted key database password
* Creating a self-signed server or client certificate
» Creating a certificate request and processing the signed request
* Managing keys and certificates:
— Show certificate/key information
— Marking a certificate (and private key) as the default certificate for the key database
— Copying a certificate (and private key) to a different key database:
- Copying a certificate without its private key
- Copying a certificate with its private key
- Copying a certificate with its private key to a key database on the same system
— Removing a certificate (and private key) from a key database
— Changing a certificate label
* Importing a certificate from a file as a trusted CA certificate

Chapter 10. Certificate/Key Management 259

* Importing a certificate from a file with its private key
» Using gskkyman to be your own certificate authority (CA)
* Migrating key database files to RACF key rings

Starting gskkyman
To start gskkyman , enter gskkyman at the command prompt (see [Figure 7).

Note: In the examples that follow, your input is shown in bold, and places where you press the Enter key
are noted with <enter>.
|Figure fl shows the gskkyman start menu.

~

gskkyman <enter>
Database Menu

- Create new database

- Open database

Change database password

- Change database record Tength
- Delete database

GO WN =
|

0 - Exit program

Enter option number:
===>

- v

Figure 7. Starting Menu for gskkyman

From the Database Menu for gskkyman , you can create a new key database, open an existing key
database, change a database password, change a database record length, delete a database, or exit
gskkyman .

Creating, Opening and Deleting a Key Database File

To create a new key database, enter 1 at the command prompt on the Database Menu:
4 ™

Database Menu

- Create new database

- Open database

Change database password

- Change database record length
- Delete database

OB WN =
|

0 - Exit program

Enter option number: 1 <enter>

Enter key database name (press ENTER to return to menu): mykey.kdb <enter>
Enter database password (press ENTER to return to menu): <enter password>
Re-enter database password: <enter password>

Enter password expiration in days (press ENTER for no expiration): 35 <enter>
Enter database record Tength (press ENTER to use 2500): <enter>

Key database /home/sufwll/ss1_cmd/mykey.kdb created.

Press ENTER to continue.
—==>

- v

Figure 8. Creating a New Key Database

260 System SSL Programming V1R4.0

[Figure 8 on page 260 shows the input prompts that gskkyman produces when you choose 1 to create a
new key database. As you can see, default choices are listed in parentheses. In the example, by pressing
the Enter key at the Enter database record length prompt, the default of 2500 was chosen.

Note: The maximum length of the password specified for a key database file is 128 characters.

After entering the database record length, a message displays confirming that your database was created
(see |Figure 8 on page 260[). You are prompted to press Enter to continue. Doing so displays the Key

Management Menu for the database you have created:
/ N\

Key Management Menu
Database: /home/sufwll/ss1_cmd/mykey.kdb

- Manage keys and certificates

- Manage certificates

- Manage certificate requests

- Create new certificate request

- Receive certificate issued for your request
Create a self-signed certificate

- Import a certificate

- Import a certificate and a private key
- Show the default key

- Store database password

- Show database record length

O WO NOYOT WN -
1

[REFN

0 - Exit program

Enter option number (press ENTER to return to previous menu):
===>

- /

Figure 9. Key Management Menu for gskkyman

shows the Key Management Menu. Entering 0 at this prompt exits the gskkyman program. Pressing
Enter at the prompt returns you to the Database Menu.

To open an existing key database file, on the Database Menu, enter option number 2 (see [Figure 10 on

. You are then prompted for the key database name and password.

Note: Do not lose the key database password. There is no method to reset this password if you lose or
forget the password. If the password is lost, the private keys stored in the key database are
inaccessible, therefore, unusable.

7 N\

Database Menu

- Create new database

- Open database

Change database password

- Change database record Tength
- Delete database

G WN =
|

0 - Exit program

Enter option number: 2 <enter>
Enter key database name (press ENTER to return to menu): mykey.kdb <enter>
Enter database password (press ENTER to return to menu): <enter password>

===>

- /

Chapter 10. Certificate/Key Management 261

Figure 10. Opening an Existing Key Database File

The key database name is the z/OS HFS file name of the key database. The input file hame is interpreted
relative to the current directory when gskkyman is invoked. You may also specify a fully qualified key
database name .

After you enter the key database name and password, the Key Management Menu displays for the database

you have selected to open, (see|Figure 11b.
- N

Key Management Menu

Database: /home/sufwll/ss1_cmd/mykey.kdb

- Manage keys and certificates

- Manage certificates

- Manage certificate requests

- Create new certificate request

- Receive certificate issued for your request
Create a self-signed certificate

- Import a certificate

- Import a certificate and a private key
- Show the default key

- Store database password

- Show database record length

= O WO NOYOTT P WN
1

—_ =

0 - Exit program

Enter option number (press ENTER to return to previous menu):
===>

- J

Figure 11. Key Management Menu

To delete an existing database, from the Database Menu, select option 5 (see [Figure 12):
4 ™

Database Menu

- Create new database

- Open database

Change database password

- Change database record Tength
- Delete database

OB WM
1

0 - Exit program

Enter option number: 5 <enter>
Enter key database name (press ENTER to return to menu): mykey.kdb <enter>

Enter 1 to confirm delete, O to cancel delete: 1 <enter>
Key database /home/sufwll/ss1_cmd/mykey.kdb deleted.

Press ENTER to continue.
===>

- J

Figure 12. Deleting an Existing Key Database

You are prompted to enter the key database name that you wish to delete. Then you must enter 1 to
confirm the delete, or 0 to cancel the delete. If you choose 1, a message displays to confirm the file has
been deleted.

262 System SSL Programming V1R4.0

Note: If you delete an existing key database, the associated request database and database password
stash file (if existent) will also be deleted . It's important to note that anyone with write access to a
key database can delete that database either by removing it with the rm command or by using
gskkyman subcommand.

Changing a Key Database Password

You can change a key database password. From the Database Menu, select option 3:
/ N\

Database Menu

Create new database

Open database

Change database password
Change database record length
Delete database

oW =
[T B B |

0 - Exit program

Enter option number: 3 <enter>

Enter key database name (press ENTER to return to menu): mykey.kdb <enter>

Enter database password (press ENTER to return to menu): <enter current password>
Enter new database password (press ENTER to return to menu): <enter new password>
Re-enter database password: <enter new password>

Enter password expiration in days (press ENTER for no expiration): <enter>

Database password changed.

Press ENTER to continue.
===>

- /

Figure 13. Changing a Key Database Password

Figure 13| displays the prompts you are given. You first enter your current password. Then you select a
new password, and enter it again to confirm. You can choose your password expiration in days or press
Enter to have no expiration. A message displays to confirm the transaction.

Storing an Encrypted Key Database Password

In order for applications to use the key database file, the application must specify both the file name as
well as its associated password. The password can either be specified directly or through a stash file
containing the encrypted password. The stash file provides a level of security where the password does
not have to be explicitly specified. To save the encrypted key database password, enter option 10 from the
Key Management Menu:

Note: In the following task descriptions, it is assumed that you have opened the key database and are
displaying the Key Management Menu panel.

Chapter 10. Certificate/Key Management 263

Key Management Menu

Database: /home/sufwll/ss1_cmd/mykey.kdb

Manage keys and certificates

- Manage certificates

Manage certificate requests

Create new certificate request

Receive certificate issued for your request
Create a self-signed certificate
Import a certificate

Import a certificate and a private key
Show the default key

- Store database password

- Show database record length

—H O WoONO O WN
[I T B B |

[EEFN

0 - Exit program
Enter option number (press ENTER to return to previous menu): 10 <enter>
Database password stored in /home/sufwll/ss1_cmd/mykey.sth.

Press ENTER to continue.
===>

- J

Figure 14. Storing a Database Password in a Stash File

Figure 14 shows the message you receive after entering option 10 to store the database password. In this
example, the database password was stored in a file called mykey.sth.

Creating a Self-Signed Server or Client Certificate

If your organization does not use a certificate authority (within the organization or outside the
organization), a self-signed certificate can be generated for use by the program acting as an SSL server or
client. Programs acting as SSL servers (i.e. acting as the server side of the SSL handshake protocol) must
have a certificate to use during the handshake protocol. A program acting as an SSL client requires a
certificate when the SSL server requests client authentication as part of the SSL handshake.

Note: This is not recommended for production environments and should only be used to facilitate test
environments prior to production. Self-signed certificates do not imply any level of security or
authenticity of the certificate because, as their name implies, they are signed by the same key that
is contained in the certificate. On the other hand, certificates that are signed by a certificate
authority indicate that, at least at the time of signature, the certificate authority approved the
information contained in the certificate.

Note: gskkyman supports the creation of X.509 Version 3 certificates.
When creating a self-signed certificate to be used to identify a server or client, from the Key Management

Menu, enter 6. You will be prompted for a number of items to define the certificate. First you will be asked
to select the type of certificate to be created.

264 system SSL Programming V1R4.0

Key Management Menu
Database: /home/sufwll/ss1_cmd/mykey.kdb

- Manage keys and certificates

- Manage certificates

- Manage certificate requests

- Create new certificate request

- Receive certificate issued for your request
Create a self-signed certificate

- Import a certificate

- Import a certificate and a private key
- Show the default key

- Store database password

- Show database record length

H O WO NOOTBWN -
1

[REFN

0 - Exit program

Enter option number (press ENTER to return to previous menu): 6 <enter>
===>

- /

Figure 15. Select 6 to Create a Self-Signed Certificate

Certificates that are intended to be used directly by a server or client are considered to be end-user
certificates. Certificates intended to be used to sign other certificates are considered to be CA certificates.
RSA key certificates are the most common. DSA key certificates represent certificates that follow the
FIPS-186 government standard. The larger the key size, the more secure the generated key will be. The
most commonly used size is 1024. Note that CPU usage increases as the key size increases. For
example, CPU usage will increase by a factor of 6 when the key size is doubled.

Once the certificate type is determined, you will be prompted to enter:
» a label to uniquely identify the key and certificate within the key database
» the indivdual fields within the subject name

 certificate expiration. The valid expiration range for a self-signed certificate is 1 to 9999 days. The
default value is 365 days.

[Figure 16 on page 266|shows the creation of a server self-signed certificate.

Chapter 10. Certificate/Key Management 265

Certificate Type

CA certificate with 1024-bit RSA key
CA certificate with 2048-bit RSA key
CA certificate with 1024-bit DSA key
End user certificate with 1024-bit RSA key
- End user certificate with 2048-bit RSA key
- End user certificate with 1024-bit DSA key

O WN =

Select certificate type (press ENTER to return to menu): 4 <enter>
Enter Tabel (press ENTER to return to menu): Server Cert <enter>
Enter subject name for certificate
Common name (required): My Server Certificate <enter>
Organizational unit (optional): ID <enter>
Organization (required): IBM <enter>
City/Locality (optional): Endicott <enter>
State/Province (optional): NY <enter>
Country/Region (2 characters - required): US <enter>
Enter number of days certificate will be valid (default 365): 244 <enter>

Please wait
Certificate created.

Press ENTER to continue.
===>

- v

Figure 16. Creating a Self-Signed Certificate

Once the certificate is created, the next step is to determine whether the certificate should be marked as
the database’s default certificate. Setting the certificate as the default certificate allows the certificate to be
used by the SSL APIs without having to specify its label. For more information on setting the default
certificate, see |“Marking a Certificate (and Private Key) as the Default Certificate for the Key Database” od

|page 272|.

In order for the SSL handshake to succesfully validate the use of the self-signed certificates, the partner
application needs to know about the signer of the certificate. For self-signed certificates, this means the
self-signed certificate must be imported into the partner’s database. For more information on importing
certificates, see [‘lmporting a Certificate from a File as a Trusted CA Certificate” on page 277}

Creating a Certificate Request and Processing the Signed Request

A program may require a certificate, associated with itself, depending on what side of the SSL connection
the program is running. This requirement also depends on whether client authentication is requested as
part of the SSL handshake. Programs acting as SSL servers (act as the server side of the SSL handshake
protocol) must have a certificate to use during the handshake protocol. A program acting as an SSL client
requires a certificate in the key database if the SSL server requests client authentication as part of the
SSL handshake operation. The way in which certificates are used within an organization will determine
whether you need to create a certificate request. If the organization chooses to use a certificate authority
(within the organization or outside of the organization), then you must generate a certificate request.

To create a certificate request, enter 4 from the Key Management Menu.

266 System SSL Programming V1R4.0

Key Management Menu
Database: /home/sufwll/ss1_cmd/mykey.kdb

- Manage keys and certificates

- Manage certificates

- Manage certificate requests

- Create new certificate request

- Receive certificate issued for your request
Create a self-signed certificate

- Import a certificate

- Import a certificate and a private key
- Show the default key

- Store database password

- Show database record length

H O WO NOOTBWN -
1

[REFN

0 - Exit program

Enter option number (press ENTER to return to previous menu): 4 <enter>
===>

- J

Figure 17. Select 4 to Create a New Certificate Request

The Certificate Type menu appears:

Certificate Type

1 - Certificate with 1024-bit RSA key
2 - Certificate with 2048-bit RSA key
3 - Certificate with 1024-bit DSA key

Enter certificate type (press ENTER to return to menu): 1 <enter>
Enter request file name (press ENTER to return to menu): certreq.arm <enter>
Enter label (press ENTER to return to menu): Test Server Cert <enter>
Enter subject name for certificate
Common name (required): Test Server <enter>
Organizational unit (optional): ID <enter>
Organization (required): IBM <enter>
City/Locality (optional): Endicott <enter>
State/Province (optional): NY <enter>
Country/Region (2 characters - required): US <enter>

Please wait
Certificate request created.

Press ENTER to continue.
===>

- /

Figure 18. Creating a Certificate Request

When creating a certificate request, you are first prompted for the type of certificate to be requested. RSA
key certificates are the most common. DSA key certificates represent certificates that follow the FIPS-186
government standard. The larger the key size, the more secure the encryption/decryption generated key
will be. The most commonly used size is 1024.

After the certificate type is determined, you will be prompted to enter:

* arequest file name to store the certificate request

» a label to uniquely identify the certificate request within the key database
» the individual fields within the subject name.

Chapter 10. Certificate/Key Management 267

Once the certificate request is created, a file with the name you specified will exist in the current working
directory or directory specified in the filename. If you choose to exit gskkyman , the program ends.
Otherwise, the Key Management Menu (see |Figure 11 on page 262) displays, allowing additional operations
to be performed.

The certificate request created is stored in a file that is in base64-encoded format. This format is what is
typically required by certificate authorities that create certificates. The following is the contents of the file
created by the steps performed in |Figure 18 on page 267|:

$ cat certreq.arm<enter>

----- BEGIN NEW CERTIFICATE REQUEST-----
MIH7MIGmAgEAMEEXCzAJBgNVBAYTATVTMQwwCgYDVQQKEWNJQkOXETAPBGNVBAST
CEVuUZG1jb3ROMREWDwYDVQQDEwWhKb2huIERVZTBCcMAOGCSqGSIb3DQEBAQUAAGSA
MEgCQQCrIZdRnXhH1EMAWTUKMKYznCFp4CFkOYG66BhvMGgfTwgl9aSRWkVcer81
17Qk9aYzQ2LIpRh10J9ugo]jy119VAgMBAAGGADANBgkghkiGIwOBAQQFAANBAFc1
x0funjyt54dUqGDdPgbnMr5A3trUhzHHkX8x1fHIATbrpsv2a3FjvnmYWFPuFXAf
3ABCD5nnsbk3AP++ic5UTM=

Figure 19. Contents of certreq.arm after Certificate Request Generation

This file can either be transferred to another system (as a text file) and then transferred to the certificate
authority or placed directly into a mail message sent to a certificate authority using cut-and-paste methods.

In addition to the certificate request file that is generated, a request database (.rdb) file is also created or
altered. The request database file will be named the same as the key database file, except it will have an
extension of .rdb. For example, a key database file of key.kdb will cause a request database file of key.rdb
to be created. This request database file must be saved along with the key database in order for the
response for the certificate request to be successfully processed.

Once a certificate is created by the certificate authority in response to the request, you must received it
into the key database.

To receive the certificate, you must store the Base64-encoded certificate in an HFS file on the z/OS
system to be read in by the gskkyman command. This file should be in the current working directory
when gskkyman is started. If this file is on another working directory you will have to specify the fully
qualified name.

Note: In order to receive the certificate the CA certificate must also exist in the key database. To store a
CA certificate refer to ['lmporting a Certificate from a File as a Trusted CA Certificate” on page 277|

To receive a certificate issued on your behalf, from the Key Management Menu (see [Figure 11 on page 262),
enter 5.

268 System SSL Programming V1R4.0

Key Management Menu
Database: /home/sufwll/ss1_cmd/mykey.kdb

- Manage keys and certificates

- Manage certificates

Manage certificate requests

Create new certificate request

Receive certificate issued for your request
Create a self-signed certificate
Import a certificate

Import a certificate and a private key
Show the default key

- Store database password

- Show database record length

H O WONOOEWN
[I T B A |

[EEFN

0 - Exit program
Enter option number (press ENTER to return to previous menu): 5 <enter>
Enter certificate file name (press ENTER to return to menu): signed.arm <enter>
Certificate received.

Press ENTER to continue.
S==57

- /

Figure 20. Receiving a Certificate Issued for your Request

You are prompted for the name of the file that contains the Base64-encoded certificate that was returned
to you by the certificate authority in response to a previously submitted certificate request (See
|Certificate Request and Processing the Signed Request” on page 266[). After receiving the certificate, you
press Enter to continue working with the Key Management Menu. Upon completion of this step and prior to
the System SSL APIs using the certificate during the SSL handshake processing, you need to determine
whether the certificate should be marked as the database’s default certificate. Setting the certificate as the
default certificate allows the certificate to be used by the SSL APIs without having to specify its label. For
more information on setting the default certificate, see |“Marking a Certificate (and Private Key) as the|
[Default Certificate for the Key Database” on page 272|

Managing Keys and Certificates

Once certificates are added to the key database, the following are some common operations that can be
performed with the certificates.

* Show certificate/key information

* Mark a certificate (and private key) as the default certificate for the key database
» Export a certificate to a file or key database

* Remove a certificate (and private key) from a key database

* Change a certificate label

Showing Certificate/Key Information

It is sometimes useful to display the information contained in the certificates that are stored in the key
database. The information displayed includes, among others, the label, issuer/subject name, the version
number of the certificate, the key size for the public/private key pair, and the expiration date.

To list information about certificates that contain private keys, from the Key Management Menu (see
[Figure 11 on page 262)) select 1, (Manage keys and certificates). This displays the Key and Certificate
List.

Chapter 10. Certificate/Key Management 269

Key and Certificate List
Database: /home/sufwll/ss1_cmd/mykey.kdb

1 - Test Server Cert
2 - Server Cert

0 - Return to selection menu

Enter Tabel number (ENTER to return to selection menu, p for previous list): 2 <enter>
===>

- J

Figure 21. Key and Certificate List

Select the number corresponding to the label for which you would like to display certificate/key information.
The Key and Certificate Menu for the label you chose displays next (see |Figure 22b.
4 N

Key and Certificate Menu

Label: Server Cert

- Show certificate information

- Show key information

- Set key as default

- Set certificate trust status

Copy certificate and key to another database
- Export certificate to a file

- Export certificate and key to a file

- Delete certificate and key

- Change label

O OONOOLE WN -
1

0 - Exit program

Enter option number (press ENTER to return to previous menu): 1 <enter>
===>

- J

Figure 22. Key and Certificate Menu

On the Key and Certificate Menu, you could choose 1 to display certificate information. This accesses the
Certificate Information menu (see [Figure 23 on page 271):

270 system SSL Programming V1R4.0

Label:

Record ID:

Issuer Record ID:
Trusted:

Version:

Serial number:
Issuer name:

Subject name:

Signature algorithm:
Issuer unique ID:
Subject unique ID:
Number of extensions:

Certificate Information

Server Cert

3¢73c6d0000e8076

My Server Certificate
ID

1BM

Endicott

NY

us

My Server Certificate
1D

IBM

Endicott

NY

us
Effective date: 2002/02/20
Expiration date: 2002/10/22

Public key algorithm: rsaEncryption

PubTic key size: 1024

shalWithRsaEncryption
None

None

4

Enter 1 to display extensions, O to return to menu: 1 <enter>
===>

- J

Figure 23. Certificate Information

From the Certificate Information screen, you can also enter 1 to display certificate extensions:
/ N

Certificate Extensions List

- subjectKeyIdentifier

- authorityKeyIdentifier
keyUsage (critical)

- basicConstraints (critical)

BN
1

Enter extension number (press ENTER to return to previous menu): 3 <enter>
===>

- J

Figure 24. Certificate Extensions List

Enter 3 on the Certificate Extensions List to show key usage information:

Certificate signature
CRL signature

Press ENTER to continue.
===>

Figure 25. Key Usage Information

Chapter 10. Certificate/Key Management 271

To display key information, from the Key and Certificate Menu, choose 2, Show Key Information. This

accesses the Key Information menu (see |Figure 25|D:
4 N

Key Information

Label: Server Cert
Record ID: 13
Issuer Record ID: 13
Default key: Yes
Private key algorithm: rsaEncryption
Private key size: 1024
Subject name: My Server Certificate

1D
1BM
Endicott
NY
us

Press ENTER to continue.

===>

o J

Figure 26. Key Information menu

Marking a Certificate (and Private Key) as the Default Certificate for the Key

Database

Once a certificate has been added to the key database through either a certificate request or as a
self-signed certificate, it can be marked as the default certificate for the key database. Marking a certificate
as the default certificate allows it to be used by the programs calling the System SSL APIs without having
to explicitly supply the certificate’s label.

To mark a certificate as the default certificate for the key database, from the Key Management Menu (see
|Figure 11 on page 262), choose 1, (Manage keys and certificates), and on the Key and Certificate List
(see [Figure 21 on page 270l choose the label number you want to work with. The Key and Certificate
Menu displays:

P

~

Key and Certificate Menu
Label: My Server Certificate

- Show certificate information

- Show key information

- Set key as default

- Set certificate trust status

Copy certificate and key to another database
- Export certificate to a file

- Export certificate and key to a file

- Delete certificate and key

- Change label

OOONOOI B WN =
|

0 - Exit program
Enter option number (press ENTER to return to previous menu): 3 <enter>
Default key set.

Press ENTER to continue.
===>

- J

Figure 27. Marking a Certificate (and Private Key) as the Default Certificate

272 system SSL Programming V1R4.0

Choose 3 to set the certificate and private key as the default certificate for the key database.

Copying a Certificate (and Private Key) to a Different Key Database

Once you have populated your key database file with certificates, it may be necessary for you to transfer a
certificate to another key database on your system or a remote system. This transfer maybe necessary for
the following reasons:

* The remote system or key database requires the signing certificate to be in its key database file for
validation purposes. The certificate does not need to contain the private key information. These
certificates are normally certificate authority (CA) certificates but may also be a self-signed certificate.

* The server or client certificate is being used by another application in a separate key database file

Copying a Certificate Without its Private Key: To copy a certificate to a different key database format
or to a different system without its private key (certificate validation), from the Key Management Menu,

select 1 - Manage keys and certificates to display the Key and Certificate List menu . Find the label
of the certificate to be copied and enter the number associated with the label. In the Key and Certificate

Menu, enter option 6 to export the certificate to a file. The Export File Format menu appears:
e N

Export File Format

Binary ASN.1 DER
Base64 ASN.1 DER
Binary PKCS #7
Base64 PKCS #7

= 0N -

Select export format (press ENTER to return to menu): 1 <enter>
Enter export file name (press ENTER to return to menu): expfile.der <enter>

Certificate exported.

Press ENTER to continue.
===>

- /

Figure 28. Copying a Certificate Without its Private Key

You are then prompted for what file format you would like for the exported certificate information.

The file format is determined by the support on the receiving system. When the receiving system
implementation is z/OS System SSL V1R2 or earlier, the selected format must be one of the ASN.1 DER
formats.

After selecting the export format, you will be asked for a file name. You then will receive a message
indicating that the certificate was exported. You can now transfer this file to the system and import the
certificate into the key database file. If copying to a remote system, this file can now be transfered (in
binary) to the remote system. For information on receiving the certificate into the key database file, see
[lmporting a Certificate from a File as a Trusted CA Certificate” on page 277). Upon successfully receiving
the certificate, the certificate can now be used to validate the SSL'’s partner certificate. When the partner is
the client, this means that the client can now validate the server’s certificate and if the partner is the
server, the server can validate the client’s certificate when client authentication is requested.

You will also need to determine whether the certificate should be marked as the database’s default
certificate. Setting the certificate as the default certificate allows the certificate to be used by the SSL APIs
without having to specify its label. For more information on setting the default certificate, see f‘Marking 5]
[Certificate (and Private Key) as the Default Certificate for the Key Database” on page 272

Copying a Certificate with its Private Key: To copy a certificate to a different key database format or to
a different system with its private key, the certificate must be exported to a PKCS #12 formatted file. PKCS

Chapter 10. Certificate/Key Management 273

#12 files are password-protected to allow encryption of the private key information. from the Key
Management Menu, select 1 - Manage keys and certificates to display the Key and Certificate List
menu. Find the label of the certificate to be copied and enter the number associated with the label. In the
Key and Certificate Menu, enter option 7 to export the certificate and private key to a file.

The Export File Format menu appears:
e ™

Export File Format

- Binary PKCS #12 Version
- Base64 PKCS #12 Version
- Binary PKCS #12 Version
- Base64 PKCS #12 Version

B wnN =
W W =

Select export format (press ENTER to return to menu): 1 <enter>
Enter export file name (press ENTER to return to menu): expfile.pl2

Certificate exported.

Press ENTER to continue.
===

- v

Figure 29. Copying a Certificate and Private key to a Different Key Database

You will then be prompted for what file format you would like for the exported certificate information.

The file format is determined by the support on the receiving system. In most cases the format to be used
is Binary PKCS #12 Version 3. When the receiving system implementation is z/OS System SSL V1R2 or
earlier, the selected format must be Binary PKCS #12 Version 1.

After selecting the export format, you will be asked for a file name and password. You then will receive a
message indicating that the certificate was exported. You can now transfer this file to the system and
import the certificate into the key database file. If copying to a remote system, this file can now be
transfered (in binary) to the remote system. For information on receiving the certificate into the key
database file, see|“|mporting a Certificate from a File with its Private Key” on page 278|). Upon successfully
receiving the certificate, the certificate can now be used to identify the program. For example, the
certificate can be used as the SSL server program'’s certificate or it can be used as the SSL client
program'’s certificate.

Copying a Certificate with its Private Key to a Key Database on the Same System: To copy a
certificate and its private key from one key database to another key database on the same system, you
will need to know the target key database file name and password. From the Key Management Menu, select
1 - Manage keys and certificates to display the Key and Certificate List menu. Find the label of the
certificate to be copied and enter the number associated with the label. From the Key and Certificate
Menu, enter 5 to copy a certificate and key to another database:

274 system SSL Programming V1R4.0

Key and Certificate Menu
Label: newimp

- Show certificate information

- Show key information

- Set key as default

- Set certificate trust status

Copy certificate and key to another database
- Export certificate to a file

- Export certificate and key to a file

- Delete certificate and key

- Change Tabel

O OONOO P WMN =
1

0 - Exit program

Enter option number (press Enter to return to previous menu): 5 <enter>

Enter key database name (press Enter to return to previous menu): target.kdb <enter>
Enter database password (press Enter to return to previous menu): <enter password>
Record copied.

Press ENTER to continue.
===>

- /

Figure 30. Copying a Certificate with its Private Key to a Key Database on the Same System

You will then be prompted for the target key database name, and the target key database password. Once
the certificate is copied to the other key database file, you will receive a message indicating that the
certificate has been successfully copied.

Removing a Certificate (and Private Key) from a Key Database

You may want to remove a certificate from the key database. For example, you may want to remove a
certificate after a certificate has expired and is no longer useful. Also, you may want to remove a certificate
after a certificate has been exported to a different key database and is no longer needed as part of this
key database.

Caution: Once you remove a certificate/private key pair from a key database, you cannot recover it unless
it has previously been stored somewhere else (another key database file, a PKCS #12 file for
certificate/private key pairs, or a DER-encoded or Base64-encoded file for just certificates). Be sure you no
longer require the certificate (and private key if one is associated with the certificate in the key database)
before you remove it from the key database.

From the Key Management Menu, select 1 - Manage keys and certificates to display the Key and
Certificate List menu. Find the label chosen when creating (or receiving) the certificate and enter the
number associated with the label. In the Key and Certificate Menu (see |[Figure 31 on page 276), choose 8
to delete the certificate and key:

Chapter 10. Certificate/Key Management 275

Key and Certificate Menu
Label: newimp

- Show certificate information

- Show key information

- Set key as default

- Set certificate trust status

Copy certificate and key to another database
- Export certificate to a file

- Export certificate and key to a file

- Delete certificate and key

- Change Tabel

O OONOO P WN -
[

0 - Exit program
Enter option number (press ENTER to return to previous menu): 8 <enter>
Enter 1 to confirm delete, 0 to cancel delete: 1 <enter>
Record deleted.

Press ENTER to continue.
===>
o

Figure 31. Delete Certificate and Key

Enter 1 to confirm the deletion of the certificate and key. A message appears, confirming that the record

has been deleted. Once the certificate has been removed from the key database, it can no longer be used

for identification or verification purposes by the System SSL APIs during SSL handshake processing.

Changing a Certificate Label
From the Key Management Menu, select 1 - Manage keys and certificates to display the Key and

Certificate List menu. Find the label chosen when creating (or receiving) the certificate and enter the
number associated with the label. In the Key and Certificate Menu (see |Figure 32 on page 277]), choose 9

to change the label:

-

Key and Certificate Menu
Label: cacert

- Show certificate information

- Show key information

- Set key as default

- Set certificate trust status

Copy certificate and key to another database
- Export certificate to a file

- Export certificate and key to a file

- Delete certificate and key

- Change Tabel

WO OONOO B WN =
1

0 - Exit program

Enter option number (press ENTER to return to previous menu): 9 <enter>
Enter Tabel (press ENTER to return to menu): cacert2 <enter>

Label changed.

Press ENTER to continue.

===>
-

~

276 System SSL Programming V1R4.0

| Figure 32. Changing a Certificate Label

Enter the new label name and press Enter. A message confirms that the label name has been changed.

Importing a Certificate from a File as a Trusted CA Certificate

If you are using a certificate authority for generating your certificates that is not one of the default
certificate authorities for which certificates are already stored in the key database, then you must import
the certificate authority’s certificate into your key database file before you use the System SSL APIs. If you

are using client authentication

, then the CA certificate must be imported into the key database of the

server program. The client program’s key database file must have the CA certificate imported regardless of
whether or not the SSL connection uses client authentication

If you are using a self-signed certificate as the SSL server program’s certificate and your SSL client
program is also using the System SSL APIs, then you must import the server’s self-signed certificate into
the client program ’s key database file without a private key.

If you are using a self-signed certificate as the SSL client program’s certificate and your SSL server
program is also using the System SSL APIs with client authentication requested, then you must import the
client’s self-signed certificate into the server program’s key database file without a private key.

A number of well-known certificate authority’s (CA) certificates are stored in the key database when the
key database is created. [Figure 33 and|Figure 34 on page 278 contain lists of CAs for which certificates
are stored on key database creation:

4 N
Certificate List
Database: /home/sufwll/ss1_cmd/mykey.kdb
1 - VeriSign Class 1 Public Primary CA
2 - VeriSign Class 2 Public Primary CA
3 - VeriSign Class 3 Public Primary CA
4 - RSA Secure Server CA
5 - Thawte Server CA
6 - Thawte Premium Server CA
7 - Thawte Personal Basic CA
8 - Thawte Personal Freemail CA
9 - Thawte Personal Premium CA
0 - Return to selection menu
Enter Tabel number (ENTER for more labels, p for previous list):
===>
- J
Figure 33. Certificate List (part 1)
4 N
Certificate List
Database: /home/sufwll/ss1_cmd/mykey.kdb
1 - VeriSign Class 1 Individual Subscriber-Persona Not Validated
2 - VeriSign Class 2 Individual Subscriber-Persona Not Validated
3 - VeriSign Class 3 Individual Subscriber-Persona Not Validated
0 - Return to selection menu
Enter Tabel number (ENTER to return to selection menu, p for previous list):
===>
N J

Chapter 10.

Certificate/Key Management 277

Figure 34. Certificate List (part 2)

To import a certificate without a private key into your key database file, first get the certificate in a file in
the z/OS HFS with the file in either Base64-encoded, Binary encoded or PKCS #7 format. From the Key
Management Menu enter 7 to import a certificate:

e ™

Key Management Menu

Database: /home/sufwll/ss1_cmd/mykey.kdb

- Manage keys and certificates

- Manage certificates

- Manage certificate requests

- Create new certificate request

- Receive certificate issued for your request
Create a self-signed certificate

- Import a certificate

- Import a certificate and a private key
- Show the default key

- Store database password

- Show database record length

O WOONOOTP WN -
1

RN

0 - Exit program

Enter option number (press ENTER to return to previous menu): 7 <enter>
Enter import file name (press ENTER to return to menu): cert.arm <enter>
Enter l1abel (press ENTER to return to menu): cacert2 <enter>

Certificate imported.

Press ENTER to continue.
====>

- v

Figure 35. Importing a Certificate from a File

You will be prompted to enter the certificate file name and unique label to be assigned to the certificate.

Once the certificate is imported, you will receive a message indicating the import was successful. The
certificate is treated as "trusted” so that it can be used in verifying incoming certificates. For a program
acting as an SSL server, this certificate is used during the verification of a client’s certificate. For a
program acting as an SSL client, this certificate is used to verify the server’s certificate which is sent to the
client during SSL handshake processing.

Importing a Certificate from a File with its Private Key

To store a certificate into a different key database format or to a different system with its private key, the
certifcate must be exported from the source system into a PKCS #12 format file (See Copying a Certificate
with its Private Key for more information). PKCS #12 files are password-protected to allow encryption of
the private key information. From the Key Management Menu, enter 8 to import a certificate and a private
key:

278 system SSL Programming V1R4.0

Key Management Menu
Database: /home/sufwll/ss1_cmd/anne.kdb

- Manage keys and certificates

Manage certificates

Manage certificate requests

Create new certificate request

Receive certificate issued for your request
Create a self-signed certificate
Import a certificate

- Import a certificate and a private key
- Show the default key

- Store database password

- Show database record length

—_ =
H O WO NOOTBWN -
[N R |

(<=}
1

Exit program

Enter option number (press ENTER to return to previous menu): 8 <enter>
Enter import file name (press ENTER to return to menu): cert.pl2 <enter>
Enter import file password (press ENTER to return to menu): <enter password>
Enter Tabel (press ENTER to return to menu): newcert <enter>

Certificate and key imported.

Press ENTER to continue.
===>

- /

Figure 36. Importing a Certificate and Private Key from a File

You will be prompted to enter the certificate file name, password and a unique label to be assigned to the
certificate.

Once the certificate is imported, you will receive a message indicating that import was successful. The
next step is to determine whether the certificate should be marked as the database’s default certificate.
Setting the certificate as the default certificate allows the certificate to be used by the SSL APIs without
having to specify its label. For more information on setting the default certificate, see |“Marking a Certificate|
[(and Private Key) as the Default Certificate for the Key Database” on page 272).

Using gskkyman to be Your Own Certificate Authority (CA)

The gskkyman command provides the capability for you to act as your own Certificate Authority (CA).
Being your own CA allows you to sign your own or anyone else’s certificate requests. This is very handy if
you only need the certificates within your private Web network and not for outside Internet commerce.
Clients that will be interacting with your Web server must have browsers that can receive your CA
certificate and designate you as a trusted CA. Before signing a certificate for a client or server, you need
to make sure that the requestor has a legitimate claim to request the certificate. After you have verified the
claim, you can create a signed certificate.

To be your own CA in a Web network, you must create a CA database and self-signed CA certificate using
gskkyman . A server or client that wishes for you to sign a certificate must supply you with their certificate
request. After signing the certificate, the server or client must then download your CA certificate and the
newly signed certificate. The CA-signed certificate must then be received into either the client or server
key database.

The following example illustrates the steps from creating the CA database to having a CA-signed

certificate to allow secure communication between a client and a server. This example reflects the steps
followed when the CA is on a different system or is a different user then the issuer of the certificate

Chapter 10. Certificate/Key Management 279

request. If a single user is performing both the creation of the certificate request and the signing, sending
of the files are not needed.

Certificate Authority Server Client

Create the CA key database (1)
Create a self-signed CA certificate
as a default certificate (2)
Create a server key database (1)
Create a certificate request (3)
CA signs the server certificate (4) <_—— Send certificate request to CA
and sends both the newly created
signed server certificate and the
CA certificate files > Stores the CA certificate into its
database (5)
Receives the signed server
certificate into the server key
database created in step 1 (6)

CA sends CA certificate |

<or> = Store the CA certificate
Sends CA certificate ———> into its database (5)

Figure 37. Being Your Own CA in a Web Network

1. To create a key database, see f‘Creating, Opening and Deleting a Key Database File” on page 260|.

2. To create a Certificate Authority (CA) certificate, you need to follow the same procedure as creating a
self-signed server certificate except the certificate type is CA. See [‘Creating a Self-Signed Server or|
|Client Certificate” on page 264|.

3. To create a certificate request, see |“Creating a Certificate Request and Processing the Signed|
[Request” on page 266}

4. To sign a certificate, the gskkyman command must be issued using command-line options. The
gskkyman command must be issued with the following parameters:
gskkyman -g -x num-of-valid-days -cr certificate-request-file-name

-ct signed-certificate-file-name -k CA-key-database-file-name
Note: The CA certificate start/end dates must be before/after those of the requested certificate.

For example, the following command will allow you to sign a request certificate and allow the certificate
to be valid for 360 days.

gskkyman -g -x 360 -cr server_request.arm -ct server_signed cert.arm -k CA.kdb

Notes:

a. The valid certificate lifetime range is between 1 and 9999 days. The certificate end date will be set
to the end date for the CA certificate if the requested certificate lifetime exceeds the CA certificate
lifetime.

b. The signed certificate will be an end user certificate unless the -ca option is specified.

The filename specified on the -ct option is created for you by the utility, and is the actual signed
server certificate file referred to in step 6 of the example.

5. To store a CA certificate, see [lmporting a Certificate from a File as a Trusted CA Certificate” on|

280 System SSL Programming V1R4.0

6. To receive a signed certificate, see [Figure 20 on page 269 (Receiving a Certificate Issued for your
Request). Depending upon the SSL application, you may need to either send the CA certificate to the
client, or the server application may actually present the certificate to the client for them during SSL
session setup.

Migrating Key Database Files to RACF Key Rings

If you need to migrate keys and certificates stored in an existing z/OS HFS key database into a RACF key
ring, follow these steps:

1. Export the certificate/private key to a password protected PKCS#12 file using gskkyman . Refer to
|“Copying a Certificate with its Private Key” on page 273| for details on the steps for exporting
certificates/private keys to a PKCS#12 file.

2. Copy the newly created PKCS#12 file to a z/OS dataset.
3. Use the RACDCERT command with the ADD operand to define a certificate/private key. The dataset
name created in step 2 contains the certificate.

4. Use the RACDCERT command with the ADDRING operand to create a new key ring in RACF. Use the
RACDCERT command with the CONNECT operand to add the certificate/private key to one or more
existing RACF key rings.

Example Tasks Performed by the gskkyman Command in Command
Mode

Command mode is entered when the gskkyman command is entered with parameters. The requested
database function will be performed and then the command will exit.
» Store the database password in the stash file

gskkyman -s -k filename

The database password is masked and written to the key stash file. The file name is the same as the
key database file name but has an extension of ".sth’. You will be prompted for the key database file
name if the -k’ option is not specified.

* Export a certificate and the associated private key

gskkyman -e -k filename -1 Tabel -p filename

The certificate and associated private key identified by the record label are exported to a file in PKCS
#12 Version 3 format using strong encryption. The default key will be exported if the -I' option is not
specified. You will be prompted for the key database file name if the ’-k’ option is not specified. You will
be prompted for the export file name if the "-p’ option is not specified.

* Import a certificate and associated private key

gskkyman -i -k filename -1 Tabel -p filename

A certificate and associated private key are imported from a file in PKCS #12 format. You will be
prompted for the label if the *-I' option is not specified. You will be prompted for the key database file
name if the ’-k’ option is not specified. You will be prompted for the import file name if the "-p’ option is
not specified.

» Create a signed certificate for a certificate request

gskkyman -g -x days -cr filename -ct filename -k filename -1 Tabel -ca

The certificate request identified by the -cr parameter is processed and a signed certificate is created
and written to the certificate file identified by the -ct parameter. The -x parameter specifies the number
of days until the certificate expires and defaults to 365 days. The certificate is signed using the default
key if the -I parameter is not specified. You will be prompted for the key database file name if the -k’
option is not specified. You will be prompted for the certificate request file name if the ’-cr’ option is not
specified. You will be prompted for the signed certificate file name if the ’-ct’ option is not specified.

Chapter 10. Certificate/Key Management 281

The signed certificate will be an end user certificate unless the -ca option is specified. A certification
authority certificate will have basic constraints and key usage extensions which allow the certificate to
be used to sign other certificates and certificate revocation lists. An end user certificate will have basic
constraints and key usage extensions which allow the certificate to be used for authentication, digital
signatures, and data encryption (a DSA key cannot be used for data encryption).

Any certificate can be used to sign the new certificate as long as the certificate has a private key, the
basic constraints certificate extension (if present) has the CA indicator set, and the key usage certificate
extension (if present) allows signing certificates. However, depending upon how the new certificate is
subsequently used, it may fail the validation checking if the signing certificate is not a valid certification
authority certificate.

282 System SSL Programming V1R4.0

Chapter 11. SSL Started Task

The SSL started task (GSKSRVR) provides sysplex session cache support and dynamic trace support.
The SSL started task is an optional component of System SSL and does not need to be configured and
started in order to use System SSL.

The default home directory for the SSL started task is /etc/gskssl/server. A different home directory can be
specified by changing the definition of the HOME environment variable in the GSKSRVR procedure. The
SSL started task will read the envar file in the home directory to set the environment variables. This file is
a variable-length file where each line consists of a variable name and variable value separated by '='.
Trailing blanks are removed from the variable value. Blanks lines and lines beginning with '# are ignored.

GSKSRVR Environment Variables

The following environment variables are processed by the System SSL started task.

GSK_LOCAL_THREADS
Specifies the number of threads which will be used to handle program call requests from SSL
applications running on the same system as the GSKSRVR started task. The default value is 5
and the minimum value is 2. The default of 5 will be used if a valid value is not specified.

GSK_SIDCACHE_SIZE
Specifies the size of the sysplex session cache in megabytes and is between 1 and 512 with a
default of 20. The default of 20 will be used if a valid value is not specified.

GSK_SIDCACHE_TIMEOUT
Specifies the sysplex session cache entry timeout in minutes and is between 1 and 1440 with a
default of 60. The default of 60 will be used if a valid value is not specified.

Configuring the SSL Started Task

1. Create the home directory for the SSL started task (the default is /etc/gskssl/server)

2. Copy the sample envar file from /usr/Ipp/gskssl/examples/gsksrvr.envar to /etc/gskssl/server/envar
(change the directory name to match the home directory created above) and modify the LANG, TZ,
and NLSPATH values to meet local installation requirements.

3. Copy the sample started procedure from GSK.SGSKSAMP(GSKSRVR) to SYS1.PROCLIB(GSKSRVR)

4. Create the GSKSRVR user and associate it with the GSKSRVR started procedure. Replace 'nnnnnn’
in the ADDUSER command with a non-zero value which is not assigned to another user.

ADDUSER GSKSRVR DFLTGRP(SYS1) NOPASSWORD OMVS(UID(nnnnnn) PROGRAM(/bin/sh) HOME(/etc/gskss1/server))

RDEFINE STARTED GSKSRVR.* STDATA(USER(GSKSRVR) GROUP(SYS1) TRUSTED)

SETROPTS RACLIST(STARTED) REFRESH
5. Ensure that the GSK.SGSKLOAD and CEE.SCEERUN datasets are APF-authorized and are either in
the link list concatenation or are specified as a STEPLIB for the GSKSRVR procedure.

6. Optionally, set up a message processing exit to automatically start the GSKSRVR started task. The
GSK.SGSKSAMP(GSKMSGXT) program is a sample message processing exit for this purpose. In
order to activate the exit, add the following to the appropriate MPFLSTxx member in SYS1.PARMLIB.

BPXI004I,SUP(NO),USEREXIT(STARTSSL)

This will start GSKSRVR when OMVS initialization is complete, assuming the GSKMSGXT program
was linked as STARTSSL and placed in a LNKLST dataset.

7. Optionally, set up an automatic restart management (ARM) policy for the GSKSRVR started task if the
default ARM policy values are not appropriate. The element type is SYSSSL and should be assigned
to restart level 2. The element name is GSKSRVR_sysname. For example, the element name for the

© Copyright IBM Corp. 1999, 2002 283

GSKSRVR started task on system DCESEC4 would be GSKSRVR_DCESEC4. Since the normal
operating mode is to run the GSKSRVR started task on each system in the sysplex, the GSKSRVR
started task will register with ARM to be restarted only if the started task fails and not if the current
system fails. The TERMTYPE parameter of the ARM policy can be used to override this registration if
desired.

Server Operator Commands

The following operator commands are supported by the System SSL server:

STOP GSKSRVR or P GSKSRVR
Causes an orderly shutdown of the server.

MODIFY GSKSRVR,parameters or F GSKSRVR,parameters
Causes a command to be executed by the server. Some parameters are:

DISPLAY CRYPTO
Displays the available encryption algorithms, whether hardware cryptographic support is
available, and the maximum encryption key size. 'N/A’ will be displayed if the encryption
algorithm is not available due to export restrictions.

This command can be abbreviated as 'D CRYPTO’

DISPLAY LEVEL
Displays the current System SSL service level.

This command can be abbreviated as 'D LEVEL’

DISPLAY SIDCACHE
Displays the current and maximum data space sizes in megabytes followed by the session
cache users and the number of cache entries for each user. The count will include expired
cache entries until they are removed from the cache during an update to the hash list
containing the expired entry. Each GSKSRVR started task maintains its own session
cache for sessions created on that system. The 'DISPLAY SIDCACHE’ command must be
issued for each started task to display the cache entries for the entire sysplex. This can be
done by issuing 'RO *ALL,F GSKSRVR,D SIDCACHE’.

This command can be abbreviated as 'D SIDCACHE’

DISPLAY XCF
Displays the status of all instances of the GSKSRVR started task in the sysplex.

This command can be abbreviated as 'D XCF’

STOP Causes an orderly shutdown of the server. This is the same as entering the "STOP
GSKSRVR” command.

TRACE OFF
Turns off tracing for the System SSL started task.

TRACE ONi,level
Turns on tracing for the System SSL started task. The trace output is written to the file
specified by the GSK_TRACE_FILE environment variable or to the default trace file if the
GSK_TRACE_FILE environment variable is not defined. The level value specifies the trace
level. Refer to the descriptions of the GSK_TRACE and GSK_TRACE_FILE environment
variables for more information about SSL tracing.

284 system SSL Programming V1R4.0

Sysplex Session Cache Support

The sysplex session cache support makes SSL server session information available across the sysplex.
An SSL session established with a server on one system in the sysplex can be resumed using a server on
another system in the sysplex as long as the SSL client presents the session identifier obtained for the
first session when initiating the second session. SSL V3 and TLS V1 server session information can be
stored in the sysplex session cache while SSL V2 server session information and all client session
information is stored only in the SSL cache for the application process.

In order to use the sysplex session cache, each system in the sysplex must be using the same external
security manager (for example, z/OS Security Server RACF) and a userid on one system in the sysplex
must represent the same user on all other systems in the sysplex (that is, userid ZED on System A has
the same access rights as userid ZED on System B). The external security manager must support the
RACROUTE REQUEST=EXTRACT, TYPE=ENVRXTR and RACROUTE REQUEST=FASTAUTH functions.

The sysplex session cache must be enabled for each application server that is to use the support. This
can be done by defining the GSK_SYSPLEX_SIDCACHE environment variable or by calling the
gsk_attribute_set_enum() routine to set the GSK_SYSPLEX_ SIDCACHE attribute. The session
information for each new SSL V3 or TLS V1 session created by the SSL server will then be stored in the
sysplex session cache and can be referenced by other SSL servers in the sysplex. The RACF user
associated with the SSL server becomes the owner of the session information. Any SSL server running
with the same RACF user can access the session information. SSL servers running with a different RACF
user can access the session information if they have at least READ access to the
GSK.SIDCACHE.<owner> profile in the FACILITY class.

For example, session information created by RACF user APPLSRV1 can be accessed by RACF user
APPLSRV?2 if APPLSRV2 has READ access to the GSK.SIDCACHE.APPLSRV1 profile in the FACILITY
class. The following RACF commands grant this access:

RDEFINE FACILITY GSK.SIDCACHE.APPLSRV1 UACC(NONE)

PERMIT GSK.SIDCACHE.APPLSRV1 CLASS(FACILITY) ID(APPLSRV2) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

Component Trace Support

For information about component trace support, see [‘Component Trace Support” on page 288§,

Chapter 11. SSL Started Task 285

286 System SSL Programming V1R4.0

Chapter 12. Obtaining Diagnostic Information

All of the information and techniques described in this chapter are for use primarily by IBM service
personnel in determining the cause of a System SSL problem. If you encounter a problem and call the
IBM Support Center, you may be asked to obtain trace information or enable one or more of the diagnostic
messages described below.

Any environment variables described in this chapter are usually set via the UNIX System Services export
shell command. For usage information on this command, see the [z/0S: UNIX System Services Command

Reference, SA22-7802] For information on setting environment variables outside of the shell, refer to the

z/0OS: C/C++ Programming Guide, SC09-4765|and the [z/0S: Language Environment Programming Guide,|

SA22-7561

The facilities described below are not intended for use in a production environment and are for
diagnostic purposes only.

Obtaining System SSL Trace Information

You can enable the System SSL trace by using the environment variable GSK_TRACE_FILE to specify the
name of the trace file, and the GSK_TRACE environment variable to set the trace level. A single trace file
is created, and there is no limit on the size of the trace file.

In order to create a readable copy of the trace information, use the System SSL gsktrace command as
follows:

gsktrace input_trace_file > output_trace_file

Capturing Trace Data Through Environment Variables

In order to capture trace information using environment variables, the trace environment variables
GSK_TRACE and GSK_TRACE_FILE must be exported prior to the start of the SSL application.

* GSK_TRACE

Specifies a bit mask enabling System SSL trace options. No trace option is enabled if the bit mask is 0
and all trace options are enabled if the bit mask is Oxffff. The bit mask can be specified as a decimal
(nnn), octal (Onnnn) or hexadecimal (Oxhh) value.

The following trace options are available:

0x01 = Trace function entry
0x02 = Trace function exit
0x04 = Trace errors
0x08 = Include informational messages
0x10 = Include EBCDIC data dumps
0x20 = Include ASCII data dumps

* GSK_TRACE_FILE

Specifies the name of the trace file and defaults to /tmp/gskssl.%.trc. The trace file is not used if the
GSK_TRACE environment variable is not defined or is set to O.

The current process identifier is included as part of the trace file name when the name contains a
percent sign (%). For example, if GSK_TRACE_FILE is set to /tmp/gskssl.%.trc and the current process
identifier is 247, then the trace file name will be /tmp/gskssl|.247.trc.

Note:

Care needs to be taken if the application being traced is multi-processed. If multiple processes write
to the same trace file, file corruption may occur. To allow trace information to be obtained, the trace

© Copyright IBM Corp. 1999, 2002 287

Obtaining Diagnostic Information

file name specified should contain a '%’ character in the file name. This will allow the process
identifier to be placed within the file name and each process to write to its own trace file.

It is recommended that if the default trace file value is not being used, the trace file name always
contain a '%’ character. This will eliminate the need to know if the application being traced is
multi-processed or not.

Once the trace file is produced, it must be formatted. To format the file, use the System SSL gsktrace
command as follows:

gsktrace input_trace_file > output_trace_file

Component Trace Support

The System SSL started task provides component trace support for any SSL application running on the
same system as the GSKSRVR started task. The trace records can be written to a trace external writer or
they can be kept in an in-storage trace buffer which is part of the GSKSRVR address space. IPCS is used
to format and display the trace records from either a trace dataset or an SVC dump of the GSKSRVR
address space.

Refer to MVS Diagnosis: Tools and Service Aids for more information on setting up and using component
trace. Refer to MVS System Commands for more information on the TRACE command. Refer to MVS
IPCS User’s Guide for more information on using IPCS to view a component trace.

Capturing Component Trace Data

The component trace can be started before the job to be traced is started or while the job is running. The
trace will be active for the first instance of the job. For example, if the same job name is used for multiple
jobs, only the first job with that name will be traced. Subsequent jobs with the same name will not be
traced unless the component trace is stopped and then restarted.

A trace external writer is required if the trace records are to be written to a dataset. A sample started
procedure is shipped as GSK.SGSKSAMP(GSKWTR). Copy this procedure to SYS1.PROCLIB(GSKWTR)
and modify as necessary to meet your installation requirements. The following MVS operator command will
start the trace external writer:

TRACE CT,WTRSTART=GSKWTR

A single SSL component trace may be active at a time and the trace can include from 1 to 16 separate
jobs. The trace buffer size must be between 64K and 512K and will default to 64K. The OPTIONS
parameter specifies the SSL trace level as 'LEVEL=mask’ where 'mask’ specifies a bit mask enabling
System SSL trace options. No trace option is enabled if the bit mask is 0 and all trace options are enabled
if the bit mask is Oxffff. The bit mask can be specified as a decimal (nnn), octal (Onnnn) or hexadecimal
(Oxhh) value. The SSL trace level will be set to 15 if no trace options are specified.

The following trace options are available:
0x01 = Trace function entry
0x02 = Trace function exit
0x04 = Trace errors
0x08 = Include informational messages
0x10 = Include EBCDIC data dumps
0x20 = Include ASCII data dumps

For example, to start an SSL component trace for jobs CS390IP and DB1G which includes all non-dump
trace entries and writes the trace records using the GSKWTR trace writer:

TRACE CT,ON,COMP=GSKSRVR
R n,JOBNAME=(CS3901IP,DB1G),0PTIONS=(LEVEL=15) ,WTR=GSKWTR,END

288 System SSL Programming V1R4.0

Obtaining Diagnostic Information

The following commands will stop the SSL component trace and close the trace writer dataset:

TRACE CT,O0FF,COMP=GSKSRVR
TRACE CT,WTRSTOP=GSKWTR

System SSL does not require a default trace member in SYS1.PARMLIB since SSL component trace is
not activated until the operator enters the TRACE command. SYS1.PARMLIB members can be created for
frequently used trace commands and the member name can then be specified on the TRACE command to
avoid the operator prompt for trace options.

Displaying the Trace Data
The trace records are displayed using the IPCS CTRACE command.

The CTRACE ENTIDLIST parameter specifies the trace entries to be included in the display. The trace
entry type is the same as the SSL trace level. For example, SSL function entry trace records have entry
type 1, SSL function exit trace records have entry type 2, SSL error records have entry type 4, etc. All
trace entries will be included if the ENTIDLIST parameter is not specified.

The CTRACE OPTIONS parameter specifies additional filtering for the trace records. The JOB(name),
PID(hexid), and TID(hexid) options can be specified to filter the trace entries based on job name, process
identifier, or thread identifier. All trace entries will be included if the OPTIONS parameter is not specified.

Note that the JOBNAME parameter on the CTRACE command is used to select the address space in a
dump. Since the address space is always the GSKSRVR address space, this parameter cannot be used to
filter the trace entries. Instead, you must use the OPTIONS((JOB(name))) parameter to select the
component trace entries for a specific job.

For example, to display SSL function entry and SSL function exit trace records for job KRBSRV48 thread
6:

IPCS CTRACE COMP(GSKSRVR) ENTIDLIST(1,2) OPTIONS((JOB(KRBSRV48),TID(6))) FULL

A range can be specified for the entry identifiers. For example, to display just the non-dump trace records:
IPCS CTRACE COMP(GSKSRVR) ENTIDLIST(1:15) FULL

Chapter 12. Obtaining Diagnostic Information 289

Obtaining Diagnostic Information

290 System SSL Programming V1R4.0

Chapter 13. Messages and Codes

This chapter contains information for the various forms of messages and codes you may encounter:

* SSL Function Return Codes

* Deprecated SSL Function Return Codes
* ASN.1 Status Codes (014CExxx)

* CMS Status Codes (03353xxx)

* SSL Started Task Messages (GSKO1nnn)
» Utility Messages (GSK0Onnn)

SSL Function Return Codes

This section describes the SSL function return codes.

1 Handle is not valid.

Explanation: The environment or SSL handle
specified on a System SSL function call is not valid.

User Response: Call the gsk_environment_open()
function to create an environment handle or the
gsk_secure_socket_open() function to create an SSL
handle.

3 An internal error has occured.

Explanation: The System SSL runtime library has
detected an internal processing error.

User Response: Collect a System SSL trace
containing the error and then contact your service
representative.

4 Insufficient storage is available

Explanation: The System SSL runtime library is
unable to obtain storage for an internal control block.

User Response: Increase the storage available to the
application and then retry the failing operation.

5 Handle is in the incorrect state.

Explanation: The SSL handle is in the incorrect state
for the requested operation.

User Response: Correct the application to request
SSL functions in the proper sequence.

6 Key label is not found.

Explanation: The requested key label is not found in
the key database or SAF key ring.

User Response: Specify a label that exists in the key
database or SAF key ring.

© Copyright IBM Corp. 1999, 2002

7 No certificates available.

Explanation: The key database or SAF key ring does
not contain any certificates.

User Response: Add the user certificate and any
necessary certification authority certificates to the key
database or SAF key ring.

8 Certificate validation error.

Explanation: An error is detected while validating a
certificate. This error can occur if a root CA certificate is
not found in the key database or SAF keyring or if the
certificate is not marked as a trusted certificate.

User Response: Verify that the root CA certificate is in
the key database or SAF keyring and is marked as
trusted. Check all certificates in the certification chain
and verify that they are trusted and are not expired.
Collect a System SSL trace containing the error and
then contact your service representative if the problem
persists.

9 Cryptographic processing error.

Explanation: An error is detected by a cryptographic
function.

User Response: Collect a System SSL trace
containing the error and then contact your service
representative.

10 ASN processing error.

Explanation: ~ An error is detected while processing a
certificate field.

User Response: Collect a System SSL trace
containing the error and then contact your service
representative.

201

11 LDAP processing error.

Explanation: An error is detected while setting up the
LDAP environment or retrieving an LDAP directory
entry.

User Response: Ensure that the LDAP server is
running and that there are no network errors. Collect a
System SSL trace containing the error and then contact
your service representative if the error persists.

12 An unexpected error has occurred.

Explanation: An unexpected error is detected by the
System SSL runtime.

User Response: Collect a System SSL trace
containing the error and then contact your service
representative.

102 Error detected while reading key
database or SAF key ring.

Explanation: An error is detected while reading the
key database or retrieving entries on the SAF key ring.

User Response: Collect a System SSL trace
containing the error and then contact your service
representative.

103 Incorrect key database record format.

Explanation: The record format for a key database
entry is not correct. This error can occur if the name of
a request database is provided instead of the name of a
key database.

User Response: Ensure that the correct database
name is used. Collect a System SSL trace containing a
dump of the keyfile entry and then contact your service
representative if the error persists.

106 Incorrect key database password.

Explanation: The System SSL runtime is unable to
decrypt a key database entry. Either the supplied
database password is incorrect or the database is
damaged.

User Response: Ensure that the correct key database
password is used. Recreate the database if the error
persists.

109 No certification authority certificates.

Explanation: The key database or SAF key ring does
not contain any valid certification authority certificates.
The SSL runtime needs at least one CA or self-signed
certificate in order to perform client authentication.

User Response: Add the necessary certificates to the
key database or SAF key ring and ensure that existing

292 System SSL Programming V1R4.0

certificates are valid, have not expired and are marked
as trusted certificates.

201 No key database password supplied.

Explanation: A password stash file is specified but the
SSL runtime is unable to read the password from the
stash file.

User Response: Verify that the password stash file
exists and is accessible to the application. Recreate the
password stash file if the error persists.

202 Error detected while opening the key
database.
Explanation: An error is detected while opening the

key database or the SAF key ring. This error can occur
if no name is supplied or the database or key ring does
not exist.

User Response: Verify that the key database or SAF
key ring exists and is accessible by the application.
Collect a System SSL trace containing the error and
then contact your service representative if the error
persists.

203 Unable to generate temporary key pair

Explanation: An error is detected while generating a
temporary key pair.

User Response: Collect a System SSL trace
containing the error and then contact your service
representative.

204 Key database password is expired.
Explanation: The key database password is expired.

User Response: Use the gskkyman command to
assign a new password for the key database.

302 Connection is active.

Explanation: ~ An SSL secure connection operation
cannot be completed due to an active request for the
connection.

User Response: Retry the failing request when the
currently active request has completed.

401 Certificate is expired or is not valid yet.

Explanation: ~ The current time is either before the
certificate start time or after the certificate end time.

User Response: Obtain a new certificate if the
certificate is expired or wait until the certificate becomes
valid if it is not valid yet.

402 No SSL cipher specifications.

Explanation: The client and server cipher
specifications do not contain at least one value in
common. This error can also occur if no SSL protocols
are enabled or if all of the enabled protocols have
empty cipher specifications.

User Response: Ensure that the client and the server
have at least one cipher specification in common.

403 No certificate received from partner.

Explanation: The required certificate was not received
from the communication partner.

User Response: Ensure that the remote application is
sending the certificate. Collect a System SSL trace
containing the error and then contact your service
representative if the error persists.

405 Certificate format is not supported.

Explanation: The certificate received from the
communication partner is not supported by the current
version of the System SSL runtime.

User Response: Collect a System SSL trace
containing a dump containing the unsupported
certificate and then contact your service representative.

406 Error while reading or writing data.

Explanation: An I/O error was reported while the
System SSL runtime was reading or writing data.

User Response: Ensure that there are no network
errors. Collect a System SSL trace containing the error
and then contact your service representative if the error
persists.

407 Key label does not exist.

Explanation: The supplied label or the default key is
not found in the key database or the certificate is not
trusted.

User Response: Supply a valid label or define a
default key in the key database.

408 Key database password is not correct.

Explanation: The System SSL runtime is unable to
decrypt a keyfile entry. Either the supplied keyfile
password is incorrect or the keyfile is damaged.

User Response: Ensure that the correct keyfile
password is used. Recreate the keyfile if the error
persists.

410 SSL message format is incorrect.

Explanation: An incorrectly formatted SSL message is
received from the communication partner.

User Response: Collect a System SSL trace
containing a dump of the SSL message and then
contact your service representative.

411 Message authentication code is
incorrect.
Explanation: The message authentication code (MAC)

for a message is not correct. This indicates the
message was modified during transmission.

User Response: Collect a System SSL trace
containing a dump of the message and then contact
your service representative if the error persists.

412 SSL protocol or certificate type is not
supported.
Explanation: ~ The SSL handshake is not successful

due to an unsupported protocol or certificate type. This
error can occur if there is no enabled SSL protocol
shared by both the client and the server.

User Response: Ensure that the desired SSL protocol
is enabled on both the client and the server. Collect a
System SSL trace containing a dump of the failing
handshake and then contact your service representative
if the problem persists.

413 Certificate signature is incorrect.

Explanation: The certificate signature is not correct for
a certificate received from the communication partner.

User Response: Ensure that a valid certificate is
being sent by the communication partner. Collect a
System SSL trace containing a dump of the incorrect
certificate and then contact your service representative
if the error persists.

414 Certificate is not valid.

Explanation: Either the local certificate or the peer
certificate is not valid.

User Response: Ensure that a valid certificate is
being sent by the communication partner. Collect a
System SSL trace containing a dump of the incorrect
certificate and then contact your service representative
if the error persists.

415 SSL protocol violation.

Explanation: The communication partner has violated
the SSL protocol by sending a message out of
sequence or by omitting a required field from a
message.

Chapter 13. Messages and Codes 293

User Response: Collect a System SSL trace and then
contact your service representative.

416 Permission denied.

Explanation: The System SSL runtime is unable to
access a file or system facility.

User Response: Ensure the application is authorized
to access the file or facility. Collect a System SSL trace
and then contact your service representative if the error
persists.

417 Self-signed certificate cannot be
validated.
Explanation: A self-signed certificate cannot be

validated because it is not in the key database or SAF
key ring.

User Response: Add the self-signed certificate to the
key database or SAF key ring.

420 Socket closed by remote partner.

Explanation: The remote partner closed the socket.
This error will also be reported if the remote partner has
sent a close notification alert.

User Response: None.

421 SSL V2 cipher is not valid.
Explanation: The SSL V2 cipher is not valid.

User Response: Specify a valid cipher.

422 SSL V3 cipher is not valid.
Explanation: The SSL V3 cipher is not valid.

User Response: Specify a valid cipher.

427 LDAP is not available.

Explanation: The System SSL runtime is unable to
access the LDAP server.

User Response: Ensure that the LDAP server is
running and that there are no network problems. Collect
a System SSL trace and then contact your service
representative if the error persists.

428 Key entry does not contain a private
key.
Explanation: The key entry does not contain a private

key. This error can also occur if the private key is stored
in ICSF and ICSF services are not available.

User Response: Specify a key entry containing a
private key value. Ensure that the ICSF started task is
running if the private key is stored in ICSF.

294 system SSL Programming V1R4.0

429 SSL V2 header is not valid.

Explanation: The received message does not start
with a valid SSL V2 header. This error can occur if an
SSL V3 client attempts to establish a secure connection
with an SSL V2 server.

User Response: Enable the SSL V2 protocol on the
client and then retry the request.

431 Certificate is revoked.

Explanation: The certificate has been revoked by the
certification authority.

User Response: Obtain a new certificate.

432 Session renegotiation is not allowed.

Explanation: ~ An attempt to renegotiate the session
parameters for an active connection is rejected by the
peer application.

User Response: SSL processing continues using the
current session parameters.

433 Key exceeds allowable export size.

Explanation: The key size used for an export cipher
suite exceeds the allowable maximum size. For RSA
and DSA keys, the maximum export key size is 512
bits. If the certificate key is larger than 512 bits, the SSL
runtime will use a temporary 512-bit key for the
connection.

User Response: Collect a System SSL trace and then
contact your service representative.

434 Certificate key is not compatible with
cipher suite.
Explanation: The certificate key is not compatible with

the negotiated cipher suite. The server certificate must
have an RSA key while the client certificate may have
an RSA or DSA key. This error can also occur if the
client certificate has a DSA key but the server does not
support DSA keys, the server key usage certificate
extension does not allow key encipherment, or the client
key usage certificate extension does not allow digital
signature. For the 40-bit export ciphers, the server key
usage certificate extension must allow digital signature.

User Response: Specify a certificate with the
appropriate key type and key usage.

435 Certification authority is unknown.

Explanation: The key database does not contain a
certificate for the certification authority.

User Response: Obtain the certificate for the
certification authority and add it to the key database.

436 Certificate revocation list cannot be
processed.

Explanation: A certificate revocation list (CRL) is not
valid and cannot be processed.

User Response: Contact the certification authority and
obtain a replacement CRL.

437 Connection closed.

Explanation: For gsk_secure_socket_read() , a close
notification has been received from the peer application.
For gsk_secure_socket_write() , a close notification
has been sent to the peer application. A close
notification is sent when the
gsk_secure_socket_shutdown() routine is called or
when a close notification is received from the peer
application. Additional data may not be sent by the
application after the close notification has been sent to
the peer application.

User Response: None

438 Internal error reported by remote
partner.
Explanation: The peer application has detected an

internal error while performing an SSL operation and
has sent an alert to close the secure connection.

User Response: Check the error log for the remote
application to determine the nature of the processing
error.

439 Unknown alert received from remote
partner.
Explanation: The peer application has sent an alert

message which is not recognized by the System SSL
runtime.

User Response: Collect a System SSL trace and then
contact your service representative.

501 Buffer size is not valid.

Explanation: The socket buffer or buffer size is not

valid.

User Response: Specify a valid buffer and buffer size.

502 Socket request would block.

Explanation: ~ The socket is in non-blocking mode and
the socket request returned the EWOULDBLOCK error.

User Response: Retry the

gsk_secure_socket_read() or
gsk_secure_socket_write() request when the socket is
ready to send or receive data.

503 Socket read request would block.

Explanation: A socket read request issued as part of
an SSL handshake returned the EWOULDBLOCK error.

User Response: Retry the failing request when the
socket is ready to receive data.

504 Socket write request would block.

Explanation: A socket write request issued as part of
an SSL handshake return the EWOULDBLOCK error.

User Response: Retry the failing request when the
socket is ready to send data.

505 Record overflow.

Explanation: An SSL protocol record has a plain text
record length greater than 16384 or an encrypted text
record length greater than 18432.

User Response: Ensure that data is not being
corrupted during transmission. Obtain a System SSL
trace containing a dump of the failing record and
contact your service representative if the error persists.

601 Protocol is not SSL V3 or TLS V1.

Explanation: The requested function requires either
the SSL V3 or the TLS V1 protocol.

User Response: Ensure that the correct protocol is in
use before issuing the request.

602 Function identifier is not valid.

Explanation: The function identifier specified for
gsk_secure_socket_misc() is not valid.

User Response: Specify a valid function identifier.

701 Attribute identifier is not valid.
Explanation: The attribute identifier is not valid.

User Response: Specify a valid attribute identifier.

Chapter 13. Messages and Codes 295

Deprecated SSL Function Return Codes

This section describes the deprecated SSL function return codes.

1 Error detected while reading key
database or SAF key ring.

Explanation: An error is detected while reading the
key database or retrieving entries on the SAF key ring.

User Response: Collect a System SSL trace
containing the error and then contact your service
representative.

2 Error detected while opening the key
database.
Explanation: An error is detected while opening the

key database or the SAF key ring. This error can occur
if no name is supplied or the database or key ring does
not exist.

User Response: Verify that the key database or SAF
key ring exists and is accessible by the application.
Collect a System SSL trace containing the error and
then contact your service representative if the error
persists.

3 Incorrect key database record format.

Explanation: The record format for a key database
entry is not correct. This error can occur if the name of
a request database is provided instead of the name of a
key database.

User Response: Ensure that the correct database
name is used. Collect a System SSL trace containing a
dump of the keyfile entry and then contact your service
representative if the error persists.

4 Key database password is not correct.

Explanation: The System SSL runtime is unable to
decrypt a keyfile entry. Either the supplied keyfile
password is incorrect or the keyfile is damaged.

User Response: Ensure that the correct keyfile
password is used. Recreate the keyfile if the error
persists.

9 Key label does not exist.

Explanation: The supplied label or the default key is
not found in the key database or the certificate is not
trusted.

User Response: Supply a valid label or define a
default key in the key database.

12 Key label is not found.

Explanation: The requested key label is not found in
the key database or SAF key ring.

296 System SSL Programming V1R4.0

User Response: Specify a label that exists in the key
database or SAF key ring.

13 Duplicate subject names.

Explanation: The key database or SAF key ring
contains multiple certificates with the same subject
name as the DN specified in the gsk_secure_soc_init()
initialization data.

User Response: Either remove the duplicate
certificates or specify a label instead of a DN in the
gsk_secure_soc_init() initialization data.

16 Incorrect key database password.

Explanation: The System SSL runtime is unable to
decrypt a key database entry. Either the supplied
database password is incorrect or the database is
damaged.

User Response: Ensure that the correct key database
password is used. Recreate the database if the error
persists.

17 Key database password is expired.
Explanation: The key database password is expired.

User Response: Use the gskkyman command to
assign a new password for the key database.

18 No certification authority certificates.

Explanation: The key database or SAF key ring does
not contain any valid certification authority certificates.
The SSL runtime needs at least one CA or self-signed
certificate in order to perform client authentication.

User Response: Add the necessary certificates to the
key database or SAF key ring and ensure that existing
certificates are valid and have not expired.

19 No certificates available.

Explanation: The key database or SAF key ring does
not contain any certificates.

User Response: Add the user certificate and any
necessary certification authority certificates to the key
database or SAF key ring.

70 Application is not APF-authorized.

Explanation: The gsk_srb_initialize() routine is called
but the program is not APF authorized. SRB mode
cannot be used by unauthorized applications.

User Response: Contact your system programmer to

get your application authorized.

71 Unable to establish ESTAE
environment.

Explanation: The gsk_srb_initialize() routine is
unable to establish the ESTAE error recovery
environment.

User Response: Contact your service representative.

72 Unable to create service thread.

Explanation: The gsk_srb_initialize() routine is
unable to create a thread to handle SRB processing.

User Response: Ensure that POSIX thread support is
available to the application environment. Contact your
service representative if the error persists.

100 Initialization parameter is not valid

Explanation: An initialization parameter for
gsk_initialize() or gsk_secure_soc_init() is not valid.

User Response: Ensure that all of the parameters are
correct. Contact your service representative if the error
persists.

102 Security type is not valid

Explanation: The security type specified in the
initialization data for the gsk_initialize() routine is not
valid.

User Response: Specify a valid security type for the
sec_types parameter.

103 SSL V2 session timeout is not valid.

Explanation: The SSL V2 session timeout specified in
the initialization data for the gsk_initialize() routine is
not valid.

User Response:
timeout value.

Specify a valid SSL V2 session

104 SSL V3 session timeout is not valid.

Explanation: The SSL V3 session timeout specified in
the initialization data for the gsk_initialize() routine is
not valid.

User Response:
timeout value.

Specify a valid SSL V3 session

-1 No SSL cipher specifications.

Explanation: The client and server cipher
specifications do not contain at least one value in
common. This error can also occur if no SSL protocols
are enabled or if all of the enabled protocols have
empty cipher specifications.

User Response: Ensure that the client and the server
have at least one cipher specification in common.

-2 No certificate received from partner.

Explanation: The required certificate was not received
from the communication partner.

User Response: Ensure that the remote application is
sending the certificate. Collect a System SSL trace
containing the error and then contact your service
representative if the error persists.

-3 Certificate key is not compatible with
cipher suite.
Explanation: The certificate key is not compatible with

the negotiated cipher suite. The server certificate must
have an RSA key while the client certificate may have
an RSA or DSA key. This error can also occur if the
client certificate has a DSA key but the server does not
support DSA keys, the server key usage certificate
extension does not allow key encipherment, or the client
key usage certificate extension does not allow digital
signature. For the 40-bit export ciphers, the server key
usage certificate extension must allow digital signature.

User Response: Specify a certificate with the
appropriate key type and key usage.

-5 SSL V2 header is not valid.

Explanation: The received message does not start
with a valid SSL V2 header. This error can occur if an
SSL V3 client attempts to establish a secure connection
with an SSL V2 server.

User Response: Enable the SSL V2 protocol on the
client and then retry the request.

-6 Certificate format is not supported.

Explanation: The certificate received from the
communication partner is not supported by the current
version of the System SSL runtime.

User Response: Collect a System SSL trace
containing a dump containing the unsupported
certificate and then contact your service representative.

-7 Session renegotiation is not allowed.

Explanation: An attempt to renegotiate the session
parameters for an active connection is rejected by the
peer application.

User Response: SSL processing continues using the
current session parameters.

Chapter 13. Messages and Codes 297

-9 Certificate is revoked.

Explanation: The certificate has been revoked by the
certification authority.

User Response: Obtain a new certificate.

-10 Error while reading or writing data.

Explanation: An I/O error was reported while the
System SSL runtime was reading or writing data.

User Response: Ensure that there are no network
errors. Collect a System SSL trace containing the error
and then contact your service representative if the error
persists.

-11 SSL message format is incorrect.

Explanation: An incorrectly formatted SSL message is
received from the communication partner.

User Response: Collect a System SSL trace
containing a dump of the SSL message and then
contact your service representative.

-12 Message authentication code is
incorrect.
Explanation: The message authentication code (MAC)

for a message is not correct. This indicates the
message was modified during transmission.

User Response: Collect a System SSL trace
containing a dump of the message and then contact
your service representative if the error persists.

-13 SSL protocol or certificate type is not
supported.
Explanation: The SSL handshake is not successful

due to an unsupported protocol or certificate type. This
error can occur if there is no enabled SSL protocol
shared by both the client and the server.

User Response: Ensure that the desired SSL protocol
is enabled on both the client and the server. Collect a
System SSL trace containing a dump of the failing
handshake and then contact your service representative
if the problem persists.

-14 Certificate signature is incorrect

Explanation: The certificate signature is not correct for
a certificate received from the communication partner.

User Response: Ensure that a valid certificate is
being sent by the communication partner. Collect a
System SSL trace containing a dump of the incorrect
certificate and then contact your service representative
if the error persists.

298 System SSL Programming V1R4.0

-15 Certificate is not valid

Explanation: Either the local certificate or the peer
certificate is not valid.

User Response: Ensure that a valid certificate is
being sent by the communication partner. Collect a
System SSL trace containing a dump of the incorrect
certificate and then contact your service representative
if the error persists.

-16 SSL protocol violation.

Explanation: The communication partner has violated
the SSL protocol by sending a message out of
sequence or by omitting a required field from a
message.

User Response: Collect a System SSL trace and then
contact your service representative.

-17 Permission denied.

Explanation: The System SSL runtime is unable to
access a file or system facility.

User Response: Ensure the application is authorized
to access the file or facility. Collect a System SSL trace
and then contact your service representative if the error
persists.

-18 Self-signed certificate cannot be
validated.
Explanation: A self-signed certificate cannot be

validated because it is not in the key database or SAF
key ring.

User Response: Add the self-signed certificate to the
key database or SAF key ring.

-19 Certification authority is unknown

Explanation: The key database does not contain a
certificate for the certification authority.

User Response: Obtain the certificate for the
certification authority and add it to the key database.

-20 Insufficient storage is available.

Explanation: The System SSL runtime library is
unable to obtain storage for an internal control block.

User Response: Increase the storage available to the
application and then retry the failing operation.

-21 Handle is in the incorrect state.

Explanation: ~ The SSL connection handle is in the
incorrect state for the requested operation.

User Response: Correct the application to request
SSL functions in the proper sequence.

-22 Socket closed by remote partner.
Explanation: The remote partner closed the socket.

User Response: None.

-25 Certificate is expired or is not valid yet.

Explanation: The current time is either before the
certificate start time or after the certificate end time.

User Response: Obtain a new certificate if the
certificate is expired or wait until the certificate becomes
valid if it is not valid yet.

-26 Key exceeds allowable export size.

Explanation: The key size used for an export cipher
suite exceeds the allowable maximum size. For RSA
and DSA keys, the maximum export key size is 512
bits. If the certificate key is larger than 512 bits, the SSL
runtime will use a temporary 512-bit key for the
connection.

User Response: Collect a System SSL trace and then
contact your service representative.

-27 Key entry does not contain a private
key.
Explanation: The key entry does not contain a private

key. This error can also occur if the private key is stored
in ICSF and ICSF services are not available.

User Response: Specify a key entry containing a
private key value. Ensure that the ICSF started task is
running if the private key is stored in ICSF.

-28 Function parameter is not valid.

Explanation: A parameter specified on an SSL
function call is not valid.

User Response: Ensure that the parameters on the
failing function call are correct. Contact your service
representative if the error persists.

-30 Socket request would block.

Explanation: The socket is in non-blocking mode and
the socket request returned the EWOULDBLOCK error.

User Response: Retry the gsk_secure_soc_read() or
gsk_secure_soc_write() request when the socket is
ready to send or receive data.

-34 Certificate revocation list cannot be
processed.
Explanation: A certificate revocation list (CRL) is not

valid and cannot be processed.

User Response: Contact the certification authority and
obtain a replacement CRL.

-35 Certificate validation error.

Explanation: An error is detected while validating a
certificate. This error can occur if a root CA certificate is
not found in the key database or SAF keyring or if the
certificate is not marked as a trusted certificate.

User Response: Verify that the root CA certificate is in
the key database or SAF keyring and is marked as
trusted. Check all certificates in the certification chain
and verify that they are trusted and are not expired.
Collect a System SSL trace containing the error and
then contact your service representative if the problem
persists.

-36 Cryptographic processing error.

Explanation:
function.

An error is detected by a cryptographic

User Response: Collect a System SSL trace
containing the error and then contact your service
representative.

-37 ASN processing error.

Explanation:
certificate field.

An error is detected while processing a

User Response: Collect a System SSL trace
containing the error and then contact your service
representative.

-38 LDAP processing error.

Explanation: ~ An error is detected while setting up the
LDAP environment or retrieving an LDAP directory
entry.

User Response: Ensure that the LDAP server is
running and that there are no network errors. Collect a
System SSL trace containing the error and then contact
your service representative if the error persists.

-29 LDAP is not available.

Explanation: The System SSL runtime is unable to
access the LDAP server.

User Response: Ensure that the LDAP server is
running and that there are no network problems. Collect
a System SSL trace and then contact your service
representative if the error persists.

-40 SSL V2 cipher is not valid.
Explanation: The SSL V2 cipher is not valid.

User Response: Specify a valid cipher.

Chapter 13. Messages and Codes 299

-41 SSL V3 cipher is not valid.
Explanation: ~ The SSL V3 cipher is not valid.

User Response: Specify a valid cipher.

-42 Bad handshake specification.

Explanation: The handshake specification for the
gsk_secure_soc_init() routine is not valid.

User Response: Specify a valid value for the hs_type
field in the gsk_secure_soc_init() initialization data.

-43 No read function.

Explanation: No read function is provided for the
gsk_secure_soc_init() routine.

User Response: Specify a read function for the
skread field in the gsk_secure_soc_init() initialization
data.

-44 No write function.

Explanation: ~ No write function is provided for the
gsk_secure_soc_init() routine.

User Response: Specify a write function for the
skwrite field in the gsk_secure_soc_init() initialization
data.

-46 Socket write request would block.

Explanation: A socket write request issued as part of
an SSL handshake return the EWOULDBLOCK error.

User Response: Retry the failing request when the
socket is ready to send data.

-47 Connection is active.

Explanation: ~An SSL secure connection operation
cannot be completed due to an active request for the
connection.

User Response: Retry the failing request when the
currently active request has completed.

-48 Connection closed.

Explanation: For gsk_secure_soc_read() , a close

notification has been received from the peer application.

For gsk_secure_soc_write() , a close notification has
been sent to the peer application. A close notification is
sent when a close notification is received from the peer
application. Additional data may not be sent by the
application after the close notification has been sent to
the peer application.

User Response: None.

300 System SSL Programming V1R4.0

-51 Protocol is not SSL V3 or TLS V1.

Explanation: The requested function requires either
the SSL V3 or the TLS V1 protocol.

User Response: Ensure that the correct protocol is in
use before issuing the request.

-53 Internal error reported by remote
partner.

Explanation: The peer application has detected an
internal error while performing an SSL operation and
has sent an alert to close the secure connection.

User Response: Check the error log for the remote
application to determine the nature of the processing
error.

-54 Unknown alert received from remote
partner.

Explanation: The peer application has sent an alert
message which is not recognized by the System SSL
runtime.

User Response: Collect a System SSL trace and then
contact your service representative.

-70 SRB processing is not initialized.

Explanation: The gsk_srb_initialize() routine has not
been called to initialize the SRB support.

User Response: Call gsk_srb_initialize() before
making any calls to GSKSRBRD or GSKSRBWT.

-71 SRB lock timeout.

Explanation: The GSKSRBRD or GSKSRBWT routine
is unable to obtain the lock for the SRB control area.

User Response: Ensure that the SRB processing
threads are not suspended (for example, a synchronous
dump will suspend thread execution while the dump is
processed). Contact your service representative if the
error persists.

-72 SRB suspend failed.

Explanation: The GSKSRBRD or GSKSRBWT routine
is unable to suspend execution while waiting for the
completion of the read or write request.

User Response: Contact your service representative.

-73 Unknown SRB service request.

Explanation: The SRB service task does not
recognized the function request.

User Response: Contact your service representative.

-99 An unexpected error has occurred.

Explanation: An unexpected error is detected by the
System SSL runtime.

User Response: Collect a System SSL trace
containing the error and then contact your service
representative.

-100 Buffer size is not valid.

Explanation: The socket buffer or buffer size is not
valid.

User Response: Specify a valid buffer and buffer size.

-101 Handle is not valid.

Explanation: The SSL connection handle specified on
a System SSL function call is not valid.

User Response: Call the gsk_secure_soc _init()
function to create an SSL connection handle.

Chapter 13. Messages and Codes

301

ASN.1 Status Codes (014CExxx)

This section describes the ASN.1 status codes.

014CEO001 No more data.

Explanation: The end of an ASN.1 encoded stream is
reached prematurely. This error can occur if an encoded
stream is truncated.

User Response: Verify that the encoded certificate is
not modified. Contact your service representative if the
error persists.

014CE002 Data value overflow.

Explanation: A decoded data value is too large to be
represented as the specified data type.

User Response: Contact your service representative.

014CE003 Length value is not valid.

Explanation: The length of an encoded item is not
valid. This error can occur if an encoded stream is
truncated.

User Response: Verify that the encoded certificate is
not modified. Contact your service representative if the
error persists.

014CE004 Data encoding is not valid.

Explanation: The encoded data violates the ASN.1

encoding rules.

User Response: Contact your service representative.

014CE005 Parameter is not valid

Explanation: An application parameter is not valid.

User Response: Correct the application to specify
valid parameters for the failing function call. Contact
your service representative if the error persists.

014CE008 Data element must be an ASN.1
primitive.
Explanation: A constructed element is encountered

instead of an ASN.1 primitive.

User Response: Contact your service representative.

014CE009 Data element must be constructed.

Explanation: ~ An ASN.1 primitive is encountered
instead of a constructed element.

User Response: Contact your service representative.

014CEOOA Data value is not present

Explanation: An ASN.1 element has no value and
does not have a default value.

User Response: Contact your service representative.

014CEO00B Indefinite-length encoding is not
supported.
Explanation: Indefinite-length encoding is not support

for the current structure. An X.509 certificate is encoded
using ASN.1 DER (Distinguished Encoding Rules) which
does not allow the use of indefinite-length encodings.

User Response: Contact your service representative.

014CEOOC Unused bit count is not valid

Explanation: The unused bit count for a bit string
must be between 0 and 7.

User Response: Contact your service representative if
this error occurs while decoding a bit string. Correct the
application if this error occurs while encoding a bit
string.

014CE006 Insufficient memory is available.

Explanation: There is not enough memory available to
allocate a required control block or data element.

User Response: Increase the memory available to the
application and then retry the request. Contact your
service representative if the error persists.

014CEOOD Unused bit count is not valid for a
segmented bit string.
Explanation: The unused bit count must be zero for

each segment other than the final segment of a bit
string.

User Response: Contact your service representative.

014CE007 Indefinite-length encoding is not
allowed
Explanation: An indefinite-length encoding is

encountered for a data element that requires a length
value.

User Response: Contact your service representative.

302 System SSL Programming V1R4.0

014CEOOE Data type is not correct.

Explanation: ~ An unexpected data type is encountered
while decoding a data element.

User Response: Contact your service representative.

014CEOOF Excess data found at end of data
element
Explanation: There is unprocessed encoded data

after decoding a data element.

User Response: Contact your service representative.

014CE010 Required data element is missing.

Explanation: A required data element is not found
when decoding an encoded structure.

User Response: Contact your service representative.

014CE011 Selection is not within the valid range.

Explanation: The selection for an ASN.1 element is
not within the valid range for that element.

User Response: Contact your service representative.

014CE012 No selection found
Explanation: No selection found for an ASN.1
element.

User Response: Contact your service representative.

014CE013 Syntax already set.

Explanation: The decoding syntax has already been
set for an ASN.1 element.

User Response: Contact your service representative.

014CE014 Character string cannot be converted.

Explanation: A character string cannot be converted
to the target code page. This error can occur when a
character string contains characters which cannot be
represented in the target code page.

User Response: Ensure that the character string uses
characters which are valid for the target code page.
Contact your service representative if the error persists.

014CEO17 Attribute value separator is missing.
Explanation: ~ An X.500 attribute value separator is
missing.

User Response: Ensure that the name string is

correctly formed. Each attribute consists of an attribute
type and an attribute value separated by an equal sign.
Contact your service representative if the error persists.

014CE018 Attribute value is missing

Explanation: An X.500 attribute value is missing.

User Response: Correct the application to specify an
attribute for each relative distinguished name.

014CEO019 Object identifier syntax error

Explanation: The syntax of an object identifier is not
valid. The object identifier consists of one or more
decimal numbers separated by periods.

User Response: Correct the application to specify a
valid object identifier.

014CEO1A PKCS12 version is not correct.
Explanation: ~ The PKCS12 version is not correct.

User Response: Contact your service representative.

014CEO01B Interval is not valid.

Explanation: The certificate interval is not valid.

User Response: Contact your service representative.

014CE01C Obiject identifier element count is not
valid

Explanation:
three elements.

An object identifier must have at least

User Response: Correct the application to provide a
valid object identifier.

014CE015 Codeset is not allowed

Explanation: The requested codeset is not valid for
the current data element.

User Response: Contact your service representative.

014CEOQ016 Attribute value is not valid.

Explanation: An attribute value is not valid.

User Response: Contact your service representative.

014CEO01D Incorrect value for the first object
identifier element.
Explanation: The first element of an object identifier

must be O, 1, or 2.

User Response: Correct the application to provide a
valid object identifier.

014CEO1E Incorrect value for the second object
identifier element.
Explanation: The second element of an object

identifier must be between 0 and 39 if the first element
isOor 1.

Chapter 13. Messages and Codes 303

User Response: Correct the application to provide a
valid object identifier.

014CEO1F Unknown attribute identifier.

Explanation: An unrecognized attribute identifier is
encountered while decoding a certificate extension or
an X.509 name. As a result, the attribute value cannot
be decoded.

User Response: Ensure that the name string is

correctly formed. Each attribute consists of an attribute
type and an attribute value separated by an equal sign.
Contact your service representative if the error persists.

014CE020 Unknown critical certificate extension.

Explanation: The X.509 certificate contains a critical
extension that is not recognized by the System SSL
runtime. The certificate cannot be processed.

User Response: Obtain a new certificate without the
unknown critical certificate extension.

014CE021 X.500 name syntax error.

Explanation: The syntax of an X.500 distinguished
name is not valid. Refer to RFC 2253 (String
Representation of Distinguished Names) for more
information on the format of a distinguished name.

User Response: Correct the application to specify a
valid distinguished name.

304 system SSL Programming V1R4.0

CMS Status Codes (03353xxx)

This section describes some CMS status codes.

03353001 Insufficient memory is available.

Explanation: There is not enough memory available to
allocate a required control block or data element.

User Response: Increase the memory available to the
application and then retry the request. Contact your
service representative if the error persists.

03353006 Input/Output request canceled.

Explanation: An input/output operation is canceled by
the user. This can occur if the user cancels a terminal
read request by pressing an attention key or by
pressing the enter key without entering any data.

User Response: None

03353002 Certificate extension is not supported.

Explanation: An X.509 certificate extension is either
not supported by the current level of the System SSL
runtime or is not supported by the certificate version.
The certificate extension is not processed. If the
extension is marked as a critical extension, the X.509
certificate cannot be processed.

User Response: Upgrade the System SSL runtime if
a later software level supports the certificate extension.

03353003 Cryptographic algorithm is not
supported.
Explanation: An X.509 cryptographic algorithm is not

supported by the current level of the System SSL
runtime. This error can also occur if the current
operation does not support the specified cryptographic
algorithm.

User Response: Ensure that the cryptographic
algorithm is supported for the requested operation.
Upgrade the System SSL runtime if a later software
level supports the cryptographic algorithm.

03353004 Signature is not correct

Explanation: The signature is incorrect for an X.509
certificate or certificate revocation list. This usually
means the certificate has been modified since it was
signed by the issuing Certificate Authority.

User Response: Verify that the certificate has not
been modified. Collect a System SSL trace containing
the error and then contact your service representative if
the error persists.

03353005 Cryptographic request failed.

Explanation: A cryptographic request failed with an
unexpected error. This error can occur if the hardware
cryptographic support becomes unavailable after the
application has been initialized.

User Response: Collect a System SSL trace
containing the error and then contact your service
representative.

03353007 Input/Output request failed.

Explanation: An input/output operation fails.

User Response: Verify that the file or keyring can be
accessed and is not damaged. Collect a System SSL
trace containing the error and then contact your service
representative if the error persists.

03353008 Verfication password does not match.

Explanation: The user is prompted to verify the
password by entering it a second time. The user did not
enter the same password both times.

User Response: Enter the same password when

prompted.
03353009 File or keyring not found
Explanation: A file or keyring cannot be opened

because it is not found.

User Response: Verify that the correct name is
specified. Contact your service representative if the
error persists.

0335300A Database is not valid.

Explanation: The key database or the request
database is not valid. This error can occur if the wrong
database password is used when opening the database
or if the database format is not supported by the current
level of the System SSL runtime.

User Response: Verify that the database has not
been modified or truncated. Collect a System SSL trace
containing the error and then contact your service
representative if the error persists.

0335300B Message not found.

Explanation: The System SSL runtime is unable to
locate a message in the message catalog.

User Response: Verify that the message catalog can
be accessed by the application and can be located
using the NLSPATH environment variable. Contact your
service representative if the error persists.

Chapter 13. Messages and Codes 305

0335300C Handle is not valid.

Explanation: The handle passed to the System SSL
runtime is not valid. This error can occur if the handle
has been closed or is not the proper type for the
requested function.

User Response: Pass a valid handle to the System

SSL routine.
0335300D Record deleted.
Explanation: The requested record is deleted.

User Response: None

0335300E Record not found.

Explanation: The requested record is not found.

User Response: None

0335300F Incorrect database type

Explanation: The database does not support the
requested operation. This error can occur if the
database type is not valid. It can also occur if an
attempt is made to add a request record to a key
database or a key record to a request database.

User Response:
the database.

Specify an operation supported by

03353013 Database already exists.

Explanation: A request to create a new database
cannot be completed because the database file already
exists.

User Response: Choose a different name for the new
database or delete the existing database.

03353014 Record is too big.

Explanation: A new record cannot be added to the
database because it is larger than the database record
length.

User Response:
record length.

Create a new database with a larger

03353015 Database password is expired.

Explanation: The database password is expired.

User Response: Change the database password.

03353016 The password is not correct.

Explanation: The wrong password is specified for a
key database, an encrypted private key, or an import
file. This error can also occur if the file has been
modified.

User Response: Specify the correct password.

03353010 Database is not open for update.

Explanation: A request to modify the key or request
database cannot be completed because update mode
was not requested when the database was opened.

User Response: Request update mode when opening
a database for modification.

03353011 Mutex request failed.

Explanation: A mutex operation failed.

User Response: Contact your service representative.

Backup file already exists.

Explanation: Before updating a database file, the
System SSL runtime creates a backup file with the
same name with ".new” appended to the name. This file
is then deleted after the database file has been
rewritten. The file is not deleted if an error occurs while
rewriting the database file.

User Response: Correct the problem that caused the
database update to fail. Then copy the backup file to
the database file and delete the backup file.

306 System SSL Programming V1R4.0

03353017 Access denied.

Explanation: The database or keyring cannot be
opened because the permissions do not allow access
by the current user.

User Response: Ensure that the user has read/write
access to the database if opening the database for
update mode; otherwise ensure that the user has read
access to the database or keyring.

03353018 Database is locked for update.

Explanation: ~ Another process has opened the
database in update mode. Only one process may have
the database open for update at a time.

User Response: Wait until the database has been
closed by the other process and then retry the request.

03353019 Record length is too small.

Explanation: ~ The database record length is less than
the minimum value of 2500.

User Response:
greater.

Specify a record length of 2500 or

0335301A No private key.

Explanation: A private key request cannot be
processed because the database entry does not contain
a private key. This error can occur if the private key is
stored in the Integrated Cryptographic Service Facility
(ICSF) but the CSF started task is not running.

User Response: Verify that the CSF started task is
running if the private key is stored in ICSF. Otherwise,
repeat the failing request using a database entry
containing a private key.

0335301B Record label is not valid.

Explanation: The record label is not valid. A label may
contain letters, numbers, and punctuations. A record
label may not be an empty string.

User Response: Provide a valid record label.

0335301C Record label is not unique..
Explanation: A record label must be unique with a
database.

User Response: Provide a unique record label.

0335301D Record type is not valid.

Explanation: The database record type is not valid.

User Response: Provide a valid database record type.

PKCS #7 signed data messages, and PKCS #12
personal information exchange messages for certificate
import files. The import file data may be the binary data
or the Base64-encoding of the binary data.

System SSL supports PKCS #7 data, encrypted data,
signed data, and enveloped data for messages. This
error can also occur if the message is not constructed

properly.

User Response: Ensure that the import file or
message has not been modified. A Base64-encoded
import file must be converted to the local code page
when it is moved to another system while a binary
import file must not be modified when it is moved to
another system.

03353021 Certificate is not yet valid.

Explanation: ~ The current time is earlier than the
beginning of the certificate validity.

User Response: Either wait until the certificate is valid
or request a new certificate with an earlier starting date
from the certification authority.

03353022 Certificate is expired

Explanation: The current time is after the end of the
certificate validity.

User Response: Request a new certificate from the
certification authority.

0335301E Duplicate certificate.

Explanation: An attempt is made to add a certificate
to a key database but the database already contains
the certificate. A certificate is a duplicate if the issuer
name and certificate serial number are the same.

User Response: Delete the existing certificate before
adding the new certificate.

0335301F Incorrect Base64 encoding.

Explanation: ~ An encoded stream cannot be decoded
because it contains an incorrect Base64 encoding. A
Base64 encoding consists of a header line, encoded
text, and a footer line. The encoded text is encoded
using a 64-character subset in groups of 4 characters.

User Response: Ensure that the encoded stream has
not been truncated or modified. Base64 encoding uses
text data and must be in the local code page. Contact
your service representative if the error persists.

03353020 Unrecognized file or message
encoding.
Explanation: A file or message cannot be imported

because the format is not recognized.

System SSL supports X.509 DER-encoded certificates,

03353023 Name format is not supported.

Explanation: ~ An unsupported name format is
encountered while validating a certificate.

User Response: Contact your service representative.

03353024 Issuer certificate not found.

Explanation: An issuer certificate is not found while
validating a certificate. This error can occur if the key
database contains the issuer certificate but the
certificate is not trusted or has expired.

User Response: Ensure that the key database
contains a certificate for the issuer of the certificate
being validated and that the certificate is marked as
trusted. Contact your service representative if the error
persists.

03353025 Certification path is too long.

Explanation: The certification path length exceeds the
maximum specified in the certification authority
certificate.

User Response: Report the problem to the
certification authority.

Chapter 13. Messages and Codes 307

03353026 Incorrect key usage.

Explanation: The key usage certificate extension does
not permit the requested key operation.

User Response: Obtain a certificate which allows the
desired key operation.

0335302D Default key cannot be changed

Explanation: The default key for the database cannot
be changed using the gsk_replace_record() routine.

User Response: Use the gsk_set_default_key()
routine to change the default key for the database.

03353027 Issuer is not a certification authority.

Explanation: The issuer of an X.509 certificate is not
a certification authority. This indicates that the basic
constraints certificate extension in the issuer certificate
does not contain the certification authority indicator.

User Response:
the certificate.

Report the problem to the issuer of

0335302E Database contains certificates signed
by the certificate.
Explanation: A CA certificate cannot be deleted

because the database still contains certificates that
were signed using the certificate.

User Response: Delete all certificates signed by the
CA certificate before deleting the certificate.

03353028 Export file format is not supported.

Explanation: The requested export file format is not
supported for the specified database record. Certificates
can be exported using the DER and PKCS #7 formats.
Certificates and keys can be exported using the PKCS
#12 formats.

User Response: Select an appropriate export file

format.
03353029 Cryptographic algorithm is not
available.
Explanation: An X.509 cryptographic algorithm is not

available. Due to government export regulations, strong
encryption is not available on the local system.

User Response: Select an algorithm that is available.

0335302A Record type cannot be changed.

Explanation: The record type cannot be changed
when replacing a database record.

User Response: Create a new database entry for the

0335302F Certificate chain is not trusted.

Explanation: A certification authority (CA) certificate in
the certification chain is not trusted.

User Response: Set the trust status for the CA
certificate if the certificate can be used for
authentication purposes.

03353030 Key not supported by encryption or
signature algorithm.
Explanation: The supplied key is not supported by the

requested encryption or signature algorithm. For
example, an RSA key cannot be used to verify a DSA
signature and a DSA key cannot be used to encrypt
data.

User Response: Provide the appropriate key for the
encryption or signature algorithm.

03353031 Signer certificate not found.

Explanation: An signer certificate is not found while
creating or processing a signed message,

record. User Response: Provide a certificate for each signer.
0335302B Subject name cannot be changed. 03353032 Content type is not supported.
Explanation: The subject name cannot be changed Explanation: An unsupported PKCS #7 content type

when replacing a database record.

User Response: Create a new database entry for the

record.
0335302C Public key cannot be changed.
Explanation: The subject public key cannot be

changed when replacing a database record.

User Response:
record.

Create a new database entry for the

308 System SSL Programming V1R4.0

is encountered.

User Response: Refer to the Programming Reference
for the failing routine to determine the supported content

types.

03353033 Recipient certificate not found.

Explanation: A recipient certificate is not found while
creating or processing an enveloped message.

User Response:
certificate.

Provide at least one recipient

03353034 Encryption key size is not supported.

Explanation: The encryption key size is not supported
by the System SSL runtime.

User Response: Refer to the System SSL
documentation to determine which key sizes are
supported. In general, 40-bit keys and 128-hit keys are
supported for RC2 and RC4, 56-bit keys are supported
for DES, and 168-bit keys are supported for Triple DES.
RSA keys must be between 512 and 2048 bits while
DSA keys must be between 512 and 1024 bits.

03353035 Encryption key parity is not correct.

Explanation: DES and Triple DES encryption keys
must have odd parity for each key byte.

User Response: Verify that the key is generated
correctly. Contact your service representative if the error
persists.

03353036 Encryption key is weak.

Explanation: A small subset of the possible DES and
Triple DES encryption keys are weak and can be
broken more easily than the rest of the keys. For this
reason, the weak keys should be avoided when
generating a DES or Triple DES key.

User Response: Contact your service representative.

03353037 Initial vector size is not correct.

Explanation: The initial vector used by the encryption
routine is not the correct length.

User Response: Contact your service representative.

03353038 Encryption data size is not correct.

Explanation: The length of the encryption data is not
correct. For symmetric key algorithms using cipher block
chaining, the encryption data must be a multiple of the
cipher block size. For asymmetric key algorithms, the
encryption data must be the same length as the cipher
key modulus.

User Response: Verify that the encryption data has
not been truncated. Contact your service representative
if the error persists.

03353039 Encryption block format is not correct.

Explanation: The encryption block format is not
correct following decryption. This error can occur if the
wrong key is used to decrypt the block.

User Response: Verify that the correct key is being
used to decrypt the data. Contact your service
representative if the error persists.

0335303A Number does not have a modular
inverse.
Explanation: The cryptographic support is unable to

find an inverse for a number.

User Response: Contact your support representative.

0335303B LDAP processing error.

Explanation: ~ An error is detected while setting up the
LDAP environment or retrieving an LDAP directory
entry.

User Response: Ensure that the LDAP server is
running and that there are no network errors. Collect a
System SSL trace containing the error and then contact
your service representative if the error persists.

0335303C LDAP is not available.

Explanation: The System SSL runtime is unable to
access the LDAP server.

User Response: Ensure that the LDAP server is
running and that there are no network problems. Collect
a System SSL trace and then contact your service
representative if the error persists.

0335303D Digest data size is not correct.

Explanation: The length of the digest data is not
correct. The digest data size is 16 bytes for the MD2
and MD5 algorithms and 20 bytes for the SHA-1
algorithm.

User Response: Verify that the data has not been
truncated. Contact your service representative if the
error persists.

0335303E Database name is not valid.

Explanation: The database file name or SAF key ring
name is not valid. The length of the fully-qualified
database file name must be between 1 and 251 while
the length of the SAF key ring must be between 1 and
237.

User Response: Provide a valid database name.

0335303F Database open failed.

Explanation: The System SSL runtime is unable to
open the HFS database file or the SAF key ring.

User Response: Verify that the database file or SAF
key ring exists and is accessible by the application.
Collect a System SSL trace and then contact your
service representative if the error persists.

Chapter 13. Messages and Codes 309

03353040 Self-signed certificate not in database.

Explanation: A self-signed certificate cannot be
validated because it is not in the key database or SAF
key ring.

User Response: Add the self-signed certificate to the
key database or SAF key ring.

03353041 Certificate is revoked.
Explanation: A certificate is revoked and cannot be
used.

User Response: Obtain a new certificate from the
certification authority.

03353042 Issuer name is not valid.

Explanation: The certificate issuer name must be a
non-empty X.509 distinguished name.

User Response: Obtain a new certificate with a valid

issuer name.

03553043 Subject name is not valid.

Explanation: The certificate subject name must be
either a non-empty distinguished name or an empty
distinguished name with a SubjectAltName certificate
extension.

User Response: Obtain a new certificate with a valid

subject name.

03353044 Name constraints violated.

Explanation: The certificate name is not allowed by
the certification path name constraints.

User Response: Report the problem to the
certification authority.

03353045 No content data.

Explanation: The PKCS #7 content information does
not contain any content data.

User Response: Change the application to provide
content data for the content information.

03353046 Message version is not supported.
Explanation: An unsupported message version is
encountered.

User Response: Refer to the Programming Reference
for the failing routine to determine the supported
message versions.

310 system SSL Programming V1R4.0

03353047 Subject name is same as signer name.

Explanation: A request to create a new certificate
cannot be processed because the requested subject
name is the same as the subject name of the signing
certificate.

User Response:
the new certificate.

Choose a different subject name for

SSL Started Task Messages (GSK01nnn)

This section describes SSL started task messages.

GSK01001l System SSL version version.release
Service level [level.

Explanation: This message displays the System SSL
version, release, and service level.

User Response: None

GSKO01002E Insufficient storage available.

Explanation: The SSL server is unable to obtain
storage for an internal control block.

User Response: Increase the storage available to the
GSKSRVR started task and then retry the request.

GSKO01003l SSL server initialization complete.
Explanation: The server initialization is complete.

User Response: None

GSK01004l SSL server shutdown requested.

Explanation: The system operator has entered a
STOP command for the SSL server.

User Response: None

GSKO01005E Unrecognized SSL server command:
Specify DISPLAY, TRACE or STOP.

Explanation: An unrecognized command name is
specified on a MODIFY operator command. The valid
SSL server commands are DISPLAY, TRACE and
STOP.

User Response:
command.

Specify a valid SSL server

GSKO01006E Incorrect command option specified.

Explanation: An incorrect SSL server command
option is specified.

The valid DISPLAY command options are:

* CRYPTO - Display the available encryption
algorithms.

* LEVEL - Display the System SSL version, release,
and service level.

» SIDCACHE - Display the sysplex session cache
status.

* XCF - Display SSL sysplex status.

The valid TRACE command options are:

* OFF - Turn of SSL tracing

* ON,level - Enable SSL tracing using the specified
trace level.

User Response: Specify a valid command option.

GSKO01007E Missing command option.

Explanation: ~ An SSL server command is entered
which requires a command option but no command
option is entered.

User Response:
command.

Enter a complete SSL server

GSK01008! Sysplex status.

Explanation: This message is displayed in response
to the SSL server DISPLAY XCF command. The
remaining lines in this multi-line message display the
status of each SSL server in the sysplex. A server is
ACTIVE if the GSKSRVR started task is running. A
security server is INACTIVE if the GSKSRVR started
task has been stopped. No entry is displayed for a
system where the GSKSRVR started task has not been
started.

User Response: None

GSKO010091 Cryptographic status.

Explanation: This message is displayed in response
to the SSL server DISPLAY CRYPTO command. The
remaining lines in this multi-line message display the
available encryption algorithms.

User Response: None

GSKO01010A The SSL server is already running.

Explanation: The GSKSRVR started task is already
running. Only one instance of the SSL server may be
active in the same system.

User Response: Stop the GSKSRVR started task
before starting a new instance of the SSL server.

GSKO01011A The SSL server is not APF-authorized.

Explanation: The GSKSRVR started task is not
running with APF authorization.

User Response: Add the GSK.SGSKLOAD dataset to
the list of APF-authorized datasets and then restart the
GSKSRVR started task. If you are using a STEPLIB or
JOBLIB for the GSKSRVR started task, verify that all
datasets in the concatenation are APF-authorized.

GSKO01012A Unable to make address space
non-swappable: Error error-code.

Explanation: The SSL server is unable to make its
address space non-swappable. The error code is the
value returned by the SYSEVENT system service.

Chapter 13. Messages and Codes 311

User Response: Verify that the GSKSRVR started
task is APF-authorized. Refer to the SYSEVENT
description in z/0S MVS Authorized Assembler Services
Reference for more information. Contact your service
representative if the error persists.

GSKO01013I SSL server restart registration
complete on system.

Explanation: The GSKSRVR started task has
successfully registered with ARM (Automatic Restart
Management) on the indicated system. The GSKSRVR
started task will be automatically restarted if it fails
unexpectedly (it will not be restarted if it detects an error
and stops). The ARM element type is SYSSSL and the
ARM element name is GSKSRVR_system-name. The
ARM policy can be used to override the default
registration values if needed.

User Response: None

GSK01014l SSL server restarting on system.

Explanation: The GSKSRVR started task is being
restarted following an unexpected failure. The
RESTART_ATTEMPTS value in the ARM policy
determines the number of restarts which will be
attempted.

User Response: None

GSKO01015E Unable to register for restart: Error
error-code, Reason reason-code.

Explanation: The GSKSRVR started task is unable to
register with ARM (Automatic Restart Management).
The IXCARM request failed with the indicated error and
reason codes.

User Response: Refer to the IXCARM description in
z/0S MVS Sysplex Services Reference for more
information. Contact your service representative if the
error persists.

GSKO01016E Unable to deregister for restart: Error
error-code, Reason reason-code.

Explanation: The GSKSRVR started task is unable to
deregister with ARM (Automatic Restart Management).
The IXCARM request failed with the indicated error and
reason codes.

User Response: Refer to the IXCARM description in
z/0S MVS Sysplex Services Reference for more
information. Contact your service representative if the
error persists.

GSK010171 SSL server restart deregistration
complete on system.

Explanation: The GSKSRVR started task has
successfully deregistered with ARM (Automatic Restart

312 system SSL Programming V1R4.0

Management) on the indicated system. The SSL server
will no longer be automatically restarted if it fails
unexpectedly.

User Response: None

GSKO01018l Trace option processed: trace-option.

Explanation: The indicated trace request has been
processed by the SSL server.

User Response: None

GSKO01019E Unable to create mutex: error-text.

Explanation: The GSKSRVR started task is unable to
create a mutex for the indicated reason.

User Response: Refer to the pthread_mutex_init
description in z/0S C/C++ Run-Time Library Reference
for more information. Contact your service
representative if the error persists.

GSKO01020E Unable to lock mutex: error-text.

Explanation: The GSKSRVR started task is unable to
lock a mutex for the indicated reason.

User Response: Refer to the pthread_mutex_lock
description in z/0S C/C++ Run-Time Library Reference
for more information. Contact your service
representative if the error persists.

GSKO01021E Unable to create thread: error-text.

Explanation: The GSKSRVR started task is unable to
create a thread for the indicated reason.

User Response: Refer to the pthread_create
description in z/0S C/C++ Run-Time Library Reference
for more information. Contact your service
representative if the error persists.

GSKO01022E Unabile to initialize local services: Error
error-code, Reason reason-code.

Explanation: The GSKSRVR started task is unable to
initialize the local services support. The error code
indicates the failing system function and the reason
code is the error code returned by the system function.

The following error codes are defined:

* 1 =The job step is not APF-authorized.

* 2 = The security server is already running.
* 3 =The ESTAEX request failed.

* 5 =The LXRES request failed.

* 6 = The ETCRE request failed.

e 7 =The ETCON request failed.

* 8 = The IEANTCR request failed.

* 9 = The CTRACE DEFINE request failed.

User Response: Verify that the GSKSRVR started
task is APF-authorized. Refer to the system function
description in z/0S MVS Authorized Assembler Services

Reference for more information. Contact your service
representative if the error persists.

GSKO01023E Unable to create session cache data
space: Error error-code, Reason
reason-code.

Explanation: The GSKSRVR started task is unable to
create the session cache data space.

The following error codes are defined:

1 = DSPSERV CREATE failed.
The reason code contains the DSPSERV
return code in the upper halfword and bits 8-23
of the DSPSERYV reason code in the lower
halfword.

2 = ALESERV ADD failed.
The reason code is the ALESERYV return code.

User Response: Refer to the DSPSERV or ALESERV
description in z/Z0S MVS Authorized Assembler Services
Reference for more information. Contact your service
representative if the error persists.

GSKO01024E Unable to initialize cross-system
services: Error error-code, Reason
reason-code.

Explanation: The GSKSRVR started task is unable to
initialize cross-system services.

The following error codes are defined:

1 = The job step is not APF-authorized.

3 = IXCJOIN failed.
The reason code contains the IXCJOIN return
code in the upper halfword and the IXCJOIN
reason code in the lower halfword.

4 = IXCQUERY failed.
The reason code contains the IXCQUERY
return code in the upper halfword and the
IXCQUERY reason code in the lower halfword.

User Response: Refer to the IXCJOIN or IXCQUERY
description in z/0S MVS Sysplex Services Reference
for more information. Contact your service
representative if the error persists.

GSK010251 System name has joined the GSKSRVR
group.

Explanation: The GSKSRVR started task has
completed initialization on the indicated system and is
now a member of the GSKSRVGP cross-system group.

User Response: None

GSK010261 System name has left the GSKSRVR
group.
Explanation: The GSKSRVR started task is stopping

on the indicated system and has left the GSKSRVGP
cross-system group.

User Response: None

GSKO010271 Cross-system services ended due to
sysplex partitioning.

Explanation: The local system is leaving the sysplex.
As a result, GSKSRVR cross-system services are no
longer available.

User Response: None

GSKO01028E Local program call request failed: Error
error-code.

Explanation: The GSKSRVR started task is unable to
process a local program call request.

The following error codes are defined:

» 8 = Parameter buffer overflow.

e 12 = Unable to allocate storage.

* 16 = Local service support is not enabled.
e 20 = Program call task abended.

» 24 = Unable to obtain control lock.

e 28 = Requested function is not supported.

User Response: Contact your service representative.

GSKO010291 Cross-system services are not
available.

Explanation: The DISPLAY XCF command cannot be
processed because cross-system services are not
available.

User Response: None

GSK01030I Maximum number of lines displayed.

Explanation: The maximum number of lines allowed
for a multi-line write-to-operator message has been
reached.

User Response: None

GSK01031l No session cache users.

Explanation: ~ The DISPLAY SIDCACHE command
was issued but there are no session cache users to
display.

User Response: None

GSK01032I Session cache status

Explanation: This message is displayed in response
to the SSL server DISPLAY SIDCACHE command. The
remaining lines in this multi-line message display the
cache users.

User Response: None

Chapter 13. Messages and Codes 313

GSKO01033E Unable to extend the session cache
data space: Error error-code, Reason
reason-code.

Explanation: The GSKSRVR started task is unable to
increase the size of the session cache data space.

The error codes have the following values:

1 = DSPSERV EXTEND failed.
The reason code contains the DSPSERV
return code in the upper halfword and bits 8-23
of the DSPSERYV reason code in the lower
halfword.

User Response: The new session cache entry is not
stored in the session cache data space. Refer to the
DSPSERYV description in z/0S MVS Authorized
Assembler Services Reference for more information.
Contact your service representative if the error persists.

GSKO01034E Unable to send cross-system message:
Error error-code, Reason reason-code.

Explanation: The GSKSRVR started task is unable to
send a message to another member of the GSKSRVGP

group.
The error codes have the following values:

* 1 = Unable to obtain XCF control lock on target
system.

» 2 = Cross-system services are not available.

* 3 = Requested token not found on target system.

» 4 = User not authorized to access token data.

» 5= Unable to allocate storage on the target system.

* 6 = Target replica is not a member of the
GSKSRVGP group.
» 7 = Target replica is not active.

* 8 = IXCMSGO failed. The reason code contains the
IXCMSGO return code in the upper halfword and the
IXCMSGO reason code in the lower halfword.

* 9 = |[XCMSGI failed on the target system. The reason
code contains the IXCMSGI return code in the upper
halfword and the IXCMSGI reason code in the lower
halfword.

» 10 = Request function code is not supported.

» 11 = Request canceled.

» 12 = Unknown notification message.

* 13 = No response received from target system.

* 14 = Unable to allocate storage on the local system.

* 15 = IXCMSGI failed on the local system. The reason
code contains the IXCMSGI return code in the upper

halfword and the IXCMSGI reason code in the lower
halfword.

User Response: The request is not processed. Refer
to the IXCMSGI or IXCMSGO description in zZ0S MVS
Sysplex Services Reference for more information.

Contact your service representative if the error persists.

314 system SSL Programming V1R4.0

GSKO01035E SSL server is not available.

Explanation: The SSL server task is not available.
This error will occur if the GSKSRVR started task is not
running, has not completed initialization, or is stopping.

User Response: Wait until the GSKSRVR started task
is available and then retry the failing request.

GSKO01036E No job name specified.

Explanation: No job name was specified on the
TRACE CT command when starting a component trace.

User Response: Specify at least one job name when
starting a component trace.

GSKO01037E Unable to call SSL server: Error
number, Reason number.

Explanation: The command processor for the TRACE
CT command is unable to call the GSKSRVR started
task.

The following error codes are defined:

» 8 = Parameter buffer overflow

* 12 = Unable to allocate storage

* 16 = Local service support is not enabled

* 20 = Program call task abended (the reason is the
abend code)

* 24 = Unable to obtain control lock

* 28 = Requested function is not supported

User Response: Verify that the GSKSRVR started
task is running on the local system. Contact your
service representative if the error persists.

GSKO01038E Incorrect trace option specified.

Explanation: The OPTIONS parameter on the TRACE
CT command does not specify a valid SSL trace option.
The only valid option is LEVEL=n where n is the
requested SSL trace level. Refer to the description of
the GSK_TRACE environment variable for more
information on setting the SSL trace level.

User Response: Specify a valid SSL trace option.

GSKO01039E The trace buffer size must be between
64K and 512K.

Explanation: The trace buffer size specified on the
TRACE CT command must be between 64K and 512K.

User Response: Specify a valid trace buffer size.

GSK01040l SSL component trace started.

Explanation: ~ The SSL component trace has been
started. The jobs specified on the TRACE CT command
may be already running or may be started after the
TRACE CT command is processed. However, any jobs
that are already running must have been started after

the GSKSRVR started task was started. the application makes its first SSL API request after
SSL component trace has been started.

User Response: None
User Response: None

GSK010411 SSL component trace ended.
Explanation: The SSL component trace has ended.

User Response: None

GSKO01042E Incorrect OPTIONS syntax

Explanation: The OPTIONS parameter syntax on the
IPCS CTRACE command is not correct for an SSL
component trace. SSL supports three options: JOB,
PID, and TID. The CTRACE OPTIONS parameter is
specified as CTRACE COMP(GSKSRVR)
OPTIONS((JOB(name),PID(hexid), TID(hexid))).

User Response: Specify a valid OPTIONS parameter.

GSKO01043E Incorrect trace option.

Explanation: An incorrect trace option was specified
on the IPCS CTRACE command for an SSL component
trace. SSL supports three options: JOB, PID, and TID.
The CTRACE OPTIONS parameter is specified as
CTRACE COMP(GSKSRVR)
OPTIONS((JOB(name),PID(hexid), TID(hexid))). The job
name must be 1-8 characters. The hexadecimal
identifier for PID and TID must be 1-8 hexadecimal
digits.

User Response: Specify a valid OPTIONS parameter.

GSKO01044E Duplicate trace option.

Explanation: ~ An SSL trace option is specified more
than once on the IPCS CTRACE command.

User Response: Do not specify the same trace option
more than once.

GSKO01045E Incorrect hexadecimal value.

Explanation: The value for the PID and TID trace
options for the IPCS CTRACE command must be a
hexadecimal value consisting of 1-8 hexadecimal digits.

User Response: Specify a valid hexadecimal value.

GSKO010461 Trace filter options: option list

Explanation: The IPCS CTRACE command specifies
one or more trace entry filter options.

User Response: None

GSK010471 SSL component trace started for
Jjobname.

Explanation: The SSL component trace has started
for the indicated job. This message is displayed for
each job specified on the TRACE CT command when

Chapter 13. Messages and Codes

315

Utility Messages (GSKOOnnn)

This section describes utility messages.

GSKO0001E Unable to open trace file name: GSK00007R Enter new password:

error-message . L
g Explanation: The System SSL runtime is needs a new

Explanation: The gsktrace command is unable to database password.

open the trace file.
P User Response: Enter the requested password.

User Response: Verify that the trace file exists and
can be accessed by the user issuing the gsktrace
command. Contact your service representative if the
error persists.

GSKO00002E Unable to read trace file name:
error-message

Explanation: The gsktrace command is unable to read
the trace file.

User Response: Verify that there are no filesystem
errors and that the trace file has not been modified.
Contact your service representative if the error persists.

GSKO00003E Trace record length size exceeds the
maximum length.

Explanation: A record in the trace file is longer than
the maximum length for a trace record. This probably
means the trace file has been modified.

User Response: Verify that the trace file has not been
modified and was created by a compatible level of the
System SSL runtime.

GSK00004R Enter password:

Explanation: The System SSL runtime is needs a
database or certificate password.

User Response: Enter the requested password.

GSKO00005R Re-enter password:

Explanation: ~ The System SSL runtime is verifying the
password.

User Response: Enter the same password you
entered for the first password prompt.

GSKOO0006E File name is not a valid SSL trace file.

Explanation: The gsktrace command is unable to
process the file because it is not in the proper format.
This error can occur if the trace file was created by an
earlier level of the System SSL runtime.

User Response: Process the trace file using the
gsktrace command that is at the same level as the
System SSL runtime which created the trace file.

316 system SSL Programming V1R4.0

Appendix A. Environment Variables

The following tables contain all the environment variables used by System SSL.

Table 4. SSL-Specific Environment Variables

Environment Variables

U

sage Y

alid Values

GSK_CRL_CACHE_TIMEOUT

Specifies the number of hours that a cached
CRL will remain valid.

The valid timeout values are
0 through 720 and defaults
to 24. A value of 0 will
disable the CRL cache.

GSK_HW_CRYPTO

Specifies whether the hardware
cryptographic support will be used. Note that
ICSF (Integrated Cryptographic Service
Facility) must be configured and running in
order for System SSL to use the hardware
cryptographic support.

Selected hardware cryptographic functions
can be disabled by setting the appropriate
bits to zero in the GSK_HW_CRYPTO value.
The corresponding software algorithms will
be used when a hardware function is
disabled. The following bit assignments are
defined:

1 = Not used
2 = 56-bit DES encryption/decryption

4 = 168-bit Triple DES
encryption/decryption

8 = Public key encryption/decryption

A value of '0’ will disable
the use of the hardware
support while a value of
'65535’ will enable the use
of the hardware support.
The hardware support will
be used if this environment
variable is not defined.

GSK_KEY_LABEL

Specifies the label of the key used to
authenticate the application. The default key
will be used if a key label is not specified.

GSK_KEYRING_FILE

Specifies the name of the key database HFS
file or the SAF key ring. A key database is
used if the GSK_KEYRING_PW or
GSK_KEYRING_STASH environment
variable is also specified. Otherwise a SAF
key ring is used.

The user must have READ access to the
IRR.DIGTCERT.LISTRING resource in the
FACILITY class when using a SAF key ring
owned by the user. The user must have
UPDATE access to the
IRR.DIGTCERT.LISTRING resource in the
FACILITY class when using a SAF key ring
owned by another user.

Note that certificate private keys are not
available when using a SAF key ring owned
by another user.

The SAF key ring name is
specified as
"userid/keyring”. The
current userid is used if the
userid is omitted.

GSK_KEYRING_PW

Specifies the password for the key database.

NULL or value consisting of
up to 128 characters.

© Copyright IBM Corp. 1999, 2002

317

Environment Variables

Table 4. SSL-Specific Environment Variables (continued)

Environment Variables

U

sage \Y

alid Values

GSK_KEYRING_STASH

Specifies the name of the key database
password stash file.

The stash file name always
has an extension of ".sth”
and the supplied name will
be changed if it does not
have the correct extension.
The GSK_KEYRING_PW
environment variable will be
used instead of the
GSK_KEYRING_STASH
environment variable if it is
also specified.

GSK_LDAP_SERVER

Specifies one or more blank-separated LDAP
server host names. The LDAP server is used
to obtain CA certificates when validating a
certificate and the local database does not
contain the required certificate. The local
database must contain the required
certificates if no LDAP server is specified.
Even when an LDAP server is used, root CA
certificates must be found in the local
database since the LDAP server is not a
trusted data source. The LDAP server is also
used to obtain certificate revocation lists.

Each host name can
contain an optional port
number separated from the
host name by a colon.

GSK_LDAP_PASSWORD

Specifies the password to use when
connecting to the LDAP server.

GSK_LDAP_PORT

Specifies the LDAP server port. Port 389 will
be used no LDAP server port is specified.

Port must be between 1
and 65535.

GSK_LDAP_USER

Specifies the distinguished name to use
when connecting to the LDAP server.

GSK_PROTOCOL_SSLV2

Specifies whether the SSL V2 protocol is
supported. The SSL V2 protocol should be
disabled whenever possible since the SSL
V3 protocol provides significant security
enhancements.

A value of "0", "OFF" or
"DISABLED" will disable the
SSL V2 protocol while a
value of "1”, "ON" or
"ENABLED” will enable the
SSL V2 protocol.

GSK_PROTOCOL_SSLV3

Specifies whether the SSL V3 protocol is
supported.

A value of "0", "OFF" or
"DISABLED” will disable the
SSL V3 protocol while a
value of "1”, "ON" or
"ENABLED” will enable the
SSL V3 protocol.

GSK_PROTOCOL_TLSV1

Specifies whether the TLS V1 protocol is
supported.

A value of "0”, "OFF" or
"DISABLED” will disable the
TLS V1 protocol while a
value of "1”, "ON" or
"ENABLED” will enable the
TLS V1 protocol.

GSK_STDERR_FILE

Specifies the fully-qualified name of the file
to receive standard error messages
generated using SSL message services.
Messages will be written to stderr if this
environment variable is not defined.

318 system SSL Programming V1R4.0

Table 4. SSL-Specific Environment Variables (continued)

Environment Variables

Environment Variables

U

sage \

alid Values

GSK_STDOUT_FILE

Specifies the fully-qualified name of the file
to receive standard output messages
generated using SSL message services.
Messages will be written to stdout if this
environment variable is not defined.

GSK_SYSPLEX_SIDCACHE

Specifies whether sysplex session caching is
supported for this application.

A value of "0”, "OFF" or
"DISABLED" will disable
sysplex session caching
while a value of "1”, "ON”"
or "ENABLED” will enable
sysplex session caching.

GSK_TRACE

Specifies a bit mask enabling System SSL
trace options. No trace option is enabled if
the bit mask is 0 and all trace options are
enabled if the bit mask is Oxffff. The bit mask
can be specified as a decimal (nnn), octal
(Onnnn) or hexadecimal (Oxhh) value.

The following trace options
are available:

0x01 = Trace function
entry

0x02 = Trace function
exit

0x04 = Trace errors
0x08 = Include
informational messages
0x10 = Include EBCDIC
data dumps

0x20 = Include ASCII
data dumps

GSK_TRACE_FILE

Specifies the name of the trace file and
defaults to /tmp/gskssl.%.trc. The gsktrace
command is used to format the trace file.
The trace file is not used if the GSK_TRACE
environment variable is not defined or is set
to 0.

The current process identifier is included as
part of the trace file name when the name
contains a percent sign (%). For example, if
GSK_TRACE_FILE is set to
/tmp/gskssl.%.trc and the current process
identifier is 247, then the trace file name will
be /tmp/gskssl.247 .trc.

Must be set to the name of
an HFS file in a directory for
which the executing
application has write
permission.

Appendix A. Environment Variables

319

Environment Variables

Table 4. SSL-Specific Environment Variables (continued)

Environment Variables

U

sage

Y

alid Values

GSK_V2_CIPHER_SPECS

Specifies the SSL V2 cipher specifications in
order of preference as a string consisting of

1 or more 1-character values. The following

cipher specifications are supported:

1 = 128-bit RC4 encryption with MD5
message authentication (128-bit secret
key)

2 = 128-bit RC4 export encryption with
MDS5 message authentication (40-bit
secret key)

3 = 128-bhit RC2 encryption with MD5
message authentication (128-bit secret
key)

4 = 128-bit RC2 export encryption with
MD5 message authentication (40-hbit
secret key)

6 = 56-hit DES encryption with MD5
message authentication (56-bit secret
key)

7 = 168-bit Triple DES encryption with
MD5 message authentication (168-bit
secret key)

The default is "713642" if
security level 3 is installed,
"642" otherwise.

GSK_V2_SESSION_TIMEOUT

Specifies the session timeout value in
seconds for the SSL V2 protocol.

The valid timeout values are
0 through 100, default value
is 100.

GSK_V2_SIDCACHE_SIZE

Specifies the number of session identifiers
that can be contained in the SSL V2 cache.

The valid cache sizes are 0
through 32000 and defaults
to 256. The SSL V2 cache
will be disabled if 0 is

specified.

320 System SSL Programming V1R4.0

Table 4. SSL-Specific Environment Variables (continued)

Environment Variables

Environment Variables

U

sage \

alid Values

GSK_V3_CIPHER_SPECS

Specifies the SSL V3 cipher specifications in
order of preference as a string consisting of
1 or more 2-character values. The SSL V3
cipher specifications are used for the SSL V3
and TLS V1 protocols. The following cipher
specifications are supported:
00 = No encryption or message
authentication and RSA key exchange
01 = No encryption with MD5 message
authentication and RSA key exchange
02 = No encryption with SHA-1 message
authentication and RSA key exchange
03 = 40-bit RC4 encryption with MD5
message authentication and RSA key
exchange
04 = 128-bit RC4 encryption with MD5
message authentication and RSA key
exchange
05 = 128-bit RC4 encryption with SHA-1
message authentication and RSA key
exchange
06 = 40-bit RC2 encryption with MD5
message authentication and RSA key
exchange
09 = 56-bit DES encryption with SHA-1
message authentication and RSA key
exchange
0A = 168-bit Triple DES encryption with
SHA-1 message authentication and RSA
key exchange
2F = 128-bit AES encryption with SHA-1
message authentication and RSA key
exchange
35 = 256-bit AES encryption with SHA-1
message authentication and RSA key
exchange

The default is
"0504352F0A090306020100
if security level 3 is
installed, "090306020100"
otherwise.

GSK_V3_SESSION_TIMEOUT

Specifies the session timeout value in
seconds for the SSL V3 and TLS V1
protocols.

The valid timeout values are
0 through 86400 and
defaults to 86400. The
timeout will be disabled if 0
is specified.

GSK_V3_SIDCACHE_SIZE

Specifies the number of session identifiers
that can be contained in the SSL V3 cache.
The SSL V3 session cache is used for the
SSL V3 and TLS V1 protocols.

The valid cache sizes are 0
through 64000 and defaults
to 512. The SSL V3 cache
will be disabled if 0 is
specified.

GSKV2CACHESIZE

Used to control the size limit for a V2
session cache. This variable is for use only
with the deprecated API set.

The valid cache sizes are 0
through 32000 and defaults
to 256.

Appendix A. Environment Variables

321

Environment Variables

Table 4. SSL-Specific Environment Variables (continued)

I

| |Environment Variables Usage Valid Values

| |GSKV3CACHESIZE Used to control the size limit for a V3 The valid cache sizes are 0
| session cache. This variable is for use only | through 64000 and defaults
| with the deprecated API set. to 512 entries.

|

[Table 5 on page 323|contains system environment variables used by SSL. For more information, see the
section on shell variables in the [z/0S: UNIX System Services Command Reference,

322 System SSL Programming V1R4.0

Table 5. System Environment Variables used by SSL

Environment Variables

System Environment Variables

U

sage Valid Values

LIBPATH

Used to specify the directory to search for a
DLL (Dynamic Link Library) filename. If it is
not set, the working directory is searched.

NLSPATH

Specifies where the message catalogs are to
be found.

PATH

Contains a list of directories that the system
searches to find executable commands.
Directories in this list are separated with
colons. Searches each directory in the order
specified in the list until it finds a matching
executable. If you want the shell to search
the working directory, put a null string in the
list of directories (for example, to tell the shell
to search the working directory first, start the
list with a colon or semicolon).

STEPLIB

Identifies a STEPLIB variable to be used in
building a process image for running an
executable file. A STEPLIB is a set of private
libraries used to store a new or test version
of an application program, such as a new
version of a runtime library.

STEPLIB can be set to the
values CURRENT or
NONE or to a list of MVS
data set names. The
default is CURRENT, which
passes on the TASKLIB,
STEPLIB, or JOBLIB
allocations that are part of
the invoker’s MVS program
search order environment
to the process image
created for an executable
file. The value NONE
indicates you do not want
a STEPLIB environment for
executable files. You can
specify up to 255 MVS
data set names, separated
by colons, as a list of data
sets used to build a
STEPLIB variable.

Appendix A. Environment Variables

323

Environment Variables

324 system SSL Programming V1R4.0

Appendix B. Sample C++ SSL Files

A sample set of files is shipped to provide an example of what is needed to build a C++ System SSL
application. These files build one DLL (SECURES) and two programs: client and server. These sample
files are located in /usr/1pp/gskss1/examples:

* Makefile

» client.cpp

* server.cpp

* common.hpp

* common.cpp

* secures.h

e secures.cpp

 utils.hpp

 utils.cpp

» display_certificate.c

server (source file: server.cpp) is a multithreaded program that opens a socket on IP address 127.0.0.1,
port 4321 and listens for client requests. server can run in either secure (using SSL) mode or nonsecure
(using normal socket reads and writes) mode. By default, server runs with one socket listen thread and 20
work threads. The socket listen thread listens for connections from clients and puts each request onto the
work list. The work threads check the work list for work and then perform the work. The number of work
threads can be specified using the -numthreads parameter when starting server .

client (source file: client.cpp) is a single threaded program that connects to the server program and
exchanges one or more data packets. client can also run in secure or nonsecure mode, but its mode must
match the mode of the server to which it is connecting. The number of connections, the number of
read/write packets per connection, the number of bytes in each write packet, and the number of bytes in
each read packet can be specified. Multiple clients can be run simultaneously to the same server.

The files included in the examples are:

Makefile
This file builds the example DLL and programs.

client.cpp
This file contains the routines that implement the client function.

server.cpp
This file contains the routines that implement the server function.

common.hpp
This contains the prototypes and defines for the routines in common.cpp.

common.cpp
This file contains a set of routines called by client and server to set up, accept, open, and close
connections, and to read and write data. All data that is read or written in the form of packets that
contain a header containing a command, length, and cookie. This implements a higher level
communication protocol used between the client and server programs. For example, this higher
level protocol allows the client to send a "STOP” request to the server, which stops the server
program.

secures.h
This file contains prototypes and defines for the routines in secures.cpp.

© Copyright IBM Corp. 1999, 2002 325

Sample C++ SSL Files

secures.cpp
This file implements a set of APIs that are similar to the normal sockets APIs, except that the
routines work in either secure (SSL) or nonsecure mode. These routines are called by code in
client.cpp, server.cpp, and common.cpp.

utils.hpp
This file contains the prototype for the routine in utils.cpp, some structure definitions, and several
defined constants.

utils.cpp
This file contains routines that server and client programs use to check command line options.

display_certificate.c
This file is a sample program to decode and display an X.509 certificate.

326 System SSL Programming V1R4.0

Appendix C. Sample Java SSL Files

A set of sample files is shipped, which provide an example of what is needed to build a z/OS System SSL
Java application. This example builds two programs, JavaClient and JavaServer . These sample files are
located in /usr/1pp/gskss1/examples/java.

JavacClient (source file: JavaClient.java) is a single threaded client that connects to the server program and
exchanges a few packets of information. The client can run in either secure or non-secure mode, but its
mode must match the mode of the server to which it is connecting. The number of connections, number of
reads and writes per connection, and the number of bytes per read/write can all be specified.

JavaServer (source file: JavaServer.java) is a multi-threaded program that opens a socket and listens for
client requests. The server, similar to the client, can run in secure and non-secure modes. The socket
listen thread listens for connections from clients and forwards the connection to a worker thread. The
number of threads is equal to the number of connections that are received from any number of clients.

The files included in the examples are:

Makefile
This file builds the example DLL programs.

JavaServer.java
This file contains the routines that implement the server functionality.

JavaClient.java
This file contains the routines that implement the client functionality.

© Copyright IBM Corp. 1999, 2002 327

Sample Java SSL Files

328 System SSL Programming V1R4.0

Appendix D. Accessibility

Accessibility features help a user who has a physical disability, such as restricted mobility or limited vision,
to use software products successfully. The major accessibility features in z/OS enable users to:

» Use assistive technologies such as screen-readers and screen magnifier software
» Operate specific or equivalent features using only the keyboard
» Customize display attributes such as color, contrast, and font size.

Using assistive technologies

Assistive technology products, such as screen-readers, function with the user interfaces found in z/OS.
Consult the assistive technology documentation for specific information when using it to access z/OS
interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/0OS TSO/E Primer, SA22-7787,
z/0OS TSO/E User’s Guide, SA22-7794, and z/OS ISPF User’s Guide Volume I, SC34-4822, for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use TSO/E and ISPF,
including the use of keyboard shortcuts or function keys (PF keys). Each guide includes the default
settings for the PF keys and explains how to modify their functions.

© Copyright IBM Corp. 1999, 2002 329

330 System SSL Programming V1R4.0

Appendix E. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1999, 2002 331

IBM Corporation

Mail Station P300

2455 South Road
Poughkeepsie, NY 12601-5400
US.A

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any
equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

This product contains code licensed from RSA Security, Inc.

RSA

SECURED

[

Programming Interface Information

|z/OS: System Secure Sockets Layer Programming, SC24—5901| primarily documents intended
Programming Interfaces that allow the customer to write programs to obtain services of System SSL.

|z/OS.' System Secure Sockets Layer Programming, SC24—5901| also documents information that is NOT
intended to be used as Programming Interfaces of System SSL. This information is identified where it
occurs, by an introductory statement to a chapter or section.

332 System SSL Programming V1R4.0

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United
States, or other countries, or both:

BookManager IBM 0s/2
0S/390 RACF WorldRegistry

Domino is a trademark of Lotus Development Corporation in the United States, or other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft
Corporation.

Other company, product, and service names may be trademarks or service marks of others.

Appendix E. Notices 333

334 system SSL Programming V1R4.0

Bibliography

This bibliography provides a list of some of the
publications that are useful when using the z/0OS
System SSL support. The complete title, order
number, and a brief description is given for each
publication.

z/OS Security Server Publications

* [z/0S: SecureWay Security Server LDAP Cliend
Programming, SC24-5924

This book describes the Lightweight Directory
Access Protocol (LDAP) client APIs that you
can use to write distributed applications on
z/OS DCE and gives you information on how to
develop LDAP applications.

« [2/0S: Security Server LDAP Servel|
Administration and Use, SC24-5923]

This book describes how to install, configure,
and run the stand-alone LDAP daemon
(SLAPD). It is intended for administrators who
will maintain the server and database.

« [z/0S: Security Server DCE Overview,)

GC24-5921]

This book describes the DCE security server
and provides a road map for DCE security
server information in the z/OS DCE library.

« [z/0S: Security Server RACF Security|
Administrator’s Guide, SA22-7683]

This book explains RACF concepts and
describes how to plan for and implement RACF.
« |2/0S: Security Server RACF Command
Language Reference, SA22-7687|

This book describes the functions and syntax of
all RACF commands.

z/0OS: Open Cryptographic Services Facility|

Service Provider Module Developer’s Guide an
Reference, SC24-590

This book describes the features common to all
OCSF service provider modules. It defines the
interfaces for certificate, trust and data library
service providers. Service provider developers
must conform to these interfaces in order for
the individual service provider modules to be
accessible through the OCSF Framework.

IBM C/C++ Language Publication
« |z/0S: C/C++ Programming Guide, SC09-4765|

This book describes how to develop
applications in the C/C++ language in OS/390.

z/OS Cryptographic Services
Publications

* |z/0S: Open Cryptographic Services Faci/it))[
Application Programming, SC24-5899)

This book describes an overview of the Open
Cryptographic Services Facility (OCSF). It
explains how to integrate OCSF into
applications and contains a sample OCSF
application. It also defines the interfaces that
application developers employ to access
security services by the OCSF Framework and
service provider modules. Specific information
about the individual service providers is
described.

© Copyright IBM Corp. 1999, 2002

Other IBM z/OS Publications
+ |z/OS: Information Roadmap, SA22-7500)|

This book lists the complete titles and order
numbers of the books for all products that are
part of z/OS.

z/0S: Routing and Descriptor Codes)

SA22-7624|

This book contains routing and descriptor codes
for messages.

* |z/OS: Program Directory, GI10-0669|

The Program Directory contains information
about installing the Cryptographic Services
base element using SMP/E.

z/0S: MVS Programming: Assembler Serviced
Reference, Volume 1, SA22-7606| and |[z/0S
MVS Programming: Assembler Serviceq
Reference, Volume 2, SA22-7607|

These books describe Assembler services
information.

335

336 System SSL Programming V1R4.0

Index

A

accepting a secure socket connection 233

accessibility 329

accessing DLLs 250

APIs
gsk_attribute_get_buffer() 29
gsk_attribute_get_cert_info() 31
gsk_attribute_get_data() 34
gsk_attribute_get_enum() 36
gsk_attribute_get_numeric_value() 38
gsk_attribute_set_buffer() 40
gsk_attribute_set_callback() 43
gsk_attribute_set_enum() 47
gsk_attribute_set_numeric_value() 49
gsk_environment_close() 51
gsk_environment_init() 52
gsk_environment_open() 54
gsk_free_cert_data() 58
gsk_free_memory() 226
gsk_get_cert_by label() 59
gsk_get_cipher_info 227
gsk_get_dn_by label() 228
gsk_get_update() 63
gsk_initialize() 229
gsk_list_free() 64
gsk_secure_soc_close() 232
gsk_secure_soc_init() 233
gsk_secure_soc_read() 238
gsk_secure_soc_reset() 240
gsk_secure_soc_write() 241
gsk_secure_socket_close() 65
gsk_secure_socket_init() 66
gsk_secure_socket_misc() 69
gsk_secure_socket_open() 71
gsk_secure_socket_read() 72
gsk_secure_socket_write() 76
gsk_uninitialize() 246
gsk_user_set() 247
GSKSRBRD() 244
GSKSRBWT() 245, 251
using in an System SSL program 5

B

bibliography 335

building a Java application 25

building a z/OS Java application 26
building a z/0OS System SSL application 11
building an System SSL application 16

C

callback routine for IO 19
certificate
removing 275
self-signed, creating 264
certificate management 249

© Copyright IBM Corp. 1999, 2002

cipher information

querying 227
client, authentication certificate selection 18
client, System SSL program 14
compiling an System SSL application 16
creating

SSL environment 11

D

diagnostic information 287
disability 329
distinguished name
returning pointer for 228
DLLS, accessing 250

E

elements of an System SSL program 5
ending secure socket connection 232
environment variables 317
establishing System SSL environment 229
examples

parts shipped in HFS 2

F

FMID
Cryptographic Services Security Level 3 1
Cryptographic Services System SSL 1
Japanese 1

G

gsk_attribute_get_buffer() 29
gsk_attribute_get_cert_info() 31
gsk_attribute_get_data() 34
gsk_attribute_get_enum() 36
gsk_attribute_get_numeric_value() 38
gsk_attribute_set_buffer() 40
gsk_attribute_set_callback() 43
gsk_attribute_set_enum() 47
gsk_attribute_set_numeric_value() 49
gsk_environment_close() 51
gsk_environment_init() 52
gsk_environment_open() 54
gsk_free_cert_data() 58
gsk_free_memory() APl 226
gsk_get_cert_by label() 59
gsk_get_cipher_info() APl 227
gsk_get_dn_by label() APl 228
gsk_get_update() 63
gsk_initialize()API 229
gsk_list_free() 64
gsk_secure_soc_close API 232
gsk_secure_soc_init() APl 233
gsk_secure_soc_read() APl 238

337

gsk_secure_soc_reset() APl 240
gsk_secure_soc_write()API 241
gsk_secure_socket_close() 65
gsk_secure_socket_init() 66
gsk_secure_socket_misc() 69
gsk_secure_socket_open() 71
gsk_secure_socket_read() 72
gsk_secure_socket_write() 76
gsk_soc_init_data structure 233
gsk_uninitialize() APl 246
gsk_user_set() APl 247
gskkyman utility
accessing DLLs 250
being your own certificate authority 279
certificate, self signed
creating 264
certificates
removing 275
HFS location 2
private key
removing 275
setting LANG environment variable 250
setting NLSPATH environment variable 250
setting PATH environment variable 250
setting STEPLIB environment variable 250
setting up the environment 250
using 249
GSKSRBRD() 244
GSKSRBWT() 245, 251
gskssl.h header file
gsk_soc_init_data structure 233
HFS location 2

H

handshake process 233
header file, gskssl.h

See gskssl.h header file 2
HFS

contents 2

parts shipped 2

initializing data areas for System SSL 233
initiating a secure socket connection 233
installation information 2
installation PDS

memberws of 3

name of 1

K

key database file
reading 229
uninitialize 246
key management 249
key ring, definition of 249
keyboard 329

338 System SSL Programming V1R4.0

L

LANG environment variable, setting 250

M

managing PKI private keys and certificates 249
migrating to the new SSL interfaces 23

N

NLSPATH environment variable, setting 250

O

obtaining System SSL trace information 287
organization of book Xxi

P

PATH environment variable, setting 250
PDS
identified in STEPLIB 16
PDS, installation
members of 3
name of 1
private keys
removing 275
programming interfaces
using in an System SSL program 5

Q

querying cipher information 227

R

RACDCERT command 249
RACF key ring
reading 229
uninitialize 246
receiving data on secure socket connection 238
refreshing security parameters 240
removing
certificate/private key from key database 275
removing settings for the System SSL
environment 246
returning distinguished name 228
running a Java application 25
running a z/OS Java application 26
running an System SSL Application 16

S

sample files
list of 325

sample Java files
list of 327

secure socket connection
accepting 233

secure socket connection (continued)

ending 232

initiating 233

receiving data 238

sending data 241
Secure Sockets Layer (SSL)

See SSL (Secure Sockets Layer) 1
sending data on secure socket connection 241
server, System SSL program 12
session ID (SID) 20
setting

gskkyman environment 250

LANG environment variable 250

NLSPATH environment variable 250

PATH environment variable 250

STEPLIB environment variable 250
shortcut keys 329
softcopy publications xiii
software dependencies 1
SSL (Secure Sockets Layer)

description 1
SSL environment

creating 11
SSL System

callback routine for IO 19
STEPLIB environment variable, setting 250
structure

gsk_soc_init_data 233
structure of an System SSL program 5
System SSL

APIs 27

client authentication certificate selection 18

elements of a program 5

environment variables 317

establishing environment 229

how it works 5

migrating 23

obtaining trace information 287

parts shipped in HFS 2

parts shipped in PDS 3

refreshing security parameters 240

removing settings for the environment 246

session ID (SID) cache replacement 19

using hardware cryptographic features 9

writing a Java source program 25
System SSL application

building 16

building a z/OS Java application 26

building and running a Java application 25

overvew 6

running a z/OS Java application 26

writing a client program 14

writing a server program 12

writing a source program 11

writing and building 11

U

using hardware cryptographic features with System

SSL 9

W

writing
Java source program 25
system SSL client program 14
system SSL server program 12
system SSL source program 11
z/OS System SSL application 11

Index

339

340 system SSL Programming V1R4.0

Program Number: 5694-A01

Printed in U.S.A.

5C24-5901-02

O FY T A Sutwuwerdor] QS woysAg S0/

‘uoLjewdojul autds

	Contents
	Figures
	Preface
	Who Should Use This Book
	How This Book is Organized
	Conventions Used in This Book
	Where to Find More Information
	Softcopy Publications
	Internet Sources
	Accessing Licensed Books on the Web
	Using LookAt to Look Up Message Explanations
	How to Send Your Comments

	Summary of Changes
	New Information for z/OS Release 4
	Changed Information for z/OS Release 4
	Deleted Information for z/OS Release 4
	z/OS Release 2 Summary of Changes
	New Information for z/OS Release 2
	Deleted Information for z/OS Release 2

	Chapter 1. Introduction
	Software Dependencies
	Installation Information
	System SSL Parts Shipped in HFS
	System SSL Parts Shipped in PDS

	Chapter 2. How System SSL Works for Secure Socket Communication
	Using System SSL on z/OS
	System SSL Application Overview

	Chapter 3. Using Hardware Cryptographic Features with System SSL
	Chapter 4. Writing and Building a z/OS System SSL Application
	Writing a System SSL Source Program
	Create an SSL Environment
	System SSL Server Program
	System SSL Client Program

	Building a z/OS System SSL Application
	Running a z/OS System SSL Application
	Additional Topics
	Non-Blocking I/O
	Client Authentication Certificate Selection
	I/O Routine Replacement
	Use of User Data
	Session ID (SID) Cache Replacement

	Chapter 5. Migrating to the New SSL Interfaces
	Chapter 6. Building and Running a Java System SSL Application
	Writing a Java Source Program
	Building a z/OS Java System SSL Application
	Running a z/OS Java System SSL Application

	Chapter 7. API Reference
	gsk_attribute_get_buffer()
	gsk_attribute_get_cert_info()
	gsk_attribute_get_data()
	gsk_attribute_get_enum()
	gsk_attribute_get_numeric_value()
	gsk_attribute_set_buffer()
	gsk_attribute_set_callback()
	gsk_attribute_set_enum()
	gsk_attribute_set_numeric_value()
	gsk_environment_close()
	gsk_environment_init()
	gsk_environment_open()
	gsk_free_cert_data()
	gsk_get_cert_by_label()
	gsk_get_cipher_suites()
	gsk_get_update()
	gsk_list_free()
	gsk_secure_socket_close()
	gsk_secure_socket_init()
	gsk_secure_socket_misc()
	gsk_secure_socket_open()
	gsk_secure_socket_read()
	gsk_secure_socket_shutdown()
	gsk_secure_socket_write()
	gsk_strerror()

	Chapter 8. Certificate Management Services (CMS) API Reference
	gsk_add_record()
	gsk_change_database_password()
	gsk_change_database_record_length()
	gsk_close_database()
	gsk_close_directory()
	gsk_copy_buffer()
	gsk_copy_certificate()
	gsk_copy_certificate_extension()
	gsk_copy_certification_request()
	gsk_copy_content_info()
	gsk_copy_crl()
	gsk_copy_name()
	gsk_copy_private_key_info()
	gsk_copy_public_key_info()
	gsk_copy_record()
	gsk_create_certification_request()
	gsk_create_database()
	gsk_create_self_signed_certificate()
	gsk_create_signed_certificate()
	gsk_create_signed_crl()
	gsk_decode_base64()
	gsk_decode_certificate()
	gsk_decode_certificate_extension()
	gsk_decode_certification_request()
	gsk_decode_crl()
	gsk_decode_name()
	gsk_delete_record()
	gsk_dn_to_name()
	gsk_encode_base64()
	gsk_encode_certificate_extension()
	gsk_encode_name()
	gsk_encode_signature()
	gsk_export_certificate()
	gsk_export_certification_request()
	gsk_export_key()
	gsk_free_buffer()
	gsk_free_certificate()
	gsk_free_certificates()
	gsk_free_certificate_extension()
	gsk_free_certification_request()
	gsk_free_content_info()
	gsk_free_crl()
	gsk_free_crls()
	gsk_free_decoded_extension()
	gsk_free_name()
	gsk_free_private_key_info()
	gsk_free_public_key_info()
	gsk_free_record()
	gsk_free_records()
	gsk_free_string()
	gsk_free_strings()
	gsk_generate_random_bytes()
	gsk_get_cms_vector()
	gsk_get_default_key()
	gsk_get_default_label()
	gsk_get_directory_certificates()
	gsk_get_directory_crls()
	gsk_get_record_by_id()
	gsk_get_record_by_index()
	gsk_get_record_by_label()
	gsk_get_record_by_subject()
	gsk_get_record_labels()
	gsk_get_update_code()
	gsk_import_certificate()
	gsk_import_key()
	gsk_make_content_msg()
	gsk_make_data_content()
	gsk_make_data_msg()
	gsk_make_encrypted_data_content()
	gsk_make_encrypted_data_msg()
	gsk_make_enveloped_data_content()
	gsk_make_enveloped_data_msg()
	gsk_make_signed_data_content()
	gsk_make_signed_data_msg()
	gsk_make_wrapped_content()
	gsk_mktime()
	gsk_name_compare()
	gsk_name_to_dn()
	gsk_open_database()
	gsk_open_database_using_stash_file()
	gsk_open_directory()
	gsk_open_keyring()
	gsk_query_crypto_level()
	gsk_query_database_label()
	gsk_query_database_record_length()
	gsk_rdtime()
	gsk_read_content_msg()
	gsk_read_data_content()
	gsk_read_data_msg()
	gsk_read_encrypted_data_content()
	gsk_read_encrypted_data_msg()
	gsk_read_enveloped_data_content()
	gsk_read_enveloped_data_msg()
	gsk_read_signed_data_content()
	gsk_read_signed_data_msg()
	gsk_read_wrapped_content()
	gsk_receive_certificate()
	gsk_replace_record()
	gsk_set_default_key()
	gsk_sign_certificate()
	gsk_sign_crl()
	gsk_sign_data()
	gsk_validate_certificate()
	gsk_verify_certificate_signature()
	gsk_verify_crl_signature()
	gsk_verify_data_signature()

	Chapter 9. Deprecated Secure Sockets Layer APIs
	gsk_free_memory()
	gsk_get_cipher_info()
	gsk_get_dn_by_label()
	gsk_initialize()
	gsk_secure_soc_close
	gsk_secure_soc_init()
	gsk_secure_soc_read()
	gsk_secure_soc_reset()
	gsk_secure_soc_write()
	gsk_srb_initialize()
	GSKSRBRD
	GSKSRBWT
	gsk_uninitialize()
	gsk_user_set()

	Chapter 10. Certificate/Key Management
	Introduction
	The gskkyman Command
	Setting Up the Environment to Run gskkyman
	Key Database Files
	How gskkyman Works
	gskkyman

	Interactive Mode
	Database Menu
	Key Management Menu

	Example Tasks Performed by the gskkyman Command in Interactive Mode
	Starting gskkyman
	Creating, Opening and Deleting a Key Database File
	Changing a Key Database Password
	Storing an Encrypted Key Database Password
	Creating a Self-Signed Server or Client Certificate
	Creating a Certificate Request and Processing the Signed Request
	Managing Keys and Certificates
	Importing a Certificate from a File as a Trusted CA Certificate
	Importing a Certificate from a File with its Private Key
	Using gskkyman to be Your Own Certificate Authority (CA)
	Migrating Key Database Files to RACF Key Rings

	Example Tasks Performed by the gskkyman Command in Command Mode

	Chapter 11. SSL Started Task
	GSKSRVR Environment Variables
	Configuring the SSL Started Task
	Server Operator Commands
	Sysplex Session Cache Support
	Component Trace Support

	Chapter 12. Obtaining Diagnostic Information
	Obtaining System SSL Trace Information
	Capturing Trace Data Through Environment Variables

	Component Trace Support
	Capturing Component Trace Data
	Displaying the Trace Data

	Chapter 13. Messages and Codes
	SSL Function Return Codes
	Deprecated SSL Function Return Codes
	ASN.1 Status Codes (014CExxx)
	CMS Status Codes (03353xxx)
	SSL Started Task Messages (GSK01nnn)
	Utility Messages (GSK00nnn)

	Appendix A. Environment Variables
	Appendix B. Sample C++ SSL Files
	Appendix C. Sample Java SSL Files
	Appendix D. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Appendix E. Notices
	Programming Interface Information
	Trademarks

	Bibliography
	z/OS Security Server Publications
	z/OS Cryptographic Services Publications
	IBM C/C++ Language Publication
	Other IBM z/OS Publications

	Index

