
z/OS

Language Environment
Customization

SA22-7564-03

IBM

z/OS

Language Environment
Customization

SA22-7564-03

IBM

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 227.

Fourth Edition, September 2002

This is a major revision of SA22-7564-02.

This edition applies to Language Environment® in Version 1 Release 4 of z/OS™ (5694-A01), Version 1 Release 4 of
z/OS.e™ (5655–G52), and to all subsequent releases and modifications until otherwise indicated in new editions.

Order documents through your IBM® representative or the IBM branch office serving your locality. Documents are not
stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this document
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1991, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . vii

Tables . ix

About this document . xi
Using your documentation . xii
How to read syntax diagrams xiii

Symbols . xiii
Syntax items. xiii
Syntax examples . xiv

Where to find more information xv
Accessing z/OS licensed documents on the Internet xv
Using LookAt to look up message explanations xvi

Summary of Changes . xvii

Chapter 1. Customization Overview 1
Deciding Whether and What to Customize 1

Chapter 2. Description of Language Environment target libraries 3
History of Changes . 5

Chapter 3. Choosing your Language Environment run-time library access 7
Methods of Language Environment data set access. 7

LNKLST . 7
STEPLIB . 7
Run-time library services (RTLS) 7

Setting up run-time library services (RTLS) 8
Saving your environment. 8
Setting up RTLS in PARMLIB 9
Setting Run-Time Options . 11

Controlling Other Data Sets with RTLS 13
Performance Considerations . 13
Restrictions . 13

Chapter 4. Customizing Language Environment Run-Time Options 19
Setting Default Options with the CEEXOPT Macro 21

Changing Installation-Wide Run-Time Options Defaults (Non-CICS) 25
Changing Installation-Wide Run-Time Options Defaults (CICS) 26
Creating a Region-Specific Run-Time Options Load Module 26
Creating an Application-Specific Run-Time Options Module 27

Chapter 5. Customizing User Exits 29
An Example . 30
Changing the Assembler Language User Exit. 30

Changing the Installation-Wide Assembler Language User Exit (Non-CICS) 31
Changing the Installation-Wide Assembler Language User Exit (CICS) . . . 31
Creating an Application-Specific Assembler Language User Exit 32

Changing the High-Level Language User Exit 32
Customizing Language Environment Abnormal Termination Exits 33

Creating a Language Environment Abnormal Termination Exit. 33
CEEEXTAN Abnormal Termination Exit CSECT 33
Identifying the Abnormal Termination Exit (Non-CICS) 35

© Copyright IBM Corp. 1991, 2002 iii

Identifying the Abnormal Termination Exit (CICS) 35
Creating a Load Notification User Exit 36

Identifying the Load Notification User Exit 36
CEEBLNUE CSECT . 36
CEEBLNUE Sample . 37

Creating a Storage Tuning User Exit 38

Chapter 6. Customizing the Cataloged Procedures 39
Making the cataloged procedure library available to your jobs. 39

How to Do It . 40
Tailoring the Cataloged Procedures and CLISTs to Your Site 41

Chapter 7. Placing Language Environment Modules in Link Pack and
LIBPACK . 43

Tailoring the Fortran LIBPACKs 44
Choices to Make Now . 44
Some Examples . 45
Listing the contents of Fortran LIBPACKs 45
Deleting Routines from Fortran LIBPACKs 45
Adding Routines to Fortran LIBPACKs 46
Where to Place the Tailored Fortran LIBPACKs 48

Chapter 8. Using Language Environment under CICS 49
Add program resource definitions for CICS 49
Add destination control table (DCT) entries 50
Add Language Environment-CICS Data Sets to the CICS Startup Job Stream 53
Language Environment automatic storage tuning for CICS 54

Enclaves eligible for automatic storage tuning 54
Automatic storage tuning behavior 55
Altering the automatic storage tuning behavior 56

Chapter 9. Using Language Environment under IMS 57
Initializing Library Routine Retention 57
Terminating Library Routine Retention 57

Chapter 10. Customizing Language-Specific Features 59
Choices to Make Now . 59
Modifying the OS/VS COBOL compatability library routines 59

OS/VS COBOL Considerations 60
Modifying the COBOL Parameter List Exit 61
Modifying the COBOL Reusable Environment 62
Changing the C/C++ locale time information 63

Steps for modifying the JCL for EDCLLOCL 64

Chapter 11. Customizing for Fortran applications 65
Tailoring the Language Environment Fortran Unit Attribute Table 65
Tailoring the VS FORTRAN Compatibility Unit Attribute Table 65
Tailoring VS FORTRAN Compatibility Run-Time Options. 65
Tailoring the VS FORTRAN Compatibility Error Option Table 66

Chapter 12. Language Environment Run-Time Options 67
COBOL Compatibility . 67
Run-time options . 67

ABPERC . 68
ABTERMENC . 69
AIXBLD (COBOL Only) . 71

iv z/OS V1R4.0 Language Environment Customization

ALL31 . 72
ANYHEAP . 73
AUTOTASK | NOAUTOTASK (Fortran Only) 75
BELOWHEAP . 76
CBLOPTS (COBOL Only) . 77
CBLPSHPOP (COBOL Only) 78
CBLQDA (COBOL Only) . 79
CHECK (COBOL Only) . 80
COUNTRY . 80
DEBUG (COBOL Only) . 81
DEPTHCONDLMT . 82
ENVAR. 84
ERRCOUNT . 85
ERRUNIT (Fortran Only) . 86
FILEHIST (Fortran Only) . 87
FILETAG (C/C++ only) . 88
HEAP . 90
HEAPCHK . 92
HEAPPOOLS (C/C++ only) 94
INFOMSGFILTER . 95
INQPCOPN (Fortran Only) 97
INTERRUPT. 97
LIBRARY . 98
LIBSTACK . 99
MSGFILE . 101
MSGQ . 104
NATLANG . 105
OCSTATUS (Fortran Only) 107
PC (Fortran Only) . 108
PLITASKCOUNT (PL/I Only) 109
POSIX . 109
PROFILE . 111
PRTUNIT (Fortran Only) . 111
PUNUNIT (Fortran Only) . 112
RDRUNIT (Fortran Only) . 113
RECPAD (Fortran Only) . 113
RPTOPTS . 114
RPTSTG. 117
RTEREUS (COBOL Only) 127
RTLS . 128
SIMVRD (COBOL Only) . 129
STACK . 130
STORAGE . 133
TERMTHDACT . 136
TEST | NOTEST . 142
THREADHEAP . 145
THREADSTACK . 146
TRACE . 149
TRAP . 151
UPSI (COBOL Only) . 153
USRHDLR . 154
VCTRSAVE . 155
VERSION . 156
XUFLOW . 157

Contents v

Appendix A. Customizing Language Environment run-time options using
z/OS msys for Setup . 159

Who should use msys for Setup? 159
What is the Language Environment customization task? 159
Recommendations when using msys for Setup for Language Environment

customization . 160
Restrictions when using msys for Setup for Language Environment

customization . 160
Where to find information about msys for Setup 161

Appendix B. Using Fortran with Language Environment 163
Customizing for Fortran applications link-edited with Language Environment 163

Changing the unit attribute table default values 163
Customizing for Fortran Applications Link-Edited with VS FORTRAN. 169

Changing the Unit Attribute Table Default Values 170
Changing VS FORTRAN Run-Time Option Defaults 175
Changing the Error Option Table Defaults 180

Customizing Fortran LIBPACKs 184
Contents of the Fortran LIBPACK AFHPRNAG 185
Contents of the Fortran LIBPACK AFHPRNBG 189
Contents of the Fortran LIBPACK AFH5RENA 190
Contents of the Fortran LIBPACK AFH5RENB 192

Appendix C. Using IBM C/C++ with Language Environment 195
Planning to Customize Locale Time Information 195

Customizing the Locale Time Information 195
Time Information Options Reference 196

System Programming Facilities 197

Appendix D. Modules eligible for the link pack area 199
Language Environment base modules 199
Language Environment C/C++ component modules 200
Language Environment COBOL component modules 201
Language Environment Fortran component modules 202
Language Environment PL/I Component Modules 216

Appendix E. Modifying the JCL for Japanese National Language Support 221

Appendix F. Language Environment National Language Support Country
Codes . 223

Appendix G. Accessibility . 225
Using assistive technologies 225
Keyboard navigation of the user interface. 225

Notices . 227
Programming Interface Information 229
Trademarks. 229

Bibliography . 231
Language Products Publications 231
Related Publications . 232
Softcopy Publications . 233

Index . 235

vi z/OS V1R4.0 Language Environment Customization

Figures

1. An Example of a CSVRTLS PARMLIB Member for OS/390 Version 2 Release 4 10
2. Sample Invocation of CEEXOPT within the CEEDOPT Member 22
3. Sample Invocation of CEEXOPT within the CEECOPT Member 23
4. Default CEEEXTAN . 35
5. Updated CEEEXTAN . 35
6. Sample of CEEBLNUE Load Notification User Exit CSECT 37
7. Format of an Output Transient Data Queue . 51
8. Example of DFHDCT Macro. 53
9. Effect of DEPTHCONDLMT(3) on Condition Handling 83

10. Options Report Example Produced by Run-Time Option RPTOPTS(ON) 116
11. Storage Report Produced by Run-Time Option RPTSTG(ON) 119
12. Storage Report Produced by RPTSTG(ON) with XPLINK 123
13. IBM-Supplied Macro Instructions . 168
14. Modified IBM-Supplied Macro Instructions . 169
15. IBM-Supplied Macro Instructions . 174
16. Modified IBM-Supplied Macro Instructions . 175
17. Modified IBM-Supplied Macro Instructions . 175
18. Example of Time Zone and Daylight Savings Time Information in Module EDCLOCTZ 196

© Copyright IBM Corp. 1991, 2002 vii

viii z/OS V1R4.0 Language Environment Customization

Tables

1. How to Use z/OS Language Environment Publications xii
2. Syntax examples. xiv
3. Description of data set target libraries for Language Environment 3
4. Versions of SYSCEE Logical Library with z/OS . 9
5. RTLS Restrictions . 14
6. Worksheet: Planning to Customize Language Environment Run-Time Options 19
7. Sample jobs to change run-time options defaults 21
8. Sample Customization Jobs for the User Exits . 29
9. Sample Assembler User Exits for Language Environment 30

10. Language Environment Invocation Procedures in CEE.SCEEPROC 39
11. Deciding How to Make Cataloged Procedures Available to Your Jobs 40
12. Cataloged Procedures and CLISTs Information . 42
13. Language Environment Sample IEALPAnn or PROGxx Members in CEE.SCEESAMP 43
14. Making the trade-off: Performance time versus storage use 44
15. SMP/E Sample Jobs for Deleting Routines from Fortran LIBPACKs 46
16. SMP/E Sample Jobs for Adding Routines to Fortran LIBPACKs. 47
17. Excluding Programming Language Support under CICS 50
18. Customizing Programming Languages with Sample Customization Jobs 59
19. Using the USERMODs in the IGZWZAP Job to Modify the COBOL Compatibility Library 59
20. Condition Handling of 0Cx ABENDS . 140
21. Handling of software raised conditions . 140
22. TRAP Run-Time Option Settings . 151
23. Fortran LIBPACKs . 184
24. Routines Eligible for Inclusion in the Fortran LIBPACK AFHPRNAG. 185
25. Routines Eligible for Inclusion in the Fortran LIBPACK AFHPRNBG. 189
26. Routines Eligible for Inclusion in the Fortran LIBPACK AFH5RENA 190
27. Routines Eligible for Inclusion in the Fortran LIBPACK AFH5RENB 192
28. Language Environment Modules Eligible for Inclusion in the Link Pack Area and the Extended

Link Pack Area . 199
29. C/C++ Modules Eligible for Inclusion in the Link Pack Area and the Extended Link Pack Area 200
30. COBOL Modules Eligible for Inclusion in the Link Pack Area and the Extended Link Pack Area 201
31. Fortran Modules Eligible for Inclusion in the Link Pack Area and the Extended Link Pack Area 202
32. PL/I Modules Eligible for Inclusion in the Link Pack Area and the Extended Link Pack Area 216
33. Japanese National Language Support (NLS) JCL Modifications 221
34. Country Codes . 223

© Copyright IBM Corp. 1991, 2002 ix

||

x z/OS V1R4.0 Language Environment Customization

About this document

This document supports z/OS (5694–A01) and z/OS.e (5655–G52).

IBM z/OS Language Environment (also called Language Environment) provides
common services and language-specific routines in a single run-time environment
for C, C++, COBOL, Fortran (z/OS only; no support for z/OS UNIX System Services
or CICS®), PL/I, and assembler applications. It offers consistent and predictable
results for language applications, independent of the language in which they are
written.

Language Environment is the prerequisite run-time environment for applications
generated with the following IBM compiler products:
v z/OS C/C++
v OS/390® C/C++
v C/C++ Compiler for MVS/ESA™

v AD/Cycle® C/370™ Compiler
v VisualAge for Java, Enterprise Edition for OS/390
v Enterprise COBOL for z/OS and OS/390
v COBOL for OS/390 & VM
v COBOL for MVS & VM (formerly COBOL/370)
v Enterprise PL/I for z/OS and OS/390
v VisualAge PL/I for OS/390
v PL/I for MVS & VM (formerly PL/I MVS™ & VM)
v VS FORTRAN and FORTRAN IV (in compatibility mode)

Restrictions: The following restrictions apply to z/OS.e:

v The following compilers are not licensed for use on z/OS.e:

– COBOL

– PL/I

– FORTRAN

v The following subsystems are not licensed for use on z/OS.e:

– CICS

– IMS™

v Execution of applications written in the following languages is not functionally
supported on z/OS.e:

– COBOL (except for precompiled COBOL DB2® stored procedures and other
precompiled COBOL applications using the Language Environment
preinitialization interface

– FORTRAN

v The following are not functional and/or not licensed for use on z/OS.e:

– Language Environment Library Routine Retention (LRR)

– Language Environment compatibility preinitialization for C and PL/I

– Run-time library services (RTLS)

v Customers are not permitted to use lower levels of Language Environment on
z/OS.e.

Language Environment supports, but is not required for, an interactive debug tool
for debugging applications in your native z/OS environment. The IBM interactive
Debug Tool is available with z/OS, or with the latest releases of the C/C++, COBOL,
PL/I and VisualAge for Java compiler products.

© Copyright IBM Corp. 1991, 2002 xi

|

|

|

|

|

|

|

|

|

|
|

|
|
|

|

|

|

|

|

|
|

Language Environment supports, but is not required for, VS Fortran Version 2
compiled code (z/OS only).

Language Environment consists of the common execution library (CEL) and the
run-time libraries for C/C++, COBOL, Fortran, and PL/I.

For more information on VisualAge for Java, Enterprise Edition for OS/390, program
number 5655-JAV, see the product documentation.

Using your documentation
The publications provided with Language Environment are designed to help you:

v Manage the run-time environment for applications generated with a Language
Environment-conforming compiler.

v Write applications that use the Language Environment callable services.

v Develop interlanguage communication applications.

v Customize Language Environment.

v Debug problems in applications that run with Language Environment.

v Migrate your high-level language applications to Language Environment.

Language programming information is provided in the supported high-level
language programming manuals, which provide language definition, library function
syntax and semantics, and programming guidance information.

Each publication helps you perform different tasks, some of which are listed in
Table 1. All books are available in printed and softcopy formats. For a complete list
of publications that you may need, see “Bibliography” on page 231.

Table 1. How to Use z/OS Language Environment Publications

To ... Use ...

Evaluate Language Environment z/OS Language Environment Concepts Guide

Plan for Language Environment z/OS Language Environment Concepts Guide

z/OS Language Environment Run-Time Migration
Guide

Install Language Environment z/OS Program Directory

Customize Language Environment z/OS Language Environment Customization

Understand Language Environment
program models and concepts

z/OS Language Environment Concepts Guide

z/OS Language Environment Programming Guide

Find syntax for Language Environment
run-time options and callable services

z/OS Language Environment Programming
Reference

Develop applications that run with
Language Environment

z/OS Language Environment Programming Guide
and your language programming guide

Debug applications that run with
Language Environment, diagnose
problems with Language Environment

z/OS Language Environment Debugging Guide

Get details on run-time messages z/OS Language Environment Run-Time Messages

Develop interlanguage communication
(ILC) applications

z/OS Language Environment Writing
Interlanguage Communication Applications and
your language programming guide

xii z/OS V1R4.0 Language Environment Customization

Table 1. How to Use z/OS Language Environment Publications (continued)

To ... Use ...

Migrate applications to Language
Environment

z/OS Language Environment Run-Time Migration
Guide and the migration guide for each Language
Environment-enabled language

This book is intended for system programmers and system administrators who plan
to customize Language Environment on the z/OS platform.

To use this book, you need to be familiar with z/OS, the publications that describe
your system, and job control language (JCL).

The first usage of every term listed in the glossary is indicated by italics. You can
find the definitions for these terms in z/OS Language Environment Concepts Guide.

How to read syntax diagrams
This section describes how to read syntax diagrams. It defines syntax diagram
symbols, items that may be contained within the diagrams (keywords, variables,
delimiters, operators, fragment references, operands) and provides syntax examples
that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments) that
comprise a command statement. They are read from left to right and from top to
bottom, following the main path of the horizontal line.

Symbols
The following symbols may be displayed in syntax diagrams:

Symbol Definition

ÊÊ─── Indicates the beginning of the syntax diagram.

───Ê Indicates that the syntax diagram is continued to the next line.

Ê─── Indicates that the syntax is continued from the previous line.

───ÊÍ Indicates the end of the syntax diagram.

Syntax items
Syntax diagrams contain many different items. Syntax items include:

v Keywords - a command name or any other literal information.

v Variables - variables are italicized, appear in lowercase and represent the name
of values you can supply.

v Delimiters - delimiters indicate the start or end of keywords, variables, or
operators. For example, a left parenthesis is a delimiter.

v Operators - operators include add (+), subtract (-), multiply (*), divide (/), equal
(=), and other mathematical operations that may need to be performed.

v Fragment references - a part of a syntax diagram, separated from the diagram to
show greater detail.

v Separators - a separator separates keywords, variables or operators. For
example, a comma (,) is a separator.

About this document xiii

Keywords, variables, and operators may be displayed as required, optional, or
default. Fragments, separators, and delimiters may be displayed as required or
optional.

Item type Definition

Required Required items are displayed on the main path of the horizontal
line.

Optional Optional items are displayed below the main path of the horizontal
line.

Default Default items are displayed above the main path of the horizontal
line.

Syntax examples
The following table provides syntax examples.

Table 2. Syntax examples

Item Syntax example

Required item.

Required items appear on the main path of the horizontal
line. You must specify these items.

ÊÊ KEYWORD required_item ÊÍ

Required choice.

A required choice (two or more items) appears in a
vertical stack on the main path of the horizontal line. You
must choose one of the items in the stack.

ÊÊ KEYWORD required_choice1
required_choice2

ÊÍ

Optional item.

Optional items appear below the main path of the
horizontal line.

ÊÊ KEYWORD
optional_item

ÊÍ

Optional choice.

An optional choice (two or more items) appears in a
vertical stack below the main path of the horizontal line.
You may choose one of the items in the stack.

ÊÊ KEYWORD
optional_choice1
optional_choice2

ÊÍ

Default.

Default items appear above the main path of the
horizontal line. The remaining items (required or optional)
appear on (required) or below (optional) the main path of
the horizontal line. The following example displays a
default with optional items.

ÊÊ
default_choice1

KEYWORD
optional_choice2
optional_choice3

ÊÍ

xiv z/OS V1R4.0 Language Environment Customization

Table 2. Syntax examples (continued)

Item Syntax example

Variable.

Variables appear in lowercase italics. They represent
names or values.

ÊÊ KEYWORD variable ÊÍ

Repeatable item.

An arrow returning to the left above the main path of the
horizontal line indicates an item that can be repeated.

A character within the arrow means you must separate
repeated items with that character.

An arrow returning to the left above a group of repeatable
items indicates that one of the items can be selected, or a
single item can be repeated.

ÊÊ »KEYWORD repeatable_item ÊÍ

ÊÊ »

,

KEYWORD repeatable_item ÊÍ

Fragment.

The ─┤ fragment ├─ symbol indicates that a labelled group
is described below the main syntax diagram. Syntax is
occasionally broken into fragments if the inclusion of the
fragment would overly complicate the main syntax
diagram.

ÊÊ KEYWORD fragment ÊÍ

fragment:

,required_choice1
,default_choice

,required_choice2
,optional_choice

Where to find more information
Please see z/OS Information Roadmap for an overview of the documentation
associated with z/OS, including the documentation available for z/OS Language
Environment.

Accessing z/OS licensed documents on the Internet
z/OS licensed documentation is available on the Internet in PDF format at the IBM
Resource Link™ Web site at:
http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to
these documents requires an IBM Resource Link user ID and password, and a key
code. With your z/OS order you received a Memo to Licensees, (GI10-0671), that
includes this key code. 1

To obtain your IBM Resource Link user ID and password, log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed documents:

1. Sign in to Resource Link using your Resource Link user ID and password.

2. Select User Profiles located on the left-hand navigation bar.

1. z/OS.e customers received a Memo to Licensees, (GI10-0684) that includes this key code.

About this document xv

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

Note: You cannot access the z/OS licensed documents unless you have registered
for access to them and received an e-mail confirmation informing you that
your request has been processed.

Printed licensed documents are not available from IBM.

You can use the PDF format on either z/OS Licensed Product Library CD-ROM or
IBM Resource Link to print licensed documents.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for most
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most
cases LookAt goes directly to the message explanation.

You can access LookAt from the Internet at:
http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

or from anywhere in z/OS where you can access a TSO/E command line (for
example, TSO/E prompt, ISPF, z/OS UNIX System Services running OMVS). You
can also download code from the z/OS Collection (SK3T-4269) and the LookAt Web
site that will allow you to access LookAt from a handheld computer (Palm Pilot VIIx
suggested).

To use LookAt as a TSO/E command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO/E from a disk on your z/OS
Collection (SK3T-4269) or from the News section on the LookAt Web site.

Some messages have information in more than one document. For those
messages, LookAt displays a list of documents in which the message appears.

xvi z/OS V1R4.0 Language Environment Customization

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

Summary of Changes

Summary of Changes
for SA22-7564-03
z/OS Version 1 Release 4

This book contains information previously presented in SA22-7564-02, which
supports z/OS Version 1 Release 3.

New Information

v Information has been added to indicate that this book supports z/OS.e.

Changed Information

v Invocation procedures in “Making the cataloged procedure library available to
your jobs” on page 39 have been updated. CEEXR and CEEXLR replace CEEXG
and CEEXLG.

v Chapter 8, “Using Language Environment under CICS” on page 49 includes
updated program resource definition information, including new examples.

v The options report in “RPTOPTS” on page 114 has been updated.

v The storage reports in “RPTSTG” on page 117 have been updated.

Moved Information

v Chapter 12, “Language Environment Run-Time Options” on page 67 has been
moved from the appendix to the body of the book.

v The NONIPTSTACK | NONONIPTSTACK run-time option has been removed
because it is no longer supported. It was replaced by the THREADSTACK option.

This book contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Starting with z/OS V1R2, you may notice changes in the style and structure of
some content in this book, for example, headings that use uppercase for the first
letter of initial words only, and procedures that have a different look and format. The
changes are ongoing improvements to the consistency and retrievability of
information in our books.

Summary of Changes
for SA22-7564-02
z/OS Version 1 Release 3

This book contains information previously presented in SA22-7564-01, which
supports z/OS Version 1 Release 2.

New Information

v A new appendix on Managed System Infrastructure for Setup (msys for Setup)
has been added.

v An appendix with z/OS product accessibility information has been added.

Changed Information

v Information on TERMTHDACT was updated. See “TERMTHDACT” on page 136.

© Copyright IBM Corp. 1991, 2002 xvii

v The appendix on Language Environment User Exits was moved to z/OS
Language Environment Programming Guide.

Summary of Changes
for SA22-7564-01
z/OS Version 1 Release 2

This book contains information previously presented in SA22-7564-00, which
supports z/OS Version 1 Release 1.

New Information

v Added a new section about automatic storage tuning for CICS. This section was
moved to z/OS Language Environment Programming Guide in V1R3.

v Added a new chapter, Chapter 9, “Using Language Environment under IMS” on
page 57

Changed Information

v The following run-time options or defaults were changed:

– ALL31

– FILETAG

– HEAPCHK

– STACK

– TERMTHDACT

– THREADSTACK

See Figure 2 on page 22 or Figure 3 on page 23.

Deleted Information

v The COBOL COBPACKs can no longer be modified. Information related to
modifying the COBOL COBPACKs has been removed. For example, the
appendix ″Using COBOL with Language Environment″ has been deleted, and
several pages pertaining to COBPACK information have been deleted from
Chapter 7.

This book contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

xviii z/OS V1R4.0 Language Environment Customization

Chapter 1. Customization Overview

You can customize Language Environment by either tailoring and installing
IBM-supplied usermods, or by tailoring and running specific jobs.

To tailor and install usermods:

1. Get the list of usermods that suit the programmer needs at your site. This
chapter will help you create this list.

2. Copy the customization jobs from the SCEESAMP data set into one of your
private data sets so you will have unmodified copies of the jobs for your later
reference and use.

3. Apply the usermods to the target libraries, but do not accept them, and do
not modify the distribution libraries.

4. Use SMP/E RESTORE to remove a usermod if necessary (for example, if
programming needs at your site change) or before you apply service to the
modules it changes.

5. Reapply the usermod after successful installation of service.

To modify the JCL for customization jobs:

1. Copy the customization jobs from the SCEESAMP data set into one of your
private data sets so you will have unmodified copies of the jobs for your later
reference and use.

2. Add a job card appropriate for your site.

3. Add a JES Route card if your site requires one.

4. Modify the job according to the comments in the JCL or the instructions in this
book.

5. Save and submit the job.

6. Most jobs will run with a condition code of 0. Check the description of each job
to find out what condition code to expect. If the job did not run with the condition
code you expected:
v Check for an error message on the system console or the list output to find

the cause of the problem.
v Correct the problem.
v Rerun the job.
v Recheck the condition code.

Deciding Whether and What to Customize
You should consider whether the IBM-supplied values for the run-time options
provided with Language Environment suit the needs of your site. These values
control such features as:
v The national language in which messages appear
v How a debug tool is invoked
v When condition handling is invoked
v How storage is allocated to the heap and stack
v How much storage is allocated above and below the 16 MB line
v The format of the program invocation character parameter
v Creation of a storage and/or run-time options report
v Shared storage allocations
v When Run-Time Library Services (RTLS) is used

© Copyright IBM Corp. 1991, 2002 1

If you don’t want to customize Language Environment now, you can put it into
production using the IBM-supplied defaults. Or, you can use the instructions in this
book to customize Language Environment later, if you choose. For many of the
run-time options, application programmers can override the installation defaults in
their code.

Application programmers at your site will be the primary users of Language
Environment. Ask them what defaults they prefer for run-time options and user
exits, which affect their work directly. Doing so will ensure that the modifications you
make will best support the application programs being developed at your site.

You need to make decisions about customizing:
v Run-time library access method (see page 7)
v Run-time options (see page 19)
v Assembler user exits (see page 29)
v Cataloged procedures (see page 39)

You also need to decide:
v Whether to install some routines in the link pack area (see page 43)
v Whether to make Language Environment available under CICS (see page 49)
v Whether to customize any programming language-specific features (see page 55)

2 z/OS V1R4.0 Language Environment Customization

Chapter 2. Description of Language Environment target
libraries

Table 3 provides a description of the Language Environment target libraries and
when they are used. In most cases, the DDDEF entry for the data set is the same
as the low-level qualifier. For the cases where this is not true, the appropriate
DDDEF entry is listed. The high-level qualifier of these data sets may differ from
customer to customer, but the default value is CEE.

The data sets in Table 3 have a legend associated with them in the rightmost
columns of the table. The following descriptions explain the use and placing of
these data sets.

v AD (Application Development) — These data sets are used during the assembly,
compilation or link-edit phases of application development. This does not include
the procedures and CLISTs that can be used by application developers.

v Ex (Execution) — These data sets are used during execution of an application
and must be placed in the program search order or be accessed directly through
DD statements.

v O (Other) — These data sets contain sample jobs, source code, procedures or
CLISTs that are not used when assembling, compiling, link-editing or executing
programs.

Table 3. Description of data set target libraries for Language Environment

DDDEF Entry Data Set Name Description AD Ex O

SAFHFORT The Fortran-specific link-edit library used to resolve
certain Fortran intrinsic function names. In link-edit steps,
this library must precede SCEELKED if Fortran functions
are needed.

X

SCEEBIND Contains all Language Environment resident routines for
XPLINK applications. This one library replaces the four
libraries of resident routines for non-XPLINK applications
(SCEELKED, SCEELKEX, SCEEOBJ and SCEEPP). It
must be used only when link-editing a program which
includes XPLINK-compiled object modules. This data set
will be eliminated in the near future and is being replaced
with SCEEBND2. Customers should use the SCEEBND2
data set instead of SCEEBIND during XPLINK application
development.

X

SCEEBND2 Contains all Language Environment resident routines for
XPLINK applications. This one library replaces the four
libraries of resident routines for non-XPLINK applications
(SCEELKED, SCEELKEX, SCEEOBJ and SCEEPP). It
must be used only when link-editing a program which
includes XPLINK-compiled object modules. The only
difference between this data set and SCEEBIND is the
record format. SCEEBND2 has a fixed blocked record
format.

X

SCEECICS Contains the COBOL-specific CICS run-time modules.
Will only be used in the DHFRPL DD concatenation.

X

SCEECLST Provides TSO/E CLISTs that C/C++ application
developers can use.

X

SCEECMAP Contains the source for charmap files. X

© Copyright IBM Corp. 1991, 2002 3

Table 3. Description of data set target libraries for Language Environment (continued)

DDDEF Entry Data Set Name Description AD Ex O

SCEECPP Contains Language Environment resident definitions that
non-XPLINK C++ programs might need. This data set
must be used whenever link-editing a non-XPLINK
program which includes any C++ object.

X

SCEEGXLT Contains the GENXLT source for the code set converters. X

SCEEH SCEEH Contains ANSI C++ language headers used when
compiling C++ programs.

X

SCEEHARP SCEEH.ARPA.H Contains C-language headers used when compiling C
programs.

X

SCEEHH SCEEH.H Contains C-language headers used when compiling C
programs.

X

SCEEHNET SCEEH.NET.H Contains C-language headers used when compiling C
programs.

X

SCEEHNEI SCEEH.NETINET.H Contains C-language headers used when compiling C
programs.

X

SCEEHSYS SCEEH.SYS.H Contains C-language headers used when compiling C
programs.

X

SCEEHT SCEEH.T Contains ANSI C++ template files used when compiling
C++ programs.

X

SCEELIB Contains side-decks for DLLs provided by Language
Environment. Many of the language-specific callable
services available to XPLINK-compiled applications
appear externally as DLL functions. To resolve these
references from XPLINK applications, definition
side-decks are required.

X

SCEELKED Contains the link-edit stubs for non-XPLINK C/C++, PL/I,
COBOL and Fortran languages and Language
Environment-provided routines.

X

SCEELKEX Contains non-XPLINK C/C++ stubs that are not
uppercased, truncated or mapped to another symbol. In
link-edit steps this library must precede SCEELKED if
unmapped names are used.

X

SCEELOCL Provides the locale source files (pre-XPG4). X

SCEELOCX Provides the locale source files as defined by the XPG4
standard.

X

SCEELPA Contains a subset of the SCEERUN modules that are
reentrant and reside above the 16 MB line. This data set
should be added to LPALSTxx for performance benefits.

X

SCEEMAC Provides Assembler macros to be used when writing
assembler language code and using Language
Environment services.

X

SCEEMSGP Contains the message file to be used by the C pre-linker. X

SCEEOBJ Contains Language Environment resident definitions
which may be required for non-XPLINK OS/390 UNIX
System Services programs. This data set must be used
whenever link-editing a non-XPLINK UNIX program.

X

SCEEPROC Provides procedures used to link-edit and run Language
Environment-conforming applications.

X

4 z/OS V1R4.0 Language Environment Customization

Table 3. Description of data set target libraries for Language Environment (continued)

DDDEF Entry Data Set Name Description AD Ex O

SCEERTLS Provides run-time routines needed when using the RTLS
(Run-Time Library Services) function.

X

SCEERUN Contains the run-time library routines needed during
execution of applications written in C/C++, PL/I, COBOL
and FORTRAN.

X

SCEERUN2 Contains the run-time library routines needed during
execution of applications, and those that require to reside
in a PDSE.

X

SCEESAMP Provides sample jobs, usermods, parmlib samples, some
C headers and some assembler macros.

X

SCEESPC Provides the System Programmer C (SPC) routines to
build free standing C applications. In link-edit steps, this
library must precede SCEELKED in the SYSLIB DD
concatenation.

X

SCEESPCO Provides the object decks for the SPC routines for the
SCEESPC data set.

X

SCEEUMAP Provides the Universal 2-octet Coded Character Set
(UCS-2) converter source.

X

SCEEUTBL Provides the Universal 2-octet Coded Character Set
(UCS-2) converter binaries.

X

SIBMCALL Provides the support for OS PL/I PLICALLA and
PLICALLB entry points. In link-edit steps, this library must
precede SCEELKED if PL/I for MVS and VM applications
use OS PL/I PLICALLA or PLICALLB as entry points.

X

SIBMCAL2 Provides the support for OS PL/I PLICALLA and
PLICALLB entry points. In link-edit steps, this library must
precede SCEELKED if VisualAge PL/I for OS/390
applications use OS PL/I PLICALLA or PLICALLB as
entry points.

X

SIBMMATH Contains the stubs for old PL/I Version 2 Release 3 math
library routines. In link-edit steps, this library must
precede SCEELKED if PL/I for MVS and VM applications
use OS PL/I PLICALLA or PLICALLB as entry points.

X

SIBMTASK Provides the PL/I Multi-Tasking Facility. In link-edit steps,
this library must precede SCEELKED if PL/I MTF is to be
used.

X

History of Changes
Some target libraries have been added, deleted or renamed in the following OS/390
and z/OS releases:

OS/390 Version 2 Release 6 added one data set and renamed two others:
SCEELPA was added
SCEEUCS2.UCMAP was renamed to SCEEUMAP
SCEEUCS2.UCONVTBL was renamed to SCEEUTBL

OS/390 Version 2 Release 9 added one new data set:
SIBMCAL2

Chapter 2. Description of Language Environment target libraries 5

OS/390 Version 2 Release 10 added three new data sets:
SCEERUN2
SCEEBIND
SCEELIB

z/OS Version 1 Release 2 added three new data sets:
SCEEBND2
SCEEH
SCEEH.T

6 z/OS V1R4.0 Language Environment Customization

Chapter 3. Choosing your Language Environment run-time
library access

Applications that require the run-time library provided by Language Environment,
can access the SCEERUN and SCEERUN2 data sets using

v LNKLST

v STEPLIB

or any combination of the above two methods.

The Language Environment run-time library can also be accessed using a third
method, Run-time Library Services (RTLS). The RTLS function allows you to access
different levels of the Language Environment run-time libraries, controlled by
run-time options. These run-time options allow you to control an application or your
entire application environment. In addition, run-time library access using STEPLIB
can still be used.

Methods of Language Environment data set access

LNKLST
The Language Environment run-time libraries, SCEERUN and SCEERUN2, can be
placed in LNKLST. In addition, heavily-used modules can be placed in LPA. For
further information see Appendix D, “Modules eligible for the link pack area” on
page 199.

STEPLIB
If the SCEERUN and SCEERUN2 data sets cannot be placed in LNKLST, you can
STEPLIB the data sets for each application that requires them. One reason why the
Language Environment run-time libraries are not to be placed in LNKLST might be
that the pre-Language Environment runtime libraries (VS COBOL II, OS PL/I) are
placed in LNKLST and your site has not completed the migration to Language
Environment. See z/OS Language Environment Run-Time Migration Guide for
details.

Applications that currently STEPLIB to the SCEERUN data set to gain access to the
run-time library provided by Language Environment, do not need to add the
SCEERUN2 data set as part of their STEPLIB concatenation. In fact, since
SCEERUN2 contains module names that do not intersect with any pre-Language
Environment run-time library or any existing library, IBM recommends that
SCEERUN2 be added to the LNKLST. This will not result in any adverse effects.

Run-time library services (RTLS)
Run-Time Library Services (RTLS) allows users to eliminate the use of STEPLIBs in
order to tie the application with a certain level of the run-time libraries.
RTLS-specific run-time options and the use of z/OS system services allow users to
tag applications with a specific Language Environment run-time library level.

© Copyright IBM Corp. 1991, 2002 7

Setting up run-time library services (RTLS)
If RTLS is the method that your site has chosen to access the Language
Environment run-time libraries, you must ensure that the Language Environment
run-time library SCEERUN data set is not part of the LNKLST or LPALST
concatenation.

If you plan on using RTLS to access multiple levels of the Language Environment
run-time library you should maintain the older levels of Language Environment in
separate SMP/E zones.

For a list of restrictions that apply when using RTLS, see “Restrictions” on page 13.

Saving your environment
The following procedures should be used to separate Language Environment from
the SMP/E environment only when Language Environment is not already in a
separate zone:

1. SMP/E ACCEPT or RESTORE all service and USERMODs for Language
Environment.

2. Use the SMP/E BUILDMCS command to create an SMP/E installable image of
your existing Language Environment.

The BUILDMCS command builds an SMP/E installable image from
information in the target and distribution zones and the code in the
distribution libraries. Therefore all code must be accepted or restored (and
then re-applyed).

3. Define new SMP/E zones for Language Environment.

4. Allocate separate target and distribution libraries for Language Environment.

v A sample allocation job called CEEWALOC, found in the SCEESAMP data
set, can be used to allocate the new libraries. Consider using meaningful and
identifiable data set names.

Recommendation: You should not use the CEEISALC job to allocate the
new libraries. CEEISALC is intended to be used during the initial install of the
z/OS CBPDO (Custom-Built Product Delivery Option) software delivery
package and not to save levels of Language Environment.

v Define SMP/E DDDEFs for the new target and distribution libraries for
Language Environment.

v A sample DDDEF job called CEEWDDDF, found in the SCEESAMP data set, can
be used to define the new libraries.

Recommendation: You should not use the CEEISDDD job to define the new
libraries. CEEISDDD is intended to be used during the initial install of the z/OS
CBPDO (Custom-Built Product Delivery Option) software delivery package and
not to save levels of Language Environment.

SMP/E RECEIVE, APPLY, and ACCEPT the SMP/E installable image built by the
BUILDMCS command into the new separate zones.

v You do not need to install the Language Environment HFS FMID if you don’t plan
on doing any C/C++ application development in the z/OS UNIX environment.
However, if you do plan on using the C headers at your existing level, then you
will need to create the target libraries. The target libraries in this case will be
HFS directories. A sample job called CEEWMKD is provided in the SCEESAMP
data set to create the necessary directories. Before you run this job, remember to
add a high-level directory to every PATH to prevent installing an older level of the
headers under /usr/include.

8 z/OS V1R4.0 Language Environment Customization

v Define the SYSLIB macro concatenation for new zones.
Ensure that the Language Environment MACLIB or SCEEMAC data set is
included in the SYSLIB macro concatenation.

v If you chose to do the RESTORE in procedure 1 on page 8, re-APPLY any
service or USERMODs that were RESTOREd.

Setting up RTLS in PARMLIB
This section contains an example of a CSVRTLxx member of PARMLIB. It defines
four versions of the SYSCEE logical library, with OS/390 Version 2 Release 4
Language Environment the default version. See Table 4.

Table 4. Versions of SYSCEE Logical Library with z/OS

LIBRARY VERSION SCEERUN PDS (CATALOGUED)

SYSCEE V1R5M0 CEE.V1R5M0.SCEERUN

SYSCEE R2 CEE.OS390R2.SCEERUN

OS390R3 R3 CEE.OS390R3.SCEERUN

LATEST 0 CEE.SCEERUN (DEFAULT)

Each physical library is allowed to consume up to 8 MB above the line and 160 KB
below the line for cached Language Environment modules. The combined maximum
allowed is 20 MB above the line and 400 KB below.

Chapter 3. Choosing your Language Environment run-time library access 9

MAXBELOW (400K)
MAXABOVE (20M)
PHYSICAL (

LIBRARY(CEEL150) ADD
DSLIST(CEE.V1R5M0.SCEERUN)
MODULES(

CEEBINSS
,CEEPLPKA
)

MAXBELOWP(160K)
MAXABOVEP(8M)

)
PHYSICAL (

LIBRARY(CEEO120) ADD
DSLIST(CEE.OS390R2.SCEERUN)
MODULES(

CEEBINSS
,CEEPLPKA
)

MAXBELOWP(160K)
MAXABOVEP(8M)

)
PHYSICAL (

LIBRARY(CEEO130) ADD
DSLIST(CEE.OS390R3.SCEERUN)
MODULES(

CEEBINSS
,CEEPLPKA
)

MAXBELOWP(160K)
MAXABOVEP(8M)

)
PHYSICAL (

LIBRARY(CEEO240) ADD
DSLIST(CEE.SCEERUN)
MODULES(

CEEBINSS
,CEEPLPKA
)

MAXBELOWP(160K)
MAXABOVEP(8M)

)
LOGICAL (

LIBRARY(SYSCEE) VERSION(V1R5M0) ADD
PHYSICAL(CEEL150)

)
LOGICAL (

LIBRARY(SYSCEE) VERSION(R2) ADD
PHYSICAL(CEEO120)

)
LOGICAL (

LIBRARY(OS390R3) VERSION(R3) ADD
PHYSICAL(CEEO130)

)
LOGICAL (

LIBRARY(LATEST) VERSION(0) ADD
PHYSICAL(CEEO240)
DEFAULT

)

Figure 1. An Example of a CSVRTLS PARMLIB Member for OS/390 Version 2 Release 4

10 z/OS V1R4.0 Language Environment Customization

Setting Run-Time Options
The RTLS, LIBRARY, and VERSION Language Environment run-time options
control the use of RTLS when Language Environment applications are run.

When RTLS(ON) is specified, the LIBRARY(lib) and VERSION(ver) options are
used to select which RTLS logical library and version are used. This logical library
and version must be defined in the CSVRTLxx PARMLIB member, and RTLS must
currently be managing it when the Language Environment application is started.
CEEGINIT must be available in the z/OS program search order, which means that
the SCEERTLS data set must be part of TASKLIB, STEPLIB/JOBLIB, LPA/LNKLST.
The SCEERTLS data set cannot be controlled by RTLS.

When RTLS(OFF) is in effect, the LIBRARY and VERSION options are ignored.
Whenever RTLS(ON) is specified, and the SCEERTLS data set is not in the
program search order, RTLS(ON) is ignored, and no RTLS logical library will be
used.

The RTLS, LIBRARY, and VERSION run-time options can be specified in the
following places:

v CEEDOPT

The RTLS, LIBRARY, and VERSION options can be specified in the CEEDOPT
CSECT link-edited with Language Environment. Note that when using multiple
levels of SCEERUN with one level of SCEERTLS (always the current level), the
settings for RTLS, LIBRARY, and VERSION in the CEEDOPT CSECT linked with
CEEGINIT (in SCEERTLS) should match those linked into the other Language
Environment modules (in the various copies of SCEERUN).

For more information on creating the CEEDOPT CSECT, see Chapter 4,
“Customizing Language Environment Run-Time Options” on page 19.

v CEEUOPT

The RTLS, LIBRARY, and VERSION options can be specified in the CEEUOPT
CSECT which is linked into the main program of the application.

For more information on creating the CEEUOPT CSECT, see Chapter 4,
“Customizing Language Environment Run-Time Options” on page 19.

v #pragma runopts

For C/C++ programs, the RTLS, LIBRARY, and VERSION options can be coded
on the #pragma runopts statement, along with other Language Environment
run-time options. For more information on specifying Language Environment
run-time options with #pragma runopts, see z/OS Language Environment
Programming Guide and C/C++ Language Reference.

v CEEROPT

CEEROPT can be used in the same manner as CEEDOPT or CEECOPT to
specify run-time options. This module will be it’s own load module, not linked with
any other load modules. CEEROPT can be used to set run-time option defaults
for environments in a CICS region, or an IMS or batch region using Library
Routine Retention (LRR). The fact that this module resides in it’s own load
module, not linked with any other load module, avoids the maintenance problems
associated with linking it into a load module containing executable code. The
CEEROPT will be loaded and merged with the installation run-time option
defaults during region initialization. CEEROPT is optional. During environment
initialization, an attempt to locate CEEROPT is performed. If it is found, the
run-time options specified within will be merged with the installation defaults
specified in CEEDOPT or CEECOPT. The CEEROPT load module can be
created by running the CEEWROPT job found in the SCEESAMP data set. For

Chapter 3. Choosing your Language Environment run-time library access 11

more information on specifying run-time options with CEEROPT, see z/OS
Language Environment Programming Guide.

v PLIXOPT external variable

For PL/I main programs, the RTLS, LIBRARY, and VERSION options can be
coded in the PLIXOPT external variable, along with other Language Environment
run-time options. For more information on specifying Language Environment
run-time options with PLIXOPT, see z/OS Language Environment Programming
Guide.

v Command line

If the PLIST and EXECOPS settings allow Language Environment run-time
options on the command line, RTLS, LIBRARY, and VERSION can be specified
along with other run-time options. For more information on specifying Language
Environment run-time options on the command line, see z/OS Language
Environment Programming Guide.

When starting /usr/sbin/init, BPXBATCH, and the TSO/E OMVS command,
Language Environment command line options can also be specified in the
BPXPRMxx PARMLIB member. For more information on modifying the
BPXPRMxx PARMLIB member, see z/OS MVS Initialization and Tuning
Reference.

For the TSO/E OMVS command, the RUNOPTS operand can be used to specify
Language Environment run-time options, including RTLS, LIBRARY, and
VERSION. If specified, options specified in RUNOPTS override any options
present in the BPXPRMxx PARMLIB member. Any Language Environment
run-time options used by OMVS (from RUNOPTS, or BPXPRMxx) will be put into
the _CEE_RUNOPTS environment variable as the login programs and the z/OS
UNIX shells are invoked. If the _CEE_RUNOPTS environment variable is not
reset, the RTLS, LIBRARY, and VERSION options from the OMVS command will
be used for all z/OS UNIX shell commands run from the OMVS session. For
more information on the TSO/E OMVS command syntax, see z/OS UNIX System
Services Command Reference.

v _CEE_RUNOPTS environment variable

For programs invoked with one of the exec family functions (like z/OS UNIX shell
commands), the RTLS, LIBRARY, and VERSION options can be specified in the
_CEE_RUNOPTS environment variable.

For more information on setting the _CEE_RUNOPTS environment variable, see
z/OS Language Environment Programming Guide.

v CEEBXITA

The Assembler user exit CEEBXITA cannot alter settings for the RTLS, LIBRARY,
and VERSION run-time options. By the time that CEEBXITA is invoked, it is too
late to change the RTLS logical library, since certain Language Environment
modules have already been loaded.

When these options are specified in more than one place, the usual Language
Environment options merge takes place except for the output of CEEBXITA, which
is ignored. However, for nested enclaves, the settings for RTLS, LIBRARY, and
VERSION are always inherited from the main enclave. All enclaves must use the
same RTLS logical library and version.

12 z/OS V1R4.0 Language Environment Customization

Controlling Other Data Sets with RTLS
Customers who use the Debug Tool and who control SCEERUN using RTLS may
also want to control the SEQAMOD data set with RTLS. This will result in better
performance when using the Debug Tool. To do this, remove the SEQAMOD data
set from any STEPLIB or LNKLST, and define an RTLS physical library containing
the SEQAMOD data set. Then define an RTLS logical library that concatenates the
SCEERUN physical library with the SEQAMOD physical library. When using the
Debug Tool, ensure the necessary run-time options are specified.

You may also want to control IBM-supplied or user DLLs with RTLS. To do this,
define physical libraries containing one or more of the DLL data sets. Then define
RTLS logical libraries that concatenate the SCEERUN physical library with the DLL
physical libraries.

You can also control data sets containing user load modules that are fetched or
dynamically called. Similarly, define RTLS physical libraries containing these data
sets and logical libraries as described above.

Performance Considerations
The use of RTLS may result in varying performance. If modules are cached using
the MAXBELOW, MAXABOVE and other CSVRTL PARMLIB options, performance
of your application will be noticeably better than using STEPLIB or LNKLST. If
modules are not cached, the performance of your application will be comparable to
STEPLIB.

See z/OS MVS Initialization and Tuning Reference for these PARMLIB options.

To avoid unnecessary performance degradation:

1. The SCEERTLS data set should not be in the program search order when
RTLS(OFF) is in effect. In this case, if SCEERTLS is specified, an extra load for
CEEGINIT is done, followed by the normal LOAD for CEEBINIT (CEEBINSS).
This load is done once, during Language Environment initialization. Also, an
extra DELETE of CEEGINIT is done during Language Environment termination.

2. When RTLS(ON) is in effect, the logical library should contain all frequently
loaded user modules. LOADs of Language Environment modules will come from
the RTLS logical library, and will cause no performance degradation (especially
if they are already cached). However, if the application does frequent dynamic
calls, C fetch()s, CANCELs, etc., there will be unnecessary overhead. For
each user module fetched, the RTLS logical library is searched first, and this
search will fail. Then, the module is fetched using the normal z/OS LOAD
service, which will succeed.

Eliminate the extra searching of the RTLS logical library by creating a second
physical library containing the user load modules. Define a logical library which
concatenates the physical library containing the user modules with the one
containing SCEERUN. This way, there is no longer a failing RTLS load request
for each user module fetched.

Restrictions
This section lists certain restrictions that must be observed when using RTLS.

Chapter 3. Choosing your Language Environment run-time library access 13

All z/OS elements and features that require Language Environment must use the
current (latest) version. Use of earlier levels of the SCEERUN data set is not
supported for these programs.

The following table contains RTLS restrictions when running in different
environments.

Table 5. RTLS Restrictions

Conditions not supported Notes

applications running under IMS Unpredictable problems may occur if this
restriction is violated.

applications that use System Programmer C
(SPC)

XPLINK applications

C and PL/I preinitializion support RTLS(ON) will be ignored, although it may
appear in the options report.

Language Environment preinitialization facility
(CEEPIPI)

RTLS(ON) will be ignored, although it may
appear in the options report.

OS/VS COBOL applications

reusable COBOL environments The reusable COBOL environments are
initiated by using the RTEREUS(ON) run-time
option or by using the ILBOSTP0 or
IGZERRE run-time routines.

LRR (Library Routine Retention) Unpredictable problems may occur if this
restriction is violated.

PL/I checkpoint/restart support Unpredictable problems may occur if this
restriction is violated.

COBOL checkpoint/restart support Unpredictable problems may occur if this
restriction is violated.

PL/I Multitasking applications compiled with
pre-Language Environment PL/I compilers
unless they have been relink-edited with
Language Environment stubs.

Unpredictable problems may occur if this
restriction is violated.

mixed PL/I modules that need both the
Language Environment and shared PL/I
libraries concatenated (or just the PL/I shared
libraries)

Unpredictable results will occur if this
restriction is violated.

RTLS(ON) does not affect the fetching of
modules or DLLs from an HFS, even if the
sticky bit is on (meaning that the module is
really fetched from a data set or LPA).

Any Language Environment locale-oriented
modules fetched from the HFS are not
version-controlled by RTLS.

Other restrictions include:

v When the COBOL SORT or PL/I PLISRTx facilities are used, with RTLS(ON), the
SORT module must be present in TASKLIB, STEPLIB/JOBLIB, or LPA/LNKLST,
as usual. The SORT module is not fetched from an RTLS-controlled library.

v When using RTLS(ON) with the C Multitasking facility (MTF), the parallel load
module (the user-written module containing EDCMTFS, whose name is passed
to tinit()) cannot be RTLS-controlled. This module must be present in the usual
data set, as if RTLS(ON) was not being used.

14 z/OS V1R4.0 Language Environment Customization

Note: If CEEDOPT has not been used to turn RTLS(ON) globally, the user will
need to link-edit a customized version of EDCMTFS into the parallel
module. A #pragma runopts(RTLS(ON)) statement must be added to the
customized EDCMTFS source code. See z/OS C/C++ Programming
Guide for a printout of the EDCMTFS source code.

v When using RTLS(ON) with the FORTRAN Multitasking Facility (MTF), the
module containing VFEIS# (called the parallel load module) cannot be
RTLS-controlled.

When running FORTRAN MTF, the AUTOTASK DD must still point to the data
set containing the module with VFEIS#. This data set cannot be RTLS-controlled.

v Split-RMODE modules (and any other multi-extent modules) cannot be fetched
from RTLS-controlled libraries.

v Programs with overlay segments will not work when they have been fetched from
RTLS-controlled libraries.

Note that programs with overlay segments can still run with RTLS(ON) and can
fetch other modules (such as those in the SCEERUN data set) from
RTLS-controlled libraries.

v Only the current (latest) version of the SCEERTLS data set for a given level of
z/OS can be used.

The current version of the SCEERTLS data set is supported with all levels of
SCEERUN that are supported by RTLS on the current version of z/OS.

v When running VS COBOL II applications under Language Environment and
RTLS(ON) is used to control the level of SCEERUN, only the latest (current)
level of SCEERUN can be used.

v When running pre-Language Environment C/370 2.1 and 2.2 applications under
Language Environment and RTLS(ON) is used to control the level of SCEERUN,
only the latest (current) level of the SCEERUN data set can be used.

Unpredictable results will occur if this restriction is violated.

v When running pre-Language Environment PL/I 2.3 applications under Language
Environment and RTLS(ON) is used to control the level of SCEERUN, only the
latest (current) level of the SCEERUN data set can be used.

For example, running a PL/I 2.3 application with RTLS set up to use the
Language Environment 1.5, OS/390 V1R2, or OS/390 V1R3 levels of SCEERUN
is not allowed on OS/390 V2R4. Only the OS/390 V2R4 level of SCEERUN can
be used with RTLS(ON).

Unpredictable results will occur if this restriction is violated.

v RTLS can not be used to access load modules that reside in the SCEERUN2
data set.

v In nested enclaves, the RTLS(ON|OFF), LIBRARY and VERSION options
inherited from the main enclave will always be in effect.

If different values for these options are specified for the nested enclave, these
specified values will be syntax-checked and will show up in the options report for
the nested enclave. However, the RTLS logical library (if any) from the main
enclave will be used in the nested enclave, so the options report for the nested
enclave will be inaccurate.

v The settings of the RTLS(ON|OFF), LIBRARY(), and VERSION() options in the
CEEDOPT CSECT linked with CEEGINIT should be the same as those in the
CEEDOPT CSECT link-edited with the rest of Language Environment.

If this restriction is violated, the options report may be inaccurate.

Chapter 3. Choosing your Language Environment run-time library access 15

v The assembler user exit routines (CEEBXITA, IBMBXITA, IBMFXITA, etc.) cannot
alter the RTLS options already in effect from CEEDOPT, CEEUOPT, CEEROPT,
or the command line.

v If the SCEERTLS data set is present in the program search order when COBOL
programs are invoked with non-MVS-EXEC-style parameter lists, certain
problems may occur:

– If a customized IGZEPSX user module has been installed, this module can
turn on or off command line option parsing. Whenever command line parsing
is turned off, Language Environment may erronously look for the RTLS,
LIBRARY, and VERSION options in the first passed-in parameter as if it
contained Language Environment run-time options.

– Without a customized IGZEPSX module, problems may occur for COBOL
programs that are not invoked using ATTACH. COBOL programs that are not
directly ATTACHed often do not have any passed-in Language Environment
run-time options (under ISPF, for example). However, when looking for the
RTLS, LIBRARY, and VERSION options, Language Environment assumes
that the first parameter is a length-prefixed character string containing
Language Environment run-time options. Scanning this parameter may cause
ABENDs, or erroneous RTLS(ON/OFF) settings.

v SCEERUN must be available in the normal order of search when running the
AD/CYCLE 1.2 C compiler (set to use Language Environment), unless the
CEEDOPT CSECT link-edited into Language Environment specifies RTLS(ON).

This compiler specifies NOEXECOPS, so the RTLS(ON) runtime option is not
accepted on the command line.

v RTLS(ON) cannot be specified when running the Language Environment-enabled
PL/I compiler (since Language Environment run-time options are not used). The
SCEERUN data set must still be present in TASKLIB, STEPLIB/JOBLIB, or
LPA/LNKLST (if it was required before).

v Utility programs are shipped in the SCEERUN data set. Whenever these are
used, SCEERUN must still be present in the program search order. RTLS(ON)
should not be used, since these IBM-provided utilities always need the current
version of Language Environment that is provided in SCEERUN.

Examples of these utilities are: EDCPRLK, EDCICONV, EDCGNXLT, and
EDCALIAS.

v Debuggers that do SVC screening of MVS LOADs and DELETEs (SVCs 8/122
and 9) or issue their own MVS LOADs and DELETEs may not work properly with
RTLS(ON).

When modules are fetched from an RTLS-controlled LIBRARY, CSVRTLS is
used rather than LOAD or DELETE.

v The C compiler does not accept certain valid values for the VERSION keyword if
it is specified in the #pragma runopts directive. If a suboption to #pragma runopts
is not a valid C/C++ token, you must surround the suboptions to #pragma
runopts in double quotes.

An example is #pragma runopts(RTLS(ON) VERSION(1.8.0)). If you specify
#pragma runopts(″RLTS(ON) VERSION(1.8.0)″), then it will work.

CEEUOPT, CEEDOPT, CEEROPT, or the command line may be used to specify
the VERSION in these cases.

The C++ compiler does not have this restriction.

v Certain problems may occur whenever multiple versions of a module are loaded
into the same address space. An example of this type of problem is:

1. There are two levels of user modules in use. LEVEL1.LOAD (in LPA or the
LNKLST) contains production versions of these user-written modules, and is

16 z/OS V1R4.0 Language Environment Customization

normally used. LEVEL2.LOAD contains experimental new versions of these
same modules. When these are needed, RTLS is used to fetch them. There
is an RTLS logical library, LEVEL2, that points to CEE.SCEERUN and
LEVEL2.LOAD.

2. A TSO user enters an z/OS UNIX shell, using the TSO/E OMVS command.
_BPX_SHAREAS=ON is set, so that many z/OS UNIX shell commands will
execute in the TSO/E address space.

3. The user then starts a long-running (user-written) z/OS UNIX shell command
that employs RTLS(ON) LIBRARY(LEVEL2), to access the experimental
library level. This application then issues fetch() for MODULE1, which is
fetched in from LEVEL2.LOAD.

4. While the long-running application is executing, PF6 is pressed to escape to
TSO. The user then starts another application, which is a TSO command (not
using Language Environment at all). This application issues ATTACH (or LINK
or XCTL) for MODULE1, and expects to use the copy from LEVEL1.LOAD in
the LNKLST. However, there is already a copy of MODULE1 (from
LEVEL2.LOAD) loaded for this address space, and the ATTACH may use that
copy, rather than fetch a new copy. If so, the TSO command will use the new
experimental version of MODULE1 rather than the production version.

This type of problem may occur whenever LINK, XCTL, ATTACH, CSVQUERY, or
CSVINFO is used and multiple versions of a module are available in an address
space. Use of LOAD and DELETE does not cause problems when multiple versions
of RTLS-controlled modules are present in the address space.

Some of the cases where Language Environment fetches modules using ATTACH
or LINK are:

1. With the C Multitasking Facility (the module with EDCMTF)

2. With the FORTRAN Multitasking Facility (the module with VFEIS#)

3. Non-POSIX system()

4. When doing COBOL SORT or PL/I PLISRTx (SORT module)

Chapter 3. Choosing your Language Environment run-time library access 17

18 z/OS V1R4.0 Language Environment Customization

Chapter 4. Customizing Language Environment Run-Time
Options

The run-time option values IBM supplies with Language Environment may not suit
the application programmers’ needs at your site. Resetting the defaults will save the
programmers’ time because they will not need to override the run-time option
defaults as often.

Refer to Chapter 12, “Language Environment Run-Time Options” on page 67 for
detailed information about the run-time options, default values, and syntax. You
may not need to change most default values. You can fill in the blanks in Table 6
with the changes you plan to make in the defaults for both z/OS batch and CICS
processing.

Table 6. Worksheet: Planning to Customize Language Environment Run-Time Options

Run-time option z/OS Default Value
New z/OS
Default CICS Default Value

New CICS
Default Page

ABPERC (NONE) N/A N/A 68

ABTERMENC (ABEND) (ABEND) 69

AIXBLD (OFF) N/A N/A 71

ALL31 (ON) (ON) 72

ANYHEAP (16K,8K, ANYWHERE,
FREE)

(4K,4080, ANYWHERE,
FREE)

73

AUTOTASK NOAUTOTASK N/A N/A 75

BELOWHEAP (8K,4K,FREE) (4K,4080, FREE) 76

CBLOPTS (ON) N/A N/A 77

CBLPSHPOP N/A N/A (ON) 78

CBLQDA (OFF) N/A N/A 79

CHECK (ON) (ON) 80

COUNTRY (US) (US) 80

DEBUG (OFF) (OFF) 81

DEPTHCONDLMT (10) (10) 82

ENVAR ('') ('') 84

ERRCOUNT (0) (0) 85

ERRUNIT (6) N/A N/A 86

FILEHIST (ON) N/A N/A 87

FILETAG (NOAUTOCVT,NOAUTOTAG) N/A N/A 88

HEAP (32K,32K, ANYWHERE,
KEEP,8K, 4K)

(4K,4080, ANYWHERE,
KEEP,4K, 4080)

90

HEAPCHK (OFF,1,0,0) (OFF,1,0,0) 92

HEAPPOOLS (OFF,8,10,32,10,
128,10,256,10,
1024,10,2048,10)

(OFF,8,10,32,10,
128,10,256,10,
1024,10,2048,10)

N/A 94

INFOMSGFILTER (OFF,,,,) (OFF,,,,) N/A 95

INQPCOPN (ON) N/A N/A 97

INTERRUPT (OFF) N/A N/A 97

© Copyright IBM Corp. 1991, 2002 19

Table 6. Worksheet: Planning to Customize Language Environment Run-Time Options (continued)

Run-time option z/OS Default Value
New z/OS
Default CICS Default Value

New CICS
Default Page

LIBRARY (SYSCEE) N/A N/A 98

LIBSTACK (4K,4K,FREE) (32,4080,FREE) 99

MSGFILE (SYSOUT,FBA,
121,0,NOENQ)

N/A N/A 101

MSGQ (15) N/A N/A 104

NATLANG (ENU) (ENU) 105

NONIPTSTACK Replaced by
THREADSTACK

OCSTATUS (ON) N/A N/A 107

PC (OFF) N/A N/A 108

PLITASKCOUNT (20) N/A N/A 109

POSIX (OFF) N/A N/A 109

PROFILE (OFF,’ ’) (OFF,’ ’) (OFF,’ ’) 111

PRTUNIT (6) N/A N/A 111

PUNUNIT (7) N/A N/A 112

RDRUNIT (5) N/A N/A 113

RECPAD (OFF) N/A N/A 113

RPTOPTS (OFF) (OFF) 114

RPTSTG (OFF) (OFF) 117

RTEREUS (OFF) N/A N/A 127

RTLS (OFF) N/A N/A 128

SIMVRD (OFF) N/A N/A 129

STACK (128K,128K,ANYWHERE,KEEP,512K,128K) (4K,4080,ANYWHERE,KEEP,4K,4080)) 130

STORAGE (NONE,NONE,NONE,0K) (NONE,NONE,NONE,0K) 133

TERMTHDACT (TRACE,,96) (TRACE,CESE,96) 136

TEST NOTEST(ALL,
*,PROMPT, INSPPREF)

NOTEST(ALL,
*,PROMPT, INSPPREF)

142

THREADHEAP (4K,4K,ANYWHERE,
KEEP)

N/A N/A 145

THREADSTACK (OFF,4K,4K,
ANYWHERE,
KEEP,128K,128K)

N/A N/A 146

TRACE (OFF,4K,DUMP,LE=0) (OFF,4K,DUMP,LE=0)) 149

TRAP (ON,SPIE) (ON,SPIE) 151

UPSI (00000000) (00000000) 153

USRHDLR NOUSRHDLR() NOUSRHDLR() 154

VCTRSAVE (OFF) N/A N/A 155

VERSION (’’) N/A N/A 156

XUFLOW (AUTO) (AUTO) 157

Note: The abbreviation N/A is used for not applicable.

20 z/OS V1R4.0 Language Environment Customization

You also need to choose which sample customization jobs you need to modify and
run. Table 7 lists the sample jobs that are members of Language Environment
sample library SCEESAMP. These sample jobs require other members of the
SCEESAMP data set.

Table 7. Sample jobs to change run-time options defaults

Set Defaults For Sample Job Required Member

Installation-wide z/OS batch CEEWDOPT CEEDOPT

Installation-wide CICS CEEWCOPT CEECOPT

Region-specific CICS CEEWROPT CEECOPT

Region-specific IMS CEEWROPT CEEDOPT

Application-specific CEEWUOPT CEEUOPT

Setting Default Options with the CEEXOPT Macro
When you run the sample jobs, they create the CEEDOPT CSECT, an options
control block which establishes the defaults for the options. The jobs invoke
CEEXOPT during the assembly of the CEEDOPT module. When you modify the
CEEXOPT macro invocation to change installation-wide defaults, you must specify
each run-time option as either OVR or NONOVR.

Guideline: To invoke CEEXOPT, adhere to the syntax of the IBM-supplied template
for CEEDOPT as shown in Figure 2 for z/OS and Figure 3 for CICS. These are
samples and should be compared to the actual code before you attempt to use
them. Xs are in column 72.

Figure 2 on page 22 shows the IBM-supplied version of the CEEDOPT CSECT
contained within the CEEDOPT member, with the default suboption values for each
of the options.

Figure 3 on page 23 shows the IBM-supplied version of the CEEDOPT CSECT
contained within the CEECOPT member, with the default suboption values for each
of the options. The CEECOPT member:

v is the CICS-specific version of the CEEDOPT member.

v contains CEEDOPT CSECT, whose contents differ from those of CEEDOPT
CSECT in the CEEDOPT member.

Chapter 4. Customizing Language Environment Run-Time Options 21

CEEDOPT CSECT
CEEDOPT AMODE ANY
CEEDOPT RMODE ANY

CEEXOPT ABPERC=((NONE),OVR), X
ABTERMENC=((ABEND),OVR), X
AIXBLD=((OFF),OVR), X
ALL31=((ON),OVR), X
ANYHEAP=((16K,8K,ANYWHERE,FREE),OVR), X
BELOWHEAP=((8K,4K,FREE),OVR), X
CBLOPTS=((ON),OVR), X
CBLPSHPOP=((ON),OVR), X
CBLQDA=((OFF),OVR), X
CHECK=((ON),OVR), X
COUNTRY=((US),OVR), X
DEBUG=((OFF),OVR), X
DEPTHCONDLMT=((10),OVR), X
ENVAR=((’’),OVR), X
ERRCOUNT=((0),OVR), X
ERRUNIT=((6),OVR), X
FILEHIST=((ON),OVR), X
FILETAG=((NOAUTOCVT,NOAUTOTAG),OVR), X
HEAP=((32K,32K,ANYWHERE,KEEP,8K,4K),OVR), X
HEAPCHK=((OFF,1,0,0),OVR), X
HEAPPOOLS=((OFF,8,10,32,10,128,10,256,10,1024,10,2048, X
10),OVR), X
INFOMSGFILTER=((OFF,,,,),OVR), X
INQPCOPN=((ON),OVR), X
INTERRUPT=((OFF),OVR), X
LIBRARY=((SYSCEE),OVR), X
LIBSTACK=((4K,4K,FREE),OVR), X
MSGFILE=((SYSOUT,FBA,121,0,NOENQ),OVR), X
MSGQ=((15),OVR), X
NATLANG=((ENU),OVR), X
NOAUTOTASK=(OVR), X
NOTEST=((ALL,*,PROMPT,INSPPREF),OVR), X
NOUSRHDLR=((),OVR), X
OCSTATUS=((ON),OVR), X
PC=((OFF),OVR), X
PLITASKCOUNT=((20),OVR), X
POSIX=((OFF),OVR), X
PROFILE=((OFF,’’),OVR), X
PRTUNIT=((6),OVR), X
PUNUNIT=((7),OVR), X
RDRUNIT=((5),OVR), X
RECPAD=((OFF),OVR), X
RPTOPTS=((OFF),OVR), X
RPTSTG=((OFF),OVR), X
RTEREUS=((OFF),OVR), X
RTLS=((OFF),OVR), X
SIMVRD=((OFF),OVR), X
STACK=((128K,128K,ANYWHERE,KEEP,128K,128K),OVR), X
STORAGE=((NONE,NONE,NONE,0K),OVR), X
TERMTHDACT=((TRACE,,96),OVR), X
THREADHEAP=((4K,4K,ANYWHERE,KEEP),OVR), X
THREADSTACK=((OFF,4K,4K,ANYWHERE,KEEP,128K,128K),OVR), X
TRACE=((OFF,4K,DUMP,LE=0),OVR), X
TRAP=((ON,SPIE),OVR), X
UPSI=((00000000),OVR), X
VCTRSAVE=((OFF),OVR), X
VERSION=((’’),OVR), X
XUFLOW=((AUTO),OVR)

END

Figure 2. Sample Invocation of CEEXOPT within the CEEDOPT Member

22 z/OS V1R4.0 Language Environment Customization

Requirements for coding the CEEXOPT macro

CEEDOPT CSECT
CEEDOPT AMODE ANY
CEEDOPT RMODE ANY

CEEXOPT ABPERC=((NONE),OVR), X
ABTERMENC=((ABEND),OVR), X
AIXBLD=((OFF),OVR), X
ALL31=((ON),OVR), X
ANYHEAP=((4K,4080,ANYWHERE,FREE),OVR), X
BELOWHEAP=((4K,4080,FREE),OVR), X
CBLOPTS=((ON),OVR), X
CBLPSHPOP=((ON),OVR), X
CBLQDA=((OFF),OVR), X
CHECK=((ON),OVR), X
COUNTRY=((US),OVR), X
DEBUG=((OFF),OVR), X
DEPTHCONDLMT=((10),OVR), X
ENVAR=((’’),OVR), X
ERRCOUNT=((0),OVR), X
ERRUNIT=((6),OVR), X
FILEHIST=((ON),OVR), X
FILETAG=((NOAUTOCVT,NOAUTOTAG),OVR), X
HEAP=((4K,4080,ANYWHERE,KEEP,4K,4080),OVR), X
HEAPCHK=((OFF,1,0,0),OVR), X
HEAPPOOLS=((OFF,8,10,32,10,128,10,256,10,1024,10,2048, X
10),OVR), X
INFOMSGFILTER=((OFF,,,,),OVR), X
INQPCOPN=((ON),OVR), X
INTERRUPT=((OFF),OVR), X
LIBRARY=((SYSCEE),OVR), X
LIBSTACK=((32,4080,FREE),OVR), X
MSGFILE=((SYSOUT,FBA,121,0,NOENQ),OVR), X
MSGQ=((15),OVR), X
NATLANG=((ENU),OVR), X
NOAUTOTASK=(OVR), X
NOTEST=((ALL,*,PROMPT,INSPPREF),OVR), X
NOUSRHDLR=((),OVR), X
OCSTATUS=((ON),OVR), X
PC=((OFF),OVR), X
PLITASKCOUNT=((20),OVR), X
POSIX=((OFF),OVR), X
PROFILE=((OFF,’’),OVR), X
PRTUNIT=((6),OVR), X
PUNUNIT=((7),OVR), X
RDRUNIT=((5),OVR), X
RECPAD=((OFF),OVR), X
RPTOPTS=(OFF,OVR), X
RPTSTG=((OFF),OVR), X
RTEREUS=((OFF),OVR), X
RTLS=((OFF),OVR), X
SIMVRD=((OFF),OVR), X
STACK=((4K,4080,ANYWHERE,KEEP,4K,4080),OVR), X
STORAGE=((NONE,NONE,NONE,0K),OVR), X
TERMTHDACT=((TRACE,CESE,96),OVR), X
THREADHEAP=((4K,4080,ANYWHERE,KEEP),OVR), X
THREADSTACK=((OFF,4K,4080,ANYWHERE,KEEP,4K,4080),OVR), X
TRACE=((OFF,4K,DUMP,LE=0),OVR), X
TRAP=((ON,SPIE),OVR), X
UPSI=((00000000),OVR), X
VCTRSAVE=((OFF),OVR), X
VERSION=((’’),OVR), X
XUFLOW=((AUTO),OVR)

END

Figure 3. Sample Invocation of CEEXOPT within the CEECOPT Member

Chapter 4. Customizing Language Environment Run-Time Options 23

v Continuing lines of code

A continuation character (X in the source) must be in column 72 on each line of
the CEEXOPT invocation except the last line. The continuation line must start in
column 16. You can break the coding after any comma.

v Case sensitivity

Options and suboptions must be in uppercase. Only suboptions that are strings
can be specified in mixed-case or lowercase. For example, both
MSGFILE=(SYSOUT) and MSGFILE=(sysout) are acceptable.

v Comma

A comma must end each option except for the final option. If the comma is
omitted, everything following the option is treated as a comment.

v Special characters

If one of the string suboptions contains a special character (for example, an
embedded blank or unmatched right or left parenthesis), the string must be
enclosed in single quotation marks ('), not in double quotation marks ("). (You can
specify a null string with either contiguous single or double quotation marks.)

To obtain a single quotation mark (') or a single ampersand (&) within a string,
you must specify two contiguous instances of the character. The pair is counted
as only one character in determining whether the maximum allowable string
length has been exceeded and in setting the effective length of the string.

v Maximum length

Macro instruction operands cannot be longer than 255 characters. Therefore, it is
not possible for each suboption of the NOTEST/TEST option to attain the
maximum allowable length normally permitted by Language Environment. For
example, the command suboption of NOTEST/TEST permits 250 characters
while the preference suboption of NOTEST/TEST allows 80 characters. The total
number of characters for these two suboptions exceeds that allowed by the
CEEXOPT macro.

If the number of characters to the right of the equal sign is greater than 255 for
any keyword parameter in the CEEXOPT invocation in CEEDOPT, CEECOPT,
CEEROPT, or CEEUOPT, a return code of 12 is produced for the assembly, and
the options are not parsed properly.

v Apostrophes

Avoid unmatched apostrophes in any string that uses apostrophes. The error
cannot be captured within CEEXOPT itself; instead, the assembler produces a
message such as:

IEV03 *** ERROR *** NO ENDING APOSTROPHE

Such a message bears no particular spatial relationship to the offending
suboption, and the options are not parsed properly if this error is detected.

v Omissions permitted in CEEUOPT and CEEROPT

You can completely omit the specification of any option in CEEUOPT and
CEEROPT. Default values are then supplied for each of the missing suboptions
in the options control block that is generated, and these values are ignored at the
time Language Environment merges the options.

There are two recommended ways of omitting an option. The HEAP run-time
option is used below to demonstrate:

– Specify the option with only a comma following the equal sign:
HEAP=, X

– Specify the option with empty parentheses and comma following the equal
sign:

24 z/OS V1R4.0 Language Environment Customization

HEAP=(), X

In either case, the continuation character (X in this example) must still be present
in column 72.

In CEEUOPT, IBM recommends that you omit any options you do not wish to
change. The options you omit from the macro will default to the installation-wide
defaults you set in CEEDOPT, CEEROPT, or CEECOPT.

v Omission of suboptions in CEEUOPT

In CEEUOPT, you can use commas to indicate the omission of one or more
suboptions for options having more than one suboption. For example, if you wish
to specify only the second suboption of the STORAGE option, the omission of
the 1st, 3rd, and 4th suboptions can be indicated in any of the following ways:
STORAGE=(,NONE), X
STORAGE=(,NONE,), X
STORAGE=(,NONE,,), X

Because suboptions are positional parameters, do not omit the comma if the
corresponding suboption is omitted and another suboption follows.

v Options that permit only one suboption

Options that permit only one suboption do not need to enclose that suboption in
parentheses. For example, you can specify the COUNTRY option in CEEUOPT
in either of the following ways:
COUNTRY=(US), X
COUNTRY=US, X

v No omissions permitted in CEEDOPT and CEECOPT

Each option in the CEEDOPT or CEECOPT template must be present, and each
of its suboptions must be specified with one of the legal suboption values, except
for the suboptions of the AUTOTASK | NOAUTOTASK and USRHDLR |
NOUSRHDLR options. The final suboption for each CEEDOPT or CEECOPT
option must be OVR or NONOVR. OVR means that the option can be overridden
at run-time. NONOVR means that the option cannot be overridden at run-time.

Changing Installation-Wide Run-Time Options Defaults (Non-CICS)
Use the CEEWDOPT sample job to change the installation-wide defaults for the
Language Environment run-time options. Use the worksheet in Table 6 on page 19
to select your default values and use the information in Chapter 12, “Language
Environment Run-Time Options” on page 67 for more detail about the options and
their syntax.

These defaults apply to applications running with the Language Environment library.
This includes the C/C++ Compiler, Prelinker, and Object Library Utility.

Modifying the JCL for CEEWDOPT

1. Copy the CEEDOPT member from CEE.SCEESAMP into CEEWDOPT in place
of the comment lines following the ++ SRC statement.

2. Change the parameters on the CEEXOPT macro statement in CEEDOPT to
reflect the values you have chosen for your installation-wide default run-time
options.

3. Change #GLOBALCSI to the data set name of your global CSI data set.

4. Change #TZONE to the name of your target zone.

5. Add necessary SMP/E PRE information for PTFs you have installed on your
system which contain the same part.

Chapter 4. Customizing Language Environment Run-Time Options 25

CEEWDOPT should run with a condition code of 0.

Note: Alternatively, you can use ++ SRCUPD to change a subset of the run-time
options in this sample job.

Changing Installation-Wide Run-Time Options Defaults (CICS)
Use the CEEWCOPT sample job to change the installation-wide defaults for the
Language Environment run-time options under CICS. Use the worksheet in Table 6
on page 19 to select your default values and use the information in Chapter 12,
“Language Environment Run-Time Options” on page 67 for more detail about the
options and their syntax.

Modifying the JCL for CEEWCOPT

1. Copy member CEECOPT from CEE.SCEESAMP into CEEWCOPT in place of
the comment lines following the ++ SRC statement.

2. Change the parameters on the CEEXOPT macro statement in CEECOPT to
reflect the values you have chosen for your installation-wide default run-time
options.

3. Change #GLOBALCSI to the data set name of your global CSI data set.

4. Change #TZONE to the name of your target zone.

5. Add necessary SMP/E PRE information for PTFs you have installed on your
system which contain the same part.

CEEWCOPT should run with a condition code of 0.

Note: Alternatively, you can use ++ SRCUPD to change a subset of the run-time
options in this sample job.

Creating a Region-Specific Run-Time Options Load Module
The system programmers at your site might need to set different run-time options
on a CICS or IMS region basis. For example, one CICS region (Region A) can be
designated to run only AMODE 31 programs, while another region (Region B) will
run both AMODE 24 and AMODE 31 programs. This would require Region B to
have the ALL31(OFF) option setting while Region A could perform better with the
ALL31(ON) option setting.

A run-time options load module, CEEROPT, is available just for this purpose.
CEEROPT is a stand-alone load module that can be used to set Language
Environment run-time options that are different than the installation defaults with:

1. CICS

2. IMS with Library Routine Retention (LRR)

3. Any other users of LRR

If a CEEROPT load module is present in a program search order, Language
Environment will load and merge the options in CEEROPT with the installation
default run-time options.

The CEEROPT load module can be created by running the CEEWROPT job found
in the SCEESAMP data set. Language Environment does not ship a default
CEEROPT load module. Each run of the CEEWROPT sample job will create a new
CEEROPT options load module in a user-specified library. The system programmer
can then include this specific library that contains the CEEROPT load module as
part of the STEPLIB concatenation for IMS startup job streams or the DFHRPL

26 z/OS V1R4.0 Language Environment Customization

concatenation for CICS. Run-time options in CEEROPT override the default options
in CEEDOPT or CEECOPT, unless NONOVR was specified for the option when
CEEDOPT or CEECOPT was created.

CEEWROPT does not use SMP/E to create the options load module, so it can be
run several times to create several different CEEROPT load modules, each in its
own specific library. Any run-time options omitted from CEEROPT will be picked up
from the installation defaults. Therefore, the system programmer does not need to
rebuild CEEROPT when upgrading the z/OS release. Use the information in
Chapter 12, “Language Environment Run-Time Options” on page 67 to select the
values for your application-specific run-time options load modules.

Modifying the JCL for CEEWROPT

1. Copy member CEEDOPT or CEECOPT from CEE.SCEESAMP into
CEEWROPT in place of the comment lines following the SYSIN DD statement.

2. Change the CSECT name and labels from CEEDOPT to CEEROPT.

3. Change the parameters on the CEEXOPT macro statement to reflect the values
you have chosen for this region-specific run-time options load module.

4. Code just the options you want to change. Options you omit from CEEROPT
will remain the same as the installation defaults.

5. Change DSNAME=YOURLIB in the SYSLMOD DD statement to the name of the
partitioned data set into which you want your CEEROPT load module to be
link-edited. This data set does not need to be APF authorized.

Note: If you have a CEEROPT load module in your current data set, it will be
replaced by the new version.

6. Check the SYSLIB DD statement to ensure the data set names are correct.

CEEWROPT should run with a condition code of 0.

Creating an Application-Specific Run-Time Options Module
The application programmers at your site might need more than one set of run-time
options. You can accommodate this need by establishing one set of options as the
installation-wide default by using the CEEWDOPT or CEEWCOPT sample job
described above, then you can create application-specific run-time options modules
using the CEEWUOPT sample job.

Each run of the CEEWUOPT sample job can create a new CEEUOPT options
module in a user-specified library. The application programmer can include one of
these CEEUOPT modules when link-editing an application. The options in
CEEUOPT override the default options in CEEDOPT or CEECOPT, unless
NONOVR was specified for the option when CEEDOPT or CEECOPT was created.

CEEWUOPT does not use SMP/E to create the options module, so it can be run
several times to create several different CEEUOPT modules, each in its own
user-specified library. Use the information in Chapter 12, “Language Environment
Run-Time Options” on page 67 to select the values for your application-specific
run-time options modules.

Modifying the JCL for CEEWUOPT

1. Copy member CEEUOPT from CEE.SCEESAMP into CEEWUOPT in place of
the comment lines following the SYSIN DD statement.

Chapter 4. Customizing Language Environment Run-Time Options 27

2. Change the parameters on the CEEXOPT macro statement in CEEUOPT to
reflect the values you have chosen for this application-specific run-time options
module.

3. Code just the options you want to change. Options you omit from CEEUOPT
will remain the same as the installation defaults.

4. Change DSNAME=YOURLIB in the SYSLMOD DD statement to the name of the
partitioned data set into which you want your CEEUOPT module to be
link-edited.

Note: If you have a CEEUOPT module in your current data set, it will be
replaced by the new version.

5. Check the SYSLIB DD statement to ensure the data set names are correct.

CEEWUOPT should run with a condition code of 0.

28 z/OS V1R4.0 Language Environment Customization

Chapter 5. Customizing User Exits

Language Environment provides support for the following user exits:

v Assembler user exit

The assembler user exit can be used to perform functions for enclave
initialization, normal and abnormal enclave termination, and process termination.
See “Changing the Assembler Language User Exit” on page 30.

v High-level language (HLL) user exit

The HLL user exit can be used to perform functions for enclave initialization. See
“Changing the High-Level Language User Exit” on page 32.

v Abnormal termination user exit

The abnormal termination user exit can be used to collect problem determination
data when Language Environment is terminating an enclave due to an unhandled
condition. See “Customizing Language Environment Abnormal Termination Exits”
on page 33.

v Load notification user exit

The load notification user exit can be used to improve performance by preventing
frequently used modules from being loaded and deleted with each use. See
“Creating a Load Notification User Exit” on page 36.

The load notification user exit is only available when Library Routine Retention
(LRR) is used.

v Storage tuning user exit

The storage tuning user exit provides a programming interface that allows you to
collect Language Environment storage tuning information and to set the
Language Environment run-time option values for STACK, LIBSTACK, HEAP,
ANYHEAP and BELOWHEAP. See “Creating a Storage Tuning User Exit” on
page 38.

The storage tuning user exit is available for CICS, and for non-CICS
environments when LRR is used.

Refer to z/OS Language Environment Programming Guide for detailed information
about the features of the exits, default values, and syntax.

Choose which sample customization jobs to modify and run. Table 8 lists the
sample jobs that are members of Language Environment sample library
SCEESAMP.

Table 8. Sample Customization Jobs for the User Exits

Use This Sample Job To

CEEWDXIT Change installation-wide assembler language user exit.

CEEWCXIT Change installation-wide CICS assembler language user exit.

CEEWUXIT Create an application-specific assembler language user exit.

CEEWHLLX Change high-level language user exit.

CEEWDEXT Identify an abnormal termination exit (non-CICS).

CEEWCEXT Identify an abnormal termination exit (CICS).

CEEWLNUE Identify a load notification user exit.

© Copyright IBM Corp. 1991, 2002 29

An Example
If there is an unhandled condition of severity 2 or greater, the default assembler
user exit in z/OS returns to the system with a return code. You can change the
default assembler user exit so that it forces an abend for unhandled conditions of
severity 2 or greater.

Examples of conditions that are severity 2 or greater include:
v Program interrupts
v System abends
v Conditions detected by Language Environment: for example, a program load

failure

The ABTERMENC(ABEND) run-time option is an alternative way to force an abend
for unhandled conditions of severity 2 or greater.

Changing the Assembler Language User Exit
Three sample jobs are installed in the CEE.SCEESAMP target data set to help you
modify the assembler language user exit. Two of the jobs use SMP/E USERMODs
to replace the IBM-supplied installation-wide assembler user exits. The third sample
job creates an application-specific assembler user exit that can be link-edited with
applications that need its functions. You can create several different
application-specific user exits, each in a different partitioned data set, to satisfy the
needs of different application programs. Source code for the sample assembler user
exits is installed as members in the CEE.SCEESAMP data set.

Table 9. Sample Assembler User Exits for Language Environment

Example User Exit Operating System Language (if Language-Specific)

CEEBXITA z/OS (default)

CEEBXITC TSO/E

CEECXITA CICS (default)

CEEBX05A z/OS VS COBOL II compatibility

Notes:

1. CEEBXITA and CEECXITA are the defaults on your system for z/OS and CICS, if
Language Environment is installed at your installation without modification.

2. The source code for CEEBXITA, CEEBXITC, CEECXITA, and CEEBX05A can be found
in the SCEESAMP sample library.

Use the information in z/OS Language Environment Programming Guide to assist
you in modifying the IBM-supplied user exits or in creating your own.

If you specify run-time options in an assembler language user exit, they override
options specified in CEEUOPT. Options in CEEDOPT or CEECOPT are overridden
only if OVR was specified for the option in CEEDOPT or CEECOPT.

The assembler user exit CEEBXITA cannot alter settings for the RTLS, LIBRARY,
and VERSION run-time options. By the time that CEEBXITA is invoked, it is too late
to change the RTLS logical library, since certain Language Environment modules
have already been loaded.

30 z/OS V1R4.0 Language Environment Customization

CEEBXITA performs functions for enclave initialization, normal and abnormal
enclave termination, and process termination. CEEBXITA must be written in
assembler language, because an HLL environment might not be established when
the exit is invoked.

You can set up user exits for tasks such as:
v Installation accounting and charge back
v Installation audit controls
v Programming standard enforcement
v Common application run-time support

Changing the Installation-Wide Assembler Language User Exit
(Non-CICS)

Use the CEEWDXIT sample job to change the installation-wide assembler language
user exit. You must replace the comment in CEEWDXIT with your source for
CEEBXITA. You can copy the source for the IBM-supplied default installation-wide
assembler language user exit from CEEBXITA in CEE.SCEESAMP and modify it to
suit your needs, or you can create your own source for CEEBXITA. Use the
information in z/OS Language Environment Programming Guide to guide you in
coding your changes.

Modifying the JCL for CEEWDXIT

1. Replace the comment lines following the ++ SRC statement in the job with your
source program for the installation-wide assembler language user exit.

2. Change #GLOBALCSI to the data set name of your global CSI data set.

3. Change #TZONE to the name of your target zone.

4. Add necessary SMP/E PRE information for PTFs you have installed on your
system which contain the same part.

CEEWDXIT should run with a condition code of 0.

Changing the Installation-Wide Assembler Language User Exit (CICS)
Use the CEEWCXIT sample job to change the CICS installation-wide assembler
language user exit. You must replace the comment in CEEWCXIT with your source
for CEECXITA. You can copy the source for the IBM-supplied default
installation-wide assembler language user exit from CEECXITA in CEE.SCEESAMP
and modify it to suit your needs, or you can create your own source for CEECXITA.

Note the difference between the IBM-supplied CEEBXITA and the IBM-supplied
CEECXITA. You can retain some or all of these differences in your user exit. Use
the information in z/OS Language Environment Programming Guide to guide you in
coding your changes.

Modifying the JCL for CEEWCXIT

1. Replace the comment lines following the ++ SRC statement in the job with your
source program for the installation-wide CICS assembler language user exit.

2. Change #GLOBALCSI to the data set name of your global CSI data set.

3. Change #TZONE to the name of your target zone.

4. Add necessary SMP/E PRE information for PTFs you have installed on your
system which contain the same part.

CEEWCXIT should run with a condition code of 0.

Chapter 5. Customizing User Exits 31

Creating an Application-Specific Assembler Language User Exit
Use the CEEWUXIT sample job to create as many application-specific assembler
language user exits as your site requires. You must replace the comment in
CEEWUXIT with your source. You can copy the source for the IBM-supplied default
installation-wide assembler language user exit from CEEBXITA or CEEBXITC in
CEE.SCEESAMP and modify it to suit your needs, or you can create your own
source.

CEEWUXIT does not use SMP/E to create the assembler language user exit
module, so it can be run several times to create several different CEEBXITA
modules, each in its own user-specified library. Use the information in z/OS
Language Environment Programming Guide to guide you in coding your changes.

Modifying the JCL for CEEWUXIT

1. Replace the comment lines following the //SYSIN statement in the job with your
source program for the application-specific assembler language user exit.

2. Change DSNAME=YOURLIB in the SYSLMOD DD statement to the name of the
partitioned data set you want your CEEBXITA module link-edited into.

Note: A CEEBXITA module currently in the chosen data set is replaced by the
new version.

3. Check the SYSLIB DD statement to ensure that the data set names are correct.

CEEWUXIT should run with a condition code of 0.

Changing the High-Level Language User Exit
The CEEWHLLX sample job contains an SMP/E USERMOD that replaces the
IBM-supplied high-level language user exit with your high-level language user exit.
The USERMOD contains the object program for the user exit, not the high-level
language source.

SMP/E is not able to compile a source language other than assembler language, so
you must compile your user exit and place the object program produced by the
compiler into the USERMOD in CEEWHLLX. Refer to z/OS Language Environment
Programming Guide for a description of the high-level language user exit interface.

If you write your high-level language user exit in C/C++ use the #pragma csect
statement to name the CSECT CEEBINT. This lets SMP/E maintain the CSECT
properly. You can also write high-level language user exits in PL/I and Language
Environment-conforming assembler.

If you use any of the C/C++ library functions, the CEEWHLLX job might generate
the following message.
IEW2454W nnnn SYMBOL xxxxxxxx UNRESOLVED.
NO AUTOCALL (NCAL) SPECIFIED.

Although you might receive a condition code of 04, this does not indicate an error.

Modifying the JCL for CEEWHLLX

1. Replace the comment lines following the ++ MOD statement in CEEWHLLX with
the object program obtained by compiling your high-level language user exit.

2. Change #GLOBALCSI to the data set name of your global CSI data set.

3. Change #TZONE to the name of your target zone.

32 z/OS V1R4.0 Language Environment Customization

4. Add necessary SMP/E PRE information for PTFs you have installed on your
system which contain the same part.

CEEWHLLX should run with a condition code of 0.

Exception: If your exit is written in C/C++, you could get a condition code of 4 if
your job runs correctly.

Customizing Language Environment Abnormal Termination Exits
If Language Environment encounters an unhandled condition of severity 2 or
greater, it can invoke an abnormal termination exit before it terminates the enclave.
If the abnormal termination exit is invoked before the thread is terminated, the
abnormal termination exit can collect problem determination data before Language
Environment frees the resources it has acquired.

The sample abnormal termination exits CEEBDATX and CEECDATX are no longer
provided with Language Environment. You can use the TERMTHDACT(UADUMP)
run-time option to generate a system dump of the user address space.

The CEEEXTAN (non-CICS) and CEECXTAN (CICS) CSECTs, which are installed
in the CEE.SCEESAMP target data set, contain the instructions for defining which
abnormal termination exits, if any, will be called when a routine terminates
abnormally. Use the CEEWDEXT (non-CICS) and CEEWCEXT (CICS) sample jobs
to replace the existing CSECTs with your updated CSECTs in your run-time library.
For the syntax and other considerations for abnormal termination exits, see z/OS
Language Environment Programming Guide.

Creating a Language Environment Abnormal Termination Exit
To create an abnormal termination exit:

1. Create an assembler language routine that conforms to the syntax described in
z/OS Language Environment Programming Guide.

2. Assemble and link-edit your exit into a library that Language Environment can
access at run-time, such as SCEERUN.

3. Code a CEEEXTAN CSECT that contains a CEEXART macro identifying your
exit. The macro specifies your routine as an abnormal termination exit routine.
The CEEEXTAN CSECT can be found in source file CEECXTAN (for CICS) or
CEEEXTAN (for non-CICS). See “CEEEXTAN Abnormal Termination Exit
CSECT” for more information.

4. Replace the existing CEEEXTAN CSECT with the updated CEEEXTAN as
described in the sections below.

CEEEXTAN Abnormal Termination Exit CSECT
CEEEXTAN is a CSECT explicitly linked with the Language Environment condition
handling routines, and it is the CSECT that you create by coding the CEEXAHD,
CEEXART, and CEEXAST macros. Specifically, CEEEXTAN is linked with the
CEEPLPKA and CEECCICS load modules. CEEEXTAN CSECT is created through
the use of the following Language Environment-provided assembler macros:

CEEXAHD
Defines the header of the table. CEEXAHD generates the CSECT
statement and any header information required. It has no operands.

CEEXART
Identifies the name of the abnormal termination exit to be invoked. It

Chapter 5. Customizing User Exits 33

generates one entry for an abnormal termination exit. It has only one
keyword parameter, TERMXIT=, which is the load name for the abnormal
termination exit. There is a limit of 8 characters for the load name, and no
validation of the name is performed by the macro.

More than one invocation of CEEXART can appear in the CEEEXTAN
CSECT, thus allowing multiple abnormal termination exits to be registered.
When more than one name is specified, the abnormal termination exits are
honored in the order found in the CEEEXTAN CSECT.

CEEXAST
Identifies the end of the list of abnormal termination exits. It generates the
trailer for the CEEEXTAN CSECT. It has no parameters.

Language Environment validates the format of the abnormal termination exit
CSECT and issues a load of the names as identified in the table. The LOAD is
attempted only for terminations due to unhandled conditions of severity 2 or greater.
If the LOAD is successful, an abnormal termination exit is invoked according to the
interface described below. If the LOAD fails (the routine cannot be found, or there is
not enough storage for the routine, for example), no error indication is delivered and
either the next name in CEEEXTAN is chosen, or termination continues (if the
names have been exhausted). This allows a STEPLIB to either contain or omit the
load names, depending on whether you want the exit to be used for this job.

Note: When RTLS(ON) is in effect, the RTLS logical library is searched for the load
names ahead of the TASKLIBs, STEPLIB/JOBLIB, LPA/LNKLST, etc.

Jobs to Generate and Modify CEEEXTAN CSECT
You can use two source files to generate CEEEXTAN CSECT, one for CICS and
one for non-CICS. The following source files are provided in the SCEESAMP data
set:

CEECXTAN
Source to generate CEEEXTAN CSECT for CICS

CEEEXTAN
Source to generate CEEEXTAN CSECT for non-CICS

You can use the following two jobs to replace CEEEXTAN CSECT:

CEEWCEXT
Replaces CEEEXTAN CSECT for CICS

CEEWDEXT
Replaces CEEEXTAN CSECT for non-CICS

Figure 4 on page 35 contains the source for the IBM-supplied CEEEXTAN:

34 z/OS V1R4.0 Language Environment Customization

If you want to add your own abnormal termination exit called WHODIDIT, then the
code should look like the following:

Identifying the Abnormal Termination Exit (Non-CICS)
Use the CEEWDEXT sample job to specify your own abnormal termination exit in a
non-CICS environment.

Modifying the JCL for CEEWDEXT

1. Replace the comment lines following the ++ SRC statement in CEEWDEXT with
your updated CEEEXTAN CSECT identifying your abnormal termination exit
routine.

2. Change #GLOBALCSI to the data set name of your global CSI data set.

3. Change #TZONE to the name of your target zone.

4. Add necessary SMP/E PRE information for PTFs you have installed on your
system which contain the same part.

CEEWDEXT should run with a condition code of 0.

Identifying the Abnormal Termination Exit (CICS)
Use the CEEWCEXT sample job to specify your own abnormal termination exit in a
CICS environment.

Modifying the JCL for CEEWCEXT

1. Replace the comment lines following the ++ SRC statement in CEEWCEXT with
your updated CEEEXTAN CSECT identifying your abnormal termination exit
routine.

TITLE ’LE/370 Abnormal Termination User exit CSECT’
CEEXAHD ,User exit header

*

* To specify an abnormal termination exit, change the line
* where CEEXART is specified:
* - change the XXXXXXXX to the name of the abnormal termination exit
* - change the ’*’ in column 1 to a blank

* CEEXART TERMXIT=XXXXXXXX
*

CEEXAST ,Terminate the list

Figure 4. Default CEEEXTAN

TITLE ’LE/370 Abnormal Termination User exit CSECT’
CEEXAHD ,User exit header

*

* To specify an abnormal termination exit, change the line
* where CEEXART is specified:
* - change the XXXXXXXX to the name of the abnormal termination exit
* - change the ’*’ in column 1 to a blank

CEEXART TERMXIT=WHODIDIT
*

CEEXAST ,Terminate the list

Figure 5. Updated CEEEXTAN

Chapter 5. Customizing User Exits 35

2. Change #GLOBALCSI to the data set name of your global CSI data set.

3. Change #TZONE to the name of your target zone.

4. Add necessary SMP/E PRE information for PTFs you have installed on your
system which contain the same part.

CEEWCEXT should run with a condition code of 0.

Creating a Load Notification User Exit
The load notification user exit provides customers who are running applications with
LRR active the ability to improve performance by preventing the use count for
frequently used modules from dropping below one.

See z/OS Language Environment Programming Guide for more information on load
notification user exit.

To create a load notification user exit:

1. Create an assembler language routine that conforms to the syntax described in
z/OS Language Environment Programming Guide.

2. Assemble and link-edit your exit into a library that Language Environment can
access at run-time, such as CEE.SCEERUN.

3. Code a CEEBLNUE CSECT that contains a CEEXLRT macro identifying your
exit. The macro specifies your routine as a load notification user exit. The
CEEBLNUE CSECT can be found in source file CEE.SCEESAMP(CEEBLNUE).
See “CEEBLNUE CSECT” for more information.

4. Replace the existing CEEBLNUE CSECT with the updated CEEBLNUE as
described in the sections below.

Identifying the Load Notification User Exit
Use the CEEWLNUE sample job to specify your own load notification user exit.

Modifying the JCL for CEEWLNUE

1. Replace the comment lines following the ++ SRC statement in CEEWLNUE with
your updated CEEBLNUE CSECT identifying your Load Notification User Exit.

2. Change #GLOBALCSI to the data set name of your global CSI data set.

3. Change #TZONE to the name of your target zone.

4. Add necessary SMP/E PRE information for PTFs you have installed on your
system which contain the same part.

CEEWLNUE should run with a condition code of 0.

CEEBLNUE CSECT
CEEBLNUE is a CSECT explicitly linked with Language Environment, and it is the
CSECT that you create by coding the CEEXLHD, CEEXLRT, and CEEXLST
macros. Specifically, CEEBLNUE is linked with the CEEPLPKA module.
CEEBLNUE CSECT is created through the use of the following Language
Environment-provided assembler macros:

CEEXLHD
Defines the head of the list. CEEXLHD generates the CSECT statement
and any header information required. It has no operands.

36 z/OS V1R4.0 Language Environment Customization

CEEXLRT
Identifies the name of the exit to register. Only one name can be provided
since only one load notification user exit may be registered. CEEXLRT has
only one keyword parameter, LOADXIT=, which is the load name for the
load notification user exit. There is a limit of 8 characters for the load name,
and no validation of the name is performed by the macro.

CEEXLST
Defines the end of the list. CEEXLST generates the trailer for the
CEEBLNUE load notification user exit CSECT. It has no parameters.

Language Environment validates the format of the CEEBLNUE CSECT and issues
a load of the name as identified in the table. The LOAD is attempted only during
region initialization when Library Routine Retention (LRR) is active. If the LOAD is
successful, the exit is called for initialization according to the interface described
below. If the LOAD is successful, the exit is registered and called during region
initialization, after each successful load, and during region termination. This allows a
STEPLIB to either contain or omit the load names.

Only one load notification user exit may be registered.

CEEBLNUE Sample
Figure 6 shows the source for the IBM-supplied CEEBLNUE CSECT. It is provided
in the CEE.SCEESAMP data set.

*/***/
/ */
/ LICENSED MATERIALS - PROPERTY OF IBM */
/ */
/ 5645-001 5688-198 */
/ */
/ (C) Copyright IBM Corp. 1991, 1997 */
/ */
/ All Rights Reserved */
/ */
/ US Government Users Restricted Rights - Use, duplication or */
/ disclosure restricted by GSA ADP Schedule Contract with IBM */
/ Corp. */
/ */
/ Status = HMWL810 */
/ */
*/***/

CEEXLHD ,User exit header
==
* *
* To specify a load notification user exit, *
* change the line where CEEXLRT is specified, *
* by doing the following: *
* *
* 1. Change XXXXXXXX to the name of your load notification *
* user exit module name. This name must not be longer *
* than 8 characters. *
* *
* 2. Change the asterisk (*) in column 1 to a blank. *
* *
==
* CEEXLRT LOADXIT=XXXXXXXX

CEEXLST ,Terminate the list

Figure 6. Sample of CEEBLNUE Load Notification User Exit CSECT

Chapter 5. Customizing User Exits 37

Creating a Storage Tuning User Exit
The storage tuning user exit provides a programming interface that allows you to
collect Language Environment storage tuning information and to set the Language
Environment run-time option values for STACK, LIBSTACK, HEAP, ANYHEAP and
BELOWHEAP. See z/OS Language Environment Programming Guide for more
information.

The storage tuning user exit is available on CICS and on non-CICS environments
when LRR is used.

To create a storage tuning user exit on CICS:

1. Create an assembler language routine that conforms to the syntax described in
z/OS Language Environment Programming Guide.

2. Translate your exit with the CICS translator. The SYSEIB translator option must
be used.

3. Assemble and link-edit your exit into a library that is in the CICS DFHRPL DD
concatenation. The member name of the exit must be CEECSTX.

4. Define program CEECSTX to CICS with LANGUAGE(ASSEMBLER). The
definition for the program must be available at CICS start-up.

To create a storage tuning user exit on non-CICS:

1. Create an assembler language routine that conforms to the syntax described in
z/OS Language Environment Programming Guide.

2. Assemble and link-edit your exit into a library that Language Environment can
load at run-time. The member name of the exit must be CEEBSTX.

38 z/OS V1R4.0 Language Environment Customization

Chapter 6. Customizing the Cataloged Procedures

You can tailor the cataloged procedures supplied with Language Environment to suit
the needs of your site. The procedures are part of the SCEEPROC cataloged
procedure library.

You can tailor any of the following:

v If your site uses a prefix other than the IBM-supplied one, you can modify the
data set name prefixes by using the LIBPRFX parameter.

v If you place CEE.SCEERUN and CEE.SCEERUN2 in the LNKLSTxx
concatenation during installation, remove the STEPLIB DD statements.

Note: Since SCEERUN2 contains module names that do not intersect with any
pre-Language Environment run-time library or any existing library, IBM
recommends that SCEERUN2 be added to the LNKLST. This will not
result in any adverse effects.

v If most of the programs at your site require a larger region for successful
execution, change the default region size for the GO steps.

v Change UNIT=SYSDA in CEEWL, CEEWLG, AFHWL, AFHWLG, AFHWN,
AFHWRL, and AFHWRLG.

v Tailor your TSO/E LOGON procedure. If you plan to run Language Environment
applications under TSO/E, add SCEERUN and SCEERUN2 to the STEPLIB DD
of the LOGON procedure, or use the TSO/E command TSOLIB to allocate
SCEERUN and SCEERUN2; this is unnecessary if you place SCEERUN and
SCEERUN2 into the LNKLST concatenation during installation. For more
information, see TSO/E Command Language Reference.

v For programs that require the Language Environment Prelinker Utility, see z/OS
Language Environment Programming Guide and z/OS C/C++ Programming
Guide for details on changes to link-edit procedures. The requirement to use the
Prelinker has been eliminated since the DFSMS/MVS Program Management
Binder directly supports input from the Language Environment conforming
compilers. By choosing to eliminate usage of the Prelinker, the executable
program will be a program object and must reside either in a PDSE or an HFS.

Making the cataloged procedure library available to your jobs
Language Environment is shipped with a procedure library, CEE.SCEEPROC, that
contains several procedures that can be used during application development with
Language Environment. These procedures are summarized in Table 10:

Table 10. Language Environment Invocation Procedures in CEE.SCEEPROC

Procedure Purpose

AFHWL Link-edit a Fortran program.

AFHWLG Link-edit and run a Fortran program.

AFHWN Change any external names in conflict between C and Fortran to the
Fortran-recognized name.

AFHWRL Separate the nonshareable and shareable parts of a Fortran object
module, and link-edit.

AFHWRLG Separate the nonshareable and shareable parts of a Fortran object
module, link-edit, and execute.

© Copyright IBM Corp. 1991, 2002 39

Table 10. Language Environment Invocation Procedures in CEE.SCEEPROC (continued)

Procedure Purpose

CEEWG Load and run a non-XPLINK Language Environment-conforming
application.

CEEWL Link-edit a non-XPLINK Language Environment-conforming
application.

CEEWLG Link-edit and run a non-XPLINK Language Environment-conforming
application.

CEEXL Link-edit an XPLINK Language Environment-conforming application.

CEEXLR Link-edit and run an XPLINK Language Environment-conforming
application.

CEEXR Load and run an XPLINK Language Environment-conforming
application.

EDCDLLRN (alias of
CRTCP001)

Invoke the DLL RENAME Utility.

EDCGNXLT (alias of
EDC4P006)

Read a genxlt file and produce the translation table which is stored
in the nominated LOADLIB.

EDCICONV (alias of
EDC4P007)

Convert the characters from the input file from a coded character set
definition to another character set definition and write the characters
to the output file.

EDCLIB (alias of
CRTCP002)

Maintain a C/C++ object code library.

EDCPL (alias of
EDC4P002)

Prelink and link-edit a C/C++ application.

There are three ways to make the procedures available to your jobs. The method
you choose depends on the special requirements and policies at your site. Use
Table 11 to choose which method to use at your site.

Table 11. Deciding How to Make Cataloged Procedures Available to Your Jobs

If Then Result

You plan to use the IBM-supplied defaults
and install into the default private procedure
library.

Modify the JES2 start
procedure.

Makes all procedures
in the libraries
available to any job in
the system.

You are not using all the defaults and you
want to choose which of the procedures to
make available to general users.

Copy the procedures
into a system or
private PROCLIB.

Makes the procedures
available to your
installation jobs.

You are not using all the defaults. Use the procedures
as inline procedures.

Inserts the appropriate
procedure into each
job.

How to Do It
Modifying the JES2 Start Procedure

You can do EITHER of the following:
v Add a new //PROCnn DD statement for the Language Environment procedure

library, CEE.SCEEPROC.
v Concatenate the procedure library to the //PROC00 DD statement.

40 z/OS V1R4.0 Language Environment Customization

||
|

||
|

While testing, you can use the /*JOBPARM statement with the PROCLIB=
parameter to make sure that your jobs use procedures from the correct library. To
learn how to do this, see the section on JES2 control statements in z/OS MVS JCL
Reference.

All procedures in the libraries that are added to the JES2 start procedure are
available to any job in the system. The JES2 procedure is usually member JES2 in
SYS1.PROCLIB.

Placing Cataloged Procedures in a System or Private PROCLIB

Copy the system procedures from the default libraries into an already-cataloged
procedure library. You can use SYS1.PROCLIB as your cataloged procedure library.

The copied procedures are callable by your installation jobs. However, procedures
copied into a PROCLIB outside of SMP/E control are more difficult to maintain.

You can use the JCLLIB statement to specify a private PROCLIB. Do this by
including the following statement after the JOB card and before the first EXEC
statement in the job: //PROCLIB JCLLIB ORDER=(CEE.SCEEPROC)

Using Cataloged Procedures as Inline Procedures

Modify the procedure to reflect the high level qualifiers you are using for the
installation, and save your changes.

Edit each job before you submit it, and copy the procedure into the job (inline).

Be sure to place // PEND at the end of the inline procedure.

Tailoring the Cataloged Procedures and CLISTs to Your Site
Several cataloged procedures and CLISTs are supplied with Language Environment
and the Language Environment-conforming compilers. Some of these contain data
set names that you may need to customize to your installation.

For information to help you customize the Language Environment cataloged
procedures, see the topic discussed in Chapter 6, “Customizing the Cataloged
Procedures” on page 39 and the list in Table 10 on page 39.

For a list of names and possible modifications of CLISTs and all other cataloged
procedures, see Table 12 on page 42.

Several Fortran and C library routines have identical names. To correctly run
existing Fortran applications under Language Environment, it is necessary to
resolve all name conflicts. The Language Environment interface validation exit is a
routine that automatically resolves conflicting library routine references within
Fortran routines.

If the possibility exists of bringing in a Fortran routine when link-editing, activate the
binder interface validation exit by modifying each of the cataloged procedures in
Table 12 on page 42 that performs a link-edit step to add an LKED parm of
EXITS(INTFVAL(CEEPINTV)), and provide the following DD statement in the same
step:
//STEPLIB DD DSN=CEE.SCEELKED,DISP=SHR

Chapter 6. Customizing the Cataloged Procedures 41

For further information on resolving conflicting names, see z/OS Language
Environment Programming Guide.

Table 12. Cataloged Procedures and CLISTs Information

Category Procedure Names Possible Modifications

C/C++ cataloged
procedures

Procedures found in
hlq.SCCNPRC data set.

Modify the procedures to use the
release of Language
Environment you are using.

COBOL cataloged
procedures

IGYWC
IGYWCG
IGYWCL
IGYWCLG
IGYWCPG
IGYWCPL
IGYWCPLG
IGYWPL

Modify the procedures to use the
release of Language
Environment you are using.

PL/I cataloged procedures IEL1C
IEL1CG
IEL1CL
IEL1CLG

Modify the procedures to use the
release of Language
Environment you are using.

Language Environment
CLISTs

CMOD
CPLINK
C370LIB
GENXLT
ICONV
DLLRNAME

v If you are not using the
IBM-supplied default data set
prefix, change the data set
prefix symbolic parameter in
all CLISTs.

v Change parameters in CLISTs
to match values at your site.

v These procedures can be
found in the CEE.SCEECLST
data set.

42 z/OS V1R4.0 Language Environment Customization

Chapter 7. Placing Language Environment Modules in Link
Pack and LIBPACK

Placing routines in the LPA/ELPA reduces the overall system storage requirement
by making the routines shareable. Also, initialization/termination (init/term) time is
reduced for each application, since load time decreases. For example, if Language
Environment modules are not placed in LPA/ELPA, then under z/OS UNIX, every
fork() call will require approximately 4 MB to be copied into the user address
space.

The SCEERUN data set has many modules that are not reentrant, so you cannot
place the entire data set in the Link Pack Area (LPALSTxx parmlib). As of OS/390
Release 6, there is a data set called SCEELPA that contains a subset of the
SCEERUN modules - those that are reentrant, reside above the line, and are
heavily used by z/OS itself. If you put the SCEERUN data set in the linklist
(LNKLSTxx), you can place the SCEELPA data set in LPA list (LPALSTxx). Doing
this will improve performance. However, if you are using RTLS you cannot place the
SCEELPA data set as part of your LPALSTxx.

You can not place the SCEERUN2 data set as part of a LPALSTxx because it is a
PDSE. You must use the Dynamic LPA capability to move individual members of
SCEERUN2 into the Link Pack Area.

You may also add additional modules to the LPA, using the Modify Link Pack Area
(MLPA=) option at IPL. As of OS/390 Release 4, you can also use the Dynamic
LPA capability (SET PROG=). Using the Dynamic LPA method avoids the
performance degredation that occurs with the use of MLPA.

Choose which routines to put in the LPA/ELPA. See Appendix D, “Modules eligible
for the link pack area” on page 199 for a complete list of modules you may place in
the LPA/ELPA.

Several members are installed in CEE.SCEESAMP for you to use as examples in
creating your IEALPAnn or PROGxx member. Table 13 lists the members and their
content.

Table 13. Language Environment Sample IEALPAnn or PROGxx Members in
CEE.SCEESAMP

Member Name Description

CEEWLPA All Language Environment base modules eligible for the LPA except
callable service stubs. Uses Dynamic LPA.

EDCWLPA All C/C++ component modules eligible for LPA from SCEERUN and
SCEERUN2. Uses Dynamic LPA.

IGZWMLP4 All Language Environment COBOL component modules eligible for
LPA.

IBMALLP2 All Language Environment PL/I component modules eligible for LPA

IBMPLPA1 MLPA macro for VisualAge PL/I

AFHWMLP2 All Language Environment Fortran modules eligible for LPA

If you want to load modules into the LPA, you do not need to place CEE.SCEERUN
or CEE.SCEERUN2 in the LNKLSTnn member. However, if CEE.SCEERUN or
CEE.SCEERUN2 is not in the LNKLSTnn member, you need to make modules that

© Copyright IBM Corp. 1991, 2002 43

are not included in the link pack areas available to your application programs by
copying the modules into a data set that can be either included in the LNKLSTnn or
used as a STEPLIB.

Using the entire CEE.SCEERUN or CEE.SCEERUN2 data set as a STEPLIB
defeats the purpose of placing the modules in the LPA.

Shared Storage Considerations:

v Modules you copy into another (non-LPA) data set are not automatically updated
by SMP/E when you apply a service update. You must rerun your copy job after
you apply service to Language Environment to make the updated modules
available in the LNKLSTnn data set or in the STEPLIB.

v Examine the lists carefully to make sure that you are installing the correct module
for the national language support you have installed. Comments in CEEWLPA,
EDCWLPA, and IBMALLP2 identify the Japanese modules. In IGZWMLP4,
remove the module name IGZCMGEN if you do not want U.S. English
mixed-case to be in the LPA and add IGZCMGJA if Japanese is installed and you
want it to be in the LPA.

v For more information on including modules in the LPA, refer to z/OS MVS
Initialization and Tuning Reference.

Tailoring the Fortran LIBPACKs
The Fortran component of Language Environment is shipped with individual
routines and with groupings of routines called LIBPACKs. A LIBPACK is a load
module that contains individual library routines packaged together by the linkage
editor into a single load module in order to reduce the time that would otherwise be
needed to load the individual routines.

You might want to customize the Fortran LIBPACKs to:

v Shorten the load time for the Fortran LIBPACK by reducing its size

v Minimize the virtual storage required for an application by eliminating
seldom-used routines from main storage

v Reduce the number of loads for application programs by adding frequently used
routines to Fortran LIBPACKs

v Reduce the size of the contents of shared storage

Usage Notes: The Fortran LIBPACKs are generally shared among several different
applications and cannot be tuned for a specific application. Therefore, ideal Fortran
LIBPACKs contain only library routines that are common to all application programs.

Choices to Make Now
You need to decide whether to modify the Fortran LIBPACKs. If you modify the
Fortran LIBPACKs, you make a trade-off between use of storage and faster
performance of application programs. See Table 14 below.

Table 14. Making the trade-off: Performance time versus storage use

Type of Fortran LIBPACK Performance Time Storage Use

Partially loaded Slower because more
routines are loaded
individually

Less virtual and shared
storage used

Fully loaded Faster because no routines
loaded individually

More virtual and shared
storage used

44 z/OS V1R4.0 Language Environment Customization

You can use the information in the following sections and the tables in “Language
Environment Fortran component modules” on page 202 to decide which modules to
include in your Fortran LIBPACKs.

Language Environment provides four Fortran LIBPACKs, which you can customize
either during or following the installation of Language Environment.

AFHPRNAG
AFHPRNBG
AFH5RENA
AFH5RENB

After installation, each LIBPACK contains a default set of routines. You can remove
many of the routines if their functions aren’t used frequently at your site, or you can
add others that you do use frequently.

Some Examples
You can add or remove routines from the Fortran LIBPACKs to reflect the
requirements of your location. For example, to include only the group of general
routines that your location uses most often, eliminate unnecessary routines from the
Fortran LIBPACK.

If you plan to put your Fortran LIBPACK into shared storage and your shared
storage space is limited, consider reducing the size of your Fortran LIBPACKs. All
modules eligible to be in the Fortran LIBPACKs are reentrant and are therefore
eligible to be stored in the shared storage.

Listing the contents of Fortran LIBPACKs
Before tailoring your LIBPACKs, you might want to know their current structure,
such as which MODs SMP/E expects to be combined into a particular load module,
so that you can decide which ones to add or delete. Use SMP/E sample job
AFHWLIST in the SCEESAMP data set to invoke the SMP/E LIST command to list
the contents of your LIBPACKs.

Steps for modifying the JCL for AFHWLIST
Perform the following steps to modify the JCL for AFHWLIST.

1. Change #GLOBALCSI to the data set name of your global CSI data set.

2. Change #TZONE to the name of your target zone.

3. Examine the LIBPACK names on the SMP/E LIST statement and remove the
comments as appropriate.

When you are done, AFHWLIST should run with a condition code of 0.

Deleting Routines from Fortran LIBPACKs
The sample jobs listed in Table 15 on page 46 each contain SMP/E UCLIN and
link-edit JCL that you can modify to delete routines to one of the Fortran LIBPACKs.
The sample jobs are in target library CEE.SCEESAMP.

Chapter 7. Placing Language Environment Modules in Link Pack and LIBPACK 45

Table 15. SMP/E Sample Jobs for Deleting Routines from Fortran LIBPACKs

For Applications
Link-Edited With... Use Sample Job...

To Delete Routines from
LIBPACK...

Which Is
Loaded ...

Language Environment AFHWDERA AFHPRNAG above 16 MB

Language Environment AFHWDERB AFHPRNBG below 16 MB

VS FORTRAN AFHWDVRA AFH5RENA above 16 MB

VS FORTRAN AFHWDVRB AFH5RENB below 16 MB

If the IBM-supplied LIBPACKs contain routines that your site does not use often,
you can delete them using the SMP/E sample jobs below.

Steps for modifying the JCL to delete routines from a Fortran
LIBPACK
Perform the following steps to modify the JCL to delete routines from a Fortran
LIBPACK. These steps use the AFHWDERA, AFHWDERB, AFHWDVRA, and
AFHWDVRB sample jobs.

1. Change #GLOBALCSI to the data set name of your global CSI data set.

2. Change #TZONE to the name of your target zone.

3. Modify the UCLIN step in the sample job to tell SMP/E to delete routines that
you do not want to include in your tailored LIBPACK.

v Remove the DELETE statement of any routine you want to include in your
LIBPACK.

v Remove the DELETE statement of any routine that is not currently in your
LIBPACK.

v If you run any of the sample jobs shown in Table 15 without modifying them,
you receive a minimum LIBPACK without any optional modules.

4. The LINK-EDIT step performs the actual link-edit of the tailored LIBPACK by
replacing (deleting) the routines you have specified. The REPLACE statements
you keep in the LINK-EDIT step must match the routines you specified in the
UCLIN step.

When taking out the REPLACE records, ensure that all alias names (shown with
indented REPLACE records) are removed too. For example, if you decide to
remove AFHBCMVT, you need to remove AFHBCMVR as well.

5. Check the SYSLMOD DD statement to ensure the data set name is correct.

When you are done, FHWDERA, AFHWDERB, AFHWDVRA, and AFHWDVRB
should run with a condition code of 4. Unresolved external references for any
optional modules not included in your LIBPACK are expected.

Adding Routines to Fortran LIBPACKs
The sample jobs listed in Table 16 on page 47 each contain SMP/E UCLIN and
link-edit JCL that you can modify to add routines to one of the Fortran LIBPACKs.
The sample jobs are in target library CEE.SCEESAMP.

46 z/OS V1R4.0 Language Environment Customization

Table 16. SMP/E Sample Jobs for Adding Routines to Fortran LIBPACKs

For Applications
Link-Edited With... Use Sample Job...

To Add Routines to
LIBPACK...

Which is
Loaded...

Language Environment AFHWAERA AFHPRNAG above 16 MB

Language Environment AFHWAERB AFHPRNBG below 16 MB

VS FORTRAN AFHWAVRA AFH5RENA above 16 MB

VS FORTRAN AFHWAVRB AFH5RENB below 16 MB

Note:

The jobs that add routines to the LIBPACKs add the versions of the routines that are in the
target libraries.

If the IBM-supplied LIBPACKs exclude routines that your site uses often, you can
add them using the SMP/E sample jobs that follow.

Steps for Modifying the JCL for adding routines to a Fortran
LIBPACK
Perform the following steps to modify the JCL for adding routines to a Fortran
LIBPACK. These steps use the AFHWDERA, AFHWDERB, AFHWDVRA, and
AFHWDVRB sample jobs.

1. Change #GLOBALCSI to the data set name of your global CSI data set.

2. Change #TZONE to the name of your target zone.

3. Modify the UCLIN step to tell SMP/E to add the routines you want to include in
your tailored LIBPACK.

v Remove the ADD statement for each routine you are not adding to your
tailored LIBPACK.

v If you run the sample jobs shown in Table 16 without modifying them, you
receive a full LIBPACK, including all the required and optional LIBPACK
modules.

v If you attempt to add a routine that is already in the LIBPACK, you receive an
SMP/E error message.

4. The LINK-EDIT step performs the actual link-edit of the tailored LIBPACK by
including the routines you specify.

The INCLUDE statements you keep in the LINK-EDIT step must match the
routines you want to include in your tailored LIBPACK, regardless of whether
you add the routine in the UCLIN step above or it is already in the LIBPACK.

5. Check the SYSLMOD DD statement to ensure the data set name is correct.

When you are done, AFHWAERA, AFHWAERB, AFHWAVRA, and AFHWAVRB
should run with a condition code of 0 if the LIBPACKs contain all of the optional
modules. Otherwise, each of these jobs returns a condition code of 4; unresolved
external references for any optional modules not included in the LIBPACKs are
expected.

Chapter 7. Placing Language Environment Modules in Link Pack and LIBPACK 47

Where to Place the Tailored Fortran LIBPACKs
The sample jobs tailor the LIBPACKs and then use them to replace the LIBPACKs
in the Language Environment target library SCEERUN. You could place them in
another data set instead, provided that the LOADs issued during run-time can find
them. The customized LIBPACKs must be found ahead of (in search-order
sequence or in library concatenation), or instead of, those that were installed with
the product. If you want to link-edit a LIBPACK into an alternative library, modify and
run only the LINK-EDIT step of the sample jobs.

Note: Because SMP/E is only aware of the load modules link-edited into the
SCEERUN target library, SMP/E will not relink your LIBPACKs automatically
when you apply service if you use an alternative library.

48 z/OS V1R4.0 Language Environment Customization

Chapter 8. Using Language Environment under CICS

To make sure that CICS can communicate with Language Environment:

v Add the Language Environment required program resource definitions to the
CICS System Definition (CSD) file, unless you are using autoinstall for programs;
in which case CICS creates the required entries dynamically.

v Ensure the required transient data (TD) queue resource definitions are defined to
CICS.

Note: If the resource definitions are already defined in the CSD by the CICS
utility, you should ensure they are not removed from the CICS group list
used at startup.

v Add the Language Environment Library data sets to the CICS startup job stream.

Add program resource definitions for CICS
Update the CICS system definition (CSD) file using the program definitions in the
CEECCSD member in the Language Environment sample (SCEESAMP). This
member contains the necessary input to the CSD file utility program to define the
Language Environment library routines to the CSD. The CSD group list used during
CICS startup must include the CSD group associated with the Language
Environment library routines. The group name for Language Environment routines is
CEE in the sample CEECCSD.

COBOL Users: The OS/VS COBOL library routines (ILBOs) in Language
Environment library SCEERUN are loaded by the operating system and do not
require entries in the CSD.

If you are using CICS 4.1 or higher, and the autoinstall option is active, you do not
need to specify the Language Environment library routines in the CSD. CICS
creates the required entries dynamically. Therefore, you do not need to use this
sample job. If you plan to run with program autoinstall and use the Language
Environment CLER transaction, you need to define the following using the CEDA
transaction:
DEFINE PROGRAM(CEL4RTO) GROUP(CEE) LANGUAGE(ASSEMBLER)
EXECKEY(CICS)
DEFINE MAPSET(CELCLEM) GROUP(CEE)
DEFINE MAPSET(CELCLRH) GROUP(CEE)
DEFINE TRANS(CLER) PROG(CEL4RTO) GROUP(CEE)

Tip: If you use program autoinstall, Language Environment event handler modules
in the range CEEEV001-CEEEV017 that are present in the CEE.SCEERUN might
load during CICS/LE initialization. To prevent this from occurring, you should update
the CICS CSD with the Language Environment resource definitions in CEECCSD
and add code to your autoinstall exit to bypass autoinstall for all CEEEV0* modules.
The following autoinstall exit sample demonstrates this:
DFHPGADX CSECT
DFHPGADX AMODE 31
DFHPGADX RMODE ANY
DFHREGS ,
*
* If there is no commarea, return
OC EIBCALEN,EIBCALEN
BZ RETURN0
*
* Address the commarea

© Copyright IBM Corp. 1991, 2002 49

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

L R2,DFHEICAP
USING PGAC,R2
*
* Omit autoinstall for Language Environment modules
CLC PGAC_PROGRAM(6),=C’’CEEEV0’’
BE RETURNDD
*
* Add user specific code here
*
* Set the return code to OK
RETURNOK DS 0H
MVI PGAC_RETURN_CODE,PGAC_RETURN_OK
B RETURN0
*
* Branch to this label if you elect not to define
* the program
RETURNDD DS 0H
MVI PGAC_RETURN_CODE,
PGAC_RETURN_DONT_DEFINE_PROGRAM
*
RETURN0 DS 0H
EXEC CICS RETURN,
END DFHPGADX

Table 17. Excluding Programming Language Support under CICS

If you do not run...
Exclude these program definitions from
the CEECCSD sample job...

COBOL applications under CICS CEEEV005, IIGZMSGT, All programs that
start with IGZ

C/C++ applications under CICS CEEEV003, IEDCMSGT, All programs that
start with EDC or CEU

PL/I applications under CICS (Also VA PL/I) CEEEV010, CEEEV011, IIBMMSGT, All
programs that start with IBM

Guideline: If you use autoinstall and want to exclude one or more languages using
this technique, be sure to implement the changes described above in your
autoinstall exit to prevent them from being added dynamically.

Note: C was named AD/Cycle C/370 before C++ was added. The sample JCL
used the nickname C/370 to refer to either Language Environment-enabled
version.

Add destination control table (DCT) entries
The CEECDCT member in the SCEESAMP sample library contains the necessary
input to create the transient data queues as extrapartition data queues.

Entries for the transient data queues used by Language Environment are required
in the destination control table. Language Environment uses the following transient
data queues:

v CESE: messages, dumps, and reports are written to this queue. Each record
written to the CESE queue has a header with terminal ID, transaction ID, date,
and time. This queue is also used by C/C++ for stderr output and by PL/I for
stream output data.

v CESO: C/C++ stdout stream output is written to this queue. The definition for
this queue is required only if you use C/C++. Each record written to the CESO
queue has a header with terminal ID and transaction ID.

50 z/OS V1R4.0 Language Environment Customization

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

|
|
|

||
|

||
|

||
|
|

|
|
|

v CIGZ: COBOL side file support for CEEDUMPs and Debug Tool. The definition
for this queue is required only if you run COBOL programs compiled with the
SEPARATE suboption of the TEST compiler option. This is an input-only queue.

In order to use the COBOL side file support on CICS for COBOL programs
compiled with the TEST(,SYM,SEPARATE) compiler option, you must define a
transient data queue with the name CIGZ. Do not specify a DD for the CIGZ
transient data queue in your CICS startup job. The DD will be dynamically allocated
and deallocated as needed.

The following is the source that can be used to define CIGZ in the DCT:
IGZDBGIN DFHDCT TYPE=SDSCI, COBOL Side File Support

DSCNAME=IGZDBGIN,
TYPEFLE=INPUT

CIGZ DFHDCT TYPE=EXTRA, COBOL Side File Support
DESTID=CIGZ,
DSCNAME=IGZDBGIN,
OPEN=DEFERRED

Figure 7 illustrates the format for the output transient data queues.

ASA The American National Standard carriage-control character

Terminal ID
A 4-character terminal identifier

Transaction ID
A 4-character transaction identifier

sp A space

Timestamp
The date and time displayed in the same format as that returned by the
CEELOCT service

Message
The message identifier and message text

These queues can have intrapartition, extrapartition, or indirect destinations. The
record length for the transient data queue CESE must be at least 161.

We recommend that you put the required Language Environment entries in the
CSD as TDQUEUE resource definitions (introduced in the CICS Transaction Server
for z/OS). The Language Environment TD queues are included in the CICS-supplied
CSD group called DFHDCTG, which is added to the DFHLIST automatically when
initializing or upgrading a CSD. The following are the Language Environment entries
created in the DFHDCTG:
DEFINE TDQUEUE (CESO) GROUP(DFHDCTG)

DESCRIPTION(LE/370 OUTPUT QUEUE)
TYPE(EXTRA) TYPEFILE(OUTPUT)
RECORDSIZE(133) BLOCKSIZE(137)
RECORDFORMAT(VARIABLE) BLOCKFORMAT(UNBLOCKED)

ASA Terminal
ID

Transaction
ID

sp Timestamp
YYYYMMDDHHMMSS

sp Message

1 4 4 1 114 132

Figure 7. Format of an Output Transient Data Queue

Chapter 8. Using Language Environment under CICS 51

DDNAME(CEEOUT)
*
DEFINE TDQUEUE (CESE) GROUP(DFHDCTG)

DESCRIPTION(LE/370 ERROR QUEUE)
TYPE(EXTRA) TYPEFILE(OUTPUT)
RECORDSIZE(161) BLOCKSIZE(165)
RECORDFORMAT(VARIABLE) BLOCKFORMAT(UNBLOCKED)

DDNAME(CEEOUT)
*
DEFINE TDQUEUE (CIGZ) GROUP(DFHDCTG)

DESCRIPTION(COBOL SIDE FILE INPUT QUEUE)
TYPE(SDSCI) TYPEFILE(INPUT)

DDNAME(IGZDBGIN)

See CICS System Definition Guide for information provided by CICS about installing
Language Environment support.

If you are using CICS 4.1 or later, use the DFHDCT macro to define the entries for
CESE, CESO and CIGZ.

In addition to defining the transient data queues in the DCT, you must make sure
that there is a DD statement in the CICS startup job for the transient data queues.

Note: Do not specify a DD for the CIGZ TDQ. It will be dynamically allocated and
deallocated as needed.

If you define the CESE and CESO transient data queues as separate extrapartition
data queues, the following example shows what you would specify in your CICS
startup JCL:

//CEEMSG DD DSN=CUSTOMER.CEEMSG,DISP=SHR
//CEEOUT DD DSN=CUSTOMER.CEEOUT,DISP=SHR

If you are using CICS 4.1 or later, CICS Resource Definition (Macro), contains
further information on the DFHDCT macro and the definitions of the queues and
associated buffers.

For other levels of CICS, see CICS Resource Definition Guide and CICS Resource
Definition Guide for CICS/ESA 4.1.

52 z/OS V1R4.0 Language Environment Customization

When DFHDCT encounters the entry names CESE, CESO, CIGZ, CEEMSG, and
CEEOUT, it might generate messages stating that queue names beginning with the
letter 'C' are reserved for CICS. It is normal to receive these messages, and they
do not indicate errors.

Add Language Environment-CICS Data Sets to the CICS Startup Job
Stream

Before running any CICS transactions under Language Environment, you must add
Language Environment to the startup job stream. CICS System Definition Guide
describes the CICS system startup procedure and provides an example of a CICS
startup job stream.

To add the Language Environment-CICS data sets to CICS:

v Update the DFHRPL DD concatenation.

Add the Language Environment run-time library SCEERUN in the DFHRPL DD
concatenation of the job that is used to start CICS.

If you are running COBOL programs on CICS, you must also add Language
Environment run-time library SCEECICS in the DFHRPL DD concatenation. The
SCEECICS library must be concatenated before the SCEERUN library.

Any libraries that contain run-time routines from earlier versions of COBOL, PL/I,
and C/C++ should be removed from the DFHRPL DD concatenation.

v If SCEERUN is not in LNKST or LPALST, then you will also need to include the
proper Language Environment routines into an authorized library that is part of
the STEPLIB DD concatenation in the CICS startup job. If SCEERUN is in
LNKLST/LPALST, then you do not have to add SCEERUN to the STEPLIB DD
concatenation in the CICS startup job. You can either:

CEEMSG DFHDCT TYPE=SDSCI, Language Environment messages, dumps, reports
DSCNAME=CEEMSG, X
BLKSIZE=165, X
RECSIZE=161, X
RECFORM=VARUNBA, X
TYPEFLE=OUTPUT, X
BUFNO=1

CESE DFHDCT TYPE=EXTRA, X
DESTID=CESE, X
DSCNAME=CEEMSG

CEEOUT DFHDCT TYPE=SDSCI, C/C++ STDOUT stream X
DSCNAME=CEEOUT, X
BLKSIZE=137, X
RECSIZE=133, X
RECFORM=VARUNBA, X
TYPEFLE=OUTPUT, X
BUFNO=1

CESO DFHDCT TYPE=EXTRA, X
DESTID=CESO, X
DSCNAME=CEEOUT

IGZDBGIN DFHDCT TYPE=SDSCI, COBOL Side File Support X
DSCNAME=IGZDBGIN, X
TYPEFLE=INPUT

CIGZ DFHDCT TYPE=EXTRA, COBOL Side File Support X
DESTID=CIGZ, X
DSCNAME=IGZDBGIN X
OPEN=DEFERRED

Note: Xs are in column 72.

Figure 8. Example of DFHDCT Macro

Chapter 8. Using Language Environment under CICS 53

1. Authorize the Language Environment run-time library SCEERUN and then
include it in the STEPLIB DD concatenation in the CICS startup job. (The
SCEERUN2 data set does not need to get added to this concatenation.)

2. Put only those Language Environment routines needed by CICS using the
STEPLIB into another library.

If you use the second method, you must make the following Language
Environment routines available by using the STEPLIB:
– CEECCICS, CEECTCB
– IGZCWTO: Used for COBOL support.
– IGZCMTUE: Used for COBOL support.
– IGZIDYN: Used for COBOL support.
– ILBO routines: If you are running OS/VS COBOL programs, all of the ILBO

routines must be available.

You should remove any libraries that contain run-time routines from earlier
versions of COBOL and C/370 from the STEPLIB DD concatenation.

Notes:

1. The previously mentioned library routines required from the STEPLIB might also
be available by using the JOBLIB or the LNKLSTnn member.

2. There is no CICS startup option for Language Environment. If CICS locates
CEECCICS, it attempts to initialize Language Environment. If the modules have
not been installed correctly, Language Environment initialization fails, and CICS
generates an error message to that effect.

Language Environment automatic storage tuning for CICS
Language Environment automatic storage tuning for CICS provides automatic
storage tuning of Language Environment STACK, LIBSTACK, HEAP, BELOWHEAP
and ANYHEAP initial size values. Automatic storage tuning of the Language
Environment storage areas can improve the performance of applications running on
CICS by reducing the CICS GETMAIN/FREEMAIN activity associated with acquiring
Language Environment stack and heap increments. In order to use Language
Environment automatic storage tuning for CICS, the CICS system initialization
parameter AUTODST must be set to YES. The CICS system initialization parameter
AUTODST is available only on:

v CICS Transaction Server Version 1 Release 3 with APARs PQ39052, PQ45031,
and PQ55351.

v CICS Transaction Server Version 2.

Note: When Language Environment Automatic Storage Tuning for CICS is used,
the capability of the storage tuning user exit is changed. For example, the
storage tuning user exit can no longer get storage information. See z/OS
Language Environment Programming Guide for information about the
Language Environment storage tuning user exit.

Enclaves eligible for automatic storage tuning
When running with Language Environment automatic storage tuning for CICS, the
actual storage tuning is performed for Language Environment enclaves when one of
the following conditions is met:

v The main program is not link-edited with a CEEUOPT.

v The main program is link-edited with a CEEUOPT, and the CEEUOPT does not
specify values for any of the following run-time options: STACK, LIBSTACK,
HEAP, BELOWHEAP or ANYHEAP.

54 z/OS V1R4.0 Language Environment Customization

|
|

Notes:

1. A CEEUOPT is present in C/C++ main programs that use #pragma runopts
when one of the following compilers were used: z/OS C/C++, OS/390 C/C++,
C/C++ Compiler for MVS/ESA, or AD/Cycle C/370.

2. A CEEUOPT is present in PL/I main programs that use PLIXOPT when one of
the following compilers are used: VisualAge PL/I for OS/390 or PL/I for MVS &
VM.

Automatic storage tuning behavior
Automatic storage tuning values are managed for each load module that is used to
start an enclave for Language Environment. For example, transaction ATMW starts
program COBOLA (which starts an enclave for Language Environment). COBOLA
does a CICS LINK to COBOLB which starts another Language Environment
enclave. COBOLB does a dynamic call to COBOLC (when a dynamic call is done,
we are still running in the same enclave). In this example, automatic storage tuning
will be done for the enclaves started for COBOLA and COBOLB.

When running with Language Environment automatic storage tuning for CICS,
Language Environment continuously monitors the amount of Language Environment
storage allocated in the enclave for STACK, LIBSTACK, HEAP, ANYHEAP, and
BELOWHEAP. When the enclave ends normally, Language Environment will
automically increase the initial size values for STACK, LIBSTACK, HEAP,
ANYHEAP, and BELOWHEAP as determined by the amount of storage allocated.

In more detail, Language Environment automatic storage tuning for CICS behaves
as follows:

v When a main program starts a Language Environment enclave the first time in a
CICS region and the enclave is eligible for automatic storage tuning, Language
Environment will use the values for STACK, LIBSTACK, HEAP, ANYHEAP, and
BELOWHEAP from the normal search order for run-time options. When a main
program starts an eligible enclave a subsequent time, Language Environment will
use the initial sizes for STACK, LIBSTACK, HEAP, ANYHEAP, and BELOWHEAP
as determined by automatic storage tuning.

v Whenever a Language Environment enclave is initialized and it is eligible for
automatic storage tuning, Language Environment will collect the total amount of
storage allocated for STACK, LIBSTACK, HEAP, ANYHEAP, and BELOWHEAP
while the enclave is active.

Note: When Language Environment automatic storage tuning for CICS is used,
Language Environment collects the amount of storage allocated. It does
not collect the amount of storage used.

v When the enclave ends with an unhandled condition, Language Environment
does not update the automatic storage tuning values. When the enclave ends
normally, Language Environment automatic storage tuning will increase the initial
size for STACK, LIBSTACK, HEAP, ANYHEAP, and BELOWHEAP to the amount
of storage allocated only when the amount of storage allocated is larger than the
initial size. The next time the main program initiates a Language Environment
enclave, Language Environment automatic storage tuning will use the updated
initial size values.

v Language Environment automatic storage tuning never decreases the initial size
values.

Chapter 8. Using Language Environment under CICS 55

Altering the automatic storage tuning behavior
To alter the behavior of the Language Environment automatic storage tuning for
CICS, the storage tuning user exit can be used. For example, the storage tuning
user exit can be used as follows:

v To apply its own logic and determine which programs are eligible for automatic
storage tuning.

v To set limits on the initial sizes used by Language Environment automatic
storage tuning for CICS.

See z/OS Language Environment Programming Guide for information about
Language Environment storage tuning user exit.

56 z/OS V1R4.0 Language Environment Customization

Chapter 9. Using Language Environment under IMS

If you are running programs that require Language Environment in an IMS/TM
dependent region, such as an IMS message processing region, you can improve
performance if you use Language Environment library routine retention.

With library routine retention in effect, Language Environment keeps certain
resources in memory when an application program ends, making subsequent
invocations of programs that use Language Environment much faster because the
Language Environment resources left in memory are reused.

Following is a partial list of the resources Language Environment keeps in memory
with library routine retention in effect:

v Language Environment run-time load modules

v Language Environment storage associated with the management of the run-time
load modules

v Language Environment storage for start-up control blocks

Initializing Library Routine Retention
To use Language Environment library routine retention in an IMS dependent region,
you must do the following:

1. In your JCL or procedure used to bring up IMS dependent regions, specify that
you want IMS to invoke dependent region preinitialization routines. Do this by
specifying a suffix on the PREINIT keyword of the IMS dependent region
procedure.

2. In the DFSINTxx member of IMS.PROCLIB (where xx is a suffix specified by
the PREINIT keyword), include the name CEELRRIN.

When the module CEELRRIN is invoked by IMS, Language Environment library
routine retention is initialized.

Note: The source for module CEELRRIN is available in the SCEESAMP library in
member CEELRRIN. If this source does not meet your needs, you can
create your own assembler program to initialize Language Environment
library routine retention. If you create your own load module to initialize
Language Environment library routine retention, you will need to put the
name of the module in the DFSINTxx member.

Terminating Library Routine Retention
Language Environment provides a routine called CEELRRTR to terminate library
routine retention. However, this routine does not need to be used when running on
IMS/TM. If library routine retention is initialized, and the IMS Program Control Task
is terminated (for example, due to an ABEND), the operating system will free the
Language Environment resources as part of task termination. Then when the IMS
Program Control Task is reattached, the preinitialization routines get control before
IMS scheduling is attempted.

For more information about specifying IMS dependent region preinitialization
routines, see IMS/ESA Customization Guide: System. For more information about
Language Environment library routine retention, see z/OS Language Environment
Programming Guide.

© Copyright IBM Corp. 1991, 2002 57

58 z/OS V1R4.0 Language Environment Customization

Chapter 10. Customizing Language-Specific Features

In addition to tailoring your Fortran LIBPACKs, you may want to customize COBOL,
C/C++, Fortran, and PL/I features in order to tune or diagnose the performance of
Language Environment for your site.

Choices to Make Now
First, decide which language-specific features you should modify for your site. For
more detailed information about the C/C++, Fortran, and PL/I features you can
customize, see:
v Appendix C, “Using IBM C/C++ with Language Environment” on page 195
v Appendix B, “Using Fortran with Language Environment” on page 163
v PL/I for MVS & VM Compiler and Run-Time Migration Guide

You also need to choose which sample customization jobs you will need to modify
and run. Table 18 lists the sample jobs provided on the distribution tape to help you
customize COBOL, C/C++, Fortran, and PL/I features. These jobs are part of
Language Environment sample library SCEESAMP.

Table 18. Customizing Programming Languages with Sample Customization Jobs

To... Use This Sample Job

Modify the OS/VS COBOL compatibility library routines IGZWZAP

Modify the COBOL Reusable Environment IGZWARRE

Customize the parameter list processing when a COBOL
program is invoked with an ATTACH SVC on z/OS

IGZWAPSX

Customize the C/C++ locale time information EDCLLOCL

Relink OS PL/I Version 2 shared library and OS PL/I Version 1
CICS or tasking shared library

IBMRLSLA

Relink OS PL/I Version 1 non-CICS and non-tasking shared
library

IBMRLSLB

Tailor the Language Environment Fortran Unit Attribute Table AFHWEUAT

Tailor the VS FORTRAN compatibility Unit Attribute Table AFHWVUAT

Tailor the VS FORTRAN compatibility run-time options defaults AFHWVPRM

Tailor the VS FORTRAN compatibility Error Option Table AFHWVOPT

Modifying the OS/VS COBOL compatability library routines
Use the IGZWZAP sample job to modify the OS/VS COBOL compatability library
routines. The job lets you apply superzaps to make Language Environment COBOL
behave like OS/VS COBOL. See Table 19 for a summary of the modifications you
can make with the job. “OS/VS COBOL Considerations” on page 60 explains the
superzaps in detail.

Table 19. Using the USERMODs in the IGZWZAP Job to Modify the COBOL Compatibility
Library

USERMOD... Contains superzap(s) to... For...

IGZWZA1 Continue to force USER ABEND
0100, 0201, 0303, or 0304 and
message IFK302I

Certain error situations during
VSAM file processing

© Copyright IBM Corp. 1991, 2002 59

Table 19. Using the USERMODs in the IGZWZAP Job to Modify the COBOL Compatibility
Library (continued)

USERMOD... Contains superzap(s) to... For...

IGZWZA2 Force USER ABEND 0295 A serious error detected at run-time

IGZWZA3 Add A, B, and E as valid numeric
signs

The IF NUMERIC CLASS TEST

Modifying the JCL for IGZWZAP

1. Change #GLOBALCSI to the data set name of your global CSI data set.

2. Change #TZONE to the name of your target zone.

IGZWZAP should run with a condition code of 0.

OS/VS COBOL Considerations
If the COBOL programmers at your site are familiar with OS/VS COBOL, you may
want to modify Language Environment COBOL to make it behave like the OS/VS
COBOL run-time. The IGZWZAP member is a sample job provided in
CEE.SCEESAMP to apply USERMODs IGZWZA1, IGZWZA2, and IGZWZA3, which
are described below. For instructions on modifying the JCL for the IGZWZAP job,
see “Modifying the OS/VS COBOL compatability library routines” on page 59.

User modifications for the OS/VS COBOL library also apply for the OS/VS COBOL
compatability library routines.

VSAM Considerations
Support for VSAM processing in OS/VS COBOL Release 2 and in the OS/VS
COBOL compatability library routines is consistent with the I/O language specified in
the COBOL standard, AMERICAN NATIONAL STANDARD (ANS) COBOL,
X3.23-1974. However, OS/VS QSAM and VSAM support in OS/VS COBOL Release
1 is not consistent with the standard.

File Status: The FILE STATUS clause is optional. Specifying FILE STATUS for a
VSAM file lets you monitor the status of the file’s I/O operations by testing the FILE
STATUS values. Code the FILE STATUS clause for all appropriate files and test the
FILE STATUS (status key) after each input/output statement, including the OPEN
statement. FILE STATUS detects error conditions so you can handle them before
processing continues.

If you don’t specify FILE STATUS and test for the appropriate status key values,
you could get undetected errors and erroneous program results.

User Abends: In certain error situations during VSAM file processing, Release 1
of the OS/VS COBOL library modules forced user abends during program
execution. OS/VS COBOL Release 2 support eliminated four of these user abends.
In place of the abends, a FILE STATUS value is set when an I/O operation fails,
and execution continues.

Status key values are set to 90, 93, 95, or 95 rather than the forced USER ABEND
0100, 0201, 0303, or 0304, respectively. The program should test the status key
value after each I/O operation to make sure its successful completion. OS/VS
COBOL Release 2 support also no longer issues the object-time message 'IKF302I'.
In place of this message, the FILE STATUS is set to a value of 30.

60 z/OS V1R4.0 Language Environment Customization

Because some users might depend on the previous abends and message, you can
apply superzaps as user modifications to continue to force USER ABEND 0100,
0201, 0303, or 0304, and continue to force message IKF302I. The IGZWZA1
USERMOD in the IGZWZAP sample job contains the superzaps to do this.

JOB STEP ERROR COMPLETION CODE (RC12/ABEND U0295)
In OS/VS COBOL, if a COBOL library subroutine detects a serious error at
execution time (for example, a SYSOUT DD statement is missing), ILBOSRV1 sets
the return code and the JOB STEP COMPLETION/ CONDITION CODE to 12
(CC12) upon terminating the run unit. A return code of 12 is compatible with
versions 2 and 3 of ANS COBOL.

If you want to change the default return code, you can overlay the halfword X'000c'
at displacement X'0002' into CSECT ILBOSRV with the error completion code of
your choice. If the halfword is set to a NEGATIVE value during STOP RUN or
GOBACK processing, the program is terminated with the USER ABEND 0295
(ABENDU0295) instead of a return code 12.

Because some users might depend on programs abending in the above conditions,
you can apply the superzap as a user modification (IGZWZA2) to force a USER
ABEND 0295.

IF NUMERIC CLASS TEST allows only C, D, and F
A, B, and E were valid signs for an IF NUMERIC compare in OS/VS COBOL
Release 1, but the current release allows only C, D, and F as valid signs for an IF
NUMERIC compare. Because some users might depend on the COBOL NUMERIC
CLASS TEST, which includes A, B, and E as valid numeric signs, you can apply a
provided superzap (IGZWZA3) as a user modification to add A, B, and E as valid
numeric signs.

In any case, incorrect data in a data item used for a numeric class comparison is
accepted as valid if its hexadecimal notation contains a valid sign. (For example,
EBCDIC 'A', or X'C1', is a valid numeric sign for external decimal; and EBCDIC '%',
or X'6C', is a valid numeric sign for internal decimal.)

Modifying the COBOL Parameter List Exit
The COBOL parameter list exit routine IGZEPSX can be modified to alter the
parameter list processing when a COBOL main program is invoked by an z/OS
ATTACH.

With the IBM supplied default COBOL parameter list exit, if the COBOL main is
invoked by using the ATTACH SVC, a halfword-prefixed string is passed to the
application after run-time options have been removed. The source of this string is
dependent on the environment in which the ATTACH is issued:

v If the ATTACH is issued by z/OS to invoke a batch program, the string is
specified using the PARM field of the EXEC statement.

v If the ATTACH is issued by TSO/E to attach a Command Processor (CP), the
string is specified as part of the command embedded within the CP parameter of
the TSO/E ATTACH CP command.

v If the ATTACH is not issued by z/OS or TSO/E, the string is specified using the
PARM field of the ATTACH macro.

If the default behavior does not meet your needs, the COBOL parameter list exit
IGZEPSX can be altered to set the parameter list processing so that R1 and the
parameter list is passed without change to the main COBOL program.

Chapter 10. Customizing Language-Specific Features 61

Use the IGZWAPSX sample job to change the COBOL parameter list exit. You must
replace the comment in IGZWAPSX with your source for IGZEPSX. You can copy
the source for the IBM-supplied default COBOL parameter list exit from IGZEPSX in
SCEESAMP and modify it to suit your needs. Included in IGZEPSX is sample code
that can be used to get the same parameter list processing that is done when
running COBOL programs with the VS COBOL II run-time library.

Modifying the JCL for IGZWAPSX:

1. Replace the comment lines following the ++ SRC statement in the job with your
source program for the COBOL parameter list exit.

2. Change #GLOBALCSI to the data set name of your global CSI data set.

3. Change #TZONE to the name of your target zone.

IGZWAPSX should run with a condition code of 0.

Modifying the COBOL Reusable Environment
The COBOL reusable environment behavior can be modified to control how
program checks that occur in the non-Language Environment-conforming driver are
handled, as well as to control whether or not COBOL programs can run in a nested
enclave in the reusable environment. The COBOL reusable environment is
established with the RTEREUS run-time option or a call to either ILBOSTPO or
IGZERRE INIT.

With the IBM supplied default setting for COBOL’s reusable environment behavior
(IGZERREO with REUSENV=COMPAT), when a program check occurs while the
reusable environment is dormant (for example, between a GOBACK from a top
level COBOL program to the non-Language Environment conforming assembler
driver and the next call to a COBOL program), a S0Cx abend will occur. This
behavior is compatible with the VS COBOL II and OS/VS COBOL run-times, but it
significantly impacts the performance when an Enterprise COBOL for z/OS and
OS/390, COBOL for OS/390 & VM, or COBOL for MVS & VM program is invoked
repeatedly in a COBOL reusable environment. The performance degradation is
caused by Language Environment issuing an ESPIE RESET when the reusable
environment becomes dormant and then an ESPIE SET upon reentering the
reusable environment.

COBOL’s reusable environment behavior can be modified (IGZERREO with
REUSENV=OPT) so that all program checks will be intercepted by Language
Environment, even those that occur while the reusable environment is dormant. In
this case, a program check that occurs while the reusable environment is dormant
will result in a 4036 abend from Language Environment. However, since Language
Environment does not have to issue the ESPIE RESET and ESPIE SET between
invocations of the COBOL program, this can be faster than using
REUSENV=COMPAT.

Nested Enclave Behavior

With the IBM-supplied default setting for COBOL’s reusable environment behavior
(IGZERREO with NESTENC=NO), when a reusable environment is active and a
nested enclave is created that contains a COBOL program, COBOL will diagnose
this with error message IGZ0168S.

62 z/OS V1R4.0 Language Environment Customization

COBOL’s reusable environment behavior can be modified (IGZERREO with
NESTENC=YES) so that a nested enclave containing a COBOL program will
continue to run, even though a reusable environment is still active in the parent
enclave.

v When you run a COBOL program in a nested enclave.

v The COBOL program is not part of the reusable environment.

v When the nested enclave ends, all the resources associated with the nested
enclave are freed.

If a STOP RUN is done in the nested enclave, it only terminates the nested
enclave, and does not terminate the COBOL reusable environment.

Modifying the Behavior of the COBOL Reusable Environment

Use the IGZWARRE sample job to change the behavior of COBOL’s reusable
environment. You must modify the IGZRREOP macro invocation, depending on the
function that you want.

To run with VS COBOL II and OS/VS COBOL run-time compatibility mode (that is,
the user has control of program checks that occur when the COBOL reusable
environment is dormant, resulting in an additional performance cost), use
IGZRREOP REUSENV=COMPAT

To run with optimum performance (for example Language Environment intercepts all
program checks that occur when the COBOL reusable environment is dormant and
converts them to a 4036 abend, resulting in improved performance), use
IGZRREOP REUSENV=OPT

To disable nested enclave support in the reusable environment, use IGZRREOP
NESTENC=NO

To enable nested enclave support in the reusable environment, use IGZRREOP
NESTENC=YES

Modifying the JCL for IGZWARRE

1. Copy the IGZERREO member from CEE.SCEESAMP into IGZWARRE in place
of the comment lines following the ++ SRC statement.

2. Change the REUSENV and NESTENC parameters on the IGZRREOP macro
statement to the desired value.

3. Change #GLOBALCSI to the data set name of your global CSI data set.

4. Change #TZONE to the name of your target zone.

IGZWARRE should run with a condition code of 0.

Changing the C/C++ locale time information
Use the EDCLLOCL job to change the C/C++ locale time information for your site.
See Appendix C, “Using IBM C/C++ with Language Environment” on page 195 for
information on changing the parameters in EDCLLOCL.

Recommendation: You should not install this usermod. The default C/C++ locale
(EDC$S370) will by default obtain the time zone difference from Greenwich mean
time from the system. If your C/C++ application requires a different time zone other

Chapter 10. Customizing Language-Specific Features 63

than the one obtained from the system, you can use the tzset() and the TZ
environment variable described in z/OS C/C++ Run-Time Library Reference.

Steps for modifying the JCL for EDCLLOCL
Perform the following steps to modify the JCL for EDCLLOCL

1. Change #GLOBALCSI to the data set name of your global CSI data set.

2. Change #TZONE to the name of your target zone.

When you are done, EDCLLOCL should run with a condition code of 0.

64 z/OS V1R4.0 Language Environment Customization

Chapter 11. Customizing for Fortran applications

This section provides information on customizing Language Environment for Fortran
applications link-edited with either Language Environment or VS FORTRAN.

Tailoring the Language Environment Fortran Unit Attribute Table
For Fortran applications link-edited with Language Environment, use SMP/E
USERMOD AFHWEUAT to change the Unit Attribute Table defaults and DCB
information for each I/O unit. Use the information in “Changing the unit attribute
table default values” on page 163 to select your default values.

Modifying the JCL for AFHWEUAT

1. Replace the comment lines following the ++ SRC statement with member
AFHOUTAG from CEE.SCEESAMP. Make any changes as desired.

2. Change #GLOBALCSI to the data set name of your global CSI data set.

3. Change #TZONE to the name of your target zone.

4. Check the SYSLIB DD statement to ensure the data set names are correct.
Also, ensure the SYSLIB concatenation points to non-empty data sets.

AFHWEUAT should run with a condition code of 4. Unresolved external references
for module CEESG003 and any optional modules not included in LIBPACK
AFHPRNAG are expected.

Tailoring the VS FORTRAN Compatibility Unit Attribute Table
For applications link-edited with VS FORTRAN, use SMP/E USERMOD
AFHWVUAT to change the Unit Attribute Table defaults and DCB information for
each I/O unit. Use the information in “Changing the Unit Attribute Table Default
Values” on page 170 to select your default values.

Modifying the JCL for AFHWVUAT

1. Replace the comment lines following the ++ SRC statement with member
AFH5VUAT from CEE.SCEESAMP. Make any changes as desired.

2. Change #GLOBALCSI to the data set name of your global CSI data set.

3. Change #TZONE to the name of your target zone.

4. Check the SYSLIB DD statement to ensure the data set names are correct.
Also, ensure the SYSLIB concatenation points to non-empty data sets.

AFHWVUAT should run with a condition code of 0 if LIBPACK AFH5RENA contains
all of the optional modules. Otherwise, AFHWVUAT returns a condition code of 4;
unresolved external references for any optional modules not included in AFH5RENA
are expected.

Tailoring VS FORTRAN Compatibility Run-Time Options
For applications link-edited with VS FORTRAN, use SMP/E USERMOD
AFHWVPRM to change the run-time option defaults. Use the information in
“Changing VS FORTRAN Run-Time Option Defaults” on page 175 to select your
default values.

Modifying the JCL for AFHWVPRM

© Copyright IBM Corp. 1991, 2002 65

1. Replace the comment lines following the ++ SRC statement with member
AFH5GPRM from CEE.SCEESAMP. Make any changes as desired.

2. Change #GLOBALCSI to the data set name of your global CSI data set.

3. Change #TZONE to the name of your target zone.

4. Check the SYSLIB DD statement to ensure the data set names are correct.
Also, ensure the SYSLIB concatenation points to non-empty data sets.

AFHWVPRM should run with a condition code of 0 if LIBPACK AFH5RENA contains
all of the optional modules. Otherwise, AFHWVPRM returns a condition code of 4;
unresolved external references for any optional modules not included in AFH5RENA
are expected.

Tailoring the VS FORTRAN Compatibility Error Option Table
For applications link-edited with VS FORTRAN, use SMP/E USERMOD
AFHWVOPT to change error option table defaults such as:
v The number of times the error is allowed to occur before the user program

terminates
v The maximum number of times the message can be printed
v Whether or not a traceback map is to be printed
v Whether or not a user-written error exit routine is called

Use the information in “Changing the Error Option Table Defaults” on page 180 to
select your default values.

Modifying the JCL for AFHWVOPT

1. Replace the comment lines following the ++ SRC statement with member
AFH5UOPT from CEE.SCEESAMP. Make any changes as desired.

2. Change #GLOBALCSI to the data set name of your global CSI data set.

3. Change #TZONE to the name of your target zone.

4. Check the SYSLIB DD statement to ensure the data set names are correct.
Also, ensure the SYSLIB concatenation points to non-empty data sets.

AFHWVOPT should run with a condition code of 0 if LIBPACK AFH5RENA contains
all of the optional modules. Otherwise, AFHWVOPT returns a condition code of 4;
unresolved external references for any optional modules not included in AFH5RENA
are expected.

66 z/OS V1R4.0 Language Environment Customization

Chapter 12. Language Environment Run-Time Options

This chapter includes descriptions of the Language Environment run-time options.
Where noted, some of the run-time options might be used only by a specific
program.

For a table that maps Language Environment run-time options to HLL run-time
options to help you plan your customization, see z/OS Language Environment
Run-Time Migration Guide.

COBOL Compatibility
VS COBOL II supported an order of run-time options and program options that is
the reverse of that of Language Environment: program arguments precede run-time
options in COBOL. To ensure compatibility with COBOL, Language Environment
provides the run-time option CBLOPTS, which specifies whether run-time options or
program arguments are first in the character parameter.

For example:
CBLOPTS=OFF:
//GO EXEC PGM=PROGRAM1,PARM=’AIXBLD/’
CBLOPTS=ON:
//GO EXEC PGM=PROGRAM1,PARM=’/AIXBLD’

Run-time options
The run-time options that can be modified in the CEEDOPT CSECT are described
here in detail in the form specific to CEEDOPT. The syntax is specific to the
CEEDOPT form of the file used at installation time. All suboptions must be specified
and no abbreviations are permitted in CEEDOPT.

IBM-supplied default keywords are indicated for planning information only and
appear above the main path or options path in the syntax diagrams. In the
parameter list, IBM-supplied default choices are underlined.

Some of these run-time options descriptions refer to the severity of conditions. The
values that can occur as condition token severity codes, and their meanings, are as
follows:

0 An informational message (or, if the entire token is zero, no information).

1 An attention message. Service completed, probably correctly.

2 An error message. Correction attempted. Service completed, perhaps
incorrectly.

3 A severe error message. Service not completed.

4 A critical error message. Service not completed and condition signaled. A
critical error is a condition that jeopardizes the environment. If a critical
error occurs during a Language Environment callable service, it is always
signaled to the condition manager instead of being returned synchronously
to the caller.

For a complete description of all Language Environment run-time options, see z/OS
Language Environment Programming Reference.

© Copyright IBM Corp. 1991, 2002 67

ABPERC

Derivation
ABnormal PERColation

ABPERC percolates an abend whose code you specify. TRAP(ON) must be in
effect for ABPERC to have an effect.

The ABPERC option is a debug tool that specifies the application can run with the
TRAP run-time option set to ON. This provides Language Environment semantics
for everything except one abend, whose code you specify.

When you run with ABPERC and encounter the specified abend:

v User condition handlers are not enabled.

v In z/OS UNIX, POSIX signal handling semantics are not enabled for the abend.

v No storage report or run-time options report is generated.

v No Language Environment messages or Language Environment dump output is
generated.

v The assembler user exit is not driven for enclave termination.

v The abnormal termination exit (if there is one) is not driven.

v Files opened by HLLs are not closed by Language Environment, so records
might be lost.

v Resources acquired by Language Environment are not freed.

v The debug tool is not notified of the error.

You can also use the CEEBXITA assembler user exit to specify a list of abend
codes for Language Environment to percolate.

Non-CICS Default: ABPERC=((NONE),OVR)

Syntax

ÊÊ ABPERC = ((
NONE
abcode) ,

OVR
NONOVR) ÊÍ

NONE
Specifies that all abends are handled according to Language Environment
condition handling semantics.

abcode
Specifies the code number of the abend to percolate. The abcode can be
specified as:

Shhh A system abend code, where hhh is the hex system abend code

Udddd A user abend code, where dddd is a decimal user-issued abend code

Any 4-character string can also be used as an abcode.

You can identify only one abend code with this option. However, an
abend U0000 is interpreted in the same way as S000.

ABPERC

68 z/OS V1R4.0 Language Environment Customization

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v ABPERC is ignored under CICS.

Usage Notes
v Language Environment ignores ABPERC(0Cx). In this instance, no abend is

percolated, and Language Environment condition handling semantics are in
effect.

v z/OS UNIX consideration — ABPERC percolates an abend regardless of the
thread in which it occurs.

For More Information
v For more information about the assembler user exit (CEEBXITA), see z/OS

Language Environment Programming Guide .

ABTERMENC

Derivation
ABnormal TERMination of the ENClave

ABTERMENC sets the enclave termination behavior for an enclave ending with an
unhandled condition of severity 2 or greater. TRAP(ON) must be in effect for
ABTERMENC to have an effect.

Non-CICS Default: ABTERMENC=((ABEND),OVR)

Syntax

ÊÊ ABTERMENC = ((
ABEND
RETCODE) ,

OVR
NONOVR) ÊÍ

ABEND
Specifies that Language Environment issues an abend to end the enclave
regardless of the setting of the CEEAUE_ABND flag by the assembler user exit.
However, the setting of the CEEAUE_ABND flag affects the abend processing,
as follows:

When CEEAUE_ABND is set to OFF, the following occurs:

v Abend code: Language Environment sets an abend code value that depends
on the type of unhandled condition.

v Reason code: Language Environment sets a reason code value that depends
on the type of unhandled condition.

v Abend dump attribute: Language Environment does not request a system
dump.

v Abend task/step attribute (on z/OS): An abend is issued to terminate the task.

ABPERC

Chapter 12. Language Environment Run-Time Options 69

When CEEAUE_ABND is set to ON, Language Environment uses values set by
the assembler user exit to determine abend processing:

v Abend code: Value of the CEEAUE_RETC parameter of the assembler user
exit.

v Reason code: Value of the CEEAUE_RSNC parameter of the assembler user
exit.

v Abend dump attribute: Language Environment requests a system dump only
if the assembler user exit sets CEEAUE_DUMP to ON. The system abend
dump goes to the system abend ddname with the filename you define in your
JCL. The filename is the name defined in the DD card.

v Abend task/step attribute (on z/OS): If the assembler user exit sets
CEEAUE_STEPS to ON, Language Environment issues an abend to
terminate the step. Otherwise, Language Environment issues an abend to
terminate the task.

RETCODE
Specifies that the enclave terminates with a non-zero return code.

However, the assembler user exit can modify this behavior as follows:

v If the assembler user exit does not set the CEEAUE_ABND flag to ON during
enclave termination, Language Environment returns to its caller with a return
code and a reason code.

v If the assembler user exit sets the CEEAUE_ABND flag to ON during
enclave termination, Language Environment issues an abend to terminate the
enclave. Language Environment sets the abend and reason code for the
abend to equal the values of assembler user exit parameters, as follows:

– Abend code: Value of the CEEAUE_RETC parameter of the assembler
user exit. If the assembler user exit does not modify the CEEAUE_RETC
value, Language Environment sets an abend code that maps to the
severity of the condition and to the user return code.

– Reason code: Value of the CEEAUE_RSNC parameter of the assembler
user exit.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS considerations
v The default under CICS is ABTERMENC=((ABEND),OVR).

Usage Notes
v z/OS UNIX considerations: In a multithreaded application with ABEND set for

ABTERMENC only the main(IPT) thread will be ABENDed and the application
terminated, regardless of which thread experienced the unhandled condition. All
other threads (the NON-IPT threads) will be terminated normally, including the
offending thread, if it is a NON-IPT thread.

For more information
v For information about return code calculation CEEAUE_RETC, CEEAUE_ABND,

and assembler user exit CEEBXTA processing, see z/OS Language Environment
Programming Guide.

v For more information about abend codes and a list of abend code values see
z/OS Language Environment Programming Guide.

ABTERMENC

70 z/OS V1R4.0 Language Environment Customization

AIXBLD (COBOL Only)

Derivation
Alternate IndeX BuiLD

AIXBLD invokes the access method services (AMS) for VSAM indexed and relative
data sets (KSDS and RRDS) to complete the file and index definition procedures for
COBOL programs.

AIXBLD conforms to the ANSI 1985 COBOL standard.

Non-CICS Default: AIXBLD=((OFF),OVR)

Syntax

ÊÊ AIXBLD = ((
OFF
ON) ,

OVR
NONOVR) ÊÍ

OFF
Does not invoke the access method services for VSAM indexed and relative
data sets.

ON
Invokes the access method services for VSAM indexed and relative data sets.
AIXBLD can be abbreviated AIX.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v AIXBLD is ignored under CICS.

Usage Notes
v The only valid abbreviations for AIXBLD and NOAIXBLD are AIX and NOAIX,

respectively.

v When specifying this option in CEEDOPT, CEEUOPT or CEEROPT, use the
syntax AIXBLD(ON) or AIXBLD(OFF). Use AIXBLD and NOAIXBLD only on the
command line.

v z/OS consideration — If you also specify the MSGFILE run-time option, the
access method services messages are directed to the MSGFILE ddname or to
the default SYSOUT.

Performance Considerations
Running your program under AIXBLD requires more storage, which can degrade
performance. Therefore, use AIXBLD only during application development to build
alternate indices. Use NOAIXBLD when you have already defined your VSAM data
sets.

AIXBLD

Chapter 12. Language Environment Run-Time Options 71

For More Information
v See Enterprise COBOL for z/OS and OS/390 Programming Guide or COBOL for

OS/390 & VM Programming Guidefor more details.

v See “MSGFILE” on page 101 for information about the MSGFILE run-time option.

ALL31

Derivation
ALL AMODE 31

ALL31 specifies whether an application can run entirely in AMODE 31 or whether
the application has one or more AMODE 24 routines.

This option does not implicitly alter storage, in particular storage managed by the
STACK and HEAP run-time options. However, you must be aware of your
application’s requirements for stack and heap storage, because such storage can
potentially be allocated above the line while running in AMODE 24.

It is recommended that ALL31 have the same setting for all enclaves in a process.
Language Environment does not support the invocation of a nested enclave
requiring ALL31(OFF) from an enclave running with ALL31(ON) in non-CICS
environments.

In a multithread environment, Language Environment invokes all start routines,
which are specified in a Language Environment pthread_create() function call, in
AMODE 31. However, for PL/I MTF applications, Language Environment provides
AMODE switching. Thus, the first routine of a task can be in AMODE 24.

Non-CICS Default: ALL31=((ON),OVR)

Syntax

ÊÊ ALL31 = ((
ON
OFF) ,

OVR
NONOVR) ÊÍ

ON
Indicates that no user routines of a Language Environment application are
AMODE 24.

With ALL31(ON) specified:

v AMODE switching across calls to Language Environment common run-time
routines is minimized. For example, no AMODE switching is performed on
calls to Language Environment callable services.

OFF
Indicates that one or more routines of a Language Environment application are
AMODE 24.

With ALL31(OFF) specified:

v AMODE switching across calls to Language Environment common run-time
routines is performed. For example, AMODE switching is performed on calls
to Language Environment callable services.

v In COBOL, EXTERNAL data is allocated in storage below the 16 MB line.

AIXBLD

72 z/OS V1R4.0 Language Environment Customization

If you use the default setting ALL31(OFF), you must also use the default setting
STACK(,,BELOW,,,). AMODE 24 routines require stack storage below the 16
MB line.

If you use the setting ALL31(OFF), the STACK and LIBSTACK storage will be
allocated from below the 16 MB line, regardless of the value specified on these
parameters.

If you use the setting ALL31(OFF), Language Environment preallocates
BELOWHEAP instead of ANYHEAP storage.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS considerations
v The default under CICS is ALL31=((ON),OVR).

v In COBOL, EXTERNAL data is allocated in unrestricted storage. Under CICS,
Language Environment allocates storage for the common anchor area (CAA) and
other control blocks in unrestricted storage.

Usage Notes
v z/OS UNIX consideration — The ALL31 option applies to the enclave.

v COBOL considerations — You must specify ALL31(OFF) if your applications
contain one of the following programs:

– A VS COBOL II NORES program

– An OS/VS COBOL program (non-CICS program)

– An AMODE 24 program

v Fortran considerations — Use ALL31(ON) if all of the compile units in the
enclave have been compiled with VS FORTRAN Version 1 or Version 2 and
there are no requirements for 24-bit addressing mode. Otherwise, use
ALL31(OFF).

v When an application is running in an XPLINK environment (that is, either the
XPLINK(ON) run-time option was specified, or the initial program contained at
least one XPLINK-compiled part), the ALL31 run-time option will be forced to ON.
No AMODE 24 routines are allowed in an enclave that uses XPLINK. No
message will be issued to indicate this action. In this case, if a Language
Environment run-time options report is generated using the RPTOPTS run-time
option, the ALL31 option will be reported as ″Override″ under the LAST WHERE
SET column.

Performance Consideration
If your application consists entirely of AMODE 31 routines, it might run faster and
use less below-the-line storage with ALL31(ON) than with ALL31(OFF), since mode
switching code is not required.

For More Information
v See “STACK” on page 130 for information about the STACK run-time option.

ANYHEAP
ANYHEAP controls the allocation of library heap storage that is not restricted to a
location below the 16 MB line.

ALL31

Chapter 12. Language Environment Run-Time Options 73

The ANYHEAP option is always in effect. If you do not specify ANYHEAP or if you
specify ANYHEAP(0), Language Environment allocates the value of 16K when a
call is made to get heap storage.

Non-CICS Default: ANYHEAP=((16K,8K,ANYWHERE,FREE),OVR)

Syntax

ÊÊ ANYHEAP = ((init_size , incr_size ,
ANYWHERE
ANY
BELOW

, Ê

Ê
FREE
KEEP) ,

OVR
NONOVR) ÊÍ

init_size
Determines the minimum initial size of the anywhere heap storage. This value
can be specified as n, nK, or nM bytes of storage. The actual amount of
allocated storage is rounded up to the nearest multiple of 8 bytes.

incr_size
Determines the minimum size of any subsequent increment to the anywhere
heap area, and is specified in n, nK, or nM bytes of storage. This value is
rounded up to the nearest multiple of 8 bytes.

ANYWHERE|ANY
Specifies that heap storage can be allocated anywhere in storage. If there is no
storage available above the line, storage is acquired below the 16 MB line.

The only valid abbreviation for ANYWHERE is ANY.

BELOW
Specifies that heap storage must be allocated below the 16 MB line in storage
that is accessible to 24-bit addressing.

FREE
Specifies that storage allocated to ANYHEAP increments is released when the
last of the storage is freed.

KEEP
Specifies that storage allocated to ANYHEAP increments is not released when
the last of the storage is freed.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v The default under CICS is ANYHEAP=((4K,4080,ANYWHERE,FREE),OVR).

v Both the initial size and the increment size are rounded up to the nearest multiple
of 8 bytes. If ANYHEAP(0) is specified, the initial HEAP is obtained on the first
use and will be based on the increment size. The maximum initial and increment
size for ANYHEAP under CICS is 1 gigabyte (1024 MB).

ANYHEAP

74 z/OS V1R4.0 Language Environment Customization

v The default increment size under CICS is 4080 bytes, rather than 4096 bytes, to
accomodate the 16 byte CICS storage check zone. Without this accomodation,
an extra page of storage is allocated (only when the storage allocation is below
the 16 MB line).

Usage Notes
v z/OS UNIX consideration — The ANYHEAP option applies to the enclave.

Performance Considerations
The ANYHEAP option improves performance when you specify values that minimize
the number of times the operating system allocates storage. The RPTSTG run-time
option generates a report of the storage the application uses while running; you can
use the report numbers to help determine what values to specify.

For More Information
v See z/OS Language Environment Programming Guide for more information about

Language Environment heap storage.

v See “RPTSTG” on page 117 for more information about the RPTSTG run-time
option.

v For more information about heap storage tuning with storage report numbers,
see z/OS Language Environment Programming Guide.

AUTOTASK | NOAUTOTASK (Fortran Only)
AUTOTASK specifies whether Fortran Multitasking Facility is to be used by your
program and the number of tasks that are allowed to be active.

Non-CICS Default: NOAUTOTASK=(OVR)

Syntax

ÊÊ
NOAUTOTASK = (
AUTOTASK = ((loadmod , numtasks) ,

OVR
NONOVR) ÊÍ

NOAUTOTASK
Disables the MTF and nullifies the effects of previous specifications of
AUTOTASK parameters.

loadmod
The name of the load module that contains the concurrent subroutines that run
in the subtasks created by MTF.

numtasks
The number of subtasks created by MTF. This value can range from 1 through
99.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v AUTOTASK is ignored under CICS.

ANYHEAP

Chapter 12. Language Environment Run-Time Options 75

BELOWHEAP
BELOWHEAP controls the allocation of library heap storage that must be located
below the 16 MB line. The heap controlled by BELOWHEAP is intended for items
such as control blocks used for I/O.

Non-CICS Default: BELOWHEAP=((8K,4K,FREE),OVR)

Syntax

ÊÊ BELOWHEAP = ((init_size , incr_size ,
FREE
KEEP) , Ê

Ê
OVR
NONOVR) ÊÍ

init_size
Determines the minimum initial size of the below heap storage. This value can
be specified as n, nK, or nM bytes of storage. The actual amount of allocated
storage is rounded up to the nearest multiple of 8 bytes.

incr_size
Determines the minimum size of any subsequent increment to the area below
the 16 MB line, and is specified in n, nK, or nM bytes of storage. This value is
rounded up to the nearest multiple of 8 bytes.

FREE
Specifies that storage allocated to BELOWHEAP increments is released when
the last of the storage is freed.

KEEP
Specifies that storage allocated to BELOWHEAP increments is not released
when the last of the storage is freed.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v The default under CICS is BELOWHEAP=((4K,4080,FREE),OVR).

v The default increment size under CICS is 4080 bytes, rather than 4096 bytes, to
accomodate the 16 bytes CICS storage check zone. Without this accomodation,
an extra page of storage is allocated (only when the storage allocation is below
the 16 MB line).

Usage Notes
v Both the initial size and the increment size are rounded to the nearest multiple of

8 bytes. If you specify BELOWHEAP(0), the initial BELOWHEAP is obtained on
the first use and will be the increment size.

v z/OS UNIX consideration — The BELOWHEAP option applies to the enclave.

Performance Considerations
BELOWHEAP improves performance when you specify values that minimize the
number of times that the operating system allocates storage. The RPTSTG run-time

BELOWHEAP

76 z/OS V1R4.0 Language Environment Customization

option generates a report of storage your application uses while running. You can
use its numbers to help determine what values to specify.

For More Information
v See z/OS Language Environment Programming Guide for more information about

Language Environment heap storage.

v See “RPTSTG” on page 117 for more information about the RPTSTG run-time
option.

v For more information about tuning your application with storage report numbers,
see z/OS Language Environment Programming Guide.

CBLOPTS (COBOL Only)

Derivation
COBOL OPTionS

CBLOPTS specifies the format of the parameter string on application invocation
when the main program is COBOL. CBLOPTS determines whether run-time options
or program arguments appear first in the parameter string.

You can specify this option only in CEEUOPT, CEEDOPT or CEEROPT at
initialization.

When you specify the ON suboption of CBLOPTS in CEEUOPT, CEEDOPT or
CEEROPT, the run-time options and program arguments specified in the JCL or on
the command line are honored in the following order, which is the reverse of that
usually honored by Language Environment:
program arguments/run-time options

CBLOPTS(ON) allows the existing COBOL format of the invocation character string
to continue working (user parameters followed by run-time options). CBLOPTS(ON)
is valid only for applications whose main program is COBOL.

Non-CICS Default: CBLOPTS=((ON),OVR)

Syntax

ÊÊ CBLOPTS = ((
ON
OFF) ,

OVR
NONOVR) ÊÍ

ON
Specifies that program arguments appear first in the parameter string.

OFF
Specifies that run-time options appear first in the parameter string.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

BELOWHEAP

Chapter 12. Language Environment Run-Time Options 77

CICS consideration
v CBLOPTS is ignored under CICS.

Usage Note
v If the string contains only run-time options that are invalid, the entire string is

interpreted as a program argument. For example, if you pass the string
11/16/1967, 1967 is interpreted as an invalid run-time option. Since there are no
other run-time options, the entire string will be interpreted as a program
argument.

For More Information
v For more information about CEEUOPT, CEEDOPT or CEEROPT, see Chapter 4,

“Customizing Language Environment Run-Time Options” on page 19.

CBLPSHPOP (COBOL Only)

Derivation
COBOL PUSH POP

CBLPSHPOP controls whether CICS PUSH HANDLE and CICS POP HANDLE
commands are issued when a COBOL subroutine is called.

Specify CBLPSHPOP(ON) to avoid compatibility problems when calling COBOL
subroutines that contain CICS CONDITION, AID, or ABEND condition handling
commands.

You can set the CBLPSHPOP run-time option on an enclave basis using
CEEUOPT.

CBLPSHPOP is ignored in non-CICS environments.

Non-CICS Default: N/A

Syntax

ÊÊ CBLPSHPOP = ((
ON
OFF) ,

OVR
NONOVR) ÊÍ

ON
Automatically issues the following when a COBOL subroutine is called:
v An EXEC CICS PUSH HANDLE command as part of the routine initialization.
v An EXEC CICS POP HANDLE command as part of the routine termination.

OFF
Does not issue CICS PUSH HANDLE and CICS POP HANDLE commands on
a call to a COBOL subroutine.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CBLOPTS

78 z/OS V1R4.0 Language Environment Customization

CICS consideration
v The default under CICS is CBLPSHPOP=((ON),OVR).

v If your application calls COBOL subroutines under CICS, performance is better
with CBLPSHPOP(OFF) than with CBLPSHPOP(ON).

For More Information
v For more information about CEEUOPT, see Chapter 4, “Customizing Language

Environment Run-Time Options” on page 19.

CBLQDA (COBOL Only)

Derivation
COBOL QSAM Dynamic Allocation

CBLQDA controls COBOL QSAM dynamic allocation on an OPEN statement.

CBLQDA does not affect dynamic storage allocation for the message file specified
in MSGFILE or the Language Environment formatted dump file (CEEDUMP).

Non-CICS Default: CBLQDA=((OFF),OVR)

Syntax

ÊÊ CBLQDA = ((
OFF
ON) ,

OVR
NONOVR) ÊÍ

OFF
Specifies that COBOL QSAM dynamic allocation is not permitted.

ON
Specifies that COBOL QSAM dynamic allocation is permitted. ON conforms to
the 1985 COBOL Standard.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v CBLQDA is ignored under CICS.

Usage Notes
v z/OS consideration — You should use CBLQDA(OFF) under z/OS, because this

prevents a temporary data set from being created in case there is a misspelling
in your JCL. If you specify CBLQDA(ON) and have a misspelling in your JCL,
Language Environment creates a temporary file, writes to it, and then z/OS
deletes it. You receive a return code of 0 but no output.

CBLPSHPOP

Chapter 12. Language Environment Run-Time Options 79

CHECK (COBOL Only)
CHECK flags checking errors within an application. In COBOL, index, subscript, and
reference modification ranges are checking errors. COBOL is the only language that
uses the CHECK option.

Non-CICS Default: CHECK=((ON),OVR)

Syntax

ÊÊ CHECK = ((
ON
OFF) ,

OVR
NONOVR) ÊÍ

ON
Specifies that run-time checking is performed.

OFF
Specifies that run-time checking is not performed.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v The default under CICS is CHECK=((ON),OVR).

Usage Note
v CHECK(ON) has no effect if NOSSRANGE was in effect at compile time.

Performance Consideration
If your COBOL program was compiled with SSRANGE, and you are not testing or
debugging an application, performance improves when you specify CHECK(OFF).

COUNTRY
COUNTRY sets the country code, which affects the date and time formats, the
currency symbol, the decimal separator, and the thousands separator, based on a
specified country. COUNTRY does not change the default settings for the language
currency symbol, decimal point, thousands separator, and date and time picture
strings set by CEESETL or setlocale(). COUNTRY affects only the Language
Environment NLS services, not the Language Environment locale callable services.

You can set the country value using the run-time option COUNTRY or the callable
service CEE3CTY.

The COUNTRY setting affects the format of the date and time in the reports
generated by the RPTOPTS and RPTSTG run-time options.

Non-CICS Default: COUNTRY=((US),OVR) with US signifying the United States.

CHECK

80 z/OS V1R4.0 Language Environment Customization

Syntax

ÊÊ COUNTRY = ((country_code) ,
OVR
NONOVR) ÊÍ

country_code
A 2-character code that indicates to Language Environment the country on
which to base the default settings.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v The default under CICS is COUNTRY=((US),OVR) with (US) signifying the

United States.

Usage Notes
v If you specify a country_code that is not supported by Language Environment,

Language Environment accepts the value and issues an informational message.
When you specify an unavailable country code, you must provide a message
template for that code.

CEEUOPT, CEEDOPT (CEECOPT) and CEEROPT permit the specification of an
unavailable country code, but give a return code of 4 and a warning message.

v C/C++ consideration — Language Environment provides locales used in
Language Environment and C++ to establish default formats for the
locale-sensitive functions and locale callable services, such as date and time
formatting, sorting, and currency symbols. To change the locale, you can use the
setlocale() library function or the CEESETL callable service.

The settings of CEESETL or setlocale() do not affect the setting of the
COUNTRY run-time option. COUNTRY affects only Language Environment NLS
and date and time services. setlocale() and CEESETL affect only C/C++
locale-sensitive functions and Language Environment locale callable services.

To ensure that all settings are correct for your country, use COUNTRY and either
CEESETL or setlocale().

v z/OS UNIX consideration — The COUNTRY option sets the initial value for the
enclave.

For More Information
v For more information about the CEE3CTY and the CEESETL callable services,

see z/OS Language Environment Programming Reference.

v For more information on setlocale(), see z/OS C/C++ Programming Guide.

v For a list of countries and their codes, see Appendix F, “Language Environment
National Language Support Country Codes” on page 223 and z/OS Language
Environment Programming Reference.

DEBUG (COBOL Only)
DEBUG activates the COBOL batch debugging features specified by the USE FOR
DEBUGGING declarative.

COUNTRY

Chapter 12. Language Environment Run-Time Options 81

Non-CICS Default: DEBUG=((OFF),OVR)

Syntax

ÊÊ DEBUG = ((
OFF
ON) ,

OVR
NONOVR) ÊÍ

OFF
Suppresses the COBOL batch debugging features.

ON
Activates the COBOL batch debugging features.

You must have the WITH DEBUGGING MODE clause in the environment
division of your application in order to compile the debugging sections.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v The default under CICS is DEBUG=((OFF),OVR).

Usage Note
v When specifying this option in CEEDOPT (CEECOPT), CEEUOPT or CEEROPT,

use the syntax DEBUG(ON) or DEBUG(OFF). Use DEBUG and NODEBUG only
on the command line.

Performance Consideration
Because DEBUG(ON) gives worse run-time performance than DEBUG(OFF), you
should use it only during application development or debugging.

For More Information
v See Enterprise COBOL for z/OS and OS/390 Programming Guide or COBOL for

OS/390 & VM Programming Guide for more details on the USE FOR
DEBUGGING declarative.

DEPTHCONDLMT

Derivation
DEPTH of nested CONDition LiMiT

DEPTHCONDLMT specifies the extent to which conditions can be nested. Figure 9
on page 83 illustrates the effect of DEPTHCONDLMT(3) on condition handling. The
initial condition and two nested conditions are handled in this example. The third
nested condition is not handled.

DEBUG

82 z/OS V1R4.0 Language Environment Customization

Non-CICS Default: DEPTHCONDLMT=((10),OVR)

Syntax

ÊÊ DEPTHCONDLMT = ((limit) ,
OVR
NONOVR) ÊÍ

limit
An integer of 0 or greater value. It is the depth of condition handling allowed. An
unlimited depth of condition handling is allowed if you specify 0. A 1 value
specifies handling of the initial condition, but does not allow handling of nested
conditions that occur while handling a condition. With a 5 value, for example,
the initial condition and four nested conditions are processed, but there can be
no further nesting of conditions.

If the number of nested conditions exceeds the limit, the application terminates
with abend U4087.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v The default under CICS is DEPTHCONDLMT=((10),OVR).

Usage Notes
v PL/I consideration — DEPTHCONDLMT(0) provides PL/I compatibility.

v PL/I MTF consideration — In a PL/I MTF application, DEPTHCONDLMT sets the
limit for how many nested synchronous conditions are allowed for a PL/I task. If
the number of nested conditions exceeds the limit, the application terminates
abnormally.

v z/OS UNIX consideration — The DEPTHCONDLMT option sets the limit for how
many nested synchronous conditions are allowed for a thread. Asynchronous
signals do not affect DEPTHCONDLMT.

For More Information
v For more information on nested conditions, see z/OS Language Environment

Programming Guide.

Error

(level 1)

User-written

condition handler

Another error

(level 2)

User-written

condition handler

User-written

condition handler

Not handled

Another error

(level 3)

Another error

(level 4)

Figure 9. Effect of DEPTHCONDLMT(3) on Condition Handling

DEPTHCONDLMT

Chapter 12. Language Environment Run-Time Options 83

ENVAR

Derivation
ENvironmental VARiables

ENVAR sets the initial values for the environment variables specified in string. With
ENVAR, you can pass into the application switches or tagged information that can
then be accessed using the C functions getenv, setenv, and clearenv.

When the run-time options are merged, ENVAR strings are appended in the order
encountered during the merge. Thus, the set of environment variables established
by the end of run-time option processing reflects all the various sources where
environment variables are specified (rather than just the one source with the highest
precedence). If a setting for the same environment variable is specified in more
than one source, the last setting is used.

Environment variables in effect at the time of the system function are copied to the
new environment. The copied environment variables are treated the same as those
found in the ENVAR run-time option on the command level, with respect to the
merge of the run-time options from their various sources.

When you have specified the RPTOPTS run-time option, you receive a list of the
merged ENVAR run-time options. The output for the ENVAR run-time options
contains a separate entry for each source where ENVAR was specified with the
environment variables from that source.

Non-CICS Default: ENVAR=((''),OVR)

Syntax

ÊÊ ENVAR = ((»

,

string) ,
OVR
NONOVR) ÊÍ

string
Is of the form name=value, where name and value are sequences of characters
that do not contain null bytes or equal signs. The string name is an environment
variable, and value is its value.

Blanks are significant in both the name= and the value characters.

You can enclose the string in either single or double quotation marks to
distinguish it from other strings. The string cannot contain DBCS characters. It
can have a maximum of 250 characters.

You can specify multiple environment variables, separating the name=value
pairs with commas. Quotation marks are required when specifying multiple
variables.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

ENVAR

84 z/OS V1R4.0 Language Environment Customization

CICS consideration
v The default under CICS is ENVAR=((’’),OVR).

Usage Notes
v The ENVAR option functions independently of the POSIX run-time option setting.

v C consideration — An application can access the environment variables using C
function getenv or the POSIX variable environ, which is defined as:

extern char **environ;

Access through getenv is recommended, especially in a multithread environment.

HLLs can access the environment variables through standard C functions at
enclave initialization and throughout the application’s run. Access remains until
the HLL returns from enclave termination. Environment variables that are
propagated across the EXEC override those established by the ENVAR option.
getenv serializes access to the environment variables.

v C++ consideration — An application can access the environment variables using
C function getenv.

HLLs can access the environment variables through standard C functions at
enclave initialization and throughout the application’s run.

v z/OS UNIX consideration — The environment variables apply to the enclave.

For More Information
v For more information about the RPTOPTS run-time option, see “RPTOPTS” on

page 114.

ERRCOUNT

Derivation
ERRor COUNTer

ERRCOUNT specifies how many conditions of severity 2, 3, and 4 can occur per
thread before the enclave terminates abnormally. After the number specified in
ERRCOUNT is reached, no further Language Environment condition management,
including CEEHDLR management, is honored.

Non-CICS Default: ERRCOUNT=((0),OVR)

Syntax

ÊÊ ERRCOUNT = ((number) ,
OVR
NONOVR) ÊÍ

number
The number of severity 2, 3, and 4 conditions per individual thread that can
occur while this enclave is running. If the number of conditions exceeds
number, the thread and enclave terminate abnormally.

OVR
Specifies that the option can be overridden.

ENVAR

Chapter 12. Language Environment Run-Time Options 85

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v The default under CICS is ERRCOUNT=((0),OVR).

Usage Notes
v ERRCOUNT(0) means that the Language Environment condition handler will not

terminate the task regardless of the severity 2, 3, or 4 conditions that are
generated. This setting allows previously existing infinite loop or runaway task
conditions to persist.

v ERRCOUNT only applies when conditions are handled by a user condition
handler, signal catcher, PL/I on-units, or a language-specific condition handler.

Language Environment does not count severity 0 or 1 messages. However, the
COBOL specific run-time library does count its severity 1 (warning) messages.
When the limit of 256 IGZnnnnW messages is reached, the COBOL library will
issue message IGZ0041W, which indicates that the limit of warning messages
has been exceeded. Any further COBOL warning messages are suppressed.

v PL/I consideration — ERRCOUNT(0) is recommended for applications containing
PL/I. Some conditions, such as ENDPAGE, can occur many times in an
application. Use ERRCOUNT(0) to avoid unnecessary termination of your
application.

v PL/I MTF consideration — In a PL/I MTF application, ERRCOUNT sets the
threshold for the total number severity 2, 3, and 4 synchronous conditions that
can occur for each task. If the number of conditions exceeds the threshold, the
application terminates normally.

v z/OS UNIX consideration — Synchronous signals that are associated with a
condition of severity 2, 3, and 4 do not affect ERRCOUNT. Asynchronous signals
do not affect ERRCOUNT.

v C++ consideration — The ERRCOUNT option sets the threshold for the total
number of severity 2, 3, and 4 synchronous conditions that can occur. Note that
each thrown object is considered a severity 3 condition. However, this condition
does not affect ERRCOUNT.

For More Information
v For a description of condition severities, see z/OS Language Environment

Programming Guide.

v For more information about the CEEHDLR callable service, or the CEESGL
callable service, see z/OS Language Environment Programming Reference.

v See z/OS Language Environment Programming Guide for more information about
the facility ID part of messages.

ERRUNIT (Fortran Only)

Derivation
ERRor UNIT

ERRUNIT identifies the unit number to which run-time error information is to be
directed. This option is provided for compatibility with the VS Fortran version 2
runtime.

Non-CICS Default: ERRUNIT=((6),OVR)

ERRCOUNT

86 z/OS V1R4.0 Language Environment Customization

Syntax

ÊÊ ERRUNIT = ((number) ,
OVR
NONOVR) ÊÍ

number
A valid unit number in the range 0-99. You can establish your own default
number at installation time. The Language Environment message file and the
file connected to the Fortran error message unit are the same.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v ERRUNIT is ignored under CICS.

FILEHIST (Fortran Only)

Derivation
FILE HISTory

FILEHIST specifies whether to allow the file definition of a file referred to by a
ddname to be changed during run time. This option is intended for use with
applications called by Fortran that reallocate Fortran’s supplied DD names.

Non-CICS Default: FILEHIST=((ON),OVR)

Syntax

ÊÊ FILEHIST = ((
ON
OFF) ,

OVR
NONOVR) ÊÍ

ON
Causes the history of a file to be used in determining its existence. It checks to
see whether:
v The file was ever internally opened (in which case it exists)
v The file was deleted by a CLOSE statement (in which case it does not exist).

OFF
Causes the history of a file to be disregarded in determining its existence.

If you specify FILEHIST(OFF), you should consider:
v If you change file definitions during run-time, the file is treated as if it

were being opened for the first time. Before the file definition can be
changed, the existing file must be closed.

ERRUNIT

Chapter 12. Language Environment Run-Time Options 87

v If you do not change file definitions during run-time, you must use
STATUS='NEW' to re-open an empty file that has been closed with
STATUS='KEEP', because the file does not appear to exist to Fortran.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v FILEHIST is ignored under CICS.

Usage Notes
v When specifying this option in CEEDOPT, CEEUOPT or CEEROPT, use the

syntax FILEHIST(ON) or FILEHIST(OFF). Use FILEHIST and NOFILEHIST only
on the command line.

FILETAG (C/C++ only)

Derivation
FILE TAGging

FILETAG run-time option ensures a more granular control of the manner in which
untagged HFS files and standard streams opened as terminal files are set up for
conversion. It also determines whether certain open functions will tag new or empty
HFS files.

Recommendation: You should be familiar with the concept of file tagging,
autoconversion, and the CCSID to use the run-time option properly. See z/OS
C/C++ Programming Guide for more information.

Non-CICS Default: FILETAG=((NOAUTOCVT,NOAUTOTAG),OVR)

CICS Default: FILETAG is ignored under CICS.

Syntax

ÊÊ FILETAG = (
NOAUTOCVT
(
AUTOCVT

,
NOAUTOTAG
AUTOTAG
)
,

OVR
NONOVR) ÊÍ

NOAUTOCVT
Disables behavior indicated below.

AUTOCVT
Enables automatic text conversion for untagged HFS files opened using
fopen() or freopen() in text mode. The assumed CCSID for an untagged file
will be the EBCDIC CCSID from the CCSID pair specified by the
_BPXK_CCSIDS environment variable. If the environment variable is not set, a

FILEHIST

88 z/OS V1R4.0 Language Environment Customization

|
|
|
|

|
|
|

|
|

|

|||

||

|
|
|
|

default CCSID pair is used. See the usage notes for more information. See
z/OS C/C++ Programming Guide for more information on the _BPXK_CCSIDS
environment variable.

This option also indicates that the standard streams should be enabled for
automatic text conversion to the EBCDIC IBM-1047 codepage when they refer
to a terminal file (tty). See the usage notes for more information.

This option does not affect untagged HFS files that are automatically tagged by
using the AUTOTAG suboption. This is because an HFS file that is tagged is
already enabled for automatic text conversion.

Restriction: The automatic text conversion is performed only if one of the
following is also true:
v The _BPXK_AUTOCVT environment variable value is equal to ON.
v The _BPXK_AUTOCVT environment variable is unset and AUTOCVT(ON)

has been specified in the active BPXPRMxx member on your system. See
z/OS C/C++ Programming Guide for more information on the
_BPXK_AUTOCVT environment variable.

NOAUTOTAG
Deactivates the automatic tagging of new or empty HFS files.

AUTOTAG
Activates the automatic file tagging, on the first write, of new or empty HFS files
open with fopen(), freopen(), or popen(). See the usage notes for more
information.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

z/OS UNIX consideration
v FILETAG applies to the enclave. Nested enclaves do not inherit the setting of this

run-time option. HFS files that are opened in the nested enclave are not affected.

Usage notes
v Recommendations:

– You should avoid the following:
- Setting this run-time option in the installation-wide defaults (CEEDOPT).
- Setting this run-time option using _CEE_RUNOPTS in a default profile for

the UNIX shell users.
- Exporting _CEE_RUNOPTS that specifies this run-time option. It can cause

unexpected behaviors for the unknowing user or application.

– The application programmer should define this run-time option with the
assumption that the application is coded to behave based upon the option’s
setting.

– The application programmer should specify this run-time option at compile
time using #pragma runopts or at bind using a CEEUOPT CSECT that has
been previously created.

– The application user should not override this run-time option because it can
change the expected behavior of the application.

v The default CCSID pair is (1047,819), where 1047 indicates the EBCDIC
IBM-1047 codepage and 819 indicates the ASCII ISO8859-1 codepage.

v Automatic text conversion is enabled for the standard streams only when the
application has been exec()ed, for example, when the UNIX shell gives control to

FILETAG

Chapter 12. Language Environment Run-Time Options 89

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|

|
|
|

|
|
|

|
|

|
|

|
|

a program entered on the command line, and the standard stream file descriptors
are already open, untagged and associated with a tty.

v For the UNIX shell-owned standard streams that are redirected at program
execution time, the shell includes added environment variables that control
whether the redirected streams are tagged. See z/OS UNIX System Services
Command Reference for more information.

v Automatic tagging for an HFS file is done at first write by the LFS. The CCSID
used for the tag is the program CCSID of the current thread. Both text and binary
files are tagged.

v When FILETAG(,AUTOTAG) is in effect, fopoen() or freopen() of an HFS file
fails if it cannot determine whether the file exists or if it cannot determine the
size.

HEAP
HEAP controls the allocation of the initial heap, controls allocation of additional
heaps created with the CEECRHP callable service, and specifies how that storage
is managed.

Heaps are storage areas where you allocate memory for user-controlled
dynamically allocated variables such as:

v C variables allocated as a result of the malloc(), calloc(), and realloc()
functions

v COBOL WORKING-STORAGE data items

v PL/I variables with the storage class CONTROLLED, or the storage class BASED

The HEAP option is always in effect. If you do not specify HEAP, Language
Environment allocates the default value of heap storage when a call is made to get
heap storage.

Language Environment does not allocate heap storage until the first call to get heap
storage is made. You can get heap storage by using language constructs or by
making a call to CEEGTST.

Non-CICS Default: HEAP=((32K,32K,ANYWHERE,KEEP,8K,4K),OVR)

Syntax

ÊÊ HEAP = ((init_size , incr_size ,
ANYWHERE
ANY
BELOW

,
KEEP
FREE Ê

Ê , initsz24 , incrsz24) ,
OVR
NONOVR) ÊÍ

init_size
Determines the minimum initial allocation of heap storage. Specify this value as
n, nK, or nM bytes of storage. The actual amount of allocated storage is
rounded up to the nearest multiple of 8 bytes.

incr_size
Determines the minimum size of any subsequent increment to the heap
storage. Specify this value as n, nK, or nM bytes of storage. The actual amount
of allocated storage is rounded up to the nearest multiple of 8 bytes.

FILETAG

90 z/OS V1R4.0 Language Environment Customization

|
|

|
|
|
|

|
|
|

|
|
|

ANYWHERE|ANY
Specifies that you can allocate heap storage anywhere in storage. If there is no
available storage above the line, storage is acquired below the 16 MB line.

The only valid abbreviation of ANYWHERE is ANY.

BELOW
Specifies that you must allocate heap storage below the 16 MB line in storage
that is accessible to 24-bit addressing.

KEEP
Specifies that storage allocated to HEAP increments is not released when the
last of the storage is freed.

FREE
Specifies that storage allocated to HEAP increments is released when the last
of the storage is freed.

initsz24
Determines the minimum initial size of the heap storage that is obtained when
an application running AMODE 24 (ALL31(OFF)) requests storage and
ANYWHERE has been specified. An AMODE 31 application running with
ALL31(OFF) uses the regular heap allocation size. Specify initsz24 as n, nK, or
nM number of bytes. The amount of storage is rounded up to the nearest
multiple of 8 bytes.

initsz24 applies to the initial heap and other heaps created with the CEECRHP
callable service that are not allocated strictly below the 16 MB line.

incrsz24
Determines the minimum size of any subsequent increment to the heap area
that is obtained when an application running AMODE 24 (ALL31(OFF)) requests
storage and ANYWHERE has been specified. An AMODE 31 application
running with ALL31(OFF) uses the regular heap allocation size. Specify
incrsz24 as n, nK, or nM number of bytes. The amount of storage is rounded up
to the nearest multiple of 8 bytes.

The incrsz24 applies to the initial heap and other heaps created with the
CEECRHP callable service that are not allocated strictly below the 16 MB line.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v The default under CICS is HEAP=((4K,4080,ANYWHERE,KEEP,4K,4080),OVR).

v Both the initial HEAP allocation and HEAP increments are rounded to the next
higher multiple of 8 bytes (not 4K bytes). If HEAP(0) is specified the initial HEAP
is obtained on the first use and will be based on the increment size.

v If HEAP(,,ANYWHERE,,,) is in effect, the maximum size of a heap segment is 1
gigabyte (1024 MB). These restrictions are subject to change from one release of
CICS to another.

v The default increment size under CICS is 4080 bytes, rather than 4096 bytes, to
accomodate the 16 bytes CICS storage check zone. Without this accomodation,
an extra page of storage is allocated (only when the storage allocation is below
the 16 MB line).

HEAP

Chapter 12. Language Environment Run-Time Options 91

Usage Notes
v Applications running in AMODE 24 that request heap storage get the storage

below the 16 MB line regardless of the setting of ANYWHERE | BELOW.

v COBOL consideration — You can use the HEAP option to provide function similar
to the VS COBOL II space management tuning table.

v For PL/I, the only case in which storage is allocated above the line is when all of
the following conditions exist:
– The user routine requesting the storage is running in 31-bit addressing mode.
– HEAP(,,ANY,,,) is in effect.
– The main routine is AMODE 31.

v PL/I MTF consideration — In a PL/I MTF application, HEAP specifies the heap
storage allocation and management for a PL/I main task.

v z/OS UNIX considerations — The HEAP option applies to the enclave.

Under z/OS UNIX, heap storage is managed at the thread level using
pthread_key_create, pthread_setspecific, and pthread_getspecific.

Performance Considerations
To improve performance, use the storage report numbers generated by the
RPTSTG run-time option as an aid in setting the initial and increment size for
HEAP.

For More Information
v See z/OS Language Environment Programming Guide for more information about

Language Environment heap storage or about specifying run-time options at
application invocation.

v For more information about the CEECRHP callable service, or the CEEGTST
callable service, see z/OS Language Environment Programming Reference.

v See “RPTSTG” on page 117 for more information about the RPTSTG run-time
option.

HEAPCHK

Derivation
HEAP storage CHecKing

HEAPCHK allows the user to run the additional heap check tests.

Non-CICS Default: HEAPCHK=((OFF,1,0,0),OVR)

Syntax

ÊÊ HEAPCHK = ((
OFF
ON , Ê

Ê , ,
frequency delay call level

) ,
OVR
NONOVR) ÊÍ

OFF
Indicates that heap checking is inactive.

HEAP

92 z/OS V1R4.0 Language Environment Customization

ON
Indicates that heap checking is active.

frequency
The frequency at which heap checks are performed, and is specified in n, nK or
nM. A value of one (1) is the default which causes the heap to be checked at
each call to a Language Environment heap storage management service. A
value of n causes the heap to be checked at every nth call to a Language
Environment heap storage management service. A value of zero causes
HEAPCHK to produce only a heap storage diagnostics report. The fourth
sub-option (call level) must be set to a value greater than 1.

delay
A value that causes a delay before heap checks are performed, and is specified
in n, nK or nM. A value of zero (0) is the default which causes the heap to be
checked from the first call to a Language Environment heap storage
management service. A value of n causes the heap to be checked following the
nth call to a Language Environment heap storage management service.

call level
This is the number of calls that will be displayed in the traceback for the heap
storage diagnostics report and is specified in n. A value of zero is the default
which turns heap storage diagnostics reporting off. A value of 10 is
recommended.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v The default under CICS is HEAPCHK=((OFF,1,0,0),OVR).

Usage Notes
v If HEAPCHK(ON) is used with STORAGE(,heap_free_value), the free areas of

the heap will also be checked.

v If HEAPCHK(ON) is specified, this will result in a performance degradation due to
the additional error checking that is performed.

v A U4042 abend dump will be generated when an error is detected, but no
CEEDUMP will be produced.

v To request only a heap storage diagnostics report, specify zero for frequency and
a number n greater than zero for call level. For example, you could specify
HEAPCHK(ON,0,0,10).

v Under normal termination conditions, when the call level is greater than zero and
the frequency is set to zero, the heap storage diagnostics report is written to the
CEEDUMP report. This is independent of the TERMTHDACT setting.

v If a heap storage diagnostics report is desired while calling CEE3DMP, you must
specify the BLOCKS option.

For More Information
v See z/OS Language Environment Debugging Guide for more information about

creating and using the heap storage diagnostics report.

HEAPCHK

Chapter 12. Language Environment Run-Time Options 93

HEAPPOOLS (C/C++ only)

Derivation
HEAP storage POOLS

The HEAPPOOLS run-time option is used to control an optional heap storage
management algorithm known as heap pools. This algorithm is designed to improve
performance of multi-threaded C/C++ applications with high usage of malloc(),
calloc(), realloc() and free(). When active, heap pools virtually eliminates
contention for heap storage.

Non-CICS Default:
HEAPPOOLS=((OFF,8,10,32,10,128,10,256,10,1024,10,2048,10),OVR)

Syntax

ÊÊ HEAPPOOLS = ((
OFF
ON , »

,

cell size , percentage
) Ê

Ê ,
OVR
NONOVR) ÊÍ

OFF
Specifies that Language Environment does not use the Heap Pools Manager.

ON
Specifies that Language Environment does use the Heap Pool Manager to
manage heap storage requests against the initial heap.

cell size
The size of cells in a heap pool. The cell size must be a multiple of 8 within a
range from 8 to 2048. Cell sizes 1K and 2K are also allowed.

percentage
Percentage of the HEAP run-time option init size value to be used as the size
for the heap pool and any extents. The percentage must be in a range from 1
to 90.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v The default under CICS is

HEAPPOOLS=((OFF,8,10,32,10,128,256,10,1024,10,2048,10),OVR).

HEAPPOOLS

94 z/OS V1R4.0 Language Environment Customization

Usage Notes
v To use less than six heap pools, specify 0 for the cell size after the last heap

pool to be used. For example if four heap pools are desired, use 0 for the fifth
cell size when setting the HEAPPOOLS run-time option.

v If the percentage of the HEAP run-time option init size values does not allow for
at least one cell, then the system will automatically adjust the percentage to
enable one cell to be allocated.

v The sum of the percentages may be more or less than 100 percent. This can
cause the allocation of a heap pool to require the allocation of a heap increment
to satisfy the request.

v Each heap pool is allocated on an as-needed basis. The allocation of a heap
pool can result in the allocation of a heap increment to satisfy the request.

v Tuning tips are specified in z/OS Language Environment Programming Guide.

v Heap pools and extents are not released back to the heap, and cell sizes are
fixed, so care should be taken when specifying the HEAPPOOLS run-time option
to avoid wasting storage.

v The HEAPPOOLS run-time option has no effect when the initial heap is allocated
below the 16 MB line. This would be the case when BELOW is specified as the
location on the HEAP run-time option.

v The FREE sub-option on the HEAP run-time option has no effect on the initial
heap or any extents in which a heap pool resides. Each cell in a heap pool can
be freed, but the heap pool itself is only released back to the system at enclave
termination.

v Mixing of the storage management AWIs (CEEGTST(), CEEFRST() and
CEECZST()) and the C/C++ intrinsic functions (malloc(), calloc(), realloc()
and free()) is not supported when operating on the same storage address. For
example, if you request storage using CEEGTST(), then you may not use free()
to release the storage.

v The HEAPPOOLS run-time option applies to the enclave.

v The RPTSTG run-time option will indicate HEAPPOOLS as one of the run-time
options which can be adjusted.

v The HEAPCHK run-time option will indicate that individual cells in the cell pools
controlled by the HEAPPOOLS run-time option are not validated. It is the heap
pool itself which is validated, as it is the actual storage managed by the regular
storage manager.

Performance Consideration
To improve the effectiveness of the Heap Pools Manager, use the storage report
numbers generated by the RPTSTG run-time option as an aid in determining
optimum cell sizes and the initial heap size.

INFOMSGFILTER

Derivation
INFOrmational MeSsaGe FILTER

During normal operations, there are times when long lists of informational
messages are written to the Language Environment MSGFILE. These messages
are not limited to Language Environment (CEE) messages. Informational messges
may also be written, using the CEEMSG interface, by other IBM program products
or user-written applications. If these messages are routed to the user’s terminal,

HEAPPOOLS

Chapter 12. Language Environment Run-Time Options 95

then the user must constantly clear them. If the messages are saved to a data set,
they take up disk space and may interfere with a user browsing the output looking
for a specific message. INFOMSGFILTER allows the user to activate a filter that
eliminates the unwanted and unnecessary informational messages. All informational
messages, whether generated by Language Environment or any other source, will
be suppressed when the INFOMSGFILTER=(ON) option is in effect.

Non-CICS Default: INFOMSGFILTER=((OFF,,,,),OVR)

Syntax

ÊÊ INFOMSGFILTER = ((
OFF
ON , ,

FOREGROUND
Ê

Ê ,
BACKGROUND

,) ,
CICS

OVR
NONOVR) ÊÍ

OFF
Turns off the filtering of messages for all environments.

ON
Turns on the filtering of messages for the specified environments.

FOREGROUND
Selecting this keyword turns message filtering on for the following
environments:

v TSO

v CMS

v z/OS UNIX

BACKGROUND
Selecting this keyword turns message filtering on for the following
environments:

v MVS Batch

v CMS Batch

CICS
Selecting this keyword turns message filtering on in the CICS environment.

Note: These three keywords are not positional, you can specify them in any order.
The fourth comma is required when coding this option for the
installation-wide run-time options CSECT, CEEDOPT (CEECOPT), or the
region-wide run-time options CSECT CEEROPT even though there is no
keyword to fill its position. This position is reserved by IBM for future use.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v The default under CICS is INFOMSGFILTER=((OFF,,,,),OVR).

INFOMSGFILTER

96 z/OS V1R4.0 Language Environment Customization

INQPCOPN (Fortran Only)

Derivation
INQuire the Pre-Connected units that are OPeNed

INQPCOPN controls whether the OPENED specifier on an INQUIRE by unit
statement can be used to determine whether a preconnected unit has had any I/O
statements directed to it.

Non-CICS Default: INQPCOPN=((ON),OVR)

Syntax

ÊÊ INQPCOPN = ((
ON
OFF) ,

OVR
NONOVR) ÊÍ

ON
Causes the running of an INQUIRE by unit statement to provide the value true
in the variable or array element given in the OPENED specifier if the unit is
connected to a file. This includes the case of a preconnected unit, which can be
used in an I/O statement without running an OPEN statement, even if no I/O
statements have been run for that unit.

OFF
Causes the running of an INQUIRE by unit statement to provide the value false
for the case of a preconnected unit for which no I/O statements other than
INQUIRE have been run.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v INQPCOPN is ignored under CICS.

Usage Notes
v When specifying this option in CEEDOPT, CEEUOPT or CEEROPT, use the

syntax INQPCOPN(ON) or INQPCOPN(OFF).

v Use INQPCOPN and NOINQPCOPN only on the command line.

INTERRUPT
INTERRUPT causes attention interrupts recognized by the host system to be
recognized by Language Environment after the Language Environment environment
has been initialized. The way you request an attention interrupt varies from
operating system to operating system. When you request the interrupt, you can give
control to your application or to a debug tool.

Non-CICS Default: INTERRUPT=((OFF),OVR)

INQPCOPN

Chapter 12. Language Environment Run-Time Options 97

Syntax

ÊÊ INTERRUPT = ((
OFF
ON) ,

OVR
NONOVR) ÊÍ

OFF
Specifies that Language Environment does not recognize attention interrupts.

ON
Specifies that Language Environment recognizes attention interrupts. In
addition, if you have specified the TEST(ERROR) or TEST(ALL) run-time
option, the interrupt causes the debug tool to gain control.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v INTERRUPT is ignored under CICS.

Usage Notes
v PL/I consideration — Language Environment supports the PL/I method of polling

code. Note that the PL/I routine must be compiled with the INTERRUPT compiler
option in order for the INTERRUPT run-time option to have an effect.

v PL/I MTF consideration — To receive the attention interrupt, the PL/I program
must be compiled with the INTERRUPT compiler option, and the INTERRUPT
run-time option must be in effect.

v PL/I MTF consideration — The INTERRUPT option applies to the enclave.
However, only one thread in the enclave is affected for a particular attention
interrupt.

v z/OS UNIX consideration — The INTERRUPT option applies to the enclave.
However, only one thread in the enclave is affected for a particular attention
interrupt.

For More Information
v See “TEST | NOTEST” on page 142 for more information about the TEST

run-time option.

v For more information about the POSIX run-time option, see “POSIX” on
page 109.

LIBRARY
Non-CICS Default: LIBRARY=((SYSCEE),OVR)

This option specifies the name of the logical library used for finding RTLS
version-controlled modules. The lib_name must be defined as a logical library in the
CSVRTLxx PARMLIB member.

INTERRUPT

98 z/OS V1R4.0 Language Environment Customization

Syntax

ÊÊ LIBRARY = ((lib_name) ,
OVR
NONOVR) ÊÍ

lib_name
The name of the library that matches the name specified in the CSVRTLxx
member of PARMLIB. The LIBRARY name must be a string from 1 to 8
characters long. The only valid characters are A-Z, 0-9, #, $, @, ., -, +, or _ .
The code points for the variant characters ($, @, and #) are assumed to be in
code pages 01047 or 00037.

Note: The LIBRARY option is ignored if specified for a nested enclave. The
specified name will appear (perhaps erroneously) in the options report
for the nested enclave, however. The RTLS library established by the
main enclave is used for all nested enclaves.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v LIBRARY is ignored under CICS.

Usage Notes
v This option is ignored when RTLS(OFF) is in effect.

v If CEEGINIT is not available in the LNKLST, LPA, JOBLIB, STEPLIB, or TASKLIB
when the Language Environment is invoked, the LIBRARY option has no effect.
RTLS will not be used, but the LIBRARY option value will appear in the options
report.

LIBSTACK

Derivation
LIBrary STACK storage

LIBSTACK controls the allocation of the thread’s library stack storage. This stack is
used by Language Environment and HLL library routines that require save areas
below the 16 MB line.

Non-CICS Default: LIBSTACK=((4K,4K,FREE),OVR)

LIBRARY

Chapter 12. Language Environment Run-Time Options 99

Syntax

ÊÊ LIBSTACK = ((init_size , incr_size ,
FREE
KEEP) , Ê

Ê
OVR
NONOVR) ÊÍ

init_size
Determines the minimum size of the initial library stack segment. The storage is
contiguous.

Specify init_size as n, nK, or nM bytes of storage. init_size can be preceded by
a minus sign. In environments other than CICS, if you specify a negative
number, all available storage minus the amount specified is used for the initial
stack segment.

In non-CICS environments, an init_size of 0 or -0 requests half of the largest
block of contiguous storage below the 16 MB line. In addition when
STACK(,,ANY,,,) is in effect, Language Environment does not acquire the initial
library stack segment until the first program that requires LIBSTACK runs.

Language Environment allocates the storage rounded up to the nearest multiple
of 8 bytes.

incr_size
Determines the minimum size of any subsequent increment to the library stack
area. Specify this value as n, nK, or nM bytes of storage. The actual amount of
allocated storage is the larger of 2 values — incr_size or the requested size —
rounded up to the nearest multiple of 8 bytes.

If you do not specify incr_size, Language Environment uses the Non-CICS
Default setting of 4K. If incr_size=0, Language Environment gets only the
amount of storage needed at the time of the request, rounded up to the nearest
multiple of 8 bytes.

The requested size is the amount of storage a routine needs for a stack frame.
For example, if the requested size is 9000 bytes, incr_size is specified as 8K,
and the initial stack segment is full, then Language Environment gets a 9000
byte stack increment from the operating system to satisfy the request. If the
requested size is smaller than 8K, Language Environment gets an 8K stack
increment from the operating system.

FREE
Specifies that Language Environment releases storage allocated to LIBSTACK
increments when the last of the storage in the library stack is freed. The initial
library stack segment is not released until the enclave terminates.

KEEP
Specifies that Language Environment does not release storage allocated to
LIBSTACK increments when the last of the storage is freed.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

LIBSTACK

100 z/OS V1R4.0 Language Environment Customization

CICS considerations
v The default under CICS is LIBSTACK=((32,4080,FREE),OVR).

v If ALL31(ON) is specified, LIBSTACK will be allocated above the 16 MB line.

v The initial and increment sizes for LIBSTACK are rounded to the next higher
multiple of 8 bytes.

v The minimum initial size is 32 bytes; the minimum increment size is 4080.

v The default increment size under CICS is 4080 bytes, rather than 4096 bytes, to
accomodate the 16 bytes CICS storage check zone. Without this accomodation,
an extra page of storage is allocated (only when the storage allocation is below
the 16 MB line).

Usage Notes
v z/OS UNIX consideration — The LIBSTACK option sets the library stack

characteristics on each thread.

The recommended setting for LIBSTACK under z/OS UNIX is
LIBSTACK=((4K,4K,FREE),OVR).

Performance Considerations
To improve performance, use the storage report numbers generated by the
RPTSTG run-time option as an aid in setting the initial and increment size for
LIBSTACK.

For More Information
v See “RPTSTG” on page 117 for more information about the RPTSTG run-time

option.

v For more information about using the storage reports generated by the RPTSTG
run-time option to tune the stacks, see z/OS Language Environment
Programming Guide.

MSGFILE

Derivation
MeSsaGe FILE

MSGFILE specifies the ddname of the file where all run-time diagnostics and
reports generated by the RPTOPTS and RPTSTG run-time options are written.
MSGFILE also specifies the ddname for CEEMSG and CEEMOUT callable
services.

Non-CICS Default: MSGFILE=((SYSOUT,FBA,121,0,NOENQ),OVR)

Syntax

ÊÊ MSGFILE = ((ddname , recfm , lrecl , blksize , Ê

Ê
NOENQ
ENQ) ,

OVR
NONOVR) ÊÍ

ddname
The ddname of the run-time diagnostics file.

LIBSTACK

Chapter 12. Language Environment Run-Time Options 101

recfm
The default record format (RECFM) value for the message file. recfm is used
when this information is not available either in a file definition or in the label of
an existing file. The following values are acceptable: F, FA, FB, FBA, FBS,
FBSA, U, UA, V, VA, VB, and VBA.

lrecl
The default record length (LRECL) value for the message file. lrecl is used
when this information is not available either in a file definition or in the label of
an existing file. lrecl is expressed as bytes of storage.

The lrecl value (whether from MSGFILE or from another source) cannot exceed
the blksize value, whose maximum value is 32760. For variable-length record
formats, the lrecl value is limited to the blksize value minus 4.

blksize
The default block size (BLKSIZE) value for the message file. blksize is used
when this information is not available either in a file definition or in the label of
an existing file. blksize is expressed as bytes of storage.

blksize (whether from MSGFILE or from another source) cannot exceed 32760.

NOENQ
Serialization around writes to the message file destination specified ddname are
not performed.

ENQ
Specifies that serialization is performed around writes to the ddname specified.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v MSGFILE is ignored under CICS.

v Run-time output under CICS is directed instead to a transient data queue named
CESE.

Usage Notes
v The ENQ sub-option should only be used where multiple Language Environment

environments are running in the same address space and are sharing the same
MSGFILE destination. An example would be a batch job which uses ATTACH to
create some number of sub-tasks. Each of these tasks is potentially a distinct
Language Environment environment all running with the same default MSGFILE
parameters. In this example, each of these environments will share the same
MSGFILE destination. To avoid conflicts while writing to the shared MSGFILE
destination, it is recommended that the ENQ sub-option be used for each
MSGFILE destination that will be shared. Using different ddname for each
environment would remove the need to use the ENQ sub-option.

v HLL compiler options, such as the COBOL OUTDD compiler option, can affect
whether your run-time output goes to MSGFILE ddname.

v Use commas to separate suboptions of the MSGFILE run-time option. If you do
not specify a suboption but do specify a subsequent one, you must still code the
comma to indicate its omission. However, trailing commas are not required.

If you do not specify any suboptions, either of the following is valid: MSGFILE or
MSGFILE().

MSGFILE

102 z/OS V1R4.0 Language Environment Customization

v If one of the suboptions of the MSGFILE run-time option is not present in any
source, including CEEDOPT, CEEROPT or CEEROPT, then an IBM-supplied
default value is used. The default values for ddname, recfm, lrecl, and blksize are
SYSOUT, FBA, 121, and 0, respectively.

v If there is no block size in the MSGFILE run-time option, in a file definition, or in
the label of an existing file, block size is determined as follows:

– For a recfm value that specifies unblocked fixed-length format records (F or
FA) or undefined-format records (U or UA), the blksize value is the same as
the lrecl value.

– For a recfm value that specifies unblocked variable-length format records (V
or VA), the blksize value is the lrecl value plus 4.

– For a DASD device on MVS and a recfm value that specifies blocked records
(FB, FBA, FBS, FBSA, VB, or VBA), the blksize value is left at 0 by Language
Environment so that the system can determine the optimum blksize value.

– For a terminal and a recfm value that specifies blocked fixed-length format
records (FB, FBA, FBS, or FBSA), the blksize value is the same as the lrecl
value.

– For a terminal and a recfm value that specifies blocked variable-length format
records (VB or VBA), the blksize value is the lrecl value plus 4.

– For all other cases, blksize has a value which gives 100 records per block if
the blksize value wouldn’t exceed 32760, otherwise, a value giving the largest
number of records per block such that the blksize value that doesn’t exceed
32760.

Or, to put it another way:

- For a recfm value that specifies blocked fixed-length format records (FB,
FBA, FBS, or FBSA), the blksize value is lrecl × bfact where bfact is the
largest integer not exceeding 100 such that the blksize value does not
exceed 32760.

- For a recfm value that specifies blocked variable-length format records (VB
or VBA), the blksize value is (lrecl × bfact) plus 4 where bfact is the
largest integer not exceeding 100 such that the blksize value does not
exceed 32760.

v Language Environment detects certain invalid values for the MSGFILE
suboptions, namely an invalid value for recfm and a value of lrecl or blksize that
exceeds 32760. A message is printed, and any incorrect values are ignored.

v Invalid combinations of recfm, lrecl, and blksize values are not diagnosed by
Language Environment but can cause an error condition to be detected by the
system on the first attempt to write to the message file.

v Language Environment does not check the validity of the MSGFILE ddname. An
invalid ddname generates an error condition on the first attempt to issue a
message.

v C/C++ consideration — C perror() messages and output directed to stderr go
to the MSGFILE destination.

v PL/I consideration — Run-time messages in PL/I programs are directed to the file
specified by MSGFILE, instead of to the PL/I SYSPRINT STREAM PRINT file.

User-specified output is still directed to the PL/I SYSPRINT STREAM PRINT file.
To direct this output to the Language Environment MSGFILE file, specify
MSGFILE(SYSPRINT).

v Fortran consideration — To get the same message file function as with VS
Fortran, specify MSGFILE(FTnnF001,UA,133) where nn is the unit number of the
error unit. For more information, see the Fortran Run-Time Migration Guide.

MSGFILE

Chapter 12. Language Environment Run-Time Options 103

v z/OS UNIX considerations — The MSGFILE option specifies the ddname of the
diagnostic file for the enclave. When multiple threads write to the message file,
the output is interwoven by line. To group lines of output, serialize MSGFILE
access (by using a mutex, for example).

When z/OS UNIX is available and the MSGFILE option specifies a ddname
nominating a POSIX file, Language Environment uses POSIX services to write
the message file. A ddname nominates a POSIX file using the keyword PATH=.

z/OS UNIX must be available on the underlying operating system for the
MSGFILE option to write to a POSIX file. If the ddname nominates a POSIX file
and z/OS UNIX is not present, then Language Environment tries to dynamically
allocate an MVS file to be used as the message file.

If the message file is allocated (whether POSIX or z/OS), Language Environment
directs the output to this file. If the current message file is not allocated, and the
application carries out a fork()/exec, spawn(), or spawnp(), Language
Environment checks whether File Descriptor 2 exists. If it does exist, then
Language Environment uses it; otherwise, Language Environment dynamically
allocates the message file to the POSIX file system and attempts to open the file
SYSOUT in the current working directory; or, if there is no current directory, then
in the directory /tmp.

For More Information
v For more information about the RPTOPTS and RPTSTG run-time options, see

“RPTOPTS” on page 114 and “RPTSTG” on page 117.

v For more information about the CEEMSG and CEEMOUT callable services, see
z/OS Language Environment Programming Reference.

v For details on how HLL compiler options affect messages, see information on
HLL I/O statements and message handling in z/OS Language Environment
Programming Guide.

v For more information about perror() and stderr see C message output
information in z/OS Language Environment Programming Guide.

v For more information about the CESE transient data queue, see z/OS Language
Environment Programming Guide.

MSGQ

Derivation
MeSsaGe Queue

MSGQ specifies the number of ISI blocks that Language Environment allocates on
a per thread basis for use by the application. The ISI contains information for
Language Environment to use when identifying and reacting to conditions, providing
access to q_data tokens, and assigning space for message inserts used with
user-created messages. When an ISI is needed and one is not available, Language
Environment uses the least recently used ISI. CEECMI allocates storage for the ISI,
if necessary.

Non-CICS Default: MSGQ=((15),OVR)

MSGFILE

104 z/OS V1R4.0 Language Environment Customization

Syntax

ÊÊ MSGQ = ((number) ,
OVR
NONOVR) ÊÍ

number
An integer that specifies the number of ISIs to be maintained per thread within
an enclave.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v MSGQ is ignored under CICS.

Usage Note
v PL/I MTF consideration — In a PL/I MTF application, MSGQ sets the number of

message queues allowed for each task.

For More Information
v For more information about the CEECMI callable service, see z/OS Language

Environment Programming Reference.

v For more information about the ISI, see z/OS Language Environment
Programming Guide.

NATLANG

Derivation
NATional LANGuage

NATLANG specifies the initial national language to be used for the run-time
environment, including error messages, month names, and day of the week names.
Message translations are provided for Japanese and for uppercase and mixed-case
U.S. English. NATLANG also determines how the message facility formats
messages.

NATLANG affects only the Language Environment NLS and date and time services,
not the Language Environment locale callable services.

You can set the national language by using the NATLANG run-time option or the
SET function of the CEE3LNG callable service Language Environment maintains
one current language at the enclave level. The current language remains in effect
until one of the above changes it. For example, if you specify JPN in the NATLANG
run-time option, but subsequently specify ENU using the CEE3LNG callable service,
ENU becomes the current national language.

Language Environment writes storage and options reports and dump output only in
mixed-case U.S. English.

MSGQ

Chapter 12. Language Environment Run-Time Options 105

Non-CICS Default: NATLANG=((ENU),OVR)

Syntax

ÊÊ NATLANG = ((
ENU
UEN
JPN

) ,
OVR
NONOVR) ÊÍ

ENU
A 3-character ID specifying mixed-case U.S. English.

Message text consists of SBCS characters and includes both uppercase and
lowercase letters.

UEN
A 3-character ID specifying uppercase U.S. English.

Message text consists of SBCS characters and includes only uppercase letters.

JPN
A 3-character ID specifying Japanese.

Message text can contain a mixture of SBCS and DBCS characters.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v The default under CICS is NATLANG=((ENU),OVR).

Usage Notes
v If you specify a national language that is not available on your system, Language

Environment uses the IBM-supplied default ENU (mixed-case U.S. English).

CEEDOPT (CEECOPT), CEEROPT and CEEUOPT can specify an unknown
national language code, but give a return code of 4 and a warning message.

v C/C++ consideration — Language Environment provides locales used in C and
C++ to establish default formats for the locale-sensitive functions and locale
callable services, such as date and time formatting, sorting, and currency
symbols. To change the locale, you can use the setlocale() library function or
the CEESETL callable service.

The settings of CEESETL or setlocale() do not affect the setting of the
NATLANG run-time option. NATLANG affects only Language Environment NLS
and date and time services. setlocale() and CEESETL affect only C/C++
locale-sensitive functions and Language Environment locale callable services.

To ensure that all settings are correct for your country, use NATLANG and either
CEESETL or setlocale().

v PL/I MTF consideration — NATLANG affects every task in the application. The
SET function of CEE3LNG is supported for the relinked OS PL/I or PL/I for MVS
& VM MTF applications only.

v z/OS UNIX consideration — The NATLANG option specifies the initial value for
the enclave.

NATLANG

106 z/OS V1R4.0 Language Environment Customization

For More Information
v For more information about the CEE3LNG callable service, see z/OS Language

Environment Programming Reference.

v See “MSGQ” on page 104 for more information about the MSGQ run-time option.

v For more information on setlocale(), see z/OS C/C++ Programming Guide.

OCSTATUS (Fortran Only)

Derivation
Open Close STATUS

OCSTATUS controls the verification of file existence and whether a file is actually
deleted based on the STATUS specifier on the OPEN and CLOSE statement,
respectively.

Non-CICS Default: OCSTATUS=((ON),OVR)

Syntax

ÊÊ OCSTATUS = ((
ON
OFF) ,

OVR
NONOVR) ÊÍ

ON
Specifies that file existence is checked with each OPEN statement to verify that
the status of the file is consistent with STATUS='OLD' and STATUS='NEW'. It
also specifies that file deletion occurs with each CLOSE statement with
STATUS='DELETE' for those devices which support file deletion. Preconnected
files are included in these verifications. OCSTATUS consistency checking
applies to DASD files, PDS members, VSAM files, MVS labeled tape files, and
dummy files only. For dummy files, the consistency checking occurs only if the
file was previously opened successfully in the current program.

In addition, when a preconnected file is disconnected by a CLOSE statement,
an OPEN statement is required to reconnect the file under OCSTATUS.
Following the CLOSE statement, the INQUIRE statement parameter OPENED
indicates that the unit is disconnected.

OFF
Bypasses file existence checking with each OPEN statement and bypasses file
deletion with each CLOSE statement.

If STATUS='NEW', a new file is created; if STATUS='OLD', the existing file is
connected.

If STATUS='UNKNOWN' or 'SCRATCH', and the file exists, it is connected; if
the file does not exist, a new file is created.

In addition, when a preconnected file is disconnected by a CLOSE statement,
an OPEN statement is not required to reestablish the connection under
OCSTATUS(OFF). A sequential READ, WRITE, BACKSPACE, REWIND, or
ENDFILE will reconnect the file to a unit. Before the file is reconnected, the
INQUIRE statement parameter OPENED will indicate that the unit is

NATLANG

Chapter 12. Language Environment Run-Time Options 107

disconnected; after the connection is reestablished, the INQUIRE statement
parameter OPENED will indicate that the unit is connected.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v OCSTATUS is ignored under CICS.

Usage Notes
v When specifying this option in CEEDOPT, CEEUOPT or CEEROPT, use the

syntax OCSTATUS(ON) or OCSTATUS(OFF).

v Use OCSTATUS and NOOCSTATUS only on the command line.

PC (Fortran Only)

Derivation
Private Common blocks

PC controls whether Fortran status common blocks are shared among load
modules.

Non-CICS Default: PC=((OFF),OVR)

Syntax

ÊÊ PC = ((
OFF
ON) ,

OVR
NONOVR) ÊÍ

OFF
Specifies that Fortran static common blocks with the same name but in different
load modules all refer to the same storage. PC(OFF) applies only to static
common blocks referenced by compiled code produced by any of the following
compilers and that were not compiled with the PC compiler option:
v VS FORTRAN Version 2 Release 5
v VS FORTRAN Version 2 Release 6

ON
Specifies that Fortran static common blocks with the same name but in different
load modules do not refer to the same storage.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v PC is ignored under CICS.

OCSTATUS

108 z/OS V1R4.0 Language Environment Customization

Usage Notes
v When specifying this option in CEEDOPT, CEEUOPT or CEEROPT, use the

syntax PC(ON) or PC(OFF). Use PC and NOPC only on the command line.

PLITASKCOUNT (PL/I Only)

Derivation
PL/I TASK COUNTer

PLITASKCOUNT controls the maximum number of tasks active at one time while
you are running PL/I MTF applications. PLITASKCOUNT(20) provides behavior
compatible with the PL/I ISASIZE(,,20) option.

Non-CICS Default: PLITASKCOUNT=((20),OVR)

Syntax

ÊÊ PLITASKCOUNT = ((tasks) ,
OVR
NONOVR) ÊÍ

tasks
A decimal integer that is the maximum number of tasks allowed in a PL/I MTF
application at any one time during execution. The total tasks include the main
task and subtasks created directly or indirectly from the main task.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v PLITASKCOUNT is ignored under CICS.

Usage Notes
v A value of zero (0) assumes the IBM-supplied default of 20.

v PL/I MTF consideration — If tasks or the IBM-supplied default of 20 exceeds the
z/OS UNIX installation default of the maximum number of threads, Language
Environment assumes the z/OS UNIX installation default.

v If a request to create a task would take the number of currently active tasks over
the allowable limit, condition IBM0566S is signalled and the task is not created.

POSIX

Derivation
Portable Operating System Interface - X

POSIX specifies whether the enclave can run with the POSIX semantics.

PC

Chapter 12. Language Environment Run-Time Options 109

POSIX is an application characteristic that is maintained at the enclave level. After
you have established the characteristic during enclave initialization, you cannot
change it.

When you set POSIX to ON, you can use functions that are unique to POSIX, such
as pthread_create().

One of the effects of POSIX(ON) is the enablement of POSIX signal handling
semantics, which interact closely with the Language Environment condition handling
semantics.

ANSI C programs can access the z/OS UNIX Hierarchical File System (HFS) on
MVS independent of the POSIX setting. Where ambiguities exist between ANSI and
POSIX semantics, the POSIX run-time option setting indicates the POSIX
semantics to follow.

Non-CICS Default: POSIX=((OFF),OVR)

Syntax

ÊÊ POSIX = ((
OFF
ON) ,

OVR
NONOVR) ÊÍ

OFF
Indicates that the application is not POSIX-enabled.

ON
Indicates that the application is POSIX-enabled.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v POSIX is ignored under CICS.

Usage Notes
v If you set POSIX to ON and you run non-thread-safe languages such as PL/I and

C++ in a thread other than the initial thread, the behavior is undefined.

v If you set POSIX to ON when z/OS UNIX is not active, the message file receives
a warning, POSIX is set to OFF, but the application continues to run.

v POSIX(ON) does not apply to CICS. If you set POSIX to ON while an application
is running under CICS, you receive a warning message, POSIX is set OFF, and
the application continues to run. You can specify POSIX(ON) for both DB2* and
IMS applications.

v Within nested enclaves, only one enclave can have the POSIX option set to ON.
All other nested enclaves must have the POSIX option set to OFF. When nested
enclaves are specifying the run-time option POSIX(ON) within one Language
Environment process, Language Environment will display a severity 3 error
message and let abend 4039 occur with reason code 172.

POSIX

110 z/OS V1R4.0 Language Environment Customization

For More Information
v For more information on POSIX functions that have an z/OS UNIX kernel

dependency, or a POSIX ON dependency (especially for a failure where the
kernel dependency or the POSIX ON setting is not met), see z/OS C/C++
Run-Time Library Reference.

v For more information about the INTERRUPT run-time option, see “INTERRUPT”
on page 97.

PROFILE
PROFILE controls the use of an optional profiler which collects performance data
for the running application.

Non-CICS Default: PROFILE=((OFF,’ ’),OVR)

Syntax

ÊÊ PROFILE ((
OFF
ON ,

’ ’
string) ,

OVR
NONOVR) ÊÍ

OFF
Indicates that the profile facility is inactive.

ON
Indicates that the profile facility is active.

’ ’ A null string indicates that no options are to be passed to the profiler.

string
Profile options that Language Environment will pass to the profiler installed. You
can enclose the string in either single or double quotation marks. The maximum
length of the string is 250 bytes when specified on program invocation or via a
compiler directive. When establishing installation or programmer defaults using
the CEEXOPT macro, the size is limited to 242 bytes.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v The default under CICS is PROFILE=((OFF,’’),OVR).

Usage Note
v An application cannot run with both the TEST and PROFILE options in effect. If

both are specified, an informational message is generated and the Language
Environment forces the PROFILE option OFF.

PRTUNIT (Fortran Only)

Derivation
PRinT UNIT

POSIX

Chapter 12. Language Environment Run-Time Options 111

PRTUNIT identifies the unit number used for PRINT and WRITE statements that do
not specify a unit number.

Non-CICS Default: PRTUNIT=((6),OVR)

Syntax

ÊÊ PRTUNIT = ((number) ,
OVR
NONOVR) ÊÍ

number
A valid unit number in the range 0-99. You can establish your own default
number at installation time.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v PRTUNIT is ignored under CICS.

PUNUNIT (Fortran Only)

Derivation
PUNch UNIT

PUNUNIT identifies the unit number used for PUNCH statements that do not
specify a unit number.

Non-CICS Default: PUNUNIT=((7),OVR)

Syntax

ÊÊ PUNUNIT = ((number) ,
OVR
NONOVR) ÊÍ

number
A valid unit number in the range 0-99. You can establish your own default
number at installation time.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v PUNUNIT is ignored under CICS.

PRTUNIT

112 z/OS V1R4.0 Language Environment Customization

RDRUNIT (Fortran Only)

Derivation
ReaDeR UNIT

RDRUNIT identifies the unit number used for READ statements that do not specify
a unit number.

Non-CICS Default: RDRUNIT=((5),OVR)

Syntax

ÊÊ RDRUNIT = ((number) ,
OVR
NONOVR) ÊÍ

number
A valid unit number in the range 0-99. You can establish your own default
number at installation time.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v RDRUNIT is ignored under CICS.

RECPAD (Fortran Only)

Derivation
RECord PADding

RECPAD specifies whether a formatted input record is padded with blanks.

Non-CICS Default: RECPAD=((OFF),OVR)

Syntax

ÊÊ
OFF OVR

RECPAD = ((ON) , NONOVR)
NONE
ALL
VAR

ÊÍ

OFF|NONE
Specifies that no blank padding be applied when an input list and format

RDRUNIT

Chapter 12. Language Environment Run-Time Options 113

specification requires more data from an input record than the record contains.
If more data are required, the error described by condition FOR1002 is
detected.

ON|ALL
Specifies that a formatted input record within an internal file, or a varying or
undefined length record (RECFM=U or V) external file, be padded with blanks
when an input list and format specification require more data from the record
than the record contains. Blanks added for padding are interpreted as though
the input record actually contains blanks in those fields.

VAR
Applies blank padding to any of the following types of files:

v An external, non-VSAM file with a record format (the RECFM value) that
allows the lengths of records to differ within the file. Such record formats are
variable (V), variable blocked (VB), undefined (U), variable spanned (VS),
and variable blocked spanned (VBS); this excludes fixed (F), fixed blocked
(FB), and fixed blocked standard (FBS).

v An external, VSAM entry-sequenced data set (ESDS) or key-sequenced data
set (KSDS).

v An internal file.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v RECPAD is ignored under CICS.

Usage Notes
v NORECPAD has the same effect as RECPAD(OFF) and RECPAD(NONE).

RECPAD has the same effect as RECPAD(ON) and RECPAD(ALL).

v The PAD specifier of the OPEN statement can be used to indicate padding for
individual files.

RPTOPTS

Derivation
RePorT OPTionS

RPTOPTS generates, after an application has run, a report of the run-time options
in effect while the application was running. Language Environment writes options
reports only in mixed-case U.S. English.

Language Environment directs the report to the ddname specified in the MSGFILE
run-time option.

RPTOPTS does not generate the options report if Language Environment abends,
but does generate a report in all other cases.

Figure 10 on page 116 shows the sample output when RPTOPTS is set to ON.
RPTOPTS(ON) lists the declared run-time options in alphabetical order. The report
lists the option names and shows where each option obtained its current setting.
The report heading displayed at the top of the options report is set by CEE3RPH.

RECPAD

114 z/OS V1R4.0 Language Environment Customization

The date and time formats are affected by the country code set by the COUNTRY
run-time option or the CEE3CTY callable service.

The LAST WHERE SET column in the report shows the last place where the
options were referenced, even if no suboptions or subsets of the options were
changed. “Default setting” in the report indicates that you cannot specify the option
in CEEDOPT (CEECOPT), CEEROPT or CEEUOPT. “Programmer default” includes
any options specified with C/C++ #pragma runopts, PL/I PLIXOPT, and CEEUOPT.
″Override″ in the report indicates that Language Environment forced the setting of
this specific option, based on either knowledge of the application or a side effect of
another run-time option.

Non-CICS Default: RPTOPTS=((OFF),OVR)

Syntax

ÊÊ RPTOPTS = ((
OFF
ON) ,

OVR
NONOVR) ÊÍ

OFF
Does not generate a report of the run-time options in effect while the application
was running.

ON
Generates a report of the run-time options in effect while the application was
running.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v The default under CICS is RPTOPTS=((OFF),OVR).

v With RPTOPTS(ON) under CICS, the options report will be written to the CESE
queue when the transaction terminates successfully.

Usage Notes
v z/OS UNIX consideration — The RPTOPTS option reports run-time options for

the enclave.

v Version, release and modification level information is included in the Language
Environment reports to aid in debugging problems.

Performance Considerations
This option increases the time it takes for the application to run. Therefore, use it
only as an aid to application development.

RPTOPTS

Chapter 12. Language Environment Run-Time Options 115

Options Report for Enclave main 04/08/02 3:28:53 PM
Language Environment V01 R04.00

LAST WHERE SET OPTION

Installation default ABPERC(NONE)
Installation default ABTERMENC(ABEND)
Installation default NOAIXBLD
Programmer default ALL31(ON)
Assembler user exit ANYHEAP(32768,16384,ANYWHERE,FREE)
Installation default NOAUTOTASK
Assembler user exit BELOWHEAP(8192,8192,FREE)
Installation default CBLOPTS(ON)
Installation default CBLPSHPOP(ON)
Installation default CBLQDA(OFF)
Installation default CHECK(ON)
Installation default COUNTRY(US)
Installation default NODEBUG
Installation default DEPTHCONDLMT(10)
Installation default ENVAR("")
Installation default ERRCOUNT(0)
Installation default ERRUNIT(6)
Installation default FILEHIST
Installation default FILETAG(NOAUTOCVT,NOAUTOTAG)
Default setting NOFLOW
Assembler user exit HEAP(49152,16384,ANYWHERE,KEEP,8192,4096)
Installation default HEAPCHK(OFF,1,0,0)
Invocation command HEAPPOOLS(ON,8,10,32,10,128,10,256,10,1024,10,2048,10)
Installation default INFOMSGFILTER(OFF,,,,)
Installation default INQPCOPN
Installation default INTERRUPT(OFF)
Installation default LIBRARY(SYSCEE)
Programmer default LIBSTACK(4096,4096,FREE)
Invocation command MSGFILE(MSGFILE,FBA,121,0,NOENQ)
Installation default MSGQ(15)
Installation default NATLANG(ENU)
Mapped NONIPTSTACK(See THREADSTACK)
Installation default OCSTATUS
Installation default NOPC
Installation default PLITASKCOUNT(20)
Programmer default POSIX(ON)
Installation default PROFILE(OFF,"")
Installation default PRTUNIT(6)
Installation default PUNUNIT(7)
Installation default RDRUNIT(5)
Installation default RECPAD(OFF)
Programmer default RPTOPTS(ON)
Programmer default RPTSTG(ON)
Installation default NORTEREUS
Installation default RTLS(OFF)
Installation default NOSIMVRD
Programmer default STACK(4096,4096,ANYWHERE,FREE,524288,131072)
Programmer default STORAGE(NONE,NONE,NONE,1024)
Installation default TERMTHDACT(TRACE,,96)
Installation default NOTEST(ALL,"*","PROMPT","INSPPREF")
Installation default THREADHEAP(4096,4096,ANYWHERE,KEEP)
Programmer default THREADSTACK(ON,4096,4096,ANYWHERE,KEEP,131072,131072)
Installation default TRACE(OFF,4096,DUMP,LE=0)
Installation default TRAP(ON,SPIE)
Installation default UPSI(00000000)
Installation default NOUSRHDLR(,)
Installation default VCTRSAVE(OFF)
Installation default VERSION()
Installation default XPLINK(OFF)
Installation default XUFLOW(AUTO)

Figure 10. Options Report Example Produced by Run-Time Option RPTOPTS(ON)

RPTOPTS

116 z/OS V1R4.0 Language Environment Customization

Tip: If automatic storage tuning for CICS changes a storage option setting, the
LAST WHERE SET value will be "Automatic Tuning".

For More Information
v See “MSGFILE” on page 101 for more information about the MSGFILE run-time

option.

v For more information about the CEE3RPH callable service, or the CEE3CTY
callable service, see z/OS Language Environment Programming Reference.

v See “COUNTRY” on page 80 for more information about the COUNTRY run-time
option.

RPTSTG

Derivation
RePorT SToraGe

RPTSTG generates, after an application has run, a report of the storage the
application used. The report is directed to the ddname specified in the MSGFILE
run-time option.

Figure 11 on page 119 shows a sample report created with the RPTSTG option set
to ON.

The storage report heading is set by CEE3RPH. The date and time formats, in the
RPTSTG generated reports, are affected by the country code set by the COUNTRY
run-time option or the CEE3CTY callable service.

You can use the storage report information to adjust the ANYHEAP, BELOWHEAP,
HEAP, LIBSTACK, NONIPTSTACK, STACK, and THREADHEAP run-time options.

Language Environment writes storage reports only in mixed-case U.S. English.

Non-CICS Default: RPTSTG=((OFF),OVR)

Syntax

ÊÊ RPTSTG = ((
OFF
ON) ,

OVR
NONOVR) ÊÍ

OFF
Does not generate a report of the storage used while the application was
running.

ON
Generates a report of the storage used while the application was running.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

RPTOPTS

Chapter 12. Language Environment Run-Time Options 117

CICS consideration
v The default under CICS is RPTSTG=((OFF),OVR).

v With RPTSTG(ON) under CICS, the storage report will be written to the CESE
queue when the transaction terminates successfully.

v The phrases “Number of segments allocated” and “Number of segments freed”
represent, on CICS, the number of EXEC CICS GETMAIN and EXEC CICS
FREEMAIN requests, respectively.

Usage Notes
v RPTSTG does not generate a storage report if your application terminates

abnormally.

v RPTSTG includes PL/I task-level information on stack and heap utilization.

v z/OS UNIX consideration — The RPTSTG option applies to storage utilization for
the enclave, including thread-level information on stack utilization, and stack
storage used by multiple threads.

v Version, release and modification level information is included in the Language
Environment reports to aid in debugging problems.

Performance Considerations
This option increases the time it takes for an application to run. Therefore, use it
only as an aid to application development.

The storage report generated by RPTSTG(ON) shows the number of system-level
get storage calls that were required while the application was running. To improve
performance, use the storage report numbers generated by the RPTSTG option as
an aid in setting the initial and increment size for STACK, THREADSTACK and
HEAP. This reduces the number of times that the Language Environment storage
manager makes requests to acquire storage. For example, you can use the storage
report numbers to set appropriate values in the HEAP init_size and incr_size fields,
and in the STACK and THREADSTACK dsinit_size, dsincr_size, usinit_size and
usincr_size fields, for allocating storage.

RPTSTG

118 z/OS V1R4.0 Language Environment Customization

Storage Report for Enclave main 04/08/02 3:28:53 PM
Language Environment V01 R04.00

STACK statistics:
Initial size: 4096
Increment size: 4096
Maximum used by all concurrent threads: 7400
Largest used by any thread: 7400
Number of segments allocated: 2
Number of segments freed: 0

THREADSTACK statistics:
Initial size: 4096
Increment size: 4096
Maximum used by all concurrent threads: 3616
Largest used by any thread: 3616
Number of segments allocated: 6
Number of segments freed: 0

LIBSTACK statistics:
Initial size: 4096
Increment size: 4096
Maximum used by all concurrent threads: 0
Largest used by any thread: 0
Number of segments allocated: 0
Number of segments freed: 0

THREADHEAP statistics:
Initial size: 4096
Increment size: 4096
Maximum used by all concurrent threads: 0
Largest used by any thread: 0
Successful Get Heap requests: 0
Successful Free Heap requests: 0
Number of segments allocated: 0
Number of segments freed: 0

HEAP statistics:
Initial size: 49152
Increment size: 16384
Total heap storage used (sugg. initial size): 62784
Successful Get Heap requests: 29
Successful Free Heap requests: 13
Number of segments allocated: 2
Number of segments freed: 0

HEAP24 statistics:
Initial size: 8192
Increment size: 4096
Total heap storage used (sugg. initial size): 0
Successful Get Heap requests: 0
Successful Free Heap requests: 0
Number of segments allocated: 0
Number of segments freed: 0

ANYHEAP statistics:
Initial size: 32768
Increment size: 16384
Total heap storage used (sugg. initial size): 104072
Successful Get Heap requests: 30
Successful Free Heap requests: 15
Number of segments allocated: 6
Number of segments freed: 5

Figure 11. Storage Report Produced by Run-Time Option RPTSTG(ON) (Part 1 of 4)

RPTSTG

Chapter 12. Language Environment Run-Time Options 119

BELOWHEAP statistics:
Initial size: 8192
Increment size: 8192
Total heap storage used (sugg. initial size): 0
Successful Get Heap requests: 0
Successful Free Heap requests: 0
Number of segments allocated: 0
Number of segments freed: 0

Additional Heap statistics:
Successful Create Heap requests: 1
Successful Discard Heap requests: 1
Total heap storage used: 4912
Successful Get Heap requests: 3
Successful Free Heap requests: 3
Number of segments allocated: 2
Number of segments freed: 2

HeapPools Statistics:
Pool 1 size: 8
Successful Get Heap requests: 1- 8 8

Pool 2 size: 32
Successful Get Heap requests: 9- 16 3
Successful Get Heap requests: 17- 24 5
Successful Get Heap requests: 25- 32 3

Pool 3 size: 128
Successful Get Heap requests: 33- 40 3
Successful Get Heap requests: 41- 48 3
Successful Get Heap requests: 49- 56 11
Successful Get Heap requests: 57- 64 4
Successful Get Heap requests: 65- 72 3
Successful Get Heap requests: 73- 80 4
Successful Get Heap requests: 81- 88 5
Successful Get Heap requests: 89- 96 4
Successful Get Heap requests: 97- 104 4
Successful Get Heap requests: 113- 120 5
Successful Get Heap requests: 121- 128 4

Pool 4 size: 256
Successful Get Heap requests: 129- 136 6
Successful Get Heap requests: 137- 144 3
Successful Get Heap requests: 145- 152 4
Successful Get Heap requests: 153- 160 2
Successful Get Heap requests: 161- 168 8
Successful Get Heap requests: 169- 176 5
Successful Get Heap requests: 177- 184 4
Successful Get Heap requests: 185- 192 6
Successful Get Heap requests: 193- 200 3
Successful Get Heap requests: 201- 208 4
Successful Get Heap requests: 209- 216 2
Successful Get Heap requests: 217- 224 3
Successful Get Heap requests: 225- 232 4
Successful Get Heap requests: 233- 240 2
Successful Get Heap requests: 241- 248 2
Successful Get Heap requests: 249- 256 1

Figure 11. Storage Report Produced by Run-Time Option RPTSTG(ON) (Part 2 of 4)

RPTSTG

120 z/OS V1R4.0 Language Environment Customization

Pool 5 size: 1024
Successful Get Heap requests: 257- 264 4
Successful Get Heap requests: 265- 272 1
Successful Get Heap requests: 273- 280 3
Successful Get Heap requests: 281- 288 2
Successful Get Heap requests: 289- 296 2
Successful Get Heap requests: 305- 312 6
Successful Get Heap requests: 313- 320 5
Successful Get Heap requests: 321- 328 4
Successful Get Heap requests: 329- 336 2
Successful Get Heap requests: 337- 344 3
Successful Get Heap requests: 353- 360 2
Successful Get Heap requests: 361- 368 4
Successful Get Heap requests: 369- 376 5
Successful Get Heap requests: 377- 384 2
Successful Get Heap requests: 385- 392 2
Successful Get Heap requests: 393- 400 2
Successful Get Heap requests: 401- 408 5
Successful Get Heap requests: 409- 416 3
Successful Get Heap requests: 417- 424 2
Successful Get Heap requests: 425- 432 1
Successful Get Heap requests: 433- 440 2
Successful Get Heap requests: 441- 448 4
Successful Get Heap requests: 457- 464 1
Successful Get Heap requests: 465- 472 1
Successful Get Heap requests: 473- 480 2
Successful Get Heap requests: 481- 488 1
Successful Get Heap requests: 489- 496 2
Successful Get Heap requests: 497- 504 5
Successful Get Heap requests: 505- 512 2
Successful Get Heap requests: 545- 552 1
Successful Get Heap requests: 577- 584 1
Successful Get Heap requests: 641- 648 2
Successful Get Heap requests: 825- 832 1
Successful Get Heap requests: 913- 920 1

Pool 6 size: 2048
Successful Get Heap requests: 1089-1096 1
Successful Get Heap requests: 1169-1176 1
Successful Get Heap requests: 1185-1192 1
Successful Get Heap requests: 1217-1224 2
Successful Get Heap requests: 1257-1264 1
Successful Get Heap requests: 1377-1384 1
Successful Get Heap requests: 1401-1408 1
Successful Get Heap requests: 1521-1528 1
Successful Get Heap requests: 1537-1544 1
Successful Get Heap requests: 1545-1552 1
Successful Get Heap requests: 1569-1576 1
Successful Get Heap requests: 1665-1672 1
Successful Get Heap requests: 1761-1768 1
Successful Get Heap requests: 1785-1792 1
Successful Get Heap requests: 1929-1936 1
Successful Get Heap requests: 1937-1944 1
Successful Get Heap requests: 1953-1960 1

Requests greater than the largest cell size: 19

Figure 11. Storage Report Produced by Run-Time Option RPTSTG(ON) (Part 3 of 4)

RPTSTG

Chapter 12. Language Environment Run-Time Options 121

HeapPools Summary:
Cell Extent Cells Per Extents Maximum Cells In
Size Percent Extent Allocated Cells Used Use
--

8 10 307 1 2 0
32 10 122 1 3 1

128 10 36 1 10 7
256 10 18 1 11 4

1024 10 4 4 13 12
2048 10 2 2 4 3
--
Suggested Percentages for current Cell Sizes:
HEAPP(ON,8,1,32,1,128,3,256,6,1024,28,2048,17)

Suggested Cell Sizes:
HEAPP(ON,104,,208,,376,,512,,1264,,1960,)

Largest number of threads concurrently active: 2
End of Storage Report

Figure 11. Storage Report Produced by Run-Time Option RPTSTG(ON) (Part 4 of 4)

RPTSTG

122 z/OS V1R4.0 Language Environment Customization

Storage Report for Enclave main 04/08/02 3:39:15 PM
Language Environment V01 R04.00

STACK statistics:
Initial size: 4096
Increment size: 4096
Maximum used by all concurrent threads: 6864
Largest used by any thread: 6864
Number of segments allocated: 2
Number of segments freed: 0

THREADSTACK statistics:
Initial size: 4096
Increment size: 4096
Maximum used by all concurrent threads: 11232
Largest used by any thread: 2576
Number of segments allocated: 6
Number of segments freed: 0

XPLINK STACK statistics:
Initial size: 524288
Increment size: 131072
Largest used by any thread: 2640
Number of segments allocated: 1
Number of segments freed: 0

XPLINK THREADSTACK statistics:
Initial size: 131072
Increment size: 131072
Largest used by any thread: 2752
Number of segments allocated: 6
Number of segments freed: 0

LIBSTACK statistics:
Initial size: 4096
Increment size: 4096
Maximum used by all concurrent threads: 0
Largest used by any thread: 0
Number of segments allocated: 0
Number of segments freed: 0

THREADHEAP statistics:
Initial size: 4096
Increment size: 4096
Maximum used by all concurrent threads: 0
Largest used by any thread: 0
Successful Get Heap requests: 0
Successful Free Heap requests: 0
Number of segments allocated: 0
Number of segments freed: 0

HEAP statistics:
Initial size: 49152
Increment size: 16384
Total heap storage used (sugg. initial size): 64640
Successful Get Heap requests: 30
Successful Free Heap requests: 13
Number of segments allocated: 2
Number of segments freed: 0

Figure 12. Storage Report Produced by RPTSTG(ON) with XPLINK (Part 1 of 4)

RPTSTG

Chapter 12. Language Environment Run-Time Options 123

HEAP24 statistics:
Initial size: 8192
Increment size: 4096
Total heap storage used (sugg. initial size): 0
Successful Get Heap requests: 0
Successful Free Heap requests: 0
Number of segments allocated: 0
Number of segments freed: 0

ANYHEAP statistics:
Initial size: 32768
Increment size: 16384
Total heap storage used (sugg. initial size): 125392
Successful Get Heap requests: 31
Successful Free Heap requests: 15
Number of segments allocated: 7
Number of segments freed: 6

BELOWHEAP statistics:
Initial size: 8192
Increment size: 8192
Total heap storage used (sugg. initial size): 0
Successful Get Heap requests: 0
Successful Free Heap requests: 0
Number of segments allocated: 0
Number of segments freed: 0

Additional Heap statistics:
Successful Create Heap requests: 1
Successful Discard Heap requests: 1
Total heap storage used: 4912
Successful Get Heap requests: 3
Successful Free Heap requests: 3
Number of segments allocated: 2
Number of segments freed: 2

HeapPools Statistics:
Pool 1 size: 8
Successful Get Heap requests: 1- 8 8

Pool 2 size: 32
Successful Get Heap requests: 9- 16 3
Successful Get Heap requests: 17- 24 5
Successful Get Heap requests: 25- 32 3

Pool 3 size: 128
Successful Get Heap requests: 33- 40 9
Successful Get Heap requests: 41- 48 3
Successful Get Heap requests: 49- 56 11
Successful Get Heap requests: 57- 64 4
Successful Get Heap requests: 65- 72 3
Successful Get Heap requests: 73- 80 4
Successful Get Heap requests: 81- 88 5
Successful Get Heap requests: 89- 96 4
Successful Get Heap requests: 97- 104 4
Successful Get Heap requests: 113- 120 5
Successful Get Heap requests: 121- 128 4

Figure 12. Storage Report Produced by RPTSTG(ON) with XPLINK (Part 2 of 4)

RPTSTG

124 z/OS V1R4.0 Language Environment Customization

Pool 4 size: 256
Successful Get Heap requests: 129- 136 6
Successful Get Heap requests: 137- 144 3
Successful Get Heap requests: 145- 152 4
Successful Get Heap requests: 153- 160 2
Successful Get Heap requests: 161- 168 8
Successful Get Heap requests: 169- 176 5
Successful Get Heap requests: 177- 184 4
Successful Get Heap requests: 185- 192 6
Successful Get Heap requests: 193- 200 3
Successful Get Heap requests: 201- 208 4
Successful Get Heap requests: 209- 216 2
Successful Get Heap requests: 217- 224 3
Successful Get Heap requests: 225- 232 4
Successful Get Heap requests: 233- 240 2
Successful Get Heap requests: 241- 248 2
Successful Get Heap requests: 249- 256 1

Pool 5 size: 1024
Successful Get Heap requests: 257- 264 4
Successful Get Heap requests: 265- 272 1
Successful Get Heap requests: 273- 280 3
Successful Get Heap requests: 281- 288 2
Successful Get Heap requests: 289- 296 2
Successful Get Heap requests: 305- 312 6
Successful Get Heap requests: 313- 320 5
Successful Get Heap requests: 321- 328 4
Successful Get Heap requests: 329- 336 2
Successful Get Heap requests: 337- 344 3
Successful Get Heap requests: 353- 360 2
Successful Get Heap requests: 361- 368 4
Successful Get Heap requests: 369- 376 5
Successful Get Heap requests: 377- 384 2
Successful Get Heap requests: 385- 392 2
Successful Get Heap requests: 393- 400 2
Successful Get Heap requests: 401- 408 5
Successful Get Heap requests: 409- 416 3
Successful Get Heap requests: 417- 424 2
Successful Get Heap requests: 425- 432 1
Successful Get Heap requests: 433- 440 2
Successful Get Heap requests: 441- 448 4
Successful Get Heap requests: 457- 464 1
Successful Get Heap requests: 465- 472 1
Successful Get Heap requests: 473- 480 2
Successful Get Heap requests: 481- 488 1
Successful Get Heap requests: 489- 496 2
Successful Get Heap requests: 497- 504 5
Successful Get Heap requests: 505- 512 2
Successful Get Heap requests: 545- 552 1
Successful Get Heap requests: 577- 584 1
Successful Get Heap requests: 641- 648 2
Successful Get Heap requests: 825- 832 1
Successful Get Heap requests: 913- 920 1

Figure 12. Storage Report Produced by RPTSTG(ON) with XPLINK (Part 3 of 4)

RPTSTG

Chapter 12. Language Environment Run-Time Options 125

For More Information
v For more information about the MSGFILE run-time option, see “MSGFILE” on

page 101.

v For more information about the CEE3RPH callable service or the CEE3CTY
callable service, see z/OS Language Environment Programming Reference.

v See “COUNTRY” on page 80 for more information about the COUNTRY run-time
option.

v For more information about the ANYHEAP run-time option, see “ANYHEAP” on
page 73.

v For more information about the BELOWHEAP run-time option, see
“BELOWHEAP” on page 76.

v For more information about the HEAP run-time option, see “HEAP” on page 90.

v For more information about the LIBSTACK run-time option, see “LIBSTACK” on
page 99.

v For more information about the STACK run-time option, see “STACK” on
page 130.

Pool 6 size: 2048
Successful Get Heap requests: 1089-1096 1
Successful Get Heap requests: 1169-1176 1
Successful Get Heap requests: 1185-1192 1
Successful Get Heap requests: 1217-1224 2
Successful Get Heap requests: 1257-1264 1
Successful Get Heap requests: 1377-1384 1
Successful Get Heap requests: 1401-1408 1
Successful Get Heap requests: 1521-1528 1
Successful Get Heap requests: 1537-1544 1
Successful Get Heap requests: 1545-1552 1
Successful Get Heap requests: 1569-1576 1
Successful Get Heap requests: 1665-1672 1
Successful Get Heap requests: 1761-1768 1
Successful Get Heap requests: 1785-1792 1
Successful Get Heap requests: 1929-1936 1
Successful Get Heap requests: 1937-1944 1
Successful Get Heap requests: 1953-1960 1

Requests greater than the largest cell size: 19
HeapPools Summary:
Cell Extent Cells Per Extents Maximum Cells In
Size Percent Extent Allocated Cells Used Use
--

8 10 307 1 6 0
32 10 122 1 4 1

128 10 36 1 26 13
256 10 18 2 19 4

1024 10 4 4 13 12
2048 10 2 2 4 3
--
Suggested Percentages for current Cell Sizes:
HEAPP(ON,8,1,32,1,128,8,256,11,1024,28,2048,17)

Suggested Cell Sizes:
HEAPP(ON,96,,208,,376,,512,,1264,,1960,)

Largest number of threads concurrently active: 7
End of Storage Report

Figure 12. Storage Report Produced by RPTSTG(ON) with XPLINK (Part 4 of 4)

RPTSTG

126 z/OS V1R4.0 Language Environment Customization

v For more information about tuning your application with storage numbers, see
z/OS Language Environment Programming Guide.

RTEREUS (COBOL Only)

Derivation
Run Time Environment REUSe

RTEREUS implicitly initializes the run-time environment to be reusable when the
main program for the thread is a COBOL program. This option is valid only when
used with CEEDOPT, CEEUOPT, CEEROPT or the assembler user exit.

Non-CICS Default: RTEREUS=((OFF),OVR)

Syntax

ÊÊ RTEREUS = ((
OFF
ON) ,

OVR
NONOVR) ÊÍ

OFF
Does not initialize the run-time environment to be reusable when the first
COBOL program is invoked.

ON
Initializes the run-time environment to be reusable when the first COBOL
program is invoked.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v RTEREUS is ignored under CICS.

Usage notes
v Recommendation: Avoid using RTEREUS(ON) as an installation default. If you

do use RTEREUS, use it for specific applications only.

v Restrictions:

– RTEREUS(ON) cannot be used with XPLINK(ON).

– RTEREUS(ON) cannot be used in a z/OS UNIX process.

– Enterprise COBOL programs compiled with the THREAD compiler option do
not run with RTEREUS(ON).

v Under Language Environment, RTEREUS(ON) is only supported in a single
enclave environment unless you modify the behavior using the IGZERREO
CSECT. With the IBM-supplied default setting for COBOL’s reusable
environment, applications that attempt to create nested enclaves terminate with
error message IGZ0168S.

Nested enclaves can be created by applications that use SVC LINK or
CMSCALL to invoke application programs. One example is when an SVC LINK is

RPTSTG

Chapter 12. Language Environment Run-Time Options 127

used to invoke an application program under ISPF that is using ISPF services
(such as CALL ’ISPLINK’ and ISPF SELECT).

v If a Language Environment reusable environment is established (using
RTEREUS), attempts to run a C or PL/I main program under Language
Environment will fail. For example, when running on ISPF with RTEREUS(ON):

– The first program invoked by ISPF is a COBOL program. A Language
Environment reusable environment is established.

– At some other point, ISPF invokes a PL/I or C program. The initialization of
the PL/I or C program will fail.

v If a large number of COBOL programs are run (using RTEREUS) under the
same MVS task, you can encounter out-of-region abends. This is because all
storage acquired by Language Environment to run COBOL programs is kept in
storage until the MVS task ends or the Language Environment environment is
terminated.

v Language Environment storage and run-time options reports are not produced by
Language Environment (using RTEREUS) unless a STOP RUN is issued to end
the enclave.

v When you specify RTEREUS in CEEDOPT, CEEROPT or CEEUOPT, the only
accepted syntax is RTEREUS(ON) or RTEREUS(OFF).

v IMS consideration — RTEREUS is not recommended for use under IMS.

v The IGZERREO CSECT affects the handling of program checks in the
non-Language Environment-enabled driver that repeatedly invokes COBOL
programs. It also affects the behavior of running COBOL programs in a nested
enclave when a reusable environment is active.

Performance considerations
You must change STOP RUN statements to GOBACK statements in order to gain
the benefits of RTEREUS. STOP RUN terminates the reusable environment. If you
specify RTEREUS and use STOP RUN, Language Environment recreates the
reusable environment on the next invocation of COBOL. Doing this repeatedly
degrades performance, because a reusable environment takes longer to create than
does a normal environment.

The IGZERREO CSECT affects the performance of running with RTEREUS.

Language Environment also offers preinitialization support in addition to RTEREUS.

For more information
v For more information about CEEUOPT, CEEROPT or CEEDOPT, see Chapter 4,

“Customizing Language Environment Run-Time Options” on page 19.

v For more information about IGZERREO, see “Modifying the COBOL Reusable
Environment” on page 62.

v See z/OS Language Environment Programming Guide for more information about
preinitialization.

RTLS

Derivation
Run Time Library Services

Non-CICS Default: RTLS=((OFF),OVR)

RTEREUS

128 z/OS V1R4.0 Language Environment Customization

RTLS allows you to LOAD and DELETE Language Environment modules and any
dynamically-loaded user modules using the z/OS module search order or using the
active RTLS logical library. See “Setting up run-time library services (RTLS)” on
page 8, “LIBRARY” on page 98 and “VERSION” on page 156.

Syntax

ÊÊ RTLS = ((
OFF
ON) ,

OVR
NONOVR) ÊÍ

OFF
When RTLS(OFF) is in effect, Language Environment modules and any
dynamically-loaded user modules are loaded using the z/OS module search
order.

ON
When RTLS(ON) is in effect, most Language Environment modules and
dynamically-loaded user modules are first loaded from the active RTLS logical
library. If they are not found in the RTLS logical library, they are LOADed using
the z/OS module search order.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v RTLS is ignored under CICS.

Usage Notes
v If CEEGINIT is not available in the LNKLST, LPA, JOBLIB, STEPLIB, or TASKLIB

when the Language Environment is invoked, the RTLS(ON|OFF) option has no
effect. RTLS will not be used, but the RTLS(ON|OFF) option setting will appear in
the options report. Load module CEEGINIT can be found in the SCEERTLS data
set and must be placed in the z/OS search order in order for this option to take
effect. This option is also meaningless under CICS, PIPI, and PICI. In nested
enclaves, this option is inherited from the main enclave. If RTLS(ON) or
RTLS(OFF) is specified for the nested enclave, this value is ignored, but will
appear in options reports for the nested enclave.

v For RTLS restrictions, see “Restrictions” on page 13.

SIMVRD (COBOL Only)

Derivation
SIMulate Variable length Relative organization Data sets

SIMVRD specifies whether your COBOL programs use a VSAM KSDS to simulate
variable-length relative organization data sets.

Non-CICS Default: SIMVRD=((OFF),OVR)

RTLS

Chapter 12. Language Environment Run-Time Options 129

Syntax

ÊÊ SIMVRD = ((
OFF
ON) ,

OVR
NONOVR) ÊÍ

OFF
Do not use a VSAM KSDS to simulate variable-length relative organization.

ON
Use a VSAM KSDS to simulate variable-length relative organization.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v SIMVRD is ignored under CICS.

Usage Notes
v When you specify SIMVRD in CEEDOPT, CEEROPT or CEEUOPT, the only

accepted syntax is SIMVRD(ON) or SIMVRD(OFF).

v Use SIMVRD and NOSIMVRD only on the command line.

For More Information
v See Enterprise COBOL for z/OS and OS/390 Programming Guide or COBOL for

OS/390 & VM Programming Guide for more details.

v For more information about CEEUOPT, CEEROPT or CEEDOPT, see Chapter 4,
“Customizing Language Environment Run-Time Options” on page 19.

STACK
STACK controls the allocation of the thread’s stack storage for both the upward and
downward-growing stacks. Typical items residing in the upward-growing stack are C
or PL/I automatic variables, COBOL LOCAL-STORAGE data items, and work areas
for COBOL library routines.

The downward growing stack will be allocated only when an application has been
built with XPLINK.

Storage required for the common anchor area (CAA) and other control blocks is
allocated separately from, and prior to, the allocation of the initial stack segment
and the initial heap.

Non-CICS Default: STACK=((128K,128K,ANYWHERE,KEEP,512K,128K),OVR)

SIMVRD

130 z/OS V1R4.0 Language Environment Customization

Syntax

ÊÊ STACK = ((usinit_size , usincr_size ,
ANYWHERE
ANY
BELOW

, Ê

Ê
KEEP
FREE , dsinit_size , dsincr_size) ,

OVR
NONOVR) ÊÍ

usinit_size
Determines the size of the initial upward-growing stack segment. The storage is
contiguous. You specify the usinit_size value as n, nK, or nM bytes of storage.
The actual amount of allocated storage is rounded up to the nearest multiple of
8 bytes.

usinit_size can be preceded by a minus sign. In environments other than CICS,
if you specify a negative number Language Environment uses all available
storage minus the amount specified for the initial stack segment.

A size of "0" or "−0" requests half of the largest block of contiguous storage in
the region below the 16 MB line.

usincr_size
Determines the minimum size of any subsequent increment to the
upward-growing stack area. You can specify this value as n, nK, or nM bytes of
storage. The actual amount of allocated storage is the larger of two values—
usincr_size or the requested size—rounded up to the nearest multiple of 8
bytes

If you specify usincr_size as 0, only the amount of the storage needed at the
time of the request, rounded up to the nearest multiple of 8 bytes, is obtained.

The requested size is the amount of storage a routine needs for a stack frame.
For example, if the requested size is 9000 bytes, usincr_size is specified as 8K,
and the initial stack segment is full, Language Environment gets a 9000 byte
stack increment from the operating system to satisfy the request. If the
requested size is smaller than 8K, Language Environment gets an 8K stack
increment from the operating system.

ANYWHERE | ANY | BELOW
Specifies the storage location. For downward growing stack, this option is
ignored and the storage is always placed above 16 MB.

BELOW
Specifies that the stack storage must be allocated below the 16M line in
storage that is accessible to 24-bit addressing.

ANYWHERE | ANY
Specifies that stack storage can be allocated anywhere in storage. If there
is no storage available above the line, Language Environment acquires
storage below the 16 MB line.

KEEP | FREE
Determines the disposition of the storage increments when the last stack frame
in the increment segment is freed.

STACK

Chapter 12. Language Environment Run-Time Options 131

KEEP
Specifies that storage allocated to stack increments is not released when
the last of the storage in the stack increment is freed.

FREE
Specifies that storage allocated to stack increments is released when the
last of the storage in the stack is freed. The initial stack segment is never
released until the enclave terminates.

dsinit_size
Determines the size of the initial downward growing stack segment. The storage
is contiguous. You specify the dsinit_size value as n, nK, or nM bytes of
storage. The actual amount of allocated storage is rounded up to the nearest
multiple of 16 bytes.

dsincr_size
Determines the minimum size of any subsequent increment to the downward
growing stack area. You can specify this value as n, nK, or nM bytes of storage.
The actual amount of allocated storage is the larger of two values-- dsincr_size
or the requested size--rounded up to the nearest multiple of 16 bytes.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v The default under CICS is STACK=((4K,4080,ANYWHERE,KEEP,4K,4080),OVR).

v dsinit_size and dsincr_size sub-options are ignored under CICS.

v The maximum initial and increment size for CICS above 16 MB is 1 gigabyte
(1024 MB). This restriction is subject to change from one release of CICS to
another.

v Both the initial size and the increment size are rounded up to the nearest multiple
of 8 bytes. The initial size minimum is 4 KB.

v If you do not specify STACK, Language Environment assumes the default value
of 4 KB. Under CICS, STACK(0), STACK (−0), and STACK (−n) are all
interpreted as STACK(4K).

v The default increment size under CICS is 4080 bytes, rather than 4096 bytes, to
accomodate the 16 bytes CICS storage check zone. Without this accomodation,
an extra page of storage is allocated (only when the storage allocation is below
the 16 MB line).

Usage Notes
v When an application is running in an XPLINK environment (that is, either the

XPLINK(ON) run-time option was specified, or the initial program contained at
least one XPLINK-compiled part), the STACK run-time option will be forced to
STACK(,,ANY,,,). Only the third suboption of the STACK run-time option is
changed by this action, to indicate that stack storage can be allocated anywhere
in storage. No message will be issued to indicate this action. In this case, if a
Language Environment run-time options report is generated using the RPTOPTS
run-time option, the STACK option will be reported as ″Override″ under the LAST
WHERE SET column.

v The dsinit_size and dsincr_size values are the amounts of storage that can be
used for downward growing stack frames (plus the stack header, approximately
20 bytes). The actual size of the storage getmained will be 4K (8K if a 4K page
alignment cannot be guaranteed) larger to accommodate the guard page.

STACK

132 z/OS V1R4.0 Language Environment Customization

v The downward growing stack is only initialized in an XPLINK supported
environment, and only when an XPLINK application is active in the enclave.
Otherwise the suboptions for the downward growing stack are ignored.

v Applications running with ALL31(OFF) must specify STACK(,,BELOW,,,) to
ensure that stack storage is addressable by the application.

v PL/I consideration — PL/I automatic storage above the 16 MB line is supported
under control of the Language Environment STACK option. When the Language
Environment stack is above, PL/I temporaries (dummy arguments) and parameter
lists (for reentrant/recursive blocks) also reside above.

The stack frame size for an individual block is constrained to 16 MB. Stack frame
extensions are also constrained to 16 MB. Therefore, the size of an automatic
aggregate, temporary variable, or dummy argument cannot exceed 16 MB.
Violation of this constraint might have unpredictable results.

If an OS PL/I application does not contain any edited stream I/O and if it is
running with AMODE 31, you can relink it with Language Environment to use
STACK(,,ANY,,,). Doing so is particularly useful under CICS to help relieve
below-the-line storage constraints.

v PL/I MTF consideration — The STACK option allocates and manages stack
storage for the PL/I main task only. For information about stack storage
management in the subtasks, see “THREADSTACK” on page 146.

v z/OS UNIX consideration — The STACK option specifies the characteristics of
the user stack for the initial thread. In particular, it gets the initial size of the user
stack for the initial thread.

The characteristics that indicate incr_size, ANYWHERE, and KEEP | FREE apply
to any thread created using pthread_create. Language Environment gets the
initial stack size from the thread’s attribute object specified in the pthread_create
function. The default size to be set in the thread’s attribute object is obtained
from the STACK run-time option’s initial size.

The recommended default setting for STACK under z/OS UNIX is
STACK=((12K,12K,ANYWHERE,KEEP,512K,128K),OVR).

Performance Considerations
To improve performance, use the storage report numbers generated by the
RPTSTG run-time option as an aid in setting the initial and increment sizes for
STACK.

For More Information
v See “ALL31” on page 72, for more information about the ALL31 run-time option.

v See “RPTSTG” on page 117, for more information about the RPTSTG run-time
option.

v See “THREADSTACK” on page 146, for more information about the
THREADSTACK run-time option.

v For more information about using the storage reports generated by the RPTSTG
run-time option to tune the stacks, see z/OS Language Environment
Programming Guide.

STORAGE
STORAGE controls the initial content of storage when allocated and freed. It also
controls the amount of storage that is reserved for the out-of-storage condition. If
you specify one of the parameters in the STORAGE run-time option, all allocated
storage processed by that parameter is initialized to the specified value. Otherwise,
it is left uninitialized.

STACK

Chapter 12. Language Environment Run-Time Options 133

You can use the STORAGE option to identify uninitialized application variables, or
prevent the accidental use of previously freed storage. STORAGE is also useful in
data security. For example, storage containing sensitive data can be cleared when it
is freed.

Non-CICS Default: STORAGE=((NONE,NONE,NONE,0K),OVR)

Syntax

ÊÊ STORAGE = ((heap_alloc_value , heap_free_value , Ê

Ê dsa_alloc_value , reserve_size) ,
OVR
NONOVR) ÊÍ

heap_alloc_value
The initialized value of any heap storage allocated by the storage manager. You
can specify heap_alloc_value as:

v A single character enclosed in quotes. If you specify a single character, every
byte of heap storage allocated by the storage manager is initialized to that
character’s EBCDIC equivalent. For example, if you specify 'a' as the
heap_alloc_value, heap storage is initialized to X'818181...81' or 'aaa...a'.

v Two hex digits without quotes. If you specify two hex digits, every byte of the
allocated heap storage is initialized to that value. For example, if you specify
FE as the heap_alloc_value, heap storage is initialized to X'FEFEFE...FE'. A
heap_alloc_value of 00 initializes heap storage to X'0000...00'.

v NONE. If you specify NONE, the allocated heap storage is not initialized.

heap_free_value
The value of any heap storage freed by the storage manager is overwritten. You
can specify heap_free_value as:

v A single character enclosed in quotes. For example, a heap_free_value of 'f'
overwrites freed heap storage to X'868686...86'; 'B' overwrites freed heap
storage to X'C2'.

v Two hex digits without quotes. A heap_free_value of FE overwrites freed
heap storage with X'FEFEFE...FE'.

v NONE. If you specify NONE, the freed heap storage is not initialized.

dsa_alloc_value
The initialized value of stack frames from the Language Environment stack. A
stack frame is dynamically-acquired storage that is composed of a standard
register save area and the area available for automatic storage.

If specified, all Language Environment stack storage, including automatic
variable storage, is initialized to dsa_alloc_value. Stack frames allocated outside
the Language Environment stack are never initialized.

You can specify dsa_alloc_value as:

v A single character enclosed in quotes. If you specify a single character, any
dynamically acquired stack storage allocated by the storage manager is
initialized to that character’s EBCDIC equivalent. For example, if you specify
'A' as the dsa_alloc_value, stack storage is initialized to X'C1'. A
dsa_alloc_value of 'F' initializes stack storage to X'C6', 'd' to X'84'.

STORAGE

134 z/OS V1R4.0 Language Environment Customization

v Two hex digits without quotes. If you specify two hex digits, any
dynamically-acquired stack storage is initialized to that value. For example, if
you specify FE as the dsa_alloc_value, stack storage is initialized to X'FE'. A
dsa_alloc_value of 00 initializes stack storage to X'00', FF to X'FF'.

v NONE. If you specify NONE, the stack storage is not initialized.

reserve_size
The amount of storage for the Language Environment storage manager to
reserve in the event of an out-of-storage condition. You can specify the
reserve_size value as n, nK, or nM bytes of storage. The amount of storage is
rounded to the nearest multiple of 8 bytes.

The default reserve_size is 0, so no reserve segment is allocated. If you do not
specify a reserve segment and your application exhausts storage, the
application terminates with abend 4088 and a reason code of 1024.

If you specify reserve_size as 0, no reserve segment is allocated. If you do not
specify a reserve segment and your application exhausts storage, the
application terminates with abend 4088 and a reason code of 1004.

If you specify a reserve_size that is greater than 0 on a non-CICS system,
Language Environment does not immediately abend when your application runs
out of storage. Instead, when the stack overflows, Language Environment uses
the reserve stack as the new segment and signals a CEEOPD out of storage
condition. This allows a user-written condition handler to gain control for this
signal and release storage. If the reserve stack segment overflows while this is
happening, Language Environment terminates with abend 4088 and reason
code of 1004. The reserve stack segment is not freed until thread termination. It
is acquired from 31-bit storage if the STACK(,,ANY,,,) run-time option is set or
24-bit storage when STACK(,,BELOW,,,) is requested. If a determination is
made to activate the reserve stack, the reserve size should be set to a
minimum of 32 KB to support Language Environment condition handling and
messaging internal routines as well as the user condition handler. When using
the reserve stack in a multi-threaded environment, it is recommended that the
ALL31(ON) and STACK(,,ANY,,,) options also be in effect.

If unsuccessful, Language Environment temporarily adds the reserve stack
segment to the overflowing stack, and signals the out-of-storage condition. This
causes a user-written condition handler to gain control and release storage. If
the reserve stack segment overflows while this is happening, Language
Environment terminates with abend 4088 and reason code of 1004.

To avoid such an overflow, increase the size of the reserve stack segment with
the STORAGE(,,,reserve_size) run-time option. The reserve stack segment is
not freed until thread termination.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v The default under CICS is STORAGE=((NONE,NONE,NONE,0K),OVR).

v The out-of-storage condition is not raised under CICS.

Usage Notes
v The behavior of the dsa_alloc_value sub-option of the STORAGE runtime option

will be different for an XPLINK stack. The DSA will only be initialized for routines

STORAGE

Chapter 12. Language Environment Run-Time Options 135

that perform an explicit check for stack overflow. (For C/C++, the compiler option
XPLINK(NOGUARD) can be used to force the compiler to generate prologs with
explicit checks for stack overflow.)

v heap_alloc_value, heap_free_value, and dsa_alloc_value can all be enclosed in
quotes. To initialize heap storage to the EBCDIC equivalent of a single quote,
double it within the string delimited by single quotes or surround it with a pair of
double quotes. Both of the following are correct ways to specify a single quote:

STORAGE('''')
STORAGE("'")

Similarly, double quotes must be doubled within a string delimited by double
quotes, or surrounded by a pair of single quotes. The following are correct ways
to specify a double quote:

STORAGE("""")
STORAGE('"')

v z/OS UNIX consideration — A reserve stack of the size specified by the
reserve_size suboption of STORAGE is allocated for each thread.

v COBOL consideration — If using WSCLEAR in VS COBOL II,
STORAGE(00,NONE,NONE,0K) is recommended.

Performance Considerations
Using STORAGE to control initial values can increase program run-time. If you
specify a dsa_alloc_value, performance is likely to be poor. Therefore, use the
dsa_alloc_value option only for debugging, not to initialize automatic variables or
data structures.

Use STORAGE(NONE,NONE,NONE) when you are not debugging.

TERMTHDACT

Derivation
TERMinating THreaD ACTions

TERMTHDACT sets the level of information that is produced when Language
Environment percolates a condition of severity 2 or greater beyond the first routine’s
stack frame.

The Language Environment service CEE3DMP is called for TRACE, UATRACE,
DUMP and UADUMP suboptions of TERMTHDACT.

The following CEE3DMP options are passed for TRACE and UATRACE:
NOENTRY CONDITION TRACEBACK THREAD(ALL) NOBLOCK NOSTORAGE
NOVARIABLES NOFILES STACKFRAME(ALL) PAGESIZE(60)
FNAME(CEEDUMP)GENOPTS

The following options are passed for DUMP and UADUMP:
THREAD(ALL) NOENTRY TRACEBACK FILES VARIABLES BLOCK STORAGE
STACKFRAME(ALL) PAGESIZE(60) FNAME(CEEDUMP) CONDITION
GENOPTS

If a message is printed, based upon the TERMTHDACT(MSG) run-time option, the
message is for the active condition immediately prior to the termination imminent
step. In addition, if that active condition is a promoted condition (was not the
original condition), the original condition’s message is printed.

STORAGE

136 z/OS V1R4.0 Language Environment Customization

If the TRACE run-time option is specified with the DUMP suboption, a dump
containing the trace table, at a minimum, is produced. The contents of the dump
depend on the values set in the TERMTHDACT run-time option.

Under normal termination, the following dump contents are generated:

v Independent of the TERMTHDACT setting, Language Environment generates a
dump containing the trace table only.

Non-CICS Default: TERMTHDACT=((TRACE,CESE,96),OVR)

Syntax

ÊÊ TERMTHDACT = ((
TRACE
QUIET
MSG
DUMP
UADUMP
UAONLY
UAIMM
UATRACE

,
CESE
CICSDDS , reg_stor_amount Ê

Ê) ,
OVR
NONOVR) ÊÍ

TRACE
Specifies that when a thread terminates due to an unhandled condition of
severity 2 or greater, Language Environment generates a message indicating
the cause of the termination and a trace of the active routines on the activation
stack.

QUIET
Specifies that Language Environment does not generate a message when a
thread terminates due to an unhandled condition of severity 2 or greater.

MSG
Specifies that when a thread terminates due to an unhandled condition of
severity 2 or greater, Language Environment generates a message indicating
the cause of the termination.

DUMP
Specifies that when a thread terminates due to an unhandled condition of
severity 2 or greater, Language Environment generates a message indicating
the cause of the termination, a trace of the active routines on the activation
stack, and a Language Environment dump.

UADUMP
Specifies that when a thread terminates due to an unhandled condition of
severity 2 or greater, Language Environment generates a message indicating
the cause of the termination, a Language Environment dump, and generates a
U4039 abend which allows a system dump of the user address space to be
generated. Under non-CICS, if the appropriate DD statement is used, you will
get a system dump of your user address space. Under CICS, you will get a
CICS transaction dump.

UATRACE
Specifies that when a thread terminates due to an unhandled condition of
severity 2 or greater, Language Environment generates a message indicating

TERMTHDACT

Chapter 12. Language Environment Run-Time Options 137

the cause of the termination, a trace of the active routines on the activation
stack, and generates a U4039 abend which allows a system dump of the user
address space to be generated. Under non-CICS, if the appropriate DD
statement is used, you will get a system dump of your user address space.
Under CICS, you will get a CICS transaction dump.

UAONLY
Specifies that when a thread terminates due to an unhandled condition of
severity 2 or greater, Language Environment generates a U4039 abend which
allows a system dump of the user address space to be generated. Under
non-CICS, if the appropriate DD statement is used, you will get a system dump
of your user address space. Under CICS, you will get a CICS transaction dump.

UAIMM
Specifies to Language Environment that prior to condition management
processing, for abends and program interrupts that are conditions of Severity 2
or higher, Language Environment will immediately request the operating system
to generate a system dump of the original abend/program interrupt of the user
address space. Due to an unhandled condition of severity 2 or greater,
Language Environment generates a U4039 abend which allows a system dump
of the user address space to be generated. Under non-CICS, if the appropriate
DD statement is used, you will get a system dump of your user address space.
After the dump is taken by the operating system, Language Environment
condition manager can continue processing. If the thread terminates due to an
unhandled condition of Severity 2 or higher, then Language Environment will
terminate as if TERMTHDACT(QUIET) was specified.

Note: For software-raised conditions or signals, UAIMM behaves the same as
UAONLY. When TRAP(ON,SPIE) is in effect, UAIMM will yield UAONLY
behavior.

CESE
Specifies that Language Environment dump output will be written to the CESE
queue.

CICSDDS
Specifies that Language Environment dump output will be written to the CICS
transaction dump data set that contains both CICS and CEEDUMP data. For
program checks or ABENDs, the CICSDDS option directs Language
Environment to place the message output in the CICS dump dataset created for
the failure. For software-raised errors, like subscript range exceeded, the CESE
queue remains the destination for the output (since there may be no transaction
dump for these). CICSDDS can be specified with any of the first TERMTHDACT
settings except DUMP and UADUMP. Attempts to request this combination will
result in an error in building the options module.

reg_stor_amount
Controls the amount of storage to be dumped around registers. This amount
can be in the range from 0 to 256 bytes. The amount specified will be rounded
up to the nearest multiple of 32. The default amount is 96 bytes.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v The default under CICS is TERMTHDACT=((TRACE,CESE,96),OVR).

TERMTHDACT

138 z/OS V1R4.0 Language Environment Customization

v All TERMTHDACT output is written to the data queue based on the setting of
CESE or CICSDDS.

See the following tables for help in understanding the results of the different options
that are available.

TERMTHDACT

Chapter 12. Language Environment Run-Time Options 139

For program checks or ABENDs in a CICS environment:

Table 20. Condition Handling of 0Cx ABENDS

Options TERMTHDACT(option,CESE,) TERMTHDACT(option,CICSDDS,)

QUIET v No output.

v ASRA or user ABEND issued.

v No output.

v ASRA or user ABEND issued.

MSG v Message written to CESE queue or
MSGFILE.

v ASRA or user ABEND issued.

v Message written to CESE queue or
MSGFILE.

v ASRA or user ABEND issued.

TRACE v Message written to CESE queue.

v Traceback written to CESE queue.

v ASRA or user ABEND issued.

v Message written to CESE or
MSGFILE.

v Traceback included in CICS
transaction dump for this ABEND.

v ASRA or user ABEND issued.

DUMP v Message written to CESE queue.

v Traceback written to CESE queue.

v CEEDUMP to CESE queue.

v ASRA or user ABEND issued.

v Invalid sub-option combination. Not
supported.

UATRACE v Message written to CESE queue.

v Traceback included in CICS
transaction dump for this ABEND.

v U4039 transaction dump in CICS
dump data set.

v ASRA or user ABEND issued.

v Message written to CESE queue.

v Traceback written to CESE queue.

v U4039 transaction dump in CICS
dump data set.

v ASRA or user ABEND issued.

UADUMP v Message written to CESE queue.

v Traceback written to CESE queue.

v CEEDUMP written to CESE queue.

v U4039 transaction dump in CICS
dump data set.

v ASRA or user ABEND issued.

v Invalid sub-option combination. Not
supported.

UAONLY v U4039 transaction dump in CICS
dump data set.

v No changes in behavior for
CICSDDS.

UAIMM v U4039 transaction dump in CICS
dump data set.

v No changes in behavior for
CICSDDS.

Note: Program checks end in ASRx (most commonly ASRA) CICS abend with a
CICS dump in the dump data set. Abends end with the abend code provided
on the EXEC CICS ABEND command with a CICS dump in the dump data
set if the NODUMP option was NOT specified.

For software raised errors of severity 2 or higher in a CICS environment:

Table 21. Handling of software raised conditions

Options TERMTHDACT(option,CESE,) TERMTHDACT(option,CICSDDS,)

QUIET v No output.

v U4038 abend issued with CANCEL
and NODUMP options.

v No output.

v U4038 abend issued with CANCEL
and NODUMP options.

TERMTHDACT

140 z/OS V1R4.0 Language Environment Customization

Table 21. Handling of software raised conditions (continued)

Options TERMTHDACT(option,CESE,) TERMTHDACT(option,CICSDDS,)

MSG v Message written to CESE queue or
MSGFILE.

v U4038 abend issued.

v Message written to CESE queue or
MSGFILE.

v U4038 abend issued.

TRACE v Message written to CESE queue or
MSGFILE.

v Traceback written to CESE queue.

v U4038 abend issued.

v Message written to CESE queue or
MSGFILE.

v Traceback written to CESE queue.

v U4038 abend issued.

DUMP v Message written to CESE queue or
MSGFILE.

v Traceback written to CESE queue.

v CEEDUMP written to CESE queue.

v U4038 abend issued.

v Invalid sub-option combination. Not
supported.

UATRACE v Message written to CESE queue or
MSGFILE.

v Traceback written to CESE queue.

v U4039 transaction dump in CICS
dump data set.

v U4038 abend issued.

v Message written to CESE queue or
MSGFILE.

v Traceback written to CESE queue.

v U4039 transaction dump in CICS
dump data set.

v U4038 abend issued.

UADUMP v Message written to CESE queue or
MSGFILE.

v Traceback written to CESE queue.

v CEEDUMP written to CESE queue.

v U4039 transaction dump in CICS
dump data set.

v U4038 abend issued.

v Invalid sub-option combination. Not
supported.

UAONLY v U4039 transaction dump in CICS
dump data set.

v U4038 abend issued.

v No changes in behavior for
CICSDDS.

UAIMM v U4039 transaction dump in CICS
dump data set.

v U4038 abend issued.

v No changes in behavior for
CICSDDS.

Notes:

1. See z/OS Language Environment Run-Time Messages for more complete
details regarding the U4039 abend.

2. When assembling a CEECOPT, CEEROPT, or CEEUOPT, the CICSDDS option
cannot be issued with DUMP, or UADUMP. Doing this results in a RC=8 and the
following message from CEEXOPT is issued and the setting is forced to
TRACE:
8,The TERMTHDACT level setting of DUMP
8,conflicts with the CICSDDS suboption.
8,A level of TRACE or less must be used with CICSDDS.
8,The TERMTHDACT level suboption
8,was set to TRACE.

3. Running with something like TERMTHDACT(TRACE,CICSDDS) in the
CEECOPT or CEEROPT and then creating a CEEUOPT without specifying the

TERMTHDACT

Chapter 12. Language Environment Run-Time Options 141

second operand (for example, TERMTHDACT(DUMP)) results in the CICS
dump data set as the output destination and the following message occurs in
the CESE queue:
CEE3627I The following messages pertain to the programmer default
run-time options.

CEE3775W A conflict was detected between the TERMTHDACT suboptions
CICSDDS and DUMP.

The TERMTHDACT level setting has been set to TRACE.

and the traceback is written to the CICS transaction dump data set.

Usage Notes
v PL/I considerations — After a normal return from a PL/I ERROR ON-unit or from

a PL/I FINISH ON-unit, Language Environment considers the condition
unhandled. If a GOTO is not performed and the resume cursor is not moved, the
thread terminates. The TERMTHDACT setting guides the amount of information
that is produced. The message is not presented twice.

v PL/I MTF considerations — TERMTHDACT applies to a task when the task
terminates abnormally due to an unhandled condition of severity 2 or higher that
is percolated beyond the initial routine’s stack frame. All active subtasks created
from the incurring task also terminate abnormally, but the enclave can continue to
run.

v COBOL consideration — TERMTHDACT(UADUMP) produces debugging
information that is similar to the information produced by previous levels of
COBOL.

v z/OS UNIX consideration — The TERMTHDACT option applies when a thread
terminates abnormally. Abnormal termination of a single thread causes
termination of the entire enclave. If an unhandled condition of severity 2 or higher
percolates beyond the first routine’s stack frame, the enclave terminates
abnormally.

If an enclave terminates due to a POSIX default signal action, TERMTHDACT
applies only to conditions that result from program checks or abends.

v A run-time options report will be generated and placed at the end of the enclave
information whenever the TRACE, UATRACE, DUMP and UADUMP options are
invoked.

For More Information
v See “TRACE” on page 149, for more information about the TRACE run-time

option.

v For more information about the CEE3DMP service and its parameters, see z/OS
Language Environment Programming Reference.

v See z/OS Language Environment Programming Guide for more information about
the TERMTHDACT run-time option and condition message.

v For more information about CESE, see z/OS Language Environment
Programming Guide.

TEST | NOTEST
TEST specifies the conditions under which a debug tool (such as the Debug Tool
supplied with z/OS) assumes control when the user application is being initialized.
Parameters of the TEST and NOTEST run-time options are merged as one set of
parameters.

Non-CICS Default: NOTEST=((ALL,*,PROMPT,INSPPREF),OVR)

TERMTHDACT

142 z/OS V1R4.0 Language Environment Customization

Syntax

ÊÊ
NOTEST
TEST = ((

ALL
ERROR
NONE

,
*
commands_file , Ê

Ê
PROMPT
NOPROMPT
*
;
command

,
INSPPREF
preference_file
*

) ,
OVR
NONOVR) ÊÍ

ALL
Specifies that any of the following causes the debug tool to gain control even
without a defined AT OCCURRENCE for a particular condition or AT
TERMINATION:
v The ATTENTION function
v Any Language Environment condition of severity 1 or above
v Application termination

ERROR
Specifies that only one of the following causes the debug tool to gain control
without a defined AT OCCURRENCE for a particular condition or AT
TERMINATION:
v The ATTENTION function
v Any Language Environment-defined error condition of severity 2 or higher
v Application termination

NONE
Specifies that no condition causes the debug tool to gain control without a
defined AT OCCURRENCE for a particular condition or AT TERMINATION.

commands_file
A valid ddname, data set name (MVS), or file name (CMS), specifying the
primary commands file for this run. If you do not specify this parameter all
requests for commands go to the user terminal.

You can enclose commands_file in single or double quotes to distinguish it from
the rest of the TEST | NOTEST suboption list. It can have a maximum length of
80 characters. If the data set name provided could be interpreted as a ddname,
it must be preceded by a slash (/). The slash and data set name must be
enclosed in quotes.

A primary commands file is required when running in a batch environment.

* (asterisk — in place of commands_file)
Specifies that no commands_file is supplied. The terminal, if available, is used
as the source of the debug tool commands.

PROMPT
Specifies that the debug tool is invoked at Language Environment initialization.

NOPROMPT
Specifies that the debug tool is not invoked at Language Environment
initialization.

TEST | NOTEST

Chapter 12. Language Environment Run-Time Options 143

* (asterisk — in place of PROMPT/NOPROMPT)
Specifies that the debug tool is not invoked at Language Environment
initialization; equivalent to NOPROMPT.

; (semicolon — in place of PROMPT/NOPROMPT)
Specifies that the debug tool is invoked at Language Environment initialization;
equivalent to PROMPT.

command
A character string that specifies a valid debug tool command. The command list
can be enclosed in single or double quotes to distinguish it from the rest of the
TEST parameter list; it cannot contain DBCS characters. Quotes are needed
whenever the command list contains embedded blanks, commas, semicolons,
or parentheses. The list can have a maximum of 250 characters.

preference_file
A valid ddname, data set name (MVS), or file name (CMS), specifying the
preference file to be used. A preference file is a type of commands file that you
can use to specify settings for your debugging environment. It is analogous to
creating a profile for a text editor, or initializing an S/370 terminal session.

You can enclose preference_file in single or double quotes to distinguish it from
the rest of the TEST parameter list. It can have a maximum of 80 characters.

If a specified data set name could be interpreted as a ddname, it must be
preceded by a slash (/). The slash and data set name must be enclosed in
quotes.

The IBM-supplied default setting for preference_file is INSPPREF.

* (asterisk — in place of preference_file)
Specifies that no preference_file is supplied.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v The default under CICS is NOTEST=((ALL,*,PROMPT,INSPPREF),OVR).

Usage Notes
v You can specify parameters on the NOTEST option. If NOTEST is in effect when

the application gains control, it is interpreted as TEST(NONE,,*,). If Debug Tool is
initialized using a CALL CEETEST or equivalent, the initial test level, the initial
commands_file, and the initial preference_file are taken from the NOTEST
run-time option setting.

v z/OS UNIX consideration — Language Environment honors the initial command
string before the main routine runs on the initial thread.

The test level (ALL, ERROR, NONE) applies to the enclave.

Language Environment honors the preference file when the debug tool is
initialized, regardless of which thread first requests the debug tool services.

Performance Consideration
To improve performance, use this option only while debugging.

For More Information
v See Debug Tool User’s Guide and Reference for details and for examples of the

TEST run-time option as it relates to Debug Tool.

TEST | NOTEST

144 z/OS V1R4.0 Language Environment Customization

THREADHEAP

Derivation
THREAD level HEAP storage

THREADHEAP controls the allocation and management of thread-level heap
storage. Separate heap segments are allocated and freed for each thread based on
the THREADHEAP specification.

For PL/I MTF applications, controlled and based variables declared in a subtask are
allocated from heap storage specified by THREADHEAP. Variables in the main task
are allocated from heap storage specified by HEAP.

Library use of heap storage in a substack is allocated from the enclave-level heap
storage specified by the ANYHEAP and BELOWHEAP options.

Non-CICS Default: THREADHEAP=((4K,4K,ANYWHERE,KEEP),OVR)

Syntax

ÊÊ THREADHEAP = ((init_size , incr_size ,
ANYWHERE
ANY
BELOW

, Ê

Ê
KEEP
FREE) ,

OVR
NONOVR) ÊÍ

init_size
The minimum initial size of thread heap storage, and is specified in n, nK, or
nM. Storage is acquired in multiples of 8 bytes.

A value of zero (0) causes an allocation of 4K.

incr_size
The minimum size of any subsequent increment to the noninitial heap storage is
specified in n, nK, or nM. The actual amount of allocated storage is the larger of
two values, incr_size or the requested size, rounded up to the nearest multiple
of 8 bytes.

If you specify incr_size as 0, only the amount of the storage needed at the time
of the request (rounded up to the nearest 8 bytes) is obtained.

ANYWHERE|ANY
Specifies that the heap storage can be allocated anywhere in storage. If there is
no available storage above the line, storage is acquired below the 16 MB line.

The only valid abbreviation of ANYWHERE is ANY.

BELOW
Specifies that the heap storage must be allocated below the 16 MB line.

KEEP
Specifies that storage allocated to THREADHEAP increments is not released
when the last of the storage in the thread heap increment is freed.

THREADHEAP

Chapter 12. Language Environment Run-Time Options 145

FREE
Specifies that storage allocated to THREADHEAP increments is released when
the last of the storage in the thread heap increment is freed.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v THREADHEAP is ignored under CICS.

v Even though this option is ignored under CICS, the default increment size under
CICS has changed from 4 KB (4096 bytes) to 4080 bytes, to accomodate the 16
byte CICS storage check zone.

Usage Notes
v If the requesting routine is running in 24-bit addressing mode and

THREADHEAP(,,ANY,) is in effect, THREADHEAP storage is allocated below the
16 MB line based upon the HEAP(,,,,initsz24,incrsz24) settings.

v PL/I MTF considerations — The thread-level heap is allocated only in
applications that use the PL/I MTF. For PL/I MTF applications, controlled and
based variables specified in subtasks are located in the thread-level heap.

If the main program is AMODE 24 and THREADHEAP(,,ANY,) is in effect, heap
storage is allocated below the 16 MB line. The only case in which storage is
allocated above the line is when all of the following conditions exist:
– The user routine requesting the storage is running in 31-bit addressing mode.
– HEAP(,,ANY,,,) is in effect.
– The main routine is AMODE 31.

v When running PL/I with POSIX(ON) in effect, THREADHEAP is used for
allocating heap storage for PL/I base variables declared in non-IPTs. Storage
allocated to all THREADHEAP segments is freed when the thread terminates.

v THREADHEAP(4K,4K,ANYWHERE,KEEP) provides behavior compatible with the
PL/I TASKHEAP option.

v The initial thread heap segment is never released until the thread terminates.

v THREADHEAP has no effect on C/C++ or VS Fortran MTF applications.

THREADSTACK

Derivation
THREAD level STACK storage

THREADSTACK controls the allocation of the thread’s stack storage for both the
upward and downward-growing stacks, except the initial thread in a multi-threaded
application.

If the thread attribute object does not provide an explicit stack size, then the
allocation values can be inherited from the STACK option or specified explicitly on
the THREADSTACK option.

Non-CICS Default:
THREADSTACK=((OFF,4K,4K,ANYWHERE,KEEP,128K,128K),OVR)

THREADHEAP

146 z/OS V1R4.0 Language Environment Customization

Syntax

ÊÊ THREADSTACK = ((
OFF
ON , usinit_size , usincr_size , Ê

Ê
ANYWHERE
ANY
BELOW

,
KEEP
FREE , dsinit_size , dsincr_size) , Ê

Ê
OVR
NONOVR) ÊÍ

OFF
Indicates that the allocation suboptions of the STACK run-time option are used
for thread stack allocation. Any other suboption specified with THREADSTACK
is ignored.

ON
Controls the stack allocation for each thread, except the initial thread, in a
multithread environment.

usinit_size
Determines the size of the initial upward-growing stack segment. The storage is
contiguous. You specify the usinit_size value as n, nK, or nM bytes of storage.
The actual amount of allocated storage is rounded up to the nearest multiple of
8 bytes.

usinit_size can be preceded by a minus sign. In environments other than, if you
specify a negative number Language Environment uses all available storage
minus the amount specified for the initial stack segment.

A size of "0" or "−0" requests half of the largest block of contiguous storage in
the region below the 16 MB line.

usincr_size
Determines the minimum size of any subsequent increment to the
upward-growing stack area. You can specify this value as n, nK, or nM bytes of
storage. The actual amount of allocated storage is the larger of two values—
usincr_size or the requested size—rounded up to the nearest multiple of 8
bytes

If you specify usincr_size as 0, only the amount of the storage needed at the
time of the request, rounded up to the nearest multiple of 8 bytes, is obtained.

The requested size is the amount of storage a routine needs for a stack frame.
For example, if the requested size is 9000 bytes, usincr_size is specified as 8K,
and the initial stack segment is full, Language Environment gets a 9000 byte
stack increment from the operating system to satisfy the request. If the
requested size is smaller than 8K, Language Environment gets an 8K stack
increment from the operating system.

ANYWHERE | ANY | BELOW
Specifies the storage location. For downward growing stack, this option is
ignored and the storage is always placed above 16M.

BELOW
Specifies that the stack storage must be allocated below the 16M line in
storage that is accessible to 24-bit addressing.

THREADSTACK

Chapter 12. Language Environment Run-Time Options 147

ANYWHERE|ANY
Specifies that stack storage can be allocated anywhere in storage. If there
is no storage available above the line, Language Environment acquires
storage below the 16 MB line.

KEEP | FREE
Determines the disposition of the storage increments when the last stack frame
in the increment segment is freed.

KEEP
Specifies that storage allocated to stack increments is not released when
the last of the storage in the stack increment is freed.

FREE
Specifies that storage allocated to stack increments is released when the
last of the storage in the stack is freed. The initial stack segment is never
released until the enclave terminates.

dsinit_size
Determines the size of the initial downward growing stack segment. The storage
is contiguous. You specify the init_size value as n, nK, or nM bytes of storage.
The actual amount of allocated storage is rounded up to the nearest multiple of
16 bytes.

dsincr_size
Determines the minimum size of any subsequent increment to the downward
growing stack area. You can specify this value as n, nK, or nM bytes of storage.
The actual amount of allocated storage is the larger of two values-- incr_size or
the requested size--rounded up to the nearest multiple of 16 bytes.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v THREADSTACK is ignored under CICS.

Usage Notes
v The dsinit_size and dsincr_size values are the amounts of storage that can be

used for downward growing stack frames (plus the stack header, approximately
20 bytes). The actual size of the storage getmained will be 4K (8K if a 4K page
alignment cannot be guaranteed) larger to accommodate the guard page.

v The downward growing stack is only initialized in an XPLINK supported
environment, and only when an XPLINK application is active in the enclave.
Otherwise the suboptions for the downward growing stack are ignored.

v The THREADSTACK option replaces the NONIPTSTACK and
NONONIPTSTACK options.

v All storage allocated to THREADSTACK segments are freed when the thread
terminates.

v The initial stack segment of the thread is never released until the thread
terminates, regardless of the KEEP/FREE state.

v You can specify sub-options with THREADSTACK(OFF,...), but they are ignored.
If you override the THREADSTACK(OFF,...) suboption with THREADSTACK(ON)
and you omit suboptions, then the suboptions you specified with
THREADSTACK(OFF,...) remain in effect. If you respecify
THREADSTACK(OFF,...) with different suboptions, they override the defaults.

THREADSTACK

148 z/OS V1R4.0 Language Environment Customization

v PL/I MTF consideration — THREADSTACK(ON,4K,4K,BELOW,KEEP,,) provides
PL/I compatibility for stack storage allocation and management for each subtask
in the application.

v PL/I considerations — For multitasking or multithreaded environments, the stack
size for a subtask or non-Initial Process Thread (non-IPT) is taken from the
THREADSTACK option unless THREADSTACK(OFF) is specified.
THREADSTACK(OFF) specifies that the values in the STACK option be used.

v In the multithreaded environment, you can explicitly specify the stack size in the
thread attribute object; it will be used instead of the value specified with
THREADSTACK or STACK.

For More Information
v For more information about the STACK run-time option, see “STACK” on

page 130.

v For more information about the ALL31 run-time option, see “ALL31” on page 72.

TRACE
TRACE controls run-time library tracing activity, the size of the in-storage trace
table, the type of trace events to record, and it determines whether a dump
containing, at a minimum, the trace table should be unconditionally taken when the
application terminates. When you specify TRACE(ON), user-requested trace entries
are intermixed with Language Environment trace entries in the trace table.

Under normal termination conditions, if TRACE is active and you specify DUMP,
only the trace table is written to the dump report, independent of the
TERMTHDACT setting. Only one dump is taken for each termination. Under
abnormal termination conditions, the type of dump taken (if one is taken) depends
on the value of the TERMTHDACT run-time option and whether TRACE is active
and the DUMP suboption is specified.

Non-CICS Default: TRACE=((OFF,4K,DUMP,LE=0),OVR)

Syntax

ÊÊ TRACE = ((
OFF
ON , table_size ,

DUMP
NODUMP ,

LE=0
LE=1
LE=2
LE=3

Ê

Ê) ,
OVR
NONOVR) ÊÍ

OFF
Indicates that the tracing facility is inactive.

ON
Indicates that the tracing facility is active.

table_size
Determines the size of the tracing table as specified in bytes (nK or nM). The
upper limit is 16 MB.

THREADSTACK

Chapter 12. Language Environment Run-Time Options 149

DUMP
Requests that a Language Environment-formatted dump (containing the trace
table) be taken at program termination regardless of the setting of the
TERMTHDACT run-time option.

NODUMP
Requests that a Language Environment-formatted dump not be taken at
program termination.

LE=0
Specifies that no trace events be recorded.

LE=1
Specifies that entry to and exit from Language Environment member libraries be
recorded (such as, in the case of C, entry and exit of the printf() library
function).

LE=2
Specifies that mutex init/destroy and locks/unlocks from Language Environment
member libraries be recorded.

LE=3
Activates both the entry/exit trace and the mutex trace.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v The default under CICS is TRACE=((OFF,4K,DUMP,LE=0),OVR).

Usage Notes
v PL/I MTF consideration — The TRACE(ON,,,LE=2) setting provides the following

trace table entries for PL/I MTF support:

– Trace entry 100 occurs when a task is created.

– Trace entry 101 occurs when a task that contains the tasking CALL
statements is terminated.

– Trace entry 102 occurs when a task that does not contain the tasking CALL
statements is terminated.

v When running PL/I with POSIX(ON) in effect, no PL/I-specific trace information is
provided.

v Under abnormal termination, the following dump contents are generated:

– TERMTHDACT(TRACE) — generates a dump containing the trace table and
the traceback and options report.

– TERMTHDACT(QUIET) — generates a dump containing the trace table only.

– TERMTHDACT(MSG) — generates a dump containing the trace table only.

– TERMTHDACT(DUMP) — generates a dump containing
thread/enclave/process storage and control blocks (the trace table is included
as an enclave control block)and an options report.

– TERMTHDACT(UADUMP) — generates a system dump of the user address
space and an options report.

For More Information
v For more information about the dump contents, see “TERMTHDACT” on

page 136.

TRACE

150 z/OS V1R4.0 Language Environment Customization

v For more information about using the tracing facility, see z/OS Language
Environment Debugging Guide.

TRAP
TRAP specifies how Language Environment programs handle abends and program
interrupts.

TRAP(ON) must be in effect for the ABTERMENC run-time option to have effect.

This option is similar to the STAE | NOSTAE run-time option currently offered by
COBOL, C, and PL/I, and the SPIE | NOSPIE option offered by C and PL/I:

Table 22. TRAP Run-Time Option Settings

If... then...

a single option is specified in input, TRAP is set according to that option,
TRAP(OFF) for NOSTAE or NOSPIE,
TRAP(ON)for STAE or SPIE.

both options are specified in input, TRAP is set ON, unless both options are
negative. TRAP is set OFFif both options are
negative.

STAE is specified in one #pragma runopts
statement, and NOSPIE in another,

the option in the last #pragma runopts
determines the setting of TRAP.

multiple instances of STAE | NOSTAE are
specified,

TRAP is set according to the last instance
only. All others are ignored.

multiple instances of SPIE | NOSPIE are
specified,

TRAP is set according to the last instance
only. All others are ignored.

an options string has TRAP(ON) or
TRAP(OFF) together with SPIE | NOSPIE,
and/or STAE | NOSTAE,

the TRAP setting takes preference over all
others.

CEESGL is unaffected by this option.

Non-CICS Default: TRAP=((ON,SPIE),OVR)

Syntax

ÊÊ TRAP = ((
ON
OFF ,

SPIE
NOSPIE) ,

OVR
NONOVR) ÊÍ

ON
Fully enables the Language Environment condition handler.

OFF
Prevents language condition handlers or handlers registered by CEEHDLR from
being notified of abends or program checks; prevents application of POSIX
signal handling semantics for abends and program checks.

SPIE
SPIE specifies that Language Environment issue an ESPIE macro to handle
program interrupts. The SPIE sub-option is ignore when specified with the OFF
sub-option.

TRACE

Chapter 12. Language Environment Run-Time Options 151

NOSPIE
NOSPIE specifies that Language Environment will NOT issue the ESPIE macro.
When you specify the ON sub-option, Language Environment will handle
program interrupts and abends via an ESTAE. The NOSPIE sub-option is
ignore when specified with the OFF sub-option.

Due to the restrictions and side-effects when running TRAP(OFF) stated in the
usage notes below, IBM highly recommends running TRAP(ON,SPIE) in all
environments.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v The default under CICS is TRAP=((ON,SPIE),OVR)

v Since Language Environment never sets a SPIE or STAE, the SPIE|NOSPIE
sub-option is ignored on CICS.

Usage Notes
v The SPIE | NOSPIE run-time option offered by C and PL/I does not affect the

TRAP sub-options SPIE and NOSPIE.

v Use TRAP(OFF) only when you need to analyze a program exception before
Language Environment handles it.

v When you specify TRAP(OFF) in a non-CICS environment, an ESPIE is not
issued, but an ESTAE is issued. Language Environment does not handle
conditions raised by program interrupts or abends initiated by SVC 13 as
Language Environment conditions, and does not print messages for such
conditions.

v Running with TRAP(OFF) (for exception diagnosis purposes) can cause many
side effects, because Language Environment uses condition handling internally
and requires TRAP(ON). When you run with TRAP(OFF), you can get side
effects even if you do not encounter a software-raised condition, program check,
or abend. If you do encounter a program check or an abend with TRAP(OFF) in
effect, the following side effects can occur:

– The ABTERMENC run-time option has no effect.

– The ABPERC run-time option has no effect.

– Resources acquired by Language Environment are not freed.

– Files opened by HLLs are not closed by Language Environment, so records
might be lost.

– The abnormal termination exit is not driven for enclave termination.

– The assembler user exit is not driven for enclave termination.

– User condition handlers are not enabled.

– The debugger is not notified of the error.

– No storage report or run-time options report is generated.

– No Language Environment messages or Language Environment dump output
is generated.

– In z/OS UNIX, POSIX signal handling semantics are not enabled for the
abend.

The enclave terminates abnormally if such conditions are raised.

TRAP

152 z/OS V1R4.0 Language Environment Customization

v TRAP(ON) must be in effect when you use the CEEBXITA assembler user exit
for enclave initialization to specify a list of abend codes that Language
Environment percolates.

v C++ consideration — TRAP(ON) must be in effect in order for the z/OS C++
try/throw/catch condition handling mechanisms to work.

v When TRAP(ON) is in effect, and the abend code is in the
CEEAUE_A_AB_CODES list in CEEBXITA, Language Environment percolates
the abend. Normal Language Environment condition handling is never invoked to
handle these abends. This feature is useful when you do not want Language
Environment condition handling to intervene for certain abends or when you want
to prevent invocation of the abnormal termination exit for certain abends, such as
when IMS issues a user ABEND code 777.

v When TRAP(ON,NOSPIE) is specified, Language Environment will handle
program interrupts and abends via an ESTAE. This feature is useful when you do
not want Language Environment to issue an ESPIE macro. If you do not want
Language Environment to issue an ESPIE, you must specify TRAP(OFF).

When TRAP(OFF), (TRAP(OFF,SPIE) or TRAP(OFF,NOSPIE) is specified and
there is a program interrupt, the user exit for termination is not driven.

v z/OS UNIX consideration — The TRAP option applies to the entire enclave and
all threads within.

For More Information
v See “ABTERMENC” on page 69 for more information about the ABTERMENC

run-time option.

v See z/OS Language Environment Programming Reference for more information
about the CEESGL callable service, or the CEEHDLR callable service.

v See z/OS Language Environment Programming Guide for more information about
the CEEBXITA assembler user exit.

UPSI (COBOL Only)

Derivation
User Programmable Status Indicator

UPSI sets the eight UPSI switches on or off for applications that use COBOL
programs.

Non-CICS Default: UPSI=((00000000),OVR)

Syntax

ÊÊ UPSI = ((nnnnnnnn) ,
OVR
NONOVR) ÊÍ

nnnnnnnn
n represents one UPSI switch between 0 and 7, the leftmost n representing the
first switch. Each n can either be 0 (off) or 1 (on).

OVR
Specifies that the option can be overridden.

TRAP

Chapter 12. Language Environment Run-Time Options 153

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v The default under CICS is UPSI=((00000000),OVR).

Usage Note
v When you specify this option in CEEDOPT(CEECOPT), CEEROPT or

CEEUOPT, specify UPSI with a string of eight binary-valued flags; for example,
UPSI(00000000). Use UPSI, not followed by a string, only on the command line.

For More Information
v For more information on how COBOL programs access the UPSI switches, see

Enterprise COBOL for z/OS and OS/390 Programming Guide or COBOL for
OS/390 & VM Programming Guide.

USRHDLR

Derivation
USeR condition HanDLeR

USRHDLR registers a user condition handler at stack frame 0, allowing you to
register a user condition handler without having to include a call to CEEHDLR in
your application and then recompile the application.

Non-CICS Default: NOUSRHDLR=((),OVR)

Syntax

ÊÊ
NOUSRHDLR
USRHDLR = ((lmname , lmname2) ,

OVR
NONOVR) ÊÍ

NOUSRHDLR
Does not register a user condition handler without recompiling an application to
include a call to CEEHDLR.

USRHDLR
Registers a user condition handler without recompiling an application to include
a call to CEEHDLR.

lmname
The name of a load module (or an alias name of a load module) that contains
the user condition handler that is to be registered at stack frame 0.

lmname2
The name of a load module (or an alias name of a load module) that contains
the user condition handler that is to be registered to get control after the
enablement phase and before any other user condition handler.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

UPSI

154 z/OS V1R4.0 Language Environment Customization

CICS consideration
v The default under CICS is NOUSRHDLR=((),OVR).

v When specifying USRHDLR under CICS, lmname and lmname2 must be defined
in the CICS PPT.

Usage Notes
v The user condition handler specified by the USRHDLR run-time option must be

in a separate load module rather than be link-edited with the rest of the
application.

v The user condition handler lmname is invoked for conditions that are still
unhandled after being presented to condition handlers for the main program.

v The user condition handler lmname2 is invoked for each condition after the
condition completes the enablement phase but before any other registered user
condition handlers is given control.

v Restriction–If user condition handler lmname is in effect, it is unsupported to
resume execution in the program in which the condition occurs. This includes
calls in the condition handler to CEEMRCR and CEEMRCE. This restriction does
not apply to user condition handler lmname2.

lmname2 is the second parameter added to the USRHDLR run-time option. It
specifies a user written handler that is commonly referred to as the Super
Condition Handler. It is invoked like handlers registered by CEEHDLR, so you
can resume execution in the program in which the condition occurs. lmname, the
first parameter of the USRHDLR run-time option still has the restriction that it
cannot resume execution in the program in which the condition occurs. Thus the
restriction for not being able to use CEEMRCE and CEEMRCR is for lmname
only.

v You can use a user condition handler registered with the USRHDLR run-time
option to return any of the result codes allowed for a user condition handler
registered with the CEEHDLR callable service.

v A condition that is percolated or promoted by a user condition handler registered
to handle conditions at stack frame 0 using the USRHDLR run time option is not
presented to any other user condition handler.

v The loading of the user condition handlers lmname and lmname2 occurs only
when that user condition handler needs to be invoked the first time.

v If the load of either lmname or lmname2 fails, an error message is issued.

For More Information
v For information on registering a user condition handler and its interfaces, see the

CEEHDLR callable service in z/OS Language Environment Programming
Reference.

VCTRSAVE

Derivation
VeCToR environment to be SAVEd

VCTRSAVE specifies whether any language in the application uses the vector
facility when user-written condition handlers are called.

Non-CICS Default: VCTRSAVE=((OFF),OVR)

USRHDLR | NOUSRHDLR

Chapter 12. Language Environment Run-Time Options 155

Syntax

ÊÊ VCTRSAVE = ((
OFF
ON) ,

OVR
NONOVR) ÊÍ

OFF
No language in the application uses the vector facility when user-provided
condition handlers are called.

ON
A language in the application uses the vector facility when user-provided
condition handlers are called.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v VCTRSAVE is ignored under CICS.

Usage Note
v z/OS UNIX consideration — The VCTRSAVE option applies to the entire enclave

and all threads within.

Performance Considerations
When a condition handler plans to use the vector facility (that is, run any vector
instructions), the entire vector environment has to be saved on every condition and
restored on return to the application code. You can avoid this extra work by
specifying VCTRSAVE(OFF) when you are not running an application under vector
hardware.

VERSION

The VERSION option specifies the version of the RTLS logical library used for
finding RTLS version-controlled modules. If not defaulted to an empty string (’’),
the ver_name must be defined in the CSVRTLxx PARMLIB member as a version of
the logical library specified by the LIBRARY option.

Non-CICS Default: VERSION=((’ ’),OVR)

Syntax

ÊÊ VERSION = ((
’ ’
ver_name) ,

OVR
NONOVR) ÊÍ

’ ’ Use the default version of the logical library. The CSVRTLxx PARMLIB member
defines a default version for each logical library.

ver_name
The VERSION name must be a string from 1 to 8 characters long. The only

VCTRSAVE

156 z/OS V1R4.0 Language Environment Customization

valid characters are A-Z, 0-9, #, $, @, ., -, +, or _ . The code points for the
variant characters (A-Z, 0-9, #, $, @, ., -, +, or _) are assumed to be in code
pages 01047 or 00037.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

If this option is specified as ’’, or is defaulted to ’’, the default version of the
logical library is used. This default version is defined in the CSVRTLxx PARMLIB
member.

CICS consideration
v VERSION is ignored under CICS.

Usage Notes
v This option is ignored when RTLS(OFF) is in effect.

v If CEEGINIT is not available in the LNKLST, LPA, JOBLIB, STEPLIB, or TASKLIB
when the Language Environment is invoked, the VERSION option has no effect.
RTLS will not be used, but the VERSION option value will appear in the options
report.

XUFLOW

Derivation
eXponent Under FLOW

XUFLOW specifies whether an exponent underflow causes a program interrupt. An
exponent underflow occurs when a floating point number becomes too small to be
represented.

The underflow setting is determined at enclave initialization and is updated when
new languages are introduced into the application (via fetch or dynamic call, for
example). Otherwise, it does not vary while the application is running.

Language Environment preserves the language semantics for C/C++ and COBOL
regardless of the XUFLOW setting. Language Environment preserves the language
semantics for PL/I only when XUFLOW is set to AUTO or ON. Language
Environment does not preserve the language semantics for PL/I when XUFLOW is
set to OFF.

An exponent underflow caused by a C/C++ or COBOL program does not cause a
condition to be raised.

Non-CICS Default: XUFLOW=((AUTO),OVR)

VERSION

Chapter 12. Language Environment Run-Time Options 157

Syntax

ÊÊ XUFLOW = ((
AUTO
ON
OFF

) ,
OVR
NONOVR) ÊÍ

AUTO
An exponent underflow causes or does not cause a program interrupt
dynamically, based upon the HLLs that make up the application. Enablement is
determined without user intervention.

XUFLOW(AUTO) causes condition management to process underflows only in
those applications where the semantics of the application languages require it.
Normally, XUFLOW(AUTO) provides the best efficiency while meeting language
semantics.

ON
An exponent underflow causes a program interrupt.

XUFLOW(ON) causes condition management to process underflows regardless
of the mix of languages; therefore, this setting might be less efficient in
applications that consist of languages not requiring underflows to be processed
by condition management.

OFF
An exponent underflow does not cause a program interrupt; the hardware takes
care of the underflow.

When you set XUFLOW to OFF, the hardware processes exponent underflows.
This is more efficient than condition handling to process the underflow.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS consideration
v The default under CICS is XUFLOW=((AUTO),OVR).

Usage Notes
v PL/I consideration — When setting XUFLOW to OFF, be aware that the

semantics of PL/I require the underflow to be signaled.

v z/OS UNIX consideration — The XUFLOW option applies to the entire enclave
and all threads within.

XUFLOW

158 z/OS V1R4.0 Language Environment Customization

Appendix A. Customizing Language Environment run-time
options using z/OS msys for Setup

In z/OS Release 1.3, z/OS Managed System Infrastructure for Setup (msys for
Setup) offers support for customizing Language Environment run-time options. It
can significantly reduce the complexity of customization by:

v Guiding you in defining your Language Environment needs and generating an
appropriate set of run-time options based on IBM-recommended settings.

v Allowing you to further customize advanced options, if needed.

v Allowing you to customize region specific run-time options for CICS and IMS
regions which will produce CEECOPT, CEEDOPT and CEEROPT members.

Who should use msys for Setup?
Generally, msys for Setup is intended for users customizing Language Environment
for the first time or migrating to a new release. However, msys for Setup can also
be used if your system changes or if you want to customize additional regions.
Once msys for Setup has been used once, you should continue to use msys for
Setup for additional changes. When you migrate to a new release, msys for Setup
will make the appropriate changes for any new IBM-recommended defaults.

What is the Language Environment customization task?
The Language Environment customization task is divided into multiple steps:
CUSTOMIZE, UPDATE, and COMMIT. During the CUSTOMIZE step, the user is
asked to enter configuration data for CICS, non-CICS and region-specific run-time
options through a series of self-explanatory msys panels. The first time a user tries
to CUSTOMIZE, he or she will be directed to the Language Environment msys
wizard, which will ask the minimum set of questions needed to set up a basic
Language Environment configuration. From there, the user is able to further
customize more advanced options by entering information into the property sheets.
After the wizard is successfully completed, the user will always be directed to the
main property sheet panel, but will have the ability to re-run the wizard, and reset
msys values to the default.

Upon completion of the CUSTOMIZE step, this data will be stored in LDAP. When
the UPDATE command is issued, msys constructs the information from LDAP and
stores the results as a CEECOPT/CEEDOPT member in a user-specified data set.
If the user has specified any CEEROPT members, the UPDATE task will construct
a file for each set of options in the /tmp directory.

During the COMMIT step, the files will be submitted from /tmp and the resulting
load modules will be placed in the data set specified by the user in the msys
panels. Upon successful completion of the COMMIT step, the user will still need to
take action to activate these changes. The user can click ″Browse User Actions″ to
find out what further steps need to be taken.

© Copyright IBM Corp. 1991, 2002 159

Recommendations when using msys for Setup for Language
Environment customization

msys for Setup provides many Language Environment settings based on best
practices. While you may change these default settings, it is recommended that you
use the values provided. When adjusting settings, the msys for Setup help will
provide you with background on each run-time option as well as suggestions for
optimal settings.

Restrictions when using msys for Setup for Language Environment
customization

The following run-time options are set to IBM-recommended defaults and cannot be
further modified with msys for Setup:

v ABPERC

v AIXBLD

v ARGPARSE

v CBLQDA

v DEBUG

v ENV

v ERRUNIT

v FILEHIST

v FILETAG

v FLOW

v LIBRARY

v MSGFILE

v MSGQ

v PC

v PLIST

v POSIX

v PROFILE

v PRTUNIT

v PUNUNIT

v RDRUNIT

v REDIR

v RPTOPTS

v RTEREUS

v RTLS

v STORAGE

v TEST

v TRACE

v TRAP

v VCTRSAVE

v VERSION

v XUFLOW

160 z/OS V1R4.0 Language Environment Customization

Additionally, msys for Setup imposes practical limits to certain settings that are
different from Language Environment limits. Consult the msys for Setup help panels
for a full description of limits on individual settings.

Note: If you change any run-time options without using msys for Setup, the
changes will not be recognized by msys for Setup.

Where to find information about msys for Setup
For more information about msys for Setup, see z/OS Managed System
Infrastructure for Setup User’s Guide.

For more Information about Language Environment customization, see z/OS
Language Environment Customization.

Appendix A. Customizing Language Environment run-time options using z/OS msys for Setup 161

162 z/OS V1R4.0 Language Environment Customization

Appendix B. Using Fortran with Language Environment

This appendix provides information for tuning and customizing your Language
Environment Fortran run-time routines within Language Environment. The
customization information in this appendix is intended to help you enhance system
performance and provide certain I/O characteristics.

This appendix contains the following sections:

v Customizing for Fortran applications link-edited with Language Environment

v “Customizing for Fortran Applications Link-Edited with VS FORTRAN” on
page 169

v “Customizing Fortran LIBPACKs” on page 184

Customizing for Fortran applications link-edited with Language
Environment

This section provides information on how to customize Language Environment for
Fortran applications that are link-edited with Language Environment. You can
customize, or not customize:

v Unit Attribute Table default values (See Changing the unit attribute table default
values.)

v Language Environment run-time options (See Chapter 4, “Customizing Language
Environment Run-Time Options” on page 19.)

For information on customizing Language Environment if you have Fortran
applications that were link-edited with VS FORTRAN Version 1 or 2 for running in
load mode, see “Customizing for Fortran Applications Link-Edited with VS
FORTRAN” on page 169.

Changing the unit attribute table default values
Module AFHOUTAG contains the Unit Attribute Table defaults and DCB information
for each I/O unit. You can accept the IBM-supplied defaults, shown in Figure 13 on
page 168, or you can supply your own defaults. To customize AFHOUTAG for your
site, use the IBM-supplied job AFHWEUAT, and modify the AFHOUTCM,
AFHOUNTM, and AFHODCBM macro instructions in an SMP/E USERMOD. The
following sections describe the syntax and operands of the macro instructions.

Starting the unit attribute table definition using the AFHOUTCM
macro
Use the AFHOUTCM macro to start and to end the Unit Attribute Table definition. In
addition, you can specify default values for information required by the run-time
input/output routines of the Fortran component of Language Environment. This
section shows the syntax of the operands used for starting the Unit Attribute Table
definition.

Syntax of AFHOUTCM Macro Instruction

AFHOUTAG AFHOUTCM [UNTABLE={ highunit| 99 }]
[,DEVICE={ device-name | SYSDA }]

© Copyright IBM Corp. 1991, 2002 163

UNTABLE= highunit
Specifies the largest unit number that can be used in any Fortran program in
I/O statements other than the CLOSE and INQUIRE statements. highunit must
be an integer between 8 and 2000, inclusive. If the UNTABLE parameter is
omitted, the default value of highunit is 99.

DEVICE=device-name
Specifies where dynamically allocated data sets are placed if there is no
overriding value given through an invocation of the FILEINF callable service.
device-name can be a unit address, a group name, or a device type for a
DASD device. A unit address is 3 or 4 hexadecimal digits consisting of the
channel, control unit, and device number. A group name is any name that is
defined during MVS system generation for a DASD device such as SYSDA or
DISK. The device type is the IBM-supplied name such as 3380 or 3390.

If the DEVICE parameter is omitted, the default value is SYSDA.

Associating Units with DCB Characteristics Using the
AFHOUNTM Macro
Use the AFHOUNTM macro to specify a single unit, or group of units, that is to be
associated with a set of DCB default values. Use the AFHOUNTM macro in
conjunction with the AFHODCBM macro.

Syntax of AFHOUNTM Macro Instruction
AFHOUNTM { unitno | (unitno, qty) | RDRUNIT | PRTUNIT | PUNUNIT }
,DCBSET=label

unitno
The unit number, or the first in a series of consecutive unit numbers, for which
the set of default DCB characteristics referenced by the DCBSET parameter is
to be applied. If unitno is the number of the error message unit (or if the error
message unit is included in the range covered by qty, following), the
specification is ignored for the error message unit.

qty
The number of consecutive unit numbers, beginning with unitno, for which the
set of default DCB characteristics referenced by the DCBSET parameter is to
be applied.

RDRUNIT
Indicates that the set of default DCB characteristics referenced by the DCBSET
parameter is to be applied to the standard input unit. The standard input unit is
the unit to which a READ statement applies when the unit identifier is given as
*. The number of the standard input unit is the value given by the RDRUNIT
run-time option or its default.

Even though there may also be a AFHOUNTM macro instruction that refers to
the standard input unit by its unit number (that is, with the unitno form of
specification), the AFHOUNTM with the RDRUNIT parameter takes precedence
and applies to the standard input unit.

If there is no AFHOUNTM macro instruction with a RDRUNIT parameter, then
the default DCB characteristics for the standard input unit are those referenced
by a AFHOUNTM macro instruction that refers to this unit with the unitno form
of specification.

164 z/OS V1R4.0 Language Environment Customization

PRTUNIT
Indicates that the set of default DCB characteristics referenced by the DCBSET
parameter is to be applied to the print unit.

The print unit is one of the standard output units and is the unit to which either
a WRITE statement with a unit identifier of * or a PRINT statement applies. The
number of the print unit is the value given by the PRTUNIT run-time option or
its default if the number of the print unit is different than the number of the error
message unit.

The error message unit the unit to which output such as error messages and
dumps from services such as CDUMP and SDUMP is directed. The number of
the error message unit is the value given by the ERRUNIT run-time option or its
default.

The punch unit is one of the standard output units and is the unit to which a
PUNCH statement applies. The number of the punch unit is the value given by
the PUNUNIT run-time option or its default.

Even though there may also be a AFHOUNTM macro instruction that refers to
the print unit by its unit number (that is, with the unitno form of specification),
the AFHOUNTM with the PRTUNIT parameter takes precedence and applies to
the print unit.

If there is no AFHOUNTM macro instruction with a PRTUNIT parameter and if
the print unit and the error message units are different units, then the default
DCB characteristics for the print unit are those referenced by a AFHOUNTM
macro instruction that refers to this unit with the unitno form of specification.

PUNUNIT
Indicates that the set of default DCB characteristics referenced by the DCBSET
parameter is to be applied to the punch unit. The punch unit is one of the
standard output units and is the unit to which a PUNCH statement applies. The
number of the punch unit is the value given by the PUNUNIT run-time option or
its default.

Even though there may also be a AFHOUNTM macro instruction that refers to
the punch unit by its unit number (that is, with the unitno form of specification),
the AFHOUNTM with the PUNUNIT parameter takes precedence and applies to
the punch unit.

If there is no AFHOUNTM macro instruction with a PUNUNIT parameter, then
the default DCB characteristics for the punch unit are those referenced by a
AFHOUNTM macro instruction that refers to this unit with the unitno form of
specification.

DCBSET=label
The identifier of the DCB attributes to associate with this unit, set of units, or
standard I/O unit. This is the name given in the associated AFHODCBM macro
instruction.

Specifying the DCB Characteristics Using the AFHODCBM Macro
Use the AFHODCBM macro to specify default DCB information for the I/O units that
have a DCBSET=label parameter on the AFHOUNTM macro.

Appendix B. Using Fortran with Language Environment 165

Syntax of AFHODCBM Macro Instruction

[label] AFHODCBM [,SFBUFNO= number | 2]
[,SUBUFNO=number | 2]
[,SFBLKSI= number | 800]
[,SUBLKSI= number | 800]
[,SFLRECL= number | 800]
[,SULRECL= number | −1]
[,SFRECFM=char | U]
[,SURECFM=char | VS]
[,SFMAXRE=number | 100]
[,SUMAXRE=number | 100]
[,DMAXRE=number | 100]

label
The name specified in the DCBSET parameter of one or more AFHOUNTM
macro instructions to relate the I/O units to this set of DCB default values.

If label is omitted, the DCB data is assigned to all units defined in the Unit
Attribute Table by the AFHOUTCM macro instruction that do not have a
AFHOUNTM macro instruction. If any of the units in the Unit Attribute Table do
not have their own AFHOUNTM macro instruction, then you must provide a
AFHODCBM macro instruction without a label to apply defaults to these units.

SFBUFNO=number | 2
Specifies the default value for the number of buffers for sequential formatted
files on DASD or tape. number must be a value greater than or equal to 1 and
less than or equal to 255.

SUBUFNO=number | 2
Specifies the default value for the number of buffers for sequential unformatted
files on DASD or tape. number must be a value greater than or equal to 1 and
less than or equal to 255.

SFBLKSI = number | 800
Specifies the block size for sequential formatted files. number is an integer
expression of length 4 bytes; valid range of the blocksize is from 1 to 32760.

SUBLKSI = number | 800
Specifies the block size for sequential unformatted files. number is an integer
expression of length 4 bytes; valid range of the blocksize is from 1 to 32760.

SFLRECL = number | 800
Specifies the logical record length for sequential formatted files. number is an
integer expression of length 4 bytes; valid range is from 1 to 32756 for variable
record formats (SURECFM= V, VA, VB, or VBA), or 1 to 32760 for all other
record formats.

SULRECL = number | -1
Specifies the logical record length for sequential unformatted files. number is an
integer expression of length 4 bytes; valid range is from 1 to 32756 for variable
record formats (SURECFM= V, VA, VB, VBA, VS, or VBS), or 1 to 32760 for all
other record formats or -1, which specifies an unlimited record length. -1 is valid
for SURECFM=VS or VBS formats.

SFRECFM = char | U
Specifies the record format for sequential formatted files. The value of char

166 z/OS V1R4.0 Language Environment Customization

must be F, FA, FB, FBA, V, VA, VB, VBA, U, or UA. For more information on
I/O, see VS FORTRAN Version 2 Programming Guide for CMS and MVS

SURECFM = char | VS
Specifies the record format for sequential unformatted files. The value of char
must be F, FA, FB, FBA, V, VA, VB, VBA, VS, VBS, U, or UA. For more
information on I/O, see VS FORTRAN Version 2 Programming Guide for CMS
and MVS

SFMAXRE = number | 100
Specifies the amount of space to be converted into blocks in a sequential
formatted file. It is only valid for new DASD files; if specified for an existing file,
it will be ignored. number is an integer expression of length 4. See MAXREC in
VS FORTRAN Version 2 Programming Guide for CMS and MVS for information
on how space is converted to blocks.

SUMAXRE = number | 100
Specifies the amount of space to be converted into blocks in a sequential
unformatted file. It is only valid for new DASD files; if specified for an existing
file, it will be ignored. number is an integer expression of length 4. See
MAXREC in VS FORTRAN Version 2 Programming Guide for CMS and MVS
for information on how space is converted to blocks.

DMAXRE = number | 100
Specifies the amount of space to be converted into blocks in a direct file. It is
only valid for new DASD files; if specified for an existing file, it will be ignored.
number is an integer expression of length 4. See VS FORTRAN Version 2
Programming Guide for CMS and MVS for information on how space is
converted to blocks.

CAUTION: If you change the IBM-supplied default DCB values, any existing Fortran
programs that depend on the original defaults might not work.

Ending the Unit Attribute Table Definition Using the AFHOUTCM
Macro
The AFHOUTCM macro is used to start and to end the Unit Attribute Table
definition. This section shows the syntax of the operands used for ending the Unit
Attribute Table definition.

Syntax of AFHOUTCM Macro Instruction: Final Statement

AFHOUTCM TYPE=FINAL

IBM-Supplied Unit Attribute Table Default Values
The macro instructions shown in Figure 13 are provided in the module AFHOUTAG.
This module is used to set up the IBM-supplied default values for the standard I/O
units, and file characteristics such as the DCB information.

Appendix B. Using Fortran with Language Environment 167

Note: The above format is given for readability purposes. Remember to add the
necessary continuation flags in column 72, and to begin continued lines in
column 16.

The three AFHOUNTM macro instructions indicate that the standard input unit, the
print unit, and the punch unit have the default DCB information provided on the first
three AFHODCBM macro instructions. Note that the last AFHODCBM macro does
not have a label; its set of defaults apply to all units except the standard I/O units.
Refer to z/OS Language Environment Programming Reference for more information
on the RDRUNIT, ERRUNIT, PRTUNIT, and PUNUNIT run-time options, which are
used to specify the unit numbers of these standard I/O units.

Examples of Changing Unit Attribute Table Default Values
The following example shows how you can modify the IBM-supplied defaults for
your own environment. You can alter instructions by typing over existing data, or
you can remove or add AFHOUNTM and AFHODCBM macro instructions.

Example: In this example, we have specified device name SYSSQ and assigned
a unique set of DCB attributes to units 1 through 4 for dynamically allocated data
sets.

AFHOUTAG AFHOUTCM UNTABLE=99,
DEVICE=SYSDA

AFHOUNTM RDRUNIT,DCBSET=DCBRDR
AFHOUNTM PRTUNIT,DCBSET=DCBPRT
AFHOUNTM PUNUNIT,DCBSET=DCBPUN

DCBRDR AFHODCBM SFRECFM=F,SFLRECL=80,SFBLKSI=80,
SURECFM=F,SULRECL=80,SUBLKSI=80

DCBPRT AFHODCBM SFRECFM=UA,SFLRECL=133,SFBLKSI=133

DCBPUN AFHODCBM SFRECFM=F,SFLRECL=80,SFBLKSI=80,
SURECFM=F,SULRECL=80,SUBLKSI=80

AFHODCBM SFRECFM=U,SFLRECL=800,SFBLKSI=800,SFMAXRE=100,
SURECFM=VS,SULRECL=-1,SUBLKSI=800,SUMAXRE=100,
DMAXRE=100

AFHOUTCM TYPE=FINAL

Figure 13. IBM-Supplied Macro Instructions

168 z/OS V1R4.0 Language Environment Customization

Note: The above format is given for readability purposes. Remember to add the
necessary continuation flags in column 72, and to begin continued lines in
column 16.

AFHOUTCM, AFHOUNTM, and AFHODCBM must all be coded, in that order,
followed by the AFHOUTCM TYPE=FINAL statement.

Customizing for Fortran Applications Link-Edited with VS FORTRAN
This section contains information on how to customize Language Environment if
you have Fortran applications that were link-edited with VS FORTRAN Version 1 or
2 for running in load mode.

If you have such applications, you can customize, or not customize:
v VS FORTRAN Unit Attribute Table defaults (See “Changing the Unit Attribute

Table Default Values” on page 170 following.)
v VS FORTRAN run-time option defaults (See “Changing VS FORTRAN Run-Time

Option Defaults” on page 175.)
v VS FORTRAN Error Option Table defaults (See “Changing the Error Option Table

Defaults” on page 180.)

Note: Language Environment provides a VS FORTRAN compability library for
running Fortran applications that are not link-edited with Language
Environment.

You can customize Language Environment to provide certain run-time
characteristics for Fortran applications that were link-edited with VS FORTRAN for
running in load mode. You use macros with the same names as you used in VS
FORTRAN Version 2 Release 6. These macros are VSF2UAT, VSF2UNIT,
VSF2DCB, VSF2PARM, and VSF2UOPT. Each of these macros is available in
Language Environment with these macro names as aliases for members with

AFHOUTAG AFHOUTCM UNTABLE=99,
DEVICE=SYSSQ

AFHOUNTM RDRUNIT,DCBSET=DCBRDR
AFHOUNTM PRTUNIT,DCBSET=DCBPRT
AFHOUNTM PUNUNIT,DCBSET=DCBPUN
AFHOUNTM (1,4),DCBSET=USERDCB

DCBRDR AFHODCBM SFRECFM=F,SFLRECL=80,SFBLKSI=80,
SURECFM=F,SULRECL=80,SUBLKSI=80

DCBPRT AFHODCBM SFRECFM=UA,SFLRECL=133,SFBLKSI=133

USERDCB AFHODCBM SFRECFM=FB,SFLRECL=50,SFBLKSI=250,
SFMAXRE=200,SURECFM=FB,SULRECL=50,
SUBLKSI=250,SUMAXRE=200,DMAXRE=200

DCBPUN AFHODCBM SFRECFM=F,SFLRECL=80,SFBLKSI=80,
SURECFM=F,SULRECL=80,SUBLKSI=80

AFHODCBM SFRECFM=U,SFLRECL=800,SFBLKSI=800,SFMAXRE=100,
SURECFM=VS,SULRECL=-1,SUBLKSI=800,SUMAXRE=100,
DMAXRE=100

AFHOUTCM TYPE=FINAL

Figure 14. Modified IBM-Supplied Macro Instructions

Appendix B. Using Fortran with Language Environment 169

names beginning with AFH5. The use of these macros is identical to that in VS
FORTRAN Version 2 Release 6; therefore, if you have assembler language source
files that you used in the past, you can use these same source files to customize
Language Environment.

Changing the Unit Attribute Table Default Values
Module AFH5VUAT contains the Unit Attribute Table defaults and DCB information
for each I/O unit of the VS FORTRAN compatibility library. You can accept the
IBM-supplied defaults, shown in Figure 15 on page 174, or you can supply your own
defaults. To customize AFH5VUAT for your site, use the IBM-supplied job
AFHWVUAT, and modify the VSF2UAT, VSF2UNIT, and VSF2DCB macro
instructions in an SMP/E USERMOD. The following sections describe the syntax
and operands of the macro instructions.

Starting the Unit Attribute Table Definition Using the VSF2UAT
Macro
The VSF2UAT macro is used to start and to end the Unit Attribute Table definition.
Fortran component of Language Environment. In addition, you can specify default
values for information required by the run-time input/output routines of the VS
FORTRAN compatibility library. This section shows the syntax of the operands used
for starting the Unit Attribute Table definition.

Syntax of VSF2UAT Macro: Statement Form

[name] VSF2UAT [DECIMAL=PERIOD | COMMA]
[,PUNCH=number | 7]
[,ERRMSG=number | 6]
[,PRINTER=number | 6]
[,READER=number | 5]
[,UNTABLE= number | 99]
[,DEVICE=device-name | SYSDA]

See “Ending the Unit Attribute Table Definition Using the VSF2UAT Macro” on
page 173 for the form of VSF2UAT as the final macro instruction.

The IBM-supplied default values are underlined in the following option list. If an
option is not specified, its default value will be used.

name
Specifies a name, such as AFBVUAT or AFH5UAT. name is ignored, and the
CSECT name becomes AFH5VUAT automatically.

DECIMAL = PERIOD | COMMA
Specifies the character to be used as the decimal indicator in printed output.

PUNCH = number | 7
Specifies, for LANGLVL(66) only, the standard I/O unit number for the PUNCH
statement to send data to the card punch. The number specified must be
between 0 and 99 or the value specified for the UNTABLE parameter, for
UNTABLE values less than or equal to 99. It must not be the same as the
number specified for ERRMSG, PRINTER, or READER.

ERRMSG = number | 6
Specifies the standard I/O unit number for the error messages generated by VS
FORTRAN Version 2 Library. The number specified must be between 0 and 99
or the value specified for the UNTABLE parameter, for UNTABLE values less

170 z/OS V1R4.0 Language Environment Customization

than or equal to 99. It must not be the same as the number specified for
PUNCH or READER; it can be the same number specified for PRINTER.

PRINTER = number | 6
Specifies the standard I/O unit number for the print statement, and with any
WRITE statement specifying an installation-dependent form of the unit. The
number specified must be between 0 and 99 or the value specified for the
UNTABLE parameter, for UNTABLE values less than or equal to 99. It must not
be the same as that specified for PUNCH and READER. It can be the same
number specified for ERRMSG.

READER = number | 5
Specifies the standard I/O unit number for any READ statement specifying an
installation-dependent form of the unit. The number specified must be between
0 and 99 or the value specified for the UNTABLE parameter, for UNTABLE
values less than or equal to 99. It must not be the same as the number
specified for either PUNCH, ERRMSG, or PRINTER.

UNTABLE = number | 99
Specifies the largest unit number you can include in a VS FORTRAN program.
It can be specified as any integer between 8 and 2000.

DEVICE = device-name | SYSDA
Specifies where dynamically allocated data sets are placed if there is no
overriding value given through an invocation of the FILEINF callable service.
device-name can be a unit address, a group name, or a device type for a
DASD device. A unit address is 3 or 4 hexadecimal digits consisting of the
channel, control unit, and device number. A group name is any name that is
defined during MVS system generation for a DASD device such as SYSDA or
DISK. The device type is the IBM-supplied name such as 3380 or 3390.

If the DEVICE parameter is omitted, the default value is SYSDA.

Note: In Fortran, the units described by the PUNCH, ERRMSG, PRINTER and
READER parameters are called standard I/O units.

Associating Units with DCB Characteristics Using the VSF2UNIT
Macro
Use the VSF2UNIT macro to specify a single unit, or group of units, that is to be
associated with a set of DCB default values. The VSF2UNIT macro is used in
conjunction with the VSF2DCB macro.

Syntax of VSF2UNIT Macro

VSF2UNIT { unitno |
(unitno [,qty]) } ,DCBSET = label

unitno
Specifies the unit number, or the first in a series of consecutive unit numbers,
that are to have DCB default values assigned.

qty
Specifies, if there is more than one, the number of consecutive unit numbers,
beginning with unitno, that are to have DCB default values assigned.

DCBSET=label
Specifies the identifier of the DCB attributes to associate with this unit or set of
units. This is the name given in the associated VSF2DCB macro instruction.

Appendix B. Using Fortran with Language Environment 171

Specifying the DCB Characteristics Using the VSF2DCB Macro
Use the VSF2DCB macro to specify DCB default information for the I/O units that
have DCBSET=label parameter of the VSF2UNIT macro.

Syntax of VSF2DCB Macro

[label] VSF2DCB [,SFBUFNO= number | 2]
[,SUBUFNO=number | 2]
[,SFBLKSI= number | 800]
[,SUBLKSI= number | 800]
[,SFLRECL= number | 800]
[,SULRECL= number. | -1]
[,SFRECFM=char | U]
[,SURECFM=char | VS]
[,SFMAXRE=number | 100]
[,SUMAXRE=number | 100]
[,DMAXRE=number | 100]

label
Specified in the VSF2UNIT macro to identify the I/O units that are to be
assigned DCB default values.

If label is omitted, the DCB data is assigned to all units defined in the default
table by the VSF2UAT macro, but which have not been defined by the
VSF2UNIT macro. If any of the units defined in the attribute table do not have
their own associated DCBSET coded, you must provide a VSF2DCB macro
without a label to apply defaults to these units.

SFBUFNO=number | 2
Specifies the default value for the number of buffers for sequential formatted
files on DASD or tape. number must be a value greater than or equal to 1 and
less than or equal to 255.

SUBUFNO=number | 2
Specifies the default value for the number of buffers for sequential unformatted
files on DASD or tape. number must be a value greater than or equal to 1 and
less than or equal to 255.

SFBLKSI = number | 800
Specifies the block size for sequential formatted files. number is an integer
expression of length 4 bytes; valid range of the blocksize is from 1 to 32760.

SUBLKSI = number | 800
Specifies the block size for sequential unformatted files. number is an integer
expression of length 4 bytes; valid range of the blocksize is from 1 to 32760.

SFLRECL = number | 800
Specifies the logical record length for sequential formatted files. number is an
integer expression of length 4 bytes; valid range is from 1 to 32756 for variable
record formats (SURECFM= V, VA, VB, or VBA), or 1 to 32760 for all other
record formats.

SULRECL = number | -1
Specifies the logical record length for sequential unformatted files. number is an
integer expression of length 4 bytes; valid range is from 1 to 32756 for variable
record formats (SURECFM= V, VA, VB, VBA, VS, or VBS), or 1 to 32760 for all
other record formats or -1, which specifies an unlimited record length. -1 is valid
for SURECFM=VS or VBS formats.

172 z/OS V1R4.0 Language Environment Customization

SFRECFM = char | U
Specifies the record format for sequential formatted files. The value of char
must be F, FA, FB, FBA, V, VA, VB, VBA, U, or UA. For more information on
I/O, see VS FORTRAN Version 2 Programming Guide for CMS and MVS

SURECFM = char | VS
Specifies the record format for sequential unformatted files. The value of char
must be F, FA, FB, FBA, V, VA, VB, VBA, VS, VBS, U, or UA. For more
information on I/O, see VS FORTRAN Version 2 Programming Guide for CMS
and MVS

SFMAXRE = number | 100
Specifies the amount of space to be converted into blocks in a sequential
formatted file. It is only valid for new DASD files; if specified for an existing file,
it will be ignored. number is an integer expression of length 4. See MAXREC in
VS FORTRAN Version 2 Programming Guide for CMS and MVS for information
on how space is converted to blocks.

SUMAXRE = number | 100
Specifies the amount of space to be converted into blocks in a sequential
unformatted file. It is only valid for new DASD files; if specified for an existing
file, it will be ignored. number is an integer expression of length 4. See
MAXREC in VS FORTRAN Version 2 Programming Guide for CMS and MVS
for information on how space is converted to blocks.

DMAXRE = number | 100
Specifies the amount of space to be converted into blocks in a direct file. It is
only valid for new DASD files; if specified for an existing file, it will be ignored.
number is an integer expression of length 4. See VS FORTRAN Version 2
Programming Guide for CMS and MVS for information on how space is
converted to blocks.

CAUTION: If you change the IBM-supplied default DCB values, the existing Fortran
programs that depend on the original defaults may not work. For more information
on DCB values, refer to VS FORTRAN Version 2 Programming Guide for CMS and
MVS .

Ending the Unit Attribute Table Definition Using the VSF2UAT
Macro
Use the VSF2UAT macro to start and to end the Unit Attribute Table definition. Use
the following form of VSF2UAT as the final macro instruction in the Unit Attribute
Table definition.

Syntax of VSF2UAT Macro: Final Statement

VSF2UAT TYPE=FINAL

TYPE = FINAL
Is the required last statement of the VSF2UAT macro.

IBM-Supplied Unit Attribute Table Default Values
The macro instructions shown in Figure 15 on page 174 are provided in the module
AFH5VUAT. This module is used to set up the IBM-supplied default values for the
standard I/O units, and file characteristics such as the DCB information.

Appendix B. Using Fortran with Language Environment 173

Note: The above format is given for readability purposes. Remember to add the
necessary continuation flags in column 72, and to begin continued lines in
column 16.

The three VSF2UNIT macro instructions indicate that units 5, 6, and 7 have the
default DCB information provided on the first three VSF2DCB macro instructions.
Note that the last VSF2DCB macro does not have a label; its set of defaults apply
to all units except 5, 6, and 7. Refer to VS FORTRAN Version 2 Programming
Guide for CMS and MVS for more information on the RDRUNIT, ERRUNIT,
PRTUNIT, and PUNUNIT run-time options, which are used to specify the unit
numbers of these standard I/O units.

Examples of Changing Unit Attribute Table Default Values
The following examples show how you could modify the IBM-supplied defaults for
your own environment. You can alter instructions by typing over existing data, or
you can add more VSF2UNIT and VSF2DCB macro instructions.

Example 1: In this example, we have specified device name SYSSQ for
dynamically allocated data sets and assigned a unique set of DCB attributes to
units 1 through 4. The DCB Information for both sequential formatted and
unformatted files written on these units is indicated in the first VSF2DCB macro
instruction (“USERDCB”) shown in Figure 16 on page 175.

AFH5VUAT VSF2UAT UNTABLE=99,
DECIMAL=PERIOD,
READER=5,
ERRMSG=6,
PRINTER=6,
PUNCH=7,
DEVICE=SYSDA

VSF2UNIT 5,DCBSET=DCBRDR
VSF2UNIT 6,DCBSET=DCBPRT
VSF2UNIT 7,DCBSET=DCBPUN

DCBRDR VSF2DCB SFRECFM=F,SFLRECL=80,SFBLKSI=80,
SURECFM=F,SULRECL=80,SUBLKSI=80

DCBPRT VSF2DCB SFRECFM=UA,SFLRECL=133,SFBLKSI=133

DCBPUN VSF2DCB SFRECFM=F,SFLRECL=80,SFBLKSI=80,
SURECFM=F,SULRECL=80,SUBLKSI=80

VSF2DCB SFRECFM=U,SFLRECL=800,SFBLKSI=800,SFMAXRE=100,
SURECFM=VS,SULRECL=-1,SUBLKSI=800,SUMAXRE=100,
DMAXRE=100

VSF2UAT TYPE=FINAL

Figure 15. IBM-Supplied Macro Instructions

174 z/OS V1R4.0 Language Environment Customization

Note: The above format is given for readability purposes. Remember to add the
necessary continuation flags in column 72, and to begin continued lines in
column 16.

VSF2UAT, VSF2UNIT, and VSF2DCB must all be coded, in that order, followed by
the VSF2UAT TYPE=FINAL statement.

Example 2: If you want to change the unit numbers of the standard input unit, the
error message unit, the print unit, and the punch unit, to 1, 2, 3, 4, respectively,
modify the IBM-supplied macros as shown in Figure 17.

Changing VS FORTRAN Run-Time Option Defaults
Module AFH5GPRM contains the set of run-time option defaults for running with the
VS FORTRAN compatibility library. You can accept the IBM-supplied defaults,
shown in this section, or you can supply your own defaults. To customize
AFBVGPRM for your site, use the IBM-supplied job AFHWVPRM, and modify the
VSF2PARM macro instruction in an SMP/E USERMOD. The syntax and operands
of the VSF2PARM macro instruction are described in this section.

AFH5VUAT VSF2UAT DEVICE=SYSSQ
VSF2UNIT (1,4),DCBSET=USERDCB
VSF2UNIT 5,DCBSET=DCBRDR
VSF2UNIT 6,DCBSET=DCBPRT
VSF2UNIT 7,DCBSET=DCBPUN

USERDCB VSF2DCB SFRECFM=FB,SFLRECL=50,SFBLKSI=250,SFMAXRE=200,
SURECFM=FB,SULRECL=50,SUBLKSI=250,SUMAXRE=200,
DMAXRE=200

DCBRDR VSF2DCB SFRECFM=F,SFLRECL=80,SFBLKSI=80,
SURECFM=F,SULRECL=80,SUBLKSI=80

DCBPRT VSF2DCB SFRECFM=UA,SFLRECL=133,SFBLKSI=133

DCBPUN VSF2DCB SFRECFM=F,SFLRECL=80,SFBLKSI=80,
SURECFM=F,SULRECL=80,SUBLKSI=80

VSF2DCB SFRECFM=U,SFLRECL=800,SFBLKSI=800,SFMAXRE=100,
SURECFM=VS,SULRECL=-1,SUBLKSI=800,SUMAXRE=100,
DMAXRE=100

VSF2UAT TYPE=FINAL

Figure 16. Modified IBM-Supplied Macro Instructions

AFH5VUAT VSF2UAT DECIMAL=PERIOD,
READER=1,
ERRMSG=2,
PRINTER=3,
PUNCH=4,
DEVICE=SYSDA

VSF2UNIT 1,DCBSET=DCBRDR
VSF2UNIT 2,DCBSET=DCBTERM
VSF2UNIT 3,DCBSET=DCBPRT
VSF2UNIT 4,DCB=DCBPUN

Figure 17. Modified IBM-Supplied Macro Instructions

Appendix B. Using Fortran with Language Environment 175

Use the AFH5PARM macro to change the IBM-supplied default values for VS
FORTRAN run-time options. The default values you assign are assumed if you do
not override them.

There are no operands to set the default values for the run-time options
AUTOTASK, PARALLEL, and PARTRACE; therefore these options cannot be
changed during installation. They can, however, be changed at run time.

There are no operands in the VSF2PARM macro to set the default values for the
run-time options ERRUNIT, RDRUNIT, PRTUNIT, and PUNUNIT. The default I/O
unit values for these units can be changed during installation through the Unit
Attribute Table.

Syntax of VSF2PARM Macro Instruction

VSF2PARM SCOPE = GLOBAL
[,ABSDUMP | NOABSDUMP]
[,CNVIOERR | NOCNVIOERR]
[,DEBUG | NODEBUG]
[,DEBUNIT(s1[,s2,···]) | NODEBUNIT]
[,ECPACK | NOECPACK]
[,FAIL(ABEND | RC |ABENDRC)]
[,FILEHIST | NOFILEHIST]
[,INQPCOPN | NOINQPCOPN]
[,IOINIT | NOIOINIT]
[,OCSTATUS | NOOCSTATUS]
[,RECPAD[(ALL)] | NORECPAD]
[,SPIE | NOSPIE]
[,STAE | NOSTAE]
[,XUFLOW | NOXUFLOW]

The IBM-supplied default values are underlined in the following option list. If an
option is not specified, its default will be used, with the exception of the SCOPE
option, which must always be specified.

SCOPE = GLOBAL
Required to replace the global run-time options table AFBVGPRM, which
supplies default values for all users of the VS FORTRAN compatibility library.

There is no default value for this option. Thus SCOPE=GLOBAL must always
be specified.

ABSDUMP | NOABSDUMP
Specifies whether or not the post-abend symbolic dump information is printed.

ABSDUMP
Causes the post-abend symbolic dump information to be printed in the
event of an abnormal termination.

NOABSDUMP
Suppresses the printing of the post-abend symbolic dump information.

CNVIOERR | NOCNVIOERR
Specifies whether input conversion errors will be treated as I/O errors.

CNVIOERR
Causes ERR and IOSTAT to recognize conversion errors as I/O errors.

176 z/OS V1R4.0 Language Environment Customization

NOCNVIOERR
Causes conversion errors not to be treated as I/O errors. ERR and IOSTAT
have no effect for these errors.

DEBUG | NODEBUG
Specifies whether or not interactive debug will be invoked.

Note: This option does not apply to the Language Environment VS FORTRAN
compatibility library. If you want to use the VS FORTRAN Interactive
Debugger, then run your program with the VS FORTRAN Version 2
library rather than with Language Environment.

DEBUNIT | NODEBUNIT
Specifies whether or not Fortran unit numbers will be treated as if connected to
a terminal device.

Note: This option does not apply to the Language Environment VS FORTRAN
compatibility library. If you want to use the VS FORTRAN Interactive
Debugger, then run your program with the VS FORTRAN Version 2
library rather than with Language Environment.

ECPACK | NOECPACK
Specifies whether a data space should be filled with as many extended
common blocks as possible before a new data space is allocated.

ECPACK
Specifies extended common blocks be placed into the fewest possible
number of data spaces. This option reduces some of the overhead
associated with referencing data spaces.

NOECPACK
Specifies that each extended common block be placed into a separate data
space. As a result, reference errors made beyond the bounds of an
extended common block might be more easily detected.

FAIL (ABEND | RC | ABENDRC)
Indicates how applications that fail are to be terminated: either by a nonzero
return or by an abnormal termination (ABEND). The suboption of the FAIL
option may have the following meanings.

ABEND
Causes the program to end by an abnormal termination (ABEND) with a
user completion code of 240.

RC
Causes the program to end normally but with a nonzero return code (16).

ABENDRC
Causes the program to end by abnormal termination (ABEND) when failure
is because of a condition for which the operating system would usually
cause an ABEND; and to end with a nonzero return code when failure is by
some condition detected by VS FORTRAN.

FILEHIST | NOFILEHIST
Specifies whether to allow the file definition of a file referred to by a ddname to
be changed at run time.

FILEHIST
Causes the history of a file to be used in determining its existence. In
particular it checks to see whether:
v The file was ever internally opened (in which case it exists)

Appendix B. Using Fortran with Language Environment 177

v The file was deleted by a CLOSE statement (in which case it does not
exist).

When FILEHIST is specified, you cannot change the file definition of a file
at run time and have the same results produced as previous VS FORTRAN
releases.

NOFILEHIST
Causes the history of a file to be disregarded in determining its existence.

If you specify NOFILEHIST you should consider:
v If you change file definitions at run time: the file is treated as if it was

being opened for the first time. Note that before the file definition can be
changed, the existing file must be closed.

v If you do not change file definitions at run time: you must use
STATUS='NEW' to re-open an empty file that has been closed with
STATUS='KEEP', because the file does not appear to exist to Fortran.

INQPCOPN | NOINQPCOPN
Specifies whether or not a unit is connected to a file when executing an
INQUIRE by unit.

INQPCOPN
Specifies that, if a unit is connected to a file, even if it was preconnected
and no I/O statement has been executed, a value of true is returned in the
variable or an array element given in the OPENED specifier from an
INQUIRE by unit statement.

NOINQPCOPN
Indicates that, if and only if an unit is internally open, a value of true is
returned in the variable or an array element given in the OPENED specifier
for an INQUIRE by unit statement.

″Internally open″ means that the unit is connected to a file by an OPEN
statement, or if the unit has been preconnected, that a READ, WRITE,
PRINT, REWIND, or ENDFILE statement has been successfully executed.

IOINIT | NOIOINIT
Specifies whether or not the normal initialization for I/O processing will occur
during initialization of the run-time environment.

IOINIT
Causes the normal initialization for I/O processing to occur during
initialization of the run-time environment.

NOIOINIT
Suppresses initialization for I/O processing. This means that the error
message unit will not be opened during initialization of the run-time
environment. However, this does not prevent I/O from occurring on this or
on any other unit. (Such I/O may fail if proper DD statements are not
given.)

OCSTATUS | NOOCSTATUS
Specifies whether file existence will be checked during the running of OPEN
statements, whether files are deleted from their storage media, and whether
files that have been closed can be reconnected without an OPEN statement.

OCSTATUS
Specifies:

1. File existence will be checked for consistency with the OPEN statement
specifiers STATUS=’OLD’ and STATUS=’NEW’.

178 z/OS V1R4.0 Language Environment Customization

2. File deletion will occur when the CLOSE statement specifier
STATUS=’DELETE’ is given (on devices which allow deletion).

3. A preconnected file will be disconnected when a CLOSE statement is
given or when another file is opened on the same unit. It can be
reconnected only by an OPEN statement when there is no other file
currently connected to that unit.

NOOCSTATUS
Specifies:

1. File existence will not be checked for consistency with the OPEN
statement specifiers STATUS=’OLD’ and STATUS=’NEW’.

2. File deletion will not occur when the CLOSE statement specifier
STATUS=’DELETE’ is given.

3. A preconnected file will be disconnected when a CLOSE statement is
given or when another file is opened on the same unit. It can be
reconnected by a sequential READ or WRITE, BACKSPACE, OPEN,
REWIND, or ENDFILE statement when there is no other file currently
connected to that unit.

RECPAD[(ALL)] | NORECPAD
Specifies whether a formatted input record is padded with blanks.

RECPAD
Causes a formatted input record within an internal file or a varying/undefined
length record (RECFM=U or V) external file to be padded with blanks when an
input list and format specification require more data from the record than the
record contains. Blanks added for padding are interpreted as though the input
record actually contains blanks in those fields. If ALL is specified, a formatted
input record is padded regardless of the record format of the file.

NORECPAD
Specifies that an input list and format specification must not require more data
from an input record than the record contains. If more data is required,
condition FOR1002E is raised.

SPIE | NOSPIE
Specifies whether or not the run-time environment will take control when a
program interrupt occurs.

SPIE
Specifies that the run-time environment takes control when a program
interrupt occurs.

NOSPIE
Specifies that the run-time environment does not take control when a
program interrupt occurs. If you specify NOSPIE, various run-time functions
that depend on a return of control after a program interrupt are not
available. These include the following:

v The messages and corrective action for a floating-point overflow

v The messages and corrective action for a floating-point underflow
interrupt (unless the underflow is to be handled by the hardware based
upon the XUFLOW option)

v The messages and corrective action for a floating-point or fixed-point
divide exception

v The simulation of extended precision floating-point operations on
processors that do not have these instructions

Appendix B. Using Fortran with Language Environment 179

v The realignment of vector operands that are not on the required storage
boundaries and the re-running of the failed instruction.

Instead of the corrective action, abnormal termination results. In this case,
the STAE or NOSTAE option that is in effect governs whether or not the VS
FORTRAN run-time environment gains control at the time of the abend.

STAE | NOSTAE
Specifies whether or not the run-time environment will take control if an
abnormal termination occurs.

STAE
Specifies that the run-time environment will take control when an abnormal
termination occurs.

NOSTAE
Specifies that the run-time environment does not take control when an
abnormal termination occurs. If NOSTAE is specified, abnormal termination
is handled by the operating system rather than by the VS FORTRAN
run-time environment. In this case the following occurs:

v Message AFB240I, which shows the PSW and register contents at the
time of the abend, is not printed. However, this information will be
provided by the operating system.

v The indication of which Fortran statement caused the failure will not be
printed.

v The traceback of the routines will not be printed.

v The post-abend symbolic dump will not be printed even with the option
ABSDUMP in effect.

v Certain exceptional conditions handled by the run-time environment or by
the debugging device cause system abends rather than VS FORTRAN
messages. For example, some errors that occur during running of an
OPEN statement result in a system abend rather than the printing of
message AFB219I, which allows the program to possibly continue
running.

v An MTF subtask that terminates unexpectedly causes a user ABEND 922
in the main task rather than message AFB922I.

XUFLOW | NOXUFLOW
Specifies whether or not an exponent underflow will cause a program
interrupt.

XUFLOW
Allows an exponent underflow to cause a program interrupt, followed by
a message from the VS FORTRAN Version 2 Library, followed by a
standard fixup.

NOXUFLOW
Suppresses the program interrupt caused by an exponent underflow.
The hardware sets the result to zero.

Changing the Error Option Table Defaults
Module AFH5UOPT contains the Error Option Table defaults. You can accept the
IBM-supplied defaults, or you can supply your own defaults. To customize
AFH5UOPT for your site, use the IBM-supplied job AFHWVOPT, and modify the
VSF2UOPT macro instructions in an SMP/E USERMOD. The syntax and operands
of the VSF2UOPT macro instructions are described in this section.

180 z/OS V1R4.0 Language Environment Customization

If you have Fortran applications that are link-edited with Language Environment,
then there is no error option table to customize.

Use the VSF2UOPT macro to customize the Error Option Table as follows:

v Adding new error messages to the table, without changing existing ones, by
coding the VSF2UOPT Required Macro Instruction, followed by an END
statement.

v Changing existing error messages in the table, with or without adding new ones,
by coding the VSF2UOPT Required Macro Instruction, followed by the
necessary number of optional macro instructions, followed by an END statement.

For information on IBM-supplied error messages, refer to “Extended Error-Handling
Subroutines and Error Option Table” in VS FORTRAN Version 2 Language and
Library Reference.

Syntax of VSF2UOPT Required Macro Instruction

VSF2UOPT [ADDNTRY = n]

ADDNTRY=n
Is a positive integer specifying the number of new error message numbers to be
added to the error option table. Additional error message numbers will begin at
500 and continue sequentially, up to a maximum of 899. If you want to change
existing messages but do not want to add new ones, omit ADDNTRY=n.

n is a positive integer between 1 and 598.

Syntax of VSF2UOPT Optional Macro Instruction

VSF2UOPT MSGNO = (ermsno[,qty])
[,ALLOW = errs]
[,INFOMSG = YES | NO]
[,IOERR = YES | NO]
[,MODENT = YES | NO]
[,PRINT = prmsg]
[,PRTBUF = YES | NO]
[,TRACBAK = YES | NO]
[,USREXIT = exitname]

The MSGNO option must always be specified. The default values of the five options
INFOMSG, IOERR, MODENT, PRTBUF, and TRACBAK vary according to the
following conditions:

v If the value of MSGNO specifies an IBM-supplied message number, and none of
the five options is changed, then the default values are found in “Extended
Error-Handling Subroutines and Error Option Table” of VS FORTRAN Version 2
Language and Library Reference.

v If either

– the value of MSGNO specifies an IBM-supplied message number, and one or
more of the five options is changed, or

– the value of MSGNO specifies a new message number,

then the default values for the unspecified options are the following:

Appendix B. Using Fortran with Language Environment 181

INFOMSG
NO

IOERR
NO

MODENT
YES

PRTBUF
NO

TRACBAK
YES

MSGNO = (ermsno[,qty])
Specifies which error messages are affected by the default changes.

ermsno
Specifies either one message number, or the first error message number in
a series of consecutive numbers.

qty
Specifies, if there is more than one, the number of consecutive error
message numbers, beginning with ermsno.

For example, if the option is coded MSGNO=(153), then the default values for
message 153 will be changed. If the option is coded MSGNO=(153,4), then the
default values for messages 153 through 156 will be changed.

ALLOW = errs
Specifies the number of times the error may occur before the program is
terminated.

errs
Specifies the number of errors allowed. To specify an exact number of
errors allowed, errs must be a positive integer with a maximum of 255. A
zero, or any number greater than 255, means the error can occur an
unlimited number of times.

Note: Be aware that altering an error option table entry to allow “unlimited”
error occurrence may cause a program to loop indefinitely.

If the value of MSGNO specifies an IBM-supplied message number, the default
value for this option is listed in “Extended Error-Handling Subroutines and Error
Option Table” of VS FORTRAN Version 2 Language and Library Reference . If
the value of MSGNO specifies a new message number, the default value is 10.

INFOMSG = YES | NO
Specifies whether the message is an informational or an error message.

YES
Specifies that the message is informational only. In this case the following
occurs:

v No user error exit is taken.

v The value of ALLOW is ignored. Running will not terminate, even if it
reaches the designated number of errors allowed.

v The error summary printed after termination of your program does not
include a count of the number of times the condition occurred.

NO
Specifies that the message is an error message.

182 z/OS V1R4.0 Language Environment Customization

IOERR = YES | NO
Specifies whether or not this error message represents an I/O error for which
error counting is to be suppressed when an ERR or IOSTAT option is given on
the I/O statement.

YES
Specifies that if an ERR or IOSTAT option is given, the occurrence of the
error is not to be counted toward the maximum number specified by the
ALLOW option above. This should be specified only for those errors listed
in VS FORTRAN Version 2 Language and Library Reference for which the
ERR and IOSTAT options are honored.

NO
Specifies that the error occurrence is to be counted toward the maximum
number of errors allowed.

MODENT = YES | NO
Specifies whether or not the ERRSET subroutine may be used to modify the
error option table entry for this message.

YES
Specifies that the entry may be modified.

NO
Specifies that the entry may not be modified.

If you code a YES value for an IBM-supplied error message whose default is
NO, and you subsequently modify this entry using the ERRSET subroutine, you
may receive undesirable results. Check the chapter “Extended Error-Handling
Subroutines and Error Option Table” of VS FORTRAN Version 2 Language and
Library Reference to find out which message numbers have a “Modifiable Entry”
value of NO.

PRINT = prmsg
Specifies the number of times the error message is to be printed. Subsequent
occurrences of the error do not cause the message to be printed again.

prmsg
Specifies the number of times the message is to be printed. To specify an
exact number of times printed, prmsg must be a positive integer, with a
maximum of 254. A “0” means the message will not be printed. Specifying
255 means the message can be printed an unlimited number of times.

If the value of MSGNO specifies an IBM-supplied message number, the default
value for this option is listed in the chapter “Extended Error-Handling
Subroutines and Error Option Table” in VS FORTRAN Version 2 Language and
Library Reference If the value of MSGNO specifies a new message number, the
default value is 5.

PRTBUF = YES | NO
Specifies whether or not the I/O buffer is to be printed following certain I/O
errors.

YES
Specifies that the contents of the buffer are to be printed.

NO
Specifies that the contents of the buffer are not to be printed.

This option applies only to IBM-supplied error messages. Do not code YES
unless the IBM-supplied default for this error message number already allows

Appendix B. Using Fortran with Language Environment 183

the buffer to be printed. Check the chapter “Extended Error-Handling
Subroutines and Error Option Table” in VS FORTRAN Version 2 Language and
Library Reference to find out which message numbers have a “Print Buffer”
value of YES.

TRACBAK = YES | NO
Specifies whether or not a module traceback listing is to be printed following the
error message.

YES
Specifies that the traceback listing is to be printed.

NO
Specifies that the traceback listing is not to be printed.

USREXIT = exitname
Specifies the user error exit routine that is invoked following the printing of the
error message.

exitname
Specifies the entry point name of the user error exit routine. The routine
should not be written in VS FORTRAN and should be reentrant.

If the routine is specified here, instead of being specified as an option
passed to the ERRSET subroutine, the routine is invoked when the error
occurs for any user. In this case, the routine will be invoked, regardless of
whether the ERRSET routine was used or not. (However, unless a
MODENT value of NO is in effect, programs can still call ERRSET
dynamically to specify their own exit routine instead of the one specified by
USREXIT.)

For programs operating in link mode, the user error exit routine must be
link-edited with all users’ programs.

To make the user error exit routine available to users who operate in load
mode, the routine must be included in the composite module AFH5RENA. Then,
if the user error exit routine must communicate with the program in which the
error was detected, it must do so using a dynamic common area, not a static
one.

Customizing Fortran LIBPACKs
The Fortran LIBPACKs are collections of individual modules that are packaged into
a single load module in order to reduce the time that would otherwise be needed to
load the individual modules.

Language Environment provides four Fortran LIBPACKs, which you can customize
either during or following the installation of Language Environment.

Table 23. Fortran LIBPACKs

For Applications Link-Edited
With...

Customize LIBPACK... Which Is Loaded...

Language Environment AFHPRNAG above 16 MB

Language Environment AFHPRNBG below 16 MB

VS FORTRAN AFH5RENA above 16 MB

VS FORTRAN AFH5RENB below 16 MB

184 z/OS V1R4.0 Language Environment Customization

The following tables give the names of the individual modules that can be included
with or excluded from the LIBPACKs. In the tables, the terms required and
optional are defined as follows:

required
Means that this module must be a part of the LIBPACK. It is not possible to
exclude it.

optional
Means that this module may be either included or excluded from the
LIBPACK. If the function indicated for the module is frequently used at your
installation, the module should generally be included in order to avoid
having to load it individually for each enclave.

For LIBPACKs loaded above the 16 MB line, the optional modules are included in
the IBM-supplied default LIBPACK. For LIBPACKs loaded below the 16 MB line,
only the required modules are included in the IBM-supplied default LIBPACK. Each
optional LIBPACK module is also present individually. It will be loaded if that module
is not included in the LIBPACK.

Refer to “Tailoring the Fortran LIBPACKs” on page 44 for information on how to
tailor these LIBPACKs.

Contents of the Fortran LIBPACK AFHPRNAG
Table 24 lists routines you can include in the Fortran LIBPACK AFHPRNAG and
briefly describes each to help you determine which to include in your tailored
LIBPACK.

Note: For all entries in Table 24, the link-edited AMODE is 31 and the link-edited
RMODE is ANY.

Table 24. Routines Eligible for Inclusion in the Fortran LIBPACK AFHPRNAG

Name Description Required or
Optional

AFHALBCG Library common work area Required

AFHBCITT Character intrinsic functions Optional

AFHBCMPT Complex/character compare routine Optional

AFHBCMVT Character move routine Optional

AFHBCNCT Character concatenation routine Optional

AFHBCSTT IBCLR/IBSET/BTEST functions Optional

AFHBDPRT Double/Extended precision product Optional

AFHBFIFT Real to integer intrinsic function Optional

AFHBIBTT IBITS using INTEGER*1 or INTEGER*2 argument Optional

AFHBIDXT Character index function Optional

AFHBLOGT Bit intrinsic functions, INTEGER*4 arguments Optional

AFHBLXCT Lexical comparison routines Optional

AFHBMVBT MVBITS (move bits) subroutine Optional

AFHBMV8T MVBITS (move bits) routine, INTEGER*8 arguments Optional

AFHBMXDT Maximum/minimum function, REAL*8 arguments Optional

AFHBMXIT Maximum/minimum function, INTEGER*4 arguments Optional

AFHBMXRT Maximum/minimum function, REAL*4 arguments Optional

Appendix B. Using Fortran with Language Environment 185

Table 24. Routines Eligible for Inclusion in the Fortran LIBPACK AFHPRNAG (continued)

Name Description Required or
Optional

AFHBSHCT ISHFTC function, all integer argument types Optional

AFHBSHFT ISHFT bit shift function, INTEGER*1 or INTEGER*2
arguments

Optional

AFHBXMST Exponent underflow control function Optional

AFHCBFBE Condition token ownership Optional

AFHCENAE Fortran condition enablement Required

AFHCGETT Qualifying data retrieval function Optional

AFHCLC1E Locator text construction Optional

AFHCLC2E Message text construction Optional

AFHCLOCT Qualifying data address Optional

AFHCLSHE Language specific condition handler for math routines Required

AFHCPUTT Qualifying data update Optional

AFHCQFBE Feedback code query function Optional

AFHCSERT Compiler detected error processing at run time Optional

AFHCSGLE Condition signaling processor Required

AFHCTMHE MTF termination condition handler Optional

AFHCTOHE I/O termination condition handler Optional

AFHCTRAT ERRTRA processing Optional

AFHCXITE Exit DSA activation Optional

AFHDASGT ASSIGNM (DCBS character) processor Required

AFHDBGVE DCBS given byte Required

AFHDBMOE DCBS assignment (move) Required

AFHDBMVE DCBS move string Required

AFHDBPAE DCBS pad string Required

AFHDBTRE DCBS truncate string Required

AFHDBTTE DCBS translate and test Required

AFHFGSTL Math glue code generator Optional

AFHGDIRE Direct symbol table lookup Optional

AFHGFORT TEST option debug interface Optional

AFHGISDE Init symbol dictionary default Optional

AFHGSQLE Sequential lookup service Optional

AFHIABDT SYSABD processing Optional

AFHIABNT SYSABN processing Optional

AFHIEINE Enclave initialization Required

AFHIETRE Enclave termination Required

AFHIEXTT CALL EXIT processing Optional

AFHIMTRT Main program termination Required

AFHIPAUT PAUSE processing Optional

AFHIPINE Process initialization Required

186 z/OS V1R4.0 Language Environment Customization

Table 24. Routines Eligible for Inclusion in the Fortran LIBPACK AFHPRNAG (continued)

Name Description Required or
Optional

AFHIRCST SYSRCS processing Optional

AFHIRCTT SYSRCT processing Optional

AFHIRCXT SYSRCX processing Optional

AFHISTPT STOP processing Required

AFHITINE Thread initialization Required

AFHITTRE Thread termination Required

AFHLNABE Find NAB and build dummy DSA Required

AFHMOCBE MTF run-time options for subtask Required

AFHOASTE Asynchronous I/O file close at termination routine Optional

AFHOASYT Asynchronous I/O request processing routine Optional

AFHOBDSE Build descriptor from parse tree Optional

AFHOBNTE Build nest table, implied DO in iolist item Optional

AFHOBTRE Build parse tree Optional

AFHOCLOT CLOSE processing routine Optional

AFHOCMFE I/O to terminal or to other device processing routine Optional

AFHOCNTT Control statement processing routine Optional

AFHOCVIE Copy parse tree or descriptor Optional

AFHODCBE DCB attributes resolution routine Required

AFHODICT DEFINE FILE processing routine Optional

AFHODYNG Dynamic file allocation Optional

AFHOFINT FILEINF processing routine Optional

AFHOFMPE Formatted I/O record processing routine Optional

AFHOFMTT Formatted I/O service request routing routine Optional

AFHOFSCG File name scan Optional

AFHOIBCT Pre-VS FORTRAN I/O services routing routine Optional

AFHOINIE I/O support initialization Required

AFHOINQT INQUIRE statement processing routine Optional

AFHOINTE Internal file I/O service processing routine Optional

AFHOLDFT Pre-VSF 1.4.0 list-directed I/O parameter list processor Optional

AFHOLDRT List-directed I/O processing routine Optional

AFHOLDTE Pre-VSF 1.4.0 list-directed I/O processing routine Optional

AFHONAMT Pre-VSF 1.4.0 NAMELIST I/O parameter processor routine Optional

AFHONLLE Namelist I/O for static debug Optional

AFHONLTE Pre-VSF 1.4.0 NAMELIST I/O processing routine Optional

AFHONMLT Namelist I/O processing routine Optional

AFHOOPNT OPEN statement processing routine Optional

AFHOSCOT Pre-VSF 1.4.0 I/O services routing routine Optional

AFHOSIIE Get scalar intrinsic items Optional

AFHOSTAG Default I/O units allocation Required

Appendix B. Using Fortran with Language Environment 187

Table 24. Routines Eligible for Inclusion in the Fortran LIBPACK AFHPRNAG (continued)

Name Description Required or
Optional

AFHOSYSE STOP/PAUSE message display routine Required

AFHOTRFE Close all files at termination routine Required

AFHOUFMT Unformatted I/O processing routine Optional

AFHOUFOE Pre-VSF 1.4.0 unformatted I/O processing routine Optional

AFHOUNIT UNTANY/UNTNOFD processing Optional

AFHOUTAG Unit attribute table Required

AFHPINIE Program management initialization Required

AFHPLVDE LIBVEC descriptor Required

AFHPRNAG AFHPRNAG LIBPACK CSECT Required

AFHRABTT ABORT processing routine Optional

AFHSDYAT Obtain storage for ALLOCATE statement routine Optional

AFHSDYDT Free storage for DEALLOCATE statement routine Optional

AFHSFREE Storage free Optional

AFHSGETE Storage get Optional

AFHSMIRE Storage management initialization Required

AFHSSG1T Signal condition FOR0311S Optional

AFHSSG2T Signal condition FOR0312S Optional

AFHSSG3T Signal condition FOR0313S Optional

AFHSVFAT VSF version ALLOCATE/DEALLOCATE statements routine Optional

AFHTCNIE External input to internal format conversion routine Optional

AFHTCNOE Internal format to external output conversion routine Optional

AFHTCVSE I/O data conversion routing routine Optional

AFHTCVTE I/O data conversion routing routine adcon form Optional

AFHTTENE Powers of ten constants tables Optional

AFHUDMAE Dump file attributes event handler Optional

AFHUDM2E Dump variable event handler Optional

AFHUDUMT Dump processing Optional

AFHUSDMT SDUMP processing Optional

AFHVSPIT Obtain compile-time required vector temporaries routine Optional

AFHXARGT Get argument string Optional

AFHXBSDE New direct symbol table lookup routine Optional

AFHXCDME Common block directory maintenance routine Optional

AFHXCMNT Obtain dynamic common blocks storage routine Optional

AFHXCPTV CPU time processing routine Optional

AFHXCUIE Compiled unit identification routine Optional

AFHXCVDE Convert and dump program symbols routine Optional

AFHXDCLE Save area classification routine Optional

AFHXDEST Signal extended common request routine Optional

AFHXDIVT DIV requests processing routine Optional

188 z/OS V1R4.0 Language Environment Customization

Table 24. Routines Eligible for Inclusion in the Fortran LIBPACK AFHPRNAG (continued)

Name Description Required or
Optional

AFHXDOCT Divide check/overflow test routine Optional

AFHXDPET Signal parallel execution request routine Optional

AFHXDSPT Old form calculate array span/dimension factor routine Optional

AFHXDTME Termination exit to close DIV objects Optional

AFHXDYLT Dynamic loading processing routine Optional

AFHXEINE LCWA init for environment and run-time options Required

AFHXEV7E Fortran event handler routine Required

AFHXFAIT LCP initialize associated variable pointer routine Optional

AFHXFAUT LCP update associated variable routine Optional

AFHXFFEE Identify entry point type routine Optional

AFHXFMTT LCP define file processing routine Optional

AFHXIGNT IGNORE FILE HISTORY processing routine Optional

AFHXLNKT Nonshareable to shareable CSECT linkage routine Optional

AFHXOWNE Save area ownership routine Optional

AFHXPMLT Subprogram parameter list checker routine Optional

AFHXSIDE Obtain ISN or sequence number id routine Optional

AFHXSISE Convert item to vib_desc_fmt Optional

AFHXSPNT Calculate array span/dimension factor routine Optional

AFHXSQLE New sequential symbol table retrieval Optional

AFHXSTIE Obtain symbol table information routine Optional

AFHXTIMT Date/time information routine Optional

AFHXUSDE Update symbol table retrieval Optional

AFHX8SMT New compiler i*8 simulator routine Optional

Contents of the Fortran LIBPACK AFHPRNBG
Table 25 on page 189 lists routines you can include in the Fortran LIBPACK
AFHPRNBG and briefly describes each to help you determine which to include in
your tailored LIBPACK.

Note: For all entries in Table 25, the link-edited AMODE is ANY and the link-edited
RMODE is 24.

Table 25. Routines Eligible for Inclusion in the Fortran LIBPACK AFHPRNBG

Name Description Required or
Optional

AFHLCLNE Clear Fortran dummy DSA Required

AFHOASUG Asynchronous I/O subtask routine Optional

AFHOBDRE Direct I/O processing routine Optional

AFHOBSQE Sequential I/O processing routine Required

AFHOFSTG File status Required

AFHOSTRE Striped I/O processing routine Optional

Appendix B. Using Fortran with Language Environment 189

Table 25. Routines Eligible for Inclusion in the Fortran LIBPACK AFHPRNBG (continued)

Name Description Required or
Optional

AFHOVKYE VSAM KSDS (keyed I/O) services routine Optional

AFHOVSMG VSAM (RRDS, ESDS) I/O services routine Optional

AFHPRNBG AFHPRNBG LIBPACK CSECT Required

Contents of the Fortran LIBPACK AFH5RENA
Table 26 lists routines you can include in the Fortran LIBPACK AFH5RENA and
briefly describes each to help you determine which to include in your tailored
LIBPACK.

Note: For all entries in Table 26, the link-edited AMODE is 31 and the link-edited
RMODE is ANY.

Table 26. Routines Eligible for Inclusion in the Fortran LIBPACK AFH5RENA

Name Description Required or
Optional

AFH5ABEX VSF ABEND handler (ESTAE) Required

AFH5ALOP VAL function routine Optional

AFH5AMEP VSF NAMELIST I/O parmlist decoder Optional

AFH5AREN VSF VRENA vector table Required

AFH5ARGP VSF 2.6 ARG obtain argument string routine Optional

AFH5ASYP Asynchronous I/O services driver routine Optional

AFH5BALG Vector boundary alignment routine Optional

AFH5BCOP Old FORTRAN library services interface routine Optional

AFH5BLN$ VSF build nest table stub Required

AFH5BLNT Build nest table I/O service routine Optional

AFH5CDM$ VSF dynamic COMMON routine special stub Required

AFH5CDMA VSF COMMON block directory maintenance Optional

AFH5CLOP VSF CLOSE services routine Optional

AFH5CNI$ VSF conversion routine special stub Required

AFH5CNO$ VSF conversion routine special stub Required

AFH5COM$ VSF COMH special stub Required

AFH5COMH VSF formatted I/O processor Optional

AFH5CONI VSF convert external to internal format Optional

AFH5CONO VSF convert internal to external format Optional

AFH5CPTP VSF CPUTIME routine Optional

AFH5CVT$ VSF CVTH special stub Required

AFH5CVTH VSF conversion routine Optional

AFH5DEB$ VSF DEBU special stub Required

AFH5DFCP VSF DEFINEFILE processing routine Optional

AFH5DFIP VSF pre-1.4.0 list-directed I/O decoder Optional

AFH5DIO$ VSF DIOS special stub Required

190 z/OS V1R4.0 Language Environment Customization

Table 26. Routines Eligible for Inclusion in the Fortran LIBPACK AFH5RENA (continued)

Name Description Required or
Optional

AFH5DIVP VSF Data-In-Virtual services processor Optional

AFH5DOCP VSF divide check/overflow test routine Optional

AFH5DYLP VSF dynamic binder routine Optional

AFH5DYN$ VSF dynamic allocation special stub Required

AFH5DYNA VSF dynamic file allocation routine Optional

AFH5EMG$ VSF error message special stub Required

AFH5EMGN VSF message build routine Optional

AFH5ERE$ VSF EEH special stub Required

AFH5ERRE VSF object time error summary Required

AFH5ERS$ VSF exit/return code special stub Required

AFH5EXIP VSF return code and exiting routine Optional

AFH5FINP VSF file information routine Optional

AFH5FISC VSF file name scan routine Optional

AFH5FNTH VSF program interrupt handler Required

AFH5GMFM VSF getmain/freemain routine Required

AFH5GPRM VSF global parmlist Required

AFH5IAD$ VSF IAD interface special stub Required

AFH5IIO$ VSF internal I/O special stub Required

AFH5IIOS VSF internal I/O routine Optional

AFH5INI$ VSF Vector common init special stub Required

AFH5INQP VSF INQUIRE processing routine Optional

AFH5INTH VSF vector program interrupt handler Optional

AFH5INTP VSF init/term routine Required

AFH5IOCP VSF I/O control processing Optional

AFH5IOFP VSF formatted I/O router routine Optional

AFH5IOLP VSF list-directed processor Optional

AFH5IONP VSF NAMELIST processor Optional

AFH5IOUP VSF unformatted I/O processor Optional

AFH5KIO$ VSF keyed I/O special stub Required

AFH5LBC0 VSF library common work area Required

AFH5LINP VSF shareable code load routine Optional

AFH5LOAD VSF load/delete service routine Required

AFH5LOC$ VSF offset locate special stub Required

AFH5LOCA VSF offset locator routine Optional

AFH5MIN$ VSF MTF init special stub Required

AFH5MMA$ VSF MTF map and attach special stub Required

AFH5MOPP VSF extended error handling routine Optional

AFH5MPR$ MTF subparameter parser special stub Required

AFH5MSKL VSF message skeletons Optional

Appendix B. Using Fortran with Language Environment 191

Table 26. Routines Eligible for Inclusion in the Fortran LIBPACK AFH5RENA (continued)

Name Description Required or
Optional

AFH5OCMP VSF dynamic COMMON processor routine Optional

AFH5OPEP VSF OPEN processor routine Optional

AFH5PARM VSF run-time parameter list scan routine Required

AFH5PIO$ VSF striped I/O special stub Required

AFH5POS$ VSF post-ABEND processor special stub Required

AFH5RDCB VSF DCB resolution routine Required

AFH5SCOP VSF pre-1.4 I/O interface Optional

AFHFSPAP VSF array span calculator Optional

AFH5SPBP VSF 1.4 array span calculator Optional

AFH5SPIE VSF SPIE set routine Required

AFH5STAE STAE set routine Required

AFH5STIO VSF standard I/O setup routine Required

AFH5TIMP VSF obtain date and time routine Optional

AFH5TRC$ VSF traceback special stub Required

AFH5TRCH VSF traceback routine Optional

AFH5TRMF VSF termination file close routine Required

AFH5UNIN VSF vector unnorm argument exception handler Optional

AFH5UOPT VSF error message options table Required

AFH5VDMQ VSF PDUMP/CPDUMP service routine Optional

AFH5VINI VSF vector common area initializer Optional

AFH5VIO$ VSF non-keyed VSAM special stub Required

AFH5VTEN VSF floating point conversion constants Optional

AFH5VUAT VSF UNIT Attribute Table Required

Contents of the Fortran LIBPACK AFH5RENB
Table 27 lists routines you can include in the Fortran LIBPACK AFH5RENB and
briefly describes each to help you determine which to include in your tailored
LIBPACK.

Note: For all entries in Table 27, the link-edited AMODE is ANY and the link-edited
RMODE is 24.

Table 27. Routines Eligible for Inclusion in the Fortran LIBPACK AFH5RENB

Name Description Required or
Optional

AFH5ASUB Asynchronous I/O services subtask routine Optional

AFH5BREN VSF VRENB locator table Required

AFH5DIOS VSF direct access I/O routine Optional

AFH5FIST VSF file info status routine Required

AFH5KIOS VSF keyed I/O processor Optional

AFH5SIOS VSF sequential I/O routine Required

192 z/OS V1R4.0 Language Environment Customization

Table 27. Routines Eligible for Inclusion in the Fortran LIBPACK AFH5RENB (continued)

Name Description Required or
Optional

AFH5VIOS VSF non-keyed VSAM routine Optional

IBMPEV11
CEEEV011

VisualAge PL/I library ANY

Appendix B. Using Fortran with Language Environment 193

194 z/OS V1R4.0 Language Environment Customization

Appendix C. Using IBM C/C++ with Language Environment

This appendix describes the C/C++ locale and its properties you can customize at
installation time. It also describes the C system programming facilities that are
packaged and shipped with Language Environment.

Planning to Customize Locale Time Information
Recommendation: You should not install this usermod. The default C/C++ locale
(EDC$S370) obtains the time zone difference from Greenwich mean time from the
system. If your C/C++ application requires a different time zone other than the one
obtained from the system, you can use the tzset() function and the TZ
environment variable described in z/OS C/C++ Run-Time Library Reference.

This section describes the time information options that you can change at
installation time for the C/C++ locale. When C/C++ initializes its environment, it
uses the C/C++ locale as its default locale. The only category of locale that you can
change at installation is the LC_TOD field in the EDC$S370 locale, or the IBM-supplied
default locale. See z/OS C/C++ Programming Guide for information on how to
change categories other than LC_TOD and how to create new locales.

The LC_TOD category defines variables that describe zone difference, time zone
name, and Daylight Savings Time (DST) start and end. The LC_TOD variables are
used by the mktime and localtime functions for determining local time. The time
functions use the time zone difference from the system as the default.

Note: For information on using TZ in Non-POSIX C/C++ applications see z/OS
C/C++ Programming Guide.

Customizing the Locale Time Information
You can set up your default run-time environment and customize time information
for your installation’s default C/C++ locale. The EDCLLOCL JCL defines a
USERMOD that allows for changes to the time zone and Daylight Savings Time
parameters listed below. To set these time parameters, update the EDCLLOCL JCL
with the appropriate time information for your installation and apply the resulting
USERMOD.

Figure 18 on page 196 is a hypothetical example. The time zone name in the
example is EST. TZDIFF is 300 (minutes), which means it is 5 hours greater than
(West of) Greenwich mean time. If TZDIFF is greater than 1440, the time zone
difference from Greenwich mean time is obtained from the system. The Daylight
Savings Time (DST) information in the example is:
v DST starts in April, in the second week on Sunday.
v DST begins at 2 am.
v DST shifts 1 hour.
v DST ends in October, in the second week on Sunday.
v DST ends at 2 am.
v DST time zone name is EDT.

© Copyright IBM Corp. 1991, 2002 195

Time Information Options Reference
TZDIFF Time zone difference expressed in minutes. If the local time zone is west of

the Greenwich Meridian, this value must be positive. If the local time zone
is east of the Greenwich Meridian, this value must be negative. An absolute
value that is greater than 1440 (the number of minutes in a day) for this
field tells the C/C++ Library to get the time zone difference from the system.

TNAME Time zone name such as PST (Pacific Standard Time) specified within
quotation marks. The default for this field is a NULL string.

DSTNAME
A Daylight Savings Time zone name such as PDT (Pacific Daylight Time)
specified within quotation marks, if available. If DST information is not
available, this is set to NULL, which is also the IBM-supplied default. This
field must have a value if Daylight Savings Time information (as provided by
the other fields) is to be taken into account by the mktime and localtime
functions. These functions ignore DST if this field is set to NULL.

DSTSTM Month of the year when DST (Daylight Savings Time) comes into effect.
This value ranges from 1 through 12 inclusive, with 1 corresponding to
January and 12 corresponding to December. If DST is not applicable to a
locale, this is set to 0, which is also the IBM-supplied default.

DSTENM Month of the year when Daylight Savings Time ceases to be in effect.
Semantics similar to DSTSTM.

DSTSTW Week of the month when DST comes into effect. Acceptable values range
from -4 to +4. A value of 4 means the fourth week of the month, while a
value of -4 means fourth week of the month, counting back from the end of
the month. Sunday is considered the start of the week. If DST is not
applicable to a locale, DSTSTW is set to 0, which is also the IBM-supplied
default.

DSTENW Week of the month when DST ceases to be in effect. Semantics similar to
DSTSTW.

Note: DSTSTW and DSTENW need not be used. The DSTSTD and DSTEND fields
can specify either day of week or day of month. If day of month is
specified, DSTSTW and DSTENW become redundant.

DSTSTD Dependent on the value of DSTSTW. If DSTSTW is not equal to 0, this is the
day of the week when DST comes into effect. It ranges from 0 through 6
inclusive, with 0 corresponding to Sunday and 6 corresponding to Saturday.
If DSTSTW equals 0, DSTSTD is the day of the month (for the current year)
when DST comes into effect. It ranges from 1 to the last day of the month
inclusive. The last day of the month is 31 for January, March, May, July,
August, October, and December. It is 30 for April, June, September, and
November. For February, it is 28 on non-leap years and 29 on leap years. If
DST is not applicable to a locale, DSTSTD is set to 0, which is also the
IBM-supplied default.

TZDIFF=300,TNAME=’EST’,
DSTSTM=4,DSTSTW=2,DSTSTD=0,STARTTM=7200,SHIFT=3600,
DSTENM=10,DSTENW=2,DSTEND=0,ENDTM=7200,DSTNAME=’EDT’,

Figure 18. Example of Time Zone and Daylight Savings Time Information in Module
EDCLOCTZ

196 z/OS V1R4.0 Language Environment Customization

DSTEND The day of the week or the day of the month when DST ceases to be in
effect. Semantics similar to DSTSTD.

STARTTM
Seconds after 12 midnight, local standard time, when DST comes into
effect. For example, if DST is to s tart at 2:00 AM, STARTTM is assigned the
value 7200; for 12:00 AM (midnight), STARTTM is 0; for 1:00 AM, it is 3600.

ENDTM Seconds after 12 midnight, local standard time, when DST ceases to be in
effect. Semantics similar to STARTTM.

SHIFT DST time shift, expressed in seconds. Default is 3600, for 1 hour.

System Programming Facilities
C system programming facilities are installed along with Language Environment.
The modules for C system programming facilities use aliases that are the same as
some of the C component module names. Therefore, the C system programming
facilities are installed into their own target and distribution libraries:
v SCEESPC
v AEDCMOD2

For more information on the system programming facilities of C, see z/OS C/C++
Programming Guide. For information on how to build these free-standing
applications after compiling, see z/OS Language Environment Programming Guide.

Appendix C. Using IBM C/C++ with Language Environment 197

198 z/OS V1R4.0 Language Environment Customization

Appendix D. Modules eligible for the link pack area

The modules listed in the following table can be put in the LPA or the ELPA,
depending on their RMODE:

v If the RMODE is ANY, the module can reside in the link pack area or in the
extended link pack area (above or below the 16 MB address line).

v If the RMODE is 24, the module can reside only in the link pack area (below the
16 MB line).

If you are considering placing the modules listed in this appendix in the LPA or the
ELPA, then IBM highly recommends that you place the SCEELPA data set in the
LPA list (LPALSTxx). This data set contains modules that are reentrant, reside
above the line and are heavily used by z/OS itself.

The specific HLL sections contains tables of modules eligible for the LPA or the
ELPA above and beyond what is found in the SCEELPA data set. You will need to
use the Dynamic LPA or MLPA approach to move these modules into the
LPA/ELPA. You do not need to include recommended modules if they contain
functions your installation does not use. Language Environment modules not listed
in these tables can be moved into LPA/ELPA at your discretion.

Language Environment base modules
Modules and aliases listed in Table 28 can be moved into LPA/ELPA using the
sample job CEEWLPA found in the SCEESAMP data set.

Table 28. Language Environment Modules Eligible for Inclusion in the Link Pack Area and the
Extended Link Pack Area

Language
Environment
Module Name

Description RMODE

CEEBINIT
CEEBLIBM

Initialization/termination for batch 24

CEEBLIIA
IBMBLIIA
IBMBPIIA

OS PL/I and C load module compatibility 24

CEEBLRR Library Retention Routine ANY

CEEBPICI Initialization/termination routines for preinitialization
compatibility

24

CEEGINIT 1

CEEBINIT
Initialization / termination when using RTLS. 24

CEELRRIN LRR initialization ANY

CEELRRTR LRR termination ANY

CEEMENU0 Message file with mixed-case English; messages 000-999 ANY

CEEMENU2 Message file with mixed-case English; messages 2000-2999 ANY

CEEMENU3 Message file with mixed-case English; messages 3000-3999 ANY

CEEMENU4 Message file with mixed-case English; messages 4000-4999 ANY

CEEMENU5 Message file with mixed-case English; messages 5000-5999 ANY

CEEMJPN0 Message file with Japanese; messages 000-999 ANY

CEEMJPN2 Message file with Japanese; messages 2000-2999 ANY

© Copyright IBM Corp. 1991, 2002 199

Table 28. Language Environment Modules Eligible for Inclusion in the Link Pack Area and the
Extended Link Pack Area (continued)

Language
Environment
Module Name

Description RMODE

CEEMJPN3 Message file with Japanese; messages 3000-3999 ANY

CEEMJPN4 Message file with Japanese; messages 4000-4999 ANY

CEEMJPN5 Message file with Japanese; messages 5000-5999 ANY

CEEMUEN0 Message file with uppercase English; messages 000-999 ANY

CEEMUEN2 Message file with uppercase English; messages 2000-2999 ANY

CEEMUEN3 Message file with uppercase English; messages 3000-3999 ANY

CEEMUEN4 Message file with uppercase English; messages 4000-4999 ANY

CEEMUEN5 Message file with uppercase English; messages 5000-5999 ANY

CEEPIPI Initialization/termination routines for the Language Environment
pre-initialization facility

24

Note: If CEEGINIT is to be placed in LPA, then its alias CEEBINIT, found in the SCEERTLS
data set should also be placed in LPA, and not the CEEBINIT module found in SCEERUN. In
addition, IBM recommends CEEBINSS should never be placed in LPA.

Language Environment C/C++ component modules
The C/C++ component modules and aliases listed in Table 29 can be moved into
LPA/ELPA using the sample job EDCWLPA found in the SCEESAMP data set. The
Language Environment base modules listed in Table 28 on page 199 should also be
moved into LPA/ELPA.

Table 29. C/C++ Modules Eligible for Inclusion in the Link Pack Area and the Extended Link
Pack Area

C/C++ Module Name Description RMODE

EDCHDMNP
DEMANGLE

Demangler ANY

EDCNINSP Debug tool interface ANY

EDCPRLK Prelink utility ANY

EDCRNLIB
EDCRNLST

Rename list ANY

EDCZEMSG Mixed-case U.S. English messages ANY

EDCZJMSG Japanese messages ANY

EDCZUMSG Uppercase English messages ANY

IEDCMSGT C/370 message table ANY

CELHDCPP
SCEECPP

DLL for XPLINK C++ applications ANY

CELHV003 DLL for XPLINK C applications ANY

Notes:

1. EDCNINSP is highly recommended for inclusion in the LPA or ELPA if the
Debug tool is heavily used.

2. EDCPRLK is highly recommended for inclusion in the LPA or ELPA if the prelink
utility is heavily used.

200 z/OS V1R4.0 Language Environment Customization

3. The default code page converters or locale modules, or customized code page
converters or locale modules (the ones applicable for the user’s country), should
be included in the LPA or ELPA.

Language Environment COBOL component modules
The COBOL component modules and aliases listed in Table 30 can be moved into
LPA/ELPA using the sample job IGZWMLP4 found in the SCEESAMP data set. The
Language Environment base modules listed in Table 28 on page 199 should also be
moved into LPA/ELPA.

Additional modules that exist for OS/VS COBOL compatibility (ILBO) are not
described here. Refer to the OS/VS COBOL documentation for information about
these modules.

Table 30. COBOL Modules Eligible for Inclusion in the Link Pack Area and the Extended Link
Pack Area

COBOL
Module Name

Description RMODE

IGZCEV5
CEEEV005

COBOL event handler ANY

IGZCA2D DBCS data manipulation ANY

IGZCD2A DBCS data manipulation ANY

IGZCMTUE COBOL WTO error messages ANY

IGZCPAC COBPACK ANY

IGZCPCO COBPACK ANY

IGZINSH Formatted dump and Debug Tool support ANY

IGZEPCL COBOL termination (VS COBOL II and OS/VS COBOL only) 24

IGZERRE COBOL reusable environment ANY

IGZEWTO COBOL: write error message to operator’s console ANY

IGZCWTO COBOL write error message ANY

IGZCD24 COBOL dynamic call to AMODE(24) programs 24

IGZCMGUE COBOL (IGZ) messages in uppercase English ANY

IGZCMGEN COBOL (IGZ) messages in English ANY

IGZCMGJA COBOL (IGZ) messages in Japanese ANY

IGZCMLT
IIGZMSGT

COBOL message tables ANY

IGZEPLF COBOL environment initialization (VS COBOL II and OS/VS
COBOL only)

24

IGZCBUG Used for debugging 24

IGZCLNC Linkage manager for OS/VS COBOL and IGZBRDGE
(dynamic call and cancel)

24

IGZCLNK Linkage manager for VS COBOL II and COBOL/370 (dynamic
call and cancel)

24

IGZCULE User I/O logic error handler 24

IGZCXFR I/O declarative transfer 24

IGZEDMR Reusable environment deactivation 24

IGZEINI Environment initialization 24

Appendix D. Modules eligible for the link pack area 201

|||

||
|
|

||
|
|

Table 30. COBOL Modules Eligible for Inclusion in the Link Pack Area and the Extended Link
Pack Area (continued)

COBOL
Module Name

Description RMODE

IGZEINP Accept input reader 24

IGZEOPN OPENs SYSIN and SYSPUNCH in the Initial Program Thread
(IPT)

24

IGZEOUT Display output writer 24

IGZEQBL QSAM initialization transmission verbs, error exits 24

IGZEQOC QSAM OPEN/CLOSE 24

IGZERCO OS/VS COBOL TERMINATION 24

IGZESMG Sort/Merge interface 24

IGZEVAM VSAM-to-IDCAMS interface 24

IGZEVEX VSAM exit module for SYNAD and LERAD 24

IGZESCD SORT-CONTROL I/O handling routine 24

IGZETRM Environment termination 24

Language Environment Fortran component modules
The Fortran component modules and aliases listed in Table 31 can be moved into
LPA/ELPA using the sample job AFHWMLP2 found in the SCEESAMP data set.
The Language Environment base modules listed in Table 28 on page 199 should
also be moved into LPA/ELPA.

Table 31. Fortran Modules Eligible for Inclusion in the Link Pack Area and the Extended Link
Pack Area

Fortran
Module Name

Description RMODE

AFHBCITT
AFHBACHK
AFHBACIK
AFHBACJK
AFHBACKK
AFHBCHAR
AFHBCH2R
AFHBCH8R
AFHBIACK
AFHBICHR
AFHBJACK
AFHBJCHR
AFHBLENR
AFHBLN8R

Character intrinsic functions ANY

AFHBCMPT
AFHBCMPR
AFHBXMPR

Complex/character compare routine ANY

AFHBCMVT
AFHBCMVR

Character move routine ANY

AFHBCNCT
AFH-BCNCK
AFHBCNCR

Character concatenation routine ANY

202 z/OS V1R4.0 Language Environment Customization

Table 31. Fortran Modules Eligible for Inclusion in the Link Pack Area and the Extended Link
Pack Area (continued)

Fortran
Module Name

Description RMODE

AFHBCSTT
AFHBHCLK
AFHBHCLR
AFHBHSTK
AFHBHSTR
AFHBHTSK
AFHBHTSR
AFHBKCLK
AFHBKCLR
AFHBKSTK
AFHBKSTR
AFHBKTSK
AFHBKTSR

IBCLR/IBSET/BTEST functions ANY

AFHBDPRT
AFHBDPRR
AFHBQPRR

Double/Extended precision product ANY

AFHBFIFT
AFHBIDTR
AFHBIFIR
AFHBINTR

Real to integer intrinsic function ANY

AFHBIBTT
AFHBHBTK
AFHBHBTR
AFHBKBTK
AFHBKBTR

IBITS using INTEGER*1 or INTEGER*2 argument ANY

AFHBIDXT
AFHBIDXK
AFHBIDXR
AFHBJDXK
AFHBJDXR

Character index function ANY

AFHBLOGT
AFHBHEOR
AFHBHNDR
AFHBHNOR
AFHBHORR
AFHBIEOR
AFHBINDR
AFHBINOR
AFHBIORR
AFHBJEOR
AFHBJNDR
AFHBJNOR
AFHBJORR

Bit intrinsic functions, INTEGER*4 arguments ANY

Appendix D. Modules eligible for the link pack area 203

Table 31. Fortran Modules Eligible for Inclusion in the Link Pack Area and the Extended Link
Pack Area (continued)

Fortran
Module Name

Description RMODE

AFHBLXCT
AFHBLGEK
AFHBLGER
AFHBLGTK
AFHBLGTR
AFHBLLEK
AFHBLLER
AFHBLLTK
AFHBLLTR
AFHB8GEK
AFHB8GER
AFHB8GTK
AFHB8GTR
AFHB8LEK
AFHB8LER
AFHB8LTK
AFHB8LTR

Lexical comparison routines ANY

AFHBMVBT
AFHBHMBK
AFHBIMBK
AFHBIMBR
AFHBKMBK

MVBITS (move bits) subroutine ANY

AFHBMV8T
AFHBJMBK

MVBITS (move bits) routine, INTEGER*8 arguments ANY

AFHBMXDT
AFHBDMNR
AFHBDMXR

Maximum/minimum function, REAL*8 arguments ANY

AFHBMXIT
AFHBIANR
AFHBIAXR
AFHBIMNR
AFHBIMXR

Maximum/minimum function, INTEGER*4 arguments ANY

AFHBMXRT
AFHBRANR
AFHBRAXR
AFHBRMNR
AFHBRMXR

Maximum/minimum, REAL*4 arguments ANY

AFHBSHCT
AFHBISCK
AFHBISCR
AFHBJSCK
AFHBJSCR
AFHBKSCK
AFHBKSCR
AFHBHSCK
AFHBHSCR

ISHFTC function, all integer argument types ANY

204 z/OS V1R4.0 Language Environment Customization

Table 31. Fortran Modules Eligible for Inclusion in the Link Pack Area and the Extended Link
Pack Area (continued)

Fortran
Module Name

Description RMODE

AFHBSHFT
AFHBHLSK
AFHBHLSR
AFHBHRSK
AFHBHRSR
AFHBHSHK
AFHBHSHR
AFHBKLSK
AFHBKLSR
AFHBKRSK
AFHBKRSR
AFHBKSHK
AFHBKSHR

ISHFT bit shift function, INTEGER*1 or INTEGER*2 arguments ANY

AFHBXMST
AFHBXMSR

Exponent underflow control function ANY

AFHCBFBE
AFHCBFBR

Condition token ownership ANY

AFHCGETT
AFHCGETR

Qualifying data retrieval function ANY

AFHCLC1E
AFHCLC1R

Locator text construction ANY

AFHCLC2E
AFHCLC2R

Message text construction ANY

AFHCMSGE
AFHCMSGR
IFORMSGT

Fortran message table header ANY

AFHCMS1E
AFHCMS1R

Mixed-case English message file 1 ANY

AFHCMS1J Japanese message file 1 ANY

AFHCMS1U Uppercase English message file 1 ANY

AFHCMS2E
AFHCMS2R

Mixed-case English message file 2 ANY

AFHCMS2J Japanese message file 2 ANY

AFHCMS2U Uppercase English message file 2 ANY

AFHCMS3E
AFHCMS3R

Mixed-case English message file 3 ANY

AFHCMS3J Japanese message file 3 ANY

AFHCMS3U Uppercase English message file 3 ANY

AFHCMS4E
AFHCMS4R

Mixed-case English message file 4 ANY

AFHCMS4J Japanese message file 4 ANY

AFHCMS4U Uppercase English message file 4 ANY

AFHCPUTT
AFHCPUTR

Qualifying data update ANY

AFHCQFBE
AFHCQFBR

Feedback code query function ANY

Appendix D. Modules eligible for the link pack area 205

Table 31. Fortran Modules Eligible for Inclusion in the Link Pack Area and the Extended Link
Pack Area (continued)

Fortran
Module Name

Description RMODE

AFHCSERT
AFHCSERR

Compiler detected error processing at run time ANY

AFHCTMHE
AFHCTMHR

MTF termination condition handler ANY

AFHCTOHE
AFHCTOHR

I/O termination condition handler ANY

AFHCTRAT
AFHCTRAR

ERRTRA processing ANY

AFHCXITE
AFHCXITR

Exit DSA activation ANY

AFHFGSTL
AFHFGSTR

Math glue code generator ANY

AFHGDIRE
AFHGDIRR

Direct symbol table lookup ANY

AFHGFORT
AFHGSTNR
AFHGSTXR
AFHGTRCR

TEST option debug interface ANY

AFHGISDE
AFHGISDR

Init symbol dictionary default ANY

AFHGSQLE
AFHGSQLR

Sequential lookup service ANY

AFHIABDT
AFHIABDR

SYSABD processing ANY

AFHIABNT
AFHIABNR

SYSABN processing ANY

AFHIEXTT
AFHIEXTR

CALL EXIT processing ANY

AFHIPAUT
AFHIPAUK
AHHIPAUR

PAUSE processing ANY

AFHIRCST
AFHIRCSR

SYSRCS processing ANY

AFHIRCTT
AFHIRCTR

SYSRCT processing ANY

AFHIRCXT
AFHIRCXR

SYSRCX processing ANY

AFHMMAAG
AFHMMAAR

MTF map and ATTACH routine 24

AFHMSTCT
AFHMSTCR

MTF subtask control 24

AFHMTFAG 3 MTF LIBPACK ANY

AFHOASTE
AFHOASTR

Asynchronous I/O file close at termination routine ANY

AFHOASUG
AFHOASUR

Asynchronous I/O subtask routine 24

206 z/OS V1R4.0 Language Environment Customization

Table 31. Fortran Modules Eligible for Inclusion in the Link Pack Area and the Extended Link
Pack Area (continued)

Fortran
Module Name

Description RMODE

AFHOASYT
AFHOAINR
AFHOAOUR
AFHOAWTR

Asynchronous I/O request processing routine ANY

AFHOBDRE
AFHOBDRR

Direct I/O processing routine 24

AFHOBDSE
AFHOBDSR

Build descriptor from parse tree ANY

AFHOBNTE
AFHOBNTR

Build nest table, implied DO in iolist item ANY

AFHOBTRE
AFHOBTRR

Build parse tree ANY

AFHOCLOT
AFHOCLOR

CLOSE processing routine ANY

AFHOCMFE
AFHOCMFR

I/O to terminal or to other device processing routine ANY

AFHOCNTT
AFHOCBSR
AFHOCDLR
AFHOCEFR
AFHOCRWR

Control statement processing routine ANY

AFHOCVIE
AFHOCVIR

Copy parse tree or descriptor ANY

AFHODICT
AFHODICR

DEFINE FILE processing routine ANY

AFHODYNG
AFHODYNR

Dynamic file allocation ANY

AFHOFINT
AFHOFINR

FILEINF processing ANY

AFHOFMPE
AFHOFMPR

Formatted I/O record processing routine ANY

AFHOFMTT
AFHOCSFR
AFHODSFR
AFHOESFR
AFHOFXFR
AFHOIXFR
AFHOQKFR
AFHORDFR
AFHORIFR
AFHORKFR
AFHORSFR
AFHOSXFR
AFHOUVFR
AFHOWDFR
AFHOWIFR
AFHOWKFR
AFHOWSFR

Formatted I/O service request routing routine ANY

Appendix D. Modules eligible for the link pack area 207

Table 31. Fortran Modules Eligible for Inclusion in the Link Pack Area and the Extended Link
Pack Area (continued)

Fortran
Module Name

Description RMODE

AFHOFSCG
AFHOFSCR

File name scan ANY

AFHOIBCT
AFHOIAFR
AFHOIANR
AFHOIBSR
AFHOIEFR
AFHOIENR
AFHOILFR
AFHOILNR
AFHOINFR
AFHOIPAR
AFHOIRFR
AFHOIRNR
AFHOIRWR
AFHOIWFR
AFHOIWNR

Pre-VS FORTRAN I/O services routing routine ANY

AFHOINQT
AFHOINQR

INQUIRE statement processing routine ANY

AFHOINTE
AFHOINTR

Internal file I/O service processing routine ANY

AFHOLDFT
AFHOLFAR
AFHOLFER
AFHOLFLR
AFHOLFRR
AFHOLFWR
AFHOLVAR
AFHOLVER
AFHOLVLR
AFHOLVRR
AFHOLVWR

Pre-VSF 1.4.0 list-directed I/O parameter list processor ANY

AFHOLDRT
AFHOCSLR
AFHODSLR
AFHOESLR
AFHOFXLR
AFHOIXLR
AFHORILR
AFHORSLR
AFHOWILR
AFHOWSLR

List-directed I/O processing routine ANY

AFHOLDTE
AFHOAXLR
AFHOLXLR
AFHOMXLR
AFHOTXLR

Pre-VSF 1.4.0 list-directed I/O processing routine ANY

AFHONAMT
AFHONFRR
AFHONFWR
AFHONVRR
AFHONVWR

Pre-VSF 1.4.0 NAMELIST I/O parameter processing routine ANY

208 z/OS V1R4.0 Language Environment Customization

Table 31. Fortran Modules Eligible for Inclusion in the Link Pack Area and the Extended Link
Pack Area (continued)

Fortran
Module Name

Description RMODE

AFHONLLE
AFHONLWR

Namelist I/O for static debug ANY

AFHONLTE
AFHOSSNR
AFHOXSNR

Pre-VSF 1.4.0 NAMELIST I/O processing routine ANY

AFHONMLT
AFHOCSNR
AFHOESNR
AFHORINR
AFHORSNR
AFHOWINR
AFHOWSNR

Namelist I/O processing routine ANY

AFHOSCOT
AFHOVAFR
AFHOVANR
AFHOVBKR
AFHOVEFR
AFHOVENR
AFHOVLFR
AFHOVLNR
AFHOVNFR
AFHOVRFR
AFHOVRNR
AFHOVRWR
AFHOVWFR
AFHOVWNR

Pre-VSF 1.4.0 I/O services routing routine ANY

AFHOSIIE
AFHOSIIR

Get scalar intrinsic items ANY

AFHOSTRE
AFHOSTRR

Striped I/O processing routine 24

AFHOUFMT
AFHOFDUR
AFHOFXUR
AFHOIXUR
AFHOQKUR
AFHORDUR
AFHORKUR
AFHORSUR
AFHOSXUR
AFHOUVUR
AFHOWDUR
AFHOWKUR
AFHOWSUR

Unformatted I/O processing routine ANY

AFHOUFOE
AFHOEXUR
AFHOLXUR
AFHOMXUR
AFHOPXUR

Pre-VSF 1.4.0 unformatted I/O processing routine ANY

AFHOUNIT
AFHOUNFR
AFHOUNTR

UNTANY/UNTNOFD processing ANY

Appendix D. Modules eligible for the link pack area 209

Table 31. Fortran Modules Eligible for Inclusion in the Link Pack Area and the Extended Link
Pack Area (continued)

Fortran
Module Name

Description RMODE

AFHOVKYE
AFHOVKYR

VSAM KSDS (keyed I/O) services routine 24

AFHOVSMG
AFHOVDIR
AFHOVSQR

VSAM (RRDS, ESDS) I/O services routine 24

AFHPRNAG 1

CEEEV007
AFHPRNAG LIBPACK CSECT ANY

AFHPRNBG 1 AFHPRNBG LIBPACK CSECT 24

AFHRABTT
AFHRABTK

ABORT processing routine ANY

AFHSDYAT
AFHSDYAR

Obtain storage for ALLOCATE statement routine ANY

AFHSDYDT
AFHSDYDR
AFHSDYFK

Free storage for DEALLOCATE statement routine ANY

AFHSFREE
AFHSFRER

Storage free ANY

AFHSGETE
AFHSGETR

Storage get ANY

AFHSSG1T
AFHSSG1R

Signal condition FOR0311S ANY

AFHSSG2T
AFHSSG2R

Signal condition FOR0312S ANY

AFHSSG3T
AFHSSG3R

Signal condition FOR0313S ANY

AFHSVFAT
AFHSVALK
AFHSVALR
AFHSVA4K
AFHSVA4R
AFHSVA8K
AFHSVA8R
AFHSVDEK
AFHSVDER

VSF version ALLOCATE/DEALLOCATE statements routine ANY

AFHTCVSE
AFHTFAOR
AFHTFCOR
AFHTFDOR
AFHTFEOR
AFHTFGOR
AFHTFIOR
AFHTFLOR
AFHTFQOR
AFHTFZOR

I/O data conversion routing routine ANY

AFHTCVTE
AFHTCVTR

I/O data conversion routing routine adcon form ANY

AFHUDMAE
AFHUDMAR

Dump file attributes event handler ANY

210 z/OS V1R4.0 Language Environment Customization

Table 31. Fortran Modules Eligible for Inclusion in the Link Pack Area and the Extended Link
Pack Area (continued)

Fortran
Module Name

Description RMODE

AFHUDM2E
AFHUDM2R

Dump variable event handler ANY

AFHUDUMT
AFHUCDMR
AFHUCPDR
AFHUDUMR

Dump processing ANY

AFHUSDMT
AFHUSDMR

SDUMP processing ANY

AFHVSPIT
AFHVSPIR

Obtain compile-time required vector temporaries routine ANY

AFHXARGT
AFHXARGR

Get argument string ANY

AFHXBSDE
AFHXBSDR

New direct symbol table lookup routine ANY

AFHXCDME
AFHXCDMR

Common block directory maintenance routine ANY

AFHXCMNT
AFHXCMNR
AFHXCMSR
AFHXDCDR
AFHXDCFR
AFHXDCGR
AFHXDCIR
AFHXSDCR

Obtain dynamic common blocks storage routine ANY

AFHXCPTV
AFHXCPTR

CPU time processing routine ANY

AFHXCUIE
AFHXCUIR

Compiled unit identification routine ANY

AFHXCVDE
AFHXCVDR

Convert and dump program symbols routine ANY

AFHXDCLE
AFHXDCLR

Save area classification routine ANY

AFHXDEST
AFHXDESR

Signal extended common request routine ANY

AFHXDIVT
AFHXDCMR
AFHXDNFR
AFHXDNVR
AFHXDRSR
AFHXDSVR
AFHXDTFR
AFHXDTVR
AFHXDWFR
AFHXDWVR

DIV requests processing routine ANY

AFHXDOCT
AFHXDVKR
AFHXOVER

Divide check/overflow test routine ANY

AFHXDPET
AFHXDPER

Signal parallel execution request routine ANY

Appendix D. Modules eligible for the link pack area 211

Table 31. Fortran Modules Eligible for Inclusion in the Link Pack Area and the Extended Link
Pack Area (continued)

Fortran
Module Name

Description RMODE

AFHXDSPT
AFHXDSNR
AFHXDS2R

Old form calculate array span&slash dimension factor routine ANY

AFHXDTME
AFHXDTMR

Termination exit to close DIV objects ANY

AFHXDYLT
AFHXDYLK
AFHXDYLR

Dynamic loading processing routine ANY

AFHXFAIT
AFHXFAIR

LCP initialize associated variable pointer routine ANY

AFHXFAUT
AFHXFAUR

LCP update associated variable routine ANY

AFHXFFEE
AFHXFFER

Identify entry point type routine ANY

AFHXFMTT
AFHXFMTR

LCP define file processing routine ANY

AFHXIGNT
AFHXIGDR
AFHXIGUR

IGNORE FILE HISTORY processing routine ANY

AFHXLNKT
AFHXLIMK
AFHXLIMR
AFHXLISK
AFHXLISR

Nonshareable to shareable CSECT linkage routine ANY

AFHXOWNE
AFHXOWNR

Save area ownership routine ANY

AFHXPMLT
AFHXPMLK
AFHXPMLR
AFHXPMMK

Subprogram parameter list checker routine ANY

AFHXSIDE
AFHXSIDR

Obtain ISN or sequence number id routine ANY

AFHXSISE
AFHXSISR

Convert item to vib_desc_fmt ANY

AFHXSPNT
AFHXSP4R
AFHXSP5R

Calculate array span/dimension factor routine ANY

AFHXSQLE
AFHXSQLR

New sequential symbol table retrieval ANY

AFHXSTIE
AFHXSTIR

Obtain symbol table information routine ANY

AFHXTIMT
AFHXCLKR
AFHXCLXR
AFHXDMTR
AFHXDTXR

Date/time information routine ANY

AFHXUSDE
AFHXUSDR

Update symbol table retrieval ANY

212 z/OS V1R4.0 Language Environment Customization

Table 31. Fortran Modules Eligible for Inclusion in the Link Pack Area and the Extended Link
Pack Area (continued)

Fortran
Module Name

Description RMODE

AFH5ALOP
AFBVALOP

VAL function routine ANY

AFH5AMEP
AFBNAMEP
IFYNAMEP

VSF NAMELIST I/O parmlist decoder ANY

AFH5ARGP
AFBVARGP

VSF 2.6 ARG obtain argument string routine ANY

AFH5ASUB
AFBVASUB

Asynchronous I/O services subtask routine 24

AFH5ASYP
AFBVASYP
IFYVASYP

Asynchronous I/O services driver routine ANY

AFH5BALG
AFBVBALG

Vector boundary alignment routine ANY

AFH5BCOP
AFBIBCOP
IFYIBCOP

Old FORTRAN library services interface routine ANY

AFH5BLNT
AFBVBLNT
IFYVBLNT

Build nest table I/O service routine ANY

AFH5CDMA
AFBVCDMA

VSF COMMON block directory maintenance ANY

AFH5CLOP
AFBVCLOP
IFYVCLOP

VSF CLOSE services routine ANY

AFH5COMH
AFBVCOMH

VSF formatted I/O processor ANY

AFH5CONI
AFBVCONI

VSF convert external to internal format ANY

AFH5CONO
AFBVCONO

VSF convert internal to external format ANY

AFH5CPTP
AFBCCPTP
AFBVCPTP

VSF CPUTIME routine ANY

AFH5CVTH
AFBVCVTH

VSF conversion routine ANY

AFH5DFCP
AFBDIOCP
IFYDIOCP

VSF DEFINEFILE processing routine ANY

AFH5DFIP
AFBLDFIP
IFYLDFIP

VSF pre-1.4.0 list-directed I/O decoder ANY

AFH5DIOS
AFBVDIOS

VSF direct access I/O routine 24

AFH5DIVP
AFBVDIVP

VSF Data-In-Virtual services processor ANY

Appendix D. Modules eligible for the link pack area 213

Table 31. Fortran Modules Eligible for Inclusion in the Link Pack Area and the Extended Link
Pack Area (continued)

Fortran
Module Name

Description RMODE

AFH5DOCP
AFBVDOCP

VSF divide check/overflow test routine ANY

AFH5DYLP
AFBVDYLP

VSF dynamic binder routine ANY

AFH5DYNA
AFBCDYNA
AFBVDYNA

VSF dynamic file allocation routine ANY

AFH5EMGN
AFBVEMGN

VSF message build routine ANY

AFH5EXIP
AFBVEXIP

VSF return code and exiting routine ANY

AFH5FINP
AFBVFINP

VSF file information routine ANY

AFH5FISC
AFBCFISC
AFBVFISC

VSF file name scan routine ANY

AFH5IIOS
AFBVIIOS

VSF internal I/O routine ANY

AFH5INQP
AFBVINQP
IFYVINQP

VSF INQUIRE processing routine ANY

AFH5INTH
AFBVINTH

VSF vector program interrupt handler ANY

AFH5IOCP
AFBVIOCP
IFYVIOCP

VSF I/O control processing ANY

AFH5IOFP
AFBVIOFP
IFYVIOFP

VSF formatted I/O router routine ANY

AFH5IOLP
AFBVIOLP
IFYVIOLP

VSF list-directed processor ANY

AFH5IONP
AFBVIONP
IFYVIONP

VSF NAMELIST processor ANY

AFH5IOUP
AFBVIOUP
IFYVIOUP

VSF unformatted I/O processor ANY

AFH5KIOS
AFBVKIOS

VSF keyed I/O processor 24

AFH5LINP
AFBVLINP
IFYVLINP

VSF shareable code load routine ANY

AFH5LOCA
AFBVLOCA

VSF offset locator routine ANY

214 z/OS V1R4.0 Language Environment Customization

Table 31. Fortran Modules Eligible for Inclusion in the Link Pack Area and the Extended Link
Pack Area (continued)

Fortran
Module Name

Description RMODE

AFH5MOPP
AFBVMOPP
IFYVMOPP

VSF extended error handling routine ANY

AFH5MSKL
AFBVMSKL

VSF message skeletons ANY

AFH5OCMP
AFBDDCMP
AFBVOCMP
IFYDDCMP

VSF dynamic COMMON processor routine ANY

AFH5OPEP
AFBVOPEP
IFYVOPEP

VSF OPEN processor routine ANY

AFH5RENA 1

AFBVRENA
AFH5RENA LIBPACK CSECT ANY

AFH5RENB 1

AFBVRENB
AFH5RENB LIBPACK CSECT 24

AFH5RENP 1

AFBVRENP
AFH5RENP LIBPACK CSECT ANY

AFH5SCOP
AFBVSCOP
IFYVSCOP

VSF pre-1.4 I/O interface ANY

AFH5SPAP
AFBVSPAP
IFYVSPAP

VSF array span calculator ANY

AFH5SPBP
AFBDSPAP
IFYDSPAP

VSF 1.4 array span calculator ANY

AFH5TIMP
AFBVTIMP

VSF obtain date and time routine ANY

AFH5TRCH
AFBVTRCH

VSF traceback routine ANY

AFH5UNIN
AFBVUNIN

VSF vector unnorm argument exception handler ANY

AFH5VDMQ
AFBVDUMQ
IFYVDUMQ

VSF PDUMP/CPDUMP service routine ANY

AFH5VINI
AFBVVINI

VSF vector common area initializer ANY

AFH5VIOS
AFBVVIOS

VSF non-keyed VSAM routine 24

AFH5VTEN
AFBVVTEN

VSF floating point conversion constants ANY

Note: AFH5RENA, AFH5RENB, and AFH5RENP are used only for applications that were
link-edited with VS FORTRAN Version 1 or 2 for execution in load mode.

Appendix D. Modules eligible for the link pack area 215

Language Environment PL/I Component Modules
The PL/I component modules and aliases listed in Table 32 can be moved into
LPA/ELPA using the sample job IBMALLP2 or IBMPLPA1 found in the SCEESAMP
data set. The Language Environment base modules listed in Table 28 on page 199
should also be moved into LPA/ELPA.

Table 32. PL/I Modules Eligible for Inclusion in the Link Pack Area and the Extended Link
Pack Area

PL/I Module
Name

Description RMODE

IBMREV10
CEEEV010

PL/I event handler ANY

CEEEV011 VisualAge PL/I event handler ANY

IBMRCCLA
IBMBCCLA

Conversion director (complex strings) 24

IBMRCCRA
IBMBCCRA

Conversion director (non-complex strings) 24

IBMRCOMP Conversion routines vector 24

IBMRDMPJ Dump formatter for Japanese ANY

IBMRDMPM Dump formatter for mixed-case U.S. English ANY

IBMRDMPU Dump formatter for uppercase English ANY

IBMREDOA
IBMBEDOA

Open diagnostic file module 24

IBMREDTA
IBMBEDTA

Diagnostic file transmitter 24

IBMREDWA
IBMBEDWA

Console transmitter 24

IBMREMT
IIBMMSGT

Message table ANY

IBMREOCA
IBMBEOCA

ON-code module / ON-code calculator ANY

IBMRKDBA
IBMBKDBA

Dump file transmitter 24

IBMRKDOA
IBMBKDOA

Open dump file 24

IBMRKDTA
IBMBKDTA

Dump file transmitter 24

CEEKMRA
IBMBKMRA
IBMRKMRA

Link to main dump control module 24

IBMRKPTA
IBMBKPTA

Dump parameter translate module 24

IBMRLANA
IBMBLANA

Language table (mixed-case U.S. English) 24

IBMRLANN
IBMBLANN

Language table (Japanese) 24

IBMRLANU
IBMBLANU

Language table (uppercase English) 24

IBMRLIB1 Lib pack (below the line) 24

216 z/OS V1R4.0 Language Environment Customization

Table 32. PL/I Modules Eligible for Inclusion in the Link Pack Area and the Extended Link
Pack Area (continued)

PL/I Module
Name

Description RMODE

IBMRLNTA
IBMBLNTA

Language table (mixed-case U.S. English) 24

IBMRLNTN
IBMBLNTN

Language table (Japanese) 24

IBMRLNTU
IBMBLNTU

Language table (uppercase English) 24

IBMRMCTA
IBMBMCTA

ERF/ERFC (extended float) 24

IBMROCAA
IBMBOCAA

Close module 24

IBMROPEA
IBMBOPEA

Open routine (VSAM) 24

IBMROPZA
IBMBOPZA

Direct output file formatter 24

IBMRPDBA
IBMBPDBA

Debugger interface module 24

IBMRPESA
IBMBPESA

ABEND analyzer 24

IBMRPEVA
IBMBPEVA

ABEND diagnostic message module 24

IBMRPTLA
IBMBPTLA

Transient library level data 24

IBMRRAAA
IBMBRAAA

IBMRRAI: regional sequential output 24

IBMRRABA
IBMBRABA

REG(1) sequential unbuffered transmitter 24

IBMRRACA
IBMBRACA

BSAM LOAD REG(2) buffered F-format transmitter 24

IBMRRADA
IBMBRADA

REG(2) SEQ. unbuffered transmitter 24

IBMRRAEA
IBMBRAEA

REG(3) buffered F-format transmitter 24

IBMRRAFA
IBMBRAFA

REG(3) sequential unbuffered F-format transmitter 24

IBMRRAGA
IBMBRAGA

REG(3) buffered U+V-format transmitter 24

IBMRRAHA
IBMBRAHA

REG(3) sequential unbuffered U+V-format transmitter 24

IBMRRAIA
IBMBRAIA

REG(3) buffered VS-format transmitter 24

IBMRRBAA
IBMBRBAA

BSAM REG(1) buffered F-format transmitter 24

IBMRRBBA
IBMBRBBA

BSAM REG(1) unbuffered F-format transmitter 24

Appendix D. Modules eligible for the link pack area 217

Table 32. PL/I Modules Eligible for Inclusion in the Link Pack Area and the Extended Link
Pack Area (continued)

PL/I Module
Name

Description RMODE

IBMRRBCA
IBMBRBCA

REG(2)+(3) buffered F-format transmitter 24

IBMRRBDA
IBMBRBDA

REG(2)+(3) unbuffered F-format transmitter 24

IBMRRBEA
IBMBRBEA

BSAM REG(3) buffered U+V-format transmitter 24

IBMRRBFA
IBMBRBFA

BSAM REG(3) update U+V-format transmitter 24

IBMRRBGA
IBMBRBGA

BSAM REG(3) input/update VS-format transmitter 24

IBMRRCAA
IBMBRCAA

BSAM (consecutive) F-format transmitter 24

IBMBRCBA
IBMRRCBA

BSAM (consecutive) U-format transmitter 24

IBMRRCCA
IBMBRCCA

BSAM (consecutive) V-format transmitter 24

IBMRRCDA
IBMBRCDA

Consecutive unbuffered OMR transmitter 24

IBMRRCEA
IBMBRCEA

Consecutive unbuffered device associated F-format transmitter 24

IBMRRDAA
IBMBRDAA

REG(1) direct F-format transmitter 24

IBMRRDBA
IBMBRDBA

REG(2)+(3) direct F-format transmitter 24

IBMRRDCA
IBMBRDCA

REG(3) direct U-format transmitter 24

IBMRRDDA
IBMBRDDA

REG(3) direct V+VS-format transmitter 24

IBMRREAA
IBMBREAA

Consecutive buffered record I/O error modules 24

IBMRREBA
IBMBREBA

QISAM+BISAM record I/O error modules 24

IBMRRECA
IBMBRECA

REG+SEQ+T.P. files record I/O error modules 24

IBMRREEA
IBMBREEA

VSAM record I/O error modules 24

IBMRREFA
IBMBREFA

Record I/O endfile module 24

IBMRRJAA
IBMBRJAA

QISAM (SCAN) F-format transmitter 24

IBMRRJBA
IBMBRJBA

QISAM (SCAN) V-format transmitter 24

IBMRRKAA
IBMBRKAA

IBMRRKC: indexed direct non-exclusive 24

218 z/OS V1R4.0 Language Environment Customization

Table 32. PL/I Modules Eligible for Inclusion in the Link Pack Area and the Extended Link
Pack Area (continued)

PL/I Module
Name

Description RMODE

IBMRRKBA
IBMBRKBA

BISAM F-format transmitter 24

IBMRRKCA
IBMBRKCA

BISAM V-format transmitter 24

IBMRRLAA
IBMBRLAA

QISAM (LOAD) F-format transmitter 24

IBMRRLBA
IBMBRLBA

QISAM (LOAD) V-format transmitter 24

IBMRRQAA
IBMBRQAA

QSAM F-format transmitter 24

IBMRRQBA
IBMBRQBA

QSAM V-format transmitter 24

IBMRRQCA
IBMBRQCA

QSAM U-format transmitter 24

IBMRRQDA
IBMBRQDA

QSAM paper tape transmitter 24

IBMRRQEA
IBMBRQEA

Buffered consecutive spanned record format input 24

IBMRRQFA
IBMBRQFA

Buffered consecutive spanned record format output 24

IBMRRQGA
IBMBRQGA

Buffered consecutive record format update 24

IBMRRQHA
IBMBRQHA

Consecutive buffered OMR 24

IBMRRQIA
IBMBRQIA

Consecutive buffered device associated 24

IBMRRTPA
IBMBRTPA

Teleprocessing buffered input/output files 24

IBMRRVAA
IBMBRVAA

ESDS transmitter 24

IBMRRVGA
IBMBRVGA

KSDS sequential output 24

IBMRRVHA
IBMBRVHA

KSDS or PATH input/update/direct 24

IBMRRVIA
IBMBRVIA

VSAM RRDS 24

IBMRRXAA
IBMBRXAA

REG(1) direct F-format exclusive transmitter 24

IBMRRXBA
IBMBRXBA

REG(2)+(3) direct F-format exclusive transmitter 24

IBMRRXCA
IBMBRXCA

REG(3) direct U-format exclusive transmitter 24

IBMRRXDA
IBMBRXDA

REG(3) direct V+VS-format exclusive transmitter 24

Appendix D. Modules eligible for the link pack area 219

Table 32. PL/I Modules Eligible for Inclusion in the Link Pack Area and the Extended Link
Pack Area (continued)

PL/I Module
Name

Description RMODE

IBMRRYAA
IBMBRYAA

BISAM F-format transmitter 24

IBMRRYBA
IBMBRYBA

BISAM FB-format transmitter 24

IBMRRYCA
IBMBRYCA

BISAM V-format transmitter 24

IBMRRYDA
IBMBRYDA

BISAM VB-format transmitter 24

IBMRSAP
IBMESAP

CICS bootstrap 24

IBMRSICA
IBMBSICA

Conversational input transmitter 24

IBMRSOCA
IBMBSOCA

Conversational output transmitter 24

IBMRSOFA
IBMBSOFA

Output file transmitter (F-format) 24

IBMRSOUA
IBMBSOUA

Output file transmitter (U-format) 24

IBMRSOVA
IBMBSOVA

Output file transmitter (V-format) 24

IBMRSPCA
IBMBSPCA

Conversational file formatting 24

IBMRSTFA
IBMBSTFA

Print file transmitter (F-record) 24

IBMRSTIA
IBMBSTIA

Input file transmitter 24

IBMRSTUA
IBMBSTUA

Print file transmitter (U-record) 24

IBMRSTVA
IBMBSTVA

Print file transmitter (V-record) 24

IBMSOPAA
IBMBOPAA

Open 24

IBMUPJR0
IBMTPJRA

OS PL/I multitasking load module compatibility 24

IBM9LMSA NLS mixed-case message source ANY

IBM9LMSN NLS Japanese message source ANY

IBM9LMSU NLS uppercase message source ANY

IBM9LM2A NLS mixed-case message ANY

IBM9LM2N NLS Japanese message ANY

IBM9LM2U NLS uppercase English message ANY

220 z/OS V1R4.0 Language Environment Customization

Appendix E. Modifying the JCL for Japanese National
Language Support

The table below specifies additional changes you will need to make in the sample
customization jobs if you want to install Language Environment Japanese NLS on
the MVS platform.

Table 33. Japanese National Language Support (NLS) JCL Modifications

For this MVS Job... Modify the JCL like this...

CEEWDXIT
CEEWCXIT
CEEWUXIT

Change the NATLANG run-time option default in the CEEXOPT
macro to NATLANG=(JPN).

IGZWMLP4 To store the Japanese module in the link-pack area, remove the
IGZCMGEN module name and add the IGZCMGJA module name.

© Copyright IBM Corp. 1991, 2002 221

222 z/OS V1R4.0 Language Environment Customization

Appendix F. Language Environment National Language
Support Country Codes

The following table contains valid country identifiers along with their respective
countries:

Table 34. Country Codes

Code Country/Region Code Country/Region

AD Andorra AE United Arab Emirates
AF Afghanistan AG Antigua and Barbuda
AL Albania AN Netherlands Antilles
AO Angola AR Argentina
AT Austria AU Australia
BA Bosnia/ Herzegovina BB Barbados
BD Bangladesh BE Belgium
BF Burkina Faso (Upper Volta) BG Bulgaria
BH Bahrain BI Burundi
BJ Benin BM Bermuda
BN Brunei Darussalam BO Bolivia
BR Brazil BS Bahamas
BU Burma BW Botswana
CA Canada CF Central African Republic
CG Congo CH Switzerland
CI Ivory Coast CL Chile
CM Cameroon CN People’s Republic of China
CO Colombia CR Costa Rica
CS Czechoslovakia CU Cuba
CY Cyprus CZ Czech Republic
DE Germany DK Denmark
DO Dominican Republic DZ Algeria
EC Ecuador EE Estonia
EG Egypt ES Spain
ET Ethiopia FI Finland
FR France GA Gabon
GB United Kingdom GH Ghana
GM Gambia GN Guinea
GR Greece GT Guatemala
GW Guinea-Bissau GY Guyana
HK China (Hong Kong S.A.R.) HN Honduras
HR Croatia HT Haiti
HU Hungary ID Indonesia
IE Ireland IL Israel
IN India IQ Iraq
IR Iran IS Iceland
IT Italy JM Jamaica
JO Jordan JP Japan
KE Kenya KR Korea, Republic of
KW Kuwait KY Cayman Islands
LB Lebanon LC Saint Lucia
LI Lichtenstein LK Sri Lanka
LR Liberia LS Lesotho
LT Lithuania LU Luxembourg
LV Latvia LY Libya
MA Morocco MC Monaco

© Copyright IBM Corp. 1991, 2002 223

Table 34. Country Codes (continued)

Code Country/Region Code Country/Region

MG Madagascar MK Macedonia
ML Mali MO China (Macau S.A.R.)
MR Mauritania MT Malta
MU Mauritius MW Malawi
MX Mexico MY Malaysia
MZ Mozambique NA Namibia
NC New Caledonia NG Nigeria
NE Niger NI Nicaragua
NL Netherlands NO Norway
NZ New Zealand OM Oman
PA Panama PE Peru
PG Papua New Guinea PH Philippines
PK Pakistan PL Poland
PR Puerto Rico PT Portugal
PY Paraguay QA Qatar
RO Romania RU Russian Federation
SA Saudi Arabia SC Seychelles
SD Sudan SE Sweden
SG Singapore SI Slovenia
SK Slovakia SL Sierra Leone
SN Senegal SO Somalia
SR Surinam SU Union of Soviet Socialist Republics
SV El Salvador SY Syria
SZ Swaziland TD Chad
TG Togo TH Thailand
TN Tunisia TR Turkey
TT Trinidad and Tobago TW Taiwan
TZ Tanzania UG Uganda
US United States UY Uruguay
VE Venezuela VU Vanuatu
WS Western Samoa YE Yemen
YU Yugoslavia ZA South Africa
ZM Zambia ZR Zaire
ZW Zimbabwe

224 z/OS V1R4.0 Language Environment Customization

Appendix G. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

© Copyright IBM Corp. 1991, 2002 225

226 z/OS V1R4.0 Language Environment Customization

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1991, 2002 227

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

228 z/OS V1R4.0 Language Environment Customization

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This book documents intended Programming Interfaces that allow the customer to
write programs to obtain the services of Language Environment in OS/390. This
publication also documents information that is NOT intended to be used as a
Programming Interface of Language Environment.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States and
other countries:

AD/Cycle
AS/400
C++ / MVS
C/370
C/400
CICS/ESA
COBOL/370
DB2
DFSMS/MVS
DFSORT
IBM
IBMLink
IMS/ESA
Language Environment
MVS/ESA
Resource Link
VisualAge
z/OS
z/OS.e
z/Series

Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product and service names may be trademarks or service marks of
others.

Notices 229

230 z/OS V1R4.0 Language Environment Customization

Bibliography

This section lists the books in the Language Environment library and other
publications that may be helpful when using Language Environment.

Language Products Publications
z/OS Language Environment
v z/OS Language Environment Concepts Guide, SA22-7567
v z/OS Language Environment Programming Guide, SA22-7561
v z/OS Language Environment Programming Reference, SA22-7562
v z/OS Language Environment Customization, SA22-7564
v z/OS Language Environment Debugging Guide, GA22-7560
v z/OS Language Environment Run-Time Migration Guide, GA22-7565
v z/OS Language Environment Writing Interlanguage Communication Applications,

SA22-7563
v z/OS Language Environment Run-Time Messages, SA22-7566
v z/OS Language Environment Vendor Interfaces, SA22-7568

z/OS C/C++
v C/C++ Language Reference, SC09-4815
v z/OS C/C++ Compiler and Run-Time Migration Guide, GC09-4913
v z/OS C/C++ Programming Guide, SC09-4765
v z/OS C/C++ User’s Guide, SC09-4767
v z/OS C/C++ Run-Time Library Reference, SA22-7821
v z/OS C/C++ Messages, GC09-4819
v IBM Open Class Library User’s Guide, SC09-4811
v IBM Open Class Library Reference, Vol. 1, SC09-4812
v IBM Open Class Library Reference, Vol. 2, SC09-4813
v IBM Open Class Library Reference, Vol. 3, SC09-4814

Enterprise COBOL for z/OS and OS/390
v Enterprise COBOL for z/OS and OS/390 Licensed Program Specifications,

GC27-1410
v Enterprise COBOL for z/OS and OS/390 Customization, GC27-1410
v Enterprise COBOL for z/OS and OS/390 Language Reference, SC27-1408
v Enterprise COBOL for z/OS and OS/390 Programming Guide, SC27-1412
v Enterprise COBOL for z/OS and OS/390 Migration Guide, GC27-1409

COBOL for OS/390 & VM
v COBOL for OS/390 & VM Licensed Program Specifications, GC26-9044
v COBOL for OS/390 & VM Customization under OS/390, GC26-9045
v COBOL for OS/390 & VM Language Reference, SC26-9046
v COBOL for OS/390 & VM Programming Guide, SC26-9049
v COBOL for OS/390 & VM Compiler and Run-Time Migration Guide, GC26-4764

COBOL for MVS & VM (Release 2)
v Licensed Program Specifications, GC26-4761
v Programming Guide, SC26-4767
v Language Reference, SC26-4769
v Compiler and Run-Time Migration Guide, GC26-4764
v Installation and Customization under MVS, SC26-4766
v Reference Summary, SX26-3788
v Diagnosis Guide, SC26-3138

© Copyright IBM Corp. 1991, 2002 231

VS COBOL II
VS COBOL II Application Programming Guide for MVS and CMS, SC26-4045

Debug Tool
v Debug Tool User’s Guide and Reference, SC09-2137

VS FORTRAN Version 2
v Language Environment Fortran Run-Time Migration Guide, SC26-8499
v Language and Library Reference, SC26-4221
v Programming Guide for CMS and MVS, SC26-4222

Enterprise PL/I for z/OS and OS/390, V3R1
v Enterprise PL/I for z/OS and OS/390 Licensed Program Specifications,

GC27-1456
v Enterprise PL/I for z/OS and OS/390 Programming Guide, SC27-1457
v Enterprise PL/I for z/OS and OS/390 Language Reference, SC27-1460
v Enterprise PL/I for z/OS and OS/390 Migration Guide, GC27-1458
v Enterprise PL/I for z/OS and OS/390 Messages and Codes, SC27-1461
v Enterprise PL/I for z/OS and OS/390 Diagnosis Guide, SC27-1459

VisualAge PL/I
v VisualAge PL/I for OS/390 Licensed Program Specifications, GC26-9471
v VisualAge PL/I for OS/390 Programming Guide, SC26-9473
v VisualAge PL/I Language Reference, SC26-9476
v VisualAge PL/I for OS/390 Compiler and Run-Time Migration Guide, SC26-9474
v VisualAge PL/I Messages and Codes, SC26-9478
v VisualAge PL/I for OS/390 Diagnosis Guide, SC26-9475

PL/I for MVS & VM
v PL/I for MVS & VM Licensed Program Specifications, GC26-3116
v PL/I for MVS & VM Programming Guide, SC26-3113
v PL/I for MVS & VM Language Reference, SC26-3114
v PL/I for MVS & VM Reference Summary, SX26-3821
v PL/I for MVS & VM Compiler and Run-Time Migration Guide, SC26-3118
v PL/I for MVS & VM Installation and Customization under MVS, SC26-3119
v PL/I for MVS & VM Compile-Time Messages and Codes, SC26-3229
v PL/I for MVS & VM Diagnosis Guide, SC26-3149

High Level Assembler for MVS & VM
v Programmer’s Guide, MVS & VM Edition, SC26-4941

Related Publications
CICS
v CICS Transaction Server for OS/390 Installation Guide, GC34-5985
v CICS Operations and Utilities Guide, SC34-5991
v CICS Problem Determination Guide, GC34-6002
v CICS Resource Definition Guide, SC34-5990
v CICS Data Areas, LY33-6100
v CICS Application Programming Guide, SC34-5993
v CICS Application Programming Reference, SC34-5994
v CICS System Definition Guide, SC34-5988

DB2
Database 2 Application Programming and SQL Guide, SC26-4377

232 z/OS V1R4.0 Language Environment Customization

DFSMS/MVS
z/OS DFSMS Program Management, SC27-1130
z/OS DFSMS DFM Guide and Reference, SC26-7395

IPCS
v z/OS MVS IPCS User’s Guide, SA22-7596
v z/OS MVS IPCS Commands, SA22-7594
v z/OS MVS IPCS Customization, SA22-7595

DFSORT
DFSORT Application Programming Guide R14, SC33-4035

IMS/ESA
IMS/ESA Application Programming: Design Guide, SC26-8728
IMS/ESA Application Programming: Database Manager, SC26-8727
IMS/ESA Application Programming: Transaction Manager, SC26-8729
IMS/ESA Application Programming: EXEC DLI Commands for CICS and IMS,
SC26-8726

msys for Setup
v z/OS Managed System Infrastructure for Setup User’s Guide, SC33-7985

z/OS
v z/OS Introduction and Release Guide, GA22-7502
v z/OS Program Directory, GI10-0670
v z/OS and z/OS.e Planning for Installation, GA22-7504
v z/OS Information Roadmap, SA22-7500
v z/OS Hot Topics Newsletter, GA22-7501
v z/OS Licensed Program Specifications, GA22-7503
v

v z/OS ISPF Dialog Tag Language Guide and Reference, SC34-4824
v z/OS ISPF Planning and Customizing, GC34-4814
v z/OS ISPF Dialog Developer’s Guide and Reference, SC34-4821
v

v z/OS UNIX System Services User’s Guide, SA22-7801
v z/OS UNIX System Services Command Reference, SA22-7802
v z/OS UNIX System Services Programming: Assembler Callable Services

Reference, SA22-7803
v z/OS UNIX System Services Planning, GA22-7800
v

v z/OS TSO/E Customization, SA22-7783
v z/OS TSO/E Programming Services, SA22-7789
v z/OS TSO/E System Programming Command Reference, SA22-7793

z/OS.e
v z/OS.e Overview, GA22-7869
v z/OS.e Licensed Program Specifications, GA22-7503

Softcopy Publications
z/OS Collection, SK3T-4269

Bibliography 233

234 z/OS V1R4.0 Language Environment Customization

Index

A
abend

CEEEXTAN CSECT 33
CICS 35
customization job 34
identifying 33
non-CICS (MVS batch) 35

abnormal termination exit
CEEEXTAN CSECT 33
CICS 35
customization job 34
identifying 33
non-CICS (MVS batch) 35

ABPERC run-time option 68
ABTERMENC run-time option 69
accessibility 225
AIXBLD run-time option 71
ALL31 run-time option 72
ANYHEAP run-time option 73
AUTOTASK run-time option 75

B
BELOWHEAP run-time option 76

C
C

customizing locale time 195
options 196, 197
system programming facilities 197

cataloged procedure
list of 39
making available to your jobs 40

CBLOPTS run-time option 77
CBLPSHPOP run-time option 78
CBLQDA run-time option 79
CEEBDATX abnormal termination exit 33
CEECOPT 21
CEEDOPT 21
CEEROPT 26
CEEUOPT 21
CEEWCOPT 21
CEEWCXIT 27, 28
CEEWDEXT 27, 28, 33
CEEWDOPT 21
CEEWDXIT 27, 28
CEEWHLLX 27, 28, 32
CEEWROPT 26
CEEWUOPT 21
CEEWUXIT 27, 28
CEEXOPT macro 21
CHECK run-time option 80
CICS

customizing
abnormal termination exit 35
run-time options 26

CICS (continued)
installing Language Environment support for 49

COBOL
compatibility with Language Environment

options 67
run-time options specific to 67

COBPACK xviii
command

syntax diagrams xiii
condition nesting 82
COUNTRY run-time option 80, 223
CSECT

CEECOPT, CICS macro
modifying 26
sample of 23

CEEDOPT, non-CICS macro
modifying 25
sample of 22

customizing
Fortran 65
high-level language user exit 32
job samples 21
procedure 1, 64

Customizing locale time 195

D
Daylight Saving Time (DST) C option 196
DCT (destination control table). 50
DEBUG run-time option 81
DEPTHCONDLMT run-time option 82
Description of Language Environment Target

Libraries 3
destination control table (DCT) 50
disability 225
documents, licensed xv
DSTEND (C option) 197
DSTENM (C option) 196
DSTENW (C option) 196
DSTNAME (C option) 196
DSTSTD (C option) 196
DSTSTM (C option) 196
DSTSTW (C option) 196

E
ELPA (extended link pack area) 199
ENDTM (C option) 197
ENVAR run-time option 84
ERRCOUNT run-time option 85
ERRUNIT run-time option 86
exit

abnormal termination 33
high-level language user 32

© Copyright IBM Corp. 1991, 2002 235

F
FILEHIST run-time option 87
FILETAG run-time option 88
Fortran

customizing for Fortran applications 65, 66, 163,
184

LIBPACKs
tailoring Fortran LIBPACKs 44, 48, 184, 195

H
HEAP run-time option 90
high-level language user exit 32

I
IMS

performance considerations 57
INQPCOPN run-time option 97
installation

support for CICS 49
INTERRUPT run-time option 97

J
JCL (Job Control Language)

common modifications
for customization 1

Job Control Language (JCL)
common modifications

for customization 1

K
keyboard 225

L
Language Environment

customizing 1
LC_TOD, C locale time information 195
library 39
library routine retention 57
LIBSTACK run-time option 99
licensed documents xv
link pack area (LPA).

installing Language Environment into 199
locale time information, C 195
LookAt message retrieval tool xvi
LPA (link pack area)

installing Language Environment into 199

M
message retrieval tool, LookAt xvi
MSGFILE run-time option 101
MSGQ run-time option 104

Multiple Virtual System (MVS)
customizing

C locale time 195
installing

in a link pack area 199

N
National Language Support (NLS) 221
NATLANG run-time option 105
nested conditions

limiting 82
Notices 227

O
OCSTATUS run-time option 107
OS/VS COBOL 60

P
passing

parameters at invocation 67, 77
run-time options at invocation 67, 77

PC run-time option 108
performance

considerations for IMS 57
procedure, cataloged

list of 39
making available to your jobs 40

PRTUNIT run-time option 111
PUNUNIT run-time option 112

R
RDRUNIT run-time option 113
RECPAD run-time option 113
RPTOPTS run-time option 114
RPTSTG run-time option 117
RTEREUS run-time option 127
run-time options 67

ABPERC—percolate an abend 68
ABTERMENC—determine how an enclave

terminates 69
AIXBLD—invoke AMS for COBOL 71
ALL31—indicate whether application runs in

AMODE(31) 72
ANYHEAP—control unrestricted library heap

storage 73
AUTOTASK—specify whether Fortran MTF is to be

used 75
BELOWHEAP—control library heap storage below 16

MB 76
CBLOPTS—specify format of COBOL argument 77
CBLPSHPOP—control CICS commands 78
CBLQDA—control COBOL QSAM 79
CHECK—detect checking errors 80
COBOL-specific 67
COUNTRY—specify default date/time formats 80
DEBUG—activate COBOL batch debugging 81

236 z/OS V1R4.0 Language Environment Customization

run-time options (continued)
DEPTHCONDLMT—limit extent of nested

conditions 82
ENVAR—set initial values for environment

variables 84
ERRCOUNT—specify number of errors allowed 85
ERRUNIT—specify unit number to which error

information is directed 86
FILEHIST—specify whether to allow a file definition

to be changed at run time 87
FILETAG—specify whether to allow AUTOTAG /

AUTOCVT. 88
HEAP—control allocation of heaps 90
HEAPCK—runs additional heap check tests 92
HEAPPOOLS—control allocation of optional heap

pools storage 94
INFOMSGFILTER—eliminates unwanted

informational messages 95
INQPCOPN—control value in OPENED specifier of

INQUIRE by unit statement 97
INTERRUPT—cause attentions to be recognized by

Language Environment 97
LIBRARY—logical library name for finding RTLS

modules 98
LIBSTACK—control library stack storage 99
MSGFILE—specify ddname of diagnostic file 101
MSGQ—specify number of ISI blocks allocated 104
NATLANG—specify national language 105
OCSTATUS—control checking of file existence and

whether file deletion occurs 107
PC—control whether Fortran status common blocks

are shared among load modules 108
PLITASKCOUNT—control the maximum number of

active tasks 109
POSIX—specify whether enclave runs with POSIX

semantics 109
PROFILE—controls optional PROFILE use 111
PRTUNIT—specifies unit number used for PRINT

and WRITE statements 111
PUNUNIT—specifies unit number used for PUNCH

statements 112
RDRUNIT—specifies unit number used for READ

statements 113
RECPAD—specifies whether a formatted input record

is padded with blanks 113
RPTOPTS—generate a report of run-time options

used 114
RPTSTG—generate a report of storage used 117
RTEREUS—initialize a reusable COBOL

environment 127
RTLS—specifies version-controlled libraries 128
SIMVRD—specify VSAM KSDS for COBOL 129
STACK—allocate stack storage 130
STORAGE—control storage 133
TERMTHDACT—specify type of information

generated with unhandled error 136
TEST—indicate debug tool to gain control 142
THREADHEAP—control the allocation of thread-level

heap storage 145
THREADSTACK—control the allocation of stack

storage 146

run-time options (continued)
TRACE—activate Language Environment run-time

library tracing 149
TRAP—handle abends and program interrupts 151
UPSI—set UPSI switches. 153
USRHDLR—register a user condition handler at

stack frame 0 154
VCTRSAVE—use vector facility 155
VERSION—specifies version for finding RTLS

modules 156
XUFLOW—specify program interrupt due to

exponent underflow 157

S
sample job

Fortran 65
high-level language user exit 32
job samples 21
procedure 1, 64

SHIFT C option 197
shortcut keys 225
SIMVRD run-time option 129
SPC (system programmer C) 197
STACK run-time option 130
STARTTM C option 197
storage

required for MVS
link pack area for MVS 199

STORAGE run-time option 133
syntax diagrams

how to read xiii
system programming facilities, C 197

T
TERMTHDACT run-time option 136
TEST run-time option 142
THREADSTACK run-time option 146
TNAME C option 196
TRACE run-time option 149
TRAP run-time option 151
TSO/E LOGON procedure 39
TZDIFF C option 196

U
UPSI run-time option 67

ABPERC—percolate an abend 68
ABTERMENC—determine how an enclave

terminates 69
AIXBLD—invoke AMS for COBOL 71
ALL31—indicate whether application runs in

AMODE(31) 72
ANYHEAP—control unrestricted library heap

storage 73
AUTOTASK—specify whether Fortran MTF is to be

used 75
BELOWHEAP—control library heap storage below 16

MB 76
CBLOPTS—specify format of COBOL argument 77

Index 237

UPSI run-time option (continued)
CBLPSHPOP—control CICS commands 78
CBLQDA—control COBOL QSAM 79
CHECK—detect checking errors 80
COBOL-specific 67
COUNTRY—specify default date/time formats 80
DEBUG—activate COBOL batch debugging 81
DEPTHCONDLMT—limit extent of nested

conditions 82
ENVAR—set initial values for environment

variables 84
ERRCOUNT—specify number of errors allowed 85
ERRUNIT—specify unit number to which error

information is directed 86
FILEHIST—specify whether to allow a file definition

to be changed at run time 87
FILETAG—specify whether to allow AUTOTAG /

AUTOCVT. 88
HEAP—control allocation of heaps 90
HEAPCK—runs additional heap check tests 92
HEAPPOOLS—control allocation of optional heap

pools storage 94
INFOMSGFILTER—eliminates unwanted

informational messages 95
INQPCOPN—control value in OPENED specifier of

INQUIRE by unit statement 97
INTERRUPT—cause attentions to be recognized by

Language Environment 97
LIBRARY—logical library name for finding RTLS

modules 98
LIBSTACK—control library stack storage 99
MSGFILE—specify ddname of diagnostic file 101
MSGQ—specify number of ISI blocks allocated 104
NATLANG—specify national language 105
OCSTATUS—control checking of file existence and

whether file deletion occurs 107
PC—control whether Fortran status common blocks

are shared among load modules 108
PLITASKCOUNT—control the maximum number of

active tasks 109
POSIX—specify whether enclave runs with POSIX

semantics 109
PROFILE—controls optional PROFILE use 111
PRTUNIT—specifies unit number used for PRINT

and WRITE statements 111
PUNUNIT—specifies unit number used for PUNCH

statements 112
RDRUNIT—specifies unit number used for READ

statements 113
RECPAD—specifies whether a formatted input record

is padded with blanks 113
RPTOPTS—generate a report of run-time options

used 114
RPTSTG—generate a report of storage used 117
RTEREUS—initialize a reusable COBOL

environment 127
RTLS—specifies version-controlled libraries 128
SIMVRD—specify VSAM KSDS for COBOL 129
STACK—allocate stack storage 130
STORAGE—control storage 133

UPSI run-time option (continued)
TERMTHDACT—specify type of information

generated with unhandled error 136
TEST—indicate debug tool to gain control 142
THREADHEAP—control the allocation of thread-level

heap storage 145
THREADSTACK—control the allocation of stack

storage 146
TRACE—activate Language Environment run-time

library tracing 149
TRAP—handle abends and program interrupts 151
UPSI—set UPSI switches. 153
USRHDLR—register a user condition handler at

stack frame 0 154
VCTRSAVE—use vector facility 155
VERSION—specifies version for finding RTLS

modules 156
XUFLOW—specify program interrupt due to

exponent underflow 157
user

exit
high-level language 32

USRHDLR run-time option 154

V
VCTRSAVE run-time option 155

W
worksheet

changing run-time option defaults
on MVS 19

X
XUFLOW run-time option 157

238 z/OS V1R4.0 Language Environment Customization

Readers’ Comments — We’d Like to Hear from You

z/OS
Language Environment
Customization

Publication No. SA22-7564-03

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7564-03

SA22-7564-03

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY

12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Program Number: 5694-A01, 5655–G52

Printed in U.S.A.

SA22-7564-03

	Contents
	Figures
	Tables
	About this document
	Using your documentation
	How to read syntax diagrams
	Symbols
	Syntax items
	Syntax examples

	Where to find more information
	Accessing z/OS licensed documents on the Internet
	Using LookAt to look up message explanations

	Summary of Changes
	Chapter 1. Customization Overview
	Deciding Whether and What to Customize

	Chapter 2. Description of Language Environment target libraries
	History of Changes

	Chapter 3. Choosing your Language Environment run-time library access
	Methods of Language Environment data set access
	LNKLST
	STEPLIB
	Run-time library services (RTLS)

	Setting up run-time library services (RTLS)
	Saving your environment
	Setting up RTLS in PARMLIB
	Setting Run-Time Options

	Controlling Other Data Sets with RTLS
	Performance Considerations
	Restrictions

	Chapter 4. Customizing Language Environment Run-Time Options
	Setting Default Options with the CEEXOPT Macro
	Changing Installation-Wide Run-Time Options Defaults (Non-CICS)
	Changing Installation-Wide Run-Time Options Defaults (CICS)
	Creating a Region-Specific Run-Time Options Load Module
	Creating an Application-Specific Run-Time Options Module

	Chapter 5. Customizing User Exits
	An Example
	Changing the Assembler Language User Exit
	Changing the Installation-Wide Assembler Language User Exit (Non-CICS)
	Changing the Installation-Wide Assembler Language User Exit (CICS)
	Creating an Application-Specific Assembler Language User Exit

	Changing the High-Level Language User Exit
	Customizing Language Environment Abnormal Termination Exits
	Creating a Language Environment Abnormal Termination Exit
	CEEEXTAN Abnormal Termination Exit CSECT
	Jobs to Generate and Modify CEEEXTAN CSECT

	Identifying the Abnormal Termination Exit (Non-CICS)
	Identifying the Abnormal Termination Exit (CICS)

	Creating a Load Notification User Exit
	Identifying the Load Notification User Exit
	CEEBLNUE CSECT
	CEEBLNUE Sample

	Creating a Storage Tuning User Exit

	Chapter 6. Customizing the Cataloged Procedures
	Making the cataloged procedure library available to your jobs
	How to Do It

	Tailoring the Cataloged Procedures and CLISTs to Your Site

	Chapter 7. Placing Language Environment Modules in Link Pack and LIBPACK
	Tailoring the Fortran LIBPACKs
	Choices to Make Now
	Some Examples
	Listing the contents of Fortran LIBPACKs
	Steps for modifying the JCL for AFHWLIST

	Deleting Routines from Fortran LIBPACKs
	Steps for modifying the JCL to delete routines from a Fortran LIBPACK

	Adding Routines to Fortran LIBPACKs
	Steps for Modifying the JCL for adding routines to a Fortran LIBPACK

	Where to Place the Tailored Fortran LIBPACKs

	Chapter 8. Using Language Environment under CICS
	Add program resource definitions for CICS
	Add destination control table (DCT) entries
	Add Language Environment-CICS Data Sets to the CICS Startup Job Stream
	Language Environment automatic storage tuning for CICS
	Enclaves eligible for automatic storage tuning
	Automatic storage tuning behavior
	Altering the automatic storage tuning behavior

	Chapter 9. Using Language Environment under IMS
	Initializing Library Routine Retention
	Terminating Library Routine Retention

	Chapter 10. Customizing Language-Specific Features
	Choices to Make Now
	Modifying the OS/VS COBOL compatability library routines
	OS/VS COBOL Considerations
	VSAM Considerations
	JOB STEP ERROR COMPLETION CODE (RC12/ABEND U0295)
	IF NUMERIC CLASS TEST allows only C, D, and F

	Modifying the COBOL Parameter List Exit
	Modifying the COBOL Reusable Environment
	Changing the C/C++ locale time information
	Steps for modifying the JCL for EDCLLOCL

	Chapter 11. Customizing for Fortran applications
	Tailoring the Language Environment Fortran Unit Attribute Table
	Tailoring the VS FORTRAN Compatibility Unit Attribute Table
	Tailoring VS FORTRAN Compatibility Run-Time Options
	Tailoring the VS FORTRAN Compatibility Error Option Table

	Chapter 12. Language Environment Run-Time Options
	COBOL Compatibility
	Run-time options
	ABPERC
	CICS consideration
	Usage Notes
	For More Information

	ABTERMENC
	CICS considerations
	Usage Notes
	For more information

	AIXBLD (COBOL Only)
	CICS consideration
	Usage Notes
	Performance Considerations
	For More Information

	ALL31
	CICS considerations
	Usage Notes
	Performance Consideration
	For More Information

	ANYHEAP
	CICS consideration
	Usage Notes
	Performance Considerations
	For More Information

	AUTOTASK | NOAUTOTASK (Fortran Only)
	CICS consideration

	BELOWHEAP
	CICS consideration
	Usage Notes
	Performance Considerations
	For More Information

	CBLOPTS (COBOL Only)
	CICS consideration
	Usage Note
	For More Information

	CBLPSHPOP (COBOL Only)
	CICS consideration
	For More Information

	CBLQDA (COBOL Only)
	CICS consideration
	Usage Notes

	CHECK (COBOL Only)
	CICS consideration
	Usage Note
	Performance Consideration

	COUNTRY
	CICS consideration
	Usage Notes
	For More Information

	DEBUG (COBOL Only)
	CICS consideration
	Usage Note
	Performance Consideration
	For More Information

	DEPTHCONDLMT
	CICS consideration
	Usage Notes
	For More Information

	ENVAR
	CICS consideration
	Usage Notes
	For More Information

	ERRCOUNT
	CICS consideration
	Usage Notes
	For More Information

	ERRUNIT (Fortran Only)
	CICS consideration

	FILEHIST (Fortran Only)
	CICS consideration
	Usage Notes

	FILETAG (C/C++ only)
	z/OS UNIX consideration
	Usage notes

	HEAP
	CICS consideration
	Usage Notes
	Performance Considerations
	For More Information

	HEAPCHK
	CICS consideration
	Usage Notes
	For More Information

	HEAPPOOLS (C/C++ only)
	CICS consideration
	Usage Notes
	Performance Consideration

	INFOMSGFILTER
	CICS consideration

	INQPCOPN (Fortran Only)
	CICS consideration
	Usage Notes

	INTERRUPT
	CICS consideration
	Usage Notes
	For More Information

	LIBRARY
	CICS consideration
	Usage Notes

	LIBSTACK
	CICS considerations
	Usage Notes
	Performance Considerations
	For More Information

	MSGFILE
	CICS consideration
	Usage Notes
	For More Information

	MSGQ
	CICS consideration
	Usage Note
	For More Information

	NATLANG
	CICS consideration
	Usage Notes
	For More Information

	OCSTATUS (Fortran Only)
	CICS consideration
	Usage Notes

	PC (Fortran Only)
	CICS consideration
	Usage Notes

	PLITASKCOUNT (PL/I Only)
	CICS consideration
	Usage Notes

	POSIX
	CICS consideration
	Usage Notes
	For More Information

	PROFILE
	CICS consideration
	Usage Note

	PRTUNIT (Fortran Only)
	CICS consideration

	PUNUNIT (Fortran Only)
	CICS consideration

	RDRUNIT (Fortran Only)
	CICS consideration

	RECPAD (Fortran Only)
	CICS consideration
	Usage Notes

	RPTOPTS
	CICS consideration
	Usage Notes
	Performance Considerations
	For More Information

	RPTSTG
	CICS consideration
	Usage Notes
	Performance Considerations
	For More Information

	RTEREUS (COBOL Only)
	CICS consideration
	Usage notes
	Performance considerations
	For more information

	RTLS
	CICS consideration
	Usage Notes

	SIMVRD (COBOL Only)
	CICS consideration
	Usage Notes
	For More Information

	STACK
	CICS consideration
	Usage Notes
	Performance Considerations
	For More Information

	STORAGE
	CICS consideration
	Usage Notes
	Performance Considerations

	TERMTHDACT
	CICS consideration
	Usage Notes
	For More Information

	TEST | NOTEST
	CICS consideration
	Usage Notes
	Performance Consideration
	For More Information

	THREADHEAP
	CICS consideration
	Usage Notes

	THREADSTACK
	CICS consideration
	Usage Notes
	For More Information

	TRACE
	CICS consideration
	Usage Notes
	For More Information

	TRAP
	CICS consideration
	Usage Notes
	For More Information

	UPSI (COBOL Only)
	CICS consideration
	Usage Note
	For More Information

	USRHDLR
	CICS consideration
	Usage Notes
	For More Information

	VCTRSAVE
	CICS consideration
	Usage Note
	Performance Considerations

	VERSION
	CICS consideration
	Usage Notes

	XUFLOW
	CICS consideration
	Usage Notes

	Appendix A. Customizing Language Environment run-time options using z/OS msys for Setup
	Who should use msys for Setup?
	What is the Language Environment customization task?
	Recommendations when using msys for Setup for Language Environment customization
	Restrictions when using msys for Setup for Language Environment customization
	Where to find information about msys for Setup

	Appendix B. Using Fortran with Language Environment
	Customizing for Fortran applications link-edited with Language Environment
	Changing the unit attribute table default values
	Starting the unit attribute table definition using the AFHOUTCM macro
	Associating Units with DCB Characteristics Using the AFHOUNTM Macro
	Specifying the DCB Characteristics Using the AFHODCBM Macro
	Ending the Unit Attribute Table Definition Using the AFHOUTCM Macro
	IBM-Supplied Unit Attribute Table Default Values
	Examples of Changing Unit Attribute Table Default Values

	Customizing for Fortran Applications Link-Edited with VS FORTRAN
	Changing the Unit Attribute Table Default Values
	Starting the Unit Attribute Table Definition Using the VSF2UAT Macro
	Associating Units with DCB Characteristics Using the VSF2UNIT Macro
	Specifying the DCB Characteristics Using the VSF2DCB Macro
	Ending the Unit Attribute Table Definition Using the VSF2UAT Macro
	IBM-Supplied Unit Attribute Table Default Values
	Examples of Changing Unit Attribute Table Default Values

	Changing VS FORTRAN Run-Time Option Defaults
	Changing the Error Option Table Defaults

	Customizing Fortran LIBPACKs
	Contents of the Fortran LIBPACK AFHPRNAG
	Contents of the Fortran LIBPACK AFHPRNBG
	Contents of the Fortran LIBPACK AFH5RENA
	Contents of the Fortran LIBPACK AFH5RENB

	Appendix C. Using IBM C/C++ with Language Environment
	Planning to Customize Locale Time Information
	Customizing the Locale Time Information
	Time Information Options Reference

	System Programming Facilities

	Appendix D. Modules eligible for the link pack area
	Language Environment base modules
	Language Environment C/C++ component modules
	Language Environment COBOL component modules
	Language Environment Fortran component modules
	Language Environment PL/I Component Modules

	Appendix E. Modifying the JCL for Japanese National Language Support
	Appendix F. Language Environment National Language Support Country Codes
	Appendix G. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Programming Interface Information
	Trademarks

	Bibliography
	Language Products Publications
	Related Publications
	Softcopy Publications

	Index
	Readers’ Comments — We'd Like to Hear from You

