
z/OS

Language Environment Concepts Guide

SA22-7567-03

IBM

z/OS

Language Environment Concepts Guide

SA22-7567-03

IBM

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on page 51.

Fourth Edition, September 2002

This is a major revision of SA22-7567-02.

This edition applies to Language Environment® in Version 1 Release 4 of z/OS™ (5694-A01), and Version 1, Release
4 of z/OS.e™ (5655-G52), and to all subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM® representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this book
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1991, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . v

Tables . vii

About this document . ix
Using your documentation . x
Determining if a publication is current xi
Product information on the World Wide Web xii

Where to find more information xiii
Accessing z/OS licensed documents on the Internet xiii
Using LookAt to look up message explanations xiii

Summary of changes . xv

Chapter 1. What’s New in Language Environment for z/OS 1
What’s New in Language Environment for z/OS Version 1 Release 4 1
What’s New in C/C++ for z/OS Version 1 Release 4 1
What’s New in Language Environment for z/OS Version 1 Release 3 1
What’s New in C/C++ for z/OS Version 1 Release 3 3
What’s New in Language Environment for z/OS Version 1 Release 2 3
What’s New in C/C++ for z/OS Version 1 Release 2 3
What’s New in Language Environment for z/OS Version 1 Release 1 6

Chapter 2. Overview . 7
What You Can Do with Language Environment 10

Common Use of System Resources Gives You Greater Control 10
Consistent Condition Handling Simplifies Error Recovery 10
Language Environment Protects Your Programming Investment 10
ILC Capability Offers Greater Efficiency and Flexibility 11
Common Dump Puts All Debugging Information in One Place. 11
POSIX-Conforming Application Support Enhances Code Portability 11
Locale Callable Services Enhance the Development of Internationalized

Applications . 12
Debug Tool in Your Common Environment 12
IBM C/C++ Productivity Tools for OS/390 13

Chapter 3. The Model for Language Environment 15
The Language Environment Program Management Model 15

Language Environment Program Management Model Terminology 15
Program Management . 16
Processes . 17
Enclaves . 17
Threads . 18

Language Environment Condition-Handling Model 19
Condition-Handling Terminology. 20
Condition-Handling Model Description 21
How Condition Tokens are Created and Used 22
Condition-Handling Responses 25
Run-Time Dump Service Provides Information in One Place 25

Language Environment Message Handling Model and National Language
Support . 25
National Language Support 25

© Copyright IBM Corp. 1991, 2002 iii

||
||

Language Environment Storage Management Model 26
Stack Storage . 26
Heap Storage . 26
Storage Management Options 27

Chapter 4. Language Environment Callable Services 29
Language Environment Calling Conventions 29

Invoking Callable Services from C 29
Invoking Callable Services from COBOL 30
Invoking Callable Services from PL/I 30
Invoking Callable Services from Assembler 31

Language Environment Callable Services 32

Chapter 5. Sample Routines 37
Sample Assembler Routine . 37
Sample C/C++ Routine . 37
Sample C Routine with POSIX Functions 38
Sample COBOL Program . 40
Sample PL/I Routine . 42

Appendix A. Customizing Language Environment run-time options using
z/OS msys for Setup . 45

Who should use msys for Setup? 45
What is the Language Environment customization task?. 45
Recommendations when using msys for Setup for Language Environment

customization . 46
Restrictions when using msys for Setup for Language Environment

customization . 46
Where to find information about msys for Setup 47

Appendix B. Accessibility . 49
Using assistive technologies . 49
Keyboard navigation of the user interface 49

Notices . 51
Programming Interface Information 53
Trademarks . 53

Language Environment Glossary 55

Bibliography . 75
Language Products Publications 75
Related Publications . 76
Softcopy Publications . 77

Index . 79

iv z/OS V1R4.0 Language Environment Concepts Guide

Figures

1. Components of Language Environment . 8
2. Language Environment’s Common Run-Time Environment 9
3. Language Environment Resource Ownership . 17
4. Language Environment Program Management . 19
5. Condition-Handling Stack Configuration . 21
6. How Condition Tokens are Created and Used . 24
7. Language Environment Heap Storage . 27
8. Sample Invocation of a Callable Service from C 30
9. Omitting the Feedback Code when Calling a Service from C. 30

10. Sample Invocation of a Callable Service from COBOL 30
11. Omitting the Feedback Code when Calling a Service from COBOL 30
12. Sample Invocation of a Callable Service from PL/I 30
13. Omitting the Feedback Code when Calling a Service from PL/I 31
14. Sample Invocation of a Callable Service from Assembler 31
15. Omitting the Feedback Code when Calling a Service from Assembler 31
16. A Simple Main Assembler Routine . 37
17. Sample C/C++ Routine . 38
18. Sample C Routine Creating Threads with POSIX Functions 39
19. Sample COBOL Program. 41
20. Sample PL/I Routine . 42

© Copyright IBM Corp. 1991, 2002 v

vi z/OS V1R4.0 Language Environment Concepts Guide

Tables

1. How to Use z/OS Language Environment Publications x
2. Language Environment Callable Services . 32

© Copyright IBM Corp. 1991, 2002 vii

viii z/OS V1R4.0 Language Environment Concepts Guide

About this document

IBM z/OS Language Environment (also called Language Environment) provides
common services and language-specific routines in a single run-time environment
for C, C++, COBOL, Fortran (z/OS only; no support for z/OS UNIX System
Services, or CICS®), PL/I, and assembler applications. It offers consistent and
predictable results for language applications, independent of the language in which
they are written.

This document supports z/OS (5694-A01) and z/OS.e (5655-G52).

Language Environment is the prerequisite run-time environment for applications
generated with the following IBM compiler products:
v z/OS C/C++
v z/OS C/C++
v C/C++ Compiler for MVS/ESA™

v AD/Cycle® C/370™ Compiler
v VisualAge for Java, Enterprise Edition for OS/390
v Enterprise COBOL for z/OS and OS/390
v COBOL for OS/390 & VM
v COBOL for MVS & VM (formerly COBOL/370)
v Enterprise PL/I for z/OS and OS/390
v VisualAge PL/I for OS/390
v PL/I for MVS & VM
v AD/Cycle PL/I for MVS & VM
v VS FORTRAN and FORTRAN IV (in compatibility mode)

Restrictions: The following restrictions apply toz/OS.e:

v The following compilers are not licensed for use on z/OS.e:

– COBOL

– PL/I

– FORTRAN

v Execution of applications written in the following languages is not functionally
supported on z/OS.e:

– COBOL (except for precompiled COBOL DB2® stored procedures and other
precompiled COBOL applications using the Language Environment
preinitialization interface (CEEPIPI))

– FORTRAN

v The following are not functional and/or not licensed for use on z/OS.e:

– Language Environment Library Routine Retention (LRR)

– Language Environment compatibility preinitialization for C and PL/I

– Run-time library services (RTLS)

v Customers are not permitted to use lower levels of Language Environment on
z/OS.e.

v Language Environment will not initialize under CICS on z/OS.e.

Language Environment supports, but is not required for, an interactive debug tool
for debugging applications in your native z/OS environment. The IBM interactive
Debug Tool is available with z/OS or with the latest releases of the C/C++, COBOL,
PL/I, and VisualAge for Java compiler products.

© Copyright IBM Corp. 1991, 2002 ix

|

|

|

|

|

|

|
|

|
|
|

|

|

|

|

|

|
|

|

Language Environment supports, but is not required for, VS Fortran Version 2
compiled code (z/OS only).

Language Environment consists of the common execution library (CEL) and the
run-time libraries for C/C++, COBOL, Fortran, and PL/I.

For more information on VisualAge® for Java, Enterprise Edition for OS/390®,
program number 5655-JAV, see the product documentation.

This book introduces you to the Language Environment architecture, a system of
constructs and interfaces that provides a common run-time environment and
run-time services for all Language Environment-conforming programming language
products (those products that adhere to Language Environment’s common
interface).

Language Environment is offered on z/OS.

The book contains an overview of Language Environment, descriptions of Language
Environment’s full program model, callable services, and a glossary of Language
Environment terms. This is not a programming manual, but rather a conceptual
introduction to Language Environment.

Language Environment Concepts Guide should be read by those who design
systems installations and develop application programs. This high-level guide will
show how best to plan for systems to support your enterprise.

Terms that may be new to you are italicized on their first use. Definitions of these
terms can be found in “Language Environment Glossary” on page 55.

Using your documentation
The publications provided with Language Environment are designed to help you:

v Manage the run-time environment for applications generated with a Language
Environment-conforming compiler.

v Write applications that use the Language Environment callable services.

v Develop interlanguage communication applications.

v Customize Language Environment.

v Debug problems in applications that run with Language Environment.

v Migrate your high-level language applications to Language Environment.

Language programming information is provided in the supported high-level
language programming manuals, which provide language definition, library function
syntax and semantics, and programming guidance information.

Each publication helps you perform different tasks, some of which are listed in
Table 1. All books are available in printed and softcopy formats. For a complete list
of publications that you may need, see “Bibliography” on page 75.

Table 1. How to Use z/OS Language Environment Publications

To ... Use ...

Evaluate Language Environment z/OS Language Environment Concepts Guide

x z/OS V1R4.0 Language Environment Concepts Guide

Table 1. How to Use z/OS Language Environment Publications (continued)

To ... Use ...

Plan for Language Environment z/OS Language Environment Concepts Guide

z/OS Language Environment Run-Time Migration
Guide

Install Language Environment z/OS Program Directory

Customize Language Environment z/OS Language Environment Customization

Understand Language Environment
program models and concepts

z/OS Language Environment Concepts Guide

z/OS Language Environment Programming Guide

Find syntax for Language Environment
run-time options and callable services

z/OS Language Environment Programming
Reference

Develop applications that run with
Language Environment

z/OS Language Environment Programming Guide
and your language programming guide

Debug applications that run with
Language Environment, diagnose
problems with Language Environment

z/OS Language Environment Debugging Guide

Get details on run-time messages z/OS Language Environment Run-Time Messages

Develop interlanguage communication
(ILC) applications

z/OS Language Environment Writing
Interlanguage Communication Applications and
your language programming guide

Migrate applications to Language
Environment

z/OS Language Environment Run-Time Migration
Guide and the migration guide for each Language
Environment-enabled language

Determining if a publication is current
As needed, IBM changes its information. For a given book, updates to the hardcopy
and associated BookManager® softcopy are usually available at the same time.
Sometimes, however, the updates to hardcopy and softcopy are available at
different times. Here’s how to determine if you are looking at the most current copy
of a book:

1. At the end of the order number there is a dash followed by two digits, often
called the dash level. A book with a higher dash level is more current than one
with a lower dash level. For example, in the book order number GC28-1608-06,
the dash level 06 means that the book is more current than previous levels,
such as 05 or 04.

2. If a hardcopy book and a softcopy book have the same dash level, it is possible
that the softcopy book is more current than the hardcopy book. Check the dates
shown in the Summary of changes. The softcopy book might have a more
recently dated Summary of changes than the hardcopy book.

3. To compare softcopy books, you can check the last two characters of the
softcopy filename (also called the book name). The higher the number, the more
recent the book. For example, IEA4E802 is more recent than IEA4E801.

In addition, an asterisk next to the book titles in the CD-ROM booklet and the
readme files indicate that the publication is either new or has been changed.

About this document xi

Product information on the World Wide Web
For information on the z/OS product and elements, see the z/OS home page on the
Web at:
http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

For information on z/OS Language Environment, see the Language Environment
web site at:
http://www.ibm.com/servers/eserver/zseries/zos/le/

xii z/OS V1R4.0 Language Environment Concepts Guide

Where to find more information

Please see z/OS Information Roadmap for an overview of the documentation
associated with z/OS, including the documentation available for z/OS Language
Environment.

Accessing z/OS licensed documents on the Internet
z/OS licensed documentation is available on the Internet in PDF format at the IBM
Resource Link™ Web site at:
http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to
these documents requires an IBM Resource Link user ID and password, and a key
code. With your z/OS order you received a Memo to Licensees, (GI10-0671), that
includes this key code. 1

To obtain your IBM Resource Link user ID and password, log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed documents:

1. Sign in to Resource Link using your Resource Link user ID and password.

2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/OS licensed documents unless you have registered
for access to them and received an e-mail confirmation informing you that
your request has been processed.

Printed licensed documents are not available from IBM.

You can use the PDF format on either z/OS Licensed Product Library CD-ROM or
IBM Resource Link to print licensed documents.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for most
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most
cases LookAt goes directly to the message explanation.

You can access LookAt from the Internet at:
http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

or from anywhere in z/OS where you can access a TSO/E command line (for
example, TSO/E prompt, ISPF, z/OS UNIX System Services running OMVS). You
can also download code from the z/OS Collection (SK3T-4269) and the LookAt Web
site that will allow you to access LookAt from a handheld computer (Palm Pilot VIIx
suggested).

1. z/OS.e customers received a Memo to Licensees, (GI10-0684) that includes this key code.

© Copyright IBM Corp. 1991, 2002 xiii

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

To use LookAt as a TSO/E command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO/E from a disk on your z/OS
Collection (SK3T-4269) or from the News section on the LookAt Web site.

Some messages have information in more than one document. For those
messages, LookAt displays a list of documents in which the message appears.

xiv z/OS V1R4.0 Language Environment Concepts Guide

Summary of changes

Summary of changes
for SA22-7567-03
z/OS Version 1 Release 4

This book contains information previously presented in z/OS Language Environment
Concepts Guide, SA22-7567-02, which supported z/OS Version 1 Release 3.

The following summarizes the changes to that information.

New information

v What’s New for z/OS Version 1 Release 4:

Enhancements for z/OS Version 1 Release 4 Language Environment are
described in the chapter on What’s New in Language Environment for z/OS
including the section on What’s New in C/C++.

v z/OS.e

Information is added to include Language Environment support in z/OS.e.

v Glossary:

The glossary is updated with new terms.

Changed information

This book contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Starting with z/OS V1R2, you may notice changes in the style and structure of
some content in this book—for example, headings that use uppercase for the first
letter of initial words only, and procedures that have a different look and format. The
changes are ongoing improvements to the consistency and retrievability of
information in our books.

Summary of changes
for SA22-7567-02
z/OS Version 1 Release 3

This book contains information previously presented in z/OS Language Environment
Concepts Guide, SA22-7567-01, which supported z/OS Version 1 Release 2.

The following summarizes the changes to that information.

New information

v What’s New for z/OS Version 1 Release 3:

Enhancements for z/OS Version 1 Release 3 Language Environment are
described in the chapter on What’s New in Language Environment for z/OS.

v Accessibility:

An appendix is added with z/OS product accessibility information.

v msys for Language Environment

An appendix is added on msys for Language Environment support.

Changed information

© Copyright IBM Corp. 1991, 2002 xv

This book contains terminology, maintenance, and editorial changes, including
changes to improve consistency and retrievability.

Summary of changes
for SA22-7567-01
z/OS Version 1 Release 2

This book contains information previously presented in z/OS Language Environment
Concepts Guide, SA22-7567-00, which supported z/OS Version 1 Release 1.

The following summarizes the changes to that information.

New information

v What’s New for z/OS Version 1 Release 2:

Enhancements for z/OS Version 1 Release 2 Language Environment are
described in the chapter on What’s New in Language Environment.

v Glossary:

The glossary is updated with new terms.

Changed information

This book contains terminology, maintenance, and editorial changes, including
changes to improve consistency and retrievability.

Summary of changes
for SA22-7567-00
z/OS Version 1 Release 1

New information

v What’s New for z/OS Version 1 Release 1:

Enhancements for z/OS Version 1 Release 1 Language Environment are
described in the chapter on What’s New in Language Environment.

v Glossary:

The glossary is updated with new terms.

This book contains terminology, maintenance, and editorial changes, including
changes to improve consistency and retrievability.

xvi z/OS V1R4.0 Language Environment Concepts Guide

Chapter 1. What’s New in Language Environment for z/OS

What’s New in Language Environment for z/OS Version 1 Release 4
For z/OS Version 1 Release 4, Language Environment provides the following:

v Support of Debug Tool for DB2 Stored Procedures

Language Environment is enhanced to significantly improve debugging of DB2
stored procedures, regardless of language. Two new debugger event codes are
provided for DB2 and the Debug Tool to debug the stored procedure repeatedly
without having to recycle the stored procedure (SP) address.

v CICS trace of an application domain

A new CICS trace allows users to monitor and determine the activity of a CICS
transaction. This gives users the ability to trace key events in Language
Environment while running CICS transactions. Every time CICS calls Language
Environment, the feature trace is activated under the Extended Run-Time Library
Interface (ERTLI). The CICS trace requires AP level 2 tracing to be active. By
activating the feature trace records, trace points are added at stragetic points.

v Enhanced pthread_quiesce_and_get_np()

Enhancements are made within pthread_quiesce_and_get_np() to improve
reliability and performance.

What’s New in C/C++ for z/OS Version 1 Release 4
This run-time library is shipped with Language Environment. For z/OS Version 1
Release 4, the C/C++ run-time library includes the following enhancements:

v IPv6

Internet Protocol Version 6 (IPv6) is the base technology of the next generation
Internet. z/OS provides IPv6 support in V1R4. Language Environment provides
support for Communications Server through Application Programming Interfaces
(APIs) and the C/C++ run-time library provides enhanced functions. For
descriptions of the new and changed C functions, see z/OS C/C++ Run-Time
Library Reference.

Language Environment headers are also updated to meet IPv6 standards. z/OS
UNIX support is also provided.

v Transport Layer Security (TLS) Certificate Support

The __certificate() function is updated to allow authentication of digital
certificates. This enables better password support for File Transfer Protocol
(FTP).

v iconv() support for code page IBM-5488

Support has been added to allow conversions with code page IBM-5488.

v G11N White Paper Currency Support

This support provides additional country support by locales. For more
information, see z/OS C/C++ Programming Guide.

What’s New in Language Environment for z/OS Version 1 Release 3
For z/OS Version 1 Release 3, Language Environment provides the following:

v z/OS.e

© Copyright IBM Corp. 1991, 2002 1

|

|

|

|
|
|
|

|

|
|
|
|
|
|

|

|
|

|

|
|

|

|
|
|
|
|
|

|
|

|

|
|
|

|

|

|

|
|

|

z/OS.e is a version of the z/OS operating system intended to help you exploit the
fast-growing world of next-generation workloads. Language Environment adds
new messages that may be issued when errors occur in the z/OS.e environment.

Restrictions: The following restrictions apply to z/OS.e:

– The following compilers are not licensed for use on z/OS.e:

- COBOL

- PL/I

- FORTRAN

– The following subsystems are not licensed for use on z/OS.e:

- CICS

- IMS™

– Execution of applications written in the following languages is not functionally
supported on z/OS.e:

- COBOL (except for precompiled COBOL DB2 stored procedures and other
precompiled COBOL applications using the Language Environment
preinitialization interface)

- FORTRAN

– The following are not functional and/or not licensed for use on z/OS.e:

- Language Environment Library Routine Retention (LRR)

- Language Environment compatibility preinitialization for C and PL/I

- Run-time library services (RTLS)

– Customers are not permitted to use lower levels of Language Environment on
z/OS.e.

Customers will be able to run pre-compiled PL/I programs in z/OS.e. They will
not be able to compile PL/I programs in z/OS.e.

v z/OS Managed System Infrastructure for Setup

z/OS msys for Setup provides a set of functions and services to simplify system
management. Specifically for Language Environment in z/OS Version 1 Release
3, setup is simplified for:

– BATCH and CICS default options settings, by customizing a ++USERMOD.

– Region-wide run-time options for CICS and IMS, by running an Assembler job.

v OMVS outage avoidance

OMVS outage avoidance provides the capability to IPL z/OS UNIX without
bringing down the z/OS system, which allows for more timely debugging of z/OS
UNIX.

v Language Environment preinitialization services

Enhancements have been made to Language Environment preinitialization
services to support XPLINK.

v Vendor heap manager

This enables vendors to provide an alternate user heap manager for z/OS UNIX
applications that can detect memory leaks or storage damage beyond what is
already provided in Language Environment.

v Thread-specific data performance enhancements

This optimizes the C/C++ pthread_getspecific() function to obtain peak
performance in the z/OS UNIX environment.

v Euro code page support

2 z/OS V1R4.0 Language Environment Concepts Guide

|
|
|

|

|

|

|

|

|

|

|

|
|

|
|
|

|

|

|

|

|

|
|

|
|

Support is extended for code pages currently supported within z/OS that have
not yet been updated for Euro symbol support.

What’s New in C/C++ for z/OS Version 1 Release 3
This run-time library is shipped with Language Environment. For z/OS Version 1
Release 3, the C/C++ run-time library includes the following enhancements:

v BiDi layout transformation function and utility

As an extension to the BiDi layout services provided in z/OS Version 1 Release
2, this provides C/C++ support to perform code page conversion or BiDi layout
transformation of a text string in one step. For more information, see z/OS C/C++
Programming Guide.

v Access Control List (ACL) support

ACL support provides security support for z/OS UNIX users.

What’s New in Language Environment for z/OS Version 1 Release 2
For z/OS Version 1 Release 2, Language Environment provides the following:

v CICS dynamic storage tuning

When Language Environment is running with CICS, support for automatic
storage tuning is provided to improve performance of applications running under
CICS. Automatic storage tuning is controlled with the CICS system initialization
parameter AUTODST. Automatic storage tuning reduces GETMAIN and
FREEMAIN activity associated with acquiring Language Environment stack or
heap increments.

v Heap storage diagnostics support

A new report is provided in CEEDUMP that shows show traceback information
for storage that was allocated but not freed.

v Documentation improvements for traces

z/OS Language Environment Debugging Guide contains trace documentation
improvements.

v Use CICS dump services

The CICS transaction dump now includes CEEDUMP data.

v Improvement in storage use

Language Environment has been changed to favor 31-bit applications. This
increases performance by eliminating the dependency for below-the-line storage
in a 24-bit application.

v Machine state control block

All fields in the Language Environment machine state control block CEEMCH are
externalized.

v Removal of SOM ™ Support from Language Environment

SOMobjects® ADE and SOMobjects RTL have been removed from z/OS.

What’s New in C/C++ for z/OS Version 1 Release 2
This run-time library is shipped with Language Environment. For z/OS Version 1
Release 2, the C/C++ run-time library includes the following enhancements:

v Enhanced ASCII Functionality

Enhanced ASCII functionality makes it easier to port internationalized applications
developed on, or for, ASCII platforms to z/OS platforms by providing conversion
from EBCDIC to ASCII and from ASCII to EBCDIC.

Chapter 1. What’s New in Language Environment for z/OS 3

To complement this support, a file tagging mechanism is introduced, which allows
programmers to tag text files with an identifier indicating the encoding used to
write the data. These tags can be used to translate from one encoding to
another. This allows the use of EBCDIC programs against ASCII data files.

This section explains under what conditions you can use Enhanced ASCII. For
limitations of Enhanced ASCII, see z/OS C/C++ Programming Guide.

Limitations of Enhanced ASCII

– A subset of C headers and functions is provided in ASCII. For more
information, see z/OS C/C++ Run-Time Library Reference.

– The only way to get to the ASCII version of functions and the external
variables environ and tzname is to use the appropriate IBM header files.

– ASCII environment variables may read, but not update, environment variables
using the environ external variable Updates to the environment variables
using environ in an ASCII application causes unpredictable results and may
result in an abend. Language Environment maintains two equivalent arrays of
environment variables when running an ASCII application, one with EBCDIC
encodings and the other with ASCII encodings. All ASCII compile units that
use the environ external variable must include <stdlib.h> so that environ can
be mapped to access the ASCII-encoded environment strings. If <stdlib.h> is
not included, environ will refer to the EBCDIC representation of the
environment variable strings.

Enhanced ASCII provides limited EBCDIC/ASCII conversion. The character set or
alphabet that is associated with any locale consists of the following:

– A common, XPG4-defined subset of characters such as POSIX portable
characters

– A unique, locale-specific subset of characters such as NLS characters

The conversion only applies to the portable subset of characters that are
associated with a locale. Only the EBCDIC IBM-1047 encoding of portable
characters is supported.

You might encounter unexpected results in the following situations:

– If Enhanced ASCII applications run in locales that contain non-Latin Alphabet
Number 1 NLS characters, C-RTL functions might copy some of the locale’s
non-Latin 1 NLS characters into buffers that the application is writing to
stdout or other HFS files. The non-Latin Alphabet Number 1 NLS characters
would then cause problems during automatic conversion.

– Language Environment applications must select non-English message files. If
the NATLANG run-time option is not UEN or ENU, conversion does not take
place. The messages are presented to the file system write routine in
EBCDIC, before any automatic conversion takes place. If the automatic
conversion is to EBCDIC, there will be a problem because EBCDIC cannot be
converted to EBCDIC.

v ISO/IEC 14882:1998 Programming Language - C++

The new C++ compiler adheres to the latest ISO 1998 C++ standard, including a
compiler implementation of the ISO Standard C++ library and the ANSI Standard
Templated Library (STL). This supports IBM’s continuing adherence to openness
and offers customers the increased portability of applications to and from other
platforms that support the ISO 1998 C++ standard.

v BiDi functionality and Arabic locale

4 z/OS V1R4.0 Language Environment Concepts Guide

Support is added for a BiDi routine to allow proper handling of Arabic and
Hebrew data in applications. The interfaces handle the conversion of BiDi data
from logical to visual and vice versa.

v Internet Protocol (IP) address conversion

IBM intends to provide an integrated Internet Protocol Version 6 (IPv6)
implementation that will enable application access using the new TCP/IP
standard. Support is added in the C/C++ run-time library for IPv6 functions
inet_pton() and inet_ntop() and global variables.

v POSIX threads extensions

This support provides the _r functions that indicate thread-safe functions in UNIX
98 standards. Large applications in multi-threaded environments need verification
that functions are thread safe.

v Eurocurrency support

Latin 9 support is provided for customers doing business in many different
countries requiring National Language Support or Unicode support to operate
efficiently on the z/OS platform.

v Goal mode support

A Language Environment transform is provided in support of z/OS UNIX System
Services goal mode support for Workload Manager.

v Enhancement to the uname utility

This enhancement allows for continued support of the name OS/390 within the
uname() field.

v Chinese code conversion standard

GB 18030 is a new code standard that provides encodings for approximately
30,000 Chinese characters. The iconv() function now supports GB18030
conversions. Customers can use this support to allow creation and processing of
text documents containing these characters.

v Upgrade of IBM Open Class ® Library

The IBM Open Class Library (OCL) is a library of C++ classes. z/OS Version 1
Release 2 includes a new level of IOC, which is consistent with that shipped in
VisualAge C++ for AIX® Version 5.0. This is intended to ease porting from AIX,
but is not intended for use in new development. Support will be withdrawn in a
future release. New application development involving C++ classes should make
use of the C++ Standard Library rather than the IBM Open Class Library.

v Server thread task management

As the complexity in managing many environments increases, this function
provides automated management of server tasks running in the server space.
Workload Manager can dynamically vary the number of server threads active to
process work requests.

v TCP/IP resolver enhancement

DNS and BIND transform conversions are provided for Communications Server.

v pread() and pwrite()

The new pread() and pwrite() functions perform the same actions as read()
and write(), except that they read or write from a given position in a file without
changing the file pointer. This reduces system overhead and improves
performance.

v Reusable enclaves for CICS scalable Java Virtual Machine (JVM)

Java™ programs can initialize once and then allow subsequent Java programs to
begin running. A Language Environment enclave (CICS thread) remains active as
needed.

Chapter 1. What’s New in Language Environment for z/OS 5

What’s New in Language Environment for z/OS Version 1 Release 1
Enhancements for z/OS Language Environment include the following Reliability,
Availability, and Serviceability improvements:

v LEDATA improvement to show tracebacks for all threads

Provided by APAR PQ40654, the NTHREADS(value) parameter on VERBEXIT
LEDATA lets you specify a number of threads for which Language Environment
traceback data will be displayed. For more information, see z/OS Language
Environment Debugging Guide.

v Addition of IPCS ANALYZE exit for latches, mutexes and condition
variables

Provided by APAR PQ40654, Language Environment provides support for the
IPCS ANALYZE exit. This assists in debugging system or address space hang
situations. Language Environment latches, mutexes, and condition variables can
be displayed if the CEEIPSCP member you are using is updated to identify the
ANALYZE exit. For more information, see z/OS Language Environment
Debugging Guide.

v Displaying run-time options in CEEDUMP

Provided by APAR PQ38324, the GENOPTS dump option of CEE3DMP provides
a report of the run-time options in effect at the time of the dump. For more
information, see z/OS Language Environment Debugging Guide.

v Columns added in LEDATA

Provided by APAR PQ40079, the traceback section of the IPCS LEDATA
VERBEXIT dump will now include the load module and service level in columns
9 and 10. In addition, the header of that dump will include the dump-invocation
string, and the Language Environment version and release. For more information,
see z/OS Language Environment Debugging Guide.

v Control the amount of storage dumped around registers

Provided by APARs PQ39636 and PQ39927, a new dump option is added to the
options of the CEE3DMP service. REGSTOR(reg_stor_amount) that controls the
amount of storage to be dumped around registers. A similar suboption has been
added to the TERMTHDACT run-time option. For more information, see z/OS
Language Environment Debugging Guide.

v New CICS transaction

Provided by APAR PQ38838, a new CICS transaction (CLER) lets the user
display all of the current Language Environment run-time options for a region,
and also modify a subset of the options. For more information, see z/OS
Language Environment Debugging Guide.

v 4083 Unique Message Codes

Provided by APAR PQ38324, the 4083 error condition is clarified and the original
error is displayed, if possible. The new codes are described in z/OS Language
Environment Run-Time Messages.

v Ability to format individual Language Environment control blocks

Provided by APAR PQ39635, Language Environment supports a control block
formatter interface to IPCS which has the ability to format individual Language
Environment control blocks. For more information, see z/OS Language
Environment Debugging Guide.

v Isolation of Control Blocks from CICS applications

Provided by APAR PQ37675, the STGPROT=YES run-time option prevents
region destruction when caused by CICS region block overlays. For more
information, see z/OS Language Environment Debugging Guide.

6 z/OS V1R4.0 Language Environment Concepts Guide

Chapter 2. Overview

Today, enterprises need efficient, consistent, and less complex ways to develop
quality applications and to maintain their existing inventory of applications. The
trend in application development is to modularize and share code, and to develop
applications on a workstation-based front end. Language Environment gives you a
common environment for all Language Environment-conforming high-level language
(HLL) products. An HLL is a programming language above the level of assembler
language and below that of program generators and query languages.

In the past, programming languages also have had limited ability to call each other
and behave consistently across different operating systems. This has constrained
those who wanted to use several languages in an application. Programming
languages have had different rules for implementing data structures and condition
handling, and for interfacing with system services and library routines.

Language Environment establishes a common run-time environment for all
participating HLLs. It combines essential run-time services, such as routines for
run-time message handling, condition handling, and storage management. All of
these services are available through a set of interfaces that are consistent across
programming languages. You may either call these interfaces yourself, or use
language-specific services that call the interfaces. With Language Environment, you
can use one run-time environment for your applications, regardless of the
application’s programming language or system resource needs.

Language Environment consists of:

v Basic routines that support starting and stopping programs, allocating storage,
communicating with programs written in different languages, and indicating and
handling conditions.

v Common library services, such as math services and date and time services, that
are commonly needed by programs running on the system. These functions are
supported through a library of callable services.

v Language-specific portions of the run-time library. Because many
language-specific routines call Language Environment services, behavior is
consistent across languages.

Figure 1 on page 8 shows the separate components that make up Language
Environment. POSIX support is provided in the Language Environment base and in
the C language-specific library.

© Copyright IBM Corp. 1991, 2002 7

z/OS Language Environment is the prerequisite run-time environment for
applications generated with the following IBM compiler products:
v z/OS C/C++
v C/C++ Compiler for MVS/ESA
v AD/Cycle C/370 Compiler
v VisualAge for Java, Enterprise Edition for OS/390
v Enterprise COBOL for z/OS and OS/390
v COBOL for OS/390 & VM
v COBOL for MVS & VM
v Enterprise PL/I for z/OS and OS/390
v PL/I for MVS & VM (formerly AD/Cycle PL/I for MVS & VM)
v VisualAge PL/I for OS/390
v VS FORTRAN and FORTRAN IV (in compatibility mode)

Language Environment supports, but is not required for, VS Fortran Version 2
compiled code (OS/390 only).

In many cases, you can run compiled code generated from the previous versions of
the above compilers. A set of assembler macros is also provided to allow assembler
routines to run with Language Environment.

For more information on IBM VisualAge for Java, Enterprise Edition for OS/390,
program number 5655-JAV, refer to the product documentation.

Restrictions: The following restrictions apply to z/OS.e:

v The following compilers are not licensed for use on z/OS.e:

– COBOL

– PL/I

– FORTRAN

v The following subsystems are not licensed for use on z/OS.e:

– CICS

– IMS

v Execution of applications written in the following languages is not functionally
supported on z/OS.e:

PL/I

language-

specific

library

Language Environment

Language Environment callable service interface,

common services, and support routines

C/C++

language-

specific

library

COBOL

language-

specific

library

Fortran

language-

specific

library

Figure 1. Components of Language Environment

8 z/OS V1R4.0 Language Environment Concepts Guide

|

|

|

|

|

|

|

|

|
|

– COBOL (except for precompiled COBOL DB2 stored procedures and other
precompiled COBOL applications using the Language Environment
preinitialization interface)

– FORTRAN

v The following are not functional and/or not licensed for use on z/OS.e:

– Language Environment Library Routine Retention (LRR)

– Language Environment compatibility preinitialization for C and PL/I

– Run-time library services (RTLS)

v You are not permitted to use lower levels of Language Environment on z/OS.e.

You are able to run pre-compiled PL/I programs in z/OS.e. You cannot compile PL/I
programs in z/OS.e.

Figure 2 illustrates the common environment that Language Environment creates.

Fortran

Fortran

Fortran

Assembler

ASM

C/C++

C/C++

C/C++

CEL

PL/1

PL/1

PL/1

COBOL

Batch TSO IMS
(Fortran
excluded)

(Fortran
excluded)

(Fortran
excluded)

DB2 CICSUNIX
System
Services

COBOL

COBOL

Assembler
does not
require a

run-time library

LANGUAGE ENVIRONMENT

Operating
Environment

Operating
System

Compilers

Source
Code

Figure 2. Language Environment’s Common Run-Time Environment

Chapter 2. Overview 9

|

|
|
|

|
|
|

|

|

|

|

|

|

|
|

What You Can Do with Language Environment
Language Environment helps you create mixed-language applications and gives
you a consistent method of accessing common, frequently used services. Building
mixed-language applications is easier with Language Environment-conforming
routines because Language Environment establishes a consistent environment for
all languages in the application.

Common Use of System Resources Gives You Greater Control
Language Environment provides the base for future IBM language library
enhancements in the z/OS environment. Many system dependencies have been
removed from Language Environment-conforming language products.

Because Language Environment provides a common library, with services that you
can call through a common callable interface, the behavior of your applications will
be easier to predict. Language Environment’s common library includes common
services such as messages, date and time functions, math functions, application
utilities, system services, and subsystem support. The language-specific portions of
Language Environment provide language interfaces and specific services that are
supported for each individual language.

Language Environment is accessed through defined common calling conventions,
described in Chapter 4, “Language Environment Callable Services” on page 29.

Consistent Condition Handling Simplifies Error Recovery
Language Environment establishes consistent condition handling for HLLs, debug
tools, and assembler language routines. For languages with little or no condition
handling function, like COBOL, Language Environment provides a user-controlled
method that was not available before for predictable, robust error recovery.
Language Environment condition handling honors single- and mixed-language
semantics and is integrated with message handling services to provide you with
specific information about each condition.

This language-independent condition handler, unlike some existing HLL condition
semantics, is stack frame-based and delivers predictable behavior at a given stack
frame. Language Environment condition handling enables you to construct
applications out of building blocks of modules and control which modules will handle
certain conditions.

A complete description of Language Environment’s condition handling model and
message services is described in Chapter 3, “The Model for Language
Environment” on page 15.

Language Environment Protects Your Programming Investment
Language Environment provides compatible support for existing HLL applications.
Applications linked with the migration tools provided with libraries that predate
Language Environment do not need to be linked with the Language Environment
library routines. For more information, see z/OS Language Environment Writing
Interlanguage Communication Applications. For mixed-language applications,
however, relinking with Language Environment may be required if the application
was not previously relinked using migration tools available with pre-Language
Environment libraries. Routines compiled with the new Language
Environment-conforming compilers can be mixed with old routines in an application.
Thus, applications can be enhanced or maintained selectively, without recompiling

10 z/OS V1R4.0 Language Environment Concepts Guide

the whole application when a change is made to a single routine. Some
modifications of existing applications may be required. See z/OS Language
Environment Run-Time Migration Guide for more information.

ILC Capability Offers Greater Efficiency and Flexibility
Language Environment eliminates incompatibilities among language-specific
run-time environments. Routines call one another within one common run-time
environment, eliminating the need for initialization and termination of a
language-specific run-time environment with each call. This makes interlanguage
communication (ILC) in mixed-language applications easier, more efficient, and
more consistent.

This ILC capability also means that you can share and reuse code easily. You can
write a service routine in the language of your choice—C/C++, COBOL, PL/I, or
assembler—and allow that routine to be called from C/C++, COBOL, PL/I, or
assembler applications. Similarly, vendors can write one application package in the
language of their choice, and allow the application package to be called from
C/C++, PL/I, and assembler routines or from Fortran or COBOL programs.

In addition, Language Environment lets you use the best language for any task.
Some programming languages are better suited for certain tasks. Language
Environment’s improved interlanguage communication (ILC) allows the best
language to be used for any given application task. Many programmers, each
experienced in a different programming language, can work together to build
applications with component routines written in a variety of languages. Language
Environment’s enhanced ILC allows you to build applications with component
routines written in a variety of languages. The result is code that runs faster, is less
prone to errors, and is easier to maintain.

Common Dump Puts All Debugging Information in One Place
Language Environment provides a common dump for all conforming languages. The
dump includes, in an easy-to-read format, a description of any relevant conditions
and information on error location, variables, and storage.

With a common dump, you can locate precisely the module where an error
occurred, saving you many hours of debugging, especially if your module is built
with several languages. A common dump also allows programmers of differing
language skills to collaborate effectively in determining the location of a problem
that involves modules of different languages.

POSIX-Conforming Application Support Enhances Code Portability
The IEEE Portable Operating System Interface (POSIX) standard is a series of
industry standards for code and user interface portability. POSIX support allows
applications written for a UNIX-like operating system to be run on z/OS. C language
programmers can access operating system services through a set of standard
language bindings. C language programmers who install z/OS UNIX System
Services (z/OS UNIX) and z/OS Language Environment can call C language
functions defined in the POSIX standard from their C applications and can run
applications that conform to ISO/IEC 9945-1:1990. 2 C language programmers with
z/OS UNIX installed can also call a subset of the proposed programming interface

2. ISO/IEC 9945-1:1990, which is also ANSI-IEEE 1003.1-1990, is based on the POSIX.1 standard.

Chapter 2. Overview 11

for thread management (a subset of draft 6 of POSIX.4a). Through C interfaces,
Language Environment functions conform to XPG4.2 specifications and are branded
by X/Open.

Applications that call POSIX functions can perform limited ILC under Language
Environment (see z/OS Language Environment Writing Interlanguage
Communication Applications for details). In addition, C POSIX-conforming
applications may use all Language Environment services.

For an overview of z/OS UNIX, see z/OS Introduction and Release Guide.

Locale Callable Services Enhance the Development of Internationalized
Applications

Demand is steadily increasing in global markets for software products, and
application developers are seeking to make their products available in multiple
countries. While marketing their products globally, however, programmers must also
make their applications function with the specific language and cultural conventions
of the individual user’s locale. With locale callable services, application developers
can build programs that can be marketed globally, and still meet end users’ needs
to work with specific languages, cultures, and conventions.

Language Environment provides pre-defined locales, previously available to C/370
routines only, that your PL/I routines and COBOL programs can access at run time
through the locale callable services. You can also create your own locales, or
modify the IBM-supplied locales, using the C locale definition utility available with
the C/C++ compiler.

While C routines can use the locale callable services, it is recommended that they
use the equivalent native C library services instead for portability across platforms.

For a complete description of Language Environment locale support, see z/OS
Language Environment Programming Guide.

Debug Tool in Your Common Environment
Language Environment supports the IBM Debug Tool, a robust, interactive,
interlanguage source-level debugging tool. Debug Tool helps you to examine,
monitor, and control the execution of programs written in C/C++, COBOL, and PL/I.
Debug Tool supports interactive and batch debugging of mixed-language
applications.

Using Debug Tool, you can:

v Monitor and interrupt the flow of a program to identify errors easily and correct
them quickly.

v Single step through your application or dynamically invoke Debug Tool when an
error condition occurs.

v Add, remove, enable, or disable breakpoints dynamically.

v Display and change variables at breakpoints or monitor program variable
changes as the program runs.

For more information, see Debug Tool User’s Guide and Reference, SC09-2137.

You can also debug your host programs, including batch, by using Debug Tool with
the VisualAge remote debugger, which provides a graphical user interface (GUI) on

12 z/OS V1R4.0 Language Environment Concepts Guide

the workstation. This method of debugging can be used if you create applications
using, for example, VisualAge for Java. For more information on the VisualAge
Debugger, visit the IBM Software web site at:
http://www.software.ibm.com/ad/

IBM C/C++ Productivity Tools for OS/390
With the IBM C/C++ Productivity Tools for OS/390 product, you can expand your
OS/390 application development environment out to your workstation, while
remaining close to your familiar host environment.

IBM C/C++ Productivity Tools for OS/390 include the following workstation-based
tools to increase your productivity and code quality:

v A Performance Analyzer to help analyze, understand, and tune your C and C++
applications for improved performance. (References to the Performance Analyzer
in this section refer to the IBM OS/390 Performance Analyzer included in the
C/C++ Productivity Tools for OS/390 product.)

v A Distributed Debugger that allows you to debug C or C++ programs from the
convenience of your workstation.

v A workstation editor to improve the productivity of your C and C++ source entry.

v Advanced online help, with full text search and hypertext topics as well as
printable, viewable, and searchable Portable Document Format (PDF)
documents.

In addition, IBM C/C++ Productivity Tools for OS/390 include the following host
components:

v Debug Tool

v Host Performance Analyzer

Use the Performance Analyzer on your workstation to graphically display and
analyze a profile of the running of your host z/OS C or C++ application. Use this
information to time and tune your code so that you can increase the performance of
your application.

Use the Distributed Debugger to debug your z/OS C/C++ application remotely from
your workstation.

Set a break point with a click of the mouse. Use the windowing capabilities of your
workstation to view multiple segments of your source and your storage, while
monitoring a variable at the same time.

Use the workstation-based editor to quickly develop C and C++ application code
that runs on z/OS. Context-sensitive help information is available to you when you
need it.

Chapter 2. Overview 13

14 z/OS V1R4.0 Language Environment Concepts Guide

Chapter 3. The Model for Language Environment

This chapter describes the Language Environment architecture, a system of user
conventions, product conventions, and processing models that, when followed by
HLL application programmers, provides a common, consistent run-time
environment.

Models for program management, condition handling, message services, and
storage management are outlined.

The Language Environment Program Management Model
The Language Environment program management model provides a framework
within which an application runs. It is the foundation of all of the component
models—condition handling, run-time message handling, and storage
management—that comprise the Language Environment architecture. The program
management model defines the effects of programming language semantics in
mixed-language applications and integrates transaction processing and
multithreading.

Language Environment Program Management Model Terminology
Some terms used to describe the program management model are common
programming terms; other terms are described differently in other languages. It is
important that you understand the meaning of the terminology in a Language
Environment context as compared to other contexts. For more detailed definitions of
these and other Language Environment terms, consult the “Language Environment
Glossary” on page 55.

v General Programming Terms:

Application program
A collection of one or more programs cooperating to achieve particular
objectives, such as inventory control or payroll.

Environment
In Language Environment, normally a reference to the run-time
environment of HLLs at the enclave level.

v Language Environment Terms and Their HLL Equivalents:

Routine
In Language Environment, refers to either a procedure, function, or
subroutine.

Equivalent HLL terms: COBOL—program; C/C++—function;
PL/I—procedure, BEGIN block.

Enclave
The enclave defines the scope of HLL semantics. In Language
Environment, a collection of routines, one of which is named as the main
routine. The enclave contains at least one thread.

Equivalent HLL terms: COBOL—run unit, C/C++—program, consisting of
a main C function and its subfunctions, PL/I—main procedure and its
subroutines, and Fortran—program and its subroutines.

Process
The highest level of the Language Environment program management

© Copyright IBM Corp. 1991, 2002 15

model. A process is a collection of resources, both program code and
data, and consists of at least one enclave.

Thread
An execution construct that consists of synchronous invocations and
terminations of routines. The thread is the basic run-time path within the
Language Environment program management model, and is dispatched
by the system with its own run-time stack, instruction counter, and
registers. Threads may exist concurrently with other threads.

v Terminology for Data:

Automatic data
Data that does not persist across calls. It is allocated with the same
value on entry and reentry into a routine.

External data
Data that can be referenced by multiple routines and data areas.
External data is known throughout an enclave.

Local data
Data that is known only to the routine in which it is declared.

Equivalent HLL terms: C/C++—local data, COBOL—WORKING-
STORAGE data items and LOCAL-STORAGE data items, PL/I—data
declared with the PL/I INTERNAL attribute.

Program Management
Program management defines the program execution constructs of an application,
and the semantics associated with the integration of various components
management of such constructs.

Three entities—process, enclave, and thread—are at the core of the Language
Environment program management model. They are described below.

Refer to Figure 3 on page 17 as you read the following discussion about processes,
enclaves, and threads. This figure illustrates the simplest form of the Language
Environment program management model and how resources such as storage are
managed.

16 z/OS V1R4.0 Language Environment Concepts Guide

Processes
The highest level component of the Language Environment program model is the
process. A process consists of at least one enclave and is logically separate from
other processes. Processes do not share storage and are independent of and equal
to each other; they are not hierarchically related.

Language Environment generally does not allow language file sharing across
enclaves nor does it provide the ability to access collections of externally stored
data.

However, in PL/I for MVS & VM the PL/I standard SYSPRINT file may be shared
across enclaves. SYSPRINT is not shared across enclaves in VisualAge PL/I for
OS/390.

The Language Environment message file also may be shared across enclaves,
since it is managed at the process level. The Language Environment message file
contains messages from all routines running within a process, making it a useful
central location for messages generated during run time.

Processes can create new processes and communicate to each other by using
Language Environment-defined communication, for such things as indicating when
a created process has been terminated.

Enclaves
A key feature of the program management model is the enclave, a collection of the
routines that make up an application. As mentioned in the terminology defined
above, the enclave is the equivalent of any of the following:

v A run unit, in COBOL

Condition
manager

Condition
manager

Data shared
between enclaves

Data shared
between enclaves

Enclave-
specific data

Enclave-
specific data

Run-time
stack

Run-time
stack

Language Environment message file

Enclave

Process

COBOL main routine PL/I main procedure

Subroutine

Heap storage Heap storage

Thread Thread

Enclave

Figure 3. Language Environment Resource Ownership

Chapter 3. The Model for Language Environment 17

v A program, consisting of a main C function and its subfunctions, in C and C++

v A main procedure and all of its subroutines, in PL/I

v A program and its subroutines, in Fortran

The enclave consists of one main routine and zero or more subroutines. (However,
a POSIX application might not have a main routine active at a given time.) The
main routine is the first to execute in an enclave; all subsequent routines are named
as subroutines.

Characteristics of the Enclave
The enclave logically owns resources normally associated with the running of a
program. Some resources are owned directly, such as heap storage; some are
owned indirectly, such as the run-time stack, which is owned by a thread. Heap
storage, the run-time stack, and threads are discussed in the following sections.

Heap storage is shared among all routines in an enclave and can be allocated by a
routine in one language and be freed by a routine in another language. For a
discussion on stack and heap storage, see “Language Environment Storage
Management Model” on page 26.

The enclave defines the scope—how far the semantic effects of language
statements reach—of the language semantics for its component routines, just as a
COBOL run unit defines the scope of semantics of a COBOL program.

The enclave defines the following in a Language Environment-conforming
application:

v Scope of shared external data, such as COBOL EXTERNAL data and PL/I
external data

v Scope of external files, such as COBOL EXTERNAL files3

v Scope of the effect of language statements, for example, STOP-like constructs,
such as STOP RUN in COBOL or other terminating mechanisms

v Lifetime of heap storage, in its last-used state

Threads
Each enclave consists of at least one thread, the basic instance of a particular
routine. A thread is created during enclave initialization with its own run-time stack,
which keeps track of the thread’s execution, as well as a unique instruction counter,
registers, and condition-handling mechanisms. Each thread represents an
independent instance of a routine running under an enclave’s resources.

Threads share all of the resources of an enclave. A thread can address all storage
within an enclave. All threads are equal and independent of one another and are
not related hierarchically. A thread can create a new enclave. Because threads
operate with unique run-time stacks, they can run concurrently within an enclave
and allocate and free their own storage. Because they may execute concurrently,
threads can be used to implement parallel processing applications and event-driven
applications.

Figure 4 on page 19 illustrates the full Language Environment program model, with
its multiple processes, enclaves, and threads.

3. The sharing of files across languages is not permitted in z/OS Language Environment.

18 z/OS V1R4.0 Language Environment Concepts Guide

As Figure 4 shows, each process is within its own address space. An enclave
consists of one main routine, with any number of subroutines. A main routine might
not be active at all times in a POSIX application, if the thread in which the main
routine executes terminates before the other threads it created.

External data is available only within the enclave where it resides; notice that even
though the external data may have identical names in different enclaves, the
external data is unique to the enclave. The scope of external data, as described
earlier, is the enclave. The threads can create enclaves, which can create more
threads, and so on.

Language Environment Condition-Handling Model
For single- and mixed-language applications, the Language Environment run-time
library provides a consistent and predictable condition-handling facility. It does not
replace current HLL condition handling, but instead allows each language to
respond to its own unique environment as well as to a mixed-language
environment.

Process

Process

Enclave

Enclave

Enclave
Thread

Thread

Thread

Thread

Main

Main

Main

External
data X

External
data X

External
data Y

Sub

External
data Y

External
data Y

External
data Z

Sub

Sub

... ...

...

...

...

Sub

Figure 4. Language Environment Program Management

Chapter 3. The Model for Language Environment 19

Language Environment condition management gives you the flexibility to respond
directly to conditions by providing callable services to signal conditions and to
interrogate information about those conditions. It also provides functions for error
diagnosis, reporting, and recovery.

Language Environment condition handling is based on the stack frame, an area of
storage that is allocated when a routine runs and that represents the history of
execution of that routine. It can contain automatic variables, information on program
linkage and condition handling, and other information. Using the stack frame as the
model for condition handling allows conditions to be handled in the stack frame in
which they occur. This allows you to tailor condition handling according to a specific
routine, rather than handle every possible condition that could occur within one
global condition handler.

A unique feature of Language Environment condition handling is the condition
token. The token is a 12-byte data type that contains an accumulation of
information about each condition. The information can be returned to the user as a
feedback code when calling Language Environment callable services. It can also be
used as a communication vehicle within the run-time environment.

Serviceability is improved with interactive problem control system (IPCS) exits.

Condition-Handling Terminology
Below is a list of terms you need to understand while reading the discussion on
Language Environment condition handling. For more detailed definitions of these
and other Language Environment terms, please consult the “Language Environment
Glossary” on page 55.

Condition
Any change to the normal programmed flow of a program. In Language
Environment, a condition can be generated by an event that has historically
been called an exception, interruption, or condition.

Condition handler
A routine invoked by Language Environment that responds to conditions in
an application. Condition handlers are registered through the CEEHDLR
callable service, or provided by the language libraries, by such constructs
as PL/I ON statements.

Condition token
In Language Environment, a data type consisting of 12 bytes with
structured fields that indicate various aspects of a condition, including
severity, associated message number, and information that is specific to a
given instance of the condition.

Feedback code
A condition token value used to communicate information when using the
Language Environment callable services.

Resume cursor
Contains the address where execution resumes after a condition is handled.
Initially, it will be the point in the application where a condition occurred
when it is first reported to Language Environment.

Stack frame
The physical representation of the activation of a routine. The stack frame is

20 z/OS V1R4.0 Language Environment Concepts Guide

allocated on a last in, first out (LIFO) basis and can contain automatic
variables, information on program linkage and condition handling, and other
information.

A stack frame is conceptually equivalent to a dynamic save area (DSA) in
PL/I, or a save area in assembler.

Condition-Handling Model Description
The Language Environment condition handler is based on a stack frame model. A
stack frame is an area of storage that can contain automatic variables, information
on program linkage and condition handling, and other information. The stack frame
is allocated using Language Environment-managed storage, either HEAP or
STACK, depending on the language being used. It is created through any of the
following,

A function call in C or C++
Entry into a compile unit in COBOL
Entry into a procedure or begin block in PL/I
Entry into an ON-unit in PL/I

Each routine adds a unique stack frame, in a LIFO manner, to the Language
Environment storage, either HEAP or STACK. User-written condition handlers
(registered through CEEHDLR) are associated with each stack frame. In addition,
HLL handling semantics can affect the processing conditions at each stack frame.
For an illustration of the Language Environment run-time stack and its divisions into
stack frames, see Figure 5.

Each Language Environment user condition handler is explicitly registered through
the callable service CEEHDLR or through the USRHDLR run-time option.
Language-defined handling mechanisms are registered through language-provided
constructs, such as the PL/I ON statement or the C signal() function. When a
routine returns to its caller, its stack frame is removed from the stack and the
associated handlers are automatically unregistered. Semantics associated with a

main ()

CEEHDLR (parm1, parm2);
A();

A: PROC

call B;

CBL LIB, APOST

call "CEEHDLR" using
PGMPTR Token
a=1/0

C main
routine

Resume
cursor

PL/I
subroutine
A

COBOL
subroutine
B

COBOL handler

Sub B
stack frame

Sub A
stack frame

Handle cursor

Main
stack frame

User-written handler

PL/I handler

User-written handler

C handler

Language Environment
and HLL default
handling semantics

Initial stack

.

.

.

.

....

...

.

.

.

.

.

.

.

.

...

Figure 5. Condition-Handling Stack Configuration

Chapter 3. The Model for Language Environment 21

routine are honored; for example, PL/I semantics on a return specify that any
ON-units within a routine will be unregistered. If the USRHDLR run-time option is
used, the user-written condition handler is registered at stack frame 0.

A condition is signaled within Language Environment as a result of one of the
following occurrences:

v A hardware-detected interrupt

v An operating system-detected exception

v A condition generated by Language Environment callable services

v A condition explicitly signaled within a routine

The first three types of conditions are managed by Language Environment and
signaled if appropriate. The last may be signaled by user-written code through a call
to the service CEESGL or signaled by HLL semantics such as SIGNAL in PL/I or
raise in C.

When a condition is signaled, whether by a user routine, by Language Environment
in response to an operating system or hardware detected condition, or by a callable
service, Language Environment directs the appropriate condition handlers in the
stack frame to handle the condition. Condition handling proceeds first with
user-written condition handlers in the queue, if present, then with any HLL-specific
condition handlers, such as a PL/I ON-unit or a C signal handler, that may be
established. The process continues for each frame in the stack, from the most
recently allocated to the least recently allocated.

If a condition remains unhandled after the stack is traversed, the condition is
handled by either Language Environment or by the default semantics of the
language where the condition occurred.

How Conditions are Represented
A condition token is used to communicate information about a condition to
Language Environment, message services, callable services, and routines. The
token is a 12-byte data type with fields that indicate the following information about
a condition:

v Severity of a condition

v Associated message number

v Facility ID: This field identifies the owner of the condition (Language
Environment, Language Environment component, or user-specified). It is also
used to identify a file containing message text that is unique for the condition.

v Instance specific information: This field is created if the condition requires that
data or text be inserted into a message, for example, a variable name. This field
also contains qualifying data, which can be used to specify data (input or output)
to be used when a routine resumes processing after a condition occurs.

How Condition Tokens are Created and Used
If the condition is detected by the operating system or by the hardware, Language
Environment will automatically build the condition token and signal the condition.
With Language Environment callable services, you can create a condition token
with corresponding message or data inserts and then signal the condition to the
application running within Language Environment by returning the token.

When used in Language Environment callable services, the entire condition token
represents a value called the feedback code. You can include a feedback parameter

22 z/OS V1R4.0 Language Environment Concepts Guide

to Language Environment callable services, and check the result of the call; or, in
PL/I and C, you can omit the feedback parameter, and any errors in the call will be
signaled to you.

For an illustration of the creation and use of condition tokens, see Figure 6 on
page 24.

Chapter 3. The Model for Language Environment 23

....

.... ..

Language
Environment
message file

Condition token

User actions

CEENCOD (parm1, parm2);

CEEMSG
(parm1, parm2);

CEESGL
(parm1, parm2);

Language
Environment
condition
handling

CEE3205c The
system or user
ABEND S06
was issued

Language
Environment
message file

Condition token

User actions

fc

CEExxx (parm1, fc);

CEEMSG
(parm1,dfc);

CEESGL
(parm1, dfc);

Language
Environment
condition
handling

CEE3380 The
target load
module was not
recognized by
Language
Environment.

If (fc=CEE39K)
then

User-written
condition
handling

Condition token

CEExxx (parm1, NULL);

CEExxx

Language
Environment
condition
handling

Figure 6. How Condition Tokens are Created and Used

24 z/OS V1R4.0 Language Environment Concepts Guide

Condition-Handling Responses
Conditions are responded to in one of the following ways:

v Resume terminates condition handling and transfers control usually to the
location immediately following the point where the condition occurred.

A resume cursor points to the place where a routine should resume; it can be
moved by the callable service CEEMRCR to point to another resume point.

v Percolate defers condition handling for an unchanged condition. Condition
handling continues at the next condition handler.

v Promote is similar to percolate in that it passes the condition on to the next
condition handler; however, it transforms a condition to another condition, one
with a new meaning. Condition handling then continues, this time with a new type
of condition.

Run-Time Dump Service Provides Information in One Place
The Language Environment callable service CEE3DMP dumps the run-time
environment of Language Environment into one easily readable report. CEE3DMP
can be called directly from an application to produce a dump that is formatted for
printing. Depending on the options you choose, the dump report may contain
information on conditions, tracebacks, variables, control blocks, stack and heap
storage, file status and attributes, and language-specific information. The report can
also be requested with the TERMTHDACT run-time option when a program
terminates due to an unhandled condition.

Serviceability is improved with a traceback section in CEEDUMP.

Language Environment Message Handling Model and National
Language Support

A set of common message handling services that create and send run-time
informational and diagnostic messages is provided by Language Environment.

With the message handling services, you can use the condition token that is
returned from a callable service or from some other signaled condition, format it into
a message, and deliver it to a defined output device or to a buffer.

National Language Support
Messages may be formatted according to national language support specifications
for the following languages:
v Mixed-case American English (ENU)
v Uppercase American English (UEN)
v Japanese (JPN)

National language support callable services allow you to set a national language
that affects the language of the error messages and the names of the day, week,
and month. It also allows you to change the country setting, which affects the
default date format, time format, currency symbol, decimal separator character, and
thousands separator.

Chapter 3. The Model for Language Environment 25

Language Environment Storage Management Model
Common storage management services are provided for all Language
Environment-conforming programming languages; Language Environment controls
stack and heap storage used at run time. It allows single- and mixed-language
applications to access a central set of storage management facilities, and offers a
multiple-heap storage model to languages that do not now provide one. The
common storage model removes the need for each language to maintain a unique
storage manager and avoids the incompatibilities between different storage
mechanisms.

Storage Management Terminology:

Stack An area of storage in which stack frames can be allocated. (For an
explanation of stack frames, see “Language Environment
Condition-Handling Model” on page 19).

Heap An area of storage used by Language Environment routines. The heap
consists of the initial heap segment and zero or more increments. Heap
storage contains storage acquired by the ALLOCATE statement in PL/I, and
storage acquired by malloc() and calloc() in C.

Heap element
A contiguous area of storage allocated by a call to the CEEGTST service.
Heap elements are always allocated within a single heap segment.

Heap increment
Additional heap segments allocated when the initial heap segment does not
have enough free storage to satisfy a request for heap storage.

Heap pool
A storage pool that, when used by the storage manager, can be used to
improve the performance of heap storage allocation. This can improve the
performance of a multi-threaded application.

Heap segment
A contiguous area of storage obtained directly from the operating system.

Stack Storage
In Language Environment, a run-time stack, or stack storage, is automatically
created when a thread is created, and freed when the thread terminates. When a
thread is created, Language Environment allocates an initial stack, which can have
stack increments added to it as needed. Users can specify the sizes of the initial
stack and additional stack increments; they can also tune the stack for better
performance.

Heap Storage
Heap storage can be allocated and freed in no particular order. (Stack storage, in
contrast, is allocated when a routine is entered and freed when the routines ends.)
Language Environment provides multiple heaps that may be dynamically created
and discarded by using Language Environment callable services. Language
Environment’s heap storage is reliable because it provides a level of isolation and
prevents common errors such as attempting to free a heap element that has
already been freed.

Heap storage is shared among all program units and all threads in an enclave.
Allocated heap storage remains allocated until it is explicitly freed by a thread or

26 z/OS V1R4.0 Language Environment Concepts Guide

until the enclave terminates. Heap storage is typically controlled by the programmer
through Language Environment run-time options and callable services.

Heap storage consists of an initial heap segment that is allocated when the first
heap element is allocated (by a call to CEEGTST). The Language Environment
storage manager allocates heap increments as previously allocated segments
become full.

Figure 7 illustrates heap storage.

Storage Management Options

Storage Report
You can write a storage report using the run-time option RPTSTG. The report
summarizes all heap and stack activity, including total amount of storage used,
number of heap elements allocated and freed, number of operating system calls
performed, and recommended heap and stack sizes. Proper setting of heap and
stack sizes can significantly improve performance by reducing the number of
operating system calls made to allocate and free storage.

Storage Option
In Language Environment, the run-time option STORAGE may be used to
automatically initialize all heap and stack storage to a specified character. This is
useful as a debugging aid to find references to uninitialized program variables.

Heap
elements

Heap
elements

incr__size

init__size

Initial heap segment Increment

Unallocated storage

Unallocated storage

Unallocated storage

Unallocated storage

Figure 7. Language Environment Heap Storage

Chapter 3. The Model for Language Environment 27

28 z/OS V1R4.0 Language Environment Concepts Guide

Chapter 4. Language Environment Callable Services

This chapter gives an overview of Language Environment callable services and the
common calling procedure required to invoke them from C/C++, COBOL, PL/I,
Fortran, and assembler.

This common set of callable services is designed to supplement your programming
language’s intrinsic capability. For example, COBOL application developers will find
Language Environment’s consistent condition handling services especially useful. All
languages can benefit from the rich set of Language Environment common math
services, as well as the date and time services.

Language Environment callable services are divided into the following groups:
v Communicating Conditions Services
v Condition Handling Services
v Date and Time Services
v Dynamic Storage Services
v General Callable Services
v Initialization/Termination Services
v Locale Callable Services
v Math Services
v Message Handling Services
v National Language Support Services

Direct invocation of Language Environment callable services is not supported from
Fortran. However, support is provided to use callable services using a Fortran
library subroutine service. For more information, see Language Environment Fortran
Run-Time Migration Guide. Alternatively, a Fortran program can call another
Language Environment-enabled high-level language or an assembler program that
can invoke a Language Environment callable service.

Language-specific services, including those that call Language Environment callable
services, are documented in the language publications.

Language Environment Calling Conventions
Language Environment services can be invoked by HLL library routines, other
Language Environment services, and user-written HLL calls. In many cases,
services will be invoked by HLL library routines, as a result of a user-specified
function, such as a COBOL intrinsic function.

Language Environment-conforming languages exhibit consistent behavior because
language functions call Language Environment services. For example, C malloc()
and PL/I ALLOCATE each directly or indirectly call CEEGTST to obtain storage.

The sections below show examples of the syntax used to invoke Language
Environment callable services.

Invoking Callable Services from C
In C, invoke a Language Environment callable service (with feedback code) using
the syntax shown below:

© Copyright IBM Corp. 1991, 2002 29

leawi.h is a header file shipped with Language Environment that contains
declarations of Language Environment callable services and OMIT_FC, which is
used to explicitly omit the feedback code parameter, as shown below.

Invoking Callable Services from COBOL
In COBOL, invoke a Language Environment callable service using the syntax
shown below:

CEEIGZCT is an include file shipped with Language Environment that contains
declarations of Language Environment symbolic feedback codes.

You may omit the feedback code parameter in COBOL for OS/390 & VM and
COBOL for MVS & VM as shown in the following syntax:

Invoking Callable Services from PL/I
In PL/I, invoke a Language Environment callable service (with feedback code) using
the syntax shown below:

CEEIBMAW is an include file shipped with Language Environment that contains
declarations of Language Environment callable services.

#include <leawi.h>
main ()
{
CEESERV(parm1, parm2, ... parmn, fc);
}

Figure 8. Sample Invocation of a Callable Service from C

#include <leawi.h>
main ()
{
CEESERV(parm1, parm2, ... parmn, OMIT_FC);
}

Figure 9. Omitting the Feedback Code when Calling a Service from C

01 Feedback.
COPY CEEIGZCT...
CALL "CEESERV" USING parm1 parm2 ... parmn fc

Figure 10. Sample Invocation of a Callable Service from COBOL

01 Feedback.
COPY CEEIGZCT
CALL "CEESERV" USING parm1 parm2 ... parmn OMITTED

Figure 11. Omitting the Feedback Code when Calling a Service from COBOL

%INCLUDE CEEIBMAW...
CALL CEESERV (parm1, parm2, ... parmn, fc);

Figure 12. Sample Invocation of a Callable Service from PL/I

30 z/OS V1R4.0 Language Environment Concepts Guide

PL/I allows you to omit arguments when invoking callable services. To do so, code
an asterisk(*) in place of the argument, as shown below.

Invoking Callable Services from Assembler
In assembler, invoke a Language Environment callable service (with feedback code)
using the syntax shown below:

Assembler allows you to omit arguments when invoking callable services. To do so,
place an X'80000000' in the last parameter address slot if fc is the last parameter,
or X'00000000' in the corresponding address slot if fc is not the last parameter.

%INCLUDE CEEIBMAW...
CALL CEESERV (parm1, parm2, ... parmn, *);

Figure 13. Omitting the Feedback Code when Calling a Service from PL/I

LA R1,PLIST
L R15,=V(CEESERV)
BALR R14,R15
CLC FC(12),CEE000 Check if feedback code is zero
BNE ER1 If not, branch to error routine...

PLIST DS 0D
DC A(PARM1)...

Parms 2 through n

DC A(FC+X’80000000’) Feedback code as last parm

PARM1 DC F’5’ Parm 1...
Parms 2 through n

FC DS 12C Feedback code as last parm
CEE000 DC 12X’00’ Good feedback code

Figure 14. Sample Invocation of a Callable Service from Assembler

LA R1,PLIST
L R15,=V(CEESERV)
BALR R14,R15...

PLIST DS 0D
DC A(PARM1)...

Parms 2 through n
DC A(X’80000000’) Omitted feedback code in last slot

PARM1 DC F’5’ Parm 1...
Parms 2 through n

Figure 15. Omitting the Feedback Code when Calling a Service from Assembler

Chapter 4. Language Environment Callable Services 31

Language Environment Callable Services
Table 2 lists Language Environment callable services. Naming conventions of the
callable services are as follows:

v Those services starting with CEE are intended to be cross-system consistent;
they operate on System/390.

v Those services starting with CEE3 are services that exploit unique System/390
characteristics.

Table 2. Language Environment Callable Services

Service Name Description

Communicating Conditions Services

CEEDCOD—Decompose a Condition Token Decomposes an existing condition token.

CEENCOD—Construct a Condition Token Dynamically constructs a condition token. The condition token
communicates with message services, condition management,
Language Environment callable services, and user applications.

Condition Handling Services

CEE3CIB—Return Pointer to Condition
Information Block

Given a condition token passed to a user-written condition handler,
CEE3CIB returns a pointer to the condition information block
associated with a condition. Allows access to detailed information
about the subject condition during condition handling.

CEE3GRN—Get Name of Routine that
Incurred Condition

Obtains the name of the routine that is currently running when a
condition is raised. If there are nested conditions, the most recently
signaled condition is used.

CEE3GRO—Return Offset Returns the offset of the location within the most current Language
Environment-conforming routine where a condition occurred.

CEE3SPM—Query and Modify Language
Environment Hardware Condition Enablement

Allows the user to manipulate the program mask by enabling or
masking hardware interrupts.

CEE3SRP—Set Resume Point Sets a resume point within user application code to resume from a
Language Environment user condition handler.

CEEGQDT—Retrieve q_data_Token Retrieves the q_data token from the Instance-Specific Information
(ISI) to be used by user condition handlers.

CEEHDLR—Register a User Condition
Handler

Registers a user condition handler for the current stack frame.

CEEHDLU—Unregister a User Condition
Handler

Unregisters a user condition handler for the current stack frame.

CEEITOK—Return Initial Condition Token Returns the initial condition token for the current condition.

CEEMRCE—Resume User Routine Resumes execution of a user routine at the location established by
CEE3SRP.

CEEMRCR—Move Resume Cursor Relative to
Handle Cursor

Moves the resume cursor. You can either move the resume cursor to
the call return point of the routine that registered the executing
condition handler, or move the resume cursor to the caller of the
routine that registered the executing condition handler.

CEESGL—Signal a Condition Signals a condition to the Language Environment condition manager.
It also may be used to provide qualifying data and create an instance
specific information (ISI) field. The ISI contains information that is
used by the Language Environment condition manager to identify and
react to conditions.

Date and Time Services

32 z/OS V1R4.0 Language Environment Concepts Guide

Table 2. Language Environment Callable Services (continued)

Service Name Description

CEECBLDY—Convert Date to COBOL Lilian
Format

Converts a string representing a date into a COBOL Lilian date
format. The COBOL Lilian date format represents a date as the
number of days since 31 December 1600.

CEEDATE—Convert Lilian Date to Character
Format

Converts a number representing a Lilian date to a date written in
character format. The output is a character string such as
“1992/07/25”.

CEEDATM—Convert Seconds to Character
Timestamp

Converts a number representing the number of seconds since
00:00:00 14 October 1582 to a character format. The format of the
output is a character string, such as “1992/07/26 20:37:00.”

CEEDAYS—Convert Date to Lilian Format Converts a string representing a date into a Lilian format. The Lilian
format represents a date as the number of days since 14 October
1582, the beginning of the Gregorian calendar.

CEEDYWK—Calculate Day of Week from
Lilian Date

Calculates the day of the week on which a Lilian date falls. The day of
the week is returned to the calling routine as a number between 1
and 7.

CEEGMT—Get Current Greenwich Mean Time Returns the current Greenwich Mean Time (GMT) as both a Lilian
date and as the number of seconds since 00:00:00 14 October 1582.
These values are compatible with those generated and used by the
other Language Environment date and time services.

CEEGMTO—Get Offset from Greenwich Mean
Time to Local Time

Returns values to the calling routine which represent the difference
between the local system time and Greenwich Mean Time.

CEEISEC—Convert Integers to Seconds Converts separate binary integers representing year, month, day,
hour, minute, second, and millisecond to a number representing the
number of seconds since 00:00:00 14 October 1582. Use CEEISEC
instead of CEESECS when the input is in numeric format rather than
character format.

CEELOCT—Get Current Local Time Returns the current local time in three formats:
v Lilian date (the number of days since 14 October 1582)
v Lilian timestamp (the number of seconds since 00:00:00 14

October 1582)
v Gregorian character string (in the form YYYYMMDDHHMISS999)

CEEQCEN—Query the Century Window Queries the century within which Language Environment assumes
2-digit year values lie. Use it in conjunction with CEESCEN when it is
necessary to save and restore the current setting.

CEESCEN—Set the Century Window Sets the century where Language Environment assumes 2-digit year
values lie. Use it in conjunction with CEEDAYS or CEESECS when
you process date values that contain 2-digit years (for example, in the
YYMMDD format), or when the Language Environment default century
interval doesn’t meet the requirements of a particular application.

CEESECI—Convert Seconds to Integers Converts a number representing the number of seconds since
00:00:00 14 October 1582 to seven separate binary integers
representing year, month, day, hour, minute, second, and millisecond.
Use CEESECI instead of CEEDATM when the output is needed in
numeric format rather than character format.

CEESECS—Convert Timestamp to Number of
Seconds

Converts a string representing a timestamp into a number
representing the number of seconds since 00:00:00 14 October 1582.
This service makes it easier to do time arithmetic, such as calculating
the elapsed time between two timestamps.

CEEUTC—Get Coordinated Universal Time CEEUTC is an alias of CEEGMT.

Dynamic Storage Services

Chapter 4. Language Environment Callable Services 33

Table 2. Language Environment Callable Services (continued)

Service Name Description

CEECRHP—Create New Additional Heap Defines additional heaps. The heaps defined by CEECRHP can be
used just like the Language Environment initial heap (heap id of 0).
However, the entire heap created by CEECRHP may be quickly freed
with a single call to the CEEDSHP (discard heap) service.

CEECZST—Reallocate (Change Size of)
Storage

Changes the size of a previously allocated storage element while
preserving its contents. Reallocation of a storage element is
accomplished by allocating a new storage element of a new size and
copying the contents of the old element to the new element.

CEEDSHP—Discard Heap Discards an entire heap that you created previously with a call to
CEECRHP.

CEEFRST—Free Heap Storage Frees storage previously allocated by CEEGTST. It can be used to
free both large and small blocks of storage efficiently because freed
storage is retained on a free chain instead of being returned to the
operating system.

CEEGTST—Get Heap Storage Allocates storage from a heap whose ID you specify. It can be used to
efficiently acquire both large and small blocks of storage.

General Services

CEE3DMP—Generate Dump Generates a dump of the run-time environment of Language
Environment and of the member language libraries. The dump can be
modified to selectively include such information as number and
contents of enclaves and threads, traceback of all routines on a call
chain, file attributes, and variable, register, and storage contents.

CEETDLI—Invoke IMS Invokes IMS.

CEE3RPH—Set Report Heading Sets the heading displayed at the top of the storage or run-time
options report. Language Environment generates the storage report
when the RPTSTG(ON) run-time option is specified, and the options
report when the RPTOPTS(ON) run-time option is specified.

CEE3USR—Set or Query User Area Fields Sets or queries one of two 4-byte fields in the enclave data block
known as the user area fields. The user area fields are associated
with an enclave and are maintained on an enclave basis. A user area
might be used by vendor or applications to store a pointer to a global
data area or keep a recursion counter.

CEEGPID—Retrieve the Language
Environment Version and Platform ID

Retrieves the Language Environment version ID and the platform ID
of the version and platform of Language Environment that is currently
in use for processing the currently active condition.

CEERAN0—Calculate Uniform Random
Numbers

Generates a sequence of uniform pseudo-random numbers between
0 and 1 using the multiplicative congruential method with a
user-specified seed.

CEETEST—Invoke Debug Tool Invokes a debug tool, such as Debug Tool.

Initialization/Termination Services

CEE3ABD—Terminate Enclave with an Abend Requests Language Environment to terminate the enclave via an
abend. The abend can be issued either with or without cleanup.

CEE3GRC—Get the Enclave Return Code Retrieves the current value of the user enclave return code.

CEE3PRM—Query Parameter String Returns to the calling routine the parameter string that was specified
at invocation of the program. The returned parameter string contains
only user parameters. If no user parameters are available, a blank
string is returned.

CEE3SRC—Set the Enclave Return Code Modifies the user enclave return code. The value set will be used in
the calculation of the final enclave return code at enclave termination.

34 z/OS V1R4.0 Language Environment Concepts Guide

Table 2. Language Environment Callable Services (continued)

Service Name Description

Locale Callable Services

CEEFMON—Format Monetary String Converts numeric values to monetary strings.

CEEFTDS—Format Time and Date into
Character String

Converts time and date specifications into a character string.

CEELCNV—Query Locale Numeric
Conventions

Returns information about the LC_NUMERIC and LC_MONETARY
categories of the locale.

CEEQDTC—Query Locale Date and Time
Conventions

Queries the locale’s date and time conventions.

CEEQRYL—Query Active Locale Environment Allows the calling routine to query the current locale.

CEESCOL—Compare Collation Weight of Two
Strings

Compares two character strings based on the collating sequence
specified in the LC_COLLATE category of the locale.

CEESETL—Set Locale Operating Environment Allows an enclave to establish a global operating environment. An
enclave’s National Language operating environment determines the
behavior of character collation, character classification, date and time
formatting, numeric punctuation, and message response.

CEESTXF—Transform String Characters into
Collation Weights

Transforms each character in a character string into its collation
weight and returns the length of the transformed string.

Mathematical Services

Language Environment math services are scalar routines. x is a data type variable.

CEESxABS Absolute value

CEESxACS Arccosine

CEESxASN Arcsine

CEESxATH Hyperbolic arctangent

CEESxATN Arctangent

CEESxAT2 Arctangent x/y

CEESxCJG Conjugate of complex

CEESxCOS Cosine

CEESxCSH Hyperbolic cosine

CEESxCTN Cotangent

CEESxDIM Positive difference

CEESxDVD Floating complex divide

CEESxERF Error function

CEESxEXP Exponential (base e)

CEESxGMA Gamma function

CEESxIMG Imaginary part of complex

CEESxINT Truncation

CEESxLGM Log gamma function

CEESxLG1 Logarithm base 10

CEESxLG2 Logarithm base 2

CEESxLOG Logarithm base e

CEESxMLT Floating complex multiply

CEESxMOD Modular arithmetic

Chapter 4. Language Environment Callable Services 35

Table 2. Language Environment Callable Services (continued)

Service Name Description

CEESxNIN Nearest integer

CEESxNWN Nearest whole number

CEESxSGN Transfer of sign

CEESxSIN Sine

CEESxSNH Hyperbolic sine

CEESxSQT Square root

CEESxTAN Tangent

CEESxTNH Hyperbolic tangent

CEESxXPx Exponentiation

Message Handling Services

CEECMI—Store and Load Message Insert
Data

Stores the message insert data and loads the address of that data
into the instance specific information (ISI) field associated with the
condition being processed, after optionally creating an ISI.

CEEMGET—Get a Message Retrieves, formats, and stores a message in a buffer for manipulation
or output by the caller.

CEEMOUT—Dispatch a Message Dispatches a message to a destination which you specify.

CEEMSG—Get, Format, and Dispatch a
Message

Gets/formats/dispatches a message corresponding to an input
condition token received from a callable service. You can use this
service to print a message after a call to any Language Environment
service that returns a condition token.

National Language Support Services

CEE3CTY—Set Default Country Allows the calling routine to change or query the current national
country setting. The country setting affects the date format, the time
format, the currency symbol, the decimal separator character, and the
thousands separator.

CEE3LNG—Set National Language Allows the calling routine to change or query the current national
language. The national languages may be recorded on a LIFO
national language stack. Changing the national language changes the
languages of error messages, the names of the days of the week,
and the names of the months.

CEE3MCS—Obtain Default Currency Symbol Returns the default currency symbol for the country specified.

CEE3MDS—Obtain Default Decimal Separator Returns the default decimal separator for the country specified.

CEE3MTS—Obtain Default Thousands
Separator

Returns the default thousands separator for the country specified.

CEEFMDA—Obtain Default Date Format Returns to the calling routine the default date picture string for a
specified country.

CEEFMDT—Obtain Default Date and Time
Format

Returns to the calling routine the default date and time picture strings
for the country specified.

CEEFMTM—Obtain Default Time Format Returns to the calling routine the default time picture string for the
country specified.

36 z/OS V1R4.0 Language Environment Concepts Guide

Chapter 5. Sample Routines

This chapter includes sample routines that demonstrate several aspects of
Language Environment.
v Assembler routine, Figure 16
v C/C++ routine, Figure 17 on page 38
v C routine with POSIX functions, Figure 18 on page 39
v COBOL program, Figure 19 on page 41
v PL/I routine, Figure 20 on page 42

Sample Assembler Routine

Sample C/C++ Routine
This routine demonstrates the following Language Environment callable services:
v CEEMOUT—Dispatch a message
v CEELOCT—Get current time
v CEEDATE—Convert Lilian date to character format

* ===
*
* Shows a simple main assembler routine that brings up the environment,
* returns with a return code of 0, modifier of 0, and prints a
* message in the main routine.
*
* ===
MAIN CEEENTRY PPA=MAINPPA
*
*

LA 1,PARMLIST
L 15,=V(CEEMOUT)
BALR 14,15

*
* Terminate the Language Environment environment and return to the caller
*

CEETERM RC=0,MODIFIER=0
* ==
* CONSTANTS AND WORKAREAS
* ==
PARMLIST DC AL4(STRING)

DC AL4(DEST)
DC X’80000000’ Omitted feedback code

*
STRING DC AL2(STRLEN)
STRBEGIN DC CL19’In the main routine’
STRLEN EQU *-STRBEGIN
DEST DC F’2’
MAINPPA CEEPPA Constants describing the code block

CEEDSA Mapping of the dynamic save area
CEECAA Mapping of the common anchor area
END MAIN Nominate MAIN as the entry point

Figure 16. A Simple Main Assembler Routine

© Copyright IBM Corp. 1991, 2002 37

Sample C Routine with POSIX Functions
This C routine creates multiple threads by using POSIX functions.

#include <leawi.h>
#include <string.h>
main ()
{
_FEEDBACK fbcode; /* fbcode for all callable services */

/***/
/* Parameters passed to CEEMOUT. Typedefs found in leawi.h. */
/***/
_VSTRING msg;
_INT4 destination;

/***/
/* Parameters passed to CEELOCT. Typedefs found in leawi.h. */
/***/
_INT4 lildate;
_FLOAT8 lilsecs;
_CHAR17 greg;

/***/
/* Parameters passed to CEEDATE. Typedefs found in leawi.h. */
/***/
_CHAR80 str_date;
_VSTRING pattern;

/***/
/* Starting and ending messages */
/***/
_CHAR80 startmsg = "Callable service example starting (C/370).";
_CHAR80 endingmsg = "Callable service example ending (C/370).";

/***/
/* Start execution. Print the first message. */
/***/
destination = 2;
strcpy(msg.string, startmsg);
msg.length = strlen(msg.string);
CEEMOUT (&msg, &destination, &fbcode);

/***/
/* Get the local date and time, format it, and print it out. */
/***/
CEELOCT (&lildate, &lilsecs, greg, &fbcode);
strcpy (pattern.string,\

"Today is Wwwwwwwwwwwwz, Mmmmmmmmmmz ZD, YYYY.");
pattern.length = strlen(pattern.string);
memset (msg.string , ’ ’ , 80);
CEEDATE (&lildate, &pattern, msg.string, &fbcode);
msg.length = 80;
CEEMOUT (&msg, &destination, &fbcode);

/***/
/* Say goodbye. */
/***/
strcpy (msg.string, endingmsg);
msg.length = strlen(msg.string);
CEEMOUT (&msg, &destination, &fbcode);

}

Figure 17. Sample C/C++ Routine

38 z/OS V1R4.0 Language Environment Concepts Guide

#pragma longname
#define _POSIX_SOURCE
#define _OPEN_THREADS
#pragma runopts (POSIX(ON))
#include <leawi.h>
#include <types.h>
#include <stdio.h>
#include <pthread.h>
#include <unistd.h>
#include <errno.h>

void * CEPSXT1(void *);

main()
{
pthread_t CEPSXT1_pid[3];

int status[2], i, j[2], rc, count=0;

fprintf(stderr,"\n Creating two threads................\n");
fflush(stderr);

for(i=0; i<2; i++)
{
j[i] = i+1;
rc = pthread_create(&CEPSXT1_pid[i], NULL, &CEPSXT1, &j[i])
if (rc)
{
fprintf(stderr, "Thread creation unsuccessful;Error: %d",errno);
fprintf(stderr, "pthread_create() returns %d ",rc);
fflush(stderr);
exit(-1);

}
else
fprintf(stderr,"Thread %d created\n",j[i]);

}

for(i=0; i<2; i++)
{
j[i] = i+1;
if (!(rc = pthread_join(CEPSXT1_pid[i],(void*) &status[i])))
{
if (status[i] == 1)
count++;

}
else
{
fprintf(stderr,"pthread_join failed for thread %d\n",j[i]);
fflush(stderr);
exit(-1);

}
}

Figure 18. Sample C Routine Creating Threads with POSIX Functions (Part 1 of 2)

Chapter 5. Sample Routines 39

Sample COBOL Program
This program demonstrates the following Language Environment callable services:
v CEEMOUT—Dispatch a message
v CEELOCT—Get current time
v CEEDATE—Convert Lilian date to character format

if (count == 2)
fprintf(stderr,"\n***** SUCCESS *****\n");

else
fprintf(stderr,"\n***** ERROR *****\n");

fflush(stderr);
pthread_exit(0);

}

void * CEPSXT1(void *arg)
{
int status=0, success=0;
div_t ans;
char path = ’/’;
int i, rc;

i = *((int *)arg);

fprintf(stderr,"\n Call POSIX access() function in Thread %d",i);
fflush(stderr);

if (access(path, F_OK) == 0)
fprintf(stderr,"\nPOSIX access() function succeeds in Thread %d\n",i);

else
fprintf(stderr, "Error generated by call to access() is %d", errno);

fflush(stderr);

status=1;

fprintf(stderr,"***** Thread %d completed *****\n", i);
fflush(stderr);
pthread_exit((void*) status);

}

Figure 18. Sample C Routine Creating Threads with POSIX Functions (Part 2 of 2)

40 z/OS V1R4.0 Language Environment Concepts Guide

**
* This program demonstrates the following Language *
* Environment callable *
* services : CEEMOUT, CEELOCT, CEEDATE *
**

**
** I D D I V I S I O N ***
**
Identification Division.
Program-id. AWIXMP.

**
** D A T A D I V I S I O N ***
**
Data Division.
Working-Storage Section.

**
** Declarations for the local date/time service.
**
01 Feedback.
COPY CEEIGZCT
02 Fb-severity PIC 9(4) Binary.
02 Fb-detail PIC X(10).

77 Dest-output PIC S9(9) Binary.
77 Lildate PIC S9(9) Binary.
77 Lilsecs COMP-2.
77 Greg PIC X(17).

**
** Declarations for messages and pattern for date formatting.
**
01 Pattern.
02 PIC 9(4) Binary Value 45.
02 PIC X(45) Value

"Today is Wwwwwwwwwwwwz, Mmmmmmmmmmz ZD, YYYY.".

77 Start-Msg PIC X(80) Value
"Callable Service example starting.".

77 Ending-Msg PIC X(80) Value
"Callable Service example ending.".

01 Msg.
02 Stringlen PIC S9(4) Binary.
02 Str .
03 PIC X Occurs 1 to 80 times

Depending on Stringlen.

Figure 19. Sample COBOL Program (Part 1 of 2)

Chapter 5. Sample Routines 41

Sample PL/I Routine
This routine demonstrates the following Language Environment callable services:
v CEEMOUT—Dispatch a message
v CEELOCT—Get current time
v CEEDATE—Convert Lilian date to character format

**
** P R O C D I V I S I O N ***
**
Procedure Division.
000-Main-Logic.

Perform 100-Say-Hello.
Perform 200-Get-Date.
Perform 300-Say-Goodbye.
Stop Run.

**
** Setup initial values and say we are starting.
**
100-Say-Hello.

Move 80 to Stringlen.
Move 02 to Dest-output.
Move Start-Msg to Str.
CALL "CEEMOUT" Using Msg Dest-output Feedback.
Move Spaces to Str.

CALL "CEEMOUT" Using Msg Dest-output Feedback.
**
** Get the local date and time and display it.
**
200-Get-Date.

CALL "CEELOCT" Using Lildate Lilsecs Greg Feedback.
CALL "CEEDATE" Using Lildate Pattern Str Feedback.
CALL "CEEMOUT" Using Msg Dest-output Feedback.
Move Spaces to Str.
CALL "CEEMOUT" Using Msg Dest-output Feedback.

**
** Say Goodbye.
**
300-Say-Goodbye.

Move Ending-Msg to Str.
CALL "CEEMOUT" Using Msg Dest-output Feedback.

End program AWIXMP.

Figure 19. Sample COBOL Program (Part 2 of 2)

*PROCESS MACRO;
/*compilation unit: cecgxmp */
/**/
/* This routine demonstrates the following LE/370 callable **/
/* services: CEEMOUT, CEELOCT, and CEEDATE. **/
/* **/
/**/
cecgxmp: proc options(main);

Figure 20. Sample PL/I Routine (Part 1 of 3)

42 z/OS V1R4.0 Language Environment Concepts Guide

/* Declarations for callable services */
%INCLUDE CEEIBMAW;
%INCLUDE CEEIBMCT;

/* feedback code for all callable services*/
dcl 01 fc FEEDBACK;

/**/
/** Parameters passed to CEEMOUT. **/
/** **/
/**/

dcl startmsg CHAR80
init(’Callable service example starting (PL/I)’);

dcl endmsg CHAR80
init(’Callable service example ending (PL/I)’);

dcl strmsg CHAR80;
dcl destination real fixed binary (31,0);

/**/
/** Parameters passed to CEELOCT. **/
/** **/
/**/

dcl lildate real fixed binary (31,0);
dcl lilsecs real float decimal (16);
dcl greg character (17);

/**/
/** Parameters for CEEDATE. **/
/** **/
/**/

dcl pattern CHAR80;
dcl chrdate CHAR80 init ((80)’ ’);

/**/
/** Start execution. Print the first message. **/
/** **/
/**/

destination = 2;
call CEEMOUT (startmsg , destination , fc);
IF ¬ FBCHECK(fc, CEE000) THEN DO;

DISPLAY(’CEEMOUT failed with msg ’ || fc.MsgNo);
STOP;
END;

Figure 20. Sample PL/I Routine (Part 2 of 3)

Chapter 5. Sample Routines 43

/**/
/** Get the local date and time. Format it, and print it **/
/** out. **/
/**/

call CEELOCT (lildate , lilsecs , greg , fc);
IF ¬ FBCHECK(fc, CEE000) THEN DO;

DISPLAY(’CEELOCT failed with msg ’ || fc.MsgNo);
STOP;
END;

pattern = ’Today is Wwwwwwwwwwwwz, Mmmmmmmmmmz, ZD, YYYY.’;
call CEEDATE (lildate , pattern , chrdate , fc);
IF ¬ FBCHECK(fc, CEE000) THEN DO;

DISPLAY(’CEEDATE failed with msg ’ || fc.MsgNo);
STOP;
END;

strmsg = chrdate;
call CEEMOUT (strmsg , destination , fc);
IF ¬ FBCHECK(fc, CEE000) THEN DO;

DISPLAY(’CEEMOUT failed with msg ’ || fc.MsgNo);
STOP;
END;

/**/
/** Say good bye. **/
/** **/
/**/

call CEEMOUT (endmsg , destination , fc);
IF ¬ FBCHECK(fc, CEE000) THEN DO;

DISPLAY(’CEEMOUT failed with msg ’ || fc.MsgNo);
STOP;
END;

end;

Figure 20. Sample PL/I Routine (Part 3 of 3)

44 z/OS V1R4.0 Language Environment Concepts Guide

Appendix A. Customizing Language Environment run-time
options using z/OS msys for Setup

In z/OS Release 1.3, z/OS Managed System Infrastructure for Setup (msys for
Setup) offers support for customizing Language Environment run-time options. It
can significantly reduce the complexity of customization by:

v Guiding you in defining your Language Environment needs and generating an
appropriate set of run-time options based on IBM-recommended settings.

v Allowing you to further customize advanced options, if needed.

v Allowing you to customize region specific run-time options for CICS and IMS
regions which will produce CEECOPT, CEEDOPT and CEEROPT members.

Who should use msys for Setup?
Generally, msys for Setup is intended for users customizing Language Environment
for the first time or migrating to a new release. However, msys for Setup can also
be used if your system changes or if you want to customize additional regions.
Once msys for Setup has been used once, you should continue to use msys for
Setup for additional changes. When you migrate to a new release, msys for Setup
will make the appropriate changes for any new IBM-recommended defaults.

What is the Language Environment customization task?
The Language Environment customization task is divided into multiple steps:
CUSTOMIZE, UPDATE, and COMMIT. During the CUSTOMIZE step, the user is
asked to enter configuration data for CICS, non-CICS and region-specific run-time
options through a series of self-explanatory msys panels. The first time a user tries
to CUSTOMIZE, he or she will be directed to the Language Environment msys
wizard, which will ask the minimum set of questions needed to set up a basic
Language Environment configuration. From there, the user is able to further
customize more advanced options by entering information into the property sheets.
After the wizard is successfully completed, the user will always be directed to the
main property sheet panel, but will have the ability to re-run the wizard, and reset
msys values to the default.

Upon completion of the CUSTOMIZE step, this data will be stored in LDAP. When
the UPDATE command is issued, msys constructs the information from LDAP and
stores the results as a CEECOPT/CEEDOPT member in a user-specified data set.
If the user has specified any CEEROPT members, the UPDATE task will construct
a file for each set of options in the /tmp directory.

During the COMMIT step, the files will be submitted from /tmp and the resulting
load modules will be placed in the data set specified by the user in the msys
panels. Upon successful completion of the COMMIT step, the user will still need to
take action to activate these changes. The user can click ″Browse User Actions″ to
find out what further steps need to be taken.

© Copyright IBM Corp. 1991, 2002 45

Recommendations when using msys for Setup for Language
Environment customization

msys for Setup provides many Language Environment settings based on best
practices. While you may change these default settings, it is recommended that you
use the values provided. When adjusting settings, the msys for Setup help will
provide you with background on each run-time option as well as suggestions for
optimal settings.

Restrictions when using msys for Setup for Language Environment
customization

The following run-time options are set to IBM-recommended defaults and cannot be
further modified with msys for Setup:

v ABPERC

v AIXBLD

v ARGPARSE

v CBLQDA

v DEBUG

v ENV

v ERRUNIT

v FILEHIST

v FILETAG

v FLOW

v LIBRARY

v MSGFILE

v MSGQ

v PC

v PLIST

v POSIX

v PROFILE

v PRTUNIT

v PUNUNIT

v RDRUNIT

v REDIR

v RPTOPTS

v RTEREUS

v RTLS

v STORAGE

v TEST

v TRACE

v TRAP

v VCTRSAVE

v VERSION

v XUFLOW

46 z/OS V1R4.0 Language Environment Concepts Guide

Additionally, msys for Setup imposes practical limits to certain settings that are
different from Language Environment limits. Consult the msys for Setup help panels
for a full description of limits on individual settings.

Note: If you change any run-time options without using msys for Setup, the
changes will not be recognized by msys for Setup.

Where to find information about msys for Setup
For more information about msys for Setup, see z/OS Managed System
Infrastructure for Setup User’s Guide.

For more Information about Language Environment customization, see z/OS
Language Environment Customization.

Appendix A. Customizing Language Environment run-time options using z/OS msys for Setup 47

48 z/OS V1R4.0 Language Environment Concepts Guide

Appendix B. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

© Copyright IBM Corp. 1991, 2002 49

50 z/OS V1R4.0 Language Environment Concepts Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1991, 2002 51

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

52 z/OS V1R4.0 Language Environment Concepts Guide

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This book documents intended Programming Interfaces that allow the customer to
write programs to obtain the services of z/OS Language Environment.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AD/Cycle
AIX
BookManager
C/370
CICS
COBOL/370
DB2
IBM
IMS
Java
Language Environment

MVS/ESA
Open Class
OS/390
Resource Link
SOM
SOMobjects
VisualAge
z/OS
z/OS.e
zSeries

IEEE is a trademark of the Institute of Electrical and Electronics Engineers, Inc. in
the United States and other countries.

POSIX is a trademark of the Institute of Electrical and Electronics Engineers, Inc. in
the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

Notices 53

54 z/OS V1R4.0 Language Environment Concepts Guide

Language Environment Glossary

This glossary defines technical terms and
abbreviations used in z/OS Language
Environment documentation. If you do not find the
term you are looking for, refer to the index of the
appropriate Language Environment manual or
view IBM Glossary of Computing Terms, located
at:
http://www.ibm.com/ibm/terminology

This glossary includes terms and definitions from:
Portable Operating System Interface (POSIX) Part
1: System Application Program Interface (API) [C
Language], ISO/EIC 9945-1: 1990, IEEE Std
1003.1-1990, copyright 1992 by The Institute of
Electrical and Electronics Engineers, Inc., 345
East 47th Street, New York, NY 10017. These
terms are identified by [POSIX.1].

A
abend. Abnormal end of application.

absolute value. The magnitude of a real number
regardless of its algebraic sign.

active routine. The currently executing routine.

actual argument. The Fortran term for the data
passed to a called routine at the point of call. See also
dummy argument.

additional floating point registers (AFP). For IEEE
support, 12 additional floating point registers, for a total
of 16 floating-point registers.

additional heap. A Language Environment heap
created and controlled by a call to CEECRHP. See also
below heap, anywhere heap, and initial heap.

addressing mode. An attribute that refers to the
address length that a routine is prepared to handle
upon entry. Addresses may be 24 or 31 bits long.

address space. Domain of addresses that are
accessible by an application.

AFP. See additional floating-point registers (AFP).

aggregate. A structured collection of data items that
form a single data type. Contrast with scalar.

AIB. Application interface block.

ALLOCATE command. In MVS, the TSO command
that serves as the connection between a file’s logical
name (the ddname) and the file’s physical name (the
data set name).

American National Standard Code for Information
Interchange (ASCII). The code developed by the
American National Standards Institute (ANSI) for
information interchange among data processing
systems, data communications systems, and associated
equipment. The ASCII character set consists of 7-bit
control characters and symbolic characters.

AMODE. Provided by the linkage editor, the attribute of
a load module that indicates the addressing mode in
which the load module should be entered.

anywhere heap. The Language Environment heap
controlled by the ANYHEAP run-time option. It contains
library data, such as Language Environment control
blocks and data structures not normally accessible from
user code. The anywhere heap may reside above 16M.
See also below heap, additional heap, initial heap.

APAR. Authorized program analysis report.

application. A collection of one or more routines
cooperating to achieve particular objectives.

application interface block (AIB). IMS interface
between an application and an IMS database.

application program. A collection of software
components used to perform specific types of work on a
computer, such as a program that does inventory
control or payroll.

argument. 1) An expression used at the point of a call
to specify a data item or aggregate to be passed to the
called routine. 2) The data passed to a called routine at
the point of call or the data received by a called routine.
See also actual argument and dummy argument.

array. An aggregate that consists of data objects, each
of which may be uniquely referenced by subscripting.

array element. A data item in an array.

ASCII. American National Standard Code for
Information Interchange.

Asian date format. In this book, Asian date format
refers to the era picture strings associated with the
Japanese or other era. Era picture strings begin with a
less than character (<) and end with a greater than
character (>). The characters inside are either capital Js
or Cs.

assembler. Translates symbolic assembler language
into binary machine language. The High Level
Assembler is an IBM licensed program.

assembler user exit. A routine to tailor the
characteristics of an enclave prior to its establishment.
The name of the routine is CEEBXITA.

© Copyright IBM Corp. 1991, 2002 55

async safe. An application is able to mask off
asynchronous signals when it is working with critical
data or structures. The application can request to
process the asynchronous signals when it has finished
updated the critical data or structure.

atexit list. A list of actions specified in the C atexit()
function that occur at normal program termination.

authorized program analysis report (APAR). A
request for correction of a problem caused by a defect
in a current unaltered release of a program.

automatic call. The process used by the linkage
editor to resolve external symbols left undefined after all
the primary input has been processed. See also
automatic call library.

automatic call library. Contains load modules or
object modules that are to be used as secondary input
to the linkage editor to resolve external symbols left
undefined after all the primary input has been
processed.

The automatic call library may be:

v Libraries containing object modules, with or without
linkage editor control statements

v Libraries containing load modules

v The library containing Language Environment
run-time routines (SCEELKED) (SCEELKED and
SAFHFORT)

automatic conversion. For Enhanced ASCII
functionality, the automatic conversion of text data from
EBCDIC to ASCII, or from ASCII to EBCDIC, as part of
using internationalized applications developed on (or
for) ASCII platforms and ported to z/OS platforms. See
also file tag and coded character set ID (CCSID).

automatic data. Data for a routine that is
automatically allocated when the routine is called and
automatically freed when the routine returns. Automatic
data does not persist from one call of the routine to the
next.

automatic library call. Automatic call. See also
automatic call library.

automatic storage. Storage that is allocated on entry
to a routine or block and is freed on the subsequent
return. Sometimes referred to as stack storage or
dynamic storage.

B
background process. A process that is a member of
a background process group. [POSIX.1]

background process group. Any process group,
other than a foreground process group, that is a
member of a session that has established a connection
with a controlling terminal. [POSIX.1]

base. The core product, upon which features may be
separately ordered and installed.

batch. Pertaining to activity involving little or no user
action. Contrast with interactive.

below heap. The Language Environment heap
controlled by the BELOWHEAP run-time option, which
contains library data, such as Language Environment
control block and data structures not normally
accessible from user code. Below heap always resides
below 16M. See also anywhere heap, initial heap,
additional heap.

BFP. See binary floating point (BFP).

binary floating point. For IEEE, binary floating point
registers.

binder. The DFSMS component that processes the
output of the language translators and compilers into an
executable program (load module or program object). It
replaces the linkage editor and batch loader in the
MVS/ESA operating system.

breakpoint. A place in a program, usually specified by
a command or a condition, where execution may be
interrupted and control given to the workstation user or
to a specified debug tool program.

buffer. An area of storage into which data is read or
from which it is written. Typically, buffers are used only
for temporary storage.

by content. See pass by content.

by reference. See pass by reference.

by value. See pass by value.

byte. The basic unit of storage addressability. It has a
length of 8 bits.

C
C language. A high-level language used to develop
software applications in compact, efficient code that can
be run on different types of computers with minimal
change.

C++ language. An object-oriented high-level language
that evolved from the C language. C++ exploits the
benefits of object-oriented technology such as code
modularity, portability, and reuse.

C-CAA. C/370-specific common anchor area in the
run-time environment.

CAA. Common anchor area.

call chain. A trace of all active routines and
subroutines that can be constructed by the user from

56 z/OS V1R4.0 Language Environment Concepts Guide

information included in a system dump, such as the
locations of save areas and the names of routines.

callable service stub. A short routine that is
link-edited with an application and that is used to
transfer control from the application to a callable
service.

callable services. A set of services that can be
invoked by a Language Environment-conforming
high-level language using the conventional Language
Environment-defined call interface, and usable by all
programs sharing the Language Environment
conventions.

Use of these services helps to decrease an application’s
dependence on the specific form and content of the
services delivered by any single operating system.

called routine. A routine or program that is invoked by
another.

callee. A routine or program that is invoked by
another.

caller. A routine or program that invokes another
routine.

calling routine. A routine or program that invokes
another routine.

CASE. Computer-aided software engineering.

cast. In C, an expression that converts the type of the
operand to a specified data type (the operator).

cataloged procedure. A set of job control language
(JCL) statements placed in a library and retrievable by
name.

CBIPO. Custom-Built Installation Process Offering.

CBPDO. Custom-Built Product Delivery Offering.

CCSID. See coded character set ID (CCSID).

CEEDUMP. A dump of the run-time environment for
Language Environment and the member language
libraries. Sections of the dump are selectively included,
depending on options specified on the dump invocation.
This is not a dump of the full address space, but a
dump of storage and control blocks that Language
Environment and its members control.

century window. The 100-year interval in which
Language Environment assumes all 2-digit years lie.
The Language Environment default century window
begins 80 years before the system date.

chained list. Synonym for linked list.

character. A letter, digit, or other symbol. A letter, digit,
or other symbol that is used as part of the organization,

control, or representation of data. A character is often in
the form of a spatial arrangement of adjacent or
connected strokes.

child enclave. The nested enclave created as a result
of certain commands being issued from a parent
enclave.

CIB. Condition information block.

CICS. Customer Information Control System.

CICS destination control table (DCT). A table that
contains an entry for each extrapartition, intrapartition,
and indirect destination. Extrapartition entries address
data sets external to the CICS region. Intrapartition
destination entries contain the information required to
locate the queue in the intrapartition data set. Indirect
destination entries contain the information required to
locate the queue in the intrapartition data set.

CICS OTE. CICS Open Transaction Environment.

CICS run unit. Consists of a statically and/or
dynamically bound set of one or more load modules
which can be loaded by a CICS loader. A CICS run unit
is equivalent to a Language Environment enclave.

CICS translator. A routine that accepts as input an
application containing EXEC CICS commands and
produces as output an equivalent application in which
each CICS command has been translated into the
language of the source.

CLIST. TSO command list.

CLLE. COBOL load list entry.

CMS. Conversational monitor system.

CMS extended parameter list. A type of parameter
list available in the CMS environment consisting of a
string composed exactly as the user typed it at the
terminal. There is no tokenization performed on the
string.

CMS tokenized parameter list. A type of parameter
list available in the CMS environment consisting of
8-byte tokens, folded to uppercase, terminating with a
double word of X'FF'. Not supported under Language
Environment.

COBCOM. Control block containing information about
a COBOL partition.

COBOL. COmmon Business-Oriented Language. A
high-level language, based on English, that is primarily
used for business applications.

COBOL load list entry (CLLE). Entry in the load list
containing the name of the program and the load
address.

Language Environment Glossary 57

COBOL run unit. A COBOL-specific term that defines
the scope of language semantics. Equivalent to a
Language Environment enclave.

COBPACK. A collection of individual modules that are
packaged into a single load module in order to reduce
the time that would otherwise be needed to load the
individual load modules.

COBVEC. A COBOL vector table containing the
address of the COBOL library routines.

coded character set ID (CCSID). For Enhanced
ASCII functionality, a 16-bit value is a number that
represents a character set used by file tagging. It
identifies the currrent character set of text strings within
a program. This is stored in the file tag of new files or
used for the automatic conversion of old files when
automatic conversion is in effect. See also automatic
conversion and file tag..

command processor parameter list (CPPL). The
format of a TSO parameter list. When a TSO terminal
monitor application attaches a command processor,
register 1 contains a pointer to the CPPL, containing
addresses required by the command processor.

COMMAREA. A communication area made available
to applications running under CICS.

common anchor area (CAA). Dynamically acquired
storage that represents a Language Environment
thread. Thread-related storage/resources are anchored
off of the CAA. This area acts as a central
communications area for the program, holding
addresses of various storage and error-handling
routines, and control blocks. The CAA is anchored by
an address in register 12.

common block. A storage area that may be
referenced by one or more compilation units. It is
declared in a Fortran program with the COMMON
statement. See also external data.

compilation unit. An independently compilable
sequence of HLL statements. Each HLL product has
different rules for what makes up a compilation unit.
Synonymous with program unit.

compile-time options. Keywords that can be specified
to control certain aspects of compilation. Compiler
options can control the nature of the load module
generated by the compiler, the types of printed output to
be produced, the efficient use of the compiler, the
destination of error messages, and other things.

compiler options. Keywords that can be specified to
control certain aspects of compilation. Compiler options
can control the nature of the load module generated by
the compiler, the types of printed output to be produced,
the efficient use of the compiler, and the destination of
error messages. See also compiler-time options.

component. Software that is part of a functional unit.
A set of modules that performs a major function within a
system.

computer-aided software engineering (CASE). A
software engineering discipline for automating the
application development process and thereby improving
the quality of application and the productivity of
application developers.

condition. An exception that has been enabled, or
recognized, by Language Environment and thus is
eligible to activate user and language condition
handlers. Conditions can be detected by the
hardware/operating system and result in an interrupt.
They can also be detected by language-specific
generated code or language library code.

condition code. A code that reflects the result of a
previous input/output, arithmetic, or logical operation.

condition handler. A user-written condition handler or
language-specific condition handler (such as a PL/I
ON-unit or C signal() function call) invoked by the
Language Environment condition manager to respond to
conditions.

condition handling. In Language Environment, the
diagnosis, reporting, and/or tolerating of errors that
occur while a routine is running.

condition information block (CIB). The
platform-specific data block used by the Language
Environment condition manager as a repository for data
about conditions raised in the Language Environment
run-time environment.

condition manager. Manages conditions in the
common execution environment by invoking various
user-written and language-specific condition handlers.

condition step. The step of the Language
Environment condition handling model that follows the
enablement step. In the condition step, user-written
condition handlers, C signal handlers, and PL/I ON-units
are first given a chance to handle a condition. See also
enablement step and termination imminent step.

condition token. In Language Environment, a data
type consisting of 96 bits (12 bytes). The condition
token contains structured fields that indicate various
aspects of a condition including the severity, the
associated message number, and information that is
specific to a given instance of the condition.

condition variable. A data object that is used for
waiting for long durations of time. An application can
wait for the variable to become true before continuing
processing. [POSIX.1]

conflicting name. One of 20 names that exist in both
the Fortran and the C/C++ libraries. See also conflicting
reference.

58 z/OS V1R4.0 Language Environment Concepts Guide

conflicting reference. An external reference from a
Fortran or assembler language routine to a Fortran
library routine with a name that is the same as the
name of a C/C++ library routine. The reference is
considered to be a conflicting reference only when the
intended resolution is to the Fortran library routine
rather than to the corresponding C/C++ library routine.

constructed reentrancy. The attribute of applications
that contain external data and require additional
processing to make them reentrant. Contrast with
natural reentrancy.

control block. A storage area used by a computer
program to hold control information.

control section (CSECT). The part of a program
specified by the programmer to be a relocatable unit, all
elements of which are to be loaded into adjoining main
storage locations.

control statement. In programming languages, a
statement that is used to alter the continuous sequential
execution of statements; a control statement can be a
conditional statement, such as IF, or an imperative
statement, such as STOP. In JCL, a statement in a job
that is used in identifying the job or describing its
requirements to the operating system.

conversational monitor system (CMS). A virtual
machine operating system that provides general
interactive time sharing, problem solving, and program
development capabilities, and operates only under the
control of the VM/370 control program.

CPPL. Command processor parameter list.

CSECT. Control section.

cumulative service tape. A tape sent with a new
function order, containing all current PTFs for that
function.

cursor. One of two pointers managed by the condition
manager as it processes a condition. See handle cursor
and resume cursor.

Custom-Built Installation Process Offering (CBIPO).
A CBIPO is a tape that has been specially prepared
with the products (at the appropriate release levels)
requested by the customer. A CBIPO simplifies installing
various products together.

Custom-Built Product Delivery Offering (CBPDO). A
CBPDO is a tape that has been specially prepared for
installing a particular product and the related service
requested by the customer. A CBPDO simplifies
installing a product and the service for it.

Customer Information Control System (CICS). CICS
is an OnLine Transaction Processing (OLTP) system

that provides specialized interfaces to databases, files
and terminals in support of business and commercial
applications.

D
dangling pointer. A pointer to storage that has been
freed.

data, qualifying. See qualifying data.

data aggregate. A logical collection of data elements
that can be referred to either collectively or individually;
in PL/I, an array or a structure.

data division. In COBOL, the part of a program that
describes the files to be used in the program and the
records contained within the files. It also describes any
WORKING-STORAGE data items, LINKAGE SECTION
data items, and LOCAL-STORAGE data items that are
needed.

data set. Under MVS, a named collection of related
data records that is stored and retrieved by an assigned
name. Equivalent to a CMS file.

data type. The properties and internal representation
that characterize data.

datum, qualifying. A single element of qualifying data
associated with a condition. See qualifying data.

DBCS. Double-byte character set.

DB2. DATABASE 2; generally, one of a family of IBM
relational database management systems and,
specifically, the system that runs under MVS.

DCLCB. Declare control block.

DCT. Destination control table.

DD statement. In MVS, the data definition statement.
A JCL control statement that serves as the connection
between a file’s logical name (the ddname) and the
file’s physical name (the data srt name).

ddname. Data definition name. The logical name of a
file within an application. The ddname provides the
means for the logical file to be connected to the
physical file through a FILEDEF command, DD
statement, or ALLOCATE command. DD statement or
ALLOCATE command.

decimal overflow. A condition that occurs when one
or more nonzero digits are lost because the destination
field in a decimal operation is too short to contain the
results.

declare control block (DCLCB). Control block
containing file information.

Language Environment Glossary 59

default. A value that is used or an action that is taken
when no alternative is specified.

dereference. In C, the application of the unary
operator (*) to a pointer to access the object the pointer
points to. Also known as indirection.

descriptor. PL/I control block that holds information
such as string lengths, array subscript bounds, and area
sizes, and is passed from one PL/I routine to another
during run time.

descriptor, q_data. See q_data descriptor.

destination control table (DCT). In CICS, a table
containing an entry for each extrapartition, intrapartition,
and indirect destination. Extrapartition entries address
data sets external to the CICS region. Indirect
destination entries redirect data to a destination
controlled by another DCT entry. Intrapartition
destination entries contain the information required to
locate the queue in the intrapartition data set.

device. A computer peripheral or an object that
appears to the application as such. [POSIX.1]

direct argument passing. The value of the argument
is placed directly in the argument list body.

directory entry. An object that associates a filename
with a file. Several directory entries can associate
names with the same file. [POSIX.1]

disabled/enabled. See enabled/disabled.

distribution libraries. IBM-supplied partitioned data
sets on tape containing one or more components that
the user restores to disk for subsequent inclusion in a
new system.

distribution zone. In SMP/E, a group of VSAM
records that describe the SYSMODs and elements in
the distribution libraries.

double-byte character set (DBCS). A collection of
characters represented by a 2-byte code.

downward-growing stack. With Extra Performance
Linkage (XPLINK), a stack that grows from high
addresses to low addresses in memory.

downwardly compatible. The ability of applications
that have been compiled and linked with Language
Environment to run on previous releases of OS/390. In
order for an application to be downwardly compatible, it
must not have exploited any new Language
Environment function unavailable in the targeted
release.

double-precision. Pertaining to the use of two
computer words to represent a number in accordance
with the required precision. See also precision,
single-precision.

doubleword. A sequence of bits or characters that
comprises eight bytes (two 4-byte words) and is
referenced as a unit.

doubleword boundary. A storage location whose
address is evenly divisible by 8.

driving system. The system used to install the
program. Contrast with target system.

DSA. Dynamic storage area.

dummy argument. The Fortran term for the data
received by a called routine. See also actual argument.

dynamic call. A call that results in locating a called
routine at run time, that is, by loading the routine into
virtual storage. Contrast with static call.

dynamic loading. See dynamic call.

dynamic storage. Storage acquired as needed at run
time. Contrast with static storage.

dynamic storage area (DSA). An area of storage
obtained during the running of an application that
consists of a register save area and an area for
automatic data, such as program variables. DSAs are
generally allocated within Language
Environment–managed stack segments. DSAs are
added to the stack when a routine is entered and
removed upon exit in a last in, first out (LIFO) manner.
In Language Environment, a DSA is known as a stack
frame.

E
EBCDIC. Extended binary-coded decimal interchange
code.

EIB. EXEC interface block.

enabled/disabled. A condition is enabled when its
occurrence will result in the execution of condition
handlers or in the performance of a standard system
action to handle the condition as defined by Language
Environment.

A condition is disabled when its occurrence is ignored
by the condition manager.

enablement. The determination by a language at run
time that an exception should be processed as a
condition. This is the capability to intercept an exception
and to determine whether it should be ignored or not;
unrecognized exceptions are always defined to be
enabled. Normally, enablement is used to supplement
the hardware for capabilities that it does not have and
language enforcement of a language’s semantics. An
example of supplementing the hardware is the
specialized handling of exponent-overflow exceptions
based on language standards.

60 z/OS V1R4.0 Language Environment Concepts Guide

enablement step. The first step of the Language
Environment condition handling model. In the
enablement step it is determined whether an exception
is to be enabled and processed as a condition. See
also condition step and termination imminent step.

enclave. In Language Environment, an independent
collection of routines, one of which is designated as the
main routine and is invoked first. An enclave is roughly
analogous to a program or run unit. an executable
program.

enterprise. The composite of all operational entities,
functions, and resources that form the total business
concern.

entry name. In assembler language, a
programmer-specified name within a control section that
identifies an entry point and can be referred to by any
control section. See also entry point.

entry point. The address or label of the first
instruction that is executed when a routine is entered for
execution. Within a load module, the location to which
control is passed when the load module is invoked.

entry point name. The symbol (or name) that
represents an entry point. See also entry point.

environment. A set of services and data available to a
program during execution. In Language Environment,
environment is normally a reference to the run-time
environment of HLLs at the enclave level.

environment variable. A variable that is included in
the current software environment and is therefore
available to any called program that requests it.

epilog. Code generated at the end of a routine,
normally causing a return to the caller of the routine.

euro. The monetary unit of the European Monetary
Union (EMU) that was introduced alongside national
currencies on 01 January 1999.

EuroReady product. A product is EuroReady if the
product, when used in accordance with its associated
documentation, is capable of correctly processing
monetary data in the euro denomination, respecting the
euro currency formatting conventions (including the euro
sign). This assumes that all other products (for example,
hardware, software, and firmware) that are used with
this product are also EuroReady. IBM hardware
products that are EuroReady may or may not have an
engraved euro sign key on their keyboards.

EXEC interface block (EIB). In CICS, a control block
containing information useful in the execution of an
application, such as a transaction identifier and a time
and a date when the transaction is started.

exception. The original event such as a hardware
signal, software detected event, or user-signaled event

which is a potential condition. This action may or may
not include an alteration in a program’s normal flow.
See also condition.

execution time. Synonym for run time.

execution environment. Synonym for run-time
environment.

extended binary-coded decimal interchange code
(EBCDIC). A set of 256 8-bit characters.

exponent-overflow exception. The program
interruption that occurs when an overflow occurs during
the execution of a floating-point instruction, that is, when
the result value from the instruction has a characteristic
that is larger than the floating-point data format can
handle.

exponent-underflow exception. The program
interruption that occurs when the result value from
executing a floating-point instruction has a nonzero
fraction and a characteristic is smaller than the
floating-point data format can handle. This program
interruption can be disabled through a program mask bit
setting.

extended error handling facility. The VS FORTRAN
facility that provided automatic error correction and
control over both the handling of the errors and the
printing of error messages.

external data. Data that persists over the lifetime of
an enclave and maintains last-used values whenever a
routine within the enclave is reentered. Within an
enclave consisting of a single load module, it is
equivalent to any C data objects that have static storage
duration, a Fortran common block, and COBOL
EXTERNAL data.

external reference. In an object module, a reference
to a symbol, such as an entry point name, defined in
another program or module.

Extra Performance Linkage (XPLINK). Extra
Performance Linkage (XPLINK) is an enhanced linkage
between programs that can significantly improve the
performance of your C and C++ programs. The primary
goal of XPLINK is to make subroutine calls as fast and
efficient as possible by removing all nonessential
instructions from the main program path. The XPLINK
run-time option controls the initialization of the XPLINK
environment.

F
FCB. File control block.

feature. A part of an IBM product that may be ordered
separately by a customer.

feature code. A four-digit code used by IBM to
process hardware and software orders.

Language Environment Glossary 61

feedback code (fc). A condition token value. If you
specify fc in a call to a callable service, a condition
token indicating whether the service completed
successfully is returned to the calling routine.

fetch. The dynamic load of a PL/I procedure.

FIB. File information block.

file. A named collection of related data records that is
stored and retrieved by an assigned name. Equivalent
to an MVS data set.

file control block (FCB). Block containing the
addresses of I/O routines, information about how they
were opened and closed, and a pointer to the file
information block.

FILEDEF. File definition statement.

file definition statement (FILEDEF). In CMS, serves
as the connection between the logical name of a file
and the physical name of a file.

file descriptor. A per-process unique, nonnegative
integer used to identify an open file for the purpose of
file access. [POSIX.1]

file information block (FIB). A read-only block
describing the characteristics of an I/O file.

file system. A collection of files and certain of their
attributes. A file system provides a name space for file
serial numbers referring to those files.

file tag. For Enhanced ASCII functionality, a file
attribute that identifies the character set of the text data
within a file and indicates whether the file is eligible for
automatic conversion. See also automatic conversion
and coded character set ID (CCSID).

fix. A correction of an error in a program, usually a
temporary correction or bypass of defective code.

fix-up and resume. The correction of a condition
either by changing the argument or parameter and
running the routine again or by providing a specific
value for the result.

fixed decimal. See packed decimal format.

fixed-point overflow exception. A program
interruption caused by an overflow during signed binary
arithmetic or signed left-shift operations. This program
interruption can be disabled through a program mask bit
setting.

floating point control register (FPC register). For
IEEE, a floating point control register.

FMID. Function modification identifier.

Fortran. A high-level language used primarily for
applications involving numeric computations. In previous

usage, the name of the language was written in all
capital letters, that is, FORTRAN.

Fortran signature CSECT. The resident routine that
indicates that the load module in which it is present
contains a Fortran routine.

FORTRAN 66. The FORTRAN language standard
formally known as American National Standard
FORTRAN, ANSI X3.9-1966. This language standard
specifies the form and establishes the interpretation of
programs written to conform to it.

FORTRAN 77. The FORTRAN language standard
formally known as American National Standard
FORTRAN, ANSI X3.9-1978. This language standard
specifies the form and establishes the interpretation of
programs written to conform to it.

FPC. See floating point control register (FPC register).

fullword. A sequence of bits or characters that
comprises four bytes (one word) and is referenced as a
unit.

fullword boundary. A storage location whose address
is evenly divisible by 4.

function. A routine that is invoked by coding its name
in an expression. The routine passes a result back to
the invoker through the routine name.

function modification identifier (FMID). The value
used to distinguish separate parts of a product. A
product tape or cartridge has at least one FMID.

G
GET. Global error table.

global error table (GET). A method employed by
some HLLs, for example, C and Fortran, to determine
actions for handling conditions. Whereas Language
Environment condition handling actions are defined at
the stack frame level, actions defined using the global
error table apply to an entire application until explicitly
changed. See also extended error handling facility.

Gregorian calendar. The calendar in use since Friday,
15 October 1582 throughout most of the world. Used as
the basis for the Lilian date used in many Language
Environment date and time services.

GTAB table. Table in C/370 containing error
information.

H
handle cursor. A pointer used by the condition
manager as it traverses the stack. The handle cursor
points to the condition handler currently being invoked

62 z/OS V1R4.0 Language Environment Concepts Guide

in the stack frame, whether it be a user-written condition
handler or an HLL-specific condition handler.

handled condition. A condition that either a
user-written condition handler or the HLL-specific
condition handler has processed and for which the
condition handler has specified that execution should
continue.

handler. See condition handler.

header file. A file that contains system-defined control
information that precedes user data.

heap 0. Synonymous with initial heap.

heap. An area of storage used for allocation of storage
whose lifetime is not related to the execution of the
current routine. The heap consists of the initial heap
segment and zero or more increments. See anywhere
heap, below heap, initial heap, and additional heap.

heap element. A contiguous area of storage allocated
by a call to the CEEGTST service. Heap elements are
always allocated within a single heap segment.

heap increment. See increment.

heap pool. A storage pool that, when used by the
storage manager, can be used to improve the
performance of heap storage allocation. This can
improve the performance of a multi-threaded
application.

heap segment. A contiguous area of storage obtained
directly from the operating system. The Language
Environment storage management scheme subdivides
heap segments into individual heap elements. If the
initial heap segment becomes full, Language
Environment obtains a second segment, or increment,
from the operating system.

heap storage. See heap.

heavy weight thread. A heavy weight thread has a
one-to-one correspondence with an MVS TCB in that
the lifetime of the thread is the lifetime of the TCB.
[POSIX.1]

hexadecimal. A base 16 numbering system.
Hexadecimal digits range from 0 through 9 (decimal 0 to
9) and uppercase or lowercase A through F (decimal 10
to 15) and A through F, giving values of 0 through 15.

high-level language (HLL). A programming language
above the level of assembler language and below that
of program generators and query languages. Examples
are C, C++, COBOL, Fortran, and PL/I.

HLL. High-level language.

hook. The location in a compiled program where the
compiler inserts an instruction that allows the user to
later interrupt the program (by setting breakpoints) for
debugging purposes.

I
IBM service representative. An individual in IBM who
performs maintenance services for IBM products or
systems.

IBM Software Distribution (ISD). The IBM
department responsible for software distribution.

IBM Support Center. The IBM department responsible
for software service.

IBM systems engineer (SE). An IBM service
representative who performs maintenance services for
IBM software in the field.

implementation defined. An indication that the
implementation defines and documents the
requirements for correct program constructs and correct
data of a value or behavior. [POSIX.1]

ILC. Interlanguage communication.

IMS. Information Management System, IBM licensed
product. IMS supports hierarchical databases, data
communication, translation processing, and database
backout and recovery.

increment. The second and subsequent segments of
storage allocated to the stack or heap.

indirect argument passing. The body of the
argument list contains a pointer to the argument value.

indirection. See dereference.

initial heap. The Language Environment heap
controlled by the HEAP run-time option and designated
by a heap_id of 0. The initial heap contains dynamically
allocated user data. See also additional heap.

initial heap segment. The first heap segment. A heap
consists of the initial heap segment and zero or more
additional segments or increments.

Initial process thread (IPT). See initial thread.

initial program load (IPL). The process of loading
system programs and preparing a system to run jobs.

initial stack segment. The first stack segment. A
stack consists of the initial stack segment and zero or
more additional segments or increments.

initial thread. In terms of POSIX, either the thread
established by the fork() that created the process, or
the first thread that calls main() after an exec. If the

Language Environment Glossary 63

initial thread returns from main(), the effect is identical
to having called exit(). Also known as initial process
thread (IPT). [POSIX.1]

input procedure. A set of statements, to which control
is given during the execution of a SORT statement, for
the purpose of controlling the release of specified
records to be sorted.

instance-specific information (ISI). Located within
the Language Environment condition token, information
used by a condition handler or the condition manager to
interpret and react to a specific occurrence of a
condition. Qualifying data is an example of
instance-specific information.

integer. A positive or negative whole number or zero.

interactive. Pertaining to a program or system that
alternately accepts input and responds. In an interactive
system, a constant dialog exists between user and
system. Contrast with batch.

interactive problem control system (IPCS). A
component of z/OS that permits online problem
management, interactive problem diagnosis, online
debugging for disk-resident CP abend dumps, problem
tracking, and problem reporting.

Interactive System Productivity Facility (ISPF). A
dialog manager for interactive applications. It provides
control and services to permit execution of dialogs.

interface validation exit. A routine that, when used
with the binder, automatically resolves conflicting
references within Fortran routines.

interlanguage communication (ILC). The ability of
routines written in different programming languages to
communicate. ILC support allows the application writer
to readily build applications from component routines
written in a variety of languages.

interrupt. A suspension of a process, such as the
execution of a computer program, caused by an event
external to that process, and performed in such a way
that the process can be resumed.

interruption. Synonym for interrupt.

IPCS. Interactive problem control system

IPL. Initial program load.

ISI. Instance specific information.

ISPF. Interactive System Productivity Facility.

J
JCL. Job control language.

job control language (JCL). A sequence of
commands used to identify a job to an operating system
and to describe a job’s requirements.

job step. The job control (JCL) statements that
request and control execution of a program and that
specify the resources needed to run the program. The
JCL statements for a job step include one EXEC
statement, which specifies the program or procedure to
be invoked, followed by one or more DD statements,
which specify the data sets or I/O devices that might be
needed by the program.

Julian date. A date format that contains the year in
positions 1 and 2, and the day in positions 3 through 5.
The day is represented as 1 through 366, right-adjusted,
with zeros in the unused high-order position.

K
kernel. The part of the component that contains
programs for such tasks as I/O, management, and
communication.

KSDS. Key-sequenced data set. See also VSAM.

L
L-name. In C, this is a mixed-case external identifier
that is up to 255 characters long. See also S-name.

Language Environment. Short form of z/OS
Language Environment. A set of architectural constructs
and interfaces that provides a common run-time
environment and run-time services for C, C++, COBOL,
Fortran, PL/I, VisualAge PL/I, and Java applications
compiled by Language Environment-conforming
compilers.

Language Environment-conforming. Adhering to
Language Environment’s common interface
conventions.

Language Environment-enabled. A program that has
been link-edited with the routines or stubs provided with
Language Environment.

language-sensitive editing. A set of editing functions
that are responsive to the programming language,
syntax, and environment of source programs as they
are being edited. Typical language-sensitive editing
features are automatic indenting, token highlighting,
syntax checking, and language-sensitive help.

LIBPACK. A collection of individual modules that are
packaged into a single load module in order to reduce
the time that would otherwise be needed to load the
individual load modules.

library. A collection of functions, subroutines, or other
data.

64 z/OS V1R4.0 Language Environment Concepts Guide

library latch. An object similar to a mutex and used
within the Language Environment library to synchronize
access to resources shared among threads.

library vector table (LIBVEC). A vector table used to
support access to library routines (Language
Environment and HLLs) from compiler-generated code,
user-written assembly language code, and other
subroutines.

library workspace (LWS). Special register save areas
for certain PL/I library routines, preallocated in nonstack
storage.

LIBVEC. Library vector table.

LIFO. Last in, first out method of access. A queuing
technique in which the next item to be retrieved is the
item most recently placed in the queue.

Lilian date. The number of days since the beginning
of the Gregorian calendar. Day one is Friday, 15
October 1582. The Lilian date format is named in honor
of Luigi Lilio, the creator of the Gregorian calendar.

link pack area (LPA). In MVS, an area of main
storage containing reenterable routines from system
libraries. Their presence in main storage saves loading
time when a reenterable routine is needed.

link-edit. To create a loadable computer program by
means of a linkage editor or binder.

linkage editor. An operating system component that
resolves cross-references between separately compiled
or assembled modules and then assigns final addresses
to create a single relocatable load module. The linkage
editor then stores the load module in a load library on
disk.

linked list. A list in which the data elements may be
dispersed but in which each data element contains
information for locating the next. Synonymous with
chained list.

load module. A collection of one or more routines that
have been stored in a library by the linkage or binder
after having been compiled or assembled. External
references have usually been—but are not
necessarily—resolved. When the external references
have been resolved, the load module is in a form
suitable for execution.

local data. Data that is known only to the routine in
which it is declared. Equivalent to local data in C and
both WORKING-STORAGE and LOCAL-STORAGE in
COBOL.

locale. The definition of the subset of a user’s
environment that depends on language and cultural
conventions.

locator. PL/I control block that holds the address of
data such as structures or arrays and the address of the
descriptor.

LPA. Link pack area.

LWS. Library workspace.

M
machine readable. Pertaining to data a machine can
acquire or interpret (read) from a storage device, a data
medium, or other source.

main program. The first routine in an enclave to gain
control from the invoker. In Fortran, a main program
does not have a FUNCTION, SUBROUTINE, or BLOCK
DATA statement as its first statement. It could have a
PROGRAM statement as its first statement. Contrast
with subprogram.

main task. In the context of MVS multitasking and the
C Multitasking Facility (MTF), the main program in a
multitasking environment. The main task runs the main
task program.

main task program. In the context of MVS
multitasking and the C Multitasking Facility (MTF), the
part of a program that controls overall processing. The
main task program is run by the main task.

mapped condition. A condition that is generated by
one component and converted, or mapped, to another
component; for example, some Language Environment
conditions, such as attention interrupts or the decimal
divide condition, map directly to the PL/I ATTENTION
and ZERODIVIDE conditions, respectively.

megabyte (MB). 1,048,576 bytes.

medium weight thread. A medium weight thread has
a one-to-one correspondence with an MVS TCB except
the lifetime of the TCB may exceed the lifetime of the
thread. [POSIX.1]

memory file control block (MFCB). Block residing at
thread level in C/370 containing the memory information
about the file.

MFCB. Memory file control block.

microfiche. A sheet of microfilm capable of containing
microimages in a grid pattern, usually containing a title
that can be read without magnification.

module. A language construct that consists of
procedures or data declarations and can interact with
other such constructs. In PL/I, an external procedure.

MTF. Multitasking Facility.

Multitasking Facility (MTF). Facility provided
separately by C and by Fortran to improve turnaround

Language Environment Glossary 65

time on multiprocessor configurations by using MVS
multitasking facilities. MTF is provided by C library
functions or by Fortran callable services.

multitasking. See multithreading.

multithreading. Mode of operation that provides for
the concurrent, or interleaved, execution of two or more
tasks, or threads.

mutex. A mutual exclusive variable that is intended to
serialize access to a shared data object for a short
duration of time. [POSIX.1]

MVS. Multiple Virtual Storage operating system.

N
n-way ILC application. An ILC application that
includes three or more of the following: a C routine, a
COBOL program, a Fortran program, and a PL/I routine.

NAB. Next available byte.

name scope. The portion of an application within
which a particular declaration of external data applies or
is known.

name space. The portion of a load module within
which a particular declaration of external data applies or
is known.

named heap. A heap set up specifically by the
CEECRHP callable service. An identifier is returned
when the heap is created.

national language support. Translation requirements
affecting parts of licensed programs; for example,
translation of message text and conversion of symbols
specific to countries.

natural reentrancy. The attribute of applications that
contain no static external data and do not require
additional processing to make them reentrant. Contrast
with constructed reentrancy.

nested condition. A condition that occurs during the
handling of another, previous condition. Language
Environment by default permits 10 levels of nested
conditions. This setting may be changed by altering the
DEPTHCONDLMT run-time option.

nested enclave. A new enclave created by an existing
enclave. The nested enclave that is created must be a
new main routine within the process. See also child
enclave and parent enclave.

nested program. In COBOL, a program that is directly
contained within another program.

next available byte (NAB). The address of the next
available byte of storage on a doubleword boundary.
This address is a segment of stack storage.

next sequential instruction. The next instruction to
be executed in the absence of any branch or transfer of
control.

nonreentrant. A type of program that cannot be
shared by multiple users.

null. Empty, having no meaning.

null character. A character that represents X'00'.

null string. A string containing no element. A character
or bit string with a length of zero.

O
object module. A collection of one or more control
sections produced by an assembler or compiler and
used as input to the linkage editor or binder. Synonym
for text deck or object deck.

offset. The number of measuring units from an
arbitrary starting point in a record, area, or control block,
to some other point.

omitted parameter. A parameter not needed in a call.

online. Pertaining to a user’s ability to interact with a
computer. Pertaining to a user’s access to a computer
via a terminal.

OpenEdition MVS. See z/OS UNIX System Services.

OpenEdition for VM/ESA. VM/ESA services that
support an environment within which operating systems,
servers, distributed systems, and workstations share
common interfaces. OpenEdition VM supports standard
application development across multivendor systems. It
is required if you want to create and use VM/ESA
applications that conform to the POSIX standard.

operating system. Software that controls the running
of programs; in addition, an operating system may
provide services such as resource allocation,
scheduling, input/output control, and data management.

OS PL/I. See PL/I.

out-of-storage condition. A condition signaled when
an application has used all of the storage allocated to it.
If the STORAGE run-time option is set to a value other
than 0, Language Environment adds a reserve stack
segment to the overflowing stack, and then signals the
out-of-storage condition.

output procedure. A set of statements, to which
control is given during the execution of a SORT
statement after the sort function is completed, or during
the MERGE statement after the merge function reaches
a point at which it can select the next record in merged
order when requested.

66 z/OS V1R4.0 Language Environment Concepts Guide

overflow. Exceeding the capacity of the intended unit
of storage. See also fixed-point overflow exception and
exponent-overflow exception.

overlay. To write over existing data in storage.

owning stack frame. Given the calling sequence of
Routine 1 calling Routine 2 that in turn calls Routine 3,
Routine 3 is the owning stack frame if a condition
occurs while Routine 3 is executing.

ON-unit. The specified action to be taken upon
detection of the condition named in the containing ON
statement.

P
packed decimal format. A format in which each byte
in a field except the rightmost digit represents two
numeric digits. The rightmost byte contains one digit
and the sign. For example, the decimal value +123 is
represented as 0001 0010 0011 1111.

pad. To fill unused positions in a field with dummy
data, usually zeros, ones, or blanks.

parallel function. In the context of MVS multitasking
and the C Multitasking Facility, those portions of a
program that can run independently of the main task
program and each other. Subtasks run the parallel
functions.

parallel program. In the context of the Fortran parallel
facility (not MTF), a program that uses parallel language
constructs, invokes any of the parallel callable services,
or was compiled with the PARALLEL compile-time
option.

parallel subroutine. In the context of MVS
multitasking and the Fortran Multitasking Facitity, those
portions of a program that can run independently of the
main task program and each other. The parallel
subroutines run in MVS subtasks.

parameter. 1) Data items that are received by a
routine. 2) The term used in certain other languages for
the Fortran term dummy argument. See argument,
actual argument, and dummy argument.

parent enclave. The enclave that issues a call to
system services or language constructs to create a
nested (child) enclave. See also child enclave and
nested enclave.

partition. A fixed-size division of storage.

pass by content. A COBOL argument passing style
synonymous with passing an argument by value
(indirect). In this style, R1 contains a pointer to a copy
of the argument.

pass by reference. In programming languages, one of
the basic argument passing semantics where the

address of the object is passed. Any changes made by
the callee to the argument value will be reflected in the
calling routine at the time the change is made.

pass by value. In programming languages, one of the
basic argument passing semantics where the value of
the object is passed. Any changes made by the callee
to the argument value will not be reflected in the calling
routine.

percolate. The action taken by the condition manager
when the returned value from a condition handler
indicates that the handler could not handle the
condition, and the condition will be transferred to the
next handler.

picture string. Character strings used to specify date
and time formats.

PID. Process ID.

PL/I. A general purpose scientific/business high-level
language. PL/I is a high-powered procedure-oriented
language especially well suited for solving complex
scientific problems or running lengthy and complicated
business transactions and record-keeping applications.

pointer. A data element that indicates the location of
another data element.

portability. The ability to transfer an application from
one platform to another with relatively few changes to
the source code.

Portable Operating System Interface (POSIX).
Portable Operating System Interface for computing
environments, an interface standard governed by the
IEEE and based on UNIX. POSIX is not a product.
Rather, it is an evolving family of standards describing a
wide spectrum of operating system components ranging
from C language and shell interfaces to system
administration.

POSIX. Portable Operating System Interface.

POSIX process. An address space and single thread
of control that executes within that address space, and
its required system resources. A process is created by
another process issuing the fork() function. The
process that issues fork() is known as the parent
process, and the new process created by the fork() is
known as the child process. [POSIX.1]

POSIX signal. A mechanism by which a process may
be notified of, or affected by, an event occurring in the
system. Examples of such events include hardware
exceptions and specific actions by processes. The term
signal is also used to refer to the event itself. [POSIX.1]

PPA1 entry point block. Program Prolog Area. This
block contains information about the compiled module.

Language Environment Glossary 67

PPA2 entry point block. An extension of the PPA1
entry point block.

PPT. Processing program table.

precedence. In programming languages, an order
relation defining the sequence of the application of
operations or options.

precision. A measure of the ability to distinguish
between nearly equal values, usually with data of
different lengths. See also single-precision and
double-precision.

preinitialization. A facility that allows a routine to
initialize the run-time environment once, perform
multiple executions within the environment, then
explicitly terminate the environment.

pre-Language Environment-conforming. Any HLL
program that does not adhere to Language
Environment’s common interface. For example, VS
COBOL II, OS/VS COBOL, OS PL/I, C/370 Version 1
and Version 2, VS FORTRAN Version 1, VS FORTRAN
Version 2, FORTRAN IV G1, and FORTRAN IV H
Extended are all pre-Language Environment-conforming
HLLs.

prelinker. A utility that collects compile-time
initialization information from one or more object
modules into a single initialization unit. In the process,
the static external data part is mapped.

preprocessor. A routine that examines application
source code for preprocessor statements that are then
executed, resulting in the alteration of the source.

preventive service planning (PSP). The online
repository of program temporary fixes (PTFs) and other
service information. This information could affect
installation.

procedure. In COBOL, a procedure is a paragraph or
section that can only be performed from within the
program. In PL/I, a named block of code that can be
invoked externally, usually via a call.

procedure library (PROCLIB). A program library in
direct access storage with job definitions. The
reader/interpreter can be directed to read and interpret
a particular job definition by an execute statement in the
input stream.

process. The highest level of the Language
Environment program management model. A process is
a collection of resources, both program code and data,
and consists of at least one enclave. See also POSIX
process.

process ID (PID). The unique identifier representing a
process. A process ID is a positive integer that can be
contained in the data type pid_t. A process ID shall not
be reused by the system until the process lifetime ends.

In addition, if there exists a process groups whose
process group ID is equal to that process ID, the
process ID shall not be reused by the system until the
process group lifetime ends. A process that is not a
system process shall not have a process ID of 1.
[POSIX.1]

processing program table (PPT). Contains
information about CICS load modules (whether the
module is in storage or not, its language, use count and
entry point address, etc.) needed to complete a
transaction.

program. See enclave.

program control data. In PL/I, data used to affect
how a program runs; that is, any data that is not string
or arithmetic data.

program interruption. The interruption of the
execution of a program due to some event such as an
operation exception, an exponent-overflow exception, or
an addressing exception.

program level. The modification level, release,
version, and fix level.

program management. The functions within the
system that provide for establishing the necessary
activation and invocation for a program to run in the
applicable run-time environment when it is called.

program mask. In bits 20 through 23 of the program
status word (PSW), a 4-bit structure that controls
whether each of the fixed-point overflow, decimal
overflow, exponent-overflow, and significance
exceptions should cause a program interruption. The
bits of the program mask can be manipulated to enable
or disable the occurrence of a program interruption.

program number. The seven-digit code (in the format
xxxx-xxx) used by IBM to identify each program product.

program specification block (PSB). In IMS/VS, a
control block that contains all database program
communication blocks (DB PCB) that exist for a single
application program. DB PCBs define which segments
in a database an application can access.

program status word (PSW). A 64-bit structure that
includes the instruction address, program mask, and
other information used to control instruction sequencing
and to determine the state of the CPU. See also
program mask.

program temporary fix (PTF). A temporary solution or
bypass of a problem diagnosed by IBM as resulting
from a defect in a current unaltered release of the
program.

program unit. Synonym for compilation unit.

68 z/OS V1R4.0 Language Environment Concepts Guide

programmable workstation (PWS). A workstation that
has some degree of processing capability and that
allows a user to change its functions.

prolog. The code sequence when a routine is entered.

promote. To change a condition to a different one by a
condition handler. A condition handler routine promotes
a condition because the error needs to be handled in a
way other than that suggested by the original condition.

PSB. Program specification block.

PSP. Preventive service planning.

PSW. Program status word.

PWS. Programmable workstation.

Q
q_data. Qualifying data. Information that a user-written
condition handler can use to identify and react to a
given instance of a condition.

q_data descriptor. A qualifying datum that contains
the data type and length of the immediately following
qualifying datum associated with a condition token.

q_data_token. An optional 32-bit data object that is
placed in the ISI. It is used to access the qualifying data
associated with a given instance of a condition.

qualifier. A modifier that makes a name unique.

qualifying data. q_data. Unique information
associated through a condition token with a given
instance of a condition. A user-written condition handler
uses qualifying data to identify and react to the
condition.

qualifying datum. A single element of qualifying data
associated with a condition. See qualifying data.

R
reason code. 1) Return code to CICS only. 2) A value
returned to the invoker of an enclave that indicates how
the enclave terminated. The value reflects whether the
enclave terminated successfully, or unsuccessfully, to an
unhandled condition.

recursive routine. A routine that can call itself or be
called by another routine that it has called.

reenterable. reentrant

reentrant. The attribute of a routine or application that
allows more than one user to share a single copy of a
load module.

register. Special processing areas that hold a specific
amount of data and can process, load, and store this

data quickly. To specify formally. In Language
Environment, to register a condition handler means to
add a user-written condition handler onto a routine’s
stack frame.

register save area (RSA). Area of main storage in
which contents of registers are saved.

regular file. A file that is a randomly accessible
sequence of bytes, with no further structure imposed by
the system. [POSIX.1]

relative pathname. A pathname that does not begin
with a slash. The predecessor of the first filename in the
pathname is taken to be the current working directory of
the process. [POSIX.1]

relocatable load module. Under CMS, a combination
of object modules having cross references resolved and
prepared for loading into storage for execution.

reserved word. In programming languages, a keyword
that may not be used as an identifier.

resident modules. A module that remains in a
particular area of storage.

resident routines. The Language Environment library
routines linked with your application. They include such
things as initialization routines and callable service
stubs.

resume. To continue execution in an application at the
point immediately after which a condition occurred. This
occurs when a condition handler determines that a
condition has been handled and normal application
execution should continue.

resume cursor. The point in an application at which
execution should continue if a condition handler
requests the resume action for a condition it is
processing. When a condition is signaled, the resume
cursor is at the location at which the error occurred or at
which the condition was first reported to the condition
manager. The resume cursor can be moved with the
CEEMRCE or CEEMRCR callable service.

return code. A code produced by a routine to indicate
its success or failure. It may be used to influence the
execution of succeeding instructions or programs.

return_code_modifier. A value set by Language
Environment routines to indicate the severity of an
unhandled condition. The return_code_modifier is a
component of the return code that indicates the status
of the execution of an enclave.

RMODE. Residence mode. Provided by the linkage
editor, the attribute of a load module that specifies
whether the module, when loaded, must reside below
the 16MB virtual storage line or may reside anywhere in
virtual storage.

Language Environment Glossary 69

rollback. The process of restoring data changed by an
application to the state at its last commit point.

root load module. The load module containing a main
routine and the first to be executed in an application.

routine. In Language Environment, refers to a PL/I
procedure, a C function, a Fortran main program or
subprogram, a COBOL program or a separate
subroutine.

routine. In this book, used as an exact equivalent of a
COBOL program, a Fortran main program or
subprogram, a PL/I procedure, or a C function or
program, and means a named external routine, with or
without named entry points, and with or without internal
routines or nested programs.

RSA. Register save area.

run. To cause a program, utility, or other machine
function to be performed.

RUNCOM. COBOL block containing the ID and
address of the main program.

run time. Any instant at which a program is being
executed. Synonymous with execution time.

run-time environment. A set of resources that are
used to support the execution of a program.
Synonymous with execution environment.

run unit. One or more object programs that are
executed together. In Language Environment, a run unit
is the equivalent of an enclave.

S
safe condition. Any condition having a severity of 0 or
1. Such conditions are ignored if no condition handler
handles the condition.

save area. Area of main storage in which contents of
registers are saved.

SBCS. Single-byte character set.

scalar. A quantity characterized by a single value.
Contrast with aggregate.

scalar instruction. An instruction, such as a load,
store, arithmetic, or logical instruction, that operates on
a scalar. Contrast with vector instruction.

scope. A term used to describe the effective range of
the enablement of a condition and/or the establishment
of a user-generated routine to handle a condition.
Scope can be both statically and dynamically defined.
The portion of an application within which the definition
of a variable remains unchanged.

scope terminator. Variable at the end of a statement.

segment. See stack segment.

severity code. A part of run-time messages that
indicates the severity of the error condition (1, 2, 3, or
4).

shared segment. In VM, a feature of a saved system
that allows one or more segments of reentrant code in
real storage to be shared among many virtual
machines.

shared storage. An area of storage that is the same
for each virtual address space. Because it is the same
space for all users, information stored there can be
shared and does not have to be loaded in the user
region.

shared virtual area (SVA). In VSE, a high address
area of virtual storage that contains a system directory
list (SDL) of frequently used phases, resident programs
that can be shared between partitions, and an area for
system support.

signal. In C, signals are conditions that may or may
not be reported during program execution, depending
upon how they are defined to the condition handler. A
condition is registered in C using the signal() function;
a condition is raised using the raise() function. See
also POSIX signal and synchronous signal. To make the
condition manager aware of a condition for processing.

signal catching function. In POSIX, analogous to
signal handler. The signal catching function is specified
through the sigaction() function. [POSIX.1]

signal handler. In C, a function to be called when a
signal is reported.

signature CSECT. The resident routine that indicates
that the load module in which it is present contains a
routine written in a particular language.

significance exception. The program interruption that
occurs when the resulting fraction in a floating-point
addition or subtraction instruction is zero. This program
interruption can be disabled through a program mask bit
setting.

single-byte character set (SBCS). A collection of
characters represented by a 1-byte code.

single-precision. Pertaining to the use of one
computer word to represent a number in accordance
with the required precision. See also precision and
double-precision.

S-name. In C, this is a single-case external identifier
that is at most eight characters long. See also L-name.

softcopy. One or more files that can be electronically
distributed, manipulated, and printed by a user.
Contrasts with hardcopy.

70 z/OS V1R4.0 Language Environment Concepts Guide

sort/merge program. A processing program that can
be used to sort or merge records in a prescribed
sequence.

source code. The input to a compiler or assembler,
written in a source language.

source program. A set of instructions written in a
programming language that must be translated to
machine language before the program can be run.

stack. An area of storage used for suballocation of
stack frames. Such suballocations are allocated and
freed on a LIFO (last in, first out) basis. A stack is a
collection of one or more stack segments consisting of
an initial stack segment and zero or more increments.

stack frame. The physical representation of the
activation of a routine. The stack frame is allocated on a
LIFO stack and contains various pieces of information
including a save area, condition handling routines, fields
to assist the acquisition of a stack frame from the stack,
and the local, automatic variables for the routine. In
Language Environment, a stack frame is synonymous
with DSA.

stack frame collapse. An action that occurs when the
condition manager skips over one or more active
routines and execution resumes in an earlier routine on
the stack. A stack frame collapse happens is an explicit
GOTO is coded in a C or PL/I routine or if the resume
cursor is moved with the CEEMRCR.

stack increment. See increment.

stack segment. A contiguous area of storage obtained
directly from the operating system. The Language
Environment storage management scheme subdivides
stack segments into individual DSAs. If the initial stack
segment becomes full, a second segment or increment
is obtained from the operating system.

stack storage. See stack and automatic storage.

standard system action. The name given to the
language-defined default action taken when a condition
occurs and it is not handled by a condition handler.

static call. A call that results in the resolution of the
called program during the link-edit of the application.
Contrast with dynamic call.

static data. Data that retains its last-used state across
calls.

static storage. Storage that persists and retains its
value across calls. Contrast with dynamic storage.

storage heap. An unordered group of program stack
areas that may be associated with programs running
within a process.

SUBCOM. Control block containing information about
multiple COBOL programs.

suboption. A value that can be provided as part of a
compiler compile-time or run-time option to further
specify the meaning of the option.

subpool storage. All of the storage blocks allocated
under a subpool number for a particular task.

subprogram. A program unit that is invoked or used
by another program unit. In Fortran, a subprogram has
a FUNCTION, SUBROUTINE, or BLOCK DATA
statement as its first statement. Contrast with main
program.

SUBSET. The value that specifies the FMID for a
product level.

subsystem. A secondary or subordinate system, or
programming support, usually capable of operating
independently of or asynchronously with a controlling
system. Examples are CICS and IMS.

subtask. In the context of MVS multitasking and the C
Multitasking Facility (MTF), a task that is initiated and
terminated by a higher order task (the main task).
Subtasks run the parallel functions, those portions of the
program that can run independently of the main task
program and each other.

SVC. Supervisor call. A request that serves as the
interface to certain functions, such as the allocation of
storage.

symbolic feedback code. The symbolic
representation of the first 8 bytes of the 12-byte
condition tokens. Symbolic feedback codes are provided
so that in a condition handling routine you don’t have to
code the condition token in hexadecimal form.

synchronous signal. A signal attributable to a specific
thread. Signals that can be generated synchronously
are SIGABRT, SIGILL, SIGFPE, SIGPIPE, and
SIGSEGV.

syntax. The rules governing the structure of a
programming language and the construction of a
statement in a programming language.

system abend. An abend caused by the operating
system’s inability to process a routine; may be caused
by errors in the logic of the source routine.

system definition. The time before a system is put
into use when desired functions and operations of the
system are selected from various available options.

systems programming facility. Run-time facilities
provided by C that allow programs to be developed that
do not require the Language Environment common
library.

Language Environment Glossary 71

T
target disk. In VM, the disk to which a program is
installed.

target libraries. In SMP/E, a collection of data sets in
which the various parts of an operating system are
stored. These data sets are sometimes called system
libraries.

target zone. In SMP/E, a collection of VSAM records
describing the target system macros, modules,
assemblies, load modules, source modules, and
libraries copied from DLIBs during system generation,
and the SYSMODs applied to the target system.

task. In a multiprogramming or multiprocessing
environment, one or more sequences of instructions
treated by a control program as an element of work to
be accomplished by a computer.

task control block (TCB). An MVS related control
block which contains information and pointers
associated with the task in process.

task global table (TGT). Table with information about
addresses and length of working storage and the
program start address.

TCB. Task control block.

termination imminent step. The final step of the
3-step Language Environment condition handling model.
In the termination imminent step, user-written condition
handlers and PL/I ON-units are given one last chance to
handle a condition or perform cleanup before the thread
is terminated. See also condition step and enablement
step.

THDCOM. Control block with COBOL thread
information.

thread. The basic run-time path within the Language
Environment program management model. It is
dispatched by the system with its own instruction
counter and registers. The thread is where actual code
resides.

thread safe. A locking mechanism (mutex) that allows
a thread to work with critical data or structures while
preventing other threads from gaining access to the
same data or structures. When the thread has finished
processing the critical data or structures, it must release
the lock to allow other threads to gain access to the
data or structures. [POSIX.1]

time sharing option (TSO/E). An option on the
operating system; for System/370, the option provides
interactive time sharing from remote terminals.

token. See condition token.

trace. A record of the execution of a computer
program. It exhibits the sequence in which the
instructions were executed. To record a series of events
as they occur.

traceback. A section of a dump that provides
information about the stack frame (DSA), the program
unit address, the entry point of the routine, the
statement number, and status of the routines on the
call-chain at the time the traceback was produced.

translator. See CICS translator.

transient data queue. A file to which run-time
messages are written under CICS. Under Language
Environment, the name of this file is CESE. Also a
sequential data set used by the Folder Application
Facility in CICS/MVS to log system messages.

transient routines. The Language Environment library
routines that are loaded at run time. Contrast with
resident routines.

translator. See CICS translator.

TSO. TSO/E.

TSO/E. Time Sharing Option Extensions. An MVS
component that permits interactive compiling,
link-editing, executing, and debugging of programs.

U
UCLIN. In SMP/E, the command used to initiate
changes to SMP/E data sets. Actual changes are made
by subsequent UCL statements.

underflow. See exponent-underflow exception.

unhandled condition. A condition that isn’t handled
by any condition handler for any stack frame in the call
chain. Contrast with handled condition.

UNIX. See z/OS UNIX System Services.

unpacked decimal format. A format for representing
numbers in which the digit is contained in bits 4 through
7 and the sign is contained in bits 0 through 3 of the
rightmost byte. Bits 0 through 3 of all other bytes
contain 1s (hex F). For example, the decimal value of
+123 is represented as 1111 0001 1111 0010 1111 0011.
Synonymous with zoned decimal format.

upward-growing stack. With Extra Performance
Linkage (XPLINK), a stack that grows from low
addresses to high addresses in memory.

upwardly compatible. The ability for applications that
have been linked with Language Environment to
continue to run on later releases of OS/390 Language
Environment, without the need to recompile or relink.
Language Environment is guaranteed to be upwardly
compatible.

72 z/OS V1R4.0 Language Environment Concepts Guide

user abend. A request made by user code to the
operating system to abnormally terminate a routine.
Contrast with system abend.

user-written condition handler. A routine that
analyzes and possibly takes action on conditions
presented to it by the condition manager. The condition
handler is registered either by calling the CEEHDLR
callable service or by specifying the USRHDLR run-time
option.

user exit. A routine that takes control at a specific
point in an application. Two assembler user exits and
one HLL user exit are provided by Language
Environment. They are invoked to perform initialization
functions and both normal and abnormal termination
functions.

user heap. See initial heap.

usermod. User modification.

user stack. An independent area of stack storage that
may be located above or below 16M, designed to be
used by both library routines and compiled code. See
also stack and stack frame.

V
vector. A linearly ordered collection of scalars of the
same type. Each scalar is said to be an element of the
vector. See also array. Contrast with scalar.

vector instruction. An instruction, such as a load,
store, arithmetic, or logical instruction, that operates on
vectors residing in storage or in a vector register in the
vector facility. Contrast with scalar instruction.

vendor. A person or company that provides a service
or product to another person or company.

virtual origin. The address of an element in an array
whose subscripts are all zero.

VO. Virtual origin.

void function. The C representation of a procedure
invocation. A void function is a function that does not
return a value.

VOLSER. Volume serial number.

volume. A certain portion of data, together with its
data carrier, that can be handled conveniently as a unit.
A data carrier mounted and demounted as a unit; for
example, a reel of magnetic tape, a disk pack.

volume label. An area on a standard label tape used
to identify the tape volume and its owner. This area is
the first 80 bytes and contains VOL 1 in the first four
positions.

volume serial number. A number in a volume label
assigned when a volume is prepared for use in a
system.

VSAM. Virtual storage access method. A
high-performance mass storage access method. Three
types of data organization are available: entry
sequenced data sets (ESDS), key sequenced data sets
(KSDS), and relative record data sets (RRDS).

VSTRING. The VSTRING data type is used for the
character string parameters in many of the Language
Environment callable services. In z/OS Language
Environment, VSTRING is a halfword length-prefixed
character string for input, or a fixed-length 80-character
string for output.

W
weak external reference. A special type of external
reference that is not to be resolved by automatic library
calls unless an ordinary external reference to the same
symbol is found. The external symbol dictionary entry
specifies the symbol; the location is unknown.

work registers. Registers used by the PL/I compiler
as required.

WORKING-STORAGE. In COBOL, the storage
required for data items in the WORKING-STORAGE
section. WORKING-STORAGE is a portion of main
storage that is used by a computer program to hold
data temporarily.

workstation. One or more programmable or
nonprogrammable devices that allow a user to do work
on a computer. See also programmable workstation.

writable static. In C, writable static may be any of the
following:
v Program variables with the extern storage class
v Program variables with the static storage class
v Writable strings

The Language Environment term for writable static is
external data.

X
XPG4. This term refers to the XPG4 interface
standard. The XPG4 standard is described in detail in
X/Open Specification Issue 4.

XPLINK (Extra Performance Linkage). See Extra
Performance Linkage.

Z
zoned decimal format. Synonym for unpacked
decimal format.

Language Environment Glossary 73

z/OS Language Environment. An IBM software
product that provides a common run-time environment
and common run-time services for conforming high-level
language compilers.

z/OS UNIX System Services (z/OS UNIX). The set of
functions provided by the Shell and Utilities, kernel,
debugger, file system, C/C++ Run-Time Library,
Language Environment, and other elements of the z/OS
operating system that allow users to write and run
appication programs that conform to UNIX standards.

74 z/OS V1R4.0 Language Environment Concepts Guide

Bibliography

This section lists the books in the Language Environment library and other
publications that may be helpful when using Language Environment.

Language Products Publications
z/OS Language Environment
v z/OS Language Environment Concepts Guide, SA22-7567
v z/OS Language Environment Programming Guide, SA22-7561
v z/OS Language Environment Programming Reference, SA22-7562
v z/OS Language Environment Customization, SA22-7564
v z/OS Language Environment Debugging Guide, GA22-7560
v z/OS Language Environment Run-Time Migration Guide, GA22-7565
v z/OS Language Environment Writing Interlanguage Communication Applications,

SA22-7563
v z/OS Language Environment Run-Time Messages, SA22-7566
v z/OS Language Environment Vendor Interfaces, SA22-7568

z/OS C/C++
v C/C++ Language Reference, SC09-4815
v z/OS C/C++ Compiler and Run-Time Migration Guide, GC09-4913
v z/OS C/C++ Programming Guide, SC09-4765
v z/OS C/C++ User’s Guide, SC09-4767
v z/OS C/C++ Run-Time Library Reference, SA22-7821
v z/OS C/C++ Messages, GC09-4819
v IBM Open Class Library User’s Guide, SC09-4811
v IBM Open Class Library Reference, Vol. 1, SC09-4812
v IBM Open Class Library Reference, Vol. 2, SC09-4813
v IBM Open Class Library Reference, Vol. 3, SC09-4814

Enterprise COBOL for z/OS and OS/390
v Enterprise COBOL for z/OS and OS/390 Licensed Program Specifications,

GC27-1410
v Enterprise COBOL for z/OS and OS/390 Customization, GC27-1410
v Enterprise COBOL for z/OS and OS/390 Language Reference, SC27-1408
v Enterprise COBOL for z/OS and OS/390 Programming Guide, SC27-1412
v Enterprise COBOL for z/OS and OS/390 Migration Guide, GC27-1409

COBOL for OS/390 & VM
v COBOL for OS/390 & VM Licensed Program Specifications, GC26-9044
v COBOL for OS/390 & VM Customization under OS/390, GC26-9045
v COBOL for OS/390 & VM Language Reference, SC26-9046
v COBOL for OS/390 & VM Programming Guide, SC26-9049
v COBOL for OS/390 & VM Compiler and Run-Time Migration Guide, GC26-4764

COBOL for MVS & VM (Release 2)
v Licensed Program Specifications, GC26-4761
v Programming Guide, SC26-4767
v Language Reference, SC26-4769
v Compiler and Run-Time Migration Guide, GC26-4764
v Installation and Customization under MVS, SC26-4766
v Reference Summary, SX26-3788
v Diagnosis Guide, SC26-3138

© Copyright IBM Corp. 1991, 2002 75

VS COBOL II
VS COBOL II Application Programming Guide for MVS and CMS, SC26-4045

Debug Tool
v Debug Tool User’s Guide and Reference, SC09-2137

VS FORTRAN Version 2
v Language Environment Fortran Run-Time Migration Guide, SC26-8499
v Language and Library Reference, SC26-4221
v Programming Guide for CMS and MVS, SC26-4222

Enterprise PL/I for z/OS and OS/390, V3R1
v Enterprise PL/I for z/OS and OS/390 Licensed Program Specifications,

GC27-1456
v Enterprise PL/I for z/OS and OS/390 Programming Guide, SC27-1457
v Enterprise PL/I for z/OS and OS/390 Language Reference, SC27-1460
v Enterprise PL/I for z/OS and OS/390 Migration Guide, GC27-1458
v Enterprise PL/I for z/OS and OS/390 Messages and Codes, SC27-1461
v Enterprise PL/I for z/OS and OS/390 Diagnosis Guide, SC27-1459

VisualAge PL/I
v VisualAge PL/I for OS/390 Licensed Program Specifications, GC26-9471
v VisualAge PL/I for OS/390 Programming Guide, SC26-9473
v VisualAge PL/I Language Reference, SC26-9476
v VisualAge PL/I for OS/390 Compiler and Run-Time Migration Guide, SC26-9474
v VisualAge PL/I Messages and Codes, SC26-9478
v VisualAge PL/I for OS/390 Diagnosis Guide, SC26-9475

PL/I for MVS & VM
v PL/I for MVS & VM Licensed Program Specifications, GC26-3116
v PL/I for MVS & VM Programming Guide, SC26-3113
v PL/I for MVS & VM Language Reference, SC26-3114
v PL/I for MVS & VM Reference Summary, SX26-3821
v PL/I for MVS & VM Compiler and Run-Time Migration Guide, SC26-3118
v PL/I for MVS & VM Installation and Customization under MVS, SC26-3119
v PL/I for MVS & VM Compile-Time Messages and Codes, SC26-3229
v PL/I for MVS & VM Diagnosis Guide, SC26-3149

High Level Assembler for MVS & VM
v Programmer’s Guide, MVS & VM Edition, SC26-4941

Related Publications
CICS
v CICS Transaction Server for OS/390 Installation Guide, GC34-5985
v CICS Operations and Utilities Guide, SC34-5991
v CICS Problem Determination Guide, GC34-6002
v CICS Resource Definition Guide, SC34-5990
v CICS Data Areas, LY33-6100
v CICS Application Programming Guide, SC34-5993
v CICS Application Programming Reference, SC34-5994
v CICS System Definition Guide, SC34-5988

DB2
Database 2 Application Programming and SQL Guide, SC26-4377

76 z/OS V1R4.0 Language Environment Concepts Guide

DFSMS/MVS
z/OS DFSMS Program Management, SC27-1130
z/OS DFSMS DFM Guide and Reference, SC26-7395

IPCS
v z/OS MVS IPCS User’s Guide, SA22-7596
v z/OS MVS IPCS Commands, SA22-7594
v z/OS MVS IPCS Customization, SA22-7595

DFSORT
DFSORT Application Programming Guide R14, SC33-4035

IMS/ESA
IMS/ESA Application Programming: Design Guide, SC26-8728
IMS/ESA Application Programming: Database Manager, SC26-8727
IMS/ESA Application Programming: Transaction Manager, SC26-8729
IMS/ESA Application Programming: EXEC DLI Commands for CICS and IMS,
SC26-8726

msys for Setup
v z/OS Managed System Infrastructure for Setup User’s Guide, SC33-7985

z/OS
v z/OS Introduction and Release Guide, GA22-7502
v z/OS Program Directory, GI10-0670
v z/OS and z/OS.e Planning for Installation, GA22-7504
v z/OS Information Roadmap, SA22-7500
v z/OS Hot Topics Newsletter, GA22-7501
v z/OS Licensed Program Specifications, GA22-7503
v

v z/OS ISPF Dialog Tag Language Guide and Reference, SC34-4824
v z/OS ISPF Planning and Customizing, GC34-4814
v z/OS ISPF Dialog Developer’s Guide and Reference, SC34-4821
v

v z/OS UNIX System Services User’s Guide, SA22-7801
v z/OS UNIX System Services Command Reference, SA22-7802
v z/OS UNIX System Services Programming: Assembler Callable Services

Reference, SA22-7803
v z/OS UNIX System Services Planning, GA22-7800
v

v z/OS TSO/E Customization, SA22-7783
v z/OS TSO/E Programming Services, SA22-7789
v z/OS TSO/E System Programming Command Reference, SA22-7793

z/OS.e
v z/OS.e Overview, GA22-7869
v z/OS.e Licensed Program Specifications, GA22-7503

Softcopy Publications
z/OS Collection, SK3T-4269

Bibliography 77

78 z/OS V1R4.0 Language Environment Concepts Guide

Index

A
accessibility 49
assembler language

application example 31
sample callable service syntax 37

C
C/370

application example 37
sample callable service syntax 29

callable services
invoking 29, 32
table listing 32, 37

COBOL
application example 40
sample callable service syntax 30

common environment, introduction 10
condition handling

callable services for 32
model 19, 25

condition token 22
cursor, resume 20, 25

D
Debug Tool 12
disability 49
documents, licensed xiii
dump, common 25
dynamic save area (DSA) 21

E
enclave 17
environment, common 10
exception handling 19

F
feedback code

description of 23
in callable services 30, 31

file sharing 17

H
heap storage 27
HLL condition handler 21

I
increment

heap 27
interlanguage communication (ILC) 11, 12
interrupts 22

J
Japanese language support 25

K
keyboard 49

L
language support

callable services for 36
description of 25

licensed documents xiii
LookAt message retrieval tool xiii

M
math services 35
message handling

callable services for 36
description of 25

message retrieval tool, LookAt xiii
models, architectural

condition handling 19, 25
message handling 25
program management 15, 19
storage management 26, 27

N
national language support (NLS) 25

callable services for 36
Notices 51

P
parallel processing 18
participating languages

Language Environment 8
percolate action 25
PL/I for MVS & VM

application example 42
sample callable service syntax 30

POSIX 11
process 16
program and tasking model 15
promote action 25

R
report

storage 27
resume

action 25
cursor 20, 25

run-time environment, introduction 10

© Copyright IBM Corp. 1991, 2002 79

S
scope

of language semantics 18
shortcut keys 49
stack

frame 21
storage 26

static storage, in enclave 18
storage

callable services for 33
in thread 18
management model 26
report 27
static, in enclave 18

suballocations, of storage 21
syntax

calling 29

T
terminology

condition handling model 20, 21
program management model 15, 16
storage management model 26

thread 18
token, condition 22

U
user-written condition handler 21

Z
z/OS UNIX System Services 11

80 z/OS V1R4.0 Language Environment Concepts Guide

Readers’ Comments — We’d Like to Hear from You

z/OS
Language Environment Concepts Guide

Publication No. SA22-7567-03

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7567-03

SA22-7567-03

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY

12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Program Number: 5694-A01, 5655-G52

Printed in U.S.A.

SA22-7567-03

	Contents
	Figures
	Tables
	About this document
	Using your documentation
	Determining if a publication is current
	Product information on the World Wide Web

	Where to find more information
	Accessing z/OS licensed documents on the Internet
	Using LookAt to look up message explanations

	Summary of changes
	Chapter 1. What's New in Language Environment for z/OS
	What's New in Language Environment for z/OS Version 1 Release 4
	What's New in C/C++ for z/OS Version 1 Release 4
	What's New in Language Environment for z/OS Version 1 Release 3
	What's New in C/C++ for z/OS Version 1 Release 3
	What's New in Language Environment for z/OS Version 1 Release 2
	What's New in C/C++ for z/OS Version 1 Release 2
	What's New in Language Environment for z/OS Version 1 Release 1

	Chapter 2. Overview
	What You Can Do with Language Environment
	Common Use of System Resources Gives You Greater Control
	Consistent Condition Handling Simplifies Error Recovery
	Language Environment Protects Your Programming Investment
	ILC Capability Offers Greater Efficiency and Flexibility
	Common Dump Puts All Debugging Information in One Place
	POSIX-Conforming Application Support Enhances Code Portability
	Locale Callable Services Enhance the Development of Internationalized Applications

	Debug Tool in Your Common Environment
	IBM C/C++ Productivity Tools for OS/390

	Chapter 3. The Model for Language Environment
	The Language Environment Program Management Model
	Language Environment Program Management Model Terminology
	Program Management
	Processes
	Enclaves
	Characteristics of the Enclave

	Threads

	Language Environment Condition-Handling Model
	Condition-Handling Terminology
	Condition-Handling Model Description
	How Conditions are Represented

	How Condition Tokens are Created and Used
	Condition-Handling Responses
	Run-Time Dump Service Provides Information in One Place

	Language Environment Message Handling Model and National Language Support
	National Language Support

	Language Environment Storage Management Model
	Stack Storage
	Heap Storage
	Storage Management Options
	Storage Report
	Storage Option

	Chapter 4. Language Environment Callable Services
	Language Environment Calling Conventions
	Invoking Callable Services from C
	Invoking Callable Services from COBOL
	Invoking Callable Services from PL/I
	Invoking Callable Services from Assembler

	Language Environment Callable Services

	Chapter 5. Sample Routines
	Sample Assembler Routine
	Sample C/C++ Routine
	Sample C Routine with POSIX Functions
	Sample COBOL Program
	Sample PL/I Routine

	Appendix A. Customizing Language Environment run-time options using z/OS msys for Setup
	Who should use msys for Setup?
	What is the Language Environment customization task?
	Recommendations when using msys for Setup for Language Environment customization
	Restrictions when using msys for Setup for Language Environment customization
	Where to find information about msys for Setup

	Appendix B. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Programming Interface Information
	Trademarks

	Language Environment Glossary
	Bibliography
	Language Products Publications
	Related Publications
	Softcopy Publications

	Index
	Readers’ Comments — We'd Like to Hear from You

